1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #define ATRACE_TAG ATRACE_TAG_DALVIK
20 #include <cutils/trace.h>
21
22 #include <limits>
23 #include <memory>
24 #include <vector>
25
26 #include "base/allocator.h"
27 #include "base/histogram-inl.h"
28 #include "base/stl_util.h"
29 #include "common_throws.h"
30 #include "cutils/sched_policy.h"
31 #include "debugger.h"
32 #include "gc/accounting/atomic_stack.h"
33 #include "gc/accounting/card_table-inl.h"
34 #include "gc/accounting/heap_bitmap-inl.h"
35 #include "gc/accounting/mod_union_table.h"
36 #include "gc/accounting/mod_union_table-inl.h"
37 #include "gc/accounting/remembered_set.h"
38 #include "gc/accounting/space_bitmap-inl.h"
39 #include "gc/collector/concurrent_copying.h"
40 #include "gc/collector/mark_compact.h"
41 #include "gc/collector/mark_sweep-inl.h"
42 #include "gc/collector/partial_mark_sweep.h"
43 #include "gc/collector/semi_space.h"
44 #include "gc/collector/sticky_mark_sweep.h"
45 #include "gc/reference_processor.h"
46 #include "gc/space/bump_pointer_space.h"
47 #include "gc/space/dlmalloc_space-inl.h"
48 #include "gc/space/image_space.h"
49 #include "gc/space/large_object_space.h"
50 #include "gc/space/rosalloc_space-inl.h"
51 #include "gc/space/space-inl.h"
52 #include "gc/space/zygote_space.h"
53 #include "entrypoints/quick/quick_alloc_entrypoints.h"
54 #include "heap-inl.h"
55 #include "image.h"
56 #include "mirror/art_field-inl.h"
57 #include "mirror/class-inl.h"
58 #include "mirror/object.h"
59 #include "mirror/object-inl.h"
60 #include "mirror/object_array-inl.h"
61 #include "mirror/reference-inl.h"
62 #include "os.h"
63 #include "reflection.h"
64 #include "runtime.h"
65 #include "ScopedLocalRef.h"
66 #include "scoped_thread_state_change.h"
67 #include "handle_scope-inl.h"
68 #include "thread_list.h"
69 #include "well_known_classes.h"
70
71 namespace art {
72
73 namespace gc {
74
75 static constexpr size_t kCollectorTransitionStressIterations = 0;
76 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000; // Microseconds
77 static constexpr bool kGCALotMode = false;
78 static constexpr size_t kGcAlotInterval = KB;
79 // Minimum amount of remaining bytes before a concurrent GC is triggered.
80 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84 // threads (lower pauses, use less memory bandwidth).
85 static constexpr double kStickyGcThroughputAdjustment = 1.0;
86 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
87 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
88 #if USE_ART_LOW_4G_ALLOCATOR
89 static constexpr bool kUseFreeListSpaceForLOS = true;
90 #else
91 static constexpr bool kUseFreeListSpaceForLOS = false;
92 #endif
93 // Whether or not we compact the zygote in PreZygoteFork.
94 static constexpr bool kCompactZygote = kMovingCollector;
95 // How many reserve entries are at the end of the allocation stack, these are only needed if the
96 // allocation stack overflows.
97 static constexpr size_t kAllocationStackReserveSize = 1024;
98 // Default mark stack size in bytes.
99 static const size_t kDefaultMarkStackSize = 64 * KB;
100 // Define space name.
101 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
102 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
103 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
104 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
105
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_max_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool use_homogeneous_space_compaction_for_oom,uint64_t min_interval_homogeneous_space_compaction_by_oom)106 Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
107 double target_utilization, double foreground_heap_growth_multiplier,
108 size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
109 const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
110 CollectorType background_collector_type, size_t parallel_gc_threads,
111 size_t conc_gc_threads, bool low_memory_mode,
112 size_t long_pause_log_threshold, size_t long_gc_log_threshold,
113 bool ignore_max_footprint, bool use_tlab,
114 bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
115 bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
116 bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
117 uint64_t min_interval_homogeneous_space_compaction_by_oom)
118 : non_moving_space_(nullptr),
119 rosalloc_space_(nullptr),
120 dlmalloc_space_(nullptr),
121 main_space_(nullptr),
122 collector_type_(kCollectorTypeNone),
123 foreground_collector_type_(foreground_collector_type),
124 background_collector_type_(background_collector_type),
125 desired_collector_type_(foreground_collector_type_),
126 heap_trim_request_lock_(nullptr),
127 last_trim_time_(0),
128 heap_transition_or_trim_target_time_(0),
129 heap_trim_request_pending_(false),
130 parallel_gc_threads_(parallel_gc_threads),
131 conc_gc_threads_(conc_gc_threads),
132 low_memory_mode_(low_memory_mode),
133 long_pause_log_threshold_(long_pause_log_threshold),
134 long_gc_log_threshold_(long_gc_log_threshold),
135 ignore_max_footprint_(ignore_max_footprint),
136 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
137 have_zygote_space_(false),
138 large_object_threshold_(std::numeric_limits<size_t>::max()), // Starts out disabled.
139 collector_type_running_(kCollectorTypeNone),
140 last_gc_type_(collector::kGcTypeNone),
141 next_gc_type_(collector::kGcTypePartial),
142 capacity_(capacity),
143 growth_limit_(growth_limit),
144 max_allowed_footprint_(initial_size),
145 native_footprint_gc_watermark_(initial_size),
146 native_need_to_run_finalization_(false),
147 // Initially assume we perceive jank in case the process state is never updated.
148 process_state_(kProcessStateJankPerceptible),
149 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
150 total_bytes_freed_ever_(0),
151 total_objects_freed_ever_(0),
152 num_bytes_allocated_(0),
153 native_bytes_allocated_(0),
154 verify_missing_card_marks_(false),
155 verify_system_weaks_(false),
156 verify_pre_gc_heap_(verify_pre_gc_heap),
157 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
158 verify_post_gc_heap_(verify_post_gc_heap),
159 verify_mod_union_table_(false),
160 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
161 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
162 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
163 last_gc_time_ns_(NanoTime()),
164 allocation_rate_(0),
165 /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
166 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
167 * verification is enabled, we limit the size of allocation stacks to speed up their
168 * searching.
169 */
170 max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
171 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
172 current_allocator_(kAllocatorTypeDlMalloc),
173 current_non_moving_allocator_(kAllocatorTypeNonMoving),
174 bump_pointer_space_(nullptr),
175 temp_space_(nullptr),
176 min_free_(min_free),
177 max_free_(max_free),
178 target_utilization_(target_utilization),
179 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
180 total_wait_time_(0),
181 total_allocation_time_(0),
182 verify_object_mode_(kVerifyObjectModeDisabled),
183 disable_moving_gc_count_(0),
184 running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
185 use_tlab_(use_tlab),
186 main_space_backup_(nullptr),
187 min_interval_homogeneous_space_compaction_by_oom_(
188 min_interval_homogeneous_space_compaction_by_oom),
189 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
190 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
191 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
192 LOG(INFO) << "Heap() entering";
193 }
194 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
195 // entrypoints.
196 const bool is_zygote = Runtime::Current()->IsZygote();
197 if (!is_zygote) {
198 large_object_threshold_ = kDefaultLargeObjectThreshold;
199 // Background compaction is currently not supported for command line runs.
200 if (background_collector_type_ != foreground_collector_type_) {
201 VLOG(heap) << "Disabling background compaction for non zygote";
202 background_collector_type_ = foreground_collector_type_;
203 }
204 }
205 ChangeCollector(desired_collector_type_);
206 live_bitmap_.reset(new accounting::HeapBitmap(this));
207 mark_bitmap_.reset(new accounting::HeapBitmap(this));
208 // Requested begin for the alloc space, to follow the mapped image and oat files
209 byte* requested_alloc_space_begin = nullptr;
210 if (!image_file_name.empty()) {
211 std::string error_msg;
212 space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
213 image_instruction_set,
214 &error_msg);
215 if (image_space != nullptr) {
216 AddSpace(image_space);
217 // Oat files referenced by image files immediately follow them in memory, ensure alloc space
218 // isn't going to get in the middle
219 byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
220 CHECK_GT(oat_file_end_addr, image_space->End());
221 requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
222 } else {
223 LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
224 << "Attempting to fall back to imageless running. Error was: " << error_msg;
225 }
226 }
227 /*
228 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
229 +- nonmoving space (non_moving_space_capacity)+-
230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
231 +-????????????????????????????????????????????+-
232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
233 +-main alloc space / bump space 1 (capacity_) +-
234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
235 +-????????????????????????????????????????????+-
236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
237 +-main alloc space2 / bump space 2 (capacity_)+-
238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
239 */
240 bool support_homogeneous_space_compaction =
241 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
242 use_homogeneous_space_compaction_for_oom;
243 // We may use the same space the main space for the non moving space if we don't need to compact
244 // from the main space.
245 // This is not the case if we support homogeneous compaction or have a moving background
246 // collector type.
247 bool separate_non_moving_space = is_zygote ||
248 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
249 IsMovingGc(background_collector_type_);
250 if (foreground_collector_type == kCollectorTypeGSS) {
251 separate_non_moving_space = false;
252 }
253 std::unique_ptr<MemMap> main_mem_map_1;
254 std::unique_ptr<MemMap> main_mem_map_2;
255 byte* request_begin = requested_alloc_space_begin;
256 if (request_begin != nullptr && separate_non_moving_space) {
257 request_begin += non_moving_space_capacity;
258 }
259 std::string error_str;
260 std::unique_ptr<MemMap> non_moving_space_mem_map;
261 if (separate_non_moving_space) {
262 // Reserve the non moving mem map before the other two since it needs to be at a specific
263 // address.
264 non_moving_space_mem_map.reset(
265 MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
266 non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
267 CHECK(non_moving_space_mem_map != nullptr) << error_str;
268 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
269 request_begin = reinterpret_cast<byte*>(300 * MB);
270 }
271 // Attempt to create 2 mem maps at or after the requested begin.
272 main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
273 PROT_READ | PROT_WRITE, &error_str));
274 CHECK(main_mem_map_1.get() != nullptr) << error_str;
275 if (support_homogeneous_space_compaction ||
276 background_collector_type_ == kCollectorTypeSS ||
277 foreground_collector_type_ == kCollectorTypeSS) {
278 main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
279 capacity_, PROT_READ | PROT_WRITE,
280 &error_str));
281 CHECK(main_mem_map_2.get() != nullptr) << error_str;
282 }
283 // Create the non moving space first so that bitmaps don't take up the address range.
284 if (separate_non_moving_space) {
285 // Non moving space is always dlmalloc since we currently don't have support for multiple
286 // active rosalloc spaces.
287 const size_t size = non_moving_space_mem_map->Size();
288 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
289 non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
290 initial_size, size, size, false);
291 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
292 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
293 << requested_alloc_space_begin;
294 AddSpace(non_moving_space_);
295 }
296 // Create other spaces based on whether or not we have a moving GC.
297 if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
298 // Create bump pointer spaces.
299 // We only to create the bump pointer if the foreground collector is a compacting GC.
300 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
301 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
302 main_mem_map_1.release());
303 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
304 AddSpace(bump_pointer_space_);
305 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
306 main_mem_map_2.release());
307 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
308 AddSpace(temp_space_);
309 CHECK(separate_non_moving_space);
310 } else {
311 CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
312 CHECK(main_space_ != nullptr);
313 AddSpace(main_space_);
314 if (!separate_non_moving_space) {
315 non_moving_space_ = main_space_;
316 CHECK(!non_moving_space_->CanMoveObjects());
317 }
318 if (foreground_collector_type_ == kCollectorTypeGSS) {
319 CHECK_EQ(foreground_collector_type_, background_collector_type_);
320 // Create bump pointer spaces instead of a backup space.
321 main_mem_map_2.release();
322 bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
323 kGSSBumpPointerSpaceCapacity, nullptr);
324 CHECK(bump_pointer_space_ != nullptr);
325 AddSpace(bump_pointer_space_);
326 temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
327 kGSSBumpPointerSpaceCapacity, nullptr);
328 CHECK(temp_space_ != nullptr);
329 AddSpace(temp_space_);
330 } else if (main_mem_map_2.get() != nullptr) {
331 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
332 main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
333 growth_limit_, capacity_, name, true));
334 CHECK(main_space_backup_.get() != nullptr);
335 // Add the space so its accounted for in the heap_begin and heap_end.
336 AddSpace(main_space_backup_.get());
337 }
338 }
339 CHECK(non_moving_space_ != nullptr);
340 CHECK(!non_moving_space_->CanMoveObjects());
341 // Allocate the large object space.
342 if (kUseFreeListSpaceForLOS) {
343 large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
344 } else {
345 large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
346 }
347 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
348 AddSpace(large_object_space_);
349 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
350 CHECK(!continuous_spaces_.empty());
351 // Relies on the spaces being sorted.
352 byte* heap_begin = continuous_spaces_.front()->Begin();
353 byte* heap_end = continuous_spaces_.back()->Limit();
354 size_t heap_capacity = heap_end - heap_begin;
355 // Remove the main backup space since it slows down the GC to have unused extra spaces.
356 if (main_space_backup_.get() != nullptr) {
357 RemoveSpace(main_space_backup_.get());
358 }
359 // Allocate the card table.
360 card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
361 CHECK(card_table_.get() != NULL) << "Failed to create card table";
362 // Card cache for now since it makes it easier for us to update the references to the copying
363 // spaces.
364 accounting::ModUnionTable* mod_union_table =
365 new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
366 GetImageSpace());
367 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
368 AddModUnionTable(mod_union_table);
369 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
370 accounting::RememberedSet* non_moving_space_rem_set =
371 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
372 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
373 AddRememberedSet(non_moving_space_rem_set);
374 }
375 // TODO: Count objects in the image space here?
376 num_bytes_allocated_.StoreRelaxed(0);
377 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
378 kDefaultMarkStackSize));
379 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
380 allocation_stack_.reset(accounting::ObjectStack::Create(
381 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
382 live_stack_.reset(accounting::ObjectStack::Create(
383 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
384 // It's still too early to take a lock because there are no threads yet, but we can create locks
385 // now. We don't create it earlier to make it clear that you can't use locks during heap
386 // initialization.
387 gc_complete_lock_ = new Mutex("GC complete lock");
388 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
389 *gc_complete_lock_));
390 heap_trim_request_lock_ = new Mutex("Heap trim request lock");
391 last_gc_size_ = GetBytesAllocated();
392 if (ignore_max_footprint_) {
393 SetIdealFootprint(std::numeric_limits<size_t>::max());
394 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
395 }
396 CHECK_NE(max_allowed_footprint_, 0U);
397 // Create our garbage collectors.
398 for (size_t i = 0; i < 2; ++i) {
399 const bool concurrent = i != 0;
400 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
401 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
402 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
403 }
404 if (kMovingCollector) {
405 // TODO: Clean this up.
406 const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
407 semi_space_collector_ = new collector::SemiSpace(this, generational,
408 generational ? "generational" : "");
409 garbage_collectors_.push_back(semi_space_collector_);
410 concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
411 garbage_collectors_.push_back(concurrent_copying_collector_);
412 mark_compact_collector_ = new collector::MarkCompact(this);
413 garbage_collectors_.push_back(mark_compact_collector_);
414 }
415 if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
416 // Check that there's no gap between the image space and the non moving space so that the
417 // immune region won't break (eg. due to a large object allocated in the gap).
418 bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
419 non_moving_space_->GetMemMap());
420 if (!no_gap) {
421 MemMap::DumpMaps(LOG(ERROR));
422 LOG(FATAL) << "There's a gap between the image space and the main space";
423 }
424 }
425 if (running_on_valgrind_) {
426 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
427 }
428 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
429 LOG(INFO) << "Heap() exiting";
430 }
431 }
432
MapAnonymousPreferredAddress(const char * name,byte * request_begin,size_t capacity,int prot_flags,std::string * out_error_str)433 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
434 int prot_flags, std::string* out_error_str) {
435 while (true) {
436 MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
437 PROT_READ | PROT_WRITE, true, out_error_str);
438 if (map != nullptr || request_begin == nullptr) {
439 return map;
440 }
441 // Retry a second time with no specified request begin.
442 request_begin = nullptr;
443 }
444 return nullptr;
445 }
446
CreateMallocSpaceFromMemMap(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)447 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
448 size_t growth_limit, size_t capacity,
449 const char* name, bool can_move_objects) {
450 space::MallocSpace* malloc_space = nullptr;
451 if (kUseRosAlloc) {
452 // Create rosalloc space.
453 malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
454 initial_size, growth_limit, capacity,
455 low_memory_mode_, can_move_objects);
456 } else {
457 malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
458 initial_size, growth_limit, capacity,
459 can_move_objects);
460 }
461 if (collector::SemiSpace::kUseRememberedSet) {
462 accounting::RememberedSet* rem_set =
463 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
464 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
465 AddRememberedSet(rem_set);
466 }
467 CHECK(malloc_space != nullptr) << "Failed to create " << name;
468 malloc_space->SetFootprintLimit(malloc_space->Capacity());
469 return malloc_space;
470 }
471
CreateMainMallocSpace(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity)472 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
473 size_t capacity) {
474 // Is background compaction is enabled?
475 bool can_move_objects = IsMovingGc(background_collector_type_) !=
476 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
477 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
478 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
479 // from the main space to the zygote space. If background compaction is enabled, always pass in
480 // that we can move objets.
481 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
482 // After the zygote we want this to be false if we don't have background compaction enabled so
483 // that getting primitive array elements is faster.
484 // We never have homogeneous compaction with GSS and don't need a space with movable objects.
485 can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
486 }
487 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
488 RemoveRememberedSet(main_space_);
489 }
490 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
491 main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
492 can_move_objects);
493 SetSpaceAsDefault(main_space_);
494 VLOG(heap) << "Created main space " << main_space_;
495 }
496
ChangeAllocator(AllocatorType allocator)497 void Heap::ChangeAllocator(AllocatorType allocator) {
498 if (current_allocator_ != allocator) {
499 // These two allocators are only used internally and don't have any entrypoints.
500 CHECK_NE(allocator, kAllocatorTypeLOS);
501 CHECK_NE(allocator, kAllocatorTypeNonMoving);
502 current_allocator_ = allocator;
503 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
504 SetQuickAllocEntryPointsAllocator(current_allocator_);
505 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
506 }
507 }
508
DisableMovingGc()509 void Heap::DisableMovingGc() {
510 if (IsMovingGc(foreground_collector_type_)) {
511 foreground_collector_type_ = kCollectorTypeCMS;
512 }
513 if (IsMovingGc(background_collector_type_)) {
514 background_collector_type_ = foreground_collector_type_;
515 }
516 TransitionCollector(foreground_collector_type_);
517 ThreadList* tl = Runtime::Current()->GetThreadList();
518 Thread* self = Thread::Current();
519 ScopedThreadStateChange tsc(self, kSuspended);
520 tl->SuspendAll();
521 // Something may have caused the transition to fail.
522 if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
523 CHECK(main_space_ != nullptr);
524 // The allocation stack may have non movable objects in it. We need to flush it since the GC
525 // can't only handle marking allocation stack objects of one non moving space and one main
526 // space.
527 {
528 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
529 FlushAllocStack();
530 }
531 main_space_->DisableMovingObjects();
532 non_moving_space_ = main_space_;
533 CHECK(!non_moving_space_->CanMoveObjects());
534 }
535 tl->ResumeAll();
536 }
537
SafeGetClassDescriptor(mirror::Class * klass)538 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
539 if (!IsValidContinuousSpaceObjectAddress(klass)) {
540 return StringPrintf("<non heap address klass %p>", klass);
541 }
542 mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
543 if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
544 std::string result("[");
545 result += SafeGetClassDescriptor(component_type);
546 return result;
547 } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
548 return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
549 } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
550 return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
551 } else {
552 mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
553 if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
554 return StringPrintf("<non heap address dex_cache %p>", dex_cache);
555 }
556 const DexFile* dex_file = dex_cache->GetDexFile();
557 uint16_t class_def_idx = klass->GetDexClassDefIndex();
558 if (class_def_idx == DexFile::kDexNoIndex16) {
559 return "<class def not found>";
560 }
561 const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
562 const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
563 return dex_file->GetTypeDescriptor(type_id);
564 }
565 }
566
SafePrettyTypeOf(mirror::Object * obj)567 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
568 if (obj == nullptr) {
569 return "null";
570 }
571 mirror::Class* klass = obj->GetClass<kVerifyNone>();
572 if (klass == nullptr) {
573 return "(class=null)";
574 }
575 std::string result(SafeGetClassDescriptor(klass));
576 if (obj->IsClass()) {
577 result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
578 }
579 return result;
580 }
581
DumpObject(std::ostream & stream,mirror::Object * obj)582 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
583 if (obj == nullptr) {
584 stream << "(obj=null)";
585 return;
586 }
587 if (IsAligned<kObjectAlignment>(obj)) {
588 space::Space* space = nullptr;
589 // Don't use find space since it only finds spaces which actually contain objects instead of
590 // spaces which may contain objects (e.g. cleared bump pointer spaces).
591 for (const auto& cur_space : continuous_spaces_) {
592 if (cur_space->HasAddress(obj)) {
593 space = cur_space;
594 break;
595 }
596 }
597 // Unprotect all the spaces.
598 for (const auto& space : continuous_spaces_) {
599 mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
600 }
601 stream << "Object " << obj;
602 if (space != nullptr) {
603 stream << " in space " << *space;
604 }
605 mirror::Class* klass = obj->GetClass<kVerifyNone>();
606 stream << "\nclass=" << klass;
607 if (klass != nullptr) {
608 stream << " type= " << SafePrettyTypeOf(obj);
609 }
610 // Re-protect the address we faulted on.
611 mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
612 }
613 }
614
IsCompilingBoot() const615 bool Heap::IsCompilingBoot() const {
616 if (!Runtime::Current()->IsCompiler()) {
617 return false;
618 }
619 for (const auto& space : continuous_spaces_) {
620 if (space->IsImageSpace() || space->IsZygoteSpace()) {
621 return false;
622 }
623 }
624 return true;
625 }
626
HasImageSpace() const627 bool Heap::HasImageSpace() const {
628 for (const auto& space : continuous_spaces_) {
629 if (space->IsImageSpace()) {
630 return true;
631 }
632 }
633 return false;
634 }
635
IncrementDisableMovingGC(Thread * self)636 void Heap::IncrementDisableMovingGC(Thread* self) {
637 // Need to do this holding the lock to prevent races where the GC is about to run / running when
638 // we attempt to disable it.
639 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
640 MutexLock mu(self, *gc_complete_lock_);
641 ++disable_moving_gc_count_;
642 if (IsMovingGc(collector_type_running_)) {
643 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
644 }
645 }
646
DecrementDisableMovingGC(Thread * self)647 void Heap::DecrementDisableMovingGC(Thread* self) {
648 MutexLock mu(self, *gc_complete_lock_);
649 CHECK_GE(disable_moving_gc_count_, 0U);
650 --disable_moving_gc_count_;
651 }
652
UpdateProcessState(ProcessState process_state)653 void Heap::UpdateProcessState(ProcessState process_state) {
654 if (process_state_ != process_state) {
655 process_state_ = process_state;
656 for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
657 // Start at index 1 to avoid "is always false" warning.
658 // Have iteration 1 always transition the collector.
659 TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
660 ? foreground_collector_type_ : background_collector_type_);
661 usleep(kCollectorTransitionStressWait);
662 }
663 if (process_state_ == kProcessStateJankPerceptible) {
664 // Transition back to foreground right away to prevent jank.
665 RequestCollectorTransition(foreground_collector_type_, 0);
666 } else {
667 // Don't delay for debug builds since we may want to stress test the GC.
668 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
669 // special handling which does a homogenous space compaction once but then doesn't transition
670 // the collector.
671 RequestCollectorTransition(background_collector_type_,
672 kIsDebugBuild ? 0 : kCollectorTransitionWait);
673 }
674 }
675 }
676
CreateThreadPool()677 void Heap::CreateThreadPool() {
678 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
679 if (num_threads != 0) {
680 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
681 }
682 }
683
VisitObjects(ObjectCallback callback,void * arg)684 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
685 Thread* self = Thread::Current();
686 // GCs can move objects, so don't allow this.
687 const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
688 if (bump_pointer_space_ != nullptr) {
689 // Visit objects in bump pointer space.
690 bump_pointer_space_->Walk(callback, arg);
691 }
692 // TODO: Switch to standard begin and end to use ranged a based loop.
693 for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
694 it < end; ++it) {
695 mirror::Object* obj = *it;
696 if (obj != nullptr && obj->GetClass() != nullptr) {
697 // Avoid the race condition caused by the object not yet being written into the allocation
698 // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
699 // there can be nulls on the allocation stack.
700 callback(obj, arg);
701 }
702 }
703 GetLiveBitmap()->Walk(callback, arg);
704 self->EndAssertNoThreadSuspension(old_cause);
705 }
706
MarkAllocStackAsLive(accounting::ObjectStack * stack)707 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
708 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
709 space::ContinuousSpace* space2 = non_moving_space_;
710 // TODO: Generalize this to n bitmaps?
711 CHECK(space1 != nullptr);
712 CHECK(space2 != nullptr);
713 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
714 large_object_space_->GetLiveBitmap(), stack);
715 }
716
DeleteThreadPool()717 void Heap::DeleteThreadPool() {
718 thread_pool_.reset(nullptr);
719 }
720
AddSpace(space::Space * space)721 void Heap::AddSpace(space::Space* space) {
722 CHECK(space != nullptr);
723 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
724 if (space->IsContinuousSpace()) {
725 DCHECK(!space->IsDiscontinuousSpace());
726 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
727 // Continuous spaces don't necessarily have bitmaps.
728 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
729 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
730 if (live_bitmap != nullptr) {
731 CHECK(mark_bitmap != nullptr);
732 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
733 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
734 }
735 continuous_spaces_.push_back(continuous_space);
736 // Ensure that spaces remain sorted in increasing order of start address.
737 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
738 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
739 return a->Begin() < b->Begin();
740 });
741 } else {
742 CHECK(space->IsDiscontinuousSpace());
743 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
744 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
745 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
746 discontinuous_spaces_.push_back(discontinuous_space);
747 }
748 if (space->IsAllocSpace()) {
749 alloc_spaces_.push_back(space->AsAllocSpace());
750 }
751 }
752
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)753 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
754 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
755 if (continuous_space->IsDlMallocSpace()) {
756 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
757 } else if (continuous_space->IsRosAllocSpace()) {
758 rosalloc_space_ = continuous_space->AsRosAllocSpace();
759 }
760 }
761
RemoveSpace(space::Space * space)762 void Heap::RemoveSpace(space::Space* space) {
763 DCHECK(space != nullptr);
764 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
765 if (space->IsContinuousSpace()) {
766 DCHECK(!space->IsDiscontinuousSpace());
767 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
768 // Continuous spaces don't necessarily have bitmaps.
769 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
770 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
771 if (live_bitmap != nullptr) {
772 DCHECK(mark_bitmap != nullptr);
773 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
774 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
775 }
776 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
777 DCHECK(it != continuous_spaces_.end());
778 continuous_spaces_.erase(it);
779 } else {
780 DCHECK(space->IsDiscontinuousSpace());
781 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
782 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
783 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
784 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
785 discontinuous_space);
786 DCHECK(it != discontinuous_spaces_.end());
787 discontinuous_spaces_.erase(it);
788 }
789 if (space->IsAllocSpace()) {
790 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
791 DCHECK(it != alloc_spaces_.end());
792 alloc_spaces_.erase(it);
793 }
794 }
795
DumpGcPerformanceInfo(std::ostream & os)796 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
797 // Dump cumulative timings.
798 os << "Dumping cumulative Gc timings\n";
799 uint64_t total_duration = 0;
800 // Dump cumulative loggers for each GC type.
801 uint64_t total_paused_time = 0;
802 for (auto& collector : garbage_collectors_) {
803 const CumulativeLogger& logger = collector->GetCumulativeTimings();
804 const size_t iterations = logger.GetIterations();
805 const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
806 if (iterations != 0 && pause_histogram.SampleSize() != 0) {
807 os << ConstDumpable<CumulativeLogger>(logger);
808 const uint64_t total_ns = logger.GetTotalNs();
809 const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
810 double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
811 const uint64_t freed_bytes = collector->GetTotalFreedBytes();
812 const uint64_t freed_objects = collector->GetTotalFreedObjects();
813 Histogram<uint64_t>::CumulativeData cumulative_data;
814 pause_histogram.CreateHistogram(&cumulative_data);
815 pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
816 os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
817 << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
818 << collector->GetName() << " freed: " << freed_objects
819 << " objects with total size " << PrettySize(freed_bytes) << "\n"
820 << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
821 << PrettySize(freed_bytes / seconds) << "/s\n";
822 total_duration += total_ns;
823 total_paused_time += total_pause_ns;
824 }
825 collector->ResetMeasurements();
826 }
827 uint64_t allocation_time =
828 static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
829 if (total_duration != 0) {
830 const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
831 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
832 os << "Mean GC size throughput: "
833 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
834 os << "Mean GC object throughput: "
835 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
836 }
837 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
838 os << "Total number of allocations " << total_objects_allocated << "\n";
839 uint64_t total_bytes_allocated = GetBytesAllocatedEver();
840 os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
841 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
842 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
843 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
844 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
845 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
846 if (kMeasureAllocationTime) {
847 os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
848 os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
849 << "\n";
850 }
851 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
852 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
853 BaseMutex::DumpAll(os);
854 }
855
~Heap()856 Heap::~Heap() {
857 VLOG(heap) << "Starting ~Heap()";
858 STLDeleteElements(&garbage_collectors_);
859 // If we don't reset then the mark stack complains in its destructor.
860 allocation_stack_->Reset();
861 live_stack_->Reset();
862 STLDeleteValues(&mod_union_tables_);
863 STLDeleteValues(&remembered_sets_);
864 STLDeleteElements(&continuous_spaces_);
865 STLDeleteElements(&discontinuous_spaces_);
866 delete gc_complete_lock_;
867 delete heap_trim_request_lock_;
868 VLOG(heap) << "Finished ~Heap()";
869 }
870
FindContinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const871 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
872 bool fail_ok) const {
873 for (const auto& space : continuous_spaces_) {
874 if (space->Contains(obj)) {
875 return space;
876 }
877 }
878 if (!fail_ok) {
879 LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
880 }
881 return NULL;
882 }
883
FindDiscontinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const884 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
885 bool fail_ok) const {
886 for (const auto& space : discontinuous_spaces_) {
887 if (space->Contains(obj)) {
888 return space;
889 }
890 }
891 if (!fail_ok) {
892 LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
893 }
894 return NULL;
895 }
896
FindSpaceFromObject(const mirror::Object * obj,bool fail_ok) const897 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
898 space::Space* result = FindContinuousSpaceFromObject(obj, true);
899 if (result != NULL) {
900 return result;
901 }
902 return FindDiscontinuousSpaceFromObject(obj, true);
903 }
904
GetImageSpace() const905 space::ImageSpace* Heap::GetImageSpace() const {
906 for (const auto& space : continuous_spaces_) {
907 if (space->IsImageSpace()) {
908 return space->AsImageSpace();
909 }
910 }
911 return NULL;
912 }
913
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)914 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
915 std::ostringstream oss;
916 size_t total_bytes_free = GetFreeMemory();
917 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
918 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
919 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
920 if (total_bytes_free >= byte_count) {
921 space::AllocSpace* space = nullptr;
922 if (allocator_type == kAllocatorTypeNonMoving) {
923 space = non_moving_space_;
924 } else if (allocator_type == kAllocatorTypeRosAlloc ||
925 allocator_type == kAllocatorTypeDlMalloc) {
926 space = main_space_;
927 } else if (allocator_type == kAllocatorTypeBumpPointer ||
928 allocator_type == kAllocatorTypeTLAB) {
929 space = bump_pointer_space_;
930 }
931 if (space != nullptr) {
932 space->LogFragmentationAllocFailure(oss, byte_count);
933 }
934 }
935 self->ThrowOutOfMemoryError(oss.str().c_str());
936 }
937
DoPendingTransitionOrTrim()938 void Heap::DoPendingTransitionOrTrim() {
939 Thread* self = Thread::Current();
940 CollectorType desired_collector_type;
941 // Wait until we reach the desired transition time.
942 while (true) {
943 uint64_t wait_time;
944 {
945 MutexLock mu(self, *heap_trim_request_lock_);
946 desired_collector_type = desired_collector_type_;
947 uint64_t current_time = NanoTime();
948 if (current_time >= heap_transition_or_trim_target_time_) {
949 break;
950 }
951 wait_time = heap_transition_or_trim_target_time_ - current_time;
952 }
953 ScopedThreadStateChange tsc(self, kSleeping);
954 usleep(wait_time / 1000); // Usleep takes microseconds.
955 }
956 // Launch homogeneous space compaction if it is desired.
957 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
958 if (!CareAboutPauseTimes()) {
959 PerformHomogeneousSpaceCompact();
960 }
961 // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
962 desired_collector_type = collector_type_;
963 return;
964 }
965 // Transition the collector if the desired collector type is not the same as the current
966 // collector type.
967 TransitionCollector(desired_collector_type);
968 if (!CareAboutPauseTimes()) {
969 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
970 // about pauses.
971 Runtime* runtime = Runtime::Current();
972 runtime->GetThreadList()->SuspendAll();
973 uint64_t start_time = NanoTime();
974 size_t count = runtime->GetMonitorList()->DeflateMonitors();
975 VLOG(heap) << "Deflating " << count << " monitors took "
976 << PrettyDuration(NanoTime() - start_time);
977 runtime->GetThreadList()->ResumeAll();
978 }
979 // Do a heap trim if it is needed.
980 Trim();
981 }
982
Trim()983 void Heap::Trim() {
984 Thread* self = Thread::Current();
985 {
986 MutexLock mu(self, *heap_trim_request_lock_);
987 if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
988 return;
989 }
990 last_trim_time_ = NanoTime();
991 heap_trim_request_pending_ = false;
992 }
993 {
994 // Need to do this before acquiring the locks since we don't want to get suspended while
995 // holding any locks.
996 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
997 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
998 // trimming.
999 MutexLock mu(self, *gc_complete_lock_);
1000 // Ensure there is only one GC at a time.
1001 WaitForGcToCompleteLocked(kGcCauseTrim, self);
1002 collector_type_running_ = kCollectorTypeHeapTrim;
1003 }
1004 uint64_t start_ns = NanoTime();
1005 // Trim the managed spaces.
1006 uint64_t total_alloc_space_allocated = 0;
1007 uint64_t total_alloc_space_size = 0;
1008 uint64_t managed_reclaimed = 0;
1009 for (const auto& space : continuous_spaces_) {
1010 if (space->IsMallocSpace()) {
1011 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1012 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1013 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1014 // for a long period of time.
1015 managed_reclaimed += malloc_space->Trim();
1016 }
1017 total_alloc_space_size += malloc_space->Size();
1018 }
1019 }
1020 total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
1021 if (bump_pointer_space_ != nullptr) {
1022 total_alloc_space_allocated -= bump_pointer_space_->Size();
1023 }
1024 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1025 static_cast<float>(total_alloc_space_size);
1026 uint64_t gc_heap_end_ns = NanoTime();
1027 // We never move things in the native heap, so we can finish the GC at this point.
1028 FinishGC(self, collector::kGcTypeNone);
1029 size_t native_reclaimed = 0;
1030 // Only trim the native heap if we don't care about pauses.
1031 if (!CareAboutPauseTimes()) {
1032 #if defined(USE_DLMALLOC)
1033 // Trim the native heap.
1034 dlmalloc_trim(0);
1035 dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1036 #elif defined(USE_JEMALLOC)
1037 // Jemalloc does it's own internal trimming.
1038 #else
1039 UNIMPLEMENTED(WARNING) << "Add trimming support";
1040 #endif
1041 }
1042 uint64_t end_ns = NanoTime();
1043 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1044 << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1045 << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1046 << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1047 << "%.";
1048 }
1049
IsValidObjectAddress(const mirror::Object * obj) const1050 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1051 // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1052 // taking the lock.
1053 if (obj == nullptr) {
1054 return true;
1055 }
1056 return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1057 }
1058
IsNonDiscontinuousSpaceHeapAddress(const mirror::Object * obj) const1059 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1060 return FindContinuousSpaceFromObject(obj, true) != nullptr;
1061 }
1062
IsValidContinuousSpaceObjectAddress(const mirror::Object * obj) const1063 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1064 if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1065 return false;
1066 }
1067 for (const auto& space : continuous_spaces_) {
1068 if (space->HasAddress(obj)) {
1069 return true;
1070 }
1071 }
1072 return false;
1073 }
1074
IsLiveObjectLocked(mirror::Object * obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1075 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1076 bool search_live_stack, bool sorted) {
1077 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1078 return false;
1079 }
1080 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1081 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1082 if (obj == klass) {
1083 // This case happens for java.lang.Class.
1084 return true;
1085 }
1086 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1087 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1088 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1089 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1090 return temp_space_->Contains(obj);
1091 }
1092 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1093 space::DiscontinuousSpace* d_space = nullptr;
1094 if (c_space != nullptr) {
1095 if (c_space->GetLiveBitmap()->Test(obj)) {
1096 return true;
1097 }
1098 } else {
1099 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1100 if (d_space != nullptr) {
1101 if (d_space->GetLiveBitmap()->Test(obj)) {
1102 return true;
1103 }
1104 }
1105 }
1106 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1107 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1108 if (i > 0) {
1109 NanoSleep(MsToNs(10));
1110 }
1111 if (search_allocation_stack) {
1112 if (sorted) {
1113 if (allocation_stack_->ContainsSorted(obj)) {
1114 return true;
1115 }
1116 } else if (allocation_stack_->Contains(obj)) {
1117 return true;
1118 }
1119 }
1120
1121 if (search_live_stack) {
1122 if (sorted) {
1123 if (live_stack_->ContainsSorted(obj)) {
1124 return true;
1125 }
1126 } else if (live_stack_->Contains(obj)) {
1127 return true;
1128 }
1129 }
1130 }
1131 // We need to check the bitmaps again since there is a race where we mark something as live and
1132 // then clear the stack containing it.
1133 if (c_space != nullptr) {
1134 if (c_space->GetLiveBitmap()->Test(obj)) {
1135 return true;
1136 }
1137 } else {
1138 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1139 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1140 return true;
1141 }
1142 }
1143 return false;
1144 }
1145
DumpSpaces() const1146 std::string Heap::DumpSpaces() const {
1147 std::ostringstream oss;
1148 DumpSpaces(oss);
1149 return oss.str();
1150 }
1151
DumpSpaces(std::ostream & stream) const1152 void Heap::DumpSpaces(std::ostream& stream) const {
1153 for (const auto& space : continuous_spaces_) {
1154 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1155 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1156 stream << space << " " << *space << "\n";
1157 if (live_bitmap != nullptr) {
1158 stream << live_bitmap << " " << *live_bitmap << "\n";
1159 }
1160 if (mark_bitmap != nullptr) {
1161 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1162 }
1163 }
1164 for (const auto& space : discontinuous_spaces_) {
1165 stream << space << " " << *space << "\n";
1166 }
1167 }
1168
VerifyObjectBody(mirror::Object * obj)1169 void Heap::VerifyObjectBody(mirror::Object* obj) {
1170 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1171 return;
1172 }
1173
1174 // Ignore early dawn of the universe verifications.
1175 if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1176 return;
1177 }
1178 CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1179 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1180 CHECK(c != nullptr) << "Null class in object " << obj;
1181 CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1182 CHECK(VerifyClassClass(c));
1183
1184 if (verify_object_mode_ > kVerifyObjectModeFast) {
1185 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1186 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1187 }
1188 }
1189
VerificationCallback(mirror::Object * obj,void * arg)1190 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1191 reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1192 }
1193
VerifyHeap()1194 void Heap::VerifyHeap() {
1195 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1196 GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1197 }
1198
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1199 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1200 // Use signed comparison since freed bytes can be negative when background compaction foreground
1201 // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1202 // free list backed space typically increasing memory footprint due to padding and binning.
1203 DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1204 // Note: This relies on 2s complement for handling negative freed_bytes.
1205 num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1206 if (Runtime::Current()->HasStatsEnabled()) {
1207 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1208 thread_stats->freed_objects += freed_objects;
1209 thread_stats->freed_bytes += freed_bytes;
1210 // TODO: Do this concurrently.
1211 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1212 global_stats->freed_objects += freed_objects;
1213 global_stats->freed_bytes += freed_bytes;
1214 }
1215 }
1216
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1217 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1218 for (const auto& space : continuous_spaces_) {
1219 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1220 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1221 return space->AsContinuousSpace()->AsRosAllocSpace();
1222 }
1223 }
1224 }
1225 return nullptr;
1226 }
1227
AllocateInternalWithGc(Thread * self,AllocatorType allocator,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,mirror::Class ** klass)1228 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1229 size_t alloc_size, size_t* bytes_allocated,
1230 size_t* usable_size,
1231 mirror::Class** klass) {
1232 bool was_default_allocator = allocator == GetCurrentAllocator();
1233 // Make sure there is no pending exception since we may need to throw an OOME.
1234 self->AssertNoPendingException();
1235 DCHECK(klass != nullptr);
1236 StackHandleScope<1> hs(self);
1237 HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1238 klass = nullptr; // Invalidate for safety.
1239 // The allocation failed. If the GC is running, block until it completes, and then retry the
1240 // allocation.
1241 collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1242 if (last_gc != collector::kGcTypeNone) {
1243 // If we were the default allocator but the allocator changed while we were suspended,
1244 // abort the allocation.
1245 if (was_default_allocator && allocator != GetCurrentAllocator()) {
1246 return nullptr;
1247 }
1248 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1249 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1250 usable_size);
1251 if (ptr != nullptr) {
1252 return ptr;
1253 }
1254 }
1255
1256 collector::GcType tried_type = next_gc_type_;
1257 const bool gc_ran =
1258 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1259 if (was_default_allocator && allocator != GetCurrentAllocator()) {
1260 return nullptr;
1261 }
1262 if (gc_ran) {
1263 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1264 usable_size);
1265 if (ptr != nullptr) {
1266 return ptr;
1267 }
1268 }
1269
1270 // Loop through our different Gc types and try to Gc until we get enough free memory.
1271 for (collector::GcType gc_type : gc_plan_) {
1272 if (gc_type == tried_type) {
1273 continue;
1274 }
1275 // Attempt to run the collector, if we succeed, re-try the allocation.
1276 const bool gc_ran =
1277 CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1278 if (was_default_allocator && allocator != GetCurrentAllocator()) {
1279 return nullptr;
1280 }
1281 if (gc_ran) {
1282 // Did we free sufficient memory for the allocation to succeed?
1283 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1284 usable_size);
1285 if (ptr != nullptr) {
1286 return ptr;
1287 }
1288 }
1289 }
1290 // Allocations have failed after GCs; this is an exceptional state.
1291 // Try harder, growing the heap if necessary.
1292 mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1293 usable_size);
1294 if (ptr != nullptr) {
1295 return ptr;
1296 }
1297 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1298 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1299 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1300 // OOME.
1301 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1302 << " allocation";
1303 // TODO: Run finalization, but this may cause more allocations to occur.
1304 // We don't need a WaitForGcToComplete here either.
1305 DCHECK(!gc_plan_.empty());
1306 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1307 if (was_default_allocator && allocator != GetCurrentAllocator()) {
1308 return nullptr;
1309 }
1310 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1311 if (ptr == nullptr) {
1312 const uint64_t current_time = NanoTime();
1313 switch (allocator) {
1314 case kAllocatorTypeRosAlloc:
1315 // Fall-through.
1316 case kAllocatorTypeDlMalloc: {
1317 if (use_homogeneous_space_compaction_for_oom_ &&
1318 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1319 min_interval_homogeneous_space_compaction_by_oom_) {
1320 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1321 HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1322 switch (result) {
1323 case HomogeneousSpaceCompactResult::kSuccess:
1324 // If the allocation succeeded, we delayed an oom.
1325 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1326 usable_size);
1327 if (ptr != nullptr) {
1328 count_delayed_oom_++;
1329 }
1330 break;
1331 case HomogeneousSpaceCompactResult::kErrorReject:
1332 // Reject due to disabled moving GC.
1333 break;
1334 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1335 // Throw OOM by default.
1336 break;
1337 default: {
1338 LOG(FATAL) << "Unimplemented homogeneous space compaction result "
1339 << static_cast<size_t>(result);
1340 }
1341 }
1342 // Always print that we ran homogeneous space compation since this can cause jank.
1343 VLOG(heap) << "Ran heap homogeneous space compaction, "
1344 << " requested defragmentation "
1345 << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1346 << " performed defragmentation "
1347 << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1348 << " ignored homogeneous space compaction "
1349 << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1350 << " delayed count = "
1351 << count_delayed_oom_.LoadSequentiallyConsistent();
1352 }
1353 break;
1354 }
1355 case kAllocatorTypeNonMoving: {
1356 // Try to transition the heap if the allocation failure was due to the space being full.
1357 if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1358 // If we aren't out of memory then the OOM was probably from the non moving space being
1359 // full. Attempt to disable compaction and turn the main space into a non moving space.
1360 DisableMovingGc();
1361 // If we are still a moving GC then something must have caused the transition to fail.
1362 if (IsMovingGc(collector_type_)) {
1363 MutexLock mu(self, *gc_complete_lock_);
1364 // If we couldn't disable moving GC, just throw OOME and return null.
1365 LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1366 << disable_moving_gc_count_;
1367 } else {
1368 LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1369 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1370 usable_size);
1371 }
1372 }
1373 break;
1374 }
1375 default: {
1376 // Do nothing for others allocators.
1377 }
1378 }
1379 }
1380 // If the allocation hasn't succeeded by this point, throw an OOM error.
1381 if (ptr == nullptr) {
1382 ThrowOutOfMemoryError(self, alloc_size, allocator);
1383 }
1384 return ptr;
1385 }
1386
SetTargetHeapUtilization(float target)1387 void Heap::SetTargetHeapUtilization(float target) {
1388 DCHECK_GT(target, 0.0f); // asserted in Java code
1389 DCHECK_LT(target, 1.0f);
1390 target_utilization_ = target;
1391 }
1392
GetObjectsAllocated() const1393 size_t Heap::GetObjectsAllocated() const {
1394 size_t total = 0;
1395 for (space::AllocSpace* space : alloc_spaces_) {
1396 total += space->GetObjectsAllocated();
1397 }
1398 return total;
1399 }
1400
GetObjectsAllocatedEver() const1401 uint64_t Heap::GetObjectsAllocatedEver() const {
1402 return GetObjectsFreedEver() + GetObjectsAllocated();
1403 }
1404
GetBytesAllocatedEver() const1405 uint64_t Heap::GetBytesAllocatedEver() const {
1406 return GetBytesFreedEver() + GetBytesAllocated();
1407 }
1408
1409 class InstanceCounter {
1410 public:
InstanceCounter(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1411 InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1412 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1413 : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1414 }
Callback(mirror::Object * obj,void * arg)1415 static void Callback(mirror::Object* obj, void* arg)
1416 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1417 InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1418 mirror::Class* instance_class = obj->GetClass();
1419 CHECK(instance_class != nullptr);
1420 for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1421 if (instance_counter->use_is_assignable_from_) {
1422 if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1423 ++instance_counter->counts_[i];
1424 }
1425 } else if (instance_class == instance_counter->classes_[i]) {
1426 ++instance_counter->counts_[i];
1427 }
1428 }
1429 }
1430
1431 private:
1432 const std::vector<mirror::Class*>& classes_;
1433 bool use_is_assignable_from_;
1434 uint64_t* const counts_;
1435 DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1436 };
1437
CountInstances(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1438 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1439 uint64_t* counts) {
1440 // Can't do any GC in this function since this may move classes.
1441 Thread* self = Thread::Current();
1442 auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1443 InstanceCounter counter(classes, use_is_assignable_from, counts);
1444 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1445 VisitObjects(InstanceCounter::Callback, &counter);
1446 self->EndAssertNoThreadSuspension(old_cause);
1447 }
1448
1449 class InstanceCollector {
1450 public:
InstanceCollector(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1451 InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1452 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1453 : class_(c), max_count_(max_count), instances_(instances) {
1454 }
Callback(mirror::Object * obj,void * arg)1455 static void Callback(mirror::Object* obj, void* arg)
1456 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1457 DCHECK(arg != nullptr);
1458 InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1459 mirror::Class* instance_class = obj->GetClass();
1460 if (instance_class == instance_collector->class_) {
1461 if (instance_collector->max_count_ == 0 ||
1462 instance_collector->instances_.size() < instance_collector->max_count_) {
1463 instance_collector->instances_.push_back(obj);
1464 }
1465 }
1466 }
1467
1468 private:
1469 mirror::Class* class_;
1470 uint32_t max_count_;
1471 std::vector<mirror::Object*>& instances_;
1472 DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1473 };
1474
GetInstances(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1475 void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1476 std::vector<mirror::Object*>& instances) {
1477 // Can't do any GC in this function since this may move classes.
1478 Thread* self = Thread::Current();
1479 auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1480 InstanceCollector collector(c, max_count, instances);
1481 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1482 VisitObjects(&InstanceCollector::Callback, &collector);
1483 self->EndAssertNoThreadSuspension(old_cause);
1484 }
1485
1486 class ReferringObjectsFinder {
1487 public:
ReferringObjectsFinder(mirror::Object * object,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1488 ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1489 std::vector<mirror::Object*>& referring_objects)
1490 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1491 : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1492 }
1493
Callback(mirror::Object * obj,void * arg)1494 static void Callback(mirror::Object* obj, void* arg)
1495 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1496 reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1497 }
1498
1499 // For bitmap Visit.
1500 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1501 // annotalysis on visitors.
operator ()(mirror::Object * o) const1502 void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1503 o->VisitReferences<true>(*this, VoidFunctor());
1504 }
1505
1506 // For Object::VisitReferences.
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1507 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1508 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1509 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1510 if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1511 referring_objects_.push_back(obj);
1512 }
1513 }
1514
1515 private:
1516 mirror::Object* object_;
1517 uint32_t max_count_;
1518 std::vector<mirror::Object*>& referring_objects_;
1519 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1520 };
1521
GetReferringObjects(mirror::Object * o,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1522 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1523 std::vector<mirror::Object*>& referring_objects) {
1524 // Can't do any GC in this function since this may move the object o.
1525 Thread* self = Thread::Current();
1526 auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1527 ReferringObjectsFinder finder(o, max_count, referring_objects);
1528 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1529 VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1530 self->EndAssertNoThreadSuspension(old_cause);
1531 }
1532
CollectGarbage(bool clear_soft_references)1533 void Heap::CollectGarbage(bool clear_soft_references) {
1534 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1535 // last GC will not have necessarily been cleared.
1536 CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1537 }
1538
PerformHomogeneousSpaceCompact()1539 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1540 Thread* self = Thread::Current();
1541 // Inc requested homogeneous space compaction.
1542 count_requested_homogeneous_space_compaction_++;
1543 // Store performed homogeneous space compaction at a new request arrival.
1544 ThreadList* tl = Runtime::Current()->GetThreadList();
1545 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1546 Locks::mutator_lock_->AssertNotHeld(self);
1547 {
1548 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1549 MutexLock mu(self, *gc_complete_lock_);
1550 // Ensure there is only one GC at a time.
1551 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1552 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1553 // is non zero.
1554 // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1555 // exit.
1556 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1557 !main_space_->CanMoveObjects()) {
1558 return HomogeneousSpaceCompactResult::kErrorReject;
1559 }
1560 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1561 }
1562 if (Runtime::Current()->IsShuttingDown(self)) {
1563 // Don't allow heap transitions to happen if the runtime is shutting down since these can
1564 // cause objects to get finalized.
1565 FinishGC(self, collector::kGcTypeNone);
1566 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1567 }
1568 // Suspend all threads.
1569 tl->SuspendAll();
1570 uint64_t start_time = NanoTime();
1571 // Launch compaction.
1572 space::MallocSpace* to_space = main_space_backup_.release();
1573 space::MallocSpace* from_space = main_space_;
1574 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1575 const uint64_t space_size_before_compaction = from_space->Size();
1576 AddSpace(to_space);
1577 Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1578 // Leave as prot read so that we can still run ROSAlloc verification on this space.
1579 from_space->GetMemMap()->Protect(PROT_READ);
1580 const uint64_t space_size_after_compaction = to_space->Size();
1581 main_space_ = to_space;
1582 main_space_backup_.reset(from_space);
1583 RemoveSpace(from_space);
1584 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
1585 // Update performed homogeneous space compaction count.
1586 count_performed_homogeneous_space_compaction_++;
1587 // Print statics log and resume all threads.
1588 uint64_t duration = NanoTime() - start_time;
1589 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1590 << PrettySize(space_size_before_compaction) << " -> "
1591 << PrettySize(space_size_after_compaction) << " compact-ratio: "
1592 << std::fixed << static_cast<double>(space_size_after_compaction) /
1593 static_cast<double>(space_size_before_compaction);
1594 tl->ResumeAll();
1595 // Finish GC.
1596 reference_processor_.EnqueueClearedReferences(self);
1597 GrowForUtilization(semi_space_collector_);
1598 FinishGC(self, collector::kGcTypeFull);
1599 return HomogeneousSpaceCompactResult::kSuccess;
1600 }
1601
1602
TransitionCollector(CollectorType collector_type)1603 void Heap::TransitionCollector(CollectorType collector_type) {
1604 if (collector_type == collector_type_) {
1605 return;
1606 }
1607 VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1608 << " -> " << static_cast<int>(collector_type);
1609 uint64_t start_time = NanoTime();
1610 uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1611 Runtime* const runtime = Runtime::Current();
1612 ThreadList* const tl = runtime->GetThreadList();
1613 Thread* const self = Thread::Current();
1614 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1615 Locks::mutator_lock_->AssertNotHeld(self);
1616 // Busy wait until we can GC (StartGC can fail if we have a non-zero
1617 // compacting_gc_disable_count_, this should rarely occurs).
1618 for (;;) {
1619 {
1620 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1621 MutexLock mu(self, *gc_complete_lock_);
1622 // Ensure there is only one GC at a time.
1623 WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1624 // Currently we only need a heap transition if we switch from a moving collector to a
1625 // non-moving one, or visa versa.
1626 const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1627 // If someone else beat us to it and changed the collector before we could, exit.
1628 // This is safe to do before the suspend all since we set the collector_type_running_ before
1629 // we exit the loop. If another thread attempts to do the heap transition before we exit,
1630 // then it would get blocked on WaitForGcToCompleteLocked.
1631 if (collector_type == collector_type_) {
1632 return;
1633 }
1634 // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1635 if (!copying_transition || disable_moving_gc_count_ == 0) {
1636 // TODO: Not hard code in semi-space collector?
1637 collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1638 break;
1639 }
1640 }
1641 usleep(1000);
1642 }
1643 if (runtime->IsShuttingDown(self)) {
1644 // Don't allow heap transitions to happen if the runtime is shutting down since these can
1645 // cause objects to get finalized.
1646 FinishGC(self, collector::kGcTypeNone);
1647 return;
1648 }
1649 tl->SuspendAll();
1650 switch (collector_type) {
1651 case kCollectorTypeSS: {
1652 if (!IsMovingGc(collector_type_)) {
1653 // Create the bump pointer space from the backup space.
1654 CHECK(main_space_backup_ != nullptr);
1655 std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1656 // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1657 // pointer space last transition it will be protected.
1658 CHECK(mem_map != nullptr);
1659 mem_map->Protect(PROT_READ | PROT_WRITE);
1660 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1661 mem_map.release());
1662 AddSpace(bump_pointer_space_);
1663 Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1664 // Use the now empty main space mem map for the bump pointer temp space.
1665 mem_map.reset(main_space_->ReleaseMemMap());
1666 // Unset the pointers just in case.
1667 if (dlmalloc_space_ == main_space_) {
1668 dlmalloc_space_ = nullptr;
1669 } else if (rosalloc_space_ == main_space_) {
1670 rosalloc_space_ = nullptr;
1671 }
1672 // Remove the main space so that we don't try to trim it, this doens't work for debug
1673 // builds since RosAlloc attempts to read the magic number from a protected page.
1674 RemoveSpace(main_space_);
1675 RemoveRememberedSet(main_space_);
1676 delete main_space_; // Delete the space since it has been removed.
1677 main_space_ = nullptr;
1678 RemoveRememberedSet(main_space_backup_.get());
1679 main_space_backup_.reset(nullptr); // Deletes the space.
1680 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1681 mem_map.release());
1682 AddSpace(temp_space_);
1683 }
1684 break;
1685 }
1686 case kCollectorTypeMS:
1687 // Fall through.
1688 case kCollectorTypeCMS: {
1689 if (IsMovingGc(collector_type_)) {
1690 CHECK(temp_space_ != nullptr);
1691 std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1692 RemoveSpace(temp_space_);
1693 temp_space_ = nullptr;
1694 mem_map->Protect(PROT_READ | PROT_WRITE);
1695 CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1696 mem_map->Size());
1697 mem_map.release();
1698 // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1699 AddSpace(main_space_);
1700 Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1701 mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1702 RemoveSpace(bump_pointer_space_);
1703 bump_pointer_space_ = nullptr;
1704 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1705 // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1706 if (kIsDebugBuild && kUseRosAlloc) {
1707 mem_map->Protect(PROT_READ | PROT_WRITE);
1708 }
1709 main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1710 mem_map->Size(), mem_map->Size(),
1711 name, true));
1712 if (kIsDebugBuild && kUseRosAlloc) {
1713 mem_map->Protect(PROT_NONE);
1714 }
1715 mem_map.release();
1716 }
1717 break;
1718 }
1719 default: {
1720 LOG(FATAL) << "Attempted to transition to invalid collector type "
1721 << static_cast<size_t>(collector_type);
1722 break;
1723 }
1724 }
1725 ChangeCollector(collector_type);
1726 tl->ResumeAll();
1727 // Can't call into java code with all threads suspended.
1728 reference_processor_.EnqueueClearedReferences(self);
1729 uint64_t duration = NanoTime() - start_time;
1730 GrowForUtilization(semi_space_collector_);
1731 FinishGC(self, collector::kGcTypeFull);
1732 int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1733 int32_t delta_allocated = before_allocated - after_allocated;
1734 std::string saved_str;
1735 if (delta_allocated >= 0) {
1736 saved_str = " saved at least " + PrettySize(delta_allocated);
1737 } else {
1738 saved_str = " expanded " + PrettySize(-delta_allocated);
1739 }
1740 VLOG(heap) << "Heap transition to " << process_state_ << " took "
1741 << PrettyDuration(duration) << saved_str;
1742 }
1743
ChangeCollector(CollectorType collector_type)1744 void Heap::ChangeCollector(CollectorType collector_type) {
1745 // TODO: Only do this with all mutators suspended to avoid races.
1746 if (collector_type != collector_type_) {
1747 if (collector_type == kCollectorTypeMC) {
1748 // Don't allow mark compact unless support is compiled in.
1749 CHECK(kMarkCompactSupport);
1750 }
1751 collector_type_ = collector_type;
1752 gc_plan_.clear();
1753 switch (collector_type_) {
1754 case kCollectorTypeCC: // Fall-through.
1755 case kCollectorTypeMC: // Fall-through.
1756 case kCollectorTypeSS: // Fall-through.
1757 case kCollectorTypeGSS: {
1758 gc_plan_.push_back(collector::kGcTypeFull);
1759 if (use_tlab_) {
1760 ChangeAllocator(kAllocatorTypeTLAB);
1761 } else {
1762 ChangeAllocator(kAllocatorTypeBumpPointer);
1763 }
1764 break;
1765 }
1766 case kCollectorTypeMS: {
1767 gc_plan_.push_back(collector::kGcTypeSticky);
1768 gc_plan_.push_back(collector::kGcTypePartial);
1769 gc_plan_.push_back(collector::kGcTypeFull);
1770 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1771 break;
1772 }
1773 case kCollectorTypeCMS: {
1774 gc_plan_.push_back(collector::kGcTypeSticky);
1775 gc_plan_.push_back(collector::kGcTypePartial);
1776 gc_plan_.push_back(collector::kGcTypeFull);
1777 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1778 break;
1779 }
1780 default: {
1781 LOG(FATAL) << "Unimplemented";
1782 }
1783 }
1784 if (IsGcConcurrent()) {
1785 concurrent_start_bytes_ =
1786 std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1787 } else {
1788 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1789 }
1790 }
1791 }
1792
1793 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1794 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1795 public:
ZygoteCompactingCollector(gc::Heap * heap)1796 explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1797 bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1798 }
1799
BuildBins(space::ContinuousSpace * space)1800 void BuildBins(space::ContinuousSpace* space) {
1801 bin_live_bitmap_ = space->GetLiveBitmap();
1802 bin_mark_bitmap_ = space->GetMarkBitmap();
1803 BinContext context;
1804 context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1805 context.collector_ = this;
1806 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1807 // Note: This requires traversing the space in increasing order of object addresses.
1808 bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1809 // Add the last bin which spans after the last object to the end of the space.
1810 AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1811 }
1812
1813 private:
1814 struct BinContext {
1815 uintptr_t prev_; // The end of the previous object.
1816 ZygoteCompactingCollector* collector_;
1817 };
1818 // Maps from bin sizes to locations.
1819 std::multimap<size_t, uintptr_t> bins_;
1820 // Live bitmap of the space which contains the bins.
1821 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1822 // Mark bitmap of the space which contains the bins.
1823 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1824
Callback(mirror::Object * obj,void * arg)1825 static void Callback(mirror::Object* obj, void* arg)
1826 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1827 DCHECK(arg != nullptr);
1828 BinContext* context = reinterpret_cast<BinContext*>(arg);
1829 ZygoteCompactingCollector* collector = context->collector_;
1830 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1831 size_t bin_size = object_addr - context->prev_;
1832 // Add the bin consisting of the end of the previous object to the start of the current object.
1833 collector->AddBin(bin_size, context->prev_);
1834 context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1835 }
1836
AddBin(size_t size,uintptr_t position)1837 void AddBin(size_t size, uintptr_t position) {
1838 if (size != 0) {
1839 bins_.insert(std::make_pair(size, position));
1840 }
1841 }
1842
ShouldSweepSpace(space::ContinuousSpace * space) const1843 virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1844 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1845 // allocator.
1846 return false;
1847 }
1848
MarkNonForwardedObject(mirror::Object * obj)1849 virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1850 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1851 size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1852 mirror::Object* forward_address;
1853 // Find the smallest bin which we can move obj in.
1854 auto it = bins_.lower_bound(object_size);
1855 if (it == bins_.end()) {
1856 // No available space in the bins, place it in the target space instead (grows the zygote
1857 // space).
1858 size_t bytes_allocated;
1859 forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1860 if (to_space_live_bitmap_ != nullptr) {
1861 to_space_live_bitmap_->Set(forward_address);
1862 } else {
1863 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1864 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1865 }
1866 } else {
1867 size_t size = it->first;
1868 uintptr_t pos = it->second;
1869 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
1870 forward_address = reinterpret_cast<mirror::Object*>(pos);
1871 // Set the live and mark bits so that sweeping system weaks works properly.
1872 bin_live_bitmap_->Set(forward_address);
1873 bin_mark_bitmap_->Set(forward_address);
1874 DCHECK_GE(size, object_size);
1875 AddBin(size - object_size, pos + object_size); // Add a new bin with the remaining space.
1876 }
1877 // Copy the object over to its new location.
1878 memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1879 if (kUseBakerOrBrooksReadBarrier) {
1880 obj->AssertReadBarrierPointer();
1881 if (kUseBrooksReadBarrier) {
1882 DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1883 forward_address->SetReadBarrierPointer(forward_address);
1884 }
1885 forward_address->AssertReadBarrierPointer();
1886 }
1887 return forward_address;
1888 }
1889 };
1890
UnBindBitmaps()1891 void Heap::UnBindBitmaps() {
1892 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1893 for (const auto& space : GetContinuousSpaces()) {
1894 if (space->IsContinuousMemMapAllocSpace()) {
1895 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1896 if (alloc_space->HasBoundBitmaps()) {
1897 alloc_space->UnBindBitmaps();
1898 }
1899 }
1900 }
1901 }
1902
PreZygoteFork()1903 void Heap::PreZygoteFork() {
1904 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1905 Thread* self = Thread::Current();
1906 MutexLock mu(self, zygote_creation_lock_);
1907 // Try to see if we have any Zygote spaces.
1908 if (have_zygote_space_) {
1909 return;
1910 }
1911 VLOG(heap) << "Starting PreZygoteFork";
1912 // Trim the pages at the end of the non moving space.
1913 non_moving_space_->Trim();
1914 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1915 // there.
1916 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1917 const bool same_space = non_moving_space_ == main_space_;
1918 if (kCompactZygote) {
1919 // Can't compact if the non moving space is the same as the main space.
1920 DCHECK(semi_space_collector_ != nullptr);
1921 // Temporarily disable rosalloc verification because the zygote
1922 // compaction will mess up the rosalloc internal metadata.
1923 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1924 ZygoteCompactingCollector zygote_collector(this);
1925 zygote_collector.BuildBins(non_moving_space_);
1926 // Create a new bump pointer space which we will compact into.
1927 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1928 non_moving_space_->Limit());
1929 // Compact the bump pointer space to a new zygote bump pointer space.
1930 bool reset_main_space = false;
1931 if (IsMovingGc(collector_type_)) {
1932 zygote_collector.SetFromSpace(bump_pointer_space_);
1933 } else {
1934 CHECK(main_space_ != nullptr);
1935 // Copy from the main space.
1936 zygote_collector.SetFromSpace(main_space_);
1937 reset_main_space = true;
1938 }
1939 zygote_collector.SetToSpace(&target_space);
1940 zygote_collector.SetSwapSemiSpaces(false);
1941 zygote_collector.Run(kGcCauseCollectorTransition, false);
1942 if (reset_main_space) {
1943 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1944 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1945 MemMap* mem_map = main_space_->ReleaseMemMap();
1946 RemoveSpace(main_space_);
1947 space::Space* old_main_space = main_space_;
1948 CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1949 delete old_main_space;
1950 AddSpace(main_space_);
1951 } else {
1952 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1953 }
1954 if (temp_space_ != nullptr) {
1955 CHECK(temp_space_->IsEmpty());
1956 }
1957 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1958 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1959 // Update the end and write out image.
1960 non_moving_space_->SetEnd(target_space.End());
1961 non_moving_space_->SetLimit(target_space.Limit());
1962 VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1963 }
1964 // Change the collector to the post zygote one.
1965 ChangeCollector(foreground_collector_type_);
1966 // Save the old space so that we can remove it after we complete creating the zygote space.
1967 space::MallocSpace* old_alloc_space = non_moving_space_;
1968 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1969 // the remaining available space.
1970 // Remove the old space before creating the zygote space since creating the zygote space sets
1971 // the old alloc space's bitmaps to nullptr.
1972 RemoveSpace(old_alloc_space);
1973 if (collector::SemiSpace::kUseRememberedSet) {
1974 // Sanity bound check.
1975 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1976 // Remove the remembered set for the now zygote space (the old
1977 // non-moving space). Note now that we have compacted objects into
1978 // the zygote space, the data in the remembered set is no longer
1979 // needed. The zygote space will instead have a mod-union table
1980 // from this point on.
1981 RemoveRememberedSet(old_alloc_space);
1982 }
1983 space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1984 low_memory_mode_,
1985 &non_moving_space_);
1986 CHECK(!non_moving_space_->CanMoveObjects());
1987 if (same_space) {
1988 main_space_ = non_moving_space_;
1989 SetSpaceAsDefault(main_space_);
1990 }
1991 delete old_alloc_space;
1992 CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1993 AddSpace(zygote_space);
1994 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1995 AddSpace(non_moving_space_);
1996 have_zygote_space_ = true;
1997 // Enable large object space allocations.
1998 large_object_threshold_ = kDefaultLargeObjectThreshold;
1999 // Create the zygote space mod union table.
2000 accounting::ModUnionTable* mod_union_table =
2001 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
2002 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2003 AddModUnionTable(mod_union_table);
2004 if (collector::SemiSpace::kUseRememberedSet) {
2005 // Add a new remembered set for the post-zygote non-moving space.
2006 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2007 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2008 non_moving_space_);
2009 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2010 << "Failed to create post-zygote non-moving space remembered set";
2011 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2012 }
2013 }
2014
FlushAllocStack()2015 void Heap::FlushAllocStack() {
2016 MarkAllocStackAsLive(allocation_stack_.get());
2017 allocation_stack_->Reset();
2018 }
2019
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2020 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2021 accounting::ContinuousSpaceBitmap* bitmap2,
2022 accounting::LargeObjectBitmap* large_objects,
2023 accounting::ObjectStack* stack) {
2024 DCHECK(bitmap1 != nullptr);
2025 DCHECK(bitmap2 != nullptr);
2026 mirror::Object** limit = stack->End();
2027 for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2028 const mirror::Object* obj = *it;
2029 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2030 if (bitmap1->HasAddress(obj)) {
2031 bitmap1->Set(obj);
2032 } else if (bitmap2->HasAddress(obj)) {
2033 bitmap2->Set(obj);
2034 } else {
2035 large_objects->Set(obj);
2036 }
2037 }
2038 }
2039 }
2040
SwapSemiSpaces()2041 void Heap::SwapSemiSpaces() {
2042 CHECK(bump_pointer_space_ != nullptr);
2043 CHECK(temp_space_ != nullptr);
2044 std::swap(bump_pointer_space_, temp_space_);
2045 }
2046
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2047 void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2048 space::ContinuousMemMapAllocSpace* source_space,
2049 GcCause gc_cause) {
2050 CHECK(kMovingCollector);
2051 if (target_space != source_space) {
2052 // Don't swap spaces since this isn't a typical semi space collection.
2053 semi_space_collector_->SetSwapSemiSpaces(false);
2054 semi_space_collector_->SetFromSpace(source_space);
2055 semi_space_collector_->SetToSpace(target_space);
2056 semi_space_collector_->Run(gc_cause, false);
2057 } else {
2058 CHECK(target_space->IsBumpPointerSpace())
2059 << "In-place compaction is only supported for bump pointer spaces";
2060 mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2061 mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2062 }
2063 }
2064
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2065 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2066 bool clear_soft_references) {
2067 Thread* self = Thread::Current();
2068 Runtime* runtime = Runtime::Current();
2069 // If the heap can't run the GC, silently fail and return that no GC was run.
2070 switch (gc_type) {
2071 case collector::kGcTypePartial: {
2072 if (!have_zygote_space_) {
2073 return collector::kGcTypeNone;
2074 }
2075 break;
2076 }
2077 default: {
2078 // Other GC types don't have any special cases which makes them not runnable. The main case
2079 // here is full GC.
2080 }
2081 }
2082 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2083 Locks::mutator_lock_->AssertNotHeld(self);
2084 if (self->IsHandlingStackOverflow()) {
2085 LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2086 }
2087 bool compacting_gc;
2088 {
2089 gc_complete_lock_->AssertNotHeld(self);
2090 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2091 MutexLock mu(self, *gc_complete_lock_);
2092 // Ensure there is only one GC at a time.
2093 WaitForGcToCompleteLocked(gc_cause, self);
2094 compacting_gc = IsMovingGc(collector_type_);
2095 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2096 if (compacting_gc && disable_moving_gc_count_ != 0) {
2097 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2098 return collector::kGcTypeNone;
2099 }
2100 collector_type_running_ = collector_type_;
2101 }
2102
2103 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2104 ++runtime->GetStats()->gc_for_alloc_count;
2105 ++self->GetStats()->gc_for_alloc_count;
2106 }
2107 uint64_t gc_start_time_ns = NanoTime();
2108 uint64_t gc_start_size = GetBytesAllocated();
2109 // Approximate allocation rate in bytes / second.
2110 uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2111 // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2112 if (LIKELY(ms_delta != 0)) {
2113 allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2114 ATRACE_INT("Allocation rate KB/s", allocation_rate_ / KB);
2115 VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2116 }
2117
2118 DCHECK_LT(gc_type, collector::kGcTypeMax);
2119 DCHECK_NE(gc_type, collector::kGcTypeNone);
2120
2121 collector::GarbageCollector* collector = nullptr;
2122 // TODO: Clean this up.
2123 if (compacting_gc) {
2124 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2125 current_allocator_ == kAllocatorTypeTLAB);
2126 switch (collector_type_) {
2127 case kCollectorTypeSS:
2128 // Fall-through.
2129 case kCollectorTypeGSS:
2130 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2131 semi_space_collector_->SetToSpace(temp_space_);
2132 semi_space_collector_->SetSwapSemiSpaces(true);
2133 collector = semi_space_collector_;
2134 break;
2135 case kCollectorTypeCC:
2136 collector = concurrent_copying_collector_;
2137 break;
2138 case kCollectorTypeMC:
2139 mark_compact_collector_->SetSpace(bump_pointer_space_);
2140 collector = mark_compact_collector_;
2141 break;
2142 default:
2143 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2144 }
2145 if (collector != mark_compact_collector_) {
2146 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2147 CHECK(temp_space_->IsEmpty());
2148 }
2149 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
2150 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2151 current_allocator_ == kAllocatorTypeDlMalloc) {
2152 collector = FindCollectorByGcType(gc_type);
2153 } else {
2154 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2155 }
2156 CHECK(collector != nullptr)
2157 << "Could not find garbage collector with collector_type="
2158 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2159 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2160 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2161 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2162 RequestHeapTrim();
2163 // Enqueue cleared references.
2164 reference_processor_.EnqueueClearedReferences(self);
2165 // Grow the heap so that we know when to perform the next GC.
2166 GrowForUtilization(collector);
2167 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2168 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2169 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2170 // (mutator time blocked >= long_pause_log_threshold_).
2171 bool log_gc = gc_cause == kGcCauseExplicit;
2172 if (!log_gc && CareAboutPauseTimes()) {
2173 // GC for alloc pauses the allocating thread, so consider it as a pause.
2174 log_gc = duration > long_gc_log_threshold_ ||
2175 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2176 for (uint64_t pause : pause_times) {
2177 log_gc = log_gc || pause >= long_pause_log_threshold_;
2178 }
2179 }
2180 if (log_gc) {
2181 const size_t percent_free = GetPercentFree();
2182 const size_t current_heap_size = GetBytesAllocated();
2183 const size_t total_memory = GetTotalMemory();
2184 std::ostringstream pause_string;
2185 for (size_t i = 0; i < pause_times.size(); ++i) {
2186 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2187 << ((i != pause_times.size() - 1) ? "," : "");
2188 }
2189 LOG(INFO) << gc_cause << " " << collector->GetName()
2190 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2191 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2192 << current_gc_iteration_.GetFreedLargeObjects() << "("
2193 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2194 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2195 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2196 << " total " << PrettyDuration((duration / 1000) * 1000);
2197 VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2198 }
2199 FinishGC(self, gc_type);
2200 // Inform DDMS that a GC completed.
2201 Dbg::GcDidFinish();
2202 return gc_type;
2203 }
2204
FinishGC(Thread * self,collector::GcType gc_type)2205 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2206 MutexLock mu(self, *gc_complete_lock_);
2207 collector_type_running_ = kCollectorTypeNone;
2208 if (gc_type != collector::kGcTypeNone) {
2209 last_gc_type_ = gc_type;
2210 }
2211 // Wake anyone who may have been waiting for the GC to complete.
2212 gc_complete_cond_->Broadcast(self);
2213 }
2214
RootMatchesObjectVisitor(mirror::Object ** root,void * arg,uint32_t,RootType)2215 static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2216 RootType /*root_type*/) {
2217 mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2218 if (*root == obj) {
2219 LOG(INFO) << "Object " << obj << " is a root";
2220 }
2221 }
2222
2223 class ScanVisitor {
2224 public:
operator ()(const mirror::Object * obj) const2225 void operator()(const mirror::Object* obj) const {
2226 LOG(ERROR) << "Would have rescanned object " << obj;
2227 }
2228 };
2229
2230 // Verify a reference from an object.
2231 class VerifyReferenceVisitor {
2232 public:
VerifyReferenceVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2233 explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2234 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2235 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2236
GetFailureCount() const2237 size_t GetFailureCount() const {
2238 return fail_count_->LoadSequentiallyConsistent();
2239 }
2240
operator ()(mirror::Class * klass,mirror::Reference * ref) const2241 void operator()(mirror::Class* klass, mirror::Reference* ref) const
2242 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2243 if (verify_referent_) {
2244 VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2245 }
2246 }
2247
operator ()(mirror::Object * obj,MemberOffset offset,bool) const2248 void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2249 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2250 VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2251 }
2252
IsLive(mirror::Object * obj) const2253 bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2254 return heap_->IsLiveObjectLocked(obj, true, false, true);
2255 }
2256
VerifyRootCallback(mirror::Object ** root,void * arg,uint32_t thread_id,RootType root_type)2257 static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2258 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2259 VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2260 if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2261 LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2262 << " thread_id= " << thread_id << " root_type= " << root_type;
2263 }
2264 }
2265
2266 private:
2267 // TODO: Fix the no thread safety analysis.
2268 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2269 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2270 NO_THREAD_SAFETY_ANALYSIS {
2271 if (ref == nullptr || IsLive(ref)) {
2272 // Verify that the reference is live.
2273 return true;
2274 }
2275 if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2276 // Print message on only on first failure to prevent spam.
2277 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2278 }
2279 if (obj != nullptr) {
2280 // Only do this part for non roots.
2281 accounting::CardTable* card_table = heap_->GetCardTable();
2282 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2283 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2284 byte* card_addr = card_table->CardFromAddr(obj);
2285 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2286 << offset << "\n card value = " << static_cast<int>(*card_addr);
2287 if (heap_->IsValidObjectAddress(obj->GetClass())) {
2288 LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2289 } else {
2290 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2291 }
2292
2293 // Attempt to find the class inside of the recently freed objects.
2294 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2295 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2296 space::MallocSpace* space = ref_space->AsMallocSpace();
2297 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2298 if (ref_class != nullptr) {
2299 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2300 << PrettyClass(ref_class);
2301 } else {
2302 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2303 }
2304 }
2305
2306 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2307 ref->GetClass()->IsClass()) {
2308 LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2309 } else {
2310 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2311 << ") is not a valid heap address";
2312 }
2313
2314 card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2315 void* cover_begin = card_table->AddrFromCard(card_addr);
2316 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2317 accounting::CardTable::kCardSize);
2318 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2319 << "-" << cover_end;
2320 accounting::ContinuousSpaceBitmap* bitmap =
2321 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2322
2323 if (bitmap == nullptr) {
2324 LOG(ERROR) << "Object " << obj << " has no bitmap";
2325 if (!VerifyClassClass(obj->GetClass())) {
2326 LOG(ERROR) << "Object " << obj << " failed class verification!";
2327 }
2328 } else {
2329 // Print out how the object is live.
2330 if (bitmap->Test(obj)) {
2331 LOG(ERROR) << "Object " << obj << " found in live bitmap";
2332 }
2333 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2334 LOG(ERROR) << "Object " << obj << " found in allocation stack";
2335 }
2336 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2337 LOG(ERROR) << "Object " << obj << " found in live stack";
2338 }
2339 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2340 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2341 }
2342 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2343 LOG(ERROR) << "Ref " << ref << " found in live stack";
2344 }
2345 // Attempt to see if the card table missed the reference.
2346 ScanVisitor scan_visitor;
2347 byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2348 card_table->Scan(bitmap, byte_cover_begin,
2349 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2350 }
2351
2352 // Search to see if any of the roots reference our object.
2353 void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2354 Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2355
2356 // Search to see if any of the roots reference our reference.
2357 arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2358 Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2359 }
2360 return false;
2361 }
2362
2363 Heap* const heap_;
2364 Atomic<size_t>* const fail_count_;
2365 const bool verify_referent_;
2366 };
2367
2368 // Verify all references within an object, for use with HeapBitmap::Visit.
2369 class VerifyObjectVisitor {
2370 public:
VerifyObjectVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2371 explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2372 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2373 }
2374
operator ()(mirror::Object * obj) const2375 void operator()(mirror::Object* obj) const
2376 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2377 // Note: we are verifying the references in obj but not obj itself, this is because obj must
2378 // be live or else how did we find it in the live bitmap?
2379 VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2380 // The class doesn't count as a reference but we should verify it anyways.
2381 obj->VisitReferences<true>(visitor, visitor);
2382 }
2383
VisitCallback(mirror::Object * obj,void * arg)2384 static void VisitCallback(mirror::Object* obj, void* arg)
2385 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2386 VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2387 visitor->operator()(obj);
2388 }
2389
GetFailureCount() const2390 size_t GetFailureCount() const {
2391 return fail_count_->LoadSequentiallyConsistent();
2392 }
2393
2394 private:
2395 Heap* const heap_;
2396 Atomic<size_t>* const fail_count_;
2397 const bool verify_referent_;
2398 };
2399
PushOnAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2400 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2401 // Slow path, the allocation stack push back must have already failed.
2402 DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2403 do {
2404 // TODO: Add handle VerifyObject.
2405 StackHandleScope<1> hs(self);
2406 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2407 // Push our object into the reserve region of the allocaiton stack. This is only required due
2408 // to heap verification requiring that roots are live (either in the live bitmap or in the
2409 // allocation stack).
2410 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2411 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2412 } while (!allocation_stack_->AtomicPushBack(*obj));
2413 }
2414
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2415 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2416 // Slow path, the allocation stack push back must have already failed.
2417 DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2418 mirror::Object** start_address;
2419 mirror::Object** end_address;
2420 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2421 &end_address)) {
2422 // TODO: Add handle VerifyObject.
2423 StackHandleScope<1> hs(self);
2424 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2425 // Push our object into the reserve region of the allocaiton stack. This is only required due
2426 // to heap verification requiring that roots are live (either in the live bitmap or in the
2427 // allocation stack).
2428 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2429 // Push into the reserve allocation stack.
2430 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2431 }
2432 self->SetThreadLocalAllocationStack(start_address, end_address);
2433 // Retry on the new thread-local allocation stack.
2434 CHECK(self->PushOnThreadLocalAllocationStack(*obj)); // Must succeed.
2435 }
2436
2437 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)2438 size_t Heap::VerifyHeapReferences(bool verify_referents) {
2439 Thread* self = Thread::Current();
2440 Locks::mutator_lock_->AssertExclusiveHeld(self);
2441 // Lets sort our allocation stacks so that we can efficiently binary search them.
2442 allocation_stack_->Sort();
2443 live_stack_->Sort();
2444 // Since we sorted the allocation stack content, need to revoke all
2445 // thread-local allocation stacks.
2446 RevokeAllThreadLocalAllocationStacks(self);
2447 Atomic<size_t> fail_count_(0);
2448 VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2449 // Verify objects in the allocation stack since these will be objects which were:
2450 // 1. Allocated prior to the GC (pre GC verification).
2451 // 2. Allocated during the GC (pre sweep GC verification).
2452 // We don't want to verify the objects in the live stack since they themselves may be
2453 // pointing to dead objects if they are not reachable.
2454 VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2455 // Verify the roots:
2456 Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2457 if (visitor.GetFailureCount() > 0) {
2458 // Dump mod-union tables.
2459 for (const auto& table_pair : mod_union_tables_) {
2460 accounting::ModUnionTable* mod_union_table = table_pair.second;
2461 mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2462 }
2463 // Dump remembered sets.
2464 for (const auto& table_pair : remembered_sets_) {
2465 accounting::RememberedSet* remembered_set = table_pair.second;
2466 remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2467 }
2468 DumpSpaces(LOG(ERROR));
2469 }
2470 return visitor.GetFailureCount();
2471 }
2472
2473 class VerifyReferenceCardVisitor {
2474 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)2475 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2476 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2477 Locks::heap_bitmap_lock_)
2478 : heap_(heap), failed_(failed) {
2479 }
2480
2481 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2482 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const2483 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2484 NO_THREAD_SAFETY_ANALYSIS {
2485 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2486 // Filter out class references since changing an object's class does not mark the card as dirty.
2487 // Also handles large objects, since the only reference they hold is a class reference.
2488 if (ref != nullptr && !ref->IsClass()) {
2489 accounting::CardTable* card_table = heap_->GetCardTable();
2490 // If the object is not dirty and it is referencing something in the live stack other than
2491 // class, then it must be on a dirty card.
2492 if (!card_table->AddrIsInCardTable(obj)) {
2493 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2494 *failed_ = true;
2495 } else if (!card_table->IsDirty(obj)) {
2496 // TODO: Check mod-union tables.
2497 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2498 // kCardDirty - 1 if it didnt get touched since we aged it.
2499 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2500 if (live_stack->ContainsSorted(ref)) {
2501 if (live_stack->ContainsSorted(obj)) {
2502 LOG(ERROR) << "Object " << obj << " found in live stack";
2503 }
2504 if (heap_->GetLiveBitmap()->Test(obj)) {
2505 LOG(ERROR) << "Object " << obj << " found in live bitmap";
2506 }
2507 LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2508 << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2509
2510 // Print which field of the object is dead.
2511 if (!obj->IsObjectArray()) {
2512 mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2513 CHECK(klass != NULL);
2514 mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2515 : klass->GetIFields();
2516 CHECK(fields != NULL);
2517 for (int32_t i = 0; i < fields->GetLength(); ++i) {
2518 mirror::ArtField* cur = fields->Get(i);
2519 if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2520 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2521 << PrettyField(cur);
2522 break;
2523 }
2524 }
2525 } else {
2526 mirror::ObjectArray<mirror::Object>* object_array =
2527 obj->AsObjectArray<mirror::Object>();
2528 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2529 if (object_array->Get(i) == ref) {
2530 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2531 }
2532 }
2533 }
2534
2535 *failed_ = true;
2536 }
2537 }
2538 }
2539 }
2540
2541 private:
2542 Heap* const heap_;
2543 bool* const failed_;
2544 };
2545
2546 class VerifyLiveStackReferences {
2547 public:
VerifyLiveStackReferences(Heap * heap)2548 explicit VerifyLiveStackReferences(Heap* heap)
2549 : heap_(heap),
2550 failed_(false) {}
2551
operator ()(mirror::Object * obj) const2552 void operator()(mirror::Object* obj) const
2553 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2554 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2555 obj->VisitReferences<true>(visitor, VoidFunctor());
2556 }
2557
Failed() const2558 bool Failed() const {
2559 return failed_;
2560 }
2561
2562 private:
2563 Heap* const heap_;
2564 bool failed_;
2565 };
2566
VerifyMissingCardMarks()2567 bool Heap::VerifyMissingCardMarks() {
2568 Thread* self = Thread::Current();
2569 Locks::mutator_lock_->AssertExclusiveHeld(self);
2570 // We need to sort the live stack since we binary search it.
2571 live_stack_->Sort();
2572 // Since we sorted the allocation stack content, need to revoke all
2573 // thread-local allocation stacks.
2574 RevokeAllThreadLocalAllocationStacks(self);
2575 VerifyLiveStackReferences visitor(this);
2576 GetLiveBitmap()->Visit(visitor);
2577 // We can verify objects in the live stack since none of these should reference dead objects.
2578 for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2579 if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2580 visitor(*it);
2581 }
2582 }
2583 return !visitor.Failed();
2584 }
2585
SwapStacks(Thread * self)2586 void Heap::SwapStacks(Thread* self) {
2587 if (kUseThreadLocalAllocationStack) {
2588 live_stack_->AssertAllZero();
2589 }
2590 allocation_stack_.swap(live_stack_);
2591 }
2592
RevokeAllThreadLocalAllocationStacks(Thread * self)2593 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2594 // This must be called only during the pause.
2595 CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2596 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2597 MutexLock mu2(self, *Locks::thread_list_lock_);
2598 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2599 for (Thread* t : thread_list) {
2600 t->RevokeThreadLocalAllocationStack();
2601 }
2602 }
2603
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()2604 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2605 if (kIsDebugBuild) {
2606 if (bump_pointer_space_ != nullptr) {
2607 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2608 }
2609 }
2610 }
2611
FindModUnionTableFromSpace(space::Space * space)2612 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2613 auto it = mod_union_tables_.find(space);
2614 if (it == mod_union_tables_.end()) {
2615 return nullptr;
2616 }
2617 return it->second;
2618 }
2619
FindRememberedSetFromSpace(space::Space * space)2620 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2621 auto it = remembered_sets_.find(space);
2622 if (it == remembered_sets_.end()) {
2623 return nullptr;
2624 }
2625 return it->second;
2626 }
2627
ProcessCards(TimingLogger * timings,bool use_rem_sets)2628 void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2629 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2630 // Clear cards and keep track of cards cleared in the mod-union table.
2631 for (const auto& space : continuous_spaces_) {
2632 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2633 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2634 if (table != nullptr) {
2635 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2636 "ImageModUnionClearCards";
2637 TimingLogger::ScopedTiming t(name, timings);
2638 table->ClearCards();
2639 } else if (use_rem_sets && rem_set != nullptr) {
2640 DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2641 << static_cast<int>(collector_type_);
2642 TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2643 rem_set->ClearCards();
2644 } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2645 TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2646 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2647 // were dirty before the GC started.
2648 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2649 // -> clean(cleaning thread).
2650 // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2651 // roots and then we scan / update mod union tables after. We will always scan either card.
2652 // If we end up with the non aged card, we scan it it in the pause.
2653 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2654 VoidFunctor());
2655 }
2656 }
2657 }
2658
IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> *,void *)2659 static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2660 }
2661
PreGcVerificationPaused(collector::GarbageCollector * gc)2662 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2663 Thread* const self = Thread::Current();
2664 TimingLogger* const timings = current_gc_iteration_.GetTimings();
2665 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2666 if (verify_pre_gc_heap_) {
2667 TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2668 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2669 size_t failures = VerifyHeapReferences();
2670 if (failures > 0) {
2671 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2672 << " failures";
2673 }
2674 }
2675 // Check that all objects which reference things in the live stack are on dirty cards.
2676 if (verify_missing_card_marks_) {
2677 TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2678 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2679 SwapStacks(self);
2680 // Sort the live stack so that we can quickly binary search it later.
2681 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2682 << " missing card mark verification failed\n" << DumpSpaces();
2683 SwapStacks(self);
2684 }
2685 if (verify_mod_union_table_) {
2686 TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2687 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2688 for (const auto& table_pair : mod_union_tables_) {
2689 accounting::ModUnionTable* mod_union_table = table_pair.second;
2690 mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2691 mod_union_table->Verify();
2692 }
2693 }
2694 }
2695
PreGcVerification(collector::GarbageCollector * gc)2696 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2697 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2698 collector::GarbageCollector::ScopedPause pause(gc);
2699 PreGcVerificationPaused(gc);
2700 }
2701 }
2702
PrePauseRosAllocVerification(collector::GarbageCollector * gc)2703 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2704 // TODO: Add a new runtime option for this?
2705 if (verify_pre_gc_rosalloc_) {
2706 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2707 }
2708 }
2709
PreSweepingGcVerification(collector::GarbageCollector * gc)2710 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2711 Thread* const self = Thread::Current();
2712 TimingLogger* const timings = current_gc_iteration_.GetTimings();
2713 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2714 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2715 // reachable objects.
2716 if (verify_pre_sweeping_heap_) {
2717 TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2718 CHECK_NE(self->GetState(), kRunnable);
2719 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2720 // Swapping bound bitmaps does nothing.
2721 gc->SwapBitmaps();
2722 // Pass in false since concurrent reference processing can mean that the reference referents
2723 // may point to dead objects at the point which PreSweepingGcVerification is called.
2724 size_t failures = VerifyHeapReferences(false);
2725 if (failures > 0) {
2726 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2727 << " failures";
2728 }
2729 gc->SwapBitmaps();
2730 }
2731 if (verify_pre_sweeping_rosalloc_) {
2732 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2733 }
2734 }
2735
PostGcVerificationPaused(collector::GarbageCollector * gc)2736 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2737 // Only pause if we have to do some verification.
2738 Thread* const self = Thread::Current();
2739 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2740 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2741 if (verify_system_weaks_) {
2742 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2743 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2744 mark_sweep->VerifySystemWeaks();
2745 }
2746 if (verify_post_gc_rosalloc_) {
2747 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2748 }
2749 if (verify_post_gc_heap_) {
2750 TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2751 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2752 size_t failures = VerifyHeapReferences();
2753 if (failures > 0) {
2754 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2755 << " failures";
2756 }
2757 }
2758 }
2759
PostGcVerification(collector::GarbageCollector * gc)2760 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2761 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2762 collector::GarbageCollector::ScopedPause pause(gc);
2763 PostGcVerificationPaused(gc);
2764 }
2765 }
2766
RosAllocVerification(TimingLogger * timings,const char * name)2767 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2768 TimingLogger::ScopedTiming t(name, timings);
2769 for (const auto& space : continuous_spaces_) {
2770 if (space->IsRosAllocSpace()) {
2771 VLOG(heap) << name << " : " << space->GetName();
2772 space->AsRosAllocSpace()->Verify();
2773 }
2774 }
2775 }
2776
WaitForGcToComplete(GcCause cause,Thread * self)2777 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2778 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2779 MutexLock mu(self, *gc_complete_lock_);
2780 return WaitForGcToCompleteLocked(cause, self);
2781 }
2782
WaitForGcToCompleteLocked(GcCause cause,Thread * self)2783 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2784 collector::GcType last_gc_type = collector::kGcTypeNone;
2785 uint64_t wait_start = NanoTime();
2786 while (collector_type_running_ != kCollectorTypeNone) {
2787 ATRACE_BEGIN("GC: Wait For Completion");
2788 // We must wait, change thread state then sleep on gc_complete_cond_;
2789 gc_complete_cond_->Wait(self);
2790 last_gc_type = last_gc_type_;
2791 ATRACE_END();
2792 }
2793 uint64_t wait_time = NanoTime() - wait_start;
2794 total_wait_time_ += wait_time;
2795 if (wait_time > long_pause_log_threshold_) {
2796 LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2797 << " for cause " << cause;
2798 }
2799 return last_gc_type;
2800 }
2801
DumpForSigQuit(std::ostream & os)2802 void Heap::DumpForSigQuit(std::ostream& os) {
2803 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2804 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2805 DumpGcPerformanceInfo(os);
2806 }
2807
GetPercentFree()2808 size_t Heap::GetPercentFree() {
2809 return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2810 }
2811
SetIdealFootprint(size_t max_allowed_footprint)2812 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2813 if (max_allowed_footprint > GetMaxMemory()) {
2814 VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2815 << PrettySize(GetMaxMemory());
2816 max_allowed_footprint = GetMaxMemory();
2817 }
2818 max_allowed_footprint_ = max_allowed_footprint;
2819 }
2820
IsMovableObject(const mirror::Object * obj) const2821 bool Heap::IsMovableObject(const mirror::Object* obj) const {
2822 if (kMovingCollector) {
2823 space::Space* space = FindContinuousSpaceFromObject(obj, true);
2824 if (space != nullptr) {
2825 // TODO: Check large object?
2826 return space->CanMoveObjects();
2827 }
2828 }
2829 return false;
2830 }
2831
UpdateMaxNativeFootprint()2832 void Heap::UpdateMaxNativeFootprint() {
2833 size_t native_size = native_bytes_allocated_.LoadRelaxed();
2834 // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2835 size_t target_size = native_size / GetTargetHeapUtilization();
2836 if (target_size > native_size + max_free_) {
2837 target_size = native_size + max_free_;
2838 } else if (target_size < native_size + min_free_) {
2839 target_size = native_size + min_free_;
2840 }
2841 native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2842 }
2843
FindCollectorByGcType(collector::GcType gc_type)2844 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2845 for (const auto& collector : garbage_collectors_) {
2846 if (collector->GetCollectorType() == collector_type_ &&
2847 collector->GetGcType() == gc_type) {
2848 return collector;
2849 }
2850 }
2851 return nullptr;
2852 }
2853
HeapGrowthMultiplier() const2854 double Heap::HeapGrowthMultiplier() const {
2855 // If we don't care about pause times we are background, so return 1.0.
2856 if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2857 return 1.0;
2858 }
2859 return foreground_heap_growth_multiplier_;
2860 }
2861
GrowForUtilization(collector::GarbageCollector * collector_ran)2862 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2863 // We know what our utilization is at this moment.
2864 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2865 const uint64_t bytes_allocated = GetBytesAllocated();
2866 last_gc_size_ = bytes_allocated;
2867 last_gc_time_ns_ = NanoTime();
2868 uint64_t target_size;
2869 collector::GcType gc_type = collector_ran->GetGcType();
2870 if (gc_type != collector::kGcTypeSticky) {
2871 // Grow the heap for non sticky GC.
2872 const float multiplier = HeapGrowthMultiplier(); // Use the multiplier to grow more for
2873 // foreground.
2874 intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2875 CHECK_GE(delta, 0);
2876 target_size = bytes_allocated + delta * multiplier;
2877 target_size = std::min(target_size,
2878 bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2879 target_size = std::max(target_size,
2880 bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2881 native_need_to_run_finalization_ = true;
2882 next_gc_type_ = collector::kGcTypeSticky;
2883 } else {
2884 collector::GcType non_sticky_gc_type =
2885 have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2886 // Find what the next non sticky collector will be.
2887 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2888 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2889 // do another sticky collection next.
2890 // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2891 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2892 // if the sticky GC throughput always remained >= the full/partial throughput.
2893 if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2894 non_sticky_collector->GetEstimatedMeanThroughput() &&
2895 non_sticky_collector->NumberOfIterations() > 0 &&
2896 bytes_allocated <= max_allowed_footprint_) {
2897 next_gc_type_ = collector::kGcTypeSticky;
2898 } else {
2899 next_gc_type_ = non_sticky_gc_type;
2900 }
2901 // If we have freed enough memory, shrink the heap back down.
2902 if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2903 target_size = bytes_allocated + max_free_;
2904 } else {
2905 target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2906 }
2907 }
2908 if (!ignore_max_footprint_) {
2909 SetIdealFootprint(target_size);
2910 if (IsGcConcurrent()) {
2911 // Calculate when to perform the next ConcurrentGC.
2912 // Calculate the estimated GC duration.
2913 const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2914 // Estimate how many remaining bytes we will have when we need to start the next GC.
2915 size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2916 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2917 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2918 if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2919 // A never going to happen situation that from the estimated allocation rate we will exceed
2920 // the applications entire footprint with the given estimated allocation rate. Schedule
2921 // another GC nearly straight away.
2922 remaining_bytes = kMinConcurrentRemainingBytes;
2923 }
2924 DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2925 DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2926 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2927 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2928 // right away.
2929 concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2930 static_cast<size_t>(bytes_allocated));
2931 }
2932 }
2933 }
2934
ClearGrowthLimit()2935 void Heap::ClearGrowthLimit() {
2936 growth_limit_ = capacity_;
2937 non_moving_space_->ClearGrowthLimit();
2938 }
2939
AddFinalizerReference(Thread * self,mirror::Object ** object)2940 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2941 ScopedObjectAccess soa(self);
2942 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2943 jvalue args[1];
2944 args[0].l = arg.get();
2945 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2946 // Restore object in case it gets moved.
2947 *object = soa.Decode<mirror::Object*>(arg.get());
2948 }
2949
RequestConcurrentGCAndSaveObject(Thread * self,mirror::Object ** obj)2950 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2951 StackHandleScope<1> hs(self);
2952 HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2953 RequestConcurrentGC(self);
2954 }
2955
RequestConcurrentGC(Thread * self)2956 void Heap::RequestConcurrentGC(Thread* self) {
2957 // Make sure that we can do a concurrent GC.
2958 Runtime* runtime = Runtime::Current();
2959 if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2960 self->IsHandlingStackOverflow()) {
2961 return;
2962 }
2963 // We already have a request pending, no reason to start more until we update
2964 // concurrent_start_bytes_.
2965 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2966 JNIEnv* env = self->GetJniEnv();
2967 DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2968 DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2969 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2970 WellKnownClasses::java_lang_Daemons_requestGC);
2971 CHECK(!env->ExceptionCheck());
2972 }
2973
ConcurrentGC(Thread * self)2974 void Heap::ConcurrentGC(Thread* self) {
2975 if (Runtime::Current()->IsShuttingDown(self)) {
2976 return;
2977 }
2978 // Wait for any GCs currently running to finish.
2979 if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2980 // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2981 // instead. E.g. can't do partial, so do full instead.
2982 if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2983 collector::kGcTypeNone) {
2984 for (collector::GcType gc_type : gc_plan_) {
2985 // Attempt to run the collector, if we succeed, we are done.
2986 if (gc_type > next_gc_type_ &&
2987 CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2988 break;
2989 }
2990 }
2991 }
2992 }
2993 }
2994
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)2995 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2996 Thread* self = Thread::Current();
2997 {
2998 MutexLock mu(self, *heap_trim_request_lock_);
2999 if (desired_collector_type_ == desired_collector_type) {
3000 return;
3001 }
3002 heap_transition_or_trim_target_time_ =
3003 std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
3004 desired_collector_type_ = desired_collector_type;
3005 }
3006 SignalHeapTrimDaemon(self);
3007 }
3008
RequestHeapTrim()3009 void Heap::RequestHeapTrim() {
3010 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3011 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3012 // a space it will hold its lock and can become a cause of jank.
3013 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3014 // forking.
3015
3016 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3017 // because that only marks object heads, so a large array looks like lots of empty space. We
3018 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3019 // to utilization (which is probably inversely proportional to how much benefit we can expect).
3020 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3021 // not how much use we're making of those pages.
3022
3023 Thread* self = Thread::Current();
3024 Runtime* runtime = Runtime::Current();
3025 if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
3026 runtime->IsZygote()) {
3027 // Ignore the request if we are the zygote to prevent app launching lag due to sleep in heap
3028 // trimmer daemon. b/17310019
3029 // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
3030 // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
3031 // as we don't hold the lock while requesting the trim).
3032 return;
3033 }
3034 {
3035 MutexLock mu(self, *heap_trim_request_lock_);
3036 if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
3037 // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
3038 // just yet.
3039 return;
3040 }
3041 heap_trim_request_pending_ = true;
3042 uint64_t current_time = NanoTime();
3043 if (heap_transition_or_trim_target_time_ < current_time) {
3044 heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
3045 }
3046 }
3047 // Notify the daemon thread which will actually do the heap trim.
3048 SignalHeapTrimDaemon(self);
3049 }
3050
SignalHeapTrimDaemon(Thread * self)3051 void Heap::SignalHeapTrimDaemon(Thread* self) {
3052 JNIEnv* env = self->GetJniEnv();
3053 DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
3054 DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
3055 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
3056 WellKnownClasses::java_lang_Daemons_requestHeapTrim);
3057 CHECK(!env->ExceptionCheck());
3058 }
3059
RevokeThreadLocalBuffers(Thread * thread)3060 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3061 if (rosalloc_space_ != nullptr) {
3062 rosalloc_space_->RevokeThreadLocalBuffers(thread);
3063 }
3064 if (bump_pointer_space_ != nullptr) {
3065 bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3066 }
3067 }
3068
RevokeRosAllocThreadLocalBuffers(Thread * thread)3069 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3070 if (rosalloc_space_ != nullptr) {
3071 rosalloc_space_->RevokeThreadLocalBuffers(thread);
3072 }
3073 }
3074
RevokeAllThreadLocalBuffers()3075 void Heap::RevokeAllThreadLocalBuffers() {
3076 if (rosalloc_space_ != nullptr) {
3077 rosalloc_space_->RevokeAllThreadLocalBuffers();
3078 }
3079 if (bump_pointer_space_ != nullptr) {
3080 bump_pointer_space_->RevokeAllThreadLocalBuffers();
3081 }
3082 }
3083
IsGCRequestPending() const3084 bool Heap::IsGCRequestPending() const {
3085 return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3086 }
3087
RunFinalization(JNIEnv * env)3088 void Heap::RunFinalization(JNIEnv* env) {
3089 // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3090 if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3091 CHECK(WellKnownClasses::java_lang_System != nullptr);
3092 WellKnownClasses::java_lang_System_runFinalization =
3093 CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3094 CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3095 }
3096 env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3097 WellKnownClasses::java_lang_System_runFinalization);
3098 env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3099 WellKnownClasses::java_lang_System_runFinalization);
3100 }
3101
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3102 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3103 Thread* self = ThreadForEnv(env);
3104 if (native_need_to_run_finalization_) {
3105 RunFinalization(env);
3106 UpdateMaxNativeFootprint();
3107 native_need_to_run_finalization_ = false;
3108 }
3109 // Total number of native bytes allocated.
3110 size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3111 new_native_bytes_allocated += bytes;
3112 if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3113 collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3114 collector::kGcTypeFull;
3115
3116 // The second watermark is higher than the gc watermark. If you hit this it means you are
3117 // allocating native objects faster than the GC can keep up with.
3118 if (new_native_bytes_allocated > growth_limit_) {
3119 if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3120 // Just finished a GC, attempt to run finalizers.
3121 RunFinalization(env);
3122 CHECK(!env->ExceptionCheck());
3123 }
3124 // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3125 if (new_native_bytes_allocated > growth_limit_) {
3126 CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3127 RunFinalization(env);
3128 native_need_to_run_finalization_ = false;
3129 CHECK(!env->ExceptionCheck());
3130 }
3131 // We have just run finalizers, update the native watermark since it is very likely that
3132 // finalizers released native managed allocations.
3133 UpdateMaxNativeFootprint();
3134 } else if (!IsGCRequestPending()) {
3135 if (IsGcConcurrent()) {
3136 RequestConcurrentGC(self);
3137 } else {
3138 CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3139 }
3140 }
3141 }
3142 }
3143
RegisterNativeFree(JNIEnv * env,size_t bytes)3144 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3145 size_t expected_size;
3146 do {
3147 expected_size = native_bytes_allocated_.LoadRelaxed();
3148 if (UNLIKELY(bytes > expected_size)) {
3149 ScopedObjectAccess soa(env);
3150 env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3151 StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3152 "registered as allocated", bytes, expected_size).c_str());
3153 break;
3154 }
3155 } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3156 expected_size - bytes));
3157 }
3158
GetTotalMemory() const3159 size_t Heap::GetTotalMemory() const {
3160 return std::max(max_allowed_footprint_, GetBytesAllocated());
3161 }
3162
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3163 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3164 DCHECK(mod_union_table != nullptr);
3165 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3166 }
3167
CheckPreconditionsForAllocObject(mirror::Class * c,size_t byte_count)3168 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3169 CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3170 (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3171 CHECK_GE(byte_count, sizeof(mirror::Object));
3172 }
3173
AddRememberedSet(accounting::RememberedSet * remembered_set)3174 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3175 CHECK(remembered_set != nullptr);
3176 space::Space* space = remembered_set->GetSpace();
3177 CHECK(space != nullptr);
3178 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3179 remembered_sets_.Put(space, remembered_set);
3180 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3181 }
3182
RemoveRememberedSet(space::Space * space)3183 void Heap::RemoveRememberedSet(space::Space* space) {
3184 CHECK(space != nullptr);
3185 auto it = remembered_sets_.find(space);
3186 CHECK(it != remembered_sets_.end());
3187 delete it->second;
3188 remembered_sets_.erase(it);
3189 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3190 }
3191
ClearMarkedObjects()3192 void Heap::ClearMarkedObjects() {
3193 // Clear all of the spaces' mark bitmaps.
3194 for (const auto& space : GetContinuousSpaces()) {
3195 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3196 if (space->GetLiveBitmap() != mark_bitmap) {
3197 mark_bitmap->Clear();
3198 }
3199 }
3200 // Clear the marked objects in the discontinous space object sets.
3201 for (const auto& space : GetDiscontinuousSpaces()) {
3202 space->GetMarkBitmap()->Clear();
3203 }
3204 }
3205
3206 } // namespace gc
3207 } // namespace art
3208