• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "net/quic/quic_framer.h"
6 
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
18 
19 using base::StringPiece;
20 using std::make_pair;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
26 
27 namespace net {
28 
29 namespace {
30 
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33     GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35     GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37     GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39     GG_UINT64_C(0x00000000000000FF);
40 
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
43 
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
47 
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
51 //
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding            : 0b 00000000 (0x00)
55 // ResetStream        : 0b 00000001 (0x01)
56 // ConnectionClose    : 0b 00000010 (0x02)
57 // GoAway             : 0b 00000011 (0x03)
58 // WindowUpdate       : 0b 00000100 (0x04)
59 // Blocked            : 0b 00000101 (0x05)
60 //
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream             : 0b 1xxxxxxx
64 // Ack                : 0b 01xxxxxx
65 // CongestionFeedback : 0b 001xxxxx
66 //
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
68 
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0;  // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
74 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
75 
76 // Stream frame relative shifts and masks for interpreting the stream flags.
77 // StreamID may be 1, 2, 3, or 4 bytes.
78 const uint8 kQuicStreamIdShift = 2;
79 const uint8 kQuicStreamIDLengthMask = 0x03;
80 
81 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82 const uint8 kQuicStreamOffsetShift = 3;
83 const uint8 kQuicStreamOffsetMask = 0x07;
84 
85 // Data length may be 0 or 2 bytes.
86 const uint8 kQuicStreamDataLengthShift = 1;
87 const uint8 kQuicStreamDataLengthMask = 0x01;
88 
89 // Fin bit may be set or not.
90 const uint8 kQuicStreamFinShift = 1;
91 const uint8 kQuicStreamFinMask = 0x01;
92 
93 // Sequence number size shift used in AckFrames.
94 const uint8 kQuicSequenceNumberLengthShift = 2;
95 
96 // Acks may be truncated.
97 const uint8 kQuicAckTruncatedShift = 1;
98 const uint8 kQuicAckTruncatedMask = 0x01;
99 
100 // Acks may not have any nacks.
101 const uint8 kQuicHasNacksMask = 0x01;
102 
103 // Returns the absolute value of the difference between |a| and |b|.
Delta(QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)104 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105                                QuicPacketSequenceNumber b) {
106   // Since these are unsigned numbers, we can't just return abs(a - b)
107   if (a < b) {
108     return b - a;
109   }
110   return a - b;
111 }
112 
ClosestTo(QuicPacketSequenceNumber target,QuicPacketSequenceNumber a,QuicPacketSequenceNumber b)113 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114                                    QuicPacketSequenceNumber a,
115                                    QuicPacketSequenceNumber b) {
116   return (Delta(target, a) < Delta(target, b)) ? a : b;
117 }
118 
ReadSequenceNumberLength(uint8 flags)119 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120   switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121     case PACKET_FLAGS_6BYTE_SEQUENCE:
122       return PACKET_6BYTE_SEQUENCE_NUMBER;
123     case PACKET_FLAGS_4BYTE_SEQUENCE:
124       return PACKET_4BYTE_SEQUENCE_NUMBER;
125     case PACKET_FLAGS_2BYTE_SEQUENCE:
126       return PACKET_2BYTE_SEQUENCE_NUMBER;
127     case PACKET_FLAGS_1BYTE_SEQUENCE:
128       return PACKET_1BYTE_SEQUENCE_NUMBER;
129     default:
130       LOG(DFATAL) << "Unreachable case statement.";
131       return PACKET_6BYTE_SEQUENCE_NUMBER;
132   }
133 }
134 
CanTruncate(QuicVersion version,const QuicFrame & frame,size_t free_bytes)135 bool CanTruncate(
136     QuicVersion version, const QuicFrame& frame, size_t free_bytes) {
137   if ((frame.type == ACK_FRAME || frame.type == CONNECTION_CLOSE_FRAME) &&
138       free_bytes >=
139           QuicFramer::GetMinAckFrameSize(version,
140                                          PACKET_6BYTE_SEQUENCE_NUMBER,
141                                          PACKET_6BYTE_SEQUENCE_NUMBER)) {
142     return true;
143   }
144   return false;
145 }
146 
147 }  // namespace
148 
OnWindowUpdateFrame(const QuicWindowUpdateFrame & frame)149 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
150     const QuicWindowUpdateFrame& frame) {
151   return true;
152 }
153 
OnBlockedFrame(const QuicBlockedFrame & frame)154 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
155   return true;
156 }
157 
QuicFramer(const QuicVersionVector & supported_versions,QuicTime creation_time,bool is_server)158 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
159                        QuicTime creation_time,
160                        bool is_server)
161     : visitor_(NULL),
162       fec_builder_(NULL),
163       entropy_calculator_(NULL),
164       error_(QUIC_NO_ERROR),
165       last_sequence_number_(0),
166       last_serialized_connection_id_(0),
167       supported_versions_(supported_versions),
168       decrypter_level_(ENCRYPTION_NONE),
169       alternative_decrypter_level_(ENCRYPTION_NONE),
170       alternative_decrypter_latch_(false),
171       is_server_(is_server),
172       validate_flags_(true),
173       creation_time_(creation_time) {
174   DCHECK(!supported_versions.empty());
175   quic_version_ = supported_versions_[0];
176   decrypter_.reset(QuicDecrypter::Create(kNULL));
177   encrypter_[ENCRYPTION_NONE].reset(
178       QuicEncrypter::Create(kNULL));
179 }
180 
~QuicFramer()181 QuicFramer::~QuicFramer() {}
182 
183 // static
GetMinStreamFrameSize(QuicVersion version,QuicStreamId stream_id,QuicStreamOffset offset,bool last_frame_in_packet,InFecGroup is_in_fec_group)184 size_t QuicFramer::GetMinStreamFrameSize(QuicVersion version,
185                                          QuicStreamId stream_id,
186                                          QuicStreamOffset offset,
187                                          bool last_frame_in_packet,
188                                          InFecGroup is_in_fec_group) {
189   bool no_stream_frame_length = last_frame_in_packet &&
190                                 is_in_fec_group == NOT_IN_FEC_GROUP;
191   return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
192       GetStreamOffsetSize(offset) +
193       (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
194 }
195 
196 // static
GetMinAckFrameSize(QuicVersion version,QuicSequenceNumberLength sequence_number_length,QuicSequenceNumberLength largest_observed_length)197 size_t QuicFramer::GetMinAckFrameSize(
198     QuicVersion version,
199     QuicSequenceNumberLength sequence_number_length,
200     QuicSequenceNumberLength largest_observed_length) {
201   size_t len = kQuicFrameTypeSize + kQuicEntropyHashSize +
202       largest_observed_length + kQuicDeltaTimeLargestObservedSize;
203   if (version <= QUIC_VERSION_15) {
204     len += sequence_number_length + kQuicEntropyHashSize;
205   }
206   return len;
207 }
208 
209 // static
GetStopWaitingFrameSize(QuicSequenceNumberLength sequence_number_length)210 size_t QuicFramer::GetStopWaitingFrameSize(
211     QuicSequenceNumberLength sequence_number_length) {
212   return kQuicFrameTypeSize + kQuicEntropyHashSize +
213       sequence_number_length;
214 }
215 
216 // static
GetMinRstStreamFrameSize(QuicVersion quic_version)217 size_t QuicFramer::GetMinRstStreamFrameSize(QuicVersion quic_version) {
218   return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
219       kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
220       kQuicErrorDetailsLengthSize;
221 }
222 
223 // static
GetMinConnectionCloseFrameSize()224 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
225   return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
226 }
227 
228 // static
GetMinGoAwayFrameSize()229 size_t QuicFramer::GetMinGoAwayFrameSize() {
230   return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
231       kQuicMaxStreamIdSize;
232 }
233 
234 // static
GetWindowUpdateFrameSize()235 size_t QuicFramer::GetWindowUpdateFrameSize() {
236   return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
237 }
238 
239 // static
GetBlockedFrameSize()240 size_t QuicFramer::GetBlockedFrameSize() {
241   return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
242 }
243 
244 // static
GetStreamIdSize(QuicStreamId stream_id)245 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
246   // Sizes are 1 through 4 bytes.
247   for (int i = 1; i <= 4; ++i) {
248     stream_id >>= 8;
249     if (stream_id == 0) {
250       return i;
251     }
252   }
253   LOG(DFATAL) << "Failed to determine StreamIDSize.";
254   return 4;
255 }
256 
257 // static
GetStreamOffsetSize(QuicStreamOffset offset)258 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
259   // 0 is a special case.
260   if (offset == 0) {
261     return 0;
262   }
263   // 2 through 8 are the remaining sizes.
264   offset >>= 8;
265   for (int i = 2; i <= 8; ++i) {
266     offset >>= 8;
267     if (offset == 0) {
268       return i;
269     }
270   }
271   LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
272   return 8;
273 }
274 
275 // static
GetVersionNegotiationPacketSize(size_t number_versions)276 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
277   return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
278       number_versions * kQuicVersionSize;
279 }
280 
IsSupportedVersion(const QuicVersion version) const281 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
282   for (size_t i = 0; i < supported_versions_.size(); ++i) {
283     if (version == supported_versions_[i]) {
284       return true;
285     }
286   }
287   return false;
288 }
289 
GetSerializedFrameLength(const QuicFrame & frame,size_t free_bytes,bool first_frame,bool last_frame,InFecGroup is_in_fec_group,QuicSequenceNumberLength sequence_number_length)290 size_t QuicFramer::GetSerializedFrameLength(
291     const QuicFrame& frame,
292     size_t free_bytes,
293     bool first_frame,
294     bool last_frame,
295     InFecGroup is_in_fec_group,
296     QuicSequenceNumberLength sequence_number_length) {
297   if (frame.type == PADDING_FRAME) {
298     // PADDING implies end of packet.
299     return free_bytes;
300   }
301   size_t frame_len =
302       ComputeFrameLength(frame, last_frame, is_in_fec_group,
303                          sequence_number_length);
304   if (frame_len <= free_bytes) {
305     // Frame fits within packet. Note that acks may be truncated.
306     return frame_len;
307   }
308   // Only truncate the first frame in a packet, so if subsequent ones go
309   // over, stop including more frames.
310   if (!first_frame) {
311     return 0;
312   }
313   if (CanTruncate(quic_version_, frame, free_bytes)) {
314     // Truncate the frame so the packet will not exceed kMaxPacketSize.
315     // Note that we may not use every byte of the writer in this case.
316     DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
317     return free_bytes;
318   }
319   if (!FLAGS_quic_allow_oversized_packets_for_test) {
320     return 0;
321   }
322   LOG(DFATAL) << "Packet size too small to fit frame.";
323   return frame_len;
324 }
325 
AckFrameInfo()326 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
327 
~AckFrameInfo()328 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
329 
GetPacketEntropyHash(const QuicPacketHeader & header) const330 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
331     const QuicPacketHeader& header) const {
332   return header.entropy_flag << (header.packet_sequence_number % 8);
333 }
334 
BuildDataPacket(const QuicPacketHeader & header,const QuicFrames & frames,size_t packet_size)335 SerializedPacket QuicFramer::BuildDataPacket(
336     const QuicPacketHeader& header,
337     const QuicFrames& frames,
338     size_t packet_size) {
339   QuicDataWriter writer(packet_size);
340   const SerializedPacket kNoPacket(
341       0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
342   if (!AppendPacketHeader(header, &writer)) {
343     LOG(DFATAL) << "AppendPacketHeader failed";
344     return kNoPacket;
345   }
346 
347   for (size_t i = 0; i < frames.size(); ++i) {
348     const QuicFrame& frame = frames[i];
349 
350     // Determine if we should write stream frame length in header.
351     const bool no_stream_frame_length =
352         (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
353         (i == frames.size() - 1);
354     if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
355       LOG(DFATAL) << "AppendTypeByte failed";
356       return kNoPacket;
357     }
358 
359     switch (frame.type) {
360       case PADDING_FRAME:
361         writer.WritePadding();
362         break;
363       case STREAM_FRAME:
364         if (!AppendStreamFrame(
365             *frame.stream_frame, no_stream_frame_length, &writer)) {
366           LOG(DFATAL) << "AppendStreamFrame failed";
367           return kNoPacket;
368         }
369         break;
370       case ACK_FRAME:
371         if (!AppendAckFrameAndTypeByte(
372                 header, *frame.ack_frame, &writer)) {
373           LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
374           return kNoPacket;
375         }
376         break;
377       case CONGESTION_FEEDBACK_FRAME:
378         if (!AppendCongestionFeedbackFrame(
379                 *frame.congestion_feedback_frame, &writer)) {
380           LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
381           return kNoPacket;
382         }
383         break;
384       case STOP_WAITING_FRAME:
385         if (quic_version_ <= QUIC_VERSION_15) {
386           LOG(DFATAL) << "Attempt to add a StopWaitingFrame in "
387                       << QuicVersionToString(quic_version_);
388           return kNoPacket;
389         }
390         if (!AppendStopWaitingFrame(
391                 header, *frame.stop_waiting_frame, &writer)) {
392           LOG(DFATAL) << "AppendStopWaitingFrame failed";
393           return kNoPacket;
394         }
395         break;
396       case PING_FRAME:
397         if (quic_version_ <= QUIC_VERSION_17) {
398           LOG(DFATAL) << "Attempt to add a PingFrame in "
399                       << QuicVersionToString(quic_version_);
400           return kNoPacket;
401         }
402         // Ping has no payload.
403         break;
404       case RST_STREAM_FRAME:
405         if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
406           LOG(DFATAL) << "AppendRstStreamFrame failed";
407           return kNoPacket;
408         }
409         break;
410       case CONNECTION_CLOSE_FRAME:
411         if (!AppendConnectionCloseFrame(
412                 *frame.connection_close_frame, &writer)) {
413           LOG(DFATAL) << "AppendConnectionCloseFrame failed";
414           return kNoPacket;
415         }
416         break;
417       case GOAWAY_FRAME:
418         if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
419           LOG(DFATAL) << "AppendGoAwayFrame failed";
420           return kNoPacket;
421         }
422         break;
423       case WINDOW_UPDATE_FRAME:
424         if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
425           LOG(DFATAL) << "AppendWindowUpdateFrame failed";
426           return kNoPacket;
427         }
428         break;
429       case BLOCKED_FRAME:
430         if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
431           LOG(DFATAL) << "AppendBlockedFrame failed";
432           return kNoPacket;
433         }
434         break;
435       default:
436         RaiseError(QUIC_INVALID_FRAME_DATA);
437         LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
438         return kNoPacket;
439     }
440   }
441 
442   // Save the length before writing, because take clears it.
443   const size_t len = writer.length();
444   // Less than or equal because truncated acks end up with max_plaintex_size
445   // length, even though they're typically slightly shorter.
446   DCHECK_LE(len, packet_size);
447   QuicPacket* packet = QuicPacket::NewDataPacket(
448       writer.take(), len, true, header.public_header.connection_id_length,
449       header.public_header.version_flag,
450       header.public_header.sequence_number_length);
451 
452   if (fec_builder_) {
453     fec_builder_->OnBuiltFecProtectedPayload(header,
454                                              packet->FecProtectedData());
455   }
456 
457   return SerializedPacket(header.packet_sequence_number,
458                           header.public_header.sequence_number_length, packet,
459                           GetPacketEntropyHash(header), NULL);
460 }
461 
BuildFecPacket(const QuicPacketHeader & header,const QuicFecData & fec)462 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
463                                             const QuicFecData& fec) {
464   DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
465   DCHECK_NE(0u, header.fec_group);
466   size_t len = GetPacketHeaderSize(header);
467   len += fec.redundancy.length();
468 
469   QuicDataWriter writer(len);
470   const SerializedPacket kNoPacket(
471       0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
472   if (!AppendPacketHeader(header, &writer)) {
473     LOG(DFATAL) << "AppendPacketHeader failed";
474     return kNoPacket;
475   }
476 
477   if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
478     LOG(DFATAL) << "Failed to add FEC";
479     return kNoPacket;
480   }
481 
482   return SerializedPacket(
483       header.packet_sequence_number,
484       header.public_header.sequence_number_length,
485       QuicPacket::NewFecPacket(writer.take(), len, true,
486                                header.public_header.connection_id_length,
487                                header.public_header.version_flag,
488                                header.public_header.sequence_number_length),
489       GetPacketEntropyHash(header), NULL);
490 }
491 
492 // static
BuildPublicResetPacket(const QuicPublicResetPacket & packet)493 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
494     const QuicPublicResetPacket& packet) {
495   DCHECK(packet.public_header.reset_flag);
496 
497   CryptoHandshakeMessage reset;
498   reset.set_tag(kPRST);
499   reset.SetValue(kRNON, packet.nonce_proof);
500   reset.SetValue(kRSEQ, packet.rejected_sequence_number);
501   if (!packet.client_address.address().empty()) {
502     // packet.client_address is non-empty.
503     QuicSocketAddressCoder address_coder(packet.client_address);
504     string serialized_address = address_coder.Encode();
505     if (serialized_address.empty()) {
506       return NULL;
507     }
508     reset.SetStringPiece(kCADR, serialized_address);
509   }
510   const QuicData& reset_serialized = reset.GetSerialized();
511 
512   size_t len =
513       kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
514   QuicDataWriter writer(len);
515 
516   uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
517                                    PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
518   if (!writer.WriteUInt8(flags)) {
519     return NULL;
520   }
521 
522   if (!writer.WriteUInt64(packet.public_header.connection_id)) {
523     return NULL;
524   }
525 
526   if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
527     return NULL;
528   }
529 
530   return new QuicEncryptedPacket(writer.take(), len, true);
531 }
532 
BuildVersionNegotiationPacket(const QuicPacketPublicHeader & header,const QuicVersionVector & supported_versions)533 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
534     const QuicPacketPublicHeader& header,
535     const QuicVersionVector& supported_versions) {
536   DCHECK(header.version_flag);
537   size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
538   QuicDataWriter writer(len);
539 
540   uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
541                                    PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
542   if (!writer.WriteUInt8(flags)) {
543     return NULL;
544   }
545 
546   if (!writer.WriteUInt64(header.connection_id)) {
547     return NULL;
548   }
549 
550   for (size_t i = 0; i < supported_versions.size(); ++i) {
551     if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
552       return NULL;
553     }
554   }
555 
556   return new QuicEncryptedPacket(writer.take(), len, true);
557 }
558 
ProcessPacket(const QuicEncryptedPacket & packet)559 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
560   DCHECK(!reader_.get());
561   reader_.reset(new QuicDataReader(packet.data(), packet.length()));
562 
563   visitor_->OnPacket();
564 
565   // First parse the public header.
566   QuicPacketPublicHeader public_header;
567   if (!ProcessPublicHeader(&public_header)) {
568     DLOG(WARNING) << "Unable to process public header.";
569     DCHECK_NE("", detailed_error_);
570     return RaiseError(QUIC_INVALID_PACKET_HEADER);
571   }
572 
573   if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
574     // The visitor suppresses further processing of the packet.
575     reader_.reset(NULL);
576     return true;
577   }
578 
579   if (is_server_ && public_header.version_flag &&
580       public_header.versions[0] != quic_version_) {
581     if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
582       reader_.reset(NULL);
583       return true;
584     }
585   }
586 
587   bool rv;
588   if (!is_server_ && public_header.version_flag) {
589     rv = ProcessVersionNegotiationPacket(&public_header);
590   } else if (public_header.reset_flag) {
591     rv = ProcessPublicResetPacket(public_header);
592   } else {
593     rv = ProcessDataPacket(public_header, packet);
594   }
595 
596   reader_.reset(NULL);
597   return rv;
598 }
599 
ProcessVersionNegotiationPacket(QuicPacketPublicHeader * public_header)600 bool QuicFramer::ProcessVersionNegotiationPacket(
601     QuicPacketPublicHeader* public_header) {
602   DCHECK(!is_server_);
603   // Try reading at least once to raise error if the packet is invalid.
604   do {
605     QuicTag version;
606     if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
607       set_detailed_error("Unable to read supported version in negotiation.");
608       return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
609     }
610     public_header->versions.push_back(QuicTagToQuicVersion(version));
611   } while (!reader_->IsDoneReading());
612 
613   visitor_->OnVersionNegotiationPacket(*public_header);
614   return true;
615 }
616 
ProcessDataPacket(const QuicPacketPublicHeader & public_header,const QuicEncryptedPacket & packet)617 bool QuicFramer::ProcessDataPacket(
618     const QuicPacketPublicHeader& public_header,
619     const QuicEncryptedPacket& packet) {
620   QuicPacketHeader header(public_header);
621   if (!ProcessPacketHeader(&header, packet)) {
622     DLOG(WARNING) << "Unable to process data packet header.";
623     return false;
624   }
625 
626   if (!visitor_->OnPacketHeader(header)) {
627     // The visitor suppresses further processing of the packet.
628     return true;
629   }
630 
631   if (packet.length() > kMaxPacketSize) {
632     DLOG(WARNING) << "Packet too large: " << packet.length();
633     return RaiseError(QUIC_PACKET_TOO_LARGE);
634   }
635 
636   // Handle the payload.
637   if (!header.fec_flag) {
638     if (header.is_in_fec_group == IN_FEC_GROUP) {
639       StringPiece payload = reader_->PeekRemainingPayload();
640       visitor_->OnFecProtectedPayload(payload);
641     }
642     if (!ProcessFrameData(header)) {
643       DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
644       DLOG(WARNING) << "Unable to process frame data.";
645       return false;
646     }
647   } else {
648     QuicFecData fec_data;
649     fec_data.fec_group = header.fec_group;
650     fec_data.redundancy = reader_->ReadRemainingPayload();
651     visitor_->OnFecData(fec_data);
652   }
653 
654   visitor_->OnPacketComplete();
655   return true;
656 }
657 
ProcessPublicResetPacket(const QuicPacketPublicHeader & public_header)658 bool QuicFramer::ProcessPublicResetPacket(
659     const QuicPacketPublicHeader& public_header) {
660   QuicPublicResetPacket packet(public_header);
661 
662   scoped_ptr<CryptoHandshakeMessage> reset(
663       CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
664   if (!reset.get()) {
665     set_detailed_error("Unable to read reset message.");
666     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
667   }
668   if (reset->tag() != kPRST) {
669     set_detailed_error("Incorrect message tag.");
670     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
671   }
672 
673   if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
674     set_detailed_error("Unable to read nonce proof.");
675     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
676   }
677   // TODO(satyamshekhar): validate nonce to protect against DoS.
678 
679   if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
680       QUIC_NO_ERROR) {
681     set_detailed_error("Unable to read rejected sequence number.");
682     return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
683   }
684 
685   StringPiece address;
686   if (reset->GetStringPiece(kCADR, &address)) {
687     QuicSocketAddressCoder address_coder;
688     if (address_coder.Decode(address.data(), address.length())) {
689       packet.client_address = IPEndPoint(address_coder.ip(),
690                                          address_coder.port());
691     }
692   }
693 
694   visitor_->OnPublicResetPacket(packet);
695   return true;
696 }
697 
ProcessRevivedPacket(QuicPacketHeader * header,StringPiece payload)698 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
699                                       StringPiece payload) {
700   DCHECK(!reader_.get());
701 
702   visitor_->OnRevivedPacket();
703 
704   header->entropy_hash = GetPacketEntropyHash(*header);
705 
706   if (!visitor_->OnPacketHeader(*header)) {
707     return true;
708   }
709 
710   if (payload.length() > kMaxPacketSize) {
711     set_detailed_error("Revived packet too large.");
712     return RaiseError(QUIC_PACKET_TOO_LARGE);
713   }
714 
715   reader_.reset(new QuicDataReader(payload.data(), payload.length()));
716   if (!ProcessFrameData(*header)) {
717     DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
718     DLOG(WARNING) << "Unable to process frame data.";
719     return false;
720   }
721 
722   visitor_->OnPacketComplete();
723   reader_.reset(NULL);
724   return true;
725 }
726 
AppendPacketHeader(const QuicPacketHeader & header,QuicDataWriter * writer)727 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
728                                     QuicDataWriter* writer) {
729   DVLOG(1) << "Appending header: " << header;
730   DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
731   uint8 public_flags = 0;
732   if (header.public_header.reset_flag) {
733     public_flags |= PACKET_PUBLIC_FLAGS_RST;
734   }
735   if (header.public_header.version_flag) {
736     public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
737   }
738 
739   public_flags |=
740       GetSequenceNumberFlags(header.public_header.sequence_number_length)
741           << kPublicHeaderSequenceNumberShift;
742 
743   switch (header.public_header.connection_id_length) {
744     case PACKET_0BYTE_CONNECTION_ID:
745       if (!writer->WriteUInt8(
746               public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
747         return false;
748       }
749       break;
750     case PACKET_1BYTE_CONNECTION_ID:
751       if (!writer->WriteUInt8(
752               public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
753          return false;
754       }
755       if (!writer->WriteUInt8(
756               header.public_header.connection_id & k1ByteConnectionIdMask)) {
757         return false;
758       }
759       break;
760     case PACKET_4BYTE_CONNECTION_ID:
761       if (!writer->WriteUInt8(
762               public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
763          return false;
764       }
765       if (!writer->WriteUInt32(
766               header.public_header.connection_id & k4ByteConnectionIdMask)) {
767         return false;
768       }
769       break;
770     case PACKET_8BYTE_CONNECTION_ID:
771       if (!writer->WriteUInt8(
772               public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
773         return false;
774       }
775       if (!writer->WriteUInt64(header.public_header.connection_id)) {
776         return false;
777       }
778       break;
779   }
780   last_serialized_connection_id_ = header.public_header.connection_id;
781 
782   if (header.public_header.version_flag) {
783     DCHECK(!is_server_);
784     writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
785   }
786 
787   if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
788                                   header.packet_sequence_number, writer)) {
789     return false;
790   }
791 
792   uint8 private_flags = 0;
793   if (header.entropy_flag) {
794     private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
795   }
796   if (header.is_in_fec_group == IN_FEC_GROUP) {
797     private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
798   }
799   if (header.fec_flag) {
800     private_flags |= PACKET_PRIVATE_FLAGS_FEC;
801   }
802   if (!writer->WriteUInt8(private_flags)) {
803     return false;
804   }
805 
806   // The FEC group number is the sequence number of the first fec
807   // protected packet, or 0 if this packet is not protected.
808   if (header.is_in_fec_group == IN_FEC_GROUP) {
809     DCHECK_GE(header.packet_sequence_number, header.fec_group);
810     DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
811     // Offset from the current packet sequence number to the first fec
812     // protected packet.
813     uint8 first_fec_protected_packet_offset =
814         header.packet_sequence_number - header.fec_group;
815     if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
816       return false;
817     }
818   }
819 
820   return true;
821 }
822 
CalculatePacketSequenceNumberFromWire(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number) const823 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
824     QuicSequenceNumberLength sequence_number_length,
825     QuicPacketSequenceNumber packet_sequence_number) const {
826   // The new sequence number might have wrapped to the next epoch, or
827   // it might have reverse wrapped to the previous epoch, or it might
828   // remain in the same epoch.  Select the sequence number closest to the
829   // next expected sequence number, the previous sequence number plus 1.
830 
831   // epoch_delta is the delta between epochs the sequence number was serialized
832   // with, so the correct value is likely the same epoch as the last sequence
833   // number or an adjacent epoch.
834   const QuicPacketSequenceNumber epoch_delta =
835       GG_UINT64_C(1) << (8 * sequence_number_length);
836   QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
837   QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
838   QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
839   QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
840 
841   return ClosestTo(next_sequence_number,
842                    epoch + packet_sequence_number,
843                    ClosestTo(next_sequence_number,
844                              prev_epoch + packet_sequence_number,
845                              next_epoch + packet_sequence_number));
846 }
847 
ProcessPublicHeader(QuicPacketPublicHeader * public_header)848 bool QuicFramer::ProcessPublicHeader(
849     QuicPacketPublicHeader* public_header) {
850   uint8 public_flags;
851   if (!reader_->ReadBytes(&public_flags, 1)) {
852     set_detailed_error("Unable to read public flags.");
853     return false;
854   }
855 
856   public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
857   public_header->version_flag =
858       (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
859 
860   if (validate_flags_ &&
861       !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
862     set_detailed_error("Illegal public flags value.");
863     return false;
864   }
865 
866   if (public_header->reset_flag && public_header->version_flag) {
867     set_detailed_error("Got version flag in reset packet");
868     return false;
869   }
870 
871   switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
872     case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
873       if (!reader_->ReadUInt64(&public_header->connection_id)) {
874         set_detailed_error("Unable to read ConnectionId.");
875         return false;
876       }
877       public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
878       break;
879     case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
880       // If the connection_id is truncated, expect to read the last serialized
881       // connection_id.
882       if (!reader_->ReadBytes(&public_header->connection_id,
883                               PACKET_4BYTE_CONNECTION_ID)) {
884         set_detailed_error("Unable to read ConnectionId.");
885         return false;
886       }
887       if ((public_header->connection_id & k4ByteConnectionIdMask) !=
888           (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
889         set_detailed_error("Truncated 4 byte ConnectionId does not match "
890                            "previous connection_id.");
891         return false;
892       }
893       public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
894       public_header->connection_id = last_serialized_connection_id_;
895       break;
896     case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
897       if (!reader_->ReadBytes(&public_header->connection_id,
898                               PACKET_1BYTE_CONNECTION_ID)) {
899         set_detailed_error("Unable to read ConnectionId.");
900         return false;
901       }
902       if ((public_header->connection_id & k1ByteConnectionIdMask) !=
903           (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
904         set_detailed_error("Truncated 1 byte ConnectionId does not match "
905                            "previous connection_id.");
906         return false;
907       }
908       public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
909       public_header->connection_id = last_serialized_connection_id_;
910       break;
911     case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
912       public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
913       public_header->connection_id = last_serialized_connection_id_;
914       break;
915   }
916 
917   public_header->sequence_number_length =
918       ReadSequenceNumberLength(
919           public_flags >> kPublicHeaderSequenceNumberShift);
920 
921   // Read the version only if the packet is from the client.
922   // version flag from the server means version negotiation packet.
923   if (public_header->version_flag && is_server_) {
924     QuicTag version_tag;
925     if (!reader_->ReadUInt32(&version_tag)) {
926       set_detailed_error("Unable to read protocol version.");
927       return false;
928     }
929 
930     // If the version from the new packet is the same as the version of this
931     // framer, then the public flags should be set to something we understand.
932     // If not, this raises an error.
933     QuicVersion version = QuicTagToQuicVersion(version_tag);
934     if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
935       set_detailed_error("Illegal public flags value.");
936       return false;
937     }
938     public_header->versions.push_back(version);
939   }
940   return true;
941 }
942 
943 // static
GetMinSequenceNumberLength(QuicPacketSequenceNumber sequence_number)944 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
945     QuicPacketSequenceNumber sequence_number) {
946   if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
947     return PACKET_1BYTE_SEQUENCE_NUMBER;
948   } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
949     return PACKET_2BYTE_SEQUENCE_NUMBER;
950   } else if (sequence_number <
951              GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
952     return PACKET_4BYTE_SEQUENCE_NUMBER;
953   } else {
954     return PACKET_6BYTE_SEQUENCE_NUMBER;
955   }
956 }
957 
958 // static
GetSequenceNumberFlags(QuicSequenceNumberLength sequence_number_length)959 uint8 QuicFramer::GetSequenceNumberFlags(
960     QuicSequenceNumberLength sequence_number_length) {
961   switch (sequence_number_length) {
962     case PACKET_1BYTE_SEQUENCE_NUMBER:
963       return PACKET_FLAGS_1BYTE_SEQUENCE;
964     case PACKET_2BYTE_SEQUENCE_NUMBER:
965       return PACKET_FLAGS_2BYTE_SEQUENCE;
966     case PACKET_4BYTE_SEQUENCE_NUMBER:
967       return PACKET_FLAGS_4BYTE_SEQUENCE;
968     case PACKET_6BYTE_SEQUENCE_NUMBER:
969       return PACKET_FLAGS_6BYTE_SEQUENCE;
970     default:
971       LOG(DFATAL) << "Unreachable case statement.";
972       return PACKET_FLAGS_6BYTE_SEQUENCE;
973   }
974 }
975 
976 // static
GetAckFrameInfo(const QuicAckFrame & frame)977 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
978     const QuicAckFrame& frame) {
979   const ReceivedPacketInfo& received_info = frame.received_info;
980 
981   AckFrameInfo ack_info;
982   if (!received_info.missing_packets.empty()) {
983     DCHECK_GE(received_info.largest_observed,
984               *received_info.missing_packets.rbegin());
985     size_t cur_range_length = 0;
986     SequenceNumberSet::const_iterator iter =
987         received_info.missing_packets.begin();
988     QuicPacketSequenceNumber last_missing = *iter;
989     ++iter;
990     for (; iter != received_info.missing_packets.end(); ++iter) {
991       if (cur_range_length != numeric_limits<uint8>::max() &&
992           *iter == (last_missing + 1)) {
993         ++cur_range_length;
994       } else {
995         ack_info.nack_ranges[last_missing - cur_range_length]
996             = cur_range_length;
997         cur_range_length = 0;
998       }
999       ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1000       last_missing = *iter;
1001     }
1002     // Include the last nack range.
1003     ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
1004     // Include the range to the largest observed.
1005     ack_info.max_delta = max(ack_info.max_delta,
1006                              received_info.largest_observed - last_missing);
1007   }
1008   return ack_info;
1009 }
1010 
ProcessPacketHeader(QuicPacketHeader * header,const QuicEncryptedPacket & packet)1011 bool QuicFramer::ProcessPacketHeader(
1012     QuicPacketHeader* header,
1013     const QuicEncryptedPacket& packet) {
1014   if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1015                                    &header->packet_sequence_number)) {
1016     set_detailed_error("Unable to read sequence number.");
1017     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1018   }
1019 
1020   if (header->packet_sequence_number == 0u) {
1021     set_detailed_error("Packet sequence numbers cannot be 0.");
1022     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1023   }
1024 
1025   if (!visitor_->OnUnauthenticatedHeader(*header)) {
1026     return false;
1027   }
1028 
1029   if (!DecryptPayload(*header, packet)) {
1030     set_detailed_error("Unable to decrypt payload.");
1031     return RaiseError(QUIC_DECRYPTION_FAILURE);
1032   }
1033 
1034   uint8 private_flags;
1035   if (!reader_->ReadBytes(&private_flags, 1)) {
1036     set_detailed_error("Unable to read private flags.");
1037     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1038   }
1039 
1040   if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1041     set_detailed_error("Illegal private flags value.");
1042     return RaiseError(QUIC_INVALID_PACKET_HEADER);
1043   }
1044 
1045   header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1046   header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1047 
1048   if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1049     header->is_in_fec_group = IN_FEC_GROUP;
1050     uint8 first_fec_protected_packet_offset;
1051     if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1052       set_detailed_error("Unable to read first fec protected packet offset.");
1053       return RaiseError(QUIC_INVALID_PACKET_HEADER);
1054     }
1055     if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1056       set_detailed_error("First fec protected packet offset must be less "
1057                          "than the sequence number.");
1058       return RaiseError(QUIC_INVALID_PACKET_HEADER);
1059     }
1060     header->fec_group =
1061         header->packet_sequence_number - first_fec_protected_packet_offset;
1062   }
1063 
1064   header->entropy_hash = GetPacketEntropyHash(*header);
1065   // Set the last sequence number after we have decrypted the packet
1066   // so we are confident is not attacker controlled.
1067   last_sequence_number_ = header->packet_sequence_number;
1068   return true;
1069 }
1070 
ProcessPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber * sequence_number)1071 bool QuicFramer::ProcessPacketSequenceNumber(
1072     QuicSequenceNumberLength sequence_number_length,
1073     QuicPacketSequenceNumber* sequence_number) {
1074   QuicPacketSequenceNumber wire_sequence_number = 0u;
1075   if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1076     return false;
1077   }
1078 
1079   // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1080   // in case the first guess is incorrect.
1081   *sequence_number =
1082       CalculatePacketSequenceNumberFromWire(sequence_number_length,
1083                                             wire_sequence_number);
1084   return true;
1085 }
1086 
ProcessFrameData(const QuicPacketHeader & header)1087 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1088   if (reader_->IsDoneReading()) {
1089     set_detailed_error("Packet has no frames.");
1090     return RaiseError(QUIC_MISSING_PAYLOAD);
1091   }
1092   while (!reader_->IsDoneReading()) {
1093     uint8 frame_type;
1094     if (!reader_->ReadBytes(&frame_type, 1)) {
1095       set_detailed_error("Unable to read frame type.");
1096       return RaiseError(QUIC_INVALID_FRAME_DATA);
1097     }
1098 
1099     if (frame_type & kQuicFrameTypeSpecialMask) {
1100       // Stream Frame
1101       if (frame_type & kQuicFrameTypeStreamMask) {
1102         QuicStreamFrame frame;
1103         if (!ProcessStreamFrame(frame_type, &frame)) {
1104           return RaiseError(QUIC_INVALID_STREAM_DATA);
1105         }
1106         if (!visitor_->OnStreamFrame(frame)) {
1107           DVLOG(1) << "Visitor asked to stop further processing.";
1108           // Returning true since there was no parsing error.
1109           return true;
1110         }
1111         continue;
1112       }
1113 
1114       // Ack Frame
1115       if (frame_type & kQuicFrameTypeAckMask) {
1116         QuicAckFrame frame;
1117         if (!ProcessAckFrame(header, frame_type, &frame)) {
1118           return RaiseError(QUIC_INVALID_ACK_DATA);
1119         }
1120         if (!visitor_->OnAckFrame(frame)) {
1121           DVLOG(1) << "Visitor asked to stop further processing.";
1122           // Returning true since there was no parsing error.
1123           return true;
1124         }
1125         continue;
1126       }
1127 
1128       // Congestion Feedback Frame
1129       if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1130         QuicCongestionFeedbackFrame frame;
1131         if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
1132           return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1133         }
1134         if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1135           DVLOG(1) << "Visitor asked to stop further processing.";
1136           // Returning true since there was no parsing error.
1137           return true;
1138         }
1139         continue;
1140       }
1141 
1142       // This was a special frame type that did not match any
1143       // of the known ones. Error.
1144       set_detailed_error("Illegal frame type.");
1145       DLOG(WARNING) << "Illegal frame type: "
1146                     << static_cast<int>(frame_type);
1147       return RaiseError(QUIC_INVALID_FRAME_DATA);
1148     }
1149 
1150     switch (frame_type) {
1151       case PADDING_FRAME:
1152         // We're done with the packet.
1153         return true;
1154 
1155       case RST_STREAM_FRAME: {
1156         QuicRstStreamFrame frame;
1157         if (!ProcessRstStreamFrame(&frame)) {
1158           return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1159         }
1160         if (!visitor_->OnRstStreamFrame(frame)) {
1161           DVLOG(1) << "Visitor asked to stop further processing.";
1162           // Returning true since there was no parsing error.
1163           return true;
1164         }
1165         continue;
1166       }
1167 
1168       case CONNECTION_CLOSE_FRAME: {
1169         QuicConnectionCloseFrame frame;
1170         if (!ProcessConnectionCloseFrame(&frame)) {
1171           return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1172         }
1173 
1174         if (!visitor_->OnConnectionCloseFrame(frame)) {
1175           DVLOG(1) << "Visitor asked to stop further processing.";
1176           // Returning true since there was no parsing error.
1177           return true;
1178         }
1179         continue;
1180       }
1181 
1182       case GOAWAY_FRAME: {
1183         QuicGoAwayFrame goaway_frame;
1184         if (!ProcessGoAwayFrame(&goaway_frame)) {
1185           return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1186         }
1187         if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1188           DVLOG(1) << "Visitor asked to stop further processing.";
1189           // Returning true since there was no parsing error.
1190           return true;
1191         }
1192         continue;
1193       }
1194 
1195       case WINDOW_UPDATE_FRAME: {
1196         QuicWindowUpdateFrame window_update_frame;
1197         if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1198           return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1199         }
1200         if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1201           DVLOG(1) << "Visitor asked to stop further processing.";
1202           // Returning true since there was no parsing error.
1203           return true;
1204         }
1205         continue;
1206       }
1207 
1208       case BLOCKED_FRAME: {
1209         QuicBlockedFrame blocked_frame;
1210         if (!ProcessBlockedFrame(&blocked_frame)) {
1211           return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1212         }
1213         if (!visitor_->OnBlockedFrame(blocked_frame)) {
1214           DVLOG(1) << "Visitor asked to stop further processing.";
1215           // Returning true since there was no parsing error.
1216           return true;
1217         }
1218         continue;
1219       }
1220 
1221       case STOP_WAITING_FRAME: {
1222         if (quic_version_ <= QUIC_VERSION_15) {
1223           LOG(DFATAL) << "Trying to read a StopWaiting in "
1224                       << QuicVersionToString(quic_version_);
1225           return RaiseError(QUIC_INTERNAL_ERROR);
1226         }
1227         QuicStopWaitingFrame stop_waiting_frame;
1228         if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1229           return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1230         }
1231         if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1232           DVLOG(1) << "Visitor asked to stop further processing.";
1233           // Returning true since there was no parsing error.
1234           return true;
1235         }
1236         continue;
1237       }
1238       case PING_FRAME: {
1239         if (quic_version_ <= QUIC_VERSION_17) {
1240           LOG(DFATAL) << "Trying to read a Ping in "
1241                       << QuicVersionToString(quic_version_);
1242           return RaiseError(QUIC_INTERNAL_ERROR);
1243         }
1244         // Ping has no payload.
1245         QuicPingFrame ping_frame;
1246         if (!visitor_->OnPingFrame(ping_frame)) {
1247           DVLOG(1) << "Visitor asked to stop further processing.";
1248           // Returning true since there was no parsing error.
1249           return true;
1250         }
1251         continue;
1252       }
1253 
1254       default:
1255         set_detailed_error("Illegal frame type.");
1256         DLOG(WARNING) << "Illegal frame type: "
1257                       << static_cast<int>(frame_type);
1258         return RaiseError(QUIC_INVALID_FRAME_DATA);
1259     }
1260   }
1261 
1262   return true;
1263 }
1264 
ProcessStreamFrame(uint8 frame_type,QuicStreamFrame * frame)1265 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1266                                     QuicStreamFrame* frame) {
1267   uint8 stream_flags = frame_type;
1268 
1269   stream_flags &= ~kQuicFrameTypeStreamMask;
1270 
1271   // Read from right to left: StreamID, Offset, Data Length, Fin.
1272   const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1273   stream_flags >>= kQuicStreamIdShift;
1274 
1275   uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1276   // There is no encoding for 1 byte, only 0 and 2 through 8.
1277   if (offset_length > 0) {
1278     offset_length += 1;
1279   }
1280   stream_flags >>= kQuicStreamOffsetShift;
1281 
1282   bool has_data_length =
1283       (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1284   stream_flags >>= kQuicStreamDataLengthShift;
1285 
1286   frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1287 
1288   frame->stream_id = 0;
1289   if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1290     set_detailed_error("Unable to read stream_id.");
1291     return false;
1292   }
1293 
1294   frame->offset = 0;
1295   if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1296     set_detailed_error("Unable to read offset.");
1297     return false;
1298   }
1299 
1300   StringPiece frame_data;
1301   if (has_data_length) {
1302     if (!reader_->ReadStringPiece16(&frame_data)) {
1303       set_detailed_error("Unable to read frame data.");
1304       return false;
1305     }
1306   } else {
1307     if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1308       set_detailed_error("Unable to read frame data.");
1309       return false;
1310     }
1311   }
1312   // Point frame to the right data.
1313   frame->data.Clear();
1314   if (!frame_data.empty()) {
1315     frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1316   }
1317 
1318   return true;
1319 }
1320 
ProcessAckFrame(const QuicPacketHeader & header,uint8 frame_type,QuicAckFrame * frame)1321 bool QuicFramer::ProcessAckFrame(const QuicPacketHeader& header,
1322                                  uint8 frame_type,
1323                                  QuicAckFrame* frame) {
1324   if (quic_version_ <= QUIC_VERSION_15) {
1325     if (!ProcessStopWaitingFrame(header, &frame->sent_info)) {
1326       return false;
1327     }
1328   }
1329   if (!ProcessReceivedInfo(frame_type, &frame->received_info)) {
1330     return false;
1331   }
1332   return true;
1333 }
1334 
ProcessReceivedInfo(uint8 frame_type,ReceivedPacketInfo * received_info)1335 bool QuicFramer::ProcessReceivedInfo(uint8 frame_type,
1336                                      ReceivedPacketInfo* received_info) {
1337   // Determine the three lengths from the frame type: largest observed length,
1338   // missing sequence number length, and missing range length.
1339   const QuicSequenceNumberLength missing_sequence_number_length =
1340       ReadSequenceNumberLength(frame_type);
1341   frame_type >>= kQuicSequenceNumberLengthShift;
1342   const QuicSequenceNumberLength largest_observed_sequence_number_length =
1343       ReadSequenceNumberLength(frame_type);
1344   frame_type >>= kQuicSequenceNumberLengthShift;
1345   received_info->is_truncated = frame_type & kQuicAckTruncatedMask;
1346   frame_type >>= kQuicAckTruncatedShift;
1347   bool has_nacks = frame_type & kQuicHasNacksMask;
1348 
1349   if (!reader_->ReadBytes(&received_info->entropy_hash, 1)) {
1350     set_detailed_error("Unable to read entropy hash for received packets.");
1351     return false;
1352   }
1353 
1354   if (!reader_->ReadBytes(&received_info->largest_observed,
1355                           largest_observed_sequence_number_length)) {
1356     set_detailed_error("Unable to read largest observed.");
1357     return false;
1358   }
1359 
1360   uint64 delta_time_largest_observed_us;
1361   if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1362     set_detailed_error("Unable to read delta time largest observed.");
1363     return false;
1364   }
1365 
1366   if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1367     received_info->delta_time_largest_observed = QuicTime::Delta::Infinite();
1368   } else {
1369     received_info->delta_time_largest_observed =
1370         QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1371   }
1372 
1373   if (!has_nacks) {
1374     return true;
1375   }
1376 
1377   uint8 num_missing_ranges;
1378   if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1379     set_detailed_error("Unable to read num missing packet ranges.");
1380     return false;
1381   }
1382 
1383   QuicPacketSequenceNumber last_sequence_number =
1384       received_info->largest_observed;
1385   for (size_t i = 0; i < num_missing_ranges; ++i) {
1386     QuicPacketSequenceNumber missing_delta = 0;
1387     if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1388       set_detailed_error("Unable to read missing sequence number delta.");
1389       return false;
1390     }
1391     last_sequence_number -= missing_delta;
1392     QuicPacketSequenceNumber range_length = 0;
1393     if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1394       set_detailed_error("Unable to read missing sequence number range.");
1395       return false;
1396     }
1397     for (size_t i = 0; i <= range_length; ++i) {
1398       received_info->missing_packets.insert(last_sequence_number - i);
1399     }
1400     // Subtract an extra 1 to ensure ranges are represented efficiently and
1401     // can't overlap by 1 sequence number.  This allows a missing_delta of 0
1402     // to represent an adjacent nack range.
1403     last_sequence_number -= (range_length + 1);
1404   }
1405 
1406   // Parse the revived packets list.
1407   uint8 num_revived_packets;
1408   if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1409     set_detailed_error("Unable to read num revived packets.");
1410     return false;
1411   }
1412 
1413   for (size_t i = 0; i < num_revived_packets; ++i) {
1414     QuicPacketSequenceNumber revived_packet = 0;
1415     if (!reader_->ReadBytes(&revived_packet,
1416                             largest_observed_sequence_number_length)) {
1417       set_detailed_error("Unable to read revived packet.");
1418       return false;
1419     }
1420 
1421     received_info->revived_packets.insert(revived_packet);
1422   }
1423 
1424   return true;
1425 }
1426 
ProcessStopWaitingFrame(const QuicPacketHeader & header,QuicStopWaitingFrame * stop_waiting)1427 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1428                                          QuicStopWaitingFrame* stop_waiting) {
1429   if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1430     set_detailed_error("Unable to read entropy hash for sent packets.");
1431     return false;
1432   }
1433 
1434   QuicPacketSequenceNumber least_unacked_delta = 0;
1435   if (!reader_->ReadBytes(&least_unacked_delta,
1436                           header.public_header.sequence_number_length)) {
1437     set_detailed_error("Unable to read least unacked delta.");
1438     return false;
1439   }
1440   DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1441   stop_waiting->least_unacked =
1442       header.packet_sequence_number - least_unacked_delta;
1443 
1444   return true;
1445 }
1446 
ProcessQuicCongestionFeedbackFrame(QuicCongestionFeedbackFrame * frame)1447 bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
1448     QuicCongestionFeedbackFrame* frame) {
1449   uint8 feedback_type;
1450   if (!reader_->ReadBytes(&feedback_type, 1)) {
1451     set_detailed_error("Unable to read congestion feedback type.");
1452     return false;
1453   }
1454   frame->type =
1455       static_cast<CongestionFeedbackType>(feedback_type);
1456 
1457   switch (frame->type) {
1458     case kInterArrival: {
1459       CongestionFeedbackMessageInterArrival* inter_arrival =
1460           &frame->inter_arrival;
1461       uint8 num_received_packets;
1462       if (!reader_->ReadBytes(&num_received_packets, 1)) {
1463         set_detailed_error("Unable to read num received packets.");
1464         return false;
1465       }
1466 
1467       if (num_received_packets > 0u) {
1468         uint64 smallest_received;
1469         if (!ProcessPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
1470                                          &smallest_received)) {
1471           set_detailed_error("Unable to read smallest received.");
1472           return false;
1473         }
1474 
1475         uint64 time_received_us;
1476         if (!reader_->ReadUInt64(&time_received_us)) {
1477           set_detailed_error("Unable to read time received.");
1478           return false;
1479         }
1480         QuicTime time_received = creation_time_.Add(
1481             QuicTime::Delta::FromMicroseconds(time_received_us));
1482 
1483         inter_arrival->received_packet_times.insert(
1484             make_pair(smallest_received, time_received));
1485 
1486         for (uint8 i = 0; i < num_received_packets - 1; ++i) {
1487           uint16 sequence_delta;
1488           if (!reader_->ReadUInt16(&sequence_delta)) {
1489             set_detailed_error(
1490                 "Unable to read sequence delta in received packets.");
1491             return false;
1492           }
1493 
1494           int32 time_delta_us;
1495           if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1496             set_detailed_error(
1497                 "Unable to read time delta in received packets.");
1498             return false;
1499           }
1500           QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
1501           inter_arrival->received_packet_times.insert(
1502               make_pair(packet, time_received.Add(
1503                   QuicTime::Delta::FromMicroseconds(time_delta_us))));
1504         }
1505       }
1506       break;
1507     }
1508     case kFixRate: {
1509       uint32 bitrate = 0;
1510       if (!reader_->ReadUInt32(&bitrate)) {
1511         set_detailed_error("Unable to read bitrate.");
1512         return false;
1513       }
1514       frame->fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(bitrate);
1515       break;
1516     }
1517     case kTCP: {
1518       CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1519       // TODO(ianswett): Remove receive window, since it's constant.
1520       uint16 receive_window = 0;
1521       if (!reader_->ReadUInt16(&receive_window)) {
1522         set_detailed_error("Unable to read receive window.");
1523         return false;
1524       }
1525       // Simple bit packing, don't send the 4 least significant bits.
1526       tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1527       break;
1528     }
1529     default:
1530       set_detailed_error("Illegal congestion feedback type.");
1531       DLOG(WARNING) << "Illegal congestion feedback type: "
1532                     << frame->type;
1533       return RaiseError(QUIC_INVALID_FRAME_DATA);
1534   }
1535 
1536   return true;
1537 }
1538 
ProcessRstStreamFrame(QuicRstStreamFrame * frame)1539 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1540   if (!reader_->ReadUInt32(&frame->stream_id)) {
1541     set_detailed_error("Unable to read stream_id.");
1542     return false;
1543   }
1544 
1545   if (!reader_->ReadUInt64(&frame->byte_offset)) {
1546     set_detailed_error("Unable to read rst stream sent byte offset.");
1547     return false;
1548   }
1549 
1550   uint32 error_code;
1551   if (!reader_->ReadUInt32(&error_code)) {
1552     set_detailed_error("Unable to read rst stream error code.");
1553     return false;
1554   }
1555 
1556   if (error_code >= QUIC_STREAM_LAST_ERROR ||
1557       error_code < QUIC_STREAM_NO_ERROR) {
1558     set_detailed_error("Invalid rst stream error code.");
1559     return false;
1560   }
1561 
1562   frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1563 
1564   StringPiece error_details;
1565   if (!reader_->ReadStringPiece16(&error_details)) {
1566     set_detailed_error("Unable to read rst stream error details.");
1567     return false;
1568   }
1569   frame->error_details = error_details.as_string();
1570 
1571   return true;
1572 }
1573 
ProcessConnectionCloseFrame(QuicConnectionCloseFrame * frame)1574 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1575   uint32 error_code;
1576   if (!reader_->ReadUInt32(&error_code)) {
1577     set_detailed_error("Unable to read connection close error code.");
1578     return false;
1579   }
1580 
1581   if (error_code >= QUIC_LAST_ERROR ||
1582          error_code < QUIC_NO_ERROR) {
1583     set_detailed_error("Invalid error code.");
1584     return false;
1585   }
1586 
1587   frame->error_code = static_cast<QuicErrorCode>(error_code);
1588 
1589   StringPiece error_details;
1590   if (!reader_->ReadStringPiece16(&error_details)) {
1591     set_detailed_error("Unable to read connection close error details.");
1592     return false;
1593   }
1594   frame->error_details = error_details.as_string();
1595 
1596   return true;
1597 }
1598 
ProcessGoAwayFrame(QuicGoAwayFrame * frame)1599 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1600   uint32 error_code;
1601   if (!reader_->ReadUInt32(&error_code)) {
1602     set_detailed_error("Unable to read go away error code.");
1603     return false;
1604   }
1605   frame->error_code = static_cast<QuicErrorCode>(error_code);
1606 
1607   if (error_code >= QUIC_LAST_ERROR ||
1608       error_code < QUIC_NO_ERROR) {
1609     set_detailed_error("Invalid error code.");
1610     return false;
1611   }
1612 
1613   uint32 stream_id;
1614   if (!reader_->ReadUInt32(&stream_id)) {
1615     set_detailed_error("Unable to read last good stream id.");
1616     return false;
1617   }
1618   frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1619 
1620   StringPiece reason_phrase;
1621   if (!reader_->ReadStringPiece16(&reason_phrase)) {
1622     set_detailed_error("Unable to read goaway reason.");
1623     return false;
1624   }
1625   frame->reason_phrase = reason_phrase.as_string();
1626 
1627   return true;
1628 }
1629 
ProcessWindowUpdateFrame(QuicWindowUpdateFrame * frame)1630 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1631   if (!reader_->ReadUInt32(&frame->stream_id)) {
1632     set_detailed_error("Unable to read stream_id.");
1633     return false;
1634   }
1635 
1636   if (!reader_->ReadUInt64(&frame->byte_offset)) {
1637     set_detailed_error("Unable to read window byte_offset.");
1638     return false;
1639   }
1640 
1641   return true;
1642 }
1643 
ProcessBlockedFrame(QuicBlockedFrame * frame)1644 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1645   if (!reader_->ReadUInt32(&frame->stream_id)) {
1646     set_detailed_error("Unable to read stream_id.");
1647     return false;
1648   }
1649 
1650   return true;
1651 }
1652 
1653 // static
GetAssociatedDataFromEncryptedPacket(const QuicEncryptedPacket & encrypted,QuicConnectionIdLength connection_id_length,bool includes_version,QuicSequenceNumberLength sequence_number_length)1654 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1655     const QuicEncryptedPacket& encrypted,
1656     QuicConnectionIdLength connection_id_length,
1657     bool includes_version,
1658     QuicSequenceNumberLength sequence_number_length) {
1659   return StringPiece(
1660       encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1661           connection_id_length, includes_version, sequence_number_length)
1662       - kStartOfHashData);
1663 }
1664 
SetDecrypter(QuicDecrypter * decrypter,EncryptionLevel level)1665 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1666                               EncryptionLevel level) {
1667   DCHECK(alternative_decrypter_.get() == NULL);
1668   DCHECK_GE(level, decrypter_level_);
1669   decrypter_.reset(decrypter);
1670   decrypter_level_ = level;
1671 }
1672 
SetAlternativeDecrypter(QuicDecrypter * decrypter,EncryptionLevel level,bool latch_once_used)1673 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1674                                          EncryptionLevel level,
1675                                          bool latch_once_used) {
1676   alternative_decrypter_.reset(decrypter);
1677   alternative_decrypter_level_ = level;
1678   alternative_decrypter_latch_ = latch_once_used;
1679 }
1680 
decrypter() const1681 const QuicDecrypter* QuicFramer::decrypter() const {
1682   return decrypter_.get();
1683 }
1684 
alternative_decrypter() const1685 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1686   return alternative_decrypter_.get();
1687 }
1688 
SetEncrypter(EncryptionLevel level,QuicEncrypter * encrypter)1689 void QuicFramer::SetEncrypter(EncryptionLevel level,
1690                               QuicEncrypter* encrypter) {
1691   DCHECK_GE(level, 0);
1692   DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1693   encrypter_[level].reset(encrypter);
1694 }
1695 
encrypter(EncryptionLevel level) const1696 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1697   DCHECK_GE(level, 0);
1698   DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1699   DCHECK(encrypter_[level].get() != NULL);
1700   return encrypter_[level].get();
1701 }
1702 
EncryptPacket(EncryptionLevel level,QuicPacketSequenceNumber packet_sequence_number,const QuicPacket & packet)1703 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1704     EncryptionLevel level,
1705     QuicPacketSequenceNumber packet_sequence_number,
1706     const QuicPacket& packet) {
1707   DCHECK(encrypter_[level].get() != NULL);
1708 
1709   scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1710       packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1711   if (out.get() == NULL) {
1712     RaiseError(QUIC_ENCRYPTION_FAILURE);
1713     return NULL;
1714   }
1715   StringPiece header_data = packet.BeforePlaintext();
1716   size_t len =  header_data.length() + out->length();
1717   char* buffer = new char[len];
1718   // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1719   memcpy(buffer, header_data.data(), header_data.length());
1720   memcpy(buffer + header_data.length(), out->data(), out->length());
1721   return new QuicEncryptedPacket(buffer, len, true);
1722 }
1723 
GetMaxPlaintextSize(size_t ciphertext_size)1724 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1725   // In order to keep the code simple, we don't have the current encryption
1726   // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1727   size_t min_plaintext_size = ciphertext_size;
1728 
1729   for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1730     if (encrypter_[i].get() != NULL) {
1731       size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1732       if (size < min_plaintext_size) {
1733         min_plaintext_size = size;
1734       }
1735     }
1736   }
1737 
1738   return min_plaintext_size;
1739 }
1740 
DecryptPayload(const QuicPacketHeader & header,const QuicEncryptedPacket & packet)1741 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1742                                 const QuicEncryptedPacket& packet) {
1743   StringPiece encrypted;
1744   if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1745     return false;
1746   }
1747   DCHECK(decrypter_.get() != NULL);
1748   decrypted_.reset(decrypter_->DecryptPacket(
1749       header.packet_sequence_number,
1750       GetAssociatedDataFromEncryptedPacket(
1751           packet,
1752           header.public_header.connection_id_length,
1753           header.public_header.version_flag,
1754           header.public_header.sequence_number_length),
1755       encrypted));
1756   if  (decrypted_.get() != NULL) {
1757     visitor_->OnDecryptedPacket(decrypter_level_);
1758   } else if  (alternative_decrypter_.get() != NULL) {
1759     decrypted_.reset(alternative_decrypter_->DecryptPacket(
1760         header.packet_sequence_number,
1761         GetAssociatedDataFromEncryptedPacket(
1762             packet,
1763             header.public_header.connection_id_length,
1764             header.public_header.version_flag,
1765             header.public_header.sequence_number_length),
1766         encrypted));
1767     if (decrypted_.get() != NULL) {
1768       visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1769       if (alternative_decrypter_latch_) {
1770         // Switch to the alternative decrypter and latch so that we cannot
1771         // switch back.
1772         decrypter_.reset(alternative_decrypter_.release());
1773         decrypter_level_ = alternative_decrypter_level_;
1774         alternative_decrypter_level_ = ENCRYPTION_NONE;
1775       } else {
1776         // Switch the alternative decrypter so that we use it first next time.
1777         decrypter_.swap(alternative_decrypter_);
1778         EncryptionLevel level = alternative_decrypter_level_;
1779         alternative_decrypter_level_ = decrypter_level_;
1780         decrypter_level_ = level;
1781       }
1782     }
1783   }
1784 
1785   if  (decrypted_.get() == NULL) {
1786     DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1787                   << header.packet_sequence_number;
1788     return false;
1789   }
1790 
1791   reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1792   return true;
1793 }
1794 
GetAckFrameSize(const QuicAckFrame & ack,QuicSequenceNumberLength sequence_number_length)1795 size_t QuicFramer::GetAckFrameSize(
1796     const QuicAckFrame& ack,
1797     QuicSequenceNumberLength sequence_number_length) {
1798   AckFrameInfo ack_info = GetAckFrameInfo(ack);
1799   QuicSequenceNumberLength largest_observed_length =
1800       GetMinSequenceNumberLength(ack.received_info.largest_observed);
1801   QuicSequenceNumberLength missing_sequence_number_length =
1802       GetMinSequenceNumberLength(ack_info.max_delta);
1803 
1804   size_t ack_size = GetMinAckFrameSize(quic_version_,
1805                                        sequence_number_length,
1806                                        largest_observed_length);
1807   if (!ack_info.nack_ranges.empty()) {
1808     ack_size += kNumberOfNackRangesSize  + kNumberOfRevivedPacketsSize;
1809     ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1810       (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1811     ack_size += min(ack.received_info.revived_packets.size(),
1812                     kMaxRevivedPackets) * largest_observed_length;
1813   }
1814   return ack_size;
1815 }
1816 
ComputeFrameLength(const QuicFrame & frame,bool last_frame_in_packet,InFecGroup is_in_fec_group,QuicSequenceNumberLength sequence_number_length)1817 size_t QuicFramer::ComputeFrameLength(
1818     const QuicFrame& frame,
1819     bool last_frame_in_packet,
1820     InFecGroup is_in_fec_group,
1821     QuicSequenceNumberLength sequence_number_length) {
1822   switch (frame.type) {
1823     case STREAM_FRAME:
1824       return GetMinStreamFrameSize(quic_version_,
1825                                    frame.stream_frame->stream_id,
1826                                    frame.stream_frame->offset,
1827                                    last_frame_in_packet,
1828                                    is_in_fec_group) +
1829           frame.stream_frame->data.TotalBufferSize();
1830     case ACK_FRAME: {
1831       return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1832     }
1833     case CONGESTION_FEEDBACK_FRAME: {
1834       size_t len = kQuicFrameTypeSize;
1835       const QuicCongestionFeedbackFrame& congestion_feedback =
1836           *frame.congestion_feedback_frame;
1837       len += 1;  // Congestion feedback type.
1838 
1839       switch (congestion_feedback.type) {
1840         case kInterArrival: {
1841           const CongestionFeedbackMessageInterArrival& inter_arrival =
1842               congestion_feedback.inter_arrival;
1843           len += 1;  // Number received packets.
1844           if (inter_arrival.received_packet_times.size() > 0) {
1845             len += PACKET_6BYTE_SEQUENCE_NUMBER;  // Smallest received.
1846             len += 8;  // Time.
1847             // 2 bytes per sequence number delta plus 4 bytes per delta time.
1848             len += PACKET_6BYTE_SEQUENCE_NUMBER *
1849                 (inter_arrival.received_packet_times.size() - 1);
1850           }
1851           break;
1852         }
1853         case kFixRate:
1854           len += 4;  // Bitrate.
1855           break;
1856         case kTCP:
1857           len += 2;  // Receive window.
1858           break;
1859         default:
1860           set_detailed_error("Illegal feedback type.");
1861           DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1862           break;
1863       }
1864       return len;
1865     }
1866     case STOP_WAITING_FRAME:
1867       return GetStopWaitingFrameSize(sequence_number_length);
1868     case PING_FRAME:
1869       // Ping has no payload.
1870       return kQuicFrameTypeSize;
1871     case RST_STREAM_FRAME:
1872       return GetMinRstStreamFrameSize(quic_version_) +
1873           frame.rst_stream_frame->error_details.size();
1874     case CONNECTION_CLOSE_FRAME:
1875       return GetMinConnectionCloseFrameSize() +
1876           frame.connection_close_frame->error_details.size();
1877     case GOAWAY_FRAME:
1878       return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1879     case WINDOW_UPDATE_FRAME:
1880       return GetWindowUpdateFrameSize();
1881     case BLOCKED_FRAME:
1882       return GetBlockedFrameSize();
1883     case PADDING_FRAME:
1884       DCHECK(false);
1885       return 0;
1886     case NUM_FRAME_TYPES:
1887       DCHECK(false);
1888       return 0;
1889   }
1890 
1891   // Not reachable, but some Chrome compilers can't figure that out.  *sigh*
1892   DCHECK(false);
1893   return 0;
1894 }
1895 
AppendTypeByte(const QuicFrame & frame,bool no_stream_frame_length,QuicDataWriter * writer)1896 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1897                                 bool no_stream_frame_length,
1898                                 QuicDataWriter* writer) {
1899   uint8 type_byte = 0;
1900   switch (frame.type) {
1901     case STREAM_FRAME: {
1902       if (frame.stream_frame == NULL) {
1903         LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1904       }
1905       // Fin bit.
1906       type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1907 
1908       // Data Length bit.
1909       type_byte <<= kQuicStreamDataLengthShift;
1910       type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1911 
1912       // Offset 3 bits.
1913       type_byte <<= kQuicStreamOffsetShift;
1914       const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1915       if (offset_len > 0) {
1916         type_byte |= offset_len - 1;
1917       }
1918 
1919       // stream id 2 bits.
1920       type_byte <<= kQuicStreamIdShift;
1921       type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1922       type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1.
1923       break;
1924     }
1925     case ACK_FRAME:
1926       return true;
1927     case CONGESTION_FEEDBACK_FRAME: {
1928       // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1929       type_byte = kQuicFrameTypeCongestionFeedbackMask;
1930       break;
1931     }
1932     default:
1933       type_byte = frame.type;
1934       break;
1935   }
1936 
1937   return writer->WriteUInt8(type_byte);
1938 }
1939 
1940 // static
AppendPacketSequenceNumber(QuicSequenceNumberLength sequence_number_length,QuicPacketSequenceNumber packet_sequence_number,QuicDataWriter * writer)1941 bool QuicFramer::AppendPacketSequenceNumber(
1942     QuicSequenceNumberLength sequence_number_length,
1943     QuicPacketSequenceNumber packet_sequence_number,
1944     QuicDataWriter* writer) {
1945   // Ensure the entire sequence number can be written.
1946   if (writer->capacity() - writer->length() <
1947       static_cast<size_t>(sequence_number_length)) {
1948     return false;
1949   }
1950   switch (sequence_number_length) {
1951     case PACKET_1BYTE_SEQUENCE_NUMBER:
1952       return writer->WriteUInt8(
1953           packet_sequence_number & k1ByteSequenceNumberMask);
1954       break;
1955     case PACKET_2BYTE_SEQUENCE_NUMBER:
1956       return writer->WriteUInt16(
1957           packet_sequence_number & k2ByteSequenceNumberMask);
1958       break;
1959     case PACKET_4BYTE_SEQUENCE_NUMBER:
1960       return writer->WriteUInt32(
1961           packet_sequence_number & k4ByteSequenceNumberMask);
1962       break;
1963     case PACKET_6BYTE_SEQUENCE_NUMBER:
1964       return writer->WriteUInt48(
1965           packet_sequence_number & k6ByteSequenceNumberMask);
1966       break;
1967     default:
1968       DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1969       return false;
1970   }
1971 }
1972 
AppendStreamFrame(const QuicStreamFrame & frame,bool no_stream_frame_length,QuicDataWriter * writer)1973 bool QuicFramer::AppendStreamFrame(
1974     const QuicStreamFrame& frame,
1975     bool no_stream_frame_length,
1976     QuicDataWriter* writer) {
1977   if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1978     LOG(DFATAL) << "Writing stream id size failed.";
1979     return false;
1980   }
1981   if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1982     LOG(DFATAL) << "Writing offset size failed.";
1983     return false;
1984   }
1985   if (!no_stream_frame_length) {
1986     if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1987       LOG(DFATAL) << "Writing stream frame length failed";
1988       return false;
1989     }
1990   }
1991 
1992   if (!writer->WriteIOVector(frame.data)) {
1993     LOG(DFATAL) << "Writing frame data failed.";
1994     return false;
1995   }
1996   return true;
1997 }
1998 
1999 // static
set_version(const QuicVersion version)2000 void QuicFramer::set_version(const QuicVersion version) {
2001   DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
2002   quic_version_ = version;
2003 }
2004 
AppendAckFrameAndTypeByte(const QuicPacketHeader & header,const QuicAckFrame & frame,QuicDataWriter * writer)2005 bool QuicFramer::AppendAckFrameAndTypeByte(
2006     const QuicPacketHeader& header,
2007     const QuicAckFrame& frame,
2008     QuicDataWriter* writer) {
2009   AckFrameInfo ack_info = GetAckFrameInfo(frame);
2010   QuicPacketSequenceNumber ack_largest_observed =
2011       frame.received_info.largest_observed;
2012   QuicSequenceNumberLength largest_observed_length =
2013       GetMinSequenceNumberLength(ack_largest_observed);
2014   QuicSequenceNumberLength missing_sequence_number_length =
2015       GetMinSequenceNumberLength(ack_info.max_delta);
2016   // Determine whether we need to truncate ranges.
2017   size_t available_range_bytes = writer->capacity() - writer->length() -
2018       kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
2019       GetMinAckFrameSize(quic_version_,
2020                          header.public_header.sequence_number_length,
2021                          largest_observed_length);
2022   size_t max_num_ranges = available_range_bytes /
2023       (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
2024   max_num_ranges = min(kMaxNackRanges, max_num_ranges);
2025   bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
2026   DVLOG_IF(1, truncated) << "Truncating ack from "
2027                          << ack_info.nack_ranges.size() << " ranges to "
2028                          << max_num_ranges;
2029   // Write out the type byte by setting the low order bits and doing shifts
2030   // to make room for the next bit flags to be set.
2031   // Whether there are any nacks.
2032   uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
2033 
2034   // truncating bit.
2035   type_byte <<= kQuicAckTruncatedShift;
2036   type_byte |= truncated ? kQuicAckTruncatedMask : 0;
2037 
2038   // Largest observed sequence number length.
2039   type_byte <<= kQuicSequenceNumberLengthShift;
2040   type_byte |= GetSequenceNumberFlags(largest_observed_length);
2041 
2042   // Missing sequence number length.
2043   type_byte <<= kQuicSequenceNumberLengthShift;
2044   type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
2045 
2046   type_byte |= kQuicFrameTypeAckMask;
2047 
2048   if (!writer->WriteUInt8(type_byte)) {
2049     return false;
2050   }
2051 
2052   if (quic_version_ <= QUIC_VERSION_15) {
2053     if (!AppendStopWaitingFrame(header, frame.sent_info, writer)) {
2054       return false;
2055     }
2056   }
2057 
2058   const ReceivedPacketInfo& received_info = frame.received_info;
2059   QuicPacketEntropyHash ack_entropy_hash = received_info.entropy_hash;
2060   NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
2061   if (truncated) {
2062     // Skip the nack ranges which the truncated ack won't include and set
2063     // a correct largest observed for the truncated ack.
2064     for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2065          ++i) {
2066       ++ack_iter;
2067     }
2068     // If the last range is followed by acks, include them.
2069     // If the last range is followed by another range, specify the end of the
2070     // range as the largest_observed.
2071     ack_largest_observed = ack_iter->first - 1;
2072     // Also update the entropy so it matches the largest observed.
2073     ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2074     ++ack_iter;
2075   }
2076 
2077   if (!writer->WriteUInt8(ack_entropy_hash)) {
2078     return false;
2079   }
2080 
2081   if (!AppendPacketSequenceNumber(largest_observed_length,
2082                                   ack_largest_observed, writer)) {
2083     return false;
2084   }
2085 
2086   uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2087   if (!received_info.delta_time_largest_observed.IsInfinite()) {
2088     DCHECK_LE(0u,
2089               frame.received_info.delta_time_largest_observed.ToMicroseconds());
2090     delta_time_largest_observed_us =
2091         received_info.delta_time_largest_observed.ToMicroseconds();
2092   }
2093 
2094   if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2095     return false;
2096   }
2097 
2098   if (ack_info.nack_ranges.empty()) {
2099     return true;
2100   }
2101 
2102   const uint8 num_missing_ranges =
2103       min(ack_info.nack_ranges.size(), max_num_ranges);
2104   if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2105     return false;
2106   }
2107 
2108   int num_ranges_written = 0;
2109   QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2110   for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2111     // Calculate the delta to the last number in the range.
2112     QuicPacketSequenceNumber missing_delta =
2113         last_sequence_written - (ack_iter->first + ack_iter->second);
2114     if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2115                                     missing_delta, writer)) {
2116       return false;
2117     }
2118     if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2119                                     ack_iter->second, writer)) {
2120       return false;
2121     }
2122     // Subtract 1 so a missing_delta of 0 means an adjacent range.
2123     last_sequence_written = ack_iter->first - 1;
2124     ++num_ranges_written;
2125   }
2126   DCHECK_EQ(num_missing_ranges, num_ranges_written);
2127 
2128   // Append revived packets.
2129   // If not all the revived packets fit, only mention the ones that do.
2130   uint8 num_revived_packets = min(received_info.revived_packets.size(),
2131                                   kMaxRevivedPackets);
2132   num_revived_packets = min(
2133       static_cast<size_t>(num_revived_packets),
2134       (writer->capacity() - writer->length()) / largest_observed_length);
2135   if (!writer->WriteBytes(&num_revived_packets, 1)) {
2136     return false;
2137   }
2138 
2139   SequenceNumberSet::const_iterator iter =
2140       received_info.revived_packets.begin();
2141   for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2142     LOG_IF(DFATAL, !ContainsKey(received_info.missing_packets, *iter));
2143     if (!AppendPacketSequenceNumber(largest_observed_length,
2144                                     *iter, writer)) {
2145       return false;
2146     }
2147   }
2148 
2149   return true;
2150 }
2151 
AppendCongestionFeedbackFrame(const QuicCongestionFeedbackFrame & frame,QuicDataWriter * writer)2152 bool QuicFramer::AppendCongestionFeedbackFrame(
2153     const QuicCongestionFeedbackFrame& frame,
2154     QuicDataWriter* writer) {
2155   if (!writer->WriteBytes(&frame.type, 1)) {
2156     return false;
2157   }
2158 
2159   switch (frame.type) {
2160     case kInterArrival: {
2161       const CongestionFeedbackMessageInterArrival& inter_arrival =
2162           frame.inter_arrival;
2163       DCHECK_GE(numeric_limits<uint8>::max(),
2164                 inter_arrival.received_packet_times.size());
2165       if (inter_arrival.received_packet_times.size() >
2166           numeric_limits<uint8>::max()) {
2167         return false;
2168       }
2169       // TODO(ianswett): Make num_received_packets a varint.
2170       uint8 num_received_packets =
2171           inter_arrival.received_packet_times.size();
2172       if (!writer->WriteBytes(&num_received_packets, 1)) {
2173         return false;
2174       }
2175       if (num_received_packets > 0) {
2176         TimeMap::const_iterator it =
2177             inter_arrival.received_packet_times.begin();
2178 
2179         QuicPacketSequenceNumber lowest_sequence = it->first;
2180         if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
2181                                         lowest_sequence, writer)) {
2182           return false;
2183         }
2184 
2185         QuicTime lowest_time = it->second;
2186         if (!writer->WriteUInt64(
2187                 lowest_time.Subtract(creation_time_).ToMicroseconds())) {
2188           return false;
2189         }
2190 
2191         for (++it; it != inter_arrival.received_packet_times.end(); ++it) {
2192           QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
2193           DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
2194           if (sequence_delta > numeric_limits<uint16>::max()) {
2195             return false;
2196           }
2197           if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
2198             return false;
2199           }
2200 
2201           int32 time_delta_us =
2202               it->second.Subtract(lowest_time).ToMicroseconds();
2203           if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2204             return false;
2205           }
2206         }
2207       }
2208       break;
2209     }
2210     case kFixRate: {
2211       const CongestionFeedbackMessageFixRate& fix_rate =
2212           frame.fix_rate;
2213       if (!writer->WriteUInt32(fix_rate.bitrate.ToBytesPerSecond())) {
2214         return false;
2215       }
2216       break;
2217     }
2218     case kTCP: {
2219       const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2220       DCHECK_LE(tcp.receive_window, 1u << 20);
2221       // Simple bit packing, don't send the 4 least significant bits.
2222       uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2223       if (!writer->WriteUInt16(receive_window)) {
2224         return false;
2225       }
2226       break;
2227     }
2228     default:
2229       return false;
2230   }
2231 
2232   return true;
2233 }
2234 
AppendStopWaitingFrame(const QuicPacketHeader & header,const QuicStopWaitingFrame & frame,QuicDataWriter * writer)2235 bool QuicFramer::AppendStopWaitingFrame(
2236     const QuicPacketHeader& header,
2237     const QuicStopWaitingFrame& frame,
2238     QuicDataWriter* writer) {
2239   DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2240   const QuicPacketSequenceNumber least_unacked_delta =
2241       header.packet_sequence_number - frame.least_unacked;
2242   const QuicPacketSequenceNumber length_shift =
2243       header.public_header.sequence_number_length * 8;
2244   if (!writer->WriteUInt8(frame.entropy_hash)) {
2245     LOG(DFATAL) << " hash failed";
2246     return false;
2247   }
2248 
2249   if (least_unacked_delta >> length_shift > 0) {
2250     LOG(DFATAL) << "sequence_number_length "
2251                 << header.public_header.sequence_number_length
2252                 << " is too small for least_unacked_delta: "
2253                 << least_unacked_delta;
2254     return false;
2255   }
2256   if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2257                                   least_unacked_delta, writer)) {
2258     LOG(DFATAL) << " seq failed: "
2259                 << header.public_header.sequence_number_length;
2260     return false;
2261   }
2262 
2263   return true;
2264 }
2265 
AppendRstStreamFrame(const QuicRstStreamFrame & frame,QuicDataWriter * writer)2266 bool QuicFramer::AppendRstStreamFrame(
2267         const QuicRstStreamFrame& frame,
2268         QuicDataWriter* writer) {
2269   if (!writer->WriteUInt32(frame.stream_id)) {
2270     return false;
2271   }
2272 
2273   if (!writer->WriteUInt64(frame.byte_offset)) {
2274     return false;
2275   }
2276 
2277   uint32 error_code = static_cast<uint32>(frame.error_code);
2278   if (!writer->WriteUInt32(error_code)) {
2279     return false;
2280   }
2281 
2282   if (!writer->WriteStringPiece16(frame.error_details)) {
2283     return false;
2284   }
2285   return true;
2286 }
2287 
AppendConnectionCloseFrame(const QuicConnectionCloseFrame & frame,QuicDataWriter * writer)2288 bool QuicFramer::AppendConnectionCloseFrame(
2289     const QuicConnectionCloseFrame& frame,
2290     QuicDataWriter* writer) {
2291   uint32 error_code = static_cast<uint32>(frame.error_code);
2292   if (!writer->WriteUInt32(error_code)) {
2293     return false;
2294   }
2295   if (!writer->WriteStringPiece16(frame.error_details)) {
2296     return false;
2297   }
2298   return true;
2299 }
2300 
AppendGoAwayFrame(const QuicGoAwayFrame & frame,QuicDataWriter * writer)2301 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2302                                    QuicDataWriter* writer) {
2303   uint32 error_code = static_cast<uint32>(frame.error_code);
2304   if (!writer->WriteUInt32(error_code)) {
2305     return false;
2306   }
2307   uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2308   if (!writer->WriteUInt32(stream_id)) {
2309     return false;
2310   }
2311   if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2312     return false;
2313   }
2314   return true;
2315 }
2316 
AppendWindowUpdateFrame(const QuicWindowUpdateFrame & frame,QuicDataWriter * writer)2317 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2318                                          QuicDataWriter* writer) {
2319   uint32 stream_id = static_cast<uint32>(frame.stream_id);
2320   if (!writer->WriteUInt32(stream_id)) {
2321     return false;
2322   }
2323   if (!writer->WriteUInt64(frame.byte_offset)) {
2324     return false;
2325   }
2326   return true;
2327 }
2328 
AppendBlockedFrame(const QuicBlockedFrame & frame,QuicDataWriter * writer)2329 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2330                                     QuicDataWriter* writer) {
2331   uint32 stream_id = static_cast<uint32>(frame.stream_id);
2332   if (!writer->WriteUInt32(stream_id)) {
2333     return false;
2334   }
2335   return true;
2336 }
2337 
RaiseError(QuicErrorCode error)2338 bool QuicFramer::RaiseError(QuicErrorCode error) {
2339   DVLOG(1) << "Error detail: " << detailed_error_;
2340   set_error(error);
2341   visitor_->OnError(this);
2342   reader_.reset(NULL);
2343   return false;
2344 }
2345 
2346 }  // namespace net
2347