1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdarg.h>
6 #include <stdlib.h>
7 #include <cmath>
8
9 #include "src/v8.h"
10
11 #if V8_TARGET_ARCH_ARM
12
13 #include "src/disasm.h"
14 #include "src/assembler.h"
15 #include "src/codegen.h"
16 #include "src/arm/constants-arm.h"
17 #include "src/arm/simulator-arm.h"
18
19 #if defined(USE_SIMULATOR)
20
21 // Only build the simulator if not compiling for real ARM hardware.
22 namespace v8 {
23 namespace internal {
24
25 // This macro provides a platform independent use of sscanf. The reason for
26 // SScanF not being implemented in a platform independent way through
27 // ::v8::internal::OS in the same way as SNPrintF is that the
28 // Windows C Run-Time Library does not provide vsscanf.
29 #define SScanF sscanf // NOLINT
30
31 // The ArmDebugger class is used by the simulator while debugging simulated ARM
32 // code.
33 class ArmDebugger {
34 public:
ArmDebugger(Simulator * sim)35 explicit ArmDebugger(Simulator* sim) : sim_(sim) { }
36 ~ArmDebugger();
37
38 void Stop(Instruction* instr);
39 void Debug();
40
41 private:
42 static const Instr kBreakpointInstr =
43 (al | (7*B25) | (1*B24) | kBreakpoint);
44 static const Instr kNopInstr = (al | (13*B21));
45
46 Simulator* sim_;
47
48 int32_t GetRegisterValue(int regnum);
49 double GetRegisterPairDoubleValue(int regnum);
50 double GetVFPDoubleRegisterValue(int regnum);
51 bool GetValue(const char* desc, int32_t* value);
52 bool GetVFPSingleValue(const char* desc, float* value);
53 bool GetVFPDoubleValue(const char* desc, double* value);
54
55 // Set or delete a breakpoint. Returns true if successful.
56 bool SetBreakpoint(Instruction* breakpc);
57 bool DeleteBreakpoint(Instruction* breakpc);
58
59 // Undo and redo all breakpoints. This is needed to bracket disassembly and
60 // execution to skip past breakpoints when run from the debugger.
61 void UndoBreakpoints();
62 void RedoBreakpoints();
63 };
64
65
~ArmDebugger()66 ArmDebugger::~ArmDebugger() {
67 }
68
69
70
71 #ifdef GENERATED_CODE_COVERAGE
72 static FILE* coverage_log = NULL;
73
74
InitializeCoverage()75 static void InitializeCoverage() {
76 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
77 if (file_name != NULL) {
78 coverage_log = fopen(file_name, "aw+");
79 }
80 }
81
82
Stop(Instruction * instr)83 void ArmDebugger::Stop(Instruction* instr) {
84 // Get the stop code.
85 uint32_t code = instr->SvcValue() & kStopCodeMask;
86 // Retrieve the encoded address, which comes just after this stop.
87 char** msg_address =
88 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
89 char* msg = *msg_address;
90 ASSERT(msg != NULL);
91
92 // Update this stop description.
93 if (isWatchedStop(code) && !watched_stops_[code].desc) {
94 watched_stops_[code].desc = msg;
95 }
96
97 if (strlen(msg) > 0) {
98 if (coverage_log != NULL) {
99 fprintf(coverage_log, "%s\n", msg);
100 fflush(coverage_log);
101 }
102 // Overwrite the instruction and address with nops.
103 instr->SetInstructionBits(kNopInstr);
104 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
105 }
106 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
107 }
108
109 #else // ndef GENERATED_CODE_COVERAGE
110
InitializeCoverage()111 static void InitializeCoverage() {
112 }
113
114
Stop(Instruction * instr)115 void ArmDebugger::Stop(Instruction* instr) {
116 // Get the stop code.
117 uint32_t code = instr->SvcValue() & kStopCodeMask;
118 // Retrieve the encoded address, which comes just after this stop.
119 char* msg = *reinterpret_cast<char**>(sim_->get_pc()
120 + Instruction::kInstrSize);
121 // Update this stop description.
122 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
123 sim_->watched_stops_[code].desc = msg;
124 }
125 // Print the stop message and code if it is not the default code.
126 if (code != kMaxStopCode) {
127 PrintF("Simulator hit stop %u: %s\n", code, msg);
128 } else {
129 PrintF("Simulator hit %s\n", msg);
130 }
131 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
132 Debug();
133 }
134 #endif
135
136
GetRegisterValue(int regnum)137 int32_t ArmDebugger::GetRegisterValue(int regnum) {
138 if (regnum == kPCRegister) {
139 return sim_->get_pc();
140 } else {
141 return sim_->get_register(regnum);
142 }
143 }
144
145
GetRegisterPairDoubleValue(int regnum)146 double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
147 return sim_->get_double_from_register_pair(regnum);
148 }
149
150
GetVFPDoubleRegisterValue(int regnum)151 double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
152 return sim_->get_double_from_d_register(regnum);
153 }
154
155
GetValue(const char * desc,int32_t * value)156 bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
157 int regnum = Registers::Number(desc);
158 if (regnum != kNoRegister) {
159 *value = GetRegisterValue(regnum);
160 return true;
161 } else {
162 if (strncmp(desc, "0x", 2) == 0) {
163 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
164 } else {
165 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
166 }
167 }
168 return false;
169 }
170
171
GetVFPSingleValue(const char * desc,float * value)172 bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
173 bool is_double;
174 int regnum = VFPRegisters::Number(desc, &is_double);
175 if (regnum != kNoRegister && !is_double) {
176 *value = sim_->get_float_from_s_register(regnum);
177 return true;
178 }
179 return false;
180 }
181
182
GetVFPDoubleValue(const char * desc,double * value)183 bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
184 bool is_double;
185 int regnum = VFPRegisters::Number(desc, &is_double);
186 if (regnum != kNoRegister && is_double) {
187 *value = sim_->get_double_from_d_register(regnum);
188 return true;
189 }
190 return false;
191 }
192
193
SetBreakpoint(Instruction * breakpc)194 bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
195 // Check if a breakpoint can be set. If not return without any side-effects.
196 if (sim_->break_pc_ != NULL) {
197 return false;
198 }
199
200 // Set the breakpoint.
201 sim_->break_pc_ = breakpc;
202 sim_->break_instr_ = breakpc->InstructionBits();
203 // Not setting the breakpoint instruction in the code itself. It will be set
204 // when the debugger shell continues.
205 return true;
206 }
207
208
DeleteBreakpoint(Instruction * breakpc)209 bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
210 if (sim_->break_pc_ != NULL) {
211 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
212 }
213
214 sim_->break_pc_ = NULL;
215 sim_->break_instr_ = 0;
216 return true;
217 }
218
219
UndoBreakpoints()220 void ArmDebugger::UndoBreakpoints() {
221 if (sim_->break_pc_ != NULL) {
222 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
223 }
224 }
225
226
RedoBreakpoints()227 void ArmDebugger::RedoBreakpoints() {
228 if (sim_->break_pc_ != NULL) {
229 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
230 }
231 }
232
233
Debug()234 void ArmDebugger::Debug() {
235 intptr_t last_pc = -1;
236 bool done = false;
237
238 #define COMMAND_SIZE 63
239 #define ARG_SIZE 255
240
241 #define STR(a) #a
242 #define XSTR(a) STR(a)
243
244 char cmd[COMMAND_SIZE + 1];
245 char arg1[ARG_SIZE + 1];
246 char arg2[ARG_SIZE + 1];
247 char* argv[3] = { cmd, arg1, arg2 };
248
249 // make sure to have a proper terminating character if reaching the limit
250 cmd[COMMAND_SIZE] = 0;
251 arg1[ARG_SIZE] = 0;
252 arg2[ARG_SIZE] = 0;
253
254 // Undo all set breakpoints while running in the debugger shell. This will
255 // make them invisible to all commands.
256 UndoBreakpoints();
257
258 while (!done && !sim_->has_bad_pc()) {
259 if (last_pc != sim_->get_pc()) {
260 disasm::NameConverter converter;
261 disasm::Disassembler dasm(converter);
262 // use a reasonably large buffer
263 v8::internal::EmbeddedVector<char, 256> buffer;
264 dasm.InstructionDecode(buffer,
265 reinterpret_cast<byte*>(sim_->get_pc()));
266 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
267 last_pc = sim_->get_pc();
268 }
269 char* line = ReadLine("sim> ");
270 if (line == NULL) {
271 break;
272 } else {
273 char* last_input = sim_->last_debugger_input();
274 if (strcmp(line, "\n") == 0 && last_input != NULL) {
275 line = last_input;
276 } else {
277 // Ownership is transferred to sim_;
278 sim_->set_last_debugger_input(line);
279 }
280 // Use sscanf to parse the individual parts of the command line. At the
281 // moment no command expects more than two parameters.
282 int argc = SScanF(line,
283 "%" XSTR(COMMAND_SIZE) "s "
284 "%" XSTR(ARG_SIZE) "s "
285 "%" XSTR(ARG_SIZE) "s",
286 cmd, arg1, arg2);
287 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
288 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
289 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
290 // Execute the one instruction we broke at with breakpoints disabled.
291 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
292 // Leave the debugger shell.
293 done = true;
294 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
295 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
296 int32_t value;
297 float svalue;
298 double dvalue;
299 if (strcmp(arg1, "all") == 0) {
300 for (int i = 0; i < kNumRegisters; i++) {
301 value = GetRegisterValue(i);
302 PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value);
303 if ((argc == 3 && strcmp(arg2, "fp") == 0) &&
304 i < 8 &&
305 (i % 2) == 0) {
306 dvalue = GetRegisterPairDoubleValue(i);
307 PrintF(" (%f)\n", dvalue);
308 } else {
309 PrintF("\n");
310 }
311 }
312 for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) {
313 dvalue = GetVFPDoubleRegisterValue(i);
314 uint64_t as_words = BitCast<uint64_t>(dvalue);
315 PrintF("%3s: %f 0x%08x %08x\n",
316 VFPRegisters::Name(i, true),
317 dvalue,
318 static_cast<uint32_t>(as_words >> 32),
319 static_cast<uint32_t>(as_words & 0xffffffff));
320 }
321 } else {
322 if (GetValue(arg1, &value)) {
323 PrintF("%s: 0x%08x %d \n", arg1, value, value);
324 } else if (GetVFPSingleValue(arg1, &svalue)) {
325 uint32_t as_word = BitCast<uint32_t>(svalue);
326 PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
327 } else if (GetVFPDoubleValue(arg1, &dvalue)) {
328 uint64_t as_words = BitCast<uint64_t>(dvalue);
329 PrintF("%s: %f 0x%08x %08x\n",
330 arg1,
331 dvalue,
332 static_cast<uint32_t>(as_words >> 32),
333 static_cast<uint32_t>(as_words & 0xffffffff));
334 } else {
335 PrintF("%s unrecognized\n", arg1);
336 }
337 }
338 } else {
339 PrintF("print <register>\n");
340 }
341 } else if ((strcmp(cmd, "po") == 0)
342 || (strcmp(cmd, "printobject") == 0)) {
343 if (argc == 2) {
344 int32_t value;
345 if (GetValue(arg1, &value)) {
346 Object* obj = reinterpret_cast<Object*>(value);
347 PrintF("%s: \n", arg1);
348 #ifdef DEBUG
349 obj->PrintLn();
350 #else
351 obj->ShortPrint();
352 PrintF("\n");
353 #endif
354 } else {
355 PrintF("%s unrecognized\n", arg1);
356 }
357 } else {
358 PrintF("printobject <value>\n");
359 }
360 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
361 int32_t* cur = NULL;
362 int32_t* end = NULL;
363 int next_arg = 1;
364
365 if (strcmp(cmd, "stack") == 0) {
366 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
367 } else { // "mem"
368 int32_t value;
369 if (!GetValue(arg1, &value)) {
370 PrintF("%s unrecognized\n", arg1);
371 continue;
372 }
373 cur = reinterpret_cast<int32_t*>(value);
374 next_arg++;
375 }
376
377 int32_t words;
378 if (argc == next_arg) {
379 words = 10;
380 } else {
381 if (!GetValue(argv[next_arg], &words)) {
382 words = 10;
383 }
384 }
385 end = cur + words;
386
387 while (cur < end) {
388 PrintF(" 0x%08x: 0x%08x %10d",
389 reinterpret_cast<intptr_t>(cur), *cur, *cur);
390 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
391 int value = *cur;
392 Heap* current_heap = v8::internal::Isolate::Current()->heap();
393 if (((value & 1) == 0) || current_heap->Contains(obj)) {
394 PrintF(" (");
395 if ((value & 1) == 0) {
396 PrintF("smi %d", value / 2);
397 } else {
398 obj->ShortPrint();
399 }
400 PrintF(")");
401 }
402 PrintF("\n");
403 cur++;
404 }
405 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
406 disasm::NameConverter converter;
407 disasm::Disassembler dasm(converter);
408 // use a reasonably large buffer
409 v8::internal::EmbeddedVector<char, 256> buffer;
410
411 byte* prev = NULL;
412 byte* cur = NULL;
413 byte* end = NULL;
414
415 if (argc == 1) {
416 cur = reinterpret_cast<byte*>(sim_->get_pc());
417 end = cur + (10 * Instruction::kInstrSize);
418 } else if (argc == 2) {
419 int regnum = Registers::Number(arg1);
420 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
421 // The argument is an address or a register name.
422 int32_t value;
423 if (GetValue(arg1, &value)) {
424 cur = reinterpret_cast<byte*>(value);
425 // Disassemble 10 instructions at <arg1>.
426 end = cur + (10 * Instruction::kInstrSize);
427 }
428 } else {
429 // The argument is the number of instructions.
430 int32_t value;
431 if (GetValue(arg1, &value)) {
432 cur = reinterpret_cast<byte*>(sim_->get_pc());
433 // Disassemble <arg1> instructions.
434 end = cur + (value * Instruction::kInstrSize);
435 }
436 }
437 } else {
438 int32_t value1;
439 int32_t value2;
440 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
441 cur = reinterpret_cast<byte*>(value1);
442 end = cur + (value2 * Instruction::kInstrSize);
443 }
444 }
445
446 while (cur < end) {
447 prev = cur;
448 cur += dasm.InstructionDecode(buffer, cur);
449 PrintF(" 0x%08x %s\n",
450 reinterpret_cast<intptr_t>(prev), buffer.start());
451 }
452 } else if (strcmp(cmd, "gdb") == 0) {
453 PrintF("relinquishing control to gdb\n");
454 v8::internal::OS::DebugBreak();
455 PrintF("regaining control from gdb\n");
456 } else if (strcmp(cmd, "break") == 0) {
457 if (argc == 2) {
458 int32_t value;
459 if (GetValue(arg1, &value)) {
460 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
461 PrintF("setting breakpoint failed\n");
462 }
463 } else {
464 PrintF("%s unrecognized\n", arg1);
465 }
466 } else {
467 PrintF("break <address>\n");
468 }
469 } else if (strcmp(cmd, "del") == 0) {
470 if (!DeleteBreakpoint(NULL)) {
471 PrintF("deleting breakpoint failed\n");
472 }
473 } else if (strcmp(cmd, "flags") == 0) {
474 PrintF("N flag: %d; ", sim_->n_flag_);
475 PrintF("Z flag: %d; ", sim_->z_flag_);
476 PrintF("C flag: %d; ", sim_->c_flag_);
477 PrintF("V flag: %d\n", sim_->v_flag_);
478 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
479 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
480 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
481 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
482 PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
483 } else if (strcmp(cmd, "stop") == 0) {
484 int32_t value;
485 intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize;
486 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
487 Instruction* msg_address =
488 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
489 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
490 // Remove the current stop.
491 if (sim_->isStopInstruction(stop_instr)) {
492 stop_instr->SetInstructionBits(kNopInstr);
493 msg_address->SetInstructionBits(kNopInstr);
494 } else {
495 PrintF("Not at debugger stop.\n");
496 }
497 } else if (argc == 3) {
498 // Print information about all/the specified breakpoint(s).
499 if (strcmp(arg1, "info") == 0) {
500 if (strcmp(arg2, "all") == 0) {
501 PrintF("Stop information:\n");
502 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
503 sim_->PrintStopInfo(i);
504 }
505 } else if (GetValue(arg2, &value)) {
506 sim_->PrintStopInfo(value);
507 } else {
508 PrintF("Unrecognized argument.\n");
509 }
510 } else if (strcmp(arg1, "enable") == 0) {
511 // Enable all/the specified breakpoint(s).
512 if (strcmp(arg2, "all") == 0) {
513 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
514 sim_->EnableStop(i);
515 }
516 } else if (GetValue(arg2, &value)) {
517 sim_->EnableStop(value);
518 } else {
519 PrintF("Unrecognized argument.\n");
520 }
521 } else if (strcmp(arg1, "disable") == 0) {
522 // Disable all/the specified breakpoint(s).
523 if (strcmp(arg2, "all") == 0) {
524 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
525 sim_->DisableStop(i);
526 }
527 } else if (GetValue(arg2, &value)) {
528 sim_->DisableStop(value);
529 } else {
530 PrintF("Unrecognized argument.\n");
531 }
532 }
533 } else {
534 PrintF("Wrong usage. Use help command for more information.\n");
535 }
536 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
537 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
538 PrintF("Trace of executed instructions is %s\n",
539 ::v8::internal::FLAG_trace_sim ? "on" : "off");
540 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
541 PrintF("cont\n");
542 PrintF(" continue execution (alias 'c')\n");
543 PrintF("stepi\n");
544 PrintF(" step one instruction (alias 'si')\n");
545 PrintF("print <register>\n");
546 PrintF(" print register content (alias 'p')\n");
547 PrintF(" use register name 'all' to print all registers\n");
548 PrintF(" add argument 'fp' to print register pair double values\n");
549 PrintF("printobject <register>\n");
550 PrintF(" print an object from a register (alias 'po')\n");
551 PrintF("flags\n");
552 PrintF(" print flags\n");
553 PrintF("stack [<words>]\n");
554 PrintF(" dump stack content, default dump 10 words)\n");
555 PrintF("mem <address> [<words>]\n");
556 PrintF(" dump memory content, default dump 10 words)\n");
557 PrintF("disasm [<instructions>]\n");
558 PrintF("disasm [<address/register>]\n");
559 PrintF("disasm [[<address/register>] <instructions>]\n");
560 PrintF(" disassemble code, default is 10 instructions\n");
561 PrintF(" from pc (alias 'di')\n");
562 PrintF("gdb\n");
563 PrintF(" enter gdb\n");
564 PrintF("break <address>\n");
565 PrintF(" set a break point on the address\n");
566 PrintF("del\n");
567 PrintF(" delete the breakpoint\n");
568 PrintF("trace (alias 't')\n");
569 PrintF(" toogle the tracing of all executed statements\n");
570 PrintF("stop feature:\n");
571 PrintF(" Description:\n");
572 PrintF(" Stops are debug instructions inserted by\n");
573 PrintF(" the Assembler::stop() function.\n");
574 PrintF(" When hitting a stop, the Simulator will\n");
575 PrintF(" stop and and give control to the ArmDebugger.\n");
576 PrintF(" The first %d stop codes are watched:\n",
577 Simulator::kNumOfWatchedStops);
578 PrintF(" - They can be enabled / disabled: the Simulator\n");
579 PrintF(" will / won't stop when hitting them.\n");
580 PrintF(" - The Simulator keeps track of how many times they \n");
581 PrintF(" are met. (See the info command.) Going over a\n");
582 PrintF(" disabled stop still increases its counter. \n");
583 PrintF(" Commands:\n");
584 PrintF(" stop info all/<code> : print infos about number <code>\n");
585 PrintF(" or all stop(s).\n");
586 PrintF(" stop enable/disable all/<code> : enables / disables\n");
587 PrintF(" all or number <code> stop(s)\n");
588 PrintF(" stop unstop\n");
589 PrintF(" ignore the stop instruction at the current location\n");
590 PrintF(" from now on\n");
591 } else {
592 PrintF("Unknown command: %s\n", cmd);
593 }
594 }
595 }
596
597 // Add all the breakpoints back to stop execution and enter the debugger
598 // shell when hit.
599 RedoBreakpoints();
600
601 #undef COMMAND_SIZE
602 #undef ARG_SIZE
603
604 #undef STR
605 #undef XSTR
606 }
607
608
ICacheMatch(void * one,void * two)609 static bool ICacheMatch(void* one, void* two) {
610 ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
611 ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
612 return one == two;
613 }
614
615
ICacheHash(void * key)616 static uint32_t ICacheHash(void* key) {
617 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
618 }
619
620
AllOnOnePage(uintptr_t start,int size)621 static bool AllOnOnePage(uintptr_t start, int size) {
622 intptr_t start_page = (start & ~CachePage::kPageMask);
623 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
624 return start_page == end_page;
625 }
626
627
set_last_debugger_input(char * input)628 void Simulator::set_last_debugger_input(char* input) {
629 DeleteArray(last_debugger_input_);
630 last_debugger_input_ = input;
631 }
632
633
FlushICache(v8::internal::HashMap * i_cache,void * start_addr,size_t size)634 void Simulator::FlushICache(v8::internal::HashMap* i_cache,
635 void* start_addr,
636 size_t size) {
637 intptr_t start = reinterpret_cast<intptr_t>(start_addr);
638 int intra_line = (start & CachePage::kLineMask);
639 start -= intra_line;
640 size += intra_line;
641 size = ((size - 1) | CachePage::kLineMask) + 1;
642 int offset = (start & CachePage::kPageMask);
643 while (!AllOnOnePage(start, size - 1)) {
644 int bytes_to_flush = CachePage::kPageSize - offset;
645 FlushOnePage(i_cache, start, bytes_to_flush);
646 start += bytes_to_flush;
647 size -= bytes_to_flush;
648 ASSERT_EQ(0, start & CachePage::kPageMask);
649 offset = 0;
650 }
651 if (size != 0) {
652 FlushOnePage(i_cache, start, size);
653 }
654 }
655
656
GetCachePage(v8::internal::HashMap * i_cache,void * page)657 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
658 v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
659 ICacheHash(page),
660 true);
661 if (entry->value == NULL) {
662 CachePage* new_page = new CachePage();
663 entry->value = new_page;
664 }
665 return reinterpret_cast<CachePage*>(entry->value);
666 }
667
668
669 // Flush from start up to and not including start + size.
FlushOnePage(v8::internal::HashMap * i_cache,intptr_t start,int size)670 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
671 intptr_t start,
672 int size) {
673 ASSERT(size <= CachePage::kPageSize);
674 ASSERT(AllOnOnePage(start, size - 1));
675 ASSERT((start & CachePage::kLineMask) == 0);
676 ASSERT((size & CachePage::kLineMask) == 0);
677 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
678 int offset = (start & CachePage::kPageMask);
679 CachePage* cache_page = GetCachePage(i_cache, page);
680 char* valid_bytemap = cache_page->ValidityByte(offset);
681 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
682 }
683
684
CheckICache(v8::internal::HashMap * i_cache,Instruction * instr)685 void Simulator::CheckICache(v8::internal::HashMap* i_cache,
686 Instruction* instr) {
687 intptr_t address = reinterpret_cast<intptr_t>(instr);
688 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
689 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
690 int offset = (address & CachePage::kPageMask);
691 CachePage* cache_page = GetCachePage(i_cache, page);
692 char* cache_valid_byte = cache_page->ValidityByte(offset);
693 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
694 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
695 if (cache_hit) {
696 // Check that the data in memory matches the contents of the I-cache.
697 CHECK_EQ(0,
698 memcmp(reinterpret_cast<void*>(instr),
699 cache_page->CachedData(offset), Instruction::kInstrSize));
700 } else {
701 // Cache miss. Load memory into the cache.
702 memcpy(cached_line, line, CachePage::kLineLength);
703 *cache_valid_byte = CachePage::LINE_VALID;
704 }
705 }
706
707
Initialize(Isolate * isolate)708 void Simulator::Initialize(Isolate* isolate) {
709 if (isolate->simulator_initialized()) return;
710 isolate->set_simulator_initialized(true);
711 ::v8::internal::ExternalReference::set_redirector(isolate,
712 &RedirectExternalReference);
713 }
714
715
Simulator(Isolate * isolate)716 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
717 i_cache_ = isolate_->simulator_i_cache();
718 if (i_cache_ == NULL) {
719 i_cache_ = new v8::internal::HashMap(&ICacheMatch);
720 isolate_->set_simulator_i_cache(i_cache_);
721 }
722 Initialize(isolate);
723 // Set up simulator support first. Some of this information is needed to
724 // setup the architecture state.
725 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
726 stack_ = reinterpret_cast<char*>(malloc(stack_size));
727 pc_modified_ = false;
728 icount_ = 0;
729 break_pc_ = NULL;
730 break_instr_ = 0;
731
732 // Set up architecture state.
733 // All registers are initialized to zero to start with.
734 for (int i = 0; i < num_registers; i++) {
735 registers_[i] = 0;
736 }
737 n_flag_ = false;
738 z_flag_ = false;
739 c_flag_ = false;
740 v_flag_ = false;
741
742 // Initializing VFP registers.
743 // All registers are initialized to zero to start with
744 // even though s_registers_ & d_registers_ share the same
745 // physical registers in the target.
746 for (int i = 0; i < num_d_registers * 2; i++) {
747 vfp_registers_[i] = 0;
748 }
749 n_flag_FPSCR_ = false;
750 z_flag_FPSCR_ = false;
751 c_flag_FPSCR_ = false;
752 v_flag_FPSCR_ = false;
753 FPSCR_rounding_mode_ = RN;
754 FPSCR_default_NaN_mode_ = false;
755
756 inv_op_vfp_flag_ = false;
757 div_zero_vfp_flag_ = false;
758 overflow_vfp_flag_ = false;
759 underflow_vfp_flag_ = false;
760 inexact_vfp_flag_ = false;
761
762 // The sp is initialized to point to the bottom (high address) of the
763 // allocated stack area. To be safe in potential stack underflows we leave
764 // some buffer below.
765 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
766 // The lr and pc are initialized to a known bad value that will cause an
767 // access violation if the simulator ever tries to execute it.
768 registers_[pc] = bad_lr;
769 registers_[lr] = bad_lr;
770 InitializeCoverage();
771
772 last_debugger_input_ = NULL;
773 }
774
775
~Simulator()776 Simulator::~Simulator() {
777 }
778
779
780 // When the generated code calls an external reference we need to catch that in
781 // the simulator. The external reference will be a function compiled for the
782 // host architecture. We need to call that function instead of trying to
783 // execute it with the simulator. We do that by redirecting the external
784 // reference to a svc (Supervisor Call) instruction that is handled by
785 // the simulator. We write the original destination of the jump just at a known
786 // offset from the svc instruction so the simulator knows what to call.
787 class Redirection {
788 public:
Redirection(void * external_function,ExternalReference::Type type)789 Redirection(void* external_function, ExternalReference::Type type)
790 : external_function_(external_function),
791 swi_instruction_(al | (0xf*B24) | kCallRtRedirected),
792 type_(type),
793 next_(NULL) {
794 Isolate* isolate = Isolate::Current();
795 next_ = isolate->simulator_redirection();
796 Simulator::current(isolate)->
797 FlushICache(isolate->simulator_i_cache(),
798 reinterpret_cast<void*>(&swi_instruction_),
799 Instruction::kInstrSize);
800 isolate->set_simulator_redirection(this);
801 }
802
address_of_swi_instruction()803 void* address_of_swi_instruction() {
804 return reinterpret_cast<void*>(&swi_instruction_);
805 }
806
external_function()807 void* external_function() { return external_function_; }
type()808 ExternalReference::Type type() { return type_; }
809
Get(void * external_function,ExternalReference::Type type)810 static Redirection* Get(void* external_function,
811 ExternalReference::Type type) {
812 Isolate* isolate = Isolate::Current();
813 Redirection* current = isolate->simulator_redirection();
814 for (; current != NULL; current = current->next_) {
815 if (current->external_function_ == external_function) {
816 ASSERT_EQ(current->type(), type);
817 return current;
818 }
819 }
820 return new Redirection(external_function, type);
821 }
822
FromSwiInstruction(Instruction * swi_instruction)823 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
824 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
825 char* addr_of_redirection =
826 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
827 return reinterpret_cast<Redirection*>(addr_of_redirection);
828 }
829
ReverseRedirection(int32_t reg)830 static void* ReverseRedirection(int32_t reg) {
831 Redirection* redirection = FromSwiInstruction(
832 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
833 return redirection->external_function();
834 }
835
836 private:
837 void* external_function_;
838 uint32_t swi_instruction_;
839 ExternalReference::Type type_;
840 Redirection* next_;
841 };
842
843
RedirectExternalReference(void * external_function,ExternalReference::Type type)844 void* Simulator::RedirectExternalReference(void* external_function,
845 ExternalReference::Type type) {
846 Redirection* redirection = Redirection::Get(external_function, type);
847 return redirection->address_of_swi_instruction();
848 }
849
850
851 // Get the active Simulator for the current thread.
current(Isolate * isolate)852 Simulator* Simulator::current(Isolate* isolate) {
853 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
854 isolate->FindOrAllocatePerThreadDataForThisThread();
855 ASSERT(isolate_data != NULL);
856
857 Simulator* sim = isolate_data->simulator();
858 if (sim == NULL) {
859 // TODO(146): delete the simulator object when a thread/isolate goes away.
860 sim = new Simulator(isolate);
861 isolate_data->set_simulator(sim);
862 }
863 return sim;
864 }
865
866
867 // Sets the register in the architecture state. It will also deal with updating
868 // Simulator internal state for special registers such as PC.
set_register(int reg,int32_t value)869 void Simulator::set_register(int reg, int32_t value) {
870 ASSERT((reg >= 0) && (reg < num_registers));
871 if (reg == pc) {
872 pc_modified_ = true;
873 }
874 registers_[reg] = value;
875 }
876
877
878 // Get the register from the architecture state. This function does handle
879 // the special case of accessing the PC register.
get_register(int reg) const880 int32_t Simulator::get_register(int reg) const {
881 ASSERT((reg >= 0) && (reg < num_registers));
882 // Stupid code added to avoid bug in GCC.
883 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
884 if (reg >= num_registers) return 0;
885 // End stupid code.
886 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
887 }
888
889
get_double_from_register_pair(int reg)890 double Simulator::get_double_from_register_pair(int reg) {
891 ASSERT((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
892
893 double dm_val = 0.0;
894 // Read the bits from the unsigned integer register_[] array
895 // into the double precision floating point value and return it.
896 char buffer[2 * sizeof(vfp_registers_[0])];
897 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
898 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
899 return(dm_val);
900 }
901
902
set_register_pair_from_double(int reg,double * value)903 void Simulator::set_register_pair_from_double(int reg, double* value) {
904 ASSERT((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
905 memcpy(registers_ + reg, value, sizeof(*value));
906 }
907
908
set_dw_register(int dreg,const int * dbl)909 void Simulator::set_dw_register(int dreg, const int* dbl) {
910 ASSERT((dreg >= 0) && (dreg < num_d_registers));
911 registers_[dreg] = dbl[0];
912 registers_[dreg + 1] = dbl[1];
913 }
914
915
get_d_register(int dreg,uint64_t * value)916 void Simulator::get_d_register(int dreg, uint64_t* value) {
917 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
918 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
919 }
920
921
set_d_register(int dreg,const uint64_t * value)922 void Simulator::set_d_register(int dreg, const uint64_t* value) {
923 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
924 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
925 }
926
927
get_d_register(int dreg,uint32_t * value)928 void Simulator::get_d_register(int dreg, uint32_t* value) {
929 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
930 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
931 }
932
933
set_d_register(int dreg,const uint32_t * value)934 void Simulator::set_d_register(int dreg, const uint32_t* value) {
935 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
936 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
937 }
938
939
get_q_register(int qreg,uint64_t * value)940 void Simulator::get_q_register(int qreg, uint64_t* value) {
941 ASSERT((qreg >= 0) && (qreg < num_q_registers));
942 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2);
943 }
944
945
set_q_register(int qreg,const uint64_t * value)946 void Simulator::set_q_register(int qreg, const uint64_t* value) {
947 ASSERT((qreg >= 0) && (qreg < num_q_registers));
948 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2);
949 }
950
951
get_q_register(int qreg,uint32_t * value)952 void Simulator::get_q_register(int qreg, uint32_t* value) {
953 ASSERT((qreg >= 0) && (qreg < num_q_registers));
954 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4);
955 }
956
957
set_q_register(int qreg,const uint32_t * value)958 void Simulator::set_q_register(int qreg, const uint32_t* value) {
959 ASSERT((qreg >= 0) && (qreg < num_q_registers));
960 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4);
961 }
962
963
964 // Raw access to the PC register.
set_pc(int32_t value)965 void Simulator::set_pc(int32_t value) {
966 pc_modified_ = true;
967 registers_[pc] = value;
968 }
969
970
has_bad_pc() const971 bool Simulator::has_bad_pc() const {
972 return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
973 }
974
975
976 // Raw access to the PC register without the special adjustment when reading.
get_pc() const977 int32_t Simulator::get_pc() const {
978 return registers_[pc];
979 }
980
981
982 // Getting from and setting into VFP registers.
set_s_register(int sreg,unsigned int value)983 void Simulator::set_s_register(int sreg, unsigned int value) {
984 ASSERT((sreg >= 0) && (sreg < num_s_registers));
985 vfp_registers_[sreg] = value;
986 }
987
988
get_s_register(int sreg) const989 unsigned int Simulator::get_s_register(int sreg) const {
990 ASSERT((sreg >= 0) && (sreg < num_s_registers));
991 return vfp_registers_[sreg];
992 }
993
994
995 template<class InputType, int register_size>
SetVFPRegister(int reg_index,const InputType & value)996 void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
997 ASSERT(reg_index >= 0);
998 if (register_size == 1) ASSERT(reg_index < num_s_registers);
999 if (register_size == 2) ASSERT(reg_index < DwVfpRegister::NumRegisters());
1000
1001 char buffer[register_size * sizeof(vfp_registers_[0])];
1002 memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0]));
1003 memcpy(&vfp_registers_[reg_index * register_size], buffer,
1004 register_size * sizeof(vfp_registers_[0]));
1005 }
1006
1007
1008 template<class ReturnType, int register_size>
GetFromVFPRegister(int reg_index)1009 ReturnType Simulator::GetFromVFPRegister(int reg_index) {
1010 ASSERT(reg_index >= 0);
1011 if (register_size == 1) ASSERT(reg_index < num_s_registers);
1012 if (register_size == 2) ASSERT(reg_index < DwVfpRegister::NumRegisters());
1013
1014 ReturnType value = 0;
1015 char buffer[register_size * sizeof(vfp_registers_[0])];
1016 memcpy(buffer, &vfp_registers_[register_size * reg_index],
1017 register_size * sizeof(vfp_registers_[0]));
1018 memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0]));
1019 return value;
1020 }
1021
1022
1023 // Runtime FP routines take:
1024 // - two double arguments
1025 // - one double argument and zero or one integer arguments.
1026 // All are consructed here from r0-r3 or d0, d1 and r0.
GetFpArgs(double * x,double * y,int32_t * z)1027 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1028 if (use_eabi_hardfloat()) {
1029 *x = get_double_from_d_register(0);
1030 *y = get_double_from_d_register(1);
1031 *z = get_register(0);
1032 } else {
1033 // Registers 0 and 1 -> x.
1034 *x = get_double_from_register_pair(0);
1035 // Register 2 and 3 -> y.
1036 *y = get_double_from_register_pair(2);
1037 // Register 2 -> z
1038 *z = get_register(2);
1039 }
1040 }
1041
1042
1043 // The return value is either in r0/r1 or d0.
SetFpResult(const double & result)1044 void Simulator::SetFpResult(const double& result) {
1045 if (use_eabi_hardfloat()) {
1046 char buffer[2 * sizeof(vfp_registers_[0])];
1047 memcpy(buffer, &result, sizeof(buffer));
1048 // Copy result to d0.
1049 memcpy(vfp_registers_, buffer, sizeof(buffer));
1050 } else {
1051 char buffer[2 * sizeof(registers_[0])];
1052 memcpy(buffer, &result, sizeof(buffer));
1053 // Copy result to r0 and r1.
1054 memcpy(registers_, buffer, sizeof(buffer));
1055 }
1056 }
1057
1058
TrashCallerSaveRegisters()1059 void Simulator::TrashCallerSaveRegisters() {
1060 // We don't trash the registers with the return value.
1061 registers_[2] = 0x50Bad4U;
1062 registers_[3] = 0x50Bad4U;
1063 registers_[12] = 0x50Bad4U;
1064 }
1065
1066
1067 // Some Operating Systems allow unaligned access on ARMv7 targets. We
1068 // assume that unaligned accesses are not allowed unless the v8 build system
1069 // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
1070 // The following statements below describes the behavior of the ARM CPUs
1071 // that don't support unaligned access.
1072 // Some ARM platforms raise an interrupt on detecting unaligned access.
1073 // On others it does a funky rotation thing. For now we
1074 // simply disallow unaligned reads. Note that simulator runs have the runtime
1075 // system running directly on the host system and only generated code is
1076 // executed in the simulator. Since the host is typically IA32 we will not
1077 // get the correct ARM-like behaviour on unaligned accesses for those ARM
1078 // targets that don't support unaligned loads and stores.
1079
1080
ReadW(int32_t addr,Instruction * instr)1081 int Simulator::ReadW(int32_t addr, Instruction* instr) {
1082 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1083 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1084 return *ptr;
1085 } else {
1086 PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1087 addr,
1088 reinterpret_cast<intptr_t>(instr));
1089 UNIMPLEMENTED();
1090 return 0;
1091 }
1092 }
1093
1094
WriteW(int32_t addr,int value,Instruction * instr)1095 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
1096 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1097 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1098 *ptr = value;
1099 } else {
1100 PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1101 addr,
1102 reinterpret_cast<intptr_t>(instr));
1103 UNIMPLEMENTED();
1104 }
1105 }
1106
1107
ReadHU(int32_t addr,Instruction * instr)1108 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
1109 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1110 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1111 return *ptr;
1112 } else {
1113 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08"
1114 V8PRIxPTR "\n",
1115 addr,
1116 reinterpret_cast<intptr_t>(instr));
1117 UNIMPLEMENTED();
1118 return 0;
1119 }
1120 }
1121
1122
ReadH(int32_t addr,Instruction * instr)1123 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
1124 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1125 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1126 return *ptr;
1127 } else {
1128 PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
1129 UNIMPLEMENTED();
1130 return 0;
1131 }
1132 }
1133
1134
WriteH(int32_t addr,uint16_t value,Instruction * instr)1135 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
1136 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1137 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1138 *ptr = value;
1139 } else {
1140 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08"
1141 V8PRIxPTR "\n",
1142 addr,
1143 reinterpret_cast<intptr_t>(instr));
1144 UNIMPLEMENTED();
1145 }
1146 }
1147
1148
WriteH(int32_t addr,int16_t value,Instruction * instr)1149 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
1150 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1151 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1152 *ptr = value;
1153 } else {
1154 PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1155 addr,
1156 reinterpret_cast<intptr_t>(instr));
1157 UNIMPLEMENTED();
1158 }
1159 }
1160
1161
ReadBU(int32_t addr)1162 uint8_t Simulator::ReadBU(int32_t addr) {
1163 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1164 return *ptr;
1165 }
1166
1167
ReadB(int32_t addr)1168 int8_t Simulator::ReadB(int32_t addr) {
1169 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1170 return *ptr;
1171 }
1172
1173
WriteB(int32_t addr,uint8_t value)1174 void Simulator::WriteB(int32_t addr, uint8_t value) {
1175 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1176 *ptr = value;
1177 }
1178
1179
WriteB(int32_t addr,int8_t value)1180 void Simulator::WriteB(int32_t addr, int8_t value) {
1181 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1182 *ptr = value;
1183 }
1184
1185
ReadDW(int32_t addr)1186 int32_t* Simulator::ReadDW(int32_t addr) {
1187 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1188 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1189 return ptr;
1190 } else {
1191 PrintF("Unaligned read at 0x%08x\n", addr);
1192 UNIMPLEMENTED();
1193 return 0;
1194 }
1195 }
1196
1197
WriteDW(int32_t addr,int32_t value1,int32_t value2)1198 void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
1199 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1200 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1201 *ptr++ = value1;
1202 *ptr = value2;
1203 } else {
1204 PrintF("Unaligned write at 0x%08x\n", addr);
1205 UNIMPLEMENTED();
1206 }
1207 }
1208
1209
1210 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit() const1211 uintptr_t Simulator::StackLimit() const {
1212 // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
1213 // pushing values.
1214 return reinterpret_cast<uintptr_t>(stack_) + 1024;
1215 }
1216
1217
1218 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1219 void Simulator::Format(Instruction* instr, const char* format) {
1220 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
1221 reinterpret_cast<intptr_t>(instr), format);
1222 UNIMPLEMENTED();
1223 }
1224
1225
1226 // Checks if the current instruction should be executed based on its
1227 // condition bits.
ConditionallyExecute(Instruction * instr)1228 bool Simulator::ConditionallyExecute(Instruction* instr) {
1229 switch (instr->ConditionField()) {
1230 case eq: return z_flag_;
1231 case ne: return !z_flag_;
1232 case cs: return c_flag_;
1233 case cc: return !c_flag_;
1234 case mi: return n_flag_;
1235 case pl: return !n_flag_;
1236 case vs: return v_flag_;
1237 case vc: return !v_flag_;
1238 case hi: return c_flag_ && !z_flag_;
1239 case ls: return !c_flag_ || z_flag_;
1240 case ge: return n_flag_ == v_flag_;
1241 case lt: return n_flag_ != v_flag_;
1242 case gt: return !z_flag_ && (n_flag_ == v_flag_);
1243 case le: return z_flag_ || (n_flag_ != v_flag_);
1244 case al: return true;
1245 default: UNREACHABLE();
1246 }
1247 return false;
1248 }
1249
1250
1251 // Calculate and set the Negative and Zero flags.
SetNZFlags(int32_t val)1252 void Simulator::SetNZFlags(int32_t val) {
1253 n_flag_ = (val < 0);
1254 z_flag_ = (val == 0);
1255 }
1256
1257
1258 // Set the Carry flag.
SetCFlag(bool val)1259 void Simulator::SetCFlag(bool val) {
1260 c_flag_ = val;
1261 }
1262
1263
1264 // Set the oVerflow flag.
SetVFlag(bool val)1265 void Simulator::SetVFlag(bool val) {
1266 v_flag_ = val;
1267 }
1268
1269
1270 // Calculate C flag value for additions.
CarryFrom(int32_t left,int32_t right,int32_t carry)1271 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1272 uint32_t uleft = static_cast<uint32_t>(left);
1273 uint32_t uright = static_cast<uint32_t>(right);
1274 uint32_t urest = 0xffffffffU - uleft;
1275
1276 return (uright > urest) ||
1277 (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1278 }
1279
1280
1281 // Calculate C flag value for subtractions.
BorrowFrom(int32_t left,int32_t right)1282 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1283 uint32_t uleft = static_cast<uint32_t>(left);
1284 uint32_t uright = static_cast<uint32_t>(right);
1285
1286 return (uright > uleft);
1287 }
1288
1289
1290 // Calculate V flag value for additions and subtractions.
OverflowFrom(int32_t alu_out,int32_t left,int32_t right,bool addition)1291 bool Simulator::OverflowFrom(int32_t alu_out,
1292 int32_t left, int32_t right, bool addition) {
1293 bool overflow;
1294 if (addition) {
1295 // operands have the same sign
1296 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1297 // and operands and result have different sign
1298 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1299 } else {
1300 // operands have different signs
1301 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1302 // and first operand and result have different signs
1303 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1304 }
1305 return overflow;
1306 }
1307
1308
1309 // Support for VFP comparisons.
Compute_FPSCR_Flags(double val1,double val2)1310 void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
1311 if (std::isnan(val1) || std::isnan(val2)) {
1312 n_flag_FPSCR_ = false;
1313 z_flag_FPSCR_ = false;
1314 c_flag_FPSCR_ = true;
1315 v_flag_FPSCR_ = true;
1316 // All non-NaN cases.
1317 } else if (val1 == val2) {
1318 n_flag_FPSCR_ = false;
1319 z_flag_FPSCR_ = true;
1320 c_flag_FPSCR_ = true;
1321 v_flag_FPSCR_ = false;
1322 } else if (val1 < val2) {
1323 n_flag_FPSCR_ = true;
1324 z_flag_FPSCR_ = false;
1325 c_flag_FPSCR_ = false;
1326 v_flag_FPSCR_ = false;
1327 } else {
1328 // Case when (val1 > val2).
1329 n_flag_FPSCR_ = false;
1330 z_flag_FPSCR_ = false;
1331 c_flag_FPSCR_ = true;
1332 v_flag_FPSCR_ = false;
1333 }
1334 }
1335
1336
Copy_FPSCR_to_APSR()1337 void Simulator::Copy_FPSCR_to_APSR() {
1338 n_flag_ = n_flag_FPSCR_;
1339 z_flag_ = z_flag_FPSCR_;
1340 c_flag_ = c_flag_FPSCR_;
1341 v_flag_ = v_flag_FPSCR_;
1342 }
1343
1344
1345 // Addressing Mode 1 - Data-processing operands:
1346 // Get the value based on the shifter_operand with register.
GetShiftRm(Instruction * instr,bool * carry_out)1347 int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
1348 ShiftOp shift = instr->ShiftField();
1349 int shift_amount = instr->ShiftAmountValue();
1350 int32_t result = get_register(instr->RmValue());
1351 if (instr->Bit(4) == 0) {
1352 // by immediate
1353 if ((shift == ROR) && (shift_amount == 0)) {
1354 UNIMPLEMENTED();
1355 return result;
1356 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
1357 shift_amount = 32;
1358 }
1359 switch (shift) {
1360 case ASR: {
1361 if (shift_amount == 0) {
1362 if (result < 0) {
1363 result = 0xffffffff;
1364 *carry_out = true;
1365 } else {
1366 result = 0;
1367 *carry_out = false;
1368 }
1369 } else {
1370 result >>= (shift_amount - 1);
1371 *carry_out = (result & 1) == 1;
1372 result >>= 1;
1373 }
1374 break;
1375 }
1376
1377 case LSL: {
1378 if (shift_amount == 0) {
1379 *carry_out = c_flag_;
1380 } else {
1381 result <<= (shift_amount - 1);
1382 *carry_out = (result < 0);
1383 result <<= 1;
1384 }
1385 break;
1386 }
1387
1388 case LSR: {
1389 if (shift_amount == 0) {
1390 result = 0;
1391 *carry_out = c_flag_;
1392 } else {
1393 uint32_t uresult = static_cast<uint32_t>(result);
1394 uresult >>= (shift_amount - 1);
1395 *carry_out = (uresult & 1) == 1;
1396 uresult >>= 1;
1397 result = static_cast<int32_t>(uresult);
1398 }
1399 break;
1400 }
1401
1402 case ROR: {
1403 if (shift_amount == 0) {
1404 *carry_out = c_flag_;
1405 } else {
1406 uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1407 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1408 result = right | left;
1409 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1410 }
1411 break;
1412 }
1413
1414 default: {
1415 UNREACHABLE();
1416 break;
1417 }
1418 }
1419 } else {
1420 // by register
1421 int rs = instr->RsValue();
1422 shift_amount = get_register(rs) &0xff;
1423 switch (shift) {
1424 case ASR: {
1425 if (shift_amount == 0) {
1426 *carry_out = c_flag_;
1427 } else if (shift_amount < 32) {
1428 result >>= (shift_amount - 1);
1429 *carry_out = (result & 1) == 1;
1430 result >>= 1;
1431 } else {
1432 ASSERT(shift_amount >= 32);
1433 if (result < 0) {
1434 *carry_out = true;
1435 result = 0xffffffff;
1436 } else {
1437 *carry_out = false;
1438 result = 0;
1439 }
1440 }
1441 break;
1442 }
1443
1444 case LSL: {
1445 if (shift_amount == 0) {
1446 *carry_out = c_flag_;
1447 } else if (shift_amount < 32) {
1448 result <<= (shift_amount - 1);
1449 *carry_out = (result < 0);
1450 result <<= 1;
1451 } else if (shift_amount == 32) {
1452 *carry_out = (result & 1) == 1;
1453 result = 0;
1454 } else {
1455 ASSERT(shift_amount > 32);
1456 *carry_out = false;
1457 result = 0;
1458 }
1459 break;
1460 }
1461
1462 case LSR: {
1463 if (shift_amount == 0) {
1464 *carry_out = c_flag_;
1465 } else if (shift_amount < 32) {
1466 uint32_t uresult = static_cast<uint32_t>(result);
1467 uresult >>= (shift_amount - 1);
1468 *carry_out = (uresult & 1) == 1;
1469 uresult >>= 1;
1470 result = static_cast<int32_t>(uresult);
1471 } else if (shift_amount == 32) {
1472 *carry_out = (result < 0);
1473 result = 0;
1474 } else {
1475 *carry_out = false;
1476 result = 0;
1477 }
1478 break;
1479 }
1480
1481 case ROR: {
1482 if (shift_amount == 0) {
1483 *carry_out = c_flag_;
1484 } else {
1485 uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1486 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1487 result = right | left;
1488 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1489 }
1490 break;
1491 }
1492
1493 default: {
1494 UNREACHABLE();
1495 break;
1496 }
1497 }
1498 }
1499 return result;
1500 }
1501
1502
1503 // Addressing Mode 1 - Data-processing operands:
1504 // Get the value based on the shifter_operand with immediate.
GetImm(Instruction * instr,bool * carry_out)1505 int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
1506 int rotate = instr->RotateValue() * 2;
1507 int immed8 = instr->Immed8Value();
1508 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
1509 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
1510 return imm;
1511 }
1512
1513
count_bits(int bit_vector)1514 static int count_bits(int bit_vector) {
1515 int count = 0;
1516 while (bit_vector != 0) {
1517 if ((bit_vector & 1) != 0) {
1518 count++;
1519 }
1520 bit_vector >>= 1;
1521 }
1522 return count;
1523 }
1524
1525
ProcessPU(Instruction * instr,int num_regs,int reg_size,intptr_t * start_address,intptr_t * end_address)1526 int32_t Simulator::ProcessPU(Instruction* instr,
1527 int num_regs,
1528 int reg_size,
1529 intptr_t* start_address,
1530 intptr_t* end_address) {
1531 int rn = instr->RnValue();
1532 int32_t rn_val = get_register(rn);
1533 switch (instr->PUField()) {
1534 case da_x: {
1535 UNIMPLEMENTED();
1536 break;
1537 }
1538 case ia_x: {
1539 *start_address = rn_val;
1540 *end_address = rn_val + (num_regs * reg_size) - reg_size;
1541 rn_val = rn_val + (num_regs * reg_size);
1542 break;
1543 }
1544 case db_x: {
1545 *start_address = rn_val - (num_regs * reg_size);
1546 *end_address = rn_val - reg_size;
1547 rn_val = *start_address;
1548 break;
1549 }
1550 case ib_x: {
1551 *start_address = rn_val + reg_size;
1552 *end_address = rn_val + (num_regs * reg_size);
1553 rn_val = *end_address;
1554 break;
1555 }
1556 default: {
1557 UNREACHABLE();
1558 break;
1559 }
1560 }
1561 return rn_val;
1562 }
1563
1564
1565 // Addressing Mode 4 - Load and Store Multiple
HandleRList(Instruction * instr,bool load)1566 void Simulator::HandleRList(Instruction* instr, bool load) {
1567 int rlist = instr->RlistValue();
1568 int num_regs = count_bits(rlist);
1569
1570 intptr_t start_address = 0;
1571 intptr_t end_address = 0;
1572 int32_t rn_val =
1573 ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
1574
1575 intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1576 // Catch null pointers a little earlier.
1577 ASSERT(start_address > 8191 || start_address < 0);
1578 int reg = 0;
1579 while (rlist != 0) {
1580 if ((rlist & 1) != 0) {
1581 if (load) {
1582 set_register(reg, *address);
1583 } else {
1584 *address = get_register(reg);
1585 }
1586 address += 1;
1587 }
1588 reg++;
1589 rlist >>= 1;
1590 }
1591 ASSERT(end_address == ((intptr_t)address) - 4);
1592 if (instr->HasW()) {
1593 set_register(instr->RnValue(), rn_val);
1594 }
1595 }
1596
1597
1598 // Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
HandleVList(Instruction * instr)1599 void Simulator::HandleVList(Instruction* instr) {
1600 VFPRegPrecision precision =
1601 (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
1602 int operand_size = (precision == kSinglePrecision) ? 4 : 8;
1603
1604 bool load = (instr->VLValue() == 0x1);
1605
1606 int vd;
1607 int num_regs;
1608 vd = instr->VFPDRegValue(precision);
1609 if (precision == kSinglePrecision) {
1610 num_regs = instr->Immed8Value();
1611 } else {
1612 num_regs = instr->Immed8Value() / 2;
1613 }
1614
1615 intptr_t start_address = 0;
1616 intptr_t end_address = 0;
1617 int32_t rn_val =
1618 ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
1619
1620 intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1621 for (int reg = vd; reg < vd + num_regs; reg++) {
1622 if (precision == kSinglePrecision) {
1623 if (load) {
1624 set_s_register_from_sinteger(
1625 reg, ReadW(reinterpret_cast<int32_t>(address), instr));
1626 } else {
1627 WriteW(reinterpret_cast<int32_t>(address),
1628 get_sinteger_from_s_register(reg), instr);
1629 }
1630 address += 1;
1631 } else {
1632 if (load) {
1633 int32_t data[] = {
1634 ReadW(reinterpret_cast<int32_t>(address), instr),
1635 ReadW(reinterpret_cast<int32_t>(address + 1), instr)
1636 };
1637 double d;
1638 memcpy(&d, data, 8);
1639 set_d_register_from_double(reg, d);
1640 } else {
1641 int32_t data[2];
1642 double d = get_double_from_d_register(reg);
1643 memcpy(data, &d, 8);
1644 WriteW(reinterpret_cast<int32_t>(address), data[0], instr);
1645 WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr);
1646 }
1647 address += 2;
1648 }
1649 }
1650 ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
1651 if (instr->HasW()) {
1652 set_register(instr->RnValue(), rn_val);
1653 }
1654 }
1655
1656
1657 // Calls into the V8 runtime are based on this very simple interface.
1658 // Note: To be able to return two values from some calls the code in runtime.cc
1659 // uses the ObjectPair which is essentially two 32-bit values stuffed into a
1660 // 64-bit value. With the code below we assume that all runtime calls return
1661 // 64 bits of result. If they don't, the r1 result register contains a bogus
1662 // value, which is fine because it is caller-saved.
1663 typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
1664 int32_t arg1,
1665 int32_t arg2,
1666 int32_t arg3,
1667 int32_t arg4,
1668 int32_t arg5);
1669
1670 // These prototypes handle the four types of FP calls.
1671 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1672 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1673 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1674 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1675
1676 // This signature supports direct call in to API function native callback
1677 // (refer to InvocationCallback in v8.h).
1678 typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
1679 typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
1680
1681 // This signature supports direct call to accessor getter callback.
1682 typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
1683 typedef void (*SimulatorRuntimeProfilingGetterCall)(
1684 int32_t arg0, int32_t arg1, void* arg2);
1685
1686 // Software interrupt instructions are used by the simulator to call into the
1687 // C-based V8 runtime.
SoftwareInterrupt(Instruction * instr)1688 void Simulator::SoftwareInterrupt(Instruction* instr) {
1689 int svc = instr->SvcValue();
1690 switch (svc) {
1691 case kCallRtRedirected: {
1692 // Check if stack is aligned. Error if not aligned is reported below to
1693 // include information on the function called.
1694 bool stack_aligned =
1695 (get_register(sp)
1696 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
1697 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1698 int32_t arg0 = get_register(r0);
1699 int32_t arg1 = get_register(r1);
1700 int32_t arg2 = get_register(r2);
1701 int32_t arg3 = get_register(r3);
1702 int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
1703 int32_t arg4 = stack_pointer[0];
1704 int32_t arg5 = stack_pointer[1];
1705 bool fp_call =
1706 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1707 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1708 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1709 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1710 // This is dodgy but it works because the C entry stubs are never moved.
1711 // See comment in codegen-arm.cc and bug 1242173.
1712 int32_t saved_lr = get_register(lr);
1713 intptr_t external =
1714 reinterpret_cast<intptr_t>(redirection->external_function());
1715 if (fp_call) {
1716 double dval0, dval1; // one or two double parameters
1717 int32_t ival; // zero or one integer parameters
1718 int64_t iresult = 0; // integer return value
1719 double dresult = 0; // double return value
1720 GetFpArgs(&dval0, &dval1, &ival);
1721 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1722 SimulatorRuntimeCall generic_target =
1723 reinterpret_cast<SimulatorRuntimeCall>(external);
1724 switch (redirection->type()) {
1725 case ExternalReference::BUILTIN_FP_FP_CALL:
1726 case ExternalReference::BUILTIN_COMPARE_CALL:
1727 PrintF("Call to host function at %p with args %f, %f",
1728 FUNCTION_ADDR(generic_target), dval0, dval1);
1729 break;
1730 case ExternalReference::BUILTIN_FP_CALL:
1731 PrintF("Call to host function at %p with arg %f",
1732 FUNCTION_ADDR(generic_target), dval0);
1733 break;
1734 case ExternalReference::BUILTIN_FP_INT_CALL:
1735 PrintF("Call to host function at %p with args %f, %d",
1736 FUNCTION_ADDR(generic_target), dval0, ival);
1737 break;
1738 default:
1739 UNREACHABLE();
1740 break;
1741 }
1742 if (!stack_aligned) {
1743 PrintF(" with unaligned stack %08x\n", get_register(sp));
1744 }
1745 PrintF("\n");
1746 }
1747 CHECK(stack_aligned);
1748 switch (redirection->type()) {
1749 case ExternalReference::BUILTIN_COMPARE_CALL: {
1750 SimulatorRuntimeCompareCall target =
1751 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1752 iresult = target(dval0, dval1);
1753 set_register(r0, static_cast<int32_t>(iresult));
1754 set_register(r1, static_cast<int32_t>(iresult >> 32));
1755 break;
1756 }
1757 case ExternalReference::BUILTIN_FP_FP_CALL: {
1758 SimulatorRuntimeFPFPCall target =
1759 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1760 dresult = target(dval0, dval1);
1761 SetFpResult(dresult);
1762 break;
1763 }
1764 case ExternalReference::BUILTIN_FP_CALL: {
1765 SimulatorRuntimeFPCall target =
1766 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1767 dresult = target(dval0);
1768 SetFpResult(dresult);
1769 break;
1770 }
1771 case ExternalReference::BUILTIN_FP_INT_CALL: {
1772 SimulatorRuntimeFPIntCall target =
1773 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1774 dresult = target(dval0, ival);
1775 SetFpResult(dresult);
1776 break;
1777 }
1778 default:
1779 UNREACHABLE();
1780 break;
1781 }
1782 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1783 switch (redirection->type()) {
1784 case ExternalReference::BUILTIN_COMPARE_CALL:
1785 PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
1786 break;
1787 case ExternalReference::BUILTIN_FP_FP_CALL:
1788 case ExternalReference::BUILTIN_FP_CALL:
1789 case ExternalReference::BUILTIN_FP_INT_CALL:
1790 PrintF("Returned %f\n", dresult);
1791 break;
1792 default:
1793 UNREACHABLE();
1794 break;
1795 }
1796 }
1797 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1798 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1799 PrintF("Call to host function at %p args %08x",
1800 reinterpret_cast<void*>(external), arg0);
1801 if (!stack_aligned) {
1802 PrintF(" with unaligned stack %08x\n", get_register(sp));
1803 }
1804 PrintF("\n");
1805 }
1806 CHECK(stack_aligned);
1807 SimulatorRuntimeDirectApiCall target =
1808 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1809 target(arg0);
1810 } else if (
1811 redirection->type() == ExternalReference::PROFILING_API_CALL) {
1812 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1813 PrintF("Call to host function at %p args %08x %08x",
1814 reinterpret_cast<void*>(external), arg0, arg1);
1815 if (!stack_aligned) {
1816 PrintF(" with unaligned stack %08x\n", get_register(sp));
1817 }
1818 PrintF("\n");
1819 }
1820 CHECK(stack_aligned);
1821 SimulatorRuntimeProfilingApiCall target =
1822 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1823 target(arg0, Redirection::ReverseRedirection(arg1));
1824 } else if (
1825 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1826 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1827 PrintF("Call to host function at %p args %08x %08x",
1828 reinterpret_cast<void*>(external), arg0, arg1);
1829 if (!stack_aligned) {
1830 PrintF(" with unaligned stack %08x\n", get_register(sp));
1831 }
1832 PrintF("\n");
1833 }
1834 CHECK(stack_aligned);
1835 SimulatorRuntimeDirectGetterCall target =
1836 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1837 target(arg0, arg1);
1838 } else if (
1839 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
1840 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1841 PrintF("Call to host function at %p args %08x %08x %08x",
1842 reinterpret_cast<void*>(external), arg0, arg1, arg2);
1843 if (!stack_aligned) {
1844 PrintF(" with unaligned stack %08x\n", get_register(sp));
1845 }
1846 PrintF("\n");
1847 }
1848 CHECK(stack_aligned);
1849 SimulatorRuntimeProfilingGetterCall target =
1850 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
1851 external);
1852 target(arg0, arg1, Redirection::ReverseRedirection(arg2));
1853 } else {
1854 // builtin call.
1855 ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL);
1856 SimulatorRuntimeCall target =
1857 reinterpret_cast<SimulatorRuntimeCall>(external);
1858 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1859 PrintF(
1860 "Call to host function at %p "
1861 "args %08x, %08x, %08x, %08x, %08x, %08x",
1862 FUNCTION_ADDR(target),
1863 arg0,
1864 arg1,
1865 arg2,
1866 arg3,
1867 arg4,
1868 arg5);
1869 if (!stack_aligned) {
1870 PrintF(" with unaligned stack %08x\n", get_register(sp));
1871 }
1872 PrintF("\n");
1873 }
1874 CHECK(stack_aligned);
1875 int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
1876 int32_t lo_res = static_cast<int32_t>(result);
1877 int32_t hi_res = static_cast<int32_t>(result >> 32);
1878 if (::v8::internal::FLAG_trace_sim) {
1879 PrintF("Returned %08x\n", lo_res);
1880 }
1881 set_register(r0, lo_res);
1882 set_register(r1, hi_res);
1883 }
1884 set_register(lr, saved_lr);
1885 set_pc(get_register(lr));
1886 break;
1887 }
1888 case kBreakpoint: {
1889 ArmDebugger dbg(this);
1890 dbg.Debug();
1891 break;
1892 }
1893 // stop uses all codes greater than 1 << 23.
1894 default: {
1895 if (svc >= (1 << 23)) {
1896 uint32_t code = svc & kStopCodeMask;
1897 if (isWatchedStop(code)) {
1898 IncreaseStopCounter(code);
1899 }
1900 // Stop if it is enabled, otherwise go on jumping over the stop
1901 // and the message address.
1902 if (isEnabledStop(code)) {
1903 ArmDebugger dbg(this);
1904 dbg.Stop(instr);
1905 } else {
1906 set_pc(get_pc() + 2 * Instruction::kInstrSize);
1907 }
1908 } else {
1909 // This is not a valid svc code.
1910 UNREACHABLE();
1911 break;
1912 }
1913 }
1914 }
1915 }
1916
1917
canonicalizeNaN(double value)1918 double Simulator::canonicalizeNaN(double value) {
1919 return (FPSCR_default_NaN_mode_ && std::isnan(value)) ?
1920 FixedDoubleArray::canonical_not_the_hole_nan_as_double() : value;
1921 }
1922
1923
1924 // Stop helper functions.
isStopInstruction(Instruction * instr)1925 bool Simulator::isStopInstruction(Instruction* instr) {
1926 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1927 }
1928
1929
isWatchedStop(uint32_t code)1930 bool Simulator::isWatchedStop(uint32_t code) {
1931 ASSERT(code <= kMaxStopCode);
1932 return code < kNumOfWatchedStops;
1933 }
1934
1935
isEnabledStop(uint32_t code)1936 bool Simulator::isEnabledStop(uint32_t code) {
1937 ASSERT(code <= kMaxStopCode);
1938 // Unwatched stops are always enabled.
1939 return !isWatchedStop(code) ||
1940 !(watched_stops_[code].count & kStopDisabledBit);
1941 }
1942
1943
EnableStop(uint32_t code)1944 void Simulator::EnableStop(uint32_t code) {
1945 ASSERT(isWatchedStop(code));
1946 if (!isEnabledStop(code)) {
1947 watched_stops_[code].count &= ~kStopDisabledBit;
1948 }
1949 }
1950
1951
DisableStop(uint32_t code)1952 void Simulator::DisableStop(uint32_t code) {
1953 ASSERT(isWatchedStop(code));
1954 if (isEnabledStop(code)) {
1955 watched_stops_[code].count |= kStopDisabledBit;
1956 }
1957 }
1958
1959
IncreaseStopCounter(uint32_t code)1960 void Simulator::IncreaseStopCounter(uint32_t code) {
1961 ASSERT(code <= kMaxStopCode);
1962 ASSERT(isWatchedStop(code));
1963 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1964 PrintF("Stop counter for code %i has overflowed.\n"
1965 "Enabling this code and reseting the counter to 0.\n", code);
1966 watched_stops_[code].count = 0;
1967 EnableStop(code);
1968 } else {
1969 watched_stops_[code].count++;
1970 }
1971 }
1972
1973
1974 // Print a stop status.
PrintStopInfo(uint32_t code)1975 void Simulator::PrintStopInfo(uint32_t code) {
1976 ASSERT(code <= kMaxStopCode);
1977 if (!isWatchedStop(code)) {
1978 PrintF("Stop not watched.");
1979 } else {
1980 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1981 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1982 // Don't print the state of unused breakpoints.
1983 if (count != 0) {
1984 if (watched_stops_[code].desc) {
1985 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
1986 code, code, state, count, watched_stops_[code].desc);
1987 } else {
1988 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
1989 code, code, state, count);
1990 }
1991 }
1992 }
1993 }
1994
1995
1996 // Handle execution based on instruction types.
1997
1998 // Instruction types 0 and 1 are both rolled into one function because they
1999 // only differ in the handling of the shifter_operand.
DecodeType01(Instruction * instr)2000 void Simulator::DecodeType01(Instruction* instr) {
2001 int type = instr->TypeValue();
2002 if ((type == 0) && instr->IsSpecialType0()) {
2003 // multiply instruction or extra loads and stores
2004 if (instr->Bits(7, 4) == 9) {
2005 if (instr->Bit(24) == 0) {
2006 // Raw field decoding here. Multiply instructions have their Rd in
2007 // funny places.
2008 int rn = instr->RnValue();
2009 int rm = instr->RmValue();
2010 int rs = instr->RsValue();
2011 int32_t rs_val = get_register(rs);
2012 int32_t rm_val = get_register(rm);
2013 if (instr->Bit(23) == 0) {
2014 if (instr->Bit(21) == 0) {
2015 // The MUL instruction description (A 4.1.33) refers to Rd as being
2016 // the destination for the operation, but it confusingly uses the
2017 // Rn field to encode it.
2018 // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
2019 int rd = rn; // Remap the rn field to the Rd register.
2020 int32_t alu_out = rm_val * rs_val;
2021 set_register(rd, alu_out);
2022 if (instr->HasS()) {
2023 SetNZFlags(alu_out);
2024 }
2025 } else {
2026 int rd = instr->RdValue();
2027 int32_t acc_value = get_register(rd);
2028 if (instr->Bit(22) == 0) {
2029 // The MLA instruction description (A 4.1.28) refers to the order
2030 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
2031 // Rn field to encode the Rd register and the Rd field to encode
2032 // the Rn register.
2033 // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
2034 int32_t mul_out = rm_val * rs_val;
2035 int32_t result = acc_value + mul_out;
2036 set_register(rn, result);
2037 } else {
2038 // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
2039 int32_t mul_out = rm_val * rs_val;
2040 int32_t result = acc_value - mul_out;
2041 set_register(rn, result);
2042 }
2043 }
2044 } else {
2045 // The signed/long multiply instructions use the terms RdHi and RdLo
2046 // when referring to the target registers. They are mapped to the Rn
2047 // and Rd fields as follows:
2048 // RdLo == Rd
2049 // RdHi == Rn (This is confusingly stored in variable rd here
2050 // because the mul instruction from above uses the
2051 // Rn field to encode the Rd register. Good luck figuring
2052 // this out without reading the ARM instruction manual
2053 // at a very detailed level.)
2054 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
2055 int rd_hi = rn; // Remap the rn field to the RdHi register.
2056 int rd_lo = instr->RdValue();
2057 int32_t hi_res = 0;
2058 int32_t lo_res = 0;
2059 if (instr->Bit(22) == 1) {
2060 int64_t left_op = static_cast<int32_t>(rm_val);
2061 int64_t right_op = static_cast<int32_t>(rs_val);
2062 uint64_t result = left_op * right_op;
2063 hi_res = static_cast<int32_t>(result >> 32);
2064 lo_res = static_cast<int32_t>(result & 0xffffffff);
2065 } else {
2066 // unsigned multiply
2067 uint64_t left_op = static_cast<uint32_t>(rm_val);
2068 uint64_t right_op = static_cast<uint32_t>(rs_val);
2069 uint64_t result = left_op * right_op;
2070 hi_res = static_cast<int32_t>(result >> 32);
2071 lo_res = static_cast<int32_t>(result & 0xffffffff);
2072 }
2073 set_register(rd_lo, lo_res);
2074 set_register(rd_hi, hi_res);
2075 if (instr->HasS()) {
2076 UNIMPLEMENTED();
2077 }
2078 }
2079 } else {
2080 UNIMPLEMENTED(); // Not used by V8.
2081 }
2082 } else {
2083 // extra load/store instructions
2084 int rd = instr->RdValue();
2085 int rn = instr->RnValue();
2086 int32_t rn_val = get_register(rn);
2087 int32_t addr = 0;
2088 if (instr->Bit(22) == 0) {
2089 int rm = instr->RmValue();
2090 int32_t rm_val = get_register(rm);
2091 switch (instr->PUField()) {
2092 case da_x: {
2093 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
2094 ASSERT(!instr->HasW());
2095 addr = rn_val;
2096 rn_val -= rm_val;
2097 set_register(rn, rn_val);
2098 break;
2099 }
2100 case ia_x: {
2101 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
2102 ASSERT(!instr->HasW());
2103 addr = rn_val;
2104 rn_val += rm_val;
2105 set_register(rn, rn_val);
2106 break;
2107 }
2108 case db_x: {
2109 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
2110 rn_val -= rm_val;
2111 addr = rn_val;
2112 if (instr->HasW()) {
2113 set_register(rn, rn_val);
2114 }
2115 break;
2116 }
2117 case ib_x: {
2118 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
2119 rn_val += rm_val;
2120 addr = rn_val;
2121 if (instr->HasW()) {
2122 set_register(rn, rn_val);
2123 }
2124 break;
2125 }
2126 default: {
2127 // The PU field is a 2-bit field.
2128 UNREACHABLE();
2129 break;
2130 }
2131 }
2132 } else {
2133 int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
2134 switch (instr->PUField()) {
2135 case da_x: {
2136 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
2137 ASSERT(!instr->HasW());
2138 addr = rn_val;
2139 rn_val -= imm_val;
2140 set_register(rn, rn_val);
2141 break;
2142 }
2143 case ia_x: {
2144 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
2145 ASSERT(!instr->HasW());
2146 addr = rn_val;
2147 rn_val += imm_val;
2148 set_register(rn, rn_val);
2149 break;
2150 }
2151 case db_x: {
2152 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
2153 rn_val -= imm_val;
2154 addr = rn_val;
2155 if (instr->HasW()) {
2156 set_register(rn, rn_val);
2157 }
2158 break;
2159 }
2160 case ib_x: {
2161 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
2162 rn_val += imm_val;
2163 addr = rn_val;
2164 if (instr->HasW()) {
2165 set_register(rn, rn_val);
2166 }
2167 break;
2168 }
2169 default: {
2170 // The PU field is a 2-bit field.
2171 UNREACHABLE();
2172 break;
2173 }
2174 }
2175 }
2176 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) {
2177 ASSERT((rd % 2) == 0);
2178 if (instr->HasH()) {
2179 // The strd instruction.
2180 int32_t value1 = get_register(rd);
2181 int32_t value2 = get_register(rd+1);
2182 WriteDW(addr, value1, value2);
2183 } else {
2184 // The ldrd instruction.
2185 int* rn_data = ReadDW(addr);
2186 set_dw_register(rd, rn_data);
2187 }
2188 } else if (instr->HasH()) {
2189 if (instr->HasSign()) {
2190 if (instr->HasL()) {
2191 int16_t val = ReadH(addr, instr);
2192 set_register(rd, val);
2193 } else {
2194 int16_t val = get_register(rd);
2195 WriteH(addr, val, instr);
2196 }
2197 } else {
2198 if (instr->HasL()) {
2199 uint16_t val = ReadHU(addr, instr);
2200 set_register(rd, val);
2201 } else {
2202 uint16_t val = get_register(rd);
2203 WriteH(addr, val, instr);
2204 }
2205 }
2206 } else {
2207 // signed byte loads
2208 ASSERT(instr->HasSign());
2209 ASSERT(instr->HasL());
2210 int8_t val = ReadB(addr);
2211 set_register(rd, val);
2212 }
2213 return;
2214 }
2215 } else if ((type == 0) && instr->IsMiscType0()) {
2216 if (instr->Bits(22, 21) == 1) {
2217 int rm = instr->RmValue();
2218 switch (instr->BitField(7, 4)) {
2219 case BX:
2220 set_pc(get_register(rm));
2221 break;
2222 case BLX: {
2223 uint32_t old_pc = get_pc();
2224 set_pc(get_register(rm));
2225 set_register(lr, old_pc + Instruction::kInstrSize);
2226 break;
2227 }
2228 case BKPT: {
2229 ArmDebugger dbg(this);
2230 PrintF("Simulator hit BKPT.\n");
2231 dbg.Debug();
2232 break;
2233 }
2234 default:
2235 UNIMPLEMENTED();
2236 }
2237 } else if (instr->Bits(22, 21) == 3) {
2238 int rm = instr->RmValue();
2239 int rd = instr->RdValue();
2240 switch (instr->BitField(7, 4)) {
2241 case CLZ: {
2242 uint32_t bits = get_register(rm);
2243 int leading_zeros = 0;
2244 if (bits == 0) {
2245 leading_zeros = 32;
2246 } else {
2247 while ((bits & 0x80000000u) == 0) {
2248 bits <<= 1;
2249 leading_zeros++;
2250 }
2251 }
2252 set_register(rd, leading_zeros);
2253 break;
2254 }
2255 default:
2256 UNIMPLEMENTED();
2257 }
2258 } else {
2259 PrintF("%08x\n", instr->InstructionBits());
2260 UNIMPLEMENTED();
2261 }
2262 } else if ((type == 1) && instr->IsNopType1()) {
2263 // NOP.
2264 } else {
2265 int rd = instr->RdValue();
2266 int rn = instr->RnValue();
2267 int32_t rn_val = get_register(rn);
2268 int32_t shifter_operand = 0;
2269 bool shifter_carry_out = 0;
2270 if (type == 0) {
2271 shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2272 } else {
2273 ASSERT(instr->TypeValue() == 1);
2274 shifter_operand = GetImm(instr, &shifter_carry_out);
2275 }
2276 int32_t alu_out;
2277
2278 switch (instr->OpcodeField()) {
2279 case AND: {
2280 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
2281 // Format(instr, "and'cond's 'rd, 'rn, 'imm");
2282 alu_out = rn_val & shifter_operand;
2283 set_register(rd, alu_out);
2284 if (instr->HasS()) {
2285 SetNZFlags(alu_out);
2286 SetCFlag(shifter_carry_out);
2287 }
2288 break;
2289 }
2290
2291 case EOR: {
2292 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
2293 // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
2294 alu_out = rn_val ^ shifter_operand;
2295 set_register(rd, alu_out);
2296 if (instr->HasS()) {
2297 SetNZFlags(alu_out);
2298 SetCFlag(shifter_carry_out);
2299 }
2300 break;
2301 }
2302
2303 case SUB: {
2304 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
2305 // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
2306 alu_out = rn_val - shifter_operand;
2307 set_register(rd, alu_out);
2308 if (instr->HasS()) {
2309 SetNZFlags(alu_out);
2310 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2311 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2312 }
2313 break;
2314 }
2315
2316 case RSB: {
2317 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
2318 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
2319 alu_out = shifter_operand - rn_val;
2320 set_register(rd, alu_out);
2321 if (instr->HasS()) {
2322 SetNZFlags(alu_out);
2323 SetCFlag(!BorrowFrom(shifter_operand, rn_val));
2324 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
2325 }
2326 break;
2327 }
2328
2329 case ADD: {
2330 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
2331 // Format(instr, "add'cond's 'rd, 'rn, 'imm");
2332 alu_out = rn_val + shifter_operand;
2333 set_register(rd, alu_out);
2334 if (instr->HasS()) {
2335 SetNZFlags(alu_out);
2336 SetCFlag(CarryFrom(rn_val, shifter_operand));
2337 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2338 }
2339 break;
2340 }
2341
2342 case ADC: {
2343 // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
2344 // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
2345 alu_out = rn_val + shifter_operand + GetCarry();
2346 set_register(rd, alu_out);
2347 if (instr->HasS()) {
2348 SetNZFlags(alu_out);
2349 SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
2350 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2351 }
2352 break;
2353 }
2354
2355 case SBC: {
2356 Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
2357 Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
2358 break;
2359 }
2360
2361 case RSC: {
2362 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
2363 Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
2364 break;
2365 }
2366
2367 case TST: {
2368 if (instr->HasS()) {
2369 // Format(instr, "tst'cond 'rn, 'shift_rm");
2370 // Format(instr, "tst'cond 'rn, 'imm");
2371 alu_out = rn_val & shifter_operand;
2372 SetNZFlags(alu_out);
2373 SetCFlag(shifter_carry_out);
2374 } else {
2375 // Format(instr, "movw'cond 'rd, 'imm").
2376 alu_out = instr->ImmedMovwMovtValue();
2377 set_register(rd, alu_out);
2378 }
2379 break;
2380 }
2381
2382 case TEQ: {
2383 if (instr->HasS()) {
2384 // Format(instr, "teq'cond 'rn, 'shift_rm");
2385 // Format(instr, "teq'cond 'rn, 'imm");
2386 alu_out = rn_val ^ shifter_operand;
2387 SetNZFlags(alu_out);
2388 SetCFlag(shifter_carry_out);
2389 } else {
2390 // Other instructions matching this pattern are handled in the
2391 // miscellaneous instructions part above.
2392 UNREACHABLE();
2393 }
2394 break;
2395 }
2396
2397 case CMP: {
2398 if (instr->HasS()) {
2399 // Format(instr, "cmp'cond 'rn, 'shift_rm");
2400 // Format(instr, "cmp'cond 'rn, 'imm");
2401 alu_out = rn_val - shifter_operand;
2402 SetNZFlags(alu_out);
2403 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2404 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2405 } else {
2406 // Format(instr, "movt'cond 'rd, 'imm").
2407 alu_out = (get_register(rd) & 0xffff) |
2408 (instr->ImmedMovwMovtValue() << 16);
2409 set_register(rd, alu_out);
2410 }
2411 break;
2412 }
2413
2414 case CMN: {
2415 if (instr->HasS()) {
2416 // Format(instr, "cmn'cond 'rn, 'shift_rm");
2417 // Format(instr, "cmn'cond 'rn, 'imm");
2418 alu_out = rn_val + shifter_operand;
2419 SetNZFlags(alu_out);
2420 SetCFlag(CarryFrom(rn_val, shifter_operand));
2421 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2422 } else {
2423 // Other instructions matching this pattern are handled in the
2424 // miscellaneous instructions part above.
2425 UNREACHABLE();
2426 }
2427 break;
2428 }
2429
2430 case ORR: {
2431 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
2432 // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
2433 alu_out = rn_val | shifter_operand;
2434 set_register(rd, alu_out);
2435 if (instr->HasS()) {
2436 SetNZFlags(alu_out);
2437 SetCFlag(shifter_carry_out);
2438 }
2439 break;
2440 }
2441
2442 case MOV: {
2443 // Format(instr, "mov'cond's 'rd, 'shift_rm");
2444 // Format(instr, "mov'cond's 'rd, 'imm");
2445 alu_out = shifter_operand;
2446 set_register(rd, alu_out);
2447 if (instr->HasS()) {
2448 SetNZFlags(alu_out);
2449 SetCFlag(shifter_carry_out);
2450 }
2451 break;
2452 }
2453
2454 case BIC: {
2455 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
2456 // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
2457 alu_out = rn_val & ~shifter_operand;
2458 set_register(rd, alu_out);
2459 if (instr->HasS()) {
2460 SetNZFlags(alu_out);
2461 SetCFlag(shifter_carry_out);
2462 }
2463 break;
2464 }
2465
2466 case MVN: {
2467 // Format(instr, "mvn'cond's 'rd, 'shift_rm");
2468 // Format(instr, "mvn'cond's 'rd, 'imm");
2469 alu_out = ~shifter_operand;
2470 set_register(rd, alu_out);
2471 if (instr->HasS()) {
2472 SetNZFlags(alu_out);
2473 SetCFlag(shifter_carry_out);
2474 }
2475 break;
2476 }
2477
2478 default: {
2479 UNREACHABLE();
2480 break;
2481 }
2482 }
2483 }
2484 }
2485
2486
DecodeType2(Instruction * instr)2487 void Simulator::DecodeType2(Instruction* instr) {
2488 int rd = instr->RdValue();
2489 int rn = instr->RnValue();
2490 int32_t rn_val = get_register(rn);
2491 int32_t im_val = instr->Offset12Value();
2492 int32_t addr = 0;
2493 switch (instr->PUField()) {
2494 case da_x: {
2495 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
2496 ASSERT(!instr->HasW());
2497 addr = rn_val;
2498 rn_val -= im_val;
2499 set_register(rn, rn_val);
2500 break;
2501 }
2502 case ia_x: {
2503 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
2504 ASSERT(!instr->HasW());
2505 addr = rn_val;
2506 rn_val += im_val;
2507 set_register(rn, rn_val);
2508 break;
2509 }
2510 case db_x: {
2511 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
2512 rn_val -= im_val;
2513 addr = rn_val;
2514 if (instr->HasW()) {
2515 set_register(rn, rn_val);
2516 }
2517 break;
2518 }
2519 case ib_x: {
2520 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
2521 rn_val += im_val;
2522 addr = rn_val;
2523 if (instr->HasW()) {
2524 set_register(rn, rn_val);
2525 }
2526 break;
2527 }
2528 default: {
2529 UNREACHABLE();
2530 break;
2531 }
2532 }
2533 if (instr->HasB()) {
2534 if (instr->HasL()) {
2535 byte val = ReadBU(addr);
2536 set_register(rd, val);
2537 } else {
2538 byte val = get_register(rd);
2539 WriteB(addr, val);
2540 }
2541 } else {
2542 if (instr->HasL()) {
2543 set_register(rd, ReadW(addr, instr));
2544 } else {
2545 WriteW(addr, get_register(rd), instr);
2546 }
2547 }
2548 }
2549
2550
DecodeType3(Instruction * instr)2551 void Simulator::DecodeType3(Instruction* instr) {
2552 int rd = instr->RdValue();
2553 int rn = instr->RnValue();
2554 int32_t rn_val = get_register(rn);
2555 bool shifter_carry_out = 0;
2556 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2557 int32_t addr = 0;
2558 switch (instr->PUField()) {
2559 case da_x: {
2560 ASSERT(!instr->HasW());
2561 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
2562 UNIMPLEMENTED();
2563 break;
2564 }
2565 case ia_x: {
2566 if (instr->Bit(4) == 0) {
2567 // Memop.
2568 } else {
2569 if (instr->Bit(5) == 0) {
2570 switch (instr->Bits(22, 21)) {
2571 case 0:
2572 if (instr->Bit(20) == 0) {
2573 if (instr->Bit(6) == 0) {
2574 // Pkhbt.
2575 uint32_t rn_val = get_register(rn);
2576 uint32_t rm_val = get_register(instr->RmValue());
2577 int32_t shift = instr->Bits(11, 7);
2578 rm_val <<= shift;
2579 set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
2580 } else {
2581 // Pkhtb.
2582 uint32_t rn_val = get_register(rn);
2583 int32_t rm_val = get_register(instr->RmValue());
2584 int32_t shift = instr->Bits(11, 7);
2585 if (shift == 0) {
2586 shift = 32;
2587 }
2588 rm_val >>= shift;
2589 set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
2590 }
2591 } else {
2592 UNIMPLEMENTED();
2593 }
2594 break;
2595 case 1:
2596 UNIMPLEMENTED();
2597 break;
2598 case 2:
2599 UNIMPLEMENTED();
2600 break;
2601 case 3: {
2602 // Usat.
2603 int32_t sat_pos = instr->Bits(20, 16);
2604 int32_t sat_val = (1 << sat_pos) - 1;
2605 int32_t shift = instr->Bits(11, 7);
2606 int32_t shift_type = instr->Bit(6);
2607 int32_t rm_val = get_register(instr->RmValue());
2608 if (shift_type == 0) { // LSL
2609 rm_val <<= shift;
2610 } else { // ASR
2611 rm_val >>= shift;
2612 }
2613 // If saturation occurs, the Q flag should be set in the CPSR.
2614 // There is no Q flag yet, and no instruction (MRS) to read the
2615 // CPSR directly.
2616 if (rm_val > sat_val) {
2617 rm_val = sat_val;
2618 } else if (rm_val < 0) {
2619 rm_val = 0;
2620 }
2621 set_register(rd, rm_val);
2622 break;
2623 }
2624 }
2625 } else {
2626 switch (instr->Bits(22, 21)) {
2627 case 0:
2628 UNIMPLEMENTED();
2629 break;
2630 case 1:
2631 UNIMPLEMENTED();
2632 break;
2633 case 2:
2634 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2635 if (instr->Bits(19, 16) == 0xF) {
2636 // Uxtb16.
2637 uint32_t rm_val = get_register(instr->RmValue());
2638 int32_t rotate = instr->Bits(11, 10);
2639 switch (rotate) {
2640 case 0:
2641 break;
2642 case 1:
2643 rm_val = (rm_val >> 8) | (rm_val << 24);
2644 break;
2645 case 2:
2646 rm_val = (rm_val >> 16) | (rm_val << 16);
2647 break;
2648 case 3:
2649 rm_val = (rm_val >> 24) | (rm_val << 8);
2650 break;
2651 }
2652 set_register(rd,
2653 (rm_val & 0xFF) | (rm_val & 0xFF0000));
2654 } else {
2655 UNIMPLEMENTED();
2656 }
2657 } else {
2658 UNIMPLEMENTED();
2659 }
2660 break;
2661 case 3:
2662 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2663 if (instr->Bits(19, 16) == 0xF) {
2664 // Uxtb.
2665 uint32_t rm_val = get_register(instr->RmValue());
2666 int32_t rotate = instr->Bits(11, 10);
2667 switch (rotate) {
2668 case 0:
2669 break;
2670 case 1:
2671 rm_val = (rm_val >> 8) | (rm_val << 24);
2672 break;
2673 case 2:
2674 rm_val = (rm_val >> 16) | (rm_val << 16);
2675 break;
2676 case 3:
2677 rm_val = (rm_val >> 24) | (rm_val << 8);
2678 break;
2679 }
2680 set_register(rd, (rm_val & 0xFF));
2681 } else {
2682 // Uxtab.
2683 uint32_t rn_val = get_register(rn);
2684 uint32_t rm_val = get_register(instr->RmValue());
2685 int32_t rotate = instr->Bits(11, 10);
2686 switch (rotate) {
2687 case 0:
2688 break;
2689 case 1:
2690 rm_val = (rm_val >> 8) | (rm_val << 24);
2691 break;
2692 case 2:
2693 rm_val = (rm_val >> 16) | (rm_val << 16);
2694 break;
2695 case 3:
2696 rm_val = (rm_val >> 24) | (rm_val << 8);
2697 break;
2698 }
2699 set_register(rd, rn_val + (rm_val & 0xFF));
2700 }
2701 } else {
2702 UNIMPLEMENTED();
2703 }
2704 break;
2705 }
2706 }
2707 return;
2708 }
2709 break;
2710 }
2711 case db_x: {
2712 if (FLAG_enable_sudiv) {
2713 if (!instr->HasW()) {
2714 if (instr->Bits(5, 4) == 0x1) {
2715 if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
2716 // sdiv (in V8 notation matching ARM ISA format) rn = rm/rs
2717 // Format(instr, "'sdiv'cond'b 'rn, 'rm, 'rs);
2718 int rm = instr->RmValue();
2719 int32_t rm_val = get_register(rm);
2720 int rs = instr->RsValue();
2721 int32_t rs_val = get_register(rs);
2722 int32_t ret_val = 0;
2723 ASSERT(rs_val != 0);
2724 if ((rm_val == kMinInt) && (rs_val == -1)) {
2725 ret_val = kMinInt;
2726 } else {
2727 ret_val = rm_val / rs_val;
2728 }
2729 set_register(rn, ret_val);
2730 return;
2731 }
2732 }
2733 }
2734 }
2735 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
2736 addr = rn_val - shifter_operand;
2737 if (instr->HasW()) {
2738 set_register(rn, addr);
2739 }
2740 break;
2741 }
2742 case ib_x: {
2743 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
2744 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
2745 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2746 uint32_t msbit = widthminus1 + lsbit;
2747 if (msbit <= 31) {
2748 if (instr->Bit(22)) {
2749 // ubfx - unsigned bitfield extract.
2750 uint32_t rm_val =
2751 static_cast<uint32_t>(get_register(instr->RmValue()));
2752 uint32_t extr_val = rm_val << (31 - msbit);
2753 extr_val = extr_val >> (31 - widthminus1);
2754 set_register(instr->RdValue(), extr_val);
2755 } else {
2756 // sbfx - signed bitfield extract.
2757 int32_t rm_val = get_register(instr->RmValue());
2758 int32_t extr_val = rm_val << (31 - msbit);
2759 extr_val = extr_val >> (31 - widthminus1);
2760 set_register(instr->RdValue(), extr_val);
2761 }
2762 } else {
2763 UNREACHABLE();
2764 }
2765 return;
2766 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
2767 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2768 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
2769 if (msbit >= lsbit) {
2770 // bfc or bfi - bitfield clear/insert.
2771 uint32_t rd_val =
2772 static_cast<uint32_t>(get_register(instr->RdValue()));
2773 uint32_t bitcount = msbit - lsbit + 1;
2774 uint32_t mask = (1 << bitcount) - 1;
2775 rd_val &= ~(mask << lsbit);
2776 if (instr->RmValue() != 15) {
2777 // bfi - bitfield insert.
2778 uint32_t rm_val =
2779 static_cast<uint32_t>(get_register(instr->RmValue()));
2780 rm_val &= mask;
2781 rd_val |= rm_val << lsbit;
2782 }
2783 set_register(instr->RdValue(), rd_val);
2784 } else {
2785 UNREACHABLE();
2786 }
2787 return;
2788 } else {
2789 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
2790 addr = rn_val + shifter_operand;
2791 if (instr->HasW()) {
2792 set_register(rn, addr);
2793 }
2794 }
2795 break;
2796 }
2797 default: {
2798 UNREACHABLE();
2799 break;
2800 }
2801 }
2802 if (instr->HasB()) {
2803 if (instr->HasL()) {
2804 uint8_t byte = ReadB(addr);
2805 set_register(rd, byte);
2806 } else {
2807 uint8_t byte = get_register(rd);
2808 WriteB(addr, byte);
2809 }
2810 } else {
2811 if (instr->HasL()) {
2812 set_register(rd, ReadW(addr, instr));
2813 } else {
2814 WriteW(addr, get_register(rd), instr);
2815 }
2816 }
2817 }
2818
2819
DecodeType4(Instruction * instr)2820 void Simulator::DecodeType4(Instruction* instr) {
2821 ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode
2822 if (instr->HasL()) {
2823 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
2824 HandleRList(instr, true);
2825 } else {
2826 // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
2827 HandleRList(instr, false);
2828 }
2829 }
2830
2831
DecodeType5(Instruction * instr)2832 void Simulator::DecodeType5(Instruction* instr) {
2833 // Format(instr, "b'l'cond 'target");
2834 int off = (instr->SImmed24Value() << 2);
2835 intptr_t pc_address = get_pc();
2836 if (instr->HasLink()) {
2837 set_register(lr, pc_address + Instruction::kInstrSize);
2838 }
2839 int pc_reg = get_register(pc);
2840 set_pc(pc_reg + off);
2841 }
2842
2843
DecodeType6(Instruction * instr)2844 void Simulator::DecodeType6(Instruction* instr) {
2845 DecodeType6CoprocessorIns(instr);
2846 }
2847
2848
DecodeType7(Instruction * instr)2849 void Simulator::DecodeType7(Instruction* instr) {
2850 if (instr->Bit(24) == 1) {
2851 SoftwareInterrupt(instr);
2852 } else {
2853 DecodeTypeVFP(instr);
2854 }
2855 }
2856
2857
2858 // void Simulator::DecodeTypeVFP(Instruction* instr)
2859 // The Following ARMv7 VFPv instructions are currently supported.
2860 // vmov :Sn = Rt
2861 // vmov :Rt = Sn
2862 // vcvt: Dd = Sm
2863 // vcvt: Sd = Dm
2864 // vcvt.f64.s32 Dd, Dd, #<fbits>
2865 // Dd = vabs(Dm)
2866 // Dd = vneg(Dm)
2867 // Dd = vadd(Dn, Dm)
2868 // Dd = vsub(Dn, Dm)
2869 // Dd = vmul(Dn, Dm)
2870 // Dd = vdiv(Dn, Dm)
2871 // vcmp(Dd, Dm)
2872 // vmrs
2873 // Dd = vsqrt(Dm)
DecodeTypeVFP(Instruction * instr)2874 void Simulator::DecodeTypeVFP(Instruction* instr) {
2875 ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
2876 ASSERT(instr->Bits(11, 9) == 0x5);
2877
2878 // Obtain double precision register codes.
2879 int vm = instr->VFPMRegValue(kDoublePrecision);
2880 int vd = instr->VFPDRegValue(kDoublePrecision);
2881 int vn = instr->VFPNRegValue(kDoublePrecision);
2882
2883 if (instr->Bit(4) == 0) {
2884 if (instr->Opc1Value() == 0x7) {
2885 // Other data processing instructions
2886 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
2887 // vmov register to register.
2888 if (instr->SzValue() == 0x1) {
2889 int m = instr->VFPMRegValue(kDoublePrecision);
2890 int d = instr->VFPDRegValue(kDoublePrecision);
2891 set_d_register_from_double(d, get_double_from_d_register(m));
2892 } else {
2893 int m = instr->VFPMRegValue(kSinglePrecision);
2894 int d = instr->VFPDRegValue(kSinglePrecision);
2895 set_s_register_from_float(d, get_float_from_s_register(m));
2896 }
2897 } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
2898 // vabs
2899 double dm_value = get_double_from_d_register(vm);
2900 double dd_value = std::fabs(dm_value);
2901 dd_value = canonicalizeNaN(dd_value);
2902 set_d_register_from_double(vd, dd_value);
2903 } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
2904 // vneg
2905 double dm_value = get_double_from_d_register(vm);
2906 double dd_value = -dm_value;
2907 dd_value = canonicalizeNaN(dd_value);
2908 set_d_register_from_double(vd, dd_value);
2909 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
2910 DecodeVCVTBetweenDoubleAndSingle(instr);
2911 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
2912 DecodeVCVTBetweenFloatingPointAndInteger(instr);
2913 } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
2914 (instr->Bit(8) == 1)) {
2915 // vcvt.f64.s32 Dd, Dd, #<fbits>
2916 int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
2917 int fixed_value = get_sinteger_from_s_register(vd * 2);
2918 double divide = 1 << fraction_bits;
2919 set_d_register_from_double(vd, fixed_value / divide);
2920 } else if (((instr->Opc2Value() >> 1) == 0x6) &&
2921 (instr->Opc3Value() & 0x1)) {
2922 DecodeVCVTBetweenFloatingPointAndInteger(instr);
2923 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
2924 (instr->Opc3Value() & 0x1)) {
2925 DecodeVCMP(instr);
2926 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
2927 // vsqrt
2928 double dm_value = get_double_from_d_register(vm);
2929 double dd_value = std::sqrt(dm_value);
2930 dd_value = canonicalizeNaN(dd_value);
2931 set_d_register_from_double(vd, dd_value);
2932 } else if (instr->Opc3Value() == 0x0) {
2933 // vmov immediate.
2934 if (instr->SzValue() == 0x1) {
2935 set_d_register_from_double(vd, instr->DoubleImmedVmov());
2936 } else {
2937 UNREACHABLE(); // Not used by v8.
2938 }
2939 } else {
2940 UNREACHABLE(); // Not used by V8.
2941 }
2942 } else if (instr->Opc1Value() == 0x3) {
2943 if (instr->SzValue() != 0x1) {
2944 UNREACHABLE(); // Not used by V8.
2945 }
2946
2947 if (instr->Opc3Value() & 0x1) {
2948 // vsub
2949 double dn_value = get_double_from_d_register(vn);
2950 double dm_value = get_double_from_d_register(vm);
2951 double dd_value = dn_value - dm_value;
2952 dd_value = canonicalizeNaN(dd_value);
2953 set_d_register_from_double(vd, dd_value);
2954 } else {
2955 // vadd
2956 double dn_value = get_double_from_d_register(vn);
2957 double dm_value = get_double_from_d_register(vm);
2958 double dd_value = dn_value + dm_value;
2959 dd_value = canonicalizeNaN(dd_value);
2960 set_d_register_from_double(vd, dd_value);
2961 }
2962 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
2963 // vmul
2964 if (instr->SzValue() != 0x1) {
2965 UNREACHABLE(); // Not used by V8.
2966 }
2967
2968 double dn_value = get_double_from_d_register(vn);
2969 double dm_value = get_double_from_d_register(vm);
2970 double dd_value = dn_value * dm_value;
2971 dd_value = canonicalizeNaN(dd_value);
2972 set_d_register_from_double(vd, dd_value);
2973 } else if ((instr->Opc1Value() == 0x0)) {
2974 // vmla, vmls
2975 const bool is_vmls = (instr->Opc3Value() & 0x1);
2976
2977 if (instr->SzValue() != 0x1) {
2978 UNREACHABLE(); // Not used by V8.
2979 }
2980
2981 const double dd_val = get_double_from_d_register(vd);
2982 const double dn_val = get_double_from_d_register(vn);
2983 const double dm_val = get_double_from_d_register(vm);
2984
2985 // Note: we do the mul and add/sub in separate steps to avoid getting a
2986 // result with too high precision.
2987 set_d_register_from_double(vd, dn_val * dm_val);
2988 if (is_vmls) {
2989 set_d_register_from_double(
2990 vd,
2991 canonicalizeNaN(dd_val - get_double_from_d_register(vd)));
2992 } else {
2993 set_d_register_from_double(
2994 vd,
2995 canonicalizeNaN(dd_val + get_double_from_d_register(vd)));
2996 }
2997 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
2998 // vdiv
2999 if (instr->SzValue() != 0x1) {
3000 UNREACHABLE(); // Not used by V8.
3001 }
3002
3003 double dn_value = get_double_from_d_register(vn);
3004 double dm_value = get_double_from_d_register(vm);
3005 double dd_value = dn_value / dm_value;
3006 div_zero_vfp_flag_ = (dm_value == 0);
3007 dd_value = canonicalizeNaN(dd_value);
3008 set_d_register_from_double(vd, dd_value);
3009 } else {
3010 UNIMPLEMENTED(); // Not used by V8.
3011 }
3012 } else {
3013 if ((instr->VCValue() == 0x0) &&
3014 (instr->VAValue() == 0x0)) {
3015 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
3016 } else if ((instr->VLValue() == 0x0) &&
3017 (instr->VCValue() == 0x1) &&
3018 (instr->Bit(23) == 0x0)) {
3019 // vmov (ARM core register to scalar)
3020 int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3021 double dd_value = get_double_from_d_register(vd);
3022 int32_t data[2];
3023 memcpy(data, &dd_value, 8);
3024 data[instr->Bit(21)] = get_register(instr->RtValue());
3025 memcpy(&dd_value, data, 8);
3026 set_d_register_from_double(vd, dd_value);
3027 } else if ((instr->VLValue() == 0x1) &&
3028 (instr->VCValue() == 0x1) &&
3029 (instr->Bit(23) == 0x0)) {
3030 // vmov (scalar to ARM core register)
3031 int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3032 double dn_value = get_double_from_d_register(vn);
3033 int32_t data[2];
3034 memcpy(data, &dn_value, 8);
3035 set_register(instr->RtValue(), data[instr->Bit(21)]);
3036 } else if ((instr->VLValue() == 0x1) &&
3037 (instr->VCValue() == 0x0) &&
3038 (instr->VAValue() == 0x7) &&
3039 (instr->Bits(19, 16) == 0x1)) {
3040 // vmrs
3041 uint32_t rt = instr->RtValue();
3042 if (rt == 0xF) {
3043 Copy_FPSCR_to_APSR();
3044 } else {
3045 // Emulate FPSCR from the Simulator flags.
3046 uint32_t fpscr = (n_flag_FPSCR_ << 31) |
3047 (z_flag_FPSCR_ << 30) |
3048 (c_flag_FPSCR_ << 29) |
3049 (v_flag_FPSCR_ << 28) |
3050 (FPSCR_default_NaN_mode_ << 25) |
3051 (inexact_vfp_flag_ << 4) |
3052 (underflow_vfp_flag_ << 3) |
3053 (overflow_vfp_flag_ << 2) |
3054 (div_zero_vfp_flag_ << 1) |
3055 (inv_op_vfp_flag_ << 0) |
3056 (FPSCR_rounding_mode_);
3057 set_register(rt, fpscr);
3058 }
3059 } else if ((instr->VLValue() == 0x0) &&
3060 (instr->VCValue() == 0x0) &&
3061 (instr->VAValue() == 0x7) &&
3062 (instr->Bits(19, 16) == 0x1)) {
3063 // vmsr
3064 uint32_t rt = instr->RtValue();
3065 if (rt == pc) {
3066 UNREACHABLE();
3067 } else {
3068 uint32_t rt_value = get_register(rt);
3069 n_flag_FPSCR_ = (rt_value >> 31) & 1;
3070 z_flag_FPSCR_ = (rt_value >> 30) & 1;
3071 c_flag_FPSCR_ = (rt_value >> 29) & 1;
3072 v_flag_FPSCR_ = (rt_value >> 28) & 1;
3073 FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
3074 inexact_vfp_flag_ = (rt_value >> 4) & 1;
3075 underflow_vfp_flag_ = (rt_value >> 3) & 1;
3076 overflow_vfp_flag_ = (rt_value >> 2) & 1;
3077 div_zero_vfp_flag_ = (rt_value >> 1) & 1;
3078 inv_op_vfp_flag_ = (rt_value >> 0) & 1;
3079 FPSCR_rounding_mode_ =
3080 static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask);
3081 }
3082 } else {
3083 UNIMPLEMENTED(); // Not used by V8.
3084 }
3085 }
3086 }
3087
3088
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction * instr)3089 void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
3090 Instruction* instr) {
3091 ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
3092 (instr->VAValue() == 0x0));
3093
3094 int t = instr->RtValue();
3095 int n = instr->VFPNRegValue(kSinglePrecision);
3096 bool to_arm_register = (instr->VLValue() == 0x1);
3097
3098 if (to_arm_register) {
3099 int32_t int_value = get_sinteger_from_s_register(n);
3100 set_register(t, int_value);
3101 } else {
3102 int32_t rs_val = get_register(t);
3103 set_s_register_from_sinteger(n, rs_val);
3104 }
3105 }
3106
3107
DecodeVCMP(Instruction * instr)3108 void Simulator::DecodeVCMP(Instruction* instr) {
3109 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3110 ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
3111 (instr->Opc3Value() & 0x1));
3112 // Comparison.
3113
3114 VFPRegPrecision precision = kSinglePrecision;
3115 if (instr->SzValue() == 1) {
3116 precision = kDoublePrecision;
3117 }
3118
3119 int d = instr->VFPDRegValue(precision);
3120 int m = 0;
3121 if (instr->Opc2Value() == 0x4) {
3122 m = instr->VFPMRegValue(precision);
3123 }
3124
3125 if (precision == kDoublePrecision) {
3126 double dd_value = get_double_from_d_register(d);
3127 double dm_value = 0.0;
3128 if (instr->Opc2Value() == 0x4) {
3129 dm_value = get_double_from_d_register(m);
3130 }
3131
3132 // Raise exceptions for quiet NaNs if necessary.
3133 if (instr->Bit(7) == 1) {
3134 if (std::isnan(dd_value)) {
3135 inv_op_vfp_flag_ = true;
3136 }
3137 }
3138
3139 Compute_FPSCR_Flags(dd_value, dm_value);
3140 } else {
3141 UNIMPLEMENTED(); // Not used by V8.
3142 }
3143 }
3144
3145
DecodeVCVTBetweenDoubleAndSingle(Instruction * instr)3146 void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
3147 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3148 ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
3149
3150 VFPRegPrecision dst_precision = kDoublePrecision;
3151 VFPRegPrecision src_precision = kSinglePrecision;
3152 if (instr->SzValue() == 1) {
3153 dst_precision = kSinglePrecision;
3154 src_precision = kDoublePrecision;
3155 }
3156
3157 int dst = instr->VFPDRegValue(dst_precision);
3158 int src = instr->VFPMRegValue(src_precision);
3159
3160 if (dst_precision == kSinglePrecision) {
3161 double val = get_double_from_d_register(src);
3162 set_s_register_from_float(dst, static_cast<float>(val));
3163 } else {
3164 float val = get_float_from_s_register(src);
3165 set_d_register_from_double(dst, static_cast<double>(val));
3166 }
3167 }
3168
get_inv_op_vfp_flag(VFPRoundingMode mode,double val,bool unsigned_)3169 bool get_inv_op_vfp_flag(VFPRoundingMode mode,
3170 double val,
3171 bool unsigned_) {
3172 ASSERT((mode == RN) || (mode == RM) || (mode == RZ));
3173 double max_uint = static_cast<double>(0xffffffffu);
3174 double max_int = static_cast<double>(kMaxInt);
3175 double min_int = static_cast<double>(kMinInt);
3176
3177 // Check for NaN.
3178 if (val != val) {
3179 return true;
3180 }
3181
3182 // Check for overflow. This code works because 32bit integers can be
3183 // exactly represented by ieee-754 64bit floating-point values.
3184 switch (mode) {
3185 case RN:
3186 return unsigned_ ? (val >= (max_uint + 0.5)) ||
3187 (val < -0.5)
3188 : (val >= (max_int + 0.5)) ||
3189 (val < (min_int - 0.5));
3190
3191 case RM:
3192 return unsigned_ ? (val >= (max_uint + 1.0)) ||
3193 (val < 0)
3194 : (val >= (max_int + 1.0)) ||
3195 (val < min_int);
3196
3197 case RZ:
3198 return unsigned_ ? (val >= (max_uint + 1.0)) ||
3199 (val <= -1)
3200 : (val >= (max_int + 1.0)) ||
3201 (val <= (min_int - 1.0));
3202 default:
3203 UNREACHABLE();
3204 return true;
3205 }
3206 }
3207
3208
3209 // We call this function only if we had a vfp invalid exception.
3210 // It returns the correct saturated value.
VFPConversionSaturate(double val,bool unsigned_res)3211 int VFPConversionSaturate(double val, bool unsigned_res) {
3212 if (val != val) {
3213 return 0;
3214 } else {
3215 if (unsigned_res) {
3216 return (val < 0) ? 0 : 0xffffffffu;
3217 } else {
3218 return (val < 0) ? kMinInt : kMaxInt;
3219 }
3220 }
3221 }
3222
3223
DecodeVCVTBetweenFloatingPointAndInteger(Instruction * instr)3224 void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
3225 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
3226 (instr->Bits(27, 23) == 0x1D));
3227 ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
3228 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
3229
3230 // Conversion between floating-point and integer.
3231 bool to_integer = (instr->Bit(18) == 1);
3232
3233 VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision
3234 : kSinglePrecision;
3235
3236 if (to_integer) {
3237 // We are playing with code close to the C++ standard's limits below,
3238 // hence the very simple code and heavy checks.
3239 //
3240 // Note:
3241 // C++ defines default type casting from floating point to integer as
3242 // (close to) rounding toward zero ("fractional part discarded").
3243
3244 int dst = instr->VFPDRegValue(kSinglePrecision);
3245 int src = instr->VFPMRegValue(src_precision);
3246
3247 // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
3248 // mode or the default Round to Zero mode.
3249 VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_
3250 : RZ;
3251 ASSERT((mode == RM) || (mode == RZ) || (mode == RN));
3252
3253 bool unsigned_integer = (instr->Bit(16) == 0);
3254 bool double_precision = (src_precision == kDoublePrecision);
3255
3256 double val = double_precision ? get_double_from_d_register(src)
3257 : get_float_from_s_register(src);
3258
3259 int temp = unsigned_integer ? static_cast<uint32_t>(val)
3260 : static_cast<int32_t>(val);
3261
3262 inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
3263
3264 double abs_diff =
3265 unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp))
3266 : std::fabs(val - temp);
3267
3268 inexact_vfp_flag_ = (abs_diff != 0);
3269
3270 if (inv_op_vfp_flag_) {
3271 temp = VFPConversionSaturate(val, unsigned_integer);
3272 } else {
3273 switch (mode) {
3274 case RN: {
3275 int val_sign = (val > 0) ? 1 : -1;
3276 if (abs_diff > 0.5) {
3277 temp += val_sign;
3278 } else if (abs_diff == 0.5) {
3279 // Round to even if exactly halfway.
3280 temp = ((temp % 2) == 0) ? temp : temp + val_sign;
3281 }
3282 break;
3283 }
3284
3285 case RM:
3286 temp = temp > val ? temp - 1 : temp;
3287 break;
3288
3289 case RZ:
3290 // Nothing to do.
3291 break;
3292
3293 default:
3294 UNREACHABLE();
3295 }
3296 }
3297
3298 // Update the destination register.
3299 set_s_register_from_sinteger(dst, temp);
3300
3301 } else {
3302 bool unsigned_integer = (instr->Bit(7) == 0);
3303
3304 int dst = instr->VFPDRegValue(src_precision);
3305 int src = instr->VFPMRegValue(kSinglePrecision);
3306
3307 int val = get_sinteger_from_s_register(src);
3308
3309 if (src_precision == kDoublePrecision) {
3310 if (unsigned_integer) {
3311 set_d_register_from_double(
3312 dst, static_cast<double>(static_cast<uint32_t>(val)));
3313 } else {
3314 set_d_register_from_double(dst, static_cast<double>(val));
3315 }
3316 } else {
3317 if (unsigned_integer) {
3318 set_s_register_from_float(
3319 dst, static_cast<float>(static_cast<uint32_t>(val)));
3320 } else {
3321 set_s_register_from_float(dst, static_cast<float>(val));
3322 }
3323 }
3324 }
3325 }
3326
3327
3328 // void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
3329 // Decode Type 6 coprocessor instructions.
3330 // Dm = vmov(Rt, Rt2)
3331 // <Rt, Rt2> = vmov(Dm)
3332 // Ddst = MEM(Rbase + 4*offset).
3333 // MEM(Rbase + 4*offset) = Dsrc.
DecodeType6CoprocessorIns(Instruction * instr)3334 void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
3335 ASSERT((instr->TypeValue() == 6));
3336
3337 if (instr->CoprocessorValue() == 0xA) {
3338 switch (instr->OpcodeValue()) {
3339 case 0x8:
3340 case 0xA:
3341 case 0xC:
3342 case 0xE: { // Load and store single precision float to memory.
3343 int rn = instr->RnValue();
3344 int vd = instr->VFPDRegValue(kSinglePrecision);
3345 int offset = instr->Immed8Value();
3346 if (!instr->HasU()) {
3347 offset = -offset;
3348 }
3349
3350 int32_t address = get_register(rn) + 4 * offset;
3351 if (instr->HasL()) {
3352 // Load double from memory: vldr.
3353 set_s_register_from_sinteger(vd, ReadW(address, instr));
3354 } else {
3355 // Store double to memory: vstr.
3356 WriteW(address, get_sinteger_from_s_register(vd), instr);
3357 }
3358 break;
3359 }
3360 case 0x4:
3361 case 0x5:
3362 case 0x6:
3363 case 0x7:
3364 case 0x9:
3365 case 0xB:
3366 // Load/store multiple single from memory: vldm/vstm.
3367 HandleVList(instr);
3368 break;
3369 default:
3370 UNIMPLEMENTED(); // Not used by V8.
3371 }
3372 } else if (instr->CoprocessorValue() == 0xB) {
3373 switch (instr->OpcodeValue()) {
3374 case 0x2:
3375 // Load and store double to two GP registers
3376 if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
3377 UNIMPLEMENTED(); // Not used by V8.
3378 } else {
3379 int rt = instr->RtValue();
3380 int rn = instr->RnValue();
3381 int vm = instr->VFPMRegValue(kDoublePrecision);
3382 if (instr->HasL()) {
3383 int32_t data[2];
3384 double d = get_double_from_d_register(vm);
3385 memcpy(data, &d, 8);
3386 set_register(rt, data[0]);
3387 set_register(rn, data[1]);
3388 } else {
3389 int32_t data[] = { get_register(rt), get_register(rn) };
3390 double d;
3391 memcpy(&d, data, 8);
3392 set_d_register_from_double(vm, d);
3393 }
3394 }
3395 break;
3396 case 0x8:
3397 case 0xA:
3398 case 0xC:
3399 case 0xE: { // Load and store double to memory.
3400 int rn = instr->RnValue();
3401 int vd = instr->VFPDRegValue(kDoublePrecision);
3402 int offset = instr->Immed8Value();
3403 if (!instr->HasU()) {
3404 offset = -offset;
3405 }
3406 int32_t address = get_register(rn) + 4 * offset;
3407 if (instr->HasL()) {
3408 // Load double from memory: vldr.
3409 int32_t data[] = {
3410 ReadW(address, instr),
3411 ReadW(address + 4, instr)
3412 };
3413 double val;
3414 memcpy(&val, data, 8);
3415 set_d_register_from_double(vd, val);
3416 } else {
3417 // Store double to memory: vstr.
3418 int32_t data[2];
3419 double val = get_double_from_d_register(vd);
3420 memcpy(data, &val, 8);
3421 WriteW(address, data[0], instr);
3422 WriteW(address + 4, data[1], instr);
3423 }
3424 break;
3425 }
3426 case 0x4:
3427 case 0x5:
3428 case 0x6:
3429 case 0x7:
3430 case 0x9:
3431 case 0xB:
3432 // Load/store multiple double from memory: vldm/vstm.
3433 HandleVList(instr);
3434 break;
3435 default:
3436 UNIMPLEMENTED(); // Not used by V8.
3437 }
3438 } else {
3439 UNIMPLEMENTED(); // Not used by V8.
3440 }
3441 }
3442
3443
DecodeSpecialCondition(Instruction * instr)3444 void Simulator::DecodeSpecialCondition(Instruction* instr) {
3445 switch (instr->SpecialValue()) {
3446 case 5:
3447 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3448 (instr->Bit(4) == 1)) {
3449 // vmovl signed
3450 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3451 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3452 int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3453 int imm3 = instr->Bits(21, 19);
3454 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3455 int esize = 8 * imm3;
3456 int elements = 64 / esize;
3457 int8_t from[8];
3458 get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3459 int16_t to[8];
3460 int e = 0;
3461 while (e < elements) {
3462 to[e] = from[e];
3463 e++;
3464 }
3465 set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3466 } else {
3467 UNIMPLEMENTED();
3468 }
3469 break;
3470 case 7:
3471 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3472 (instr->Bit(4) == 1)) {
3473 // vmovl unsigned
3474 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3475 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3476 int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3477 int imm3 = instr->Bits(21, 19);
3478 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3479 int esize = 8 * imm3;
3480 int elements = 64 / esize;
3481 uint8_t from[8];
3482 get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3483 uint16_t to[8];
3484 int e = 0;
3485 while (e < elements) {
3486 to[e] = from[e];
3487 e++;
3488 }
3489 set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3490 } else {
3491 UNIMPLEMENTED();
3492 }
3493 break;
3494 case 8:
3495 if (instr->Bits(21, 20) == 0) {
3496 // vst1
3497 int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3498 int Rn = instr->VnValue();
3499 int type = instr->Bits(11, 8);
3500 int Rm = instr->VmValue();
3501 int32_t address = get_register(Rn);
3502 int regs = 0;
3503 switch (type) {
3504 case nlt_1:
3505 regs = 1;
3506 break;
3507 case nlt_2:
3508 regs = 2;
3509 break;
3510 case nlt_3:
3511 regs = 3;
3512 break;
3513 case nlt_4:
3514 regs = 4;
3515 break;
3516 default:
3517 UNIMPLEMENTED();
3518 break;
3519 }
3520 int r = 0;
3521 while (r < regs) {
3522 uint32_t data[2];
3523 get_d_register(Vd + r, data);
3524 WriteW(address, data[0], instr);
3525 WriteW(address + 4, data[1], instr);
3526 address += 8;
3527 r++;
3528 }
3529 if (Rm != 15) {
3530 if (Rm == 13) {
3531 set_register(Rn, address);
3532 } else {
3533 set_register(Rn, get_register(Rn) + get_register(Rm));
3534 }
3535 }
3536 } else if (instr->Bits(21, 20) == 2) {
3537 // vld1
3538 int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3539 int Rn = instr->VnValue();
3540 int type = instr->Bits(11, 8);
3541 int Rm = instr->VmValue();
3542 int32_t address = get_register(Rn);
3543 int regs = 0;
3544 switch (type) {
3545 case nlt_1:
3546 regs = 1;
3547 break;
3548 case nlt_2:
3549 regs = 2;
3550 break;
3551 case nlt_3:
3552 regs = 3;
3553 break;
3554 case nlt_4:
3555 regs = 4;
3556 break;
3557 default:
3558 UNIMPLEMENTED();
3559 break;
3560 }
3561 int r = 0;
3562 while (r < regs) {
3563 uint32_t data[2];
3564 data[0] = ReadW(address, instr);
3565 data[1] = ReadW(address + 4, instr);
3566 set_d_register(Vd + r, data);
3567 address += 8;
3568 r++;
3569 }
3570 if (Rm != 15) {
3571 if (Rm == 13) {
3572 set_register(Rn, address);
3573 } else {
3574 set_register(Rn, get_register(Rn) + get_register(Rm));
3575 }
3576 }
3577 } else {
3578 UNIMPLEMENTED();
3579 }
3580 break;
3581 case 0xA:
3582 case 0xB:
3583 if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) {
3584 // pld: ignore instruction.
3585 } else {
3586 UNIMPLEMENTED();
3587 }
3588 break;
3589 default:
3590 UNIMPLEMENTED();
3591 break;
3592 }
3593 }
3594
3595
3596 // Executes the current instruction.
InstructionDecode(Instruction * instr)3597 void Simulator::InstructionDecode(Instruction* instr) {
3598 if (v8::internal::FLAG_check_icache) {
3599 CheckICache(isolate_->simulator_i_cache(), instr);
3600 }
3601 pc_modified_ = false;
3602 if (::v8::internal::FLAG_trace_sim) {
3603 disasm::NameConverter converter;
3604 disasm::Disassembler dasm(converter);
3605 // use a reasonably large buffer
3606 v8::internal::EmbeddedVector<char, 256> buffer;
3607 dasm.InstructionDecode(buffer,
3608 reinterpret_cast<byte*>(instr));
3609 PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), buffer.start());
3610 }
3611 if (instr->ConditionField() == kSpecialCondition) {
3612 DecodeSpecialCondition(instr);
3613 } else if (ConditionallyExecute(instr)) {
3614 switch (instr->TypeValue()) {
3615 case 0:
3616 case 1: {
3617 DecodeType01(instr);
3618 break;
3619 }
3620 case 2: {
3621 DecodeType2(instr);
3622 break;
3623 }
3624 case 3: {
3625 DecodeType3(instr);
3626 break;
3627 }
3628 case 4: {
3629 DecodeType4(instr);
3630 break;
3631 }
3632 case 5: {
3633 DecodeType5(instr);
3634 break;
3635 }
3636 case 6: {
3637 DecodeType6(instr);
3638 break;
3639 }
3640 case 7: {
3641 DecodeType7(instr);
3642 break;
3643 }
3644 default: {
3645 UNIMPLEMENTED();
3646 break;
3647 }
3648 }
3649 // If the instruction is a non taken conditional stop, we need to skip the
3650 // inlined message address.
3651 } else if (instr->IsStop()) {
3652 set_pc(get_pc() + 2 * Instruction::kInstrSize);
3653 }
3654 if (!pc_modified_) {
3655 set_register(pc, reinterpret_cast<int32_t>(instr)
3656 + Instruction::kInstrSize);
3657 }
3658 }
3659
3660
Execute()3661 void Simulator::Execute() {
3662 // Get the PC to simulate. Cannot use the accessor here as we need the
3663 // raw PC value and not the one used as input to arithmetic instructions.
3664 int program_counter = get_pc();
3665
3666 if (::v8::internal::FLAG_stop_sim_at == 0) {
3667 // Fast version of the dispatch loop without checking whether the simulator
3668 // should be stopping at a particular executed instruction.
3669 while (program_counter != end_sim_pc) {
3670 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3671 icount_++;
3672 InstructionDecode(instr);
3673 program_counter = get_pc();
3674 }
3675 } else {
3676 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3677 // we reach the particular instuction count.
3678 while (program_counter != end_sim_pc) {
3679 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3680 icount_++;
3681 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3682 ArmDebugger dbg(this);
3683 dbg.Debug();
3684 } else {
3685 InstructionDecode(instr);
3686 }
3687 program_counter = get_pc();
3688 }
3689 }
3690 }
3691
3692
CallInternal(byte * entry)3693 void Simulator::CallInternal(byte* entry) {
3694 // Prepare to execute the code at entry
3695 set_register(pc, reinterpret_cast<int32_t>(entry));
3696 // Put down marker for end of simulation. The simulator will stop simulation
3697 // when the PC reaches this value. By saving the "end simulation" value into
3698 // the LR the simulation stops when returning to this call point.
3699 set_register(lr, end_sim_pc);
3700
3701 // Remember the values of callee-saved registers.
3702 // The code below assumes that r9 is not used as sb (static base) in
3703 // simulator code and therefore is regarded as a callee-saved register.
3704 int32_t r4_val = get_register(r4);
3705 int32_t r5_val = get_register(r5);
3706 int32_t r6_val = get_register(r6);
3707 int32_t r7_val = get_register(r7);
3708 int32_t r8_val = get_register(r8);
3709 int32_t r9_val = get_register(r9);
3710 int32_t r10_val = get_register(r10);
3711 int32_t r11_val = get_register(r11);
3712
3713 // Set up the callee-saved registers with a known value. To be able to check
3714 // that they are preserved properly across JS execution.
3715 int32_t callee_saved_value = icount_;
3716 set_register(r4, callee_saved_value);
3717 set_register(r5, callee_saved_value);
3718 set_register(r6, callee_saved_value);
3719 set_register(r7, callee_saved_value);
3720 set_register(r8, callee_saved_value);
3721 set_register(r9, callee_saved_value);
3722 set_register(r10, callee_saved_value);
3723 set_register(r11, callee_saved_value);
3724
3725 // Start the simulation
3726 Execute();
3727
3728 // Check that the callee-saved registers have been preserved.
3729 CHECK_EQ(callee_saved_value, get_register(r4));
3730 CHECK_EQ(callee_saved_value, get_register(r5));
3731 CHECK_EQ(callee_saved_value, get_register(r6));
3732 CHECK_EQ(callee_saved_value, get_register(r7));
3733 CHECK_EQ(callee_saved_value, get_register(r8));
3734 CHECK_EQ(callee_saved_value, get_register(r9));
3735 CHECK_EQ(callee_saved_value, get_register(r10));
3736 CHECK_EQ(callee_saved_value, get_register(r11));
3737
3738 // Restore callee-saved registers with the original value.
3739 set_register(r4, r4_val);
3740 set_register(r5, r5_val);
3741 set_register(r6, r6_val);
3742 set_register(r7, r7_val);
3743 set_register(r8, r8_val);
3744 set_register(r9, r9_val);
3745 set_register(r10, r10_val);
3746 set_register(r11, r11_val);
3747 }
3748
3749
Call(byte * entry,int argument_count,...)3750 int32_t Simulator::Call(byte* entry, int argument_count, ...) {
3751 va_list parameters;
3752 va_start(parameters, argument_count);
3753 // Set up arguments
3754
3755 // First four arguments passed in registers.
3756 ASSERT(argument_count >= 4);
3757 set_register(r0, va_arg(parameters, int32_t));
3758 set_register(r1, va_arg(parameters, int32_t));
3759 set_register(r2, va_arg(parameters, int32_t));
3760 set_register(r3, va_arg(parameters, int32_t));
3761
3762 // Remaining arguments passed on stack.
3763 int original_stack = get_register(sp);
3764 // Compute position of stack on entry to generated code.
3765 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
3766 if (OS::ActivationFrameAlignment() != 0) {
3767 entry_stack &= -OS::ActivationFrameAlignment();
3768 }
3769 // Store remaining arguments on stack, from low to high memory.
3770 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
3771 for (int i = 4; i < argument_count; i++) {
3772 stack_argument[i - 4] = va_arg(parameters, int32_t);
3773 }
3774 va_end(parameters);
3775 set_register(sp, entry_stack);
3776
3777 CallInternal(entry);
3778
3779 // Pop stack passed arguments.
3780 CHECK_EQ(entry_stack, get_register(sp));
3781 set_register(sp, original_stack);
3782
3783 int32_t result = get_register(r0);
3784 return result;
3785 }
3786
3787
CallFP(byte * entry,double d0,double d1)3788 void Simulator::CallFP(byte* entry, double d0, double d1) {
3789 if (use_eabi_hardfloat()) {
3790 set_d_register_from_double(0, d0);
3791 set_d_register_from_double(1, d1);
3792 } else {
3793 set_register_pair_from_double(0, &d0);
3794 set_register_pair_from_double(2, &d1);
3795 }
3796 CallInternal(entry);
3797 }
3798
3799
CallFPReturnsInt(byte * entry,double d0,double d1)3800 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
3801 CallFP(entry, d0, d1);
3802 int32_t result = get_register(r0);
3803 return result;
3804 }
3805
3806
CallFPReturnsDouble(byte * entry,double d0,double d1)3807 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
3808 CallFP(entry, d0, d1);
3809 if (use_eabi_hardfloat()) {
3810 return get_double_from_d_register(0);
3811 } else {
3812 return get_double_from_register_pair(0);
3813 }
3814 }
3815
3816
PushAddress(uintptr_t address)3817 uintptr_t Simulator::PushAddress(uintptr_t address) {
3818 int new_sp = get_register(sp) - sizeof(uintptr_t);
3819 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
3820 *stack_slot = address;
3821 set_register(sp, new_sp);
3822 return new_sp;
3823 }
3824
3825
PopAddress()3826 uintptr_t Simulator::PopAddress() {
3827 int current_sp = get_register(sp);
3828 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
3829 uintptr_t address = *stack_slot;
3830 set_register(sp, current_sp + sizeof(uintptr_t));
3831 return address;
3832 }
3833
3834 } } // namespace v8::internal
3835
3836 #endif // USE_SIMULATOR
3837
3838 #endif // V8_TARGET_ARCH_ARM
3839