1 //===-- tsan_clock.cc -----------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "tsan_clock.h"
14 #include "tsan_rtl.h"
15
16 // SyncClock and ThreadClock implement vector clocks for sync variables
17 // (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
18 // ThreadClock contains fixed-size vector clock for maximum number of threads.
19 // SyncClock contains growable vector clock for currently necessary number of
20 // threads.
21 // Together they implement very simple model of operations, namely:
22 //
23 // void ThreadClock::acquire(const SyncClock *src) {
24 // for (int i = 0; i < kMaxThreads; i++)
25 // clock[i] = max(clock[i], src->clock[i]);
26 // }
27 //
28 // void ThreadClock::release(SyncClock *dst) const {
29 // for (int i = 0; i < kMaxThreads; i++)
30 // dst->clock[i] = max(dst->clock[i], clock[i]);
31 // }
32 //
33 // void ThreadClock::ReleaseStore(SyncClock *dst) const {
34 // for (int i = 0; i < kMaxThreads; i++)
35 // dst->clock[i] = clock[i];
36 // }
37 //
38 // void ThreadClock::acq_rel(SyncClock *dst) {
39 // acquire(dst);
40 // release(dst);
41 // }
42 //
43 // Conformance to this model is extensively verified in tsan_clock_test.cc.
44 // However, the implementation is significantly more complex. The complexity
45 // allows to implement important classes of use cases in O(1) instead of O(N).
46 //
47 // The use cases are:
48 // 1. Singleton/once atomic that has a single release-store operation followed
49 // by zillions of acquire-loads (the acquire-load is O(1)).
50 // 2. Thread-local mutex (both lock and unlock can be O(1)).
51 // 3. Leaf mutex (unlock is O(1)).
52 // 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
53 // 5. An atomic with a single writer (writes can be O(1)).
54 // The implementation dynamically adopts to workload. So if an atomic is in
55 // read-only phase, these reads will be O(1); if it later switches to read/write
56 // phase, the implementation will correctly handle that by switching to O(N).
57 //
58 // Thread-safety note: all const operations on SyncClock's are conducted under
59 // a shared lock; all non-const operations on SyncClock's are conducted under
60 // an exclusive lock; ThreadClock's are private to respective threads and so
61 // do not need any protection.
62 //
63 // Description of ThreadClock state:
64 // clk_ - fixed size vector clock.
65 // nclk_ - effective size of the vector clock (the rest is zeros).
66 // tid_ - index of the thread associated with he clock ("current thread").
67 // last_acquire_ - current thread time when it acquired something from
68 // other threads.
69 //
70 // Description of SyncClock state:
71 // clk_ - variable size vector clock, low kClkBits hold timestamp,
72 // the remaining bits hold "acquired" flag (the actual value is thread's
73 // reused counter);
74 // if acquried == thr->reused_, then the respective thread has already
75 // acquired this clock (except possibly dirty_tids_).
76 // dirty_tids_ - holds up to two indeces in the vector clock that other threads
77 // need to acquire regardless of "acquired" flag value;
78 // release_store_tid_ - denotes that the clock state is a result of
79 // release-store operation by the thread with release_store_tid_ index.
80 // release_store_reused_ - reuse count of release_store_tid_.
81
82 // We don't have ThreadState in these methods, so this is an ugly hack that
83 // works only in C++.
84 #ifndef TSAN_GO
85 # define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
86 #else
87 # define CPP_STAT_INC(typ) (void)0
88 #endif
89
90 namespace __tsan {
91
92 const unsigned kInvalidTid = (unsigned)-1;
93
ThreadClock(unsigned tid,unsigned reused)94 ThreadClock::ThreadClock(unsigned tid, unsigned reused)
95 : tid_(tid)
96 , reused_(reused + 1) { // 0 has special meaning
97 CHECK_LT(tid, kMaxTidInClock);
98 CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
99 nclk_ = tid_ + 1;
100 last_acquire_ = 0;
101 internal_memset(clk_, 0, sizeof(clk_));
102 clk_[tid_].reused = reused_;
103 }
104
acquire(const SyncClock * src)105 void ThreadClock::acquire(const SyncClock *src) {
106 DCHECK(nclk_ <= kMaxTid);
107 DCHECK(src->clk_.Size() <= kMaxTid);
108 CPP_STAT_INC(StatClockAcquire);
109
110 // Check if it's empty -> no need to do anything.
111 const uptr nclk = src->clk_.Size();
112 if (nclk == 0) {
113 CPP_STAT_INC(StatClockAcquireEmpty);
114 return;
115 }
116
117 // Check if we've already acquired src after the last release operation on src
118 bool acquired = false;
119 if (nclk > tid_) {
120 CPP_STAT_INC(StatClockAcquireLarge);
121 if (src->clk_[tid_].reused == reused_) {
122 CPP_STAT_INC(StatClockAcquireRepeat);
123 for (unsigned i = 0; i < kDirtyTids; i++) {
124 unsigned tid = src->dirty_tids_[i];
125 if (tid != kInvalidTid) {
126 u64 epoch = src->clk_[tid].epoch;
127 if (clk_[tid].epoch < epoch) {
128 clk_[tid].epoch = epoch;
129 acquired = true;
130 }
131 }
132 }
133 if (acquired) {
134 CPP_STAT_INC(StatClockAcquiredSomething);
135 last_acquire_ = clk_[tid_].epoch;
136 }
137 return;
138 }
139 }
140
141 // O(N) acquire.
142 CPP_STAT_INC(StatClockAcquireFull);
143 nclk_ = max(nclk_, nclk);
144 for (uptr i = 0; i < nclk; i++) {
145 u64 epoch = src->clk_[i].epoch;
146 if (clk_[i].epoch < epoch) {
147 clk_[i].epoch = epoch;
148 acquired = true;
149 }
150 }
151
152 // Remember that this thread has acquired this clock.
153 if (nclk > tid_)
154 src->clk_[tid_].reused = reused_;
155
156 if (acquired) {
157 CPP_STAT_INC(StatClockAcquiredSomething);
158 last_acquire_ = clk_[tid_].epoch;
159 }
160 }
161
release(SyncClock * dst) const162 void ThreadClock::release(SyncClock *dst) const {
163 DCHECK_LE(nclk_, kMaxTid);
164 DCHECK_LE(dst->clk_.Size(), kMaxTid);
165
166 if (dst->clk_.Size() == 0) {
167 // ReleaseStore will correctly set release_store_tid_,
168 // which can be important for future operations.
169 ReleaseStore(dst);
170 return;
171 }
172
173 CPP_STAT_INC(StatClockRelease);
174 // Check if we need to resize dst.
175 if (dst->clk_.Size() < nclk_) {
176 CPP_STAT_INC(StatClockReleaseResize);
177 dst->clk_.Resize(nclk_);
178 }
179
180 // Check if we had not acquired anything from other threads
181 // since the last release on dst. If so, we need to update
182 // only dst->clk_[tid_].
183 if (dst->clk_[tid_].epoch > last_acquire_) {
184 UpdateCurrentThread(dst);
185 if (dst->release_store_tid_ != tid_ ||
186 dst->release_store_reused_ != reused_)
187 dst->release_store_tid_ = kInvalidTid;
188 return;
189 }
190
191 // O(N) release.
192 CPP_STAT_INC(StatClockReleaseFull);
193 // First, remember whether we've acquired dst.
194 bool acquired = IsAlreadyAcquired(dst);
195 if (acquired)
196 CPP_STAT_INC(StatClockReleaseAcquired);
197 // Update dst->clk_.
198 for (uptr i = 0; i < nclk_; i++) {
199 dst->clk_[i].epoch = max(dst->clk_[i].epoch, clk_[i].epoch);
200 dst->clk_[i].reused = 0;
201 }
202 // Clear 'acquired' flag in the remaining elements.
203 if (nclk_ < dst->clk_.Size())
204 CPP_STAT_INC(StatClockReleaseClearTail);
205 for (uptr i = nclk_; i < dst->clk_.Size(); i++)
206 dst->clk_[i].reused = 0;
207 for (unsigned i = 0; i < kDirtyTids; i++)
208 dst->dirty_tids_[i] = kInvalidTid;
209 dst->release_store_tid_ = kInvalidTid;
210 dst->release_store_reused_ = 0;
211 // If we've acquired dst, remember this fact,
212 // so that we don't need to acquire it on next acquire.
213 if (acquired)
214 dst->clk_[tid_].reused = reused_;
215 }
216
ReleaseStore(SyncClock * dst) const217 void ThreadClock::ReleaseStore(SyncClock *dst) const {
218 DCHECK(nclk_ <= kMaxTid);
219 DCHECK(dst->clk_.Size() <= kMaxTid);
220 CPP_STAT_INC(StatClockStore);
221
222 // Check if we need to resize dst.
223 if (dst->clk_.Size() < nclk_) {
224 CPP_STAT_INC(StatClockStoreResize);
225 dst->clk_.Resize(nclk_);
226 }
227
228 if (dst->release_store_tid_ == tid_ &&
229 dst->release_store_reused_ == reused_ &&
230 dst->clk_[tid_].epoch > last_acquire_) {
231 CPP_STAT_INC(StatClockStoreFast);
232 UpdateCurrentThread(dst);
233 return;
234 }
235
236 // O(N) release-store.
237 CPP_STAT_INC(StatClockStoreFull);
238 for (uptr i = 0; i < nclk_; i++) {
239 dst->clk_[i].epoch = clk_[i].epoch;
240 dst->clk_[i].reused = 0;
241 }
242 // Clear the tail of dst->clk_.
243 if (nclk_ < dst->clk_.Size()) {
244 internal_memset(&dst->clk_[nclk_], 0,
245 (dst->clk_.Size() - nclk_) * sizeof(dst->clk_[0]));
246 CPP_STAT_INC(StatClockStoreTail);
247 }
248 for (unsigned i = 0; i < kDirtyTids; i++)
249 dst->dirty_tids_[i] = kInvalidTid;
250 dst->release_store_tid_ = tid_;
251 dst->release_store_reused_ = reused_;
252 // Rememeber that we don't need to acquire it in future.
253 dst->clk_[tid_].reused = reused_;
254 }
255
acq_rel(SyncClock * dst)256 void ThreadClock::acq_rel(SyncClock *dst) {
257 CPP_STAT_INC(StatClockAcquireRelease);
258 acquire(dst);
259 ReleaseStore(dst);
260 }
261
262 // Updates only single element related to the current thread in dst->clk_.
UpdateCurrentThread(SyncClock * dst) const263 void ThreadClock::UpdateCurrentThread(SyncClock *dst) const {
264 // Update the threads time, but preserve 'acquired' flag.
265 dst->clk_[tid_].epoch = clk_[tid_].epoch;
266
267 for (unsigned i = 0; i < kDirtyTids; i++) {
268 if (dst->dirty_tids_[i] == tid_) {
269 CPP_STAT_INC(StatClockReleaseFast1);
270 return;
271 }
272 if (dst->dirty_tids_[i] == kInvalidTid) {
273 CPP_STAT_INC(StatClockReleaseFast2);
274 dst->dirty_tids_[i] = tid_;
275 return;
276 }
277 }
278 // Reset all 'acquired' flags, O(N).
279 CPP_STAT_INC(StatClockReleaseSlow);
280 for (uptr i = 0; i < dst->clk_.Size(); i++) {
281 dst->clk_[i].reused = 0;
282 }
283 for (unsigned i = 0; i < kDirtyTids; i++)
284 dst->dirty_tids_[i] = kInvalidTid;
285 }
286
287 // Checks whether the current threads has already acquired src.
IsAlreadyAcquired(const SyncClock * src) const288 bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
289 if (src->clk_[tid_].reused != reused_)
290 return false;
291 for (unsigned i = 0; i < kDirtyTids; i++) {
292 unsigned tid = src->dirty_tids_[i];
293 if (tid != kInvalidTid) {
294 if (clk_[tid].epoch < src->clk_[tid].epoch)
295 return false;
296 }
297 }
298 return true;
299 }
300
301 // Sets a single element in the vector clock.
302 // This function is called only from weird places like AcquireGlobal.
set(unsigned tid,u64 v)303 void ThreadClock::set(unsigned tid, u64 v) {
304 DCHECK_LT(tid, kMaxTid);
305 DCHECK_GE(v, clk_[tid].epoch);
306 clk_[tid].epoch = v;
307 if (nclk_ <= tid)
308 nclk_ = tid + 1;
309 last_acquire_ = clk_[tid_].epoch;
310 }
311
DebugDump(int (* printf)(const char * s,...))312 void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
313 printf("clock=[");
314 for (uptr i = 0; i < nclk_; i++)
315 printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch);
316 printf("] reused=[");
317 for (uptr i = 0; i < nclk_; i++)
318 printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
319 printf("] tid=%u/%u last_acq=%llu",
320 tid_, reused_, last_acquire_);
321 }
322
SyncClock()323 SyncClock::SyncClock()
324 : clk_(MBlockClock) {
325 release_store_tid_ = kInvalidTid;
326 release_store_reused_ = 0;
327 for (uptr i = 0; i < kDirtyTids; i++)
328 dirty_tids_[i] = kInvalidTid;
329 }
330
Reset()331 void SyncClock::Reset() {
332 clk_.Reset();
333 Zero();
334 }
335
Zero()336 void SyncClock::Zero() {
337 clk_.Resize(0);
338 release_store_tid_ = kInvalidTid;
339 release_store_reused_ = 0;
340 for (uptr i = 0; i < kDirtyTids; i++)
341 dirty_tids_[i] = kInvalidTid;
342 }
343
DebugDump(int (* printf)(const char * s,...))344 void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
345 printf("clock=[");
346 for (uptr i = 0; i < clk_.Size(); i++)
347 printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch);
348 printf("] reused=[");
349 for (uptr i = 0; i < clk_.Size(); i++)
350 printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
351 printf("] release_store_tid=%d/%d dirty_tids=%d/%d",
352 release_store_tid_, release_store_reused_,
353 dirty_tids_[0], dirty_tids_[1]);
354 }
355 } // namespace __tsan
356