1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/CapturedStmt.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Support/Debug.h" 37 38 namespace llvm { 39 class BasicBlock; 40 class LLVMContext; 41 class MDNode; 42 class Module; 43 class SwitchInst; 44 class Twine; 45 class Value; 46 class CallSite; 47 } 48 49 namespace clang { 50 class ASTContext; 51 class BlockDecl; 52 class CXXDestructorDecl; 53 class CXXForRangeStmt; 54 class CXXTryStmt; 55 class Decl; 56 class LabelDecl; 57 class EnumConstantDecl; 58 class FunctionDecl; 59 class FunctionProtoType; 60 class LabelStmt; 61 class ObjCContainerDecl; 62 class ObjCInterfaceDecl; 63 class ObjCIvarDecl; 64 class ObjCMethodDecl; 65 class ObjCImplementationDecl; 66 class ObjCPropertyImplDecl; 67 class TargetInfo; 68 class TargetCodeGenInfo; 69 class VarDecl; 70 class ObjCForCollectionStmt; 71 class ObjCAtTryStmt; 72 class ObjCAtThrowStmt; 73 class ObjCAtSynchronizedStmt; 74 class ObjCAutoreleasePoolStmt; 75 76 namespace CodeGen { 77 class CodeGenTypes; 78 class CGFunctionInfo; 79 class CGRecordLayout; 80 class CGBlockInfo; 81 class CGCXXABI; 82 class BlockFlags; 83 class BlockFieldFlags; 84 85 /// The kind of evaluation to perform on values of a particular 86 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 87 /// CGExprAgg? 88 /// 89 /// TODO: should vectors maybe be split out into their own thing? 90 enum TypeEvaluationKind { 91 TEK_Scalar, 92 TEK_Complex, 93 TEK_Aggregate 94 }; 95 96 /// CodeGenFunction - This class organizes the per-function state that is used 97 /// while generating LLVM code. 98 class CodeGenFunction : public CodeGenTypeCache { 99 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 100 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 101 102 friend class CGCXXABI; 103 public: 104 /// A jump destination is an abstract label, branching to which may 105 /// require a jump out through normal cleanups. 106 struct JumpDest { JumpDestJumpDest107 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} JumpDestJumpDest108 JumpDest(llvm::BasicBlock *Block, 109 EHScopeStack::stable_iterator Depth, 110 unsigned Index) 111 : Block(Block), ScopeDepth(Depth), Index(Index) {} 112 isValidJumpDest113 bool isValid() const { return Block != nullptr; } getBlockJumpDest114 llvm::BasicBlock *getBlock() const { return Block; } getScopeDepthJumpDest115 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } getDestIndexJumpDest116 unsigned getDestIndex() const { return Index; } 117 118 // This should be used cautiously. setScopeDepthJumpDest119 void setScopeDepth(EHScopeStack::stable_iterator depth) { 120 ScopeDepth = depth; 121 } 122 123 private: 124 llvm::BasicBlock *Block; 125 EHScopeStack::stable_iterator ScopeDepth; 126 unsigned Index; 127 }; 128 129 CodeGenModule &CGM; // Per-module state. 130 const TargetInfo &Target; 131 132 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 133 LoopInfoStack LoopStack; 134 CGBuilderTy Builder; 135 136 /// \brief CGBuilder insert helper. This function is called after an 137 /// instruction is created using Builder. 138 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 139 llvm::BasicBlock *BB, 140 llvm::BasicBlock::iterator InsertPt) const; 141 142 /// CurFuncDecl - Holds the Decl for the current outermost 143 /// non-closure context. 144 const Decl *CurFuncDecl; 145 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 146 const Decl *CurCodeDecl; 147 const CGFunctionInfo *CurFnInfo; 148 QualType FnRetTy; 149 llvm::Function *CurFn; 150 151 /// CurGD - The GlobalDecl for the current function being compiled. 152 GlobalDecl CurGD; 153 154 /// PrologueCleanupDepth - The cleanup depth enclosing all the 155 /// cleanups associated with the parameters. 156 EHScopeStack::stable_iterator PrologueCleanupDepth; 157 158 /// ReturnBlock - Unified return block. 159 JumpDest ReturnBlock; 160 161 /// ReturnValue - The temporary alloca to hold the return value. This is null 162 /// iff the function has no return value. 163 llvm::Value *ReturnValue; 164 165 /// AllocaInsertPoint - This is an instruction in the entry block before which 166 /// we prefer to insert allocas. 167 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 168 169 /// \brief API for captured statement code generation. 170 class CGCapturedStmtInfo { 171 public: 172 explicit CGCapturedStmtInfo(const CapturedStmt &S, 173 CapturedRegionKind K = CR_Default) Kind(K)174 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 175 176 RecordDecl::field_iterator Field = 177 S.getCapturedRecordDecl()->field_begin(); 178 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 179 E = S.capture_end(); 180 I != E; ++I, ++Field) { 181 if (I->capturesThis()) 182 CXXThisFieldDecl = *Field; 183 else 184 CaptureFields[I->getCapturedVar()] = *Field; 185 } 186 } 187 188 virtual ~CGCapturedStmtInfo(); 189 getKind()190 CapturedRegionKind getKind() const { return Kind; } 191 setContextValue(llvm::Value * V)192 void setContextValue(llvm::Value *V) { ThisValue = V; } 193 // \brief Retrieve the value of the context parameter. getContextValue()194 llvm::Value *getContextValue() const { return ThisValue; } 195 196 /// \brief Lookup the captured field decl for a variable. lookup(const VarDecl * VD)197 const FieldDecl *lookup(const VarDecl *VD) const { 198 return CaptureFields.lookup(VD); 199 } 200 isCXXThisExprCaptured()201 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; } getThisFieldDecl()202 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 203 204 /// \brief Emit the captured statement body. EmitBody(CodeGenFunction & CGF,Stmt * S)205 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 206 RegionCounter Cnt = CGF.getPGORegionCounter(S); 207 Cnt.beginRegion(CGF.Builder); 208 CGF.EmitStmt(S); 209 } 210 211 /// \brief Get the name of the capture helper. getHelperName()212 virtual StringRef getHelperName() const { return "__captured_stmt"; } 213 214 private: 215 /// \brief The kind of captured statement being generated. 216 CapturedRegionKind Kind; 217 218 /// \brief Keep the map between VarDecl and FieldDecl. 219 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 220 221 /// \brief The base address of the captured record, passed in as the first 222 /// argument of the parallel region function. 223 llvm::Value *ThisValue; 224 225 /// \brief Captured 'this' type. 226 FieldDecl *CXXThisFieldDecl; 227 }; 228 CGCapturedStmtInfo *CapturedStmtInfo; 229 230 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 231 /// potentially higher performance penalties. 232 unsigned char BoundsChecking; 233 234 /// \brief Sanitizer options to use for this function. 235 const SanitizerOptions *SanOpts; 236 237 /// In ARC, whether we should autorelease the return value. 238 bool AutoreleaseResult; 239 240 const CodeGen::CGBlockInfo *BlockInfo; 241 llvm::Value *BlockPointer; 242 243 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 244 FieldDecl *LambdaThisCaptureField; 245 246 /// \brief A mapping from NRVO variables to the flags used to indicate 247 /// when the NRVO has been applied to this variable. 248 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 249 250 EHScopeStack EHStack; 251 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 252 253 /// Header for data within LifetimeExtendedCleanupStack. 254 struct LifetimeExtendedCleanupHeader { 255 /// The size of the following cleanup object. 256 size_t Size : 29; 257 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 258 unsigned Kind : 3; 259 getSizeLifetimeExtendedCleanupHeader260 size_t getSize() const { return Size; } getKindLifetimeExtendedCleanupHeader261 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 262 }; 263 264 /// i32s containing the indexes of the cleanup destinations. 265 llvm::AllocaInst *NormalCleanupDest; 266 267 unsigned NextCleanupDestIndex; 268 269 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 270 CGBlockInfo *FirstBlockInfo; 271 272 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 273 llvm::BasicBlock *EHResumeBlock; 274 275 /// The exception slot. All landing pads write the current exception pointer 276 /// into this alloca. 277 llvm::Value *ExceptionSlot; 278 279 /// The selector slot. Under the MandatoryCleanup model, all landing pads 280 /// write the current selector value into this alloca. 281 llvm::AllocaInst *EHSelectorSlot; 282 283 /// Emits a landing pad for the current EH stack. 284 llvm::BasicBlock *EmitLandingPad(); 285 286 llvm::BasicBlock *getInvokeDestImpl(); 287 288 template <class T> saveValueInCond(T value)289 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 290 return DominatingValue<T>::save(*this, value); 291 } 292 293 public: 294 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 295 /// rethrows. 296 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 297 298 /// A class controlling the emission of a finally block. 299 class FinallyInfo { 300 /// Where the catchall's edge through the cleanup should go. 301 JumpDest RethrowDest; 302 303 /// A function to call to enter the catch. 304 llvm::Constant *BeginCatchFn; 305 306 /// An i1 variable indicating whether or not the @finally is 307 /// running for an exception. 308 llvm::AllocaInst *ForEHVar; 309 310 /// An i8* variable into which the exception pointer to rethrow 311 /// has been saved. 312 llvm::AllocaInst *SavedExnVar; 313 314 public: 315 void enter(CodeGenFunction &CGF, const Stmt *Finally, 316 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 317 llvm::Constant *rethrowFn); 318 void exit(CodeGenFunction &CGF); 319 }; 320 321 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 322 /// current full-expression. Safe against the possibility that 323 /// we're currently inside a conditionally-evaluated expression. 324 template <class T, class A0> pushFullExprCleanup(CleanupKind kind,A0 a0)325 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 326 // If we're not in a conditional branch, or if none of the 327 // arguments requires saving, then use the unconditional cleanup. 328 if (!isInConditionalBranch()) 329 return EHStack.pushCleanup<T>(kind, a0); 330 331 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 332 333 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 334 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 335 initFullExprCleanup(); 336 } 337 338 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 339 /// current full-expression. Safe against the possibility that 340 /// we're currently inside a conditionally-evaluated expression. 341 template <class T, class A0, class A1> pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1)342 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 343 // If we're not in a conditional branch, or if none of the 344 // arguments requires saving, then use the unconditional cleanup. 345 if (!isInConditionalBranch()) 346 return EHStack.pushCleanup<T>(kind, a0, a1); 347 348 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 349 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 350 351 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 352 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 353 initFullExprCleanup(); 354 } 355 356 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 357 /// current full-expression. Safe against the possibility that 358 /// we're currently inside a conditionally-evaluated expression. 359 template <class T, class A0, class A1, class A2> pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1,A2 a2)360 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 361 // If we're not in a conditional branch, or if none of the 362 // arguments requires saving, then use the unconditional cleanup. 363 if (!isInConditionalBranch()) { 364 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 365 } 366 367 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 368 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 369 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 370 371 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 372 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 373 initFullExprCleanup(); 374 } 375 376 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 377 /// current full-expression. Safe against the possibility that 378 /// we're currently inside a conditionally-evaluated expression. 379 template <class T, class A0, class A1, class A2, class A3> pushFullExprCleanup(CleanupKind kind,A0 a0,A1 a1,A2 a2,A3 a3)380 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 381 // If we're not in a conditional branch, or if none of the 382 // arguments requires saving, then use the unconditional cleanup. 383 if (!isInConditionalBranch()) { 384 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 385 } 386 387 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 388 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 389 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 390 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 391 392 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 393 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 394 a2_saved, a3_saved); 395 initFullExprCleanup(); 396 } 397 398 /// \brief Queue a cleanup to be pushed after finishing the current 399 /// full-expression. 400 template <class T, class A0, class A1, class A2, class A3> pushCleanupAfterFullExpr(CleanupKind Kind,A0 a0,A1 a1,A2 a2,A3 a3)401 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 402 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 403 404 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 405 406 size_t OldSize = LifetimeExtendedCleanupStack.size(); 407 LifetimeExtendedCleanupStack.resize( 408 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 409 410 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 411 new (Buffer) LifetimeExtendedCleanupHeader(Header); 412 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 413 } 414 415 /// Set up the last cleaup that was pushed as a conditional 416 /// full-expression cleanup. 417 void initFullExprCleanup(); 418 419 /// PushDestructorCleanup - Push a cleanup to call the 420 /// complete-object destructor of an object of the given type at the 421 /// given address. Does nothing if T is not a C++ class type with a 422 /// non-trivial destructor. 423 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 424 425 /// PushDestructorCleanup - Push a cleanup to call the 426 /// complete-object variant of the given destructor on the object at 427 /// the given address. 428 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 429 llvm::Value *Addr); 430 431 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 432 /// process all branch fixups. 433 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 434 435 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 436 /// The block cannot be reactivated. Pops it if it's the top of the 437 /// stack. 438 /// 439 /// \param DominatingIP - An instruction which is known to 440 /// dominate the current IP (if set) and which lies along 441 /// all paths of execution between the current IP and the 442 /// the point at which the cleanup comes into scope. 443 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 444 llvm::Instruction *DominatingIP); 445 446 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 447 /// Cannot be used to resurrect a deactivated cleanup. 448 /// 449 /// \param DominatingIP - An instruction which is known to 450 /// dominate the current IP (if set) and which lies along 451 /// all paths of execution between the current IP and the 452 /// the point at which the cleanup comes into scope. 453 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 454 llvm::Instruction *DominatingIP); 455 456 /// \brief Enters a new scope for capturing cleanups, all of which 457 /// will be executed once the scope is exited. 458 class RunCleanupsScope { 459 EHScopeStack::stable_iterator CleanupStackDepth; 460 size_t LifetimeExtendedCleanupStackSize; 461 bool OldDidCallStackSave; 462 protected: 463 bool PerformCleanup; 464 private: 465 466 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 467 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 468 469 protected: 470 CodeGenFunction& CGF; 471 472 public: 473 /// \brief Enter a new cleanup scope. RunCleanupsScope(CodeGenFunction & CGF)474 explicit RunCleanupsScope(CodeGenFunction &CGF) 475 : PerformCleanup(true), CGF(CGF) 476 { 477 CleanupStackDepth = CGF.EHStack.stable_begin(); 478 LifetimeExtendedCleanupStackSize = 479 CGF.LifetimeExtendedCleanupStack.size(); 480 OldDidCallStackSave = CGF.DidCallStackSave; 481 CGF.DidCallStackSave = false; 482 } 483 484 /// \brief Exit this cleanup scope, emitting any accumulated 485 /// cleanups. ~RunCleanupsScope()486 ~RunCleanupsScope() { 487 if (PerformCleanup) { 488 CGF.DidCallStackSave = OldDidCallStackSave; 489 CGF.PopCleanupBlocks(CleanupStackDepth, 490 LifetimeExtendedCleanupStackSize); 491 } 492 } 493 494 /// \brief Determine whether this scope requires any cleanups. requiresCleanups()495 bool requiresCleanups() const { 496 return CGF.EHStack.stable_begin() != CleanupStackDepth; 497 } 498 499 /// \brief Force the emission of cleanups now, instead of waiting 500 /// until this object is destroyed. ForceCleanup()501 void ForceCleanup() { 502 assert(PerformCleanup && "Already forced cleanup"); 503 CGF.DidCallStackSave = OldDidCallStackSave; 504 CGF.PopCleanupBlocks(CleanupStackDepth, 505 LifetimeExtendedCleanupStackSize); 506 PerformCleanup = false; 507 } 508 }; 509 510 class LexicalScope: protected RunCleanupsScope { 511 SourceRange Range; 512 SmallVector<const LabelDecl*, 4> Labels; 513 LexicalScope *ParentScope; 514 515 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 516 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 517 518 public: 519 /// \brief Enter a new cleanup scope. LexicalScope(CodeGenFunction & CGF,SourceRange Range)520 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 521 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 522 CGF.CurLexicalScope = this; 523 if (CGDebugInfo *DI = CGF.getDebugInfo()) 524 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 525 } 526 addLabel(const LabelDecl * label)527 void addLabel(const LabelDecl *label) { 528 assert(PerformCleanup && "adding label to dead scope?"); 529 Labels.push_back(label); 530 } 531 532 /// \brief Exit this cleanup scope, emitting any accumulated 533 /// cleanups. ~LexicalScope()534 ~LexicalScope() { 535 if (CGDebugInfo *DI = CGF.getDebugInfo()) 536 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 537 538 // If we should perform a cleanup, force them now. Note that 539 // this ends the cleanup scope before rescoping any labels. 540 if (PerformCleanup) ForceCleanup(); 541 } 542 543 /// \brief Force the emission of cleanups now, instead of waiting 544 /// until this object is destroyed. ForceCleanup()545 void ForceCleanup() { 546 CGF.CurLexicalScope = ParentScope; 547 RunCleanupsScope::ForceCleanup(); 548 549 if (!Labels.empty()) 550 rescopeLabels(); 551 } 552 553 void rescopeLabels(); 554 }; 555 556 557 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 558 /// that have been added. 559 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 560 561 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 562 /// that have been added, then adds all lifetime-extended cleanups from 563 /// the given position to the stack. 564 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 565 size_t OldLifetimeExtendedStackSize); 566 567 void ResolveBranchFixups(llvm::BasicBlock *Target); 568 569 /// The given basic block lies in the current EH scope, but may be a 570 /// target of a potentially scope-crossing jump; get a stable handle 571 /// to which we can perform this jump later. getJumpDestInCurrentScope(llvm::BasicBlock * Target)572 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 573 return JumpDest(Target, 574 EHStack.getInnermostNormalCleanup(), 575 NextCleanupDestIndex++); 576 } 577 578 /// The given basic block lies in the current EH scope, but may be a 579 /// target of a potentially scope-crossing jump; get a stable handle 580 /// to which we can perform this jump later. 581 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 582 return getJumpDestInCurrentScope(createBasicBlock(Name)); 583 } 584 585 /// EmitBranchThroughCleanup - Emit a branch from the current insert 586 /// block through the normal cleanup handling code (if any) and then 587 /// on to \arg Dest. 588 void EmitBranchThroughCleanup(JumpDest Dest); 589 590 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 591 /// specified destination obviously has no cleanups to run. 'false' is always 592 /// a conservatively correct answer for this method. 593 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 594 595 /// popCatchScope - Pops the catch scope at the top of the EHScope 596 /// stack, emitting any required code (other than the catch handlers 597 /// themselves). 598 void popCatchScope(); 599 600 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 601 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 602 603 /// An object to manage conditionally-evaluated expressions. 604 class ConditionalEvaluation { 605 llvm::BasicBlock *StartBB; 606 607 public: ConditionalEvaluation(CodeGenFunction & CGF)608 ConditionalEvaluation(CodeGenFunction &CGF) 609 : StartBB(CGF.Builder.GetInsertBlock()) {} 610 begin(CodeGenFunction & CGF)611 void begin(CodeGenFunction &CGF) { 612 assert(CGF.OutermostConditional != this); 613 if (!CGF.OutermostConditional) 614 CGF.OutermostConditional = this; 615 } 616 end(CodeGenFunction & CGF)617 void end(CodeGenFunction &CGF) { 618 assert(CGF.OutermostConditional != nullptr); 619 if (CGF.OutermostConditional == this) 620 CGF.OutermostConditional = nullptr; 621 } 622 623 /// Returns a block which will be executed prior to each 624 /// evaluation of the conditional code. getStartingBlock()625 llvm::BasicBlock *getStartingBlock() const { 626 return StartBB; 627 } 628 }; 629 630 /// isInConditionalBranch - Return true if we're currently emitting 631 /// one branch or the other of a conditional expression. isInConditionalBranch()632 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 633 setBeforeOutermostConditional(llvm::Value * value,llvm::Value * addr)634 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 635 assert(isInConditionalBranch()); 636 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 637 new llvm::StoreInst(value, addr, &block->back()); 638 } 639 640 /// An RAII object to record that we're evaluating a statement 641 /// expression. 642 class StmtExprEvaluation { 643 CodeGenFunction &CGF; 644 645 /// We have to save the outermost conditional: cleanups in a 646 /// statement expression aren't conditional just because the 647 /// StmtExpr is. 648 ConditionalEvaluation *SavedOutermostConditional; 649 650 public: StmtExprEvaluation(CodeGenFunction & CGF)651 StmtExprEvaluation(CodeGenFunction &CGF) 652 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 653 CGF.OutermostConditional = nullptr; 654 } 655 ~StmtExprEvaluation()656 ~StmtExprEvaluation() { 657 CGF.OutermostConditional = SavedOutermostConditional; 658 CGF.EnsureInsertPoint(); 659 } 660 }; 661 662 /// An object which temporarily prevents a value from being 663 /// destroyed by aggressive peephole optimizations that assume that 664 /// all uses of a value have been realized in the IR. 665 class PeepholeProtection { 666 llvm::Instruction *Inst; 667 friend class CodeGenFunction; 668 669 public: PeepholeProtection()670 PeepholeProtection() : Inst(nullptr) {} 671 }; 672 673 /// A non-RAII class containing all the information about a bound 674 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 675 /// this which makes individual mappings very simple; using this 676 /// class directly is useful when you have a variable number of 677 /// opaque values or don't want the RAII functionality for some 678 /// reason. 679 class OpaqueValueMappingData { 680 const OpaqueValueExpr *OpaqueValue; 681 bool BoundLValue; 682 CodeGenFunction::PeepholeProtection Protection; 683 OpaqueValueMappingData(const OpaqueValueExpr * ov,bool boundLValue)684 OpaqueValueMappingData(const OpaqueValueExpr *ov, 685 bool boundLValue) 686 : OpaqueValue(ov), BoundLValue(boundLValue) {} 687 public: OpaqueValueMappingData()688 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 689 shouldBindAsLValue(const Expr * expr)690 static bool shouldBindAsLValue(const Expr *expr) { 691 // gl-values should be bound as l-values for obvious reasons. 692 // Records should be bound as l-values because IR generation 693 // always keeps them in memory. Expressions of function type 694 // act exactly like l-values but are formally required to be 695 // r-values in C. 696 return expr->isGLValue() || 697 expr->getType()->isFunctionType() || 698 hasAggregateEvaluationKind(expr->getType()); 699 } 700 bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const Expr * e)701 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 702 const OpaqueValueExpr *ov, 703 const Expr *e) { 704 if (shouldBindAsLValue(ov)) 705 return bind(CGF, ov, CGF.EmitLValue(e)); 706 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 707 } 708 bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const LValue & lv)709 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 710 const OpaqueValueExpr *ov, 711 const LValue &lv) { 712 assert(shouldBindAsLValue(ov)); 713 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 714 return OpaqueValueMappingData(ov, true); 715 } 716 bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const RValue & rv)717 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 718 const OpaqueValueExpr *ov, 719 const RValue &rv) { 720 assert(!shouldBindAsLValue(ov)); 721 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 722 723 OpaqueValueMappingData data(ov, false); 724 725 // Work around an extremely aggressive peephole optimization in 726 // EmitScalarConversion which assumes that all other uses of a 727 // value are extant. 728 data.Protection = CGF.protectFromPeepholes(rv); 729 730 return data; 731 } 732 isValid()733 bool isValid() const { return OpaqueValue != nullptr; } clear()734 void clear() { OpaqueValue = nullptr; } 735 unbind(CodeGenFunction & CGF)736 void unbind(CodeGenFunction &CGF) { 737 assert(OpaqueValue && "no data to unbind!"); 738 739 if (BoundLValue) { 740 CGF.OpaqueLValues.erase(OpaqueValue); 741 } else { 742 CGF.OpaqueRValues.erase(OpaqueValue); 743 CGF.unprotectFromPeepholes(Protection); 744 } 745 } 746 }; 747 748 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 749 class OpaqueValueMapping { 750 CodeGenFunction &CGF; 751 OpaqueValueMappingData Data; 752 753 public: shouldBindAsLValue(const Expr * expr)754 static bool shouldBindAsLValue(const Expr *expr) { 755 return OpaqueValueMappingData::shouldBindAsLValue(expr); 756 } 757 758 /// Build the opaque value mapping for the given conditional 759 /// operator if it's the GNU ?: extension. This is a common 760 /// enough pattern that the convenience operator is really 761 /// helpful. 762 /// OpaqueValueMapping(CodeGenFunction & CGF,const AbstractConditionalOperator * op)763 OpaqueValueMapping(CodeGenFunction &CGF, 764 const AbstractConditionalOperator *op) : CGF(CGF) { 765 if (isa<ConditionalOperator>(op)) 766 // Leave Data empty. 767 return; 768 769 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 770 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 771 e->getCommon()); 772 } 773 OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,LValue lvalue)774 OpaqueValueMapping(CodeGenFunction &CGF, 775 const OpaqueValueExpr *opaqueValue, 776 LValue lvalue) 777 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 778 } 779 OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,RValue rvalue)780 OpaqueValueMapping(CodeGenFunction &CGF, 781 const OpaqueValueExpr *opaqueValue, 782 RValue rvalue) 783 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 784 } 785 pop()786 void pop() { 787 Data.unbind(CGF); 788 Data.clear(); 789 } 790 ~OpaqueValueMapping()791 ~OpaqueValueMapping() { 792 if (Data.isValid()) Data.unbind(CGF); 793 } 794 }; 795 796 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 797 /// number that holds the value. 798 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 799 800 /// BuildBlockByrefAddress - Computes address location of the 801 /// variable which is declared as __block. 802 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 803 const VarDecl *V); 804 private: 805 CGDebugInfo *DebugInfo; 806 bool DisableDebugInfo; 807 808 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 809 /// calling llvm.stacksave for multiple VLAs in the same scope. 810 bool DidCallStackSave; 811 812 /// IndirectBranch - The first time an indirect goto is seen we create a block 813 /// with an indirect branch. Every time we see the address of a label taken, 814 /// we add the label to the indirect goto. Every subsequent indirect goto is 815 /// codegen'd as a jump to the IndirectBranch's basic block. 816 llvm::IndirectBrInst *IndirectBranch; 817 818 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 819 /// decls. 820 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 821 DeclMapTy LocalDeclMap; 822 823 /// LabelMap - This keeps track of the LLVM basic block for each C label. 824 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 825 826 // BreakContinueStack - This keeps track of where break and continue 827 // statements should jump to. 828 struct BreakContinue { BreakContinueBreakContinue829 BreakContinue(JumpDest Break, JumpDest Continue) 830 : BreakBlock(Break), ContinueBlock(Continue) {} 831 832 JumpDest BreakBlock; 833 JumpDest ContinueBlock; 834 }; 835 SmallVector<BreakContinue, 8> BreakContinueStack; 836 837 CodeGenPGO PGO; 838 839 public: 840 /// Get a counter for instrumentation of the region associated with the given 841 /// statement. getPGORegionCounter(const Stmt * S)842 RegionCounter getPGORegionCounter(const Stmt *S) { 843 return RegionCounter(PGO, S); 844 } 845 private: 846 847 /// SwitchInsn - This is nearest current switch instruction. It is null if 848 /// current context is not in a switch. 849 llvm::SwitchInst *SwitchInsn; 850 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 851 SmallVector<uint64_t, 16> *SwitchWeights; 852 853 /// CaseRangeBlock - This block holds if condition check for last case 854 /// statement range in current switch instruction. 855 llvm::BasicBlock *CaseRangeBlock; 856 857 /// OpaqueLValues - Keeps track of the current set of opaque value 858 /// expressions. 859 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 860 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 861 862 // VLASizeMap - This keeps track of the associated size for each VLA type. 863 // We track this by the size expression rather than the type itself because 864 // in certain situations, like a const qualifier applied to an VLA typedef, 865 // multiple VLA types can share the same size expression. 866 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 867 // enter/leave scopes. 868 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 869 870 /// A block containing a single 'unreachable' instruction. Created 871 /// lazily by getUnreachableBlock(). 872 llvm::BasicBlock *UnreachableBlock; 873 874 /// Counts of the number return expressions in the function. 875 unsigned NumReturnExprs; 876 877 /// Count the number of simple (constant) return expressions in the function. 878 unsigned NumSimpleReturnExprs; 879 880 /// The last regular (non-return) debug location (breakpoint) in the function. 881 SourceLocation LastStopPoint; 882 883 public: 884 /// A scope within which we are constructing the fields of an object which 885 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 886 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 887 class FieldConstructionScope { 888 public: FieldConstructionScope(CodeGenFunction & CGF,llvm::Value * This)889 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 890 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 891 CGF.CXXDefaultInitExprThis = This; 892 } ~FieldConstructionScope()893 ~FieldConstructionScope() { 894 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 895 } 896 897 private: 898 CodeGenFunction &CGF; 899 llvm::Value *OldCXXDefaultInitExprThis; 900 }; 901 902 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 903 /// is overridden to be the object under construction. 904 class CXXDefaultInitExprScope { 905 public: CXXDefaultInitExprScope(CodeGenFunction & CGF)906 CXXDefaultInitExprScope(CodeGenFunction &CGF) 907 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 908 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 909 } ~CXXDefaultInitExprScope()910 ~CXXDefaultInitExprScope() { 911 CGF.CXXThisValue = OldCXXThisValue; 912 } 913 914 public: 915 CodeGenFunction &CGF; 916 llvm::Value *OldCXXThisValue; 917 }; 918 919 private: 920 /// CXXThisDecl - When generating code for a C++ member function, 921 /// this will hold the implicit 'this' declaration. 922 ImplicitParamDecl *CXXABIThisDecl; 923 llvm::Value *CXXABIThisValue; 924 llvm::Value *CXXThisValue; 925 926 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 927 /// this expression. 928 llvm::Value *CXXDefaultInitExprThis; 929 930 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 931 /// destructor, this will hold the implicit argument (e.g. VTT). 932 ImplicitParamDecl *CXXStructorImplicitParamDecl; 933 llvm::Value *CXXStructorImplicitParamValue; 934 935 /// OutermostConditional - Points to the outermost active 936 /// conditional control. This is used so that we know if a 937 /// temporary should be destroyed conditionally. 938 ConditionalEvaluation *OutermostConditional; 939 940 /// The current lexical scope. 941 LexicalScope *CurLexicalScope; 942 943 /// The current source location that should be used for exception 944 /// handling code. 945 SourceLocation CurEHLocation; 946 947 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 948 /// type as well as the field number that contains the actual data. 949 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 950 unsigned> > ByRefValueInfo; 951 952 llvm::BasicBlock *TerminateLandingPad; 953 llvm::BasicBlock *TerminateHandler; 954 llvm::BasicBlock *TrapBB; 955 956 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 957 /// In the kernel metadata node, reference the kernel function and metadata 958 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 959 /// - A node for the vec_type_hint(<type>) qualifier contains string 960 /// "vec_type_hint", an undefined value of the <type> data type, 961 /// and a Boolean that is true if the <type> is integer and signed. 962 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 963 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 964 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 965 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 966 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 967 llvm::Function *Fn); 968 969 public: 970 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 971 ~CodeGenFunction(); 972 getTypes()973 CodeGenTypes &getTypes() const { return CGM.getTypes(); } getContext()974 ASTContext &getContext() const { return CGM.getContext(); } getDebugInfo()975 CGDebugInfo *getDebugInfo() { 976 if (DisableDebugInfo) 977 return nullptr; 978 return DebugInfo; 979 } disableDebugInfo()980 void disableDebugInfo() { DisableDebugInfo = true; } enableDebugInfo()981 void enableDebugInfo() { DisableDebugInfo = false; } 982 shouldUseFusedARCCalls()983 bool shouldUseFusedARCCalls() { 984 return CGM.getCodeGenOpts().OptimizationLevel == 0; 985 } 986 getLangOpts()987 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 988 989 /// Returns a pointer to the function's exception object and selector slot, 990 /// which is assigned in every landing pad. 991 llvm::Value *getExceptionSlot(); 992 llvm::Value *getEHSelectorSlot(); 993 994 /// Returns the contents of the function's exception object and selector 995 /// slots. 996 llvm::Value *getExceptionFromSlot(); 997 llvm::Value *getSelectorFromSlot(); 998 999 llvm::Value *getNormalCleanupDestSlot(); 1000 getUnreachableBlock()1001 llvm::BasicBlock *getUnreachableBlock() { 1002 if (!UnreachableBlock) { 1003 UnreachableBlock = createBasicBlock("unreachable"); 1004 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1005 } 1006 return UnreachableBlock; 1007 } 1008 getInvokeDest()1009 llvm::BasicBlock *getInvokeDest() { 1010 if (!EHStack.requiresLandingPad()) return nullptr; 1011 return getInvokeDestImpl(); 1012 } 1013 getTarget()1014 const TargetInfo &getTarget() const { return Target; } getLLVMContext()1015 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1016 1017 //===--------------------------------------------------------------------===// 1018 // Cleanups 1019 //===--------------------------------------------------------------------===// 1020 1021 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1022 1023 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1024 llvm::Value *arrayEndPointer, 1025 QualType elementType, 1026 Destroyer *destroyer); 1027 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1028 llvm::Value *arrayEnd, 1029 QualType elementType, 1030 Destroyer *destroyer); 1031 1032 void pushDestroy(QualType::DestructionKind dtorKind, 1033 llvm::Value *addr, QualType type); 1034 void pushEHDestroy(QualType::DestructionKind dtorKind, 1035 llvm::Value *addr, QualType type); 1036 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1037 Destroyer *destroyer, bool useEHCleanupForArray); 1038 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1039 QualType type, Destroyer *destroyer, 1040 bool useEHCleanupForArray); 1041 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1042 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1043 bool useEHCleanupForArray); 1044 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1045 Destroyer *destroyer, 1046 bool useEHCleanupForArray, 1047 const VarDecl *VD); 1048 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1049 QualType type, Destroyer *destroyer, 1050 bool checkZeroLength, bool useEHCleanup); 1051 1052 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1053 1054 /// Determines whether an EH cleanup is required to destroy a type 1055 /// with the given destruction kind. needsEHCleanup(QualType::DestructionKind kind)1056 bool needsEHCleanup(QualType::DestructionKind kind) { 1057 switch (kind) { 1058 case QualType::DK_none: 1059 return false; 1060 case QualType::DK_cxx_destructor: 1061 case QualType::DK_objc_weak_lifetime: 1062 return getLangOpts().Exceptions; 1063 case QualType::DK_objc_strong_lifetime: 1064 return getLangOpts().Exceptions && 1065 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1066 } 1067 llvm_unreachable("bad destruction kind"); 1068 } 1069 getCleanupKind(QualType::DestructionKind kind)1070 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1071 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1072 } 1073 1074 //===--------------------------------------------------------------------===// 1075 // Objective-C 1076 //===--------------------------------------------------------------------===// 1077 1078 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1079 1080 void StartObjCMethod(const ObjCMethodDecl *MD, 1081 const ObjCContainerDecl *CD, 1082 SourceLocation StartLoc); 1083 1084 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1085 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1086 const ObjCPropertyImplDecl *PID); 1087 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1088 const ObjCPropertyImplDecl *propImpl, 1089 const ObjCMethodDecl *GetterMothodDecl, 1090 llvm::Constant *AtomicHelperFn); 1091 1092 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1093 ObjCMethodDecl *MD, bool ctor); 1094 1095 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1096 /// for the given property. 1097 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1098 const ObjCPropertyImplDecl *PID); 1099 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1100 const ObjCPropertyImplDecl *propImpl, 1101 llvm::Constant *AtomicHelperFn); 1102 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1103 bool IvarTypeWithAggrGCObjects(QualType Ty); 1104 1105 //===--------------------------------------------------------------------===// 1106 // Block Bits 1107 //===--------------------------------------------------------------------===// 1108 1109 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1110 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1111 static void destroyBlockInfos(CGBlockInfo *info); 1112 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1113 const CGBlockInfo &Info, 1114 llvm::StructType *, 1115 llvm::Constant *BlockVarLayout); 1116 1117 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1118 const CGBlockInfo &Info, 1119 const DeclMapTy &ldm, 1120 bool IsLambdaConversionToBlock); 1121 1122 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1123 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1124 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1125 const ObjCPropertyImplDecl *PID); 1126 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1127 const ObjCPropertyImplDecl *PID); 1128 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1129 1130 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1131 1132 class AutoVarEmission; 1133 1134 void emitByrefStructureInit(const AutoVarEmission &emission); 1135 void enterByrefCleanup(const AutoVarEmission &emission); 1136 LoadBlockStruct()1137 llvm::Value *LoadBlockStruct() { 1138 assert(BlockPointer && "no block pointer set!"); 1139 return BlockPointer; 1140 } 1141 1142 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1143 void AllocateBlockDecl(const DeclRefExpr *E); 1144 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1145 llvm::Type *BuildByRefType(const VarDecl *var); 1146 1147 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1148 const CGFunctionInfo &FnInfo); 1149 /// \brief Emit code for the start of a function. 1150 /// \param Loc The location to be associated with the function. 1151 /// \param StartLoc The location of the function body. 1152 void StartFunction(GlobalDecl GD, 1153 QualType RetTy, 1154 llvm::Function *Fn, 1155 const CGFunctionInfo &FnInfo, 1156 const FunctionArgList &Args, 1157 SourceLocation Loc = SourceLocation(), 1158 SourceLocation StartLoc = SourceLocation()); 1159 1160 void EmitConstructorBody(FunctionArgList &Args); 1161 void EmitDestructorBody(FunctionArgList &Args); 1162 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1163 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1164 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt); 1165 1166 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1167 CallArgList &CallArgs); 1168 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1169 void EmitLambdaBlockInvokeBody(); 1170 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1171 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1172 1173 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1174 /// emission when possible. 1175 void EmitReturnBlock(); 1176 1177 /// FinishFunction - Complete IR generation of the current function. It is 1178 /// legal to call this function even if there is no current insertion point. 1179 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1180 1181 void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo); 1182 1183 void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee, 1184 const ThunkInfo *Thunk); 1185 1186 /// GenerateThunk - Generate a thunk for the given method. 1187 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1188 GlobalDecl GD, const ThunkInfo &Thunk); 1189 1190 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1191 GlobalDecl GD, const ThunkInfo &Thunk); 1192 1193 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1194 FunctionArgList &Args); 1195 1196 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1197 ArrayRef<VarDecl *> ArrayIndexes); 1198 1199 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1200 /// subobject. 1201 /// 1202 void InitializeVTablePointer(BaseSubobject Base, 1203 const CXXRecordDecl *NearestVBase, 1204 CharUnits OffsetFromNearestVBase, 1205 const CXXRecordDecl *VTableClass); 1206 1207 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1208 void InitializeVTablePointers(BaseSubobject Base, 1209 const CXXRecordDecl *NearestVBase, 1210 CharUnits OffsetFromNearestVBase, 1211 bool BaseIsNonVirtualPrimaryBase, 1212 const CXXRecordDecl *VTableClass, 1213 VisitedVirtualBasesSetTy& VBases); 1214 1215 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1216 1217 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1218 /// to by This. 1219 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1220 1221 1222 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1223 /// expr can be devirtualized. 1224 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1225 const CXXMethodDecl *MD); 1226 1227 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1228 /// given phase of destruction for a destructor. The end result 1229 /// should call destructors on members and base classes in reverse 1230 /// order of their construction. 1231 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1232 1233 /// ShouldInstrumentFunction - Return true if the current function should be 1234 /// instrumented with __cyg_profile_func_* calls 1235 bool ShouldInstrumentFunction(); 1236 1237 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1238 /// instrumentation function with the current function and the call site, if 1239 /// function instrumentation is enabled. 1240 void EmitFunctionInstrumentation(const char *Fn); 1241 1242 /// EmitMCountInstrumentation - Emit call to .mcount. 1243 void EmitMCountInstrumentation(); 1244 1245 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1246 /// arguments for the given function. This is also responsible for naming the 1247 /// LLVM function arguments. 1248 void EmitFunctionProlog(const CGFunctionInfo &FI, 1249 llvm::Function *Fn, 1250 const FunctionArgList &Args); 1251 1252 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1253 /// given temporary. 1254 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1255 SourceLocation EndLoc); 1256 1257 /// EmitStartEHSpec - Emit the start of the exception spec. 1258 void EmitStartEHSpec(const Decl *D); 1259 1260 /// EmitEndEHSpec - Emit the end of the exception spec. 1261 void EmitEndEHSpec(const Decl *D); 1262 1263 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1264 llvm::BasicBlock *getTerminateLandingPad(); 1265 1266 /// getTerminateHandler - Return a handler (not a landing pad, just 1267 /// a catch handler) that just calls terminate. This is used when 1268 /// a terminate scope encloses a try. 1269 llvm::BasicBlock *getTerminateHandler(); 1270 1271 llvm::Type *ConvertTypeForMem(QualType T); 1272 llvm::Type *ConvertType(QualType T); ConvertType(const TypeDecl * T)1273 llvm::Type *ConvertType(const TypeDecl *T) { 1274 return ConvertType(getContext().getTypeDeclType(T)); 1275 } 1276 1277 /// LoadObjCSelf - Load the value of self. This function is only valid while 1278 /// generating code for an Objective-C method. 1279 llvm::Value *LoadObjCSelf(); 1280 1281 /// TypeOfSelfObject - Return type of object that this self represents. 1282 QualType TypeOfSelfObject(); 1283 1284 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1285 /// an aggregate LLVM type or is void. 1286 static TypeEvaluationKind getEvaluationKind(QualType T); 1287 hasScalarEvaluationKind(QualType T)1288 static bool hasScalarEvaluationKind(QualType T) { 1289 return getEvaluationKind(T) == TEK_Scalar; 1290 } 1291 hasAggregateEvaluationKind(QualType T)1292 static bool hasAggregateEvaluationKind(QualType T) { 1293 return getEvaluationKind(T) == TEK_Aggregate; 1294 } 1295 1296 /// createBasicBlock - Create an LLVM basic block. 1297 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1298 llvm::Function *parent = nullptr, 1299 llvm::BasicBlock *before = nullptr) { 1300 #ifdef NDEBUG 1301 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1302 #else 1303 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1304 #endif 1305 } 1306 1307 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1308 /// label maps to. 1309 JumpDest getJumpDestForLabel(const LabelDecl *S); 1310 1311 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1312 /// another basic block, simplify it. This assumes that no other code could 1313 /// potentially reference the basic block. 1314 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1315 1316 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1317 /// adding a fall-through branch from the current insert block if 1318 /// necessary. It is legal to call this function even if there is no current 1319 /// insertion point. 1320 /// 1321 /// IsFinished - If true, indicates that the caller has finished emitting 1322 /// branches to the given block and does not expect to emit code into it. This 1323 /// means the block can be ignored if it is unreachable. 1324 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1325 1326 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1327 /// near its uses, and leave the insertion point in it. 1328 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1329 1330 /// EmitBranch - Emit a branch to the specified basic block from the current 1331 /// insert block, taking care to avoid creation of branches from dummy 1332 /// blocks. It is legal to call this function even if there is no current 1333 /// insertion point. 1334 /// 1335 /// This function clears the current insertion point. The caller should follow 1336 /// calls to this function with calls to Emit*Block prior to generation new 1337 /// code. 1338 void EmitBranch(llvm::BasicBlock *Block); 1339 1340 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1341 /// indicates that the current code being emitted is unreachable. HaveInsertPoint()1342 bool HaveInsertPoint() const { 1343 return Builder.GetInsertBlock() != nullptr; 1344 } 1345 1346 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1347 /// emitted IR has a place to go. Note that by definition, if this function 1348 /// creates a block then that block is unreachable; callers may do better to 1349 /// detect when no insertion point is defined and simply skip IR generation. EnsureInsertPoint()1350 void EnsureInsertPoint() { 1351 if (!HaveInsertPoint()) 1352 EmitBlock(createBasicBlock()); 1353 } 1354 1355 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1356 /// specified stmt yet. 1357 void ErrorUnsupported(const Stmt *S, const char *Type); 1358 1359 //===--------------------------------------------------------------------===// 1360 // Helpers 1361 //===--------------------------------------------------------------------===// 1362 1363 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1364 CharUnits Alignment = CharUnits()) { 1365 return LValue::MakeAddr(V, T, Alignment, getContext(), 1366 CGM.getTBAAInfo(T)); 1367 } 1368 MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)1369 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1370 CharUnits Alignment; 1371 if (!T->isIncompleteType()) 1372 Alignment = getContext().getTypeAlignInChars(T); 1373 return LValue::MakeAddr(V, T, Alignment, getContext(), 1374 CGM.getTBAAInfo(T)); 1375 } 1376 1377 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1378 /// block. The caller is responsible for setting an appropriate alignment on 1379 /// the alloca. 1380 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1381 const Twine &Name = "tmp"); 1382 1383 /// InitTempAlloca - Provide an initial value for the given alloca. 1384 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1385 1386 /// CreateIRTemp - Create a temporary IR object of the given type, with 1387 /// appropriate alignment. This routine should only be used when an temporary 1388 /// value needs to be stored into an alloca (for example, to avoid explicit 1389 /// PHI construction), but the type is the IR type, not the type appropriate 1390 /// for storing in memory. 1391 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1392 1393 /// CreateMemTemp - Create a temporary memory object of the given type, with 1394 /// appropriate alignment. 1395 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1396 1397 /// CreateAggTemp - Create a temporary memory object for the given 1398 /// aggregate type. 1399 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1400 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1401 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1402 T.getQualifiers(), 1403 AggValueSlot::IsNotDestructed, 1404 AggValueSlot::DoesNotNeedGCBarriers, 1405 AggValueSlot::IsNotAliased); 1406 } 1407 1408 /// CreateInAllocaTmp - Create a temporary memory object for the given 1409 /// aggregate type. 1410 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1411 1412 /// Emit a cast to void* in the appropriate address space. 1413 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1414 1415 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1416 /// expression and compare the result against zero, returning an Int1Ty value. 1417 llvm::Value *EvaluateExprAsBool(const Expr *E); 1418 1419 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1420 void EmitIgnoredExpr(const Expr *E); 1421 1422 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1423 /// any type. The result is returned as an RValue struct. If this is an 1424 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1425 /// the result should be returned. 1426 /// 1427 /// \param ignoreResult True if the resulting value isn't used. 1428 RValue EmitAnyExpr(const Expr *E, 1429 AggValueSlot aggSlot = AggValueSlot::ignored(), 1430 bool ignoreResult = false); 1431 1432 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1433 // or the value of the expression, depending on how va_list is defined. 1434 llvm::Value *EmitVAListRef(const Expr *E); 1435 1436 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1437 /// always be accessible even if no aggregate location is provided. 1438 RValue EmitAnyExprToTemp(const Expr *E); 1439 1440 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1441 /// arbitrary expression into the given memory location. 1442 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1443 Qualifiers Quals, bool IsInitializer); 1444 1445 /// EmitExprAsInit - Emits the code necessary to initialize a 1446 /// location in memory with the given initializer. 1447 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1448 LValue lvalue, bool capturedByInit); 1449 1450 /// hasVolatileMember - returns true if aggregate type has a volatile 1451 /// member. hasVolatileMember(QualType T)1452 bool hasVolatileMember(QualType T) { 1453 if (const RecordType *RT = T->getAs<RecordType>()) { 1454 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1455 return RD->hasVolatileMember(); 1456 } 1457 return false; 1458 } 1459 /// EmitAggregateCopy - Emit an aggregate assignment. 1460 /// 1461 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1462 /// This is required for correctness when assigning non-POD structures in C++. EmitAggregateAssign(llvm::Value * DestPtr,llvm::Value * SrcPtr,QualType EltTy)1463 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1464 QualType EltTy) { 1465 bool IsVolatile = hasVolatileMember(EltTy); 1466 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1467 true); 1468 } 1469 1470 /// EmitAggregateCopy - Emit an aggregate copy. 1471 /// 1472 /// \param isVolatile - True iff either the source or the destination is 1473 /// volatile. 1474 /// \param isAssignment - If false, allow padding to be copied. This often 1475 /// yields more efficient. 1476 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1477 QualType EltTy, bool isVolatile=false, 1478 CharUnits Alignment = CharUnits::Zero(), 1479 bool isAssignment = false); 1480 1481 /// StartBlock - Start new block named N. If insert block is a dummy block 1482 /// then reuse it. 1483 void StartBlock(const char *N); 1484 1485 /// GetAddrOfLocalVar - Return the address of a local variable. GetAddrOfLocalVar(const VarDecl * VD)1486 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1487 llvm::Value *Res = LocalDeclMap[VD]; 1488 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1489 return Res; 1490 } 1491 1492 /// getOpaqueLValueMapping - Given an opaque value expression (which 1493 /// must be mapped to an l-value), return its mapping. getOpaqueLValueMapping(const OpaqueValueExpr * e)1494 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1495 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1496 1497 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1498 it = OpaqueLValues.find(e); 1499 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1500 return it->second; 1501 } 1502 1503 /// getOpaqueRValueMapping - Given an opaque value expression (which 1504 /// must be mapped to an r-value), return its mapping. getOpaqueRValueMapping(const OpaqueValueExpr * e)1505 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1506 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1507 1508 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1509 it = OpaqueRValues.find(e); 1510 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1511 return it->second; 1512 } 1513 1514 /// getAccessedFieldNo - Given an encoded value and a result number, return 1515 /// the input field number being accessed. 1516 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1517 1518 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1519 llvm::BasicBlock *GetIndirectGotoBlock(); 1520 1521 /// EmitNullInitialization - Generate code to set a value of the given type to 1522 /// null, If the type contains data member pointers, they will be initialized 1523 /// to -1 in accordance with the Itanium C++ ABI. 1524 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1525 1526 // EmitVAArg - Generate code to get an argument from the passed in pointer 1527 // and update it accordingly. The return value is a pointer to the argument. 1528 // FIXME: We should be able to get rid of this method and use the va_arg 1529 // instruction in LLVM instead once it works well enough. 1530 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1531 1532 /// emitArrayLength - Compute the length of an array, even if it's a 1533 /// VLA, and drill down to the base element type. 1534 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1535 QualType &baseType, 1536 llvm::Value *&addr); 1537 1538 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1539 /// the given variably-modified type and store them in the VLASizeMap. 1540 /// 1541 /// This function can be called with a null (unreachable) insert point. 1542 void EmitVariablyModifiedType(QualType Ty); 1543 1544 /// getVLASize - Returns an LLVM value that corresponds to the size, 1545 /// in non-variably-sized elements, of a variable length array type, 1546 /// plus that largest non-variably-sized element type. Assumes that 1547 /// the type has already been emitted with EmitVariablyModifiedType. 1548 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1549 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1550 1551 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1552 /// generating code for an C++ member function. LoadCXXThis()1553 llvm::Value *LoadCXXThis() { 1554 assert(CXXThisValue && "no 'this' value for this function"); 1555 return CXXThisValue; 1556 } 1557 1558 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1559 /// virtual bases. 1560 // FIXME: Every place that calls LoadCXXVTT is something 1561 // that needs to be abstracted properly. LoadCXXVTT()1562 llvm::Value *LoadCXXVTT() { 1563 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1564 return CXXStructorImplicitParamValue; 1565 } 1566 1567 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1568 /// for a constructor/destructor. LoadCXXStructorImplicitParam()1569 llvm::Value *LoadCXXStructorImplicitParam() { 1570 assert(CXXStructorImplicitParamValue && 1571 "no implicit argument value for this function"); 1572 return CXXStructorImplicitParamValue; 1573 } 1574 1575 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1576 /// complete class to the given direct base. 1577 llvm::Value * 1578 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1579 const CXXRecordDecl *Derived, 1580 const CXXRecordDecl *Base, 1581 bool BaseIsVirtual); 1582 1583 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1584 /// load of 'this' and returns address of the base class. 1585 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1586 const CXXRecordDecl *Derived, 1587 CastExpr::path_const_iterator PathBegin, 1588 CastExpr::path_const_iterator PathEnd, 1589 bool NullCheckValue); 1590 1591 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1592 const CXXRecordDecl *Derived, 1593 CastExpr::path_const_iterator PathBegin, 1594 CastExpr::path_const_iterator PathEnd, 1595 bool NullCheckValue); 1596 1597 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1598 /// base constructor/destructor with virtual bases. 1599 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1600 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1601 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1602 bool Delegating); 1603 1604 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1605 CXXCtorType CtorType, 1606 const FunctionArgList &Args, 1607 SourceLocation Loc); 1608 // It's important not to confuse this and the previous function. Delegating 1609 // constructors are the C++0x feature. The constructor delegate optimization 1610 // is used to reduce duplication in the base and complete consturctors where 1611 // they are substantially the same. 1612 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1613 const FunctionArgList &Args); 1614 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1615 bool ForVirtualBase, bool Delegating, 1616 llvm::Value *This, 1617 CallExpr::const_arg_iterator ArgBeg, 1618 CallExpr::const_arg_iterator ArgEnd); 1619 1620 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1621 llvm::Value *This, llvm::Value *Src, 1622 CallExpr::const_arg_iterator ArgBeg, 1623 CallExpr::const_arg_iterator ArgEnd); 1624 1625 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1626 const ConstantArrayType *ArrayTy, 1627 llvm::Value *ArrayPtr, 1628 CallExpr::const_arg_iterator ArgBeg, 1629 CallExpr::const_arg_iterator ArgEnd, 1630 bool ZeroInitialization = false); 1631 1632 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1633 llvm::Value *NumElements, 1634 llvm::Value *ArrayPtr, 1635 CallExpr::const_arg_iterator ArgBeg, 1636 CallExpr::const_arg_iterator ArgEnd, 1637 bool ZeroInitialization = false); 1638 1639 static Destroyer destroyCXXObject; 1640 1641 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1642 bool ForVirtualBase, bool Delegating, 1643 llvm::Value *This); 1644 1645 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1646 llvm::Value *NewPtr, llvm::Value *NumElements, 1647 llvm::Value *AllocSizeWithoutCookie); 1648 1649 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1650 llvm::Value *Ptr); 1651 1652 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1653 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1654 1655 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1656 QualType DeleteTy); 1657 1658 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1659 const Expr *Arg, bool IsDelete); 1660 1661 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1662 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1663 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1664 1665 /// \brief Situations in which we might emit a check for the suitability of a 1666 /// pointer or glvalue. 1667 enum TypeCheckKind { 1668 /// Checking the operand of a load. Must be suitably sized and aligned. 1669 TCK_Load, 1670 /// Checking the destination of a store. Must be suitably sized and aligned. 1671 TCK_Store, 1672 /// Checking the bound value in a reference binding. Must be suitably sized 1673 /// and aligned, but is not required to refer to an object (until the 1674 /// reference is used), per core issue 453. 1675 TCK_ReferenceBinding, 1676 /// Checking the object expression in a non-static data member access. Must 1677 /// be an object within its lifetime. 1678 TCK_MemberAccess, 1679 /// Checking the 'this' pointer for a call to a non-static member function. 1680 /// Must be an object within its lifetime. 1681 TCK_MemberCall, 1682 /// Checking the 'this' pointer for a constructor call. 1683 TCK_ConstructorCall, 1684 /// Checking the operand of a static_cast to a derived pointer type. Must be 1685 /// null or an object within its lifetime. 1686 TCK_DowncastPointer, 1687 /// Checking the operand of a static_cast to a derived reference type. Must 1688 /// be an object within its lifetime. 1689 TCK_DowncastReference 1690 }; 1691 1692 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1693 /// calls to EmitTypeCheck can be skipped. 1694 bool sanitizePerformTypeCheck() const; 1695 1696 /// \brief Emit a check that \p V is the address of storage of the 1697 /// appropriate size and alignment for an object of type \p Type. 1698 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1699 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1700 1701 /// \brief Emit a check that \p Base points into an array object, which 1702 /// we can access at index \p Index. \p Accessed should be \c false if we 1703 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1704 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1705 QualType IndexType, bool Accessed); 1706 1707 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1708 bool isInc, bool isPre); 1709 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1710 bool isInc, bool isPre); 1711 //===--------------------------------------------------------------------===// 1712 // Declaration Emission 1713 //===--------------------------------------------------------------------===// 1714 1715 /// EmitDecl - Emit a declaration. 1716 /// 1717 /// This function can be called with a null (unreachable) insert point. 1718 void EmitDecl(const Decl &D); 1719 1720 /// EmitVarDecl - Emit a local variable declaration. 1721 /// 1722 /// This function can be called with a null (unreachable) insert point. 1723 void EmitVarDecl(const VarDecl &D); 1724 1725 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1726 LValue lvalue, bool capturedByInit); 1727 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1728 1729 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1730 llvm::Value *Address); 1731 1732 /// EmitAutoVarDecl - Emit an auto variable declaration. 1733 /// 1734 /// This function can be called with a null (unreachable) insert point. 1735 void EmitAutoVarDecl(const VarDecl &D); 1736 1737 class AutoVarEmission { 1738 friend class CodeGenFunction; 1739 1740 const VarDecl *Variable; 1741 1742 /// The alignment of the variable. 1743 CharUnits Alignment; 1744 1745 /// The address of the alloca. Null if the variable was emitted 1746 /// as a global constant. 1747 llvm::Value *Address; 1748 1749 llvm::Value *NRVOFlag; 1750 1751 /// True if the variable is a __block variable. 1752 bool IsByRef; 1753 1754 /// True if the variable is of aggregate type and has a constant 1755 /// initializer. 1756 bool IsConstantAggregate; 1757 1758 /// Non-null if we should use lifetime annotations. 1759 llvm::Value *SizeForLifetimeMarkers; 1760 1761 struct Invalid {}; AutoVarEmission(Invalid)1762 AutoVarEmission(Invalid) : Variable(nullptr) {} 1763 AutoVarEmission(const VarDecl & variable)1764 AutoVarEmission(const VarDecl &variable) 1765 : Variable(&variable), Address(nullptr), NRVOFlag(nullptr), 1766 IsByRef(false), IsConstantAggregate(false), 1767 SizeForLifetimeMarkers(nullptr) {} 1768 wasEmittedAsGlobal()1769 bool wasEmittedAsGlobal() const { return Address == nullptr; } 1770 1771 public: invalid()1772 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1773 useLifetimeMarkers()1774 bool useLifetimeMarkers() const { 1775 return SizeForLifetimeMarkers != nullptr; 1776 } getSizeForLifetimeMarkers()1777 llvm::Value *getSizeForLifetimeMarkers() const { 1778 assert(useLifetimeMarkers()); 1779 return SizeForLifetimeMarkers; 1780 } 1781 1782 /// Returns the raw, allocated address, which is not necessarily 1783 /// the address of the object itself. getAllocatedAddress()1784 llvm::Value *getAllocatedAddress() const { 1785 return Address; 1786 } 1787 1788 /// Returns the address of the object within this declaration. 1789 /// Note that this does not chase the forwarding pointer for 1790 /// __block decls. getObjectAddress(CodeGenFunction & CGF)1791 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1792 if (!IsByRef) return Address; 1793 1794 return CGF.Builder.CreateStructGEP(Address, 1795 CGF.getByRefValueLLVMField(Variable), 1796 Variable->getNameAsString()); 1797 } 1798 }; 1799 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1800 void EmitAutoVarInit(const AutoVarEmission &emission); 1801 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1802 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1803 QualType::DestructionKind dtorKind); 1804 1805 void EmitStaticVarDecl(const VarDecl &D, 1806 llvm::GlobalValue::LinkageTypes Linkage); 1807 1808 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1809 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1810 unsigned ArgNo); 1811 1812 /// protectFromPeepholes - Protect a value that we're intending to 1813 /// store to the side, but which will probably be used later, from 1814 /// aggressive peepholing optimizations that might delete it. 1815 /// 1816 /// Pass the result to unprotectFromPeepholes to declare that 1817 /// protection is no longer required. 1818 /// 1819 /// There's no particular reason why this shouldn't apply to 1820 /// l-values, it's just that no existing peepholes work on pointers. 1821 PeepholeProtection protectFromPeepholes(RValue rvalue); 1822 void unprotectFromPeepholes(PeepholeProtection protection); 1823 1824 //===--------------------------------------------------------------------===// 1825 // Statement Emission 1826 //===--------------------------------------------------------------------===// 1827 1828 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1829 void EmitStopPoint(const Stmt *S); 1830 1831 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1832 /// this function even if there is no current insertion point. 1833 /// 1834 /// This function may clear the current insertion point; callers should use 1835 /// EnsureInsertPoint if they wish to subsequently generate code without first 1836 /// calling EmitBlock, EmitBranch, or EmitStmt. 1837 void EmitStmt(const Stmt *S); 1838 1839 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1840 /// necessarily require an insertion point or debug information; typically 1841 /// because the statement amounts to a jump or a container of other 1842 /// statements. 1843 /// 1844 /// \return True if the statement was handled. 1845 bool EmitSimpleStmt(const Stmt *S); 1846 1847 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1848 AggValueSlot AVS = AggValueSlot::ignored()); 1849 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1850 bool GetLast = false, 1851 AggValueSlot AVS = 1852 AggValueSlot::ignored()); 1853 1854 /// EmitLabel - Emit the block for the given label. It is legal to call this 1855 /// function even if there is no current insertion point. 1856 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1857 1858 void EmitLabelStmt(const LabelStmt &S); 1859 void EmitAttributedStmt(const AttributedStmt &S); 1860 void EmitGotoStmt(const GotoStmt &S); 1861 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1862 void EmitIfStmt(const IfStmt &S); 1863 1864 void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr, 1865 const ArrayRef<const Attr *> &Attrs); 1866 void EmitWhileStmt(const WhileStmt &S, 1867 const ArrayRef<const Attr *> &Attrs = None); 1868 void EmitDoStmt(const DoStmt &S, const ArrayRef<const Attr *> &Attrs = None); 1869 void EmitForStmt(const ForStmt &S, 1870 const ArrayRef<const Attr *> &Attrs = None); 1871 void EmitReturnStmt(const ReturnStmt &S); 1872 void EmitDeclStmt(const DeclStmt &S); 1873 void EmitBreakStmt(const BreakStmt &S); 1874 void EmitContinueStmt(const ContinueStmt &S); 1875 void EmitSwitchStmt(const SwitchStmt &S); 1876 void EmitDefaultStmt(const DefaultStmt &S); 1877 void EmitCaseStmt(const CaseStmt &S); 1878 void EmitCaseStmtRange(const CaseStmt &S); 1879 void EmitAsmStmt(const AsmStmt &S); 1880 1881 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1882 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1883 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1884 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1885 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1886 1887 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1888 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1889 1890 void EmitCXXTryStmt(const CXXTryStmt &S); 1891 void EmitSEHTryStmt(const SEHTryStmt &S); 1892 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 1893 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1894 const ArrayRef<const Attr *> &Attrs = None); 1895 1896 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1897 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 1898 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 1899 1900 void EmitOMPParallelDirective(const OMPParallelDirective &S); 1901 void EmitOMPSimdDirective(const OMPSimdDirective &S); 1902 void EmitOMPForDirective(const OMPForDirective &S); 1903 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 1904 void EmitOMPSectionDirective(const OMPSectionDirective &S); 1905 void EmitOMPSingleDirective(const OMPSingleDirective &S); 1906 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 1907 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 1908 1909 //===--------------------------------------------------------------------===// 1910 // LValue Expression Emission 1911 //===--------------------------------------------------------------------===// 1912 1913 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1914 RValue GetUndefRValue(QualType Ty); 1915 1916 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1917 /// and issue an ErrorUnsupported style diagnostic (using the 1918 /// provided Name). 1919 RValue EmitUnsupportedRValue(const Expr *E, 1920 const char *Name); 1921 1922 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1923 /// an ErrorUnsupported style diagnostic (using the provided Name). 1924 LValue EmitUnsupportedLValue(const Expr *E, 1925 const char *Name); 1926 1927 /// EmitLValue - Emit code to compute a designator that specifies the location 1928 /// of the expression. 1929 /// 1930 /// This can return one of two things: a simple address or a bitfield 1931 /// reference. In either case, the LLVM Value* in the LValue structure is 1932 /// guaranteed to be an LLVM pointer type. 1933 /// 1934 /// If this returns a bitfield reference, nothing about the pointee type of 1935 /// the LLVM value is known: For example, it may not be a pointer to an 1936 /// integer. 1937 /// 1938 /// If this returns a normal address, and if the lvalue's C type is fixed 1939 /// size, this method guarantees that the returned pointer type will point to 1940 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1941 /// variable length type, this is not possible. 1942 /// 1943 LValue EmitLValue(const Expr *E); 1944 1945 /// \brief Same as EmitLValue but additionally we generate checking code to 1946 /// guard against undefined behavior. This is only suitable when we know 1947 /// that the address will be used to access the object. 1948 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1949 1950 RValue convertTempToRValue(llvm::Value *addr, QualType type, 1951 SourceLocation Loc); 1952 1953 void EmitAtomicInit(Expr *E, LValue lvalue); 1954 1955 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 1956 AggValueSlot slot = AggValueSlot::ignored()); 1957 1958 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1959 1960 /// EmitToMemory - Change a scalar value from its value 1961 /// representation to its in-memory representation. 1962 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1963 1964 /// EmitFromMemory - Change a scalar value from its memory 1965 /// representation to its value representation. 1966 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1967 1968 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1969 /// care to appropriately convert from the memory representation to 1970 /// the LLVM value representation. 1971 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1972 unsigned Alignment, QualType Ty, 1973 SourceLocation Loc, 1974 llvm::MDNode *TBAAInfo = nullptr, 1975 QualType TBAABaseTy = QualType(), 1976 uint64_t TBAAOffset = 0); 1977 1978 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1979 /// care to appropriately convert from the memory representation to 1980 /// the LLVM value representation. The l-value must be a simple 1981 /// l-value. 1982 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 1983 1984 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1985 /// care to appropriately convert from the memory representation to 1986 /// the LLVM value representation. 1987 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1988 bool Volatile, unsigned Alignment, QualType Ty, 1989 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 1990 QualType TBAABaseTy = QualType(), 1991 uint64_t TBAAOffset = 0); 1992 1993 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1994 /// care to appropriately convert from the memory representation to 1995 /// the LLVM value representation. The l-value must be a simple 1996 /// l-value. The isInit flag indicates whether this is an initialization. 1997 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1998 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1999 2000 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2001 /// this method emits the address of the lvalue, then loads the result as an 2002 /// rvalue, returning the rvalue. 2003 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2004 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2005 RValue EmitLoadOfBitfieldLValue(LValue LV); 2006 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2007 2008 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2009 /// lvalue, where both are guaranteed to the have the same type, and that type 2010 /// is 'Ty'. 2011 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2012 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2013 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2014 2015 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2016 /// as EmitStoreThroughLValue. 2017 /// 2018 /// \param Result [out] - If non-null, this will be set to a Value* for the 2019 /// bit-field contents after the store, appropriate for use as the result of 2020 /// an assignment to the bit-field. 2021 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2022 llvm::Value **Result=nullptr); 2023 2024 /// Emit an l-value for an assignment (simple or compound) of complex type. 2025 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2026 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2027 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 2028 llvm::Value *&Result); 2029 2030 // Note: only available for agg return types 2031 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2032 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2033 // Note: only available for agg return types 2034 LValue EmitCallExprLValue(const CallExpr *E); 2035 // Note: only available for agg return types 2036 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2037 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2038 LValue EmitReadRegister(const VarDecl *VD); 2039 LValue EmitStringLiteralLValue(const StringLiteral *E); 2040 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2041 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2042 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2043 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2044 bool Accessed = false); 2045 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2046 LValue EmitMemberExpr(const MemberExpr *E); 2047 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2048 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2049 LValue EmitInitListLValue(const InitListExpr *E); 2050 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2051 LValue EmitCastLValue(const CastExpr *E); 2052 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2053 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2054 2055 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2056 2057 class ConstantEmission { 2058 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; ConstantEmission(llvm::Constant * C,bool isReference)2059 ConstantEmission(llvm::Constant *C, bool isReference) 2060 : ValueAndIsReference(C, isReference) {} 2061 public: ConstantEmission()2062 ConstantEmission() {} forReference(llvm::Constant * C)2063 static ConstantEmission forReference(llvm::Constant *C) { 2064 return ConstantEmission(C, true); 2065 } forValue(llvm::Constant * C)2066 static ConstantEmission forValue(llvm::Constant *C) { 2067 return ConstantEmission(C, false); 2068 } 2069 2070 LLVM_EXPLICIT operator bool() const { 2071 return ValueAndIsReference.getOpaqueValue() != nullptr; 2072 } 2073 isReference()2074 bool isReference() const { return ValueAndIsReference.getInt(); } getReferenceLValue(CodeGenFunction & CGF,Expr * refExpr)2075 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2076 assert(isReference()); 2077 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2078 refExpr->getType()); 2079 } 2080 getValue()2081 llvm::Constant *getValue() const { 2082 assert(!isReference()); 2083 return ValueAndIsReference.getPointer(); 2084 } 2085 }; 2086 2087 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2088 2089 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2090 AggValueSlot slot = AggValueSlot::ignored()); 2091 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2092 2093 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2094 const ObjCIvarDecl *Ivar); 2095 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2096 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2097 2098 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2099 /// if the Field is a reference, this will return the address of the reference 2100 /// and not the address of the value stored in the reference. 2101 LValue EmitLValueForFieldInitialization(LValue Base, 2102 const FieldDecl* Field); 2103 2104 LValue EmitLValueForIvar(QualType ObjectTy, 2105 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2106 unsigned CVRQualifiers); 2107 2108 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2109 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2110 LValue EmitLambdaLValue(const LambdaExpr *E); 2111 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2112 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2113 2114 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2115 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2116 LValue EmitStmtExprLValue(const StmtExpr *E); 2117 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2118 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2119 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2120 2121 //===--------------------------------------------------------------------===// 2122 // Scalar Expression Emission 2123 //===--------------------------------------------------------------------===// 2124 2125 /// EmitCall - Generate a call of the given function, expecting the given 2126 /// result type, and using the given argument list which specifies both the 2127 /// LLVM arguments and the types they were derived from. 2128 /// 2129 /// \param TargetDecl - If given, the decl of the function in a direct call; 2130 /// used to set attributes on the call (noreturn, etc.). 2131 RValue EmitCall(const CGFunctionInfo &FnInfo, 2132 llvm::Value *Callee, 2133 ReturnValueSlot ReturnValue, 2134 const CallArgList &Args, 2135 const Decl *TargetDecl = nullptr, 2136 llvm::Instruction **callOrInvoke = nullptr); 2137 2138 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2139 SourceLocation CallLoc, 2140 ReturnValueSlot ReturnValue, 2141 CallExpr::const_arg_iterator ArgBeg, 2142 CallExpr::const_arg_iterator ArgEnd, 2143 const Decl *TargetDecl = nullptr); 2144 RValue EmitCallExpr(const CallExpr *E, 2145 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2146 2147 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2148 const Twine &name = ""); 2149 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2150 ArrayRef<llvm::Value*> args, 2151 const Twine &name = ""); 2152 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2153 const Twine &name = ""); 2154 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2155 ArrayRef<llvm::Value*> args, 2156 const Twine &name = ""); 2157 2158 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2159 ArrayRef<llvm::Value *> Args, 2160 const Twine &Name = ""); 2161 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2162 const Twine &Name = ""); 2163 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2164 ArrayRef<llvm::Value*> args, 2165 const Twine &name = ""); 2166 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2167 const Twine &name = ""); 2168 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2169 ArrayRef<llvm::Value*> args); 2170 2171 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2172 NestedNameSpecifier *Qual, 2173 llvm::Type *Ty); 2174 2175 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2176 CXXDtorType Type, 2177 const CXXRecordDecl *RD); 2178 2179 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2180 SourceLocation CallLoc, 2181 llvm::Value *Callee, 2182 ReturnValueSlot ReturnValue, 2183 llvm::Value *This, 2184 llvm::Value *ImplicitParam, 2185 QualType ImplicitParamTy, 2186 CallExpr::const_arg_iterator ArgBeg, 2187 CallExpr::const_arg_iterator ArgEnd); 2188 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2189 ReturnValueSlot ReturnValue); 2190 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2191 ReturnValueSlot ReturnValue); 2192 2193 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2194 const CXXMethodDecl *MD, 2195 llvm::Value *This); 2196 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2197 const CXXMethodDecl *MD, 2198 ReturnValueSlot ReturnValue); 2199 2200 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2201 ReturnValueSlot ReturnValue); 2202 2203 2204 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2205 unsigned BuiltinID, const CallExpr *E); 2206 2207 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2208 2209 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2210 /// is unhandled by the current target. 2211 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2212 2213 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2214 const llvm::CmpInst::Predicate Fp, 2215 const llvm::CmpInst::Predicate Ip, 2216 const llvm::Twine &Name = ""); 2217 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2218 2219 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2220 unsigned LLVMIntrinsic, 2221 unsigned AltLLVMIntrinsic, 2222 const char *NameHint, 2223 unsigned Modifier, 2224 const CallExpr *E, 2225 SmallVectorImpl<llvm::Value *> &Ops, 2226 llvm::Value *Align = nullptr); 2227 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2228 unsigned Modifier, llvm::Type *ArgTy, 2229 const CallExpr *E); 2230 llvm::Value *EmitNeonCall(llvm::Function *F, 2231 SmallVectorImpl<llvm::Value*> &O, 2232 const char *name, 2233 unsigned shift = 0, bool rightshift = false); 2234 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2235 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2236 bool negateForRightShift); 2237 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2238 llvm::Type *Ty, bool usgn, const char *name); 2239 // Helper functions for EmitAArch64BuiltinExpr. 2240 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2241 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2242 llvm::Value *emitVectorWrappedScalar8Intrinsic( 2243 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2244 llvm::Value *emitVectorWrappedScalar16Intrinsic( 2245 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2246 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2247 llvm::Value *EmitNeon64Call(llvm::Function *F, 2248 llvm::SmallVectorImpl<llvm::Value *> &O, 2249 const char *name); 2250 2251 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2252 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2253 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2254 llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2255 2256 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2257 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2258 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2259 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2260 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2261 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2262 const ObjCMethodDecl *MethodWithObjects); 2263 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2264 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2265 ReturnValueSlot Return = ReturnValueSlot()); 2266 2267 /// Retrieves the default cleanup kind for an ARC cleanup. 2268 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. getARCCleanupKind()2269 CleanupKind getARCCleanupKind() { 2270 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2271 ? NormalAndEHCleanup : NormalCleanup; 2272 } 2273 2274 // ARC primitives. 2275 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2276 void EmitARCDestroyWeak(llvm::Value *addr); 2277 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2278 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2279 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2280 bool ignored); 2281 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2282 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2283 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2284 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2285 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2286 bool resultIgnored); 2287 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2288 bool resultIgnored); 2289 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2290 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2291 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2292 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2293 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2294 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2295 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2296 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2297 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2298 2299 std::pair<LValue,llvm::Value*> 2300 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2301 std::pair<LValue,llvm::Value*> 2302 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2303 2304 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2305 2306 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2307 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2308 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2309 2310 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2311 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2312 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2313 2314 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2315 2316 static Destroyer destroyARCStrongImprecise; 2317 static Destroyer destroyARCStrongPrecise; 2318 static Destroyer destroyARCWeak; 2319 2320 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2321 llvm::Value *EmitObjCAutoreleasePoolPush(); 2322 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2323 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2324 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2325 2326 /// \brief Emits a reference binding to the passed in expression. 2327 RValue EmitReferenceBindingToExpr(const Expr *E); 2328 2329 //===--------------------------------------------------------------------===// 2330 // Expression Emission 2331 //===--------------------------------------------------------------------===// 2332 2333 // Expressions are broken into three classes: scalar, complex, aggregate. 2334 2335 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2336 /// scalar type, returning the result. 2337 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2338 2339 /// EmitScalarConversion - Emit a conversion from the specified type to the 2340 /// specified destination type, both of which are LLVM scalar types. 2341 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2342 QualType DstTy); 2343 2344 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2345 /// complex type to the specified destination type, where the destination type 2346 /// is an LLVM scalar type. 2347 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2348 QualType DstTy); 2349 2350 2351 /// EmitAggExpr - Emit the computation of the specified expression 2352 /// of aggregate type. The result is computed into the given slot, 2353 /// which may be null to indicate that the value is not needed. 2354 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2355 2356 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2357 /// aggregate type into a temporary LValue. 2358 LValue EmitAggExprToLValue(const Expr *E); 2359 2360 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2361 /// pointers. 2362 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2363 QualType Ty); 2364 2365 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2366 /// make sure it survives garbage collection until this point. 2367 void EmitExtendGCLifetime(llvm::Value *object); 2368 2369 /// EmitComplexExpr - Emit the computation of the specified expression of 2370 /// complex type, returning the result. 2371 ComplexPairTy EmitComplexExpr(const Expr *E, 2372 bool IgnoreReal = false, 2373 bool IgnoreImag = false); 2374 2375 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2376 /// type and place its result into the specified l-value. 2377 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2378 2379 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2380 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2381 2382 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2383 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2384 2385 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2386 /// a static local variable. 2387 llvm::Constant *CreateStaticVarDecl(const VarDecl &D, 2388 const char *Separator, 2389 llvm::GlobalValue::LinkageTypes Linkage); 2390 2391 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2392 /// global variable that has already been created for it. If the initializer 2393 /// has a different type than GV does, this may free GV and return a different 2394 /// one. Otherwise it just returns GV. 2395 llvm::GlobalVariable * 2396 AddInitializerToStaticVarDecl(const VarDecl &D, 2397 llvm::GlobalVariable *GV); 2398 2399 2400 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2401 /// variable with global storage. 2402 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2403 bool PerformInit); 2404 2405 /// Call atexit() with a function that passes the given argument to 2406 /// the given function. 2407 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2408 llvm::Constant *addr); 2409 2410 /// Emit code in this function to perform a guarded variable 2411 /// initialization. Guarded initializations are used when it's not 2412 /// possible to prove that an initialization will be done exactly 2413 /// once, e.g. with a static local variable or a static data member 2414 /// of a class template. 2415 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2416 bool PerformInit); 2417 2418 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2419 /// variables. 2420 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2421 ArrayRef<llvm::Constant *> Decls, 2422 llvm::GlobalVariable *Guard = nullptr); 2423 2424 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2425 /// variables. 2426 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2427 const std::vector<std::pair<llvm::WeakVH, 2428 llvm::Constant*> > &DtorsAndObjects); 2429 2430 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2431 const VarDecl *D, 2432 llvm::GlobalVariable *Addr, 2433 bool PerformInit); 2434 2435 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2436 2437 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2438 const Expr *Exp); 2439 enterFullExpression(const ExprWithCleanups * E)2440 void enterFullExpression(const ExprWithCleanups *E) { 2441 if (E->getNumObjects() == 0) return; 2442 enterNonTrivialFullExpression(E); 2443 } 2444 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2445 2446 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2447 2448 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2449 2450 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr); 2451 2452 //===--------------------------------------------------------------------===// 2453 // Annotations Emission 2454 //===--------------------------------------------------------------------===// 2455 2456 /// Emit an annotation call (intrinsic or builtin). 2457 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2458 llvm::Value *AnnotatedVal, 2459 StringRef AnnotationStr, 2460 SourceLocation Location); 2461 2462 /// Emit local annotations for the local variable V, declared by D. 2463 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2464 2465 /// Emit field annotations for the given field & value. Returns the 2466 /// annotation result. 2467 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2468 2469 //===--------------------------------------------------------------------===// 2470 // Internal Helpers 2471 //===--------------------------------------------------------------------===// 2472 2473 /// ContainsLabel - Return true if the statement contains a label in it. If 2474 /// this statement is not executed normally, it not containing a label means 2475 /// that we can just remove the code. 2476 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2477 2478 /// containsBreak - Return true if the statement contains a break out of it. 2479 /// If the statement (recursively) contains a switch or loop with a break 2480 /// inside of it, this is fine. 2481 static bool containsBreak(const Stmt *S); 2482 2483 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2484 /// to a constant, or if it does but contains a label, return false. If it 2485 /// constant folds return true and set the boolean result in Result. 2486 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2487 2488 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2489 /// to a constant, or if it does but contains a label, return false. If it 2490 /// constant folds return true and set the folded value. 2491 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2492 2493 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2494 /// if statement) to the specified blocks. Based on the condition, this might 2495 /// try to simplify the codegen of the conditional based on the branch. 2496 /// TrueCount should be the number of times we expect the condition to 2497 /// evaluate to true based on PGO data. 2498 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2499 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2500 2501 /// \brief Emit a description of a type in a format suitable for passing to 2502 /// a runtime sanitizer handler. 2503 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2504 2505 /// \brief Convert a value into a format suitable for passing to a runtime 2506 /// sanitizer handler. 2507 llvm::Value *EmitCheckValue(llvm::Value *V); 2508 2509 /// \brief Emit a description of a source location in a format suitable for 2510 /// passing to a runtime sanitizer handler. 2511 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2512 2513 /// \brief Specify under what conditions this check can be recovered 2514 enum CheckRecoverableKind { 2515 /// Always terminate program execution if this check fails 2516 CRK_Unrecoverable, 2517 /// Check supports recovering, allows user to specify which 2518 CRK_Recoverable, 2519 /// Runtime conditionally aborts, always need to support recovery. 2520 CRK_AlwaysRecoverable 2521 }; 2522 2523 /// \brief Create a basic block that will call a handler function in a 2524 /// sanitizer runtime with the provided arguments, and create a conditional 2525 /// branch to it. 2526 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2527 ArrayRef<llvm::Constant *> StaticArgs, 2528 ArrayRef<llvm::Value *> DynamicArgs, 2529 CheckRecoverableKind Recoverable); 2530 2531 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2532 /// conditional branch to it, for the -ftrapv checks. 2533 void EmitTrapCheck(llvm::Value *Checked); 2534 2535 /// EmitCallArg - Emit a single call argument. 2536 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2537 2538 /// EmitDelegateCallArg - We are performing a delegate call; that 2539 /// is, the current function is delegating to another one. Produce 2540 /// a r-value suitable for passing the given parameter. 2541 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2542 SourceLocation loc); 2543 2544 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2545 /// point operation, expressed as the maximum relative error in ulp. 2546 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2547 2548 private: 2549 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2550 void EmitReturnOfRValue(RValue RV, QualType Ty); 2551 2552 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2553 2554 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2555 DeferredReplacements; 2556 2557 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2558 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2559 /// 2560 /// \param AI - The first function argument of the expansion. 2561 /// \return The argument following the last expanded function 2562 /// argument. 2563 llvm::Function::arg_iterator 2564 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2565 llvm::Function::arg_iterator AI); 2566 2567 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2568 /// Ty, into individual arguments on the provided vector \arg Args. See 2569 /// ABIArgInfo::Expand. 2570 void ExpandTypeToArgs(QualType Ty, RValue Src, 2571 SmallVectorImpl<llvm::Value *> &Args, 2572 llvm::FunctionType *IRFuncTy); 2573 2574 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2575 const Expr *InputExpr, std::string &ConstraintStr); 2576 2577 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2578 LValue InputValue, QualType InputType, 2579 std::string &ConstraintStr, 2580 SourceLocation Loc); 2581 2582 public: 2583 /// EmitCallArgs - Emit call arguments for a function. 2584 template <typename T> 2585 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2586 CallExpr::const_arg_iterator ArgBeg, 2587 CallExpr::const_arg_iterator ArgEnd, 2588 bool ForceColumnInfo = false) { 2589 if (CallArgTypeInfo) { 2590 EmitCallArgs(Args, CallArgTypeInfo->isVariadic(), 2591 CallArgTypeInfo->param_type_begin(), 2592 CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd, 2593 ForceColumnInfo); 2594 } else { 2595 // T::param_type_iterator might not have a default ctor. 2596 const QualType *NoIter = nullptr; 2597 EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg, 2598 ArgEnd, ForceColumnInfo); 2599 } 2600 } 2601 2602 template<typename ArgTypeIterator> 2603 void EmitCallArgs(CallArgList& Args, 2604 bool AllowExtraArguments, 2605 ArgTypeIterator ArgTypeBeg, 2606 ArgTypeIterator ArgTypeEnd, 2607 CallExpr::const_arg_iterator ArgBeg, 2608 CallExpr::const_arg_iterator ArgEnd, 2609 bool ForceColumnInfo = false) { 2610 SmallVector<QualType, 16> ArgTypes; 2611 CallExpr::const_arg_iterator Arg = ArgBeg; 2612 2613 // First, use the argument types that the type info knows about 2614 for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) { 2615 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2616 #ifndef NDEBUG 2617 QualType ArgType = *I; 2618 QualType ActualArgType = Arg->getType(); 2619 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2620 QualType ActualBaseType = 2621 ActualArgType->getAs<PointerType>()->getPointeeType(); 2622 QualType ArgBaseType = 2623 ArgType->getAs<PointerType>()->getPointeeType(); 2624 if (ArgBaseType->isVariableArrayType()) { 2625 if (const VariableArrayType *VAT = 2626 getContext().getAsVariableArrayType(ActualBaseType)) { 2627 if (!VAT->getSizeExpr()) 2628 ActualArgType = ArgType; 2629 } 2630 } 2631 } 2632 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2633 getTypePtr() == 2634 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2635 "type mismatch in call argument!"); 2636 #endif 2637 ArgTypes.push_back(*I); 2638 } 2639 2640 // Either we've emitted all the call args, or we have a call to variadic 2641 // function or some other call that allows extra arguments. 2642 assert((Arg == ArgEnd || AllowExtraArguments) && 2643 "Extra arguments in non-variadic function!"); 2644 2645 // If we still have any arguments, emit them using the type of the argument. 2646 for (; Arg != ArgEnd; ++Arg) 2647 ArgTypes.push_back(Arg->getType()); 2648 2649 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo); 2650 } 2651 2652 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2653 CallExpr::const_arg_iterator ArgBeg, 2654 CallExpr::const_arg_iterator ArgEnd, 2655 bool ForceColumnInfo = false); 2656 2657 private: getTargetHooks()2658 const TargetCodeGenInfo &getTargetHooks() const { 2659 return CGM.getTargetCodeGenInfo(); 2660 } 2661 2662 void EmitDeclMetadata(); 2663 2664 CodeGenModule::ByrefHelpers * 2665 buildByrefHelpers(llvm::StructType &byrefType, 2666 const AutoVarEmission &emission); 2667 2668 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2669 2670 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2671 /// value and compute our best estimate of the alignment of the pointee. 2672 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2673 }; 2674 2675 /// Helper class with most of the code for saving a value for a 2676 /// conditional expression cleanup. 2677 struct DominatingLLVMValue { 2678 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2679 2680 /// Answer whether the given value needs extra work to be saved. needsSavingDominatingLLVMValue2681 static bool needsSaving(llvm::Value *value) { 2682 // If it's not an instruction, we don't need to save. 2683 if (!isa<llvm::Instruction>(value)) return false; 2684 2685 // If it's an instruction in the entry block, we don't need to save. 2686 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2687 return (block != &block->getParent()->getEntryBlock()); 2688 } 2689 2690 /// Try to save the given value. saveDominatingLLVMValue2691 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2692 if (!needsSaving(value)) return saved_type(value, false); 2693 2694 // Otherwise we need an alloca. 2695 llvm::Value *alloca = 2696 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2697 CGF.Builder.CreateStore(value, alloca); 2698 2699 return saved_type(alloca, true); 2700 } 2701 restoreDominatingLLVMValue2702 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2703 if (!value.getInt()) return value.getPointer(); 2704 return CGF.Builder.CreateLoad(value.getPointer()); 2705 } 2706 }; 2707 2708 /// A partial specialization of DominatingValue for llvm::Values that 2709 /// might be llvm::Instructions. 2710 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2711 typedef T *type; 2712 static type restore(CodeGenFunction &CGF, saved_type value) { 2713 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2714 } 2715 }; 2716 2717 /// A specialization of DominatingValue for RValue. 2718 template <> struct DominatingValue<RValue> { 2719 typedef RValue type; 2720 class saved_type { 2721 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2722 AggregateAddress, ComplexAddress }; 2723 2724 llvm::Value *Value; 2725 Kind K; 2726 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2727 2728 public: 2729 static bool needsSaving(RValue value); 2730 static saved_type save(CodeGenFunction &CGF, RValue value); 2731 RValue restore(CodeGenFunction &CGF); 2732 2733 // implementations in CGExprCXX.cpp 2734 }; 2735 2736 static bool needsSaving(type value) { 2737 return saved_type::needsSaving(value); 2738 } 2739 static saved_type save(CodeGenFunction &CGF, type value) { 2740 return saved_type::save(CGF, value); 2741 } 2742 static type restore(CodeGenFunction &CGF, saved_type value) { 2743 return value.restore(CGF); 2744 } 2745 }; 2746 2747 } // end namespace CodeGen 2748 } // end namespace clang 2749 2750 #endif 2751