1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal@google.com (Sameer Agarwal) 30 // 31 // Abstract interface for objects solving linear systems of various 32 // kinds. 33 34 #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_ 35 #define CERES_INTERNAL_LINEAR_SOLVER_H_ 36 37 #include <cstddef> 38 #include <map> 39 #include <string> 40 #include <vector> 41 #include "ceres/block_sparse_matrix.h" 42 #include "ceres/casts.h" 43 #include "ceres/compressed_row_sparse_matrix.h" 44 #include "ceres/dense_sparse_matrix.h" 45 #include "ceres/execution_summary.h" 46 #include "ceres/triplet_sparse_matrix.h" 47 #include "ceres/types.h" 48 #include "glog/logging.h" 49 50 namespace ceres { 51 namespace internal { 52 53 enum LinearSolverTerminationType { 54 // Termination criterion was met. 55 LINEAR_SOLVER_SUCCESS, 56 57 // Solver ran for max_num_iterations and terminated before the 58 // termination tolerance could be satisfied. 59 LINEAR_SOLVER_NO_CONVERGENCE, 60 61 // Solver was terminated due to numerical problems, generally due to 62 // the linear system being poorly conditioned. 63 LINEAR_SOLVER_FAILURE, 64 65 // Solver failed with a fatal error that cannot be recovered from, 66 // e.g. CHOLMOD ran out of memory when computing the symbolic or 67 // numeric factorization or an underlying library was called with 68 // the wrong arguments. 69 LINEAR_SOLVER_FATAL_ERROR 70 }; 71 72 73 class LinearOperator; 74 75 // Abstract base class for objects that implement algorithms for 76 // solving linear systems 77 // 78 // Ax = b 79 // 80 // It is expected that a single instance of a LinearSolver object 81 // maybe used multiple times for solving multiple linear systems with 82 // the same sparsity structure. This allows them to cache and reuse 83 // information across solves. This means that calling Solve on the 84 // same LinearSolver instance with two different linear systems will 85 // result in undefined behaviour. 86 // 87 // Subclasses of LinearSolver use two structs to configure themselves. 88 // The Options struct configures the LinearSolver object for its 89 // lifetime. The PerSolveOptions struct is used to specify options for 90 // a particular Solve call. 91 class LinearSolver { 92 public: 93 struct Options { OptionsOptions94 Options() 95 : type(SPARSE_NORMAL_CHOLESKY), 96 preconditioner_type(JACOBI), 97 visibility_clustering_type(CANONICAL_VIEWS), 98 dense_linear_algebra_library_type(EIGEN), 99 sparse_linear_algebra_library_type(SUITE_SPARSE), 100 use_postordering(false), 101 dynamic_sparsity(false), 102 min_num_iterations(1), 103 max_num_iterations(1), 104 num_threads(1), 105 residual_reset_period(10), 106 row_block_size(Eigen::Dynamic), 107 e_block_size(Eigen::Dynamic), 108 f_block_size(Eigen::Dynamic) { 109 } 110 111 LinearSolverType type; 112 PreconditionerType preconditioner_type; 113 VisibilityClusteringType visibility_clustering_type; 114 DenseLinearAlgebraLibraryType dense_linear_algebra_library_type; 115 SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; 116 117 // See solver.h for information about this flag. 118 bool use_postordering; 119 bool dynamic_sparsity; 120 121 // Number of internal iterations that the solver uses. This 122 // parameter only makes sense for iterative solvers like CG. 123 int min_num_iterations; 124 int max_num_iterations; 125 126 // If possible, how many threads can the solver use. 127 int num_threads; 128 129 // Hints about the order in which the parameter blocks should be 130 // eliminated by the linear solver. 131 // 132 // For example if elimination_groups is a vector of size k, then 133 // the linear solver is informed that it should eliminate the 134 // parameter blocks 0 ... elimination_groups[0] - 1 first, and 135 // then elimination_groups[0] ... elimination_groups[1] - 1 and so 136 // on. Within each elimination group, the linear solver is free to 137 // choose how the parameter blocks are ordered. Different linear 138 // solvers have differing requirements on elimination_groups. 139 // 140 // The most common use is for Schur type solvers, where there 141 // should be at least two elimination groups and the first 142 // elimination group must form an independent set in the normal 143 // equations. The first elimination group corresponds to the 144 // num_eliminate_blocks in the Schur type solvers. 145 vector<int> elimination_groups; 146 147 // Iterative solvers, e.g. Preconditioned Conjugate Gradients 148 // maintain a cheap estimate of the residual which may become 149 // inaccurate over time. Thus for non-zero values of this 150 // parameter, the solver can be told to recalculate the value of 151 // the residual using a |b - Ax| evaluation. 152 int residual_reset_period; 153 154 // If the block sizes in a BlockSparseMatrix are fixed, then in 155 // some cases the Schur complement based solvers can detect and 156 // specialize on them. 157 // 158 // It is expected that these parameters are set programmatically 159 // rather than manually. 160 // 161 // Please see schur_complement_solver.h and schur_eliminator.h for 162 // more details. 163 int row_block_size; 164 int e_block_size; 165 int f_block_size; 166 }; 167 168 // Options for the Solve method. 169 struct PerSolveOptions { PerSolveOptionsPerSolveOptions170 PerSolveOptions() 171 : D(NULL), 172 preconditioner(NULL), 173 r_tolerance(0.0), 174 q_tolerance(0.0) { 175 } 176 177 // This option only makes sense for unsymmetric linear solvers 178 // that can solve rectangular linear systems. 179 // 180 // Given a matrix A, an optional diagonal matrix D as a vector, 181 // and a vector b, the linear solver will solve for 182 // 183 // | A | x = | b | 184 // | D | | 0 | 185 // 186 // If D is null, then it is treated as zero, and the solver returns 187 // the solution to 188 // 189 // A x = b 190 // 191 // In either case, x is the vector that solves the following 192 // optimization problem. 193 // 194 // arg min_x ||Ax - b||^2 + ||Dx||^2 195 // 196 // Here A is a matrix of size m x n, with full column rank. If A 197 // does not have full column rank, the results returned by the 198 // solver cannot be relied on. D, if it is not null is an array of 199 // size n. b is an array of size m and x is an array of size n. 200 double * D; 201 202 // This option only makes sense for iterative solvers. 203 // 204 // In general the performance of an iterative linear solver 205 // depends on the condition number of the matrix A. For example 206 // the convergence rate of the conjugate gradients algorithm 207 // is proportional to the square root of the condition number. 208 // 209 // One particularly useful technique for improving the 210 // conditioning of a linear system is to precondition it. In its 211 // simplest form a preconditioner is a matrix M such that instead 212 // of solving Ax = b, we solve the linear system AM^{-1} y = b 213 // instead, where M is such that the condition number k(AM^{-1}) 214 // is smaller than the conditioner k(A). Given the solution to 215 // this system, x = M^{-1} y. The iterative solver takes care of 216 // the mechanics of solving the preconditioned system and 217 // returning the corrected solution x. The user only needs to 218 // supply a linear operator. 219 // 220 // A null preconditioner is equivalent to an identity matrix being 221 // used a preconditioner. 222 LinearOperator* preconditioner; 223 224 225 // The following tolerance related options only makes sense for 226 // iterative solvers. Direct solvers ignore them. 227 228 // Solver terminates when 229 // 230 // |Ax - b| <= r_tolerance * |b|. 231 // 232 // This is the most commonly used termination criterion for 233 // iterative solvers. 234 double r_tolerance; 235 236 // For PSD matrices A, let 237 // 238 // Q(x) = x'Ax - 2b'x 239 // 240 // be the cost of the quadratic function defined by A and b. Then, 241 // the solver terminates at iteration i if 242 // 243 // i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance. 244 // 245 // This termination criterion is more useful when using CG to 246 // solve the Newton step. This particular convergence test comes 247 // from Stephen Nash's work on truncated Newton 248 // methods. References: 249 // 250 // 1. Stephen G. Nash & Ariela Sofer, Assessing A Search 251 // Direction Within A Truncated Newton Method, Operation 252 // Research Letters 9(1990) 219-221. 253 // 254 // 2. Stephen G. Nash, A Survey of Truncated Newton Methods, 255 // Journal of Computational and Applied Mathematics, 256 // 124(1-2), 45-59, 2000. 257 // 258 double q_tolerance; 259 }; 260 261 // Summary of a call to the Solve method. We should move away from 262 // the true/false method for determining solver success. We should 263 // let the summary object do the talking. 264 struct Summary { SummarySummary265 Summary() 266 : residual_norm(0.0), 267 num_iterations(-1), 268 termination_type(LINEAR_SOLVER_FAILURE) { 269 } 270 271 double residual_norm; 272 int num_iterations; 273 LinearSolverTerminationType termination_type; 274 string message; 275 }; 276 277 // If the optimization problem is such that there are no remaining 278 // e-blocks, a Schur type linear solver cannot be used. If the 279 // linear solver is of Schur type, this function implements a policy 280 // to select an alternate nearest linear solver to the one selected 281 // by the user. The input linear_solver_type is returned otherwise. 282 static LinearSolverType LinearSolverForZeroEBlocks( 283 LinearSolverType linear_solver_type); 284 285 virtual ~LinearSolver(); 286 287 // Solve Ax = b. 288 virtual Summary Solve(LinearOperator* A, 289 const double* b, 290 const PerSolveOptions& per_solve_options, 291 double* x) = 0; 292 293 // The following two methods return copies instead of references so 294 // that the base class implementation does not have to worry about 295 // life time issues. Further, these calls are not expected to be 296 // frequent or performance sensitive. CallStatistics()297 virtual map<string, int> CallStatistics() const { 298 return map<string, int>(); 299 } 300 TimeStatistics()301 virtual map<string, double> TimeStatistics() const { 302 return map<string, double>(); 303 } 304 305 // Factory 306 static LinearSolver* Create(const Options& options); 307 }; 308 309 // This templated subclass of LinearSolver serves as a base class for 310 // other linear solvers that depend on the particular matrix layout of 311 // the underlying linear operator. For example some linear solvers 312 // need low level access to the TripletSparseMatrix implementing the 313 // LinearOperator interface. This class hides those implementation 314 // details behind a private virtual method, and has the Solve method 315 // perform the necessary upcasting. 316 template <typename MatrixType> 317 class TypedLinearSolver : public LinearSolver { 318 public: ~TypedLinearSolver()319 virtual ~TypedLinearSolver() {} Solve(LinearOperator * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)320 virtual LinearSolver::Summary Solve( 321 LinearOperator* A, 322 const double* b, 323 const LinearSolver::PerSolveOptions& per_solve_options, 324 double* x) { 325 ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_); 326 CHECK_NOTNULL(A); 327 CHECK_NOTNULL(b); 328 CHECK_NOTNULL(x); 329 return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x); 330 } 331 CallStatistics()332 virtual map<string, int> CallStatistics() const { 333 return execution_summary_.calls(); 334 } 335 TimeStatistics()336 virtual map<string, double> TimeStatistics() const { 337 return execution_summary_.times(); 338 } 339 340 private: 341 virtual LinearSolver::Summary SolveImpl( 342 MatrixType* A, 343 const double* b, 344 const LinearSolver::PerSolveOptions& per_solve_options, 345 double* x) = 0; 346 347 ExecutionSummary execution_summary_; 348 }; 349 350 // Linear solvers that depend on acccess to the low level structure of 351 // a SparseMatrix. 352 typedef TypedLinearSolver<BlockSparseMatrix> BlockSparseMatrixSolver; // NOLINT 353 typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver; // NOLINT 354 typedef TypedLinearSolver<DenseSparseMatrix> DenseSparseMatrixSolver; // NOLINT 355 typedef TypedLinearSolver<TripletSparseMatrix> TripletSparseMatrixSolver; // NOLINT 356 357 } // namespace internal 358 } // namespace ceres 359 360 #endif // CERES_INTERNAL_LINEAR_SOLVER_H_ 361