• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/hydrogen.h"
6 
7 #include <algorithm>
8 
9 #include "src/v8.h"
10 #include "src/allocation-site-scopes.h"
11 #include "src/codegen.h"
12 #include "src/full-codegen.h"
13 #include "src/hashmap.h"
14 #include "src/hydrogen-bce.h"
15 #include "src/hydrogen-bch.h"
16 #include "src/hydrogen-canonicalize.h"
17 #include "src/hydrogen-check-elimination.h"
18 #include "src/hydrogen-dce.h"
19 #include "src/hydrogen-dehoist.h"
20 #include "src/hydrogen-environment-liveness.h"
21 #include "src/hydrogen-escape-analysis.h"
22 #include "src/hydrogen-infer-representation.h"
23 #include "src/hydrogen-infer-types.h"
24 #include "src/hydrogen-load-elimination.h"
25 #include "src/hydrogen-gvn.h"
26 #include "src/hydrogen-mark-deoptimize.h"
27 #include "src/hydrogen-mark-unreachable.h"
28 #include "src/hydrogen-osr.h"
29 #include "src/hydrogen-range-analysis.h"
30 #include "src/hydrogen-redundant-phi.h"
31 #include "src/hydrogen-removable-simulates.h"
32 #include "src/hydrogen-representation-changes.h"
33 #include "src/hydrogen-sce.h"
34 #include "src/hydrogen-store-elimination.h"
35 #include "src/hydrogen-uint32-analysis.h"
36 #include "src/lithium-allocator.h"
37 #include "src/parser.h"
38 #include "src/runtime.h"
39 #include "src/scopeinfo.h"
40 #include "src/scopes.h"
41 #include "src/stub-cache.h"
42 #include "src/typing.h"
43 
44 #if V8_TARGET_ARCH_IA32
45 #include "src/ia32/lithium-codegen-ia32.h"
46 #elif V8_TARGET_ARCH_X64
47 #include "src/x64/lithium-codegen-x64.h"
48 #elif V8_TARGET_ARCH_ARM64
49 #include "src/arm64/lithium-codegen-arm64.h"
50 #elif V8_TARGET_ARCH_ARM
51 #include "src/arm/lithium-codegen-arm.h"
52 #elif V8_TARGET_ARCH_MIPS
53 #include "src/mips/lithium-codegen-mips.h"
54 #elif V8_TARGET_ARCH_X87
55 #include "src/x87/lithium-codegen-x87.h"
56 #else
57 #error Unsupported target architecture.
58 #endif
59 
60 namespace v8 {
61 namespace internal {
62 
HBasicBlock(HGraph * graph)63 HBasicBlock::HBasicBlock(HGraph* graph)
64     : block_id_(graph->GetNextBlockID()),
65       graph_(graph),
66       phis_(4, graph->zone()),
67       first_(NULL),
68       last_(NULL),
69       end_(NULL),
70       loop_information_(NULL),
71       predecessors_(2, graph->zone()),
72       dominator_(NULL),
73       dominated_blocks_(4, graph->zone()),
74       last_environment_(NULL),
75       argument_count_(-1),
76       first_instruction_index_(-1),
77       last_instruction_index_(-1),
78       deleted_phis_(4, graph->zone()),
79       parent_loop_header_(NULL),
80       inlined_entry_block_(NULL),
81       is_inline_return_target_(false),
82       is_reachable_(true),
83       dominates_loop_successors_(false),
84       is_osr_entry_(false),
85       is_ordered_(false) { }
86 
87 
isolate() const88 Isolate* HBasicBlock::isolate() const {
89   return graph_->isolate();
90 }
91 
92 
MarkUnreachable()93 void HBasicBlock::MarkUnreachable() {
94   is_reachable_ = false;
95 }
96 
97 
AttachLoopInformation()98 void HBasicBlock::AttachLoopInformation() {
99   ASSERT(!IsLoopHeader());
100   loop_information_ = new(zone()) HLoopInformation(this, zone());
101 }
102 
103 
DetachLoopInformation()104 void HBasicBlock::DetachLoopInformation() {
105   ASSERT(IsLoopHeader());
106   loop_information_ = NULL;
107 }
108 
109 
AddPhi(HPhi * phi)110 void HBasicBlock::AddPhi(HPhi* phi) {
111   ASSERT(!IsStartBlock());
112   phis_.Add(phi, zone());
113   phi->SetBlock(this);
114 }
115 
116 
RemovePhi(HPhi * phi)117 void HBasicBlock::RemovePhi(HPhi* phi) {
118   ASSERT(phi->block() == this);
119   ASSERT(phis_.Contains(phi));
120   phi->Kill();
121   phis_.RemoveElement(phi);
122   phi->SetBlock(NULL);
123 }
124 
125 
AddInstruction(HInstruction * instr,HSourcePosition position)126 void HBasicBlock::AddInstruction(HInstruction* instr,
127                                  HSourcePosition position) {
128   ASSERT(!IsStartBlock() || !IsFinished());
129   ASSERT(!instr->IsLinked());
130   ASSERT(!IsFinished());
131 
132   if (!position.IsUnknown()) {
133     instr->set_position(position);
134   }
135   if (first_ == NULL) {
136     ASSERT(last_environment() != NULL);
137     ASSERT(!last_environment()->ast_id().IsNone());
138     HBlockEntry* entry = new(zone()) HBlockEntry();
139     entry->InitializeAsFirst(this);
140     if (!position.IsUnknown()) {
141       entry->set_position(position);
142     } else {
143       ASSERT(!FLAG_hydrogen_track_positions ||
144              !graph()->info()->IsOptimizing());
145     }
146     first_ = last_ = entry;
147   }
148   instr->InsertAfter(last_);
149 }
150 
151 
AddNewPhi(int merged_index)152 HPhi* HBasicBlock::AddNewPhi(int merged_index) {
153   if (graph()->IsInsideNoSideEffectsScope()) {
154     merged_index = HPhi::kInvalidMergedIndex;
155   }
156   HPhi* phi = new(zone()) HPhi(merged_index, zone());
157   AddPhi(phi);
158   return phi;
159 }
160 
161 
CreateSimulate(BailoutId ast_id,RemovableSimulate removable)162 HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
163                                        RemovableSimulate removable) {
164   ASSERT(HasEnvironment());
165   HEnvironment* environment = last_environment();
166   ASSERT(ast_id.IsNone() ||
167          ast_id == BailoutId::StubEntry() ||
168          environment->closure()->shared()->VerifyBailoutId(ast_id));
169 
170   int push_count = environment->push_count();
171   int pop_count = environment->pop_count();
172 
173   HSimulate* instr =
174       new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
175 #ifdef DEBUG
176   instr->set_closure(environment->closure());
177 #endif
178   // Order of pushed values: newest (top of stack) first. This allows
179   // HSimulate::MergeWith() to easily append additional pushed values
180   // that are older (from further down the stack).
181   for (int i = 0; i < push_count; ++i) {
182     instr->AddPushedValue(environment->ExpressionStackAt(i));
183   }
184   for (GrowableBitVector::Iterator it(environment->assigned_variables(),
185                                       zone());
186        !it.Done();
187        it.Advance()) {
188     int index = it.Current();
189     instr->AddAssignedValue(index, environment->Lookup(index));
190   }
191   environment->ClearHistory();
192   return instr;
193 }
194 
195 
Finish(HControlInstruction * end,HSourcePosition position)196 void HBasicBlock::Finish(HControlInstruction* end, HSourcePosition position) {
197   ASSERT(!IsFinished());
198   AddInstruction(end, position);
199   end_ = end;
200   for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
201     it.Current()->RegisterPredecessor(this);
202   }
203 }
204 
205 
Goto(HBasicBlock * block,HSourcePosition position,FunctionState * state,bool add_simulate)206 void HBasicBlock::Goto(HBasicBlock* block,
207                        HSourcePosition position,
208                        FunctionState* state,
209                        bool add_simulate) {
210   bool drop_extra = state != NULL &&
211       state->inlining_kind() == NORMAL_RETURN;
212 
213   if (block->IsInlineReturnTarget()) {
214     HEnvironment* env = last_environment();
215     int argument_count = env->arguments_environment()->parameter_count();
216     AddInstruction(new(zone())
217                    HLeaveInlined(state->entry(), argument_count),
218                    position);
219     UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
220   }
221 
222   if (add_simulate) AddNewSimulate(BailoutId::None(), position);
223   HGoto* instr = new(zone()) HGoto(block);
224   Finish(instr, position);
225 }
226 
227 
AddLeaveInlined(HValue * return_value,FunctionState * state,HSourcePosition position)228 void HBasicBlock::AddLeaveInlined(HValue* return_value,
229                                   FunctionState* state,
230                                   HSourcePosition position) {
231   HBasicBlock* target = state->function_return();
232   bool drop_extra = state->inlining_kind() == NORMAL_RETURN;
233 
234   ASSERT(target->IsInlineReturnTarget());
235   ASSERT(return_value != NULL);
236   HEnvironment* env = last_environment();
237   int argument_count = env->arguments_environment()->parameter_count();
238   AddInstruction(new(zone()) HLeaveInlined(state->entry(), argument_count),
239                  position);
240   UpdateEnvironment(last_environment()->DiscardInlined(drop_extra));
241   last_environment()->Push(return_value);
242   AddNewSimulate(BailoutId::None(), position);
243   HGoto* instr = new(zone()) HGoto(target);
244   Finish(instr, position);
245 }
246 
247 
SetInitialEnvironment(HEnvironment * env)248 void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
249   ASSERT(!HasEnvironment());
250   ASSERT(first() == NULL);
251   UpdateEnvironment(env);
252 }
253 
254 
UpdateEnvironment(HEnvironment * env)255 void HBasicBlock::UpdateEnvironment(HEnvironment* env) {
256   last_environment_ = env;
257   graph()->update_maximum_environment_size(env->first_expression_index());
258 }
259 
260 
SetJoinId(BailoutId ast_id)261 void HBasicBlock::SetJoinId(BailoutId ast_id) {
262   int length = predecessors_.length();
263   ASSERT(length > 0);
264   for (int i = 0; i < length; i++) {
265     HBasicBlock* predecessor = predecessors_[i];
266     ASSERT(predecessor->end()->IsGoto());
267     HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
268     ASSERT(i != 0 ||
269            (predecessor->last_environment()->closure().is_null() ||
270             predecessor->last_environment()->closure()->shared()
271               ->VerifyBailoutId(ast_id)));
272     simulate->set_ast_id(ast_id);
273     predecessor->last_environment()->set_ast_id(ast_id);
274   }
275 }
276 
277 
Dominates(HBasicBlock * other) const278 bool HBasicBlock::Dominates(HBasicBlock* other) const {
279   HBasicBlock* current = other->dominator();
280   while (current != NULL) {
281     if (current == this) return true;
282     current = current->dominator();
283   }
284   return false;
285 }
286 
287 
EqualToOrDominates(HBasicBlock * other) const288 bool HBasicBlock::EqualToOrDominates(HBasicBlock* other) const {
289   if (this == other) return true;
290   return Dominates(other);
291 }
292 
293 
LoopNestingDepth() const294 int HBasicBlock::LoopNestingDepth() const {
295   const HBasicBlock* current = this;
296   int result  = (current->IsLoopHeader()) ? 1 : 0;
297   while (current->parent_loop_header() != NULL) {
298     current = current->parent_loop_header();
299     result++;
300   }
301   return result;
302 }
303 
304 
PostProcessLoopHeader(IterationStatement * stmt)305 void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
306   ASSERT(IsLoopHeader());
307 
308   SetJoinId(stmt->EntryId());
309   if (predecessors()->length() == 1) {
310     // This is a degenerated loop.
311     DetachLoopInformation();
312     return;
313   }
314 
315   // Only the first entry into the loop is from outside the loop. All other
316   // entries must be back edges.
317   for (int i = 1; i < predecessors()->length(); ++i) {
318     loop_information()->RegisterBackEdge(predecessors()->at(i));
319   }
320 }
321 
322 
MarkSuccEdgeUnreachable(int succ)323 void HBasicBlock::MarkSuccEdgeUnreachable(int succ) {
324   ASSERT(IsFinished());
325   HBasicBlock* succ_block = end()->SuccessorAt(succ);
326 
327   ASSERT(succ_block->predecessors()->length() == 1);
328   succ_block->MarkUnreachable();
329 }
330 
331 
RegisterPredecessor(HBasicBlock * pred)332 void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
333   if (HasPredecessor()) {
334     // Only loop header blocks can have a predecessor added after
335     // instructions have been added to the block (they have phis for all
336     // values in the environment, these phis may be eliminated later).
337     ASSERT(IsLoopHeader() || first_ == NULL);
338     HEnvironment* incoming_env = pred->last_environment();
339     if (IsLoopHeader()) {
340       ASSERT(phis()->length() == incoming_env->length());
341       for (int i = 0; i < phis_.length(); ++i) {
342         phis_[i]->AddInput(incoming_env->values()->at(i));
343       }
344     } else {
345       last_environment()->AddIncomingEdge(this, pred->last_environment());
346     }
347   } else if (!HasEnvironment() && !IsFinished()) {
348     ASSERT(!IsLoopHeader());
349     SetInitialEnvironment(pred->last_environment()->Copy());
350   }
351 
352   predecessors_.Add(pred, zone());
353 }
354 
355 
AddDominatedBlock(HBasicBlock * block)356 void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
357   ASSERT(!dominated_blocks_.Contains(block));
358   // Keep the list of dominated blocks sorted such that if there is two
359   // succeeding block in this list, the predecessor is before the successor.
360   int index = 0;
361   while (index < dominated_blocks_.length() &&
362          dominated_blocks_[index]->block_id() < block->block_id()) {
363     ++index;
364   }
365   dominated_blocks_.InsertAt(index, block, zone());
366 }
367 
368 
AssignCommonDominator(HBasicBlock * other)369 void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
370   if (dominator_ == NULL) {
371     dominator_ = other;
372     other->AddDominatedBlock(this);
373   } else if (other->dominator() != NULL) {
374     HBasicBlock* first = dominator_;
375     HBasicBlock* second = other;
376 
377     while (first != second) {
378       if (first->block_id() > second->block_id()) {
379         first = first->dominator();
380       } else {
381         second = second->dominator();
382       }
383       ASSERT(first != NULL && second != NULL);
384     }
385 
386     if (dominator_ != first) {
387       ASSERT(dominator_->dominated_blocks_.Contains(this));
388       dominator_->dominated_blocks_.RemoveElement(this);
389       dominator_ = first;
390       first->AddDominatedBlock(this);
391     }
392   }
393 }
394 
395 
AssignLoopSuccessorDominators()396 void HBasicBlock::AssignLoopSuccessorDominators() {
397   // Mark blocks that dominate all subsequent reachable blocks inside their
398   // loop. Exploit the fact that blocks are sorted in reverse post order. When
399   // the loop is visited in increasing block id order, if the number of
400   // non-loop-exiting successor edges at the dominator_candidate block doesn't
401   // exceed the number of previously encountered predecessor edges, there is no
402   // path from the loop header to any block with higher id that doesn't go
403   // through the dominator_candidate block. In this case, the
404   // dominator_candidate block is guaranteed to dominate all blocks reachable
405   // from it with higher ids.
406   HBasicBlock* last = loop_information()->GetLastBackEdge();
407   int outstanding_successors = 1;  // one edge from the pre-header
408   // Header always dominates everything.
409   MarkAsLoopSuccessorDominator();
410   for (int j = block_id(); j <= last->block_id(); ++j) {
411     HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
412     for (HPredecessorIterator it(dominator_candidate); !it.Done();
413          it.Advance()) {
414       HBasicBlock* predecessor = it.Current();
415       // Don't count back edges.
416       if (predecessor->block_id() < dominator_candidate->block_id()) {
417         outstanding_successors--;
418       }
419     }
420 
421     // If more successors than predecessors have been seen in the loop up to
422     // now, it's not possible to guarantee that the current block dominates
423     // all of the blocks with higher IDs. In this case, assume conservatively
424     // that those paths through loop that don't go through the current block
425     // contain all of the loop's dependencies. Also be careful to record
426     // dominator information about the current loop that's being processed,
427     // and not nested loops, which will be processed when
428     // AssignLoopSuccessorDominators gets called on their header.
429     ASSERT(outstanding_successors >= 0);
430     HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
431     if (outstanding_successors == 0 &&
432         (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
433       dominator_candidate->MarkAsLoopSuccessorDominator();
434     }
435     HControlInstruction* end = dominator_candidate->end();
436     for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
437       HBasicBlock* successor = it.Current();
438       // Only count successors that remain inside the loop and don't loop back
439       // to a loop header.
440       if (successor->block_id() > dominator_candidate->block_id() &&
441           successor->block_id() <= last->block_id()) {
442         // Backwards edges must land on loop headers.
443         ASSERT(successor->block_id() > dominator_candidate->block_id() ||
444                successor->IsLoopHeader());
445         outstanding_successors++;
446       }
447     }
448   }
449 }
450 
451 
PredecessorIndexOf(HBasicBlock * predecessor) const452 int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
453   for (int i = 0; i < predecessors_.length(); ++i) {
454     if (predecessors_[i] == predecessor) return i;
455   }
456   UNREACHABLE();
457   return -1;
458 }
459 
460 
461 #ifdef DEBUG
Verify()462 void HBasicBlock::Verify() {
463   // Check that every block is finished.
464   ASSERT(IsFinished());
465   ASSERT(block_id() >= 0);
466 
467   // Check that the incoming edges are in edge split form.
468   if (predecessors_.length() > 1) {
469     for (int i = 0; i < predecessors_.length(); ++i) {
470       ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
471     }
472   }
473 }
474 #endif
475 
476 
RegisterBackEdge(HBasicBlock * block)477 void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
478   this->back_edges_.Add(block, block->zone());
479   AddBlock(block);
480 }
481 
482 
GetLastBackEdge() const483 HBasicBlock* HLoopInformation::GetLastBackEdge() const {
484   int max_id = -1;
485   HBasicBlock* result = NULL;
486   for (int i = 0; i < back_edges_.length(); ++i) {
487     HBasicBlock* cur = back_edges_[i];
488     if (cur->block_id() > max_id) {
489       max_id = cur->block_id();
490       result = cur;
491     }
492   }
493   return result;
494 }
495 
496 
AddBlock(HBasicBlock * block)497 void HLoopInformation::AddBlock(HBasicBlock* block) {
498   if (block == loop_header()) return;
499   if (block->parent_loop_header() == loop_header()) return;
500   if (block->parent_loop_header() != NULL) {
501     AddBlock(block->parent_loop_header());
502   } else {
503     block->set_parent_loop_header(loop_header());
504     blocks_.Add(block, block->zone());
505     for (int i = 0; i < block->predecessors()->length(); ++i) {
506       AddBlock(block->predecessors()->at(i));
507     }
508   }
509 }
510 
511 
512 #ifdef DEBUG
513 
514 // Checks reachability of the blocks in this graph and stores a bit in
515 // the BitVector "reachable()" for every block that can be reached
516 // from the start block of the graph. If "dont_visit" is non-null, the given
517 // block is treated as if it would not be part of the graph. "visited_count()"
518 // returns the number of reachable blocks.
519 class ReachabilityAnalyzer BASE_EMBEDDED {
520  public:
ReachabilityAnalyzer(HBasicBlock * entry_block,int block_count,HBasicBlock * dont_visit)521   ReachabilityAnalyzer(HBasicBlock* entry_block,
522                        int block_count,
523                        HBasicBlock* dont_visit)
524       : visited_count_(0),
525         stack_(16, entry_block->zone()),
526         reachable_(block_count, entry_block->zone()),
527         dont_visit_(dont_visit) {
528     PushBlock(entry_block);
529     Analyze();
530   }
531 
visited_count() const532   int visited_count() const { return visited_count_; }
reachable() const533   const BitVector* reachable() const { return &reachable_; }
534 
535  private:
PushBlock(HBasicBlock * block)536   void PushBlock(HBasicBlock* block) {
537     if (block != NULL && block != dont_visit_ &&
538         !reachable_.Contains(block->block_id())) {
539       reachable_.Add(block->block_id());
540       stack_.Add(block, block->zone());
541       visited_count_++;
542     }
543   }
544 
Analyze()545   void Analyze() {
546     while (!stack_.is_empty()) {
547       HControlInstruction* end = stack_.RemoveLast()->end();
548       for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
549         PushBlock(it.Current());
550       }
551     }
552   }
553 
554   int visited_count_;
555   ZoneList<HBasicBlock*> stack_;
556   BitVector reachable_;
557   HBasicBlock* dont_visit_;
558 };
559 
560 
Verify(bool do_full_verify) const561 void HGraph::Verify(bool do_full_verify) const {
562   Heap::RelocationLock relocation_lock(isolate()->heap());
563   AllowHandleDereference allow_deref;
564   AllowDeferredHandleDereference allow_deferred_deref;
565   for (int i = 0; i < blocks_.length(); i++) {
566     HBasicBlock* block = blocks_.at(i);
567 
568     block->Verify();
569 
570     // Check that every block contains at least one node and that only the last
571     // node is a control instruction.
572     HInstruction* current = block->first();
573     ASSERT(current != NULL && current->IsBlockEntry());
574     while (current != NULL) {
575       ASSERT((current->next() == NULL) == current->IsControlInstruction());
576       ASSERT(current->block() == block);
577       current->Verify();
578       current = current->next();
579     }
580 
581     // Check that successors are correctly set.
582     HBasicBlock* first = block->end()->FirstSuccessor();
583     HBasicBlock* second = block->end()->SecondSuccessor();
584     ASSERT(second == NULL || first != NULL);
585 
586     // Check that the predecessor array is correct.
587     if (first != NULL) {
588       ASSERT(first->predecessors()->Contains(block));
589       if (second != NULL) {
590         ASSERT(second->predecessors()->Contains(block));
591       }
592     }
593 
594     // Check that phis have correct arguments.
595     for (int j = 0; j < block->phis()->length(); j++) {
596       HPhi* phi = block->phis()->at(j);
597       phi->Verify();
598     }
599 
600     // Check that all join blocks have predecessors that end with an
601     // unconditional goto and agree on their environment node id.
602     if (block->predecessors()->length() >= 2) {
603       BailoutId id =
604           block->predecessors()->first()->last_environment()->ast_id();
605       for (int k = 0; k < block->predecessors()->length(); k++) {
606         HBasicBlock* predecessor = block->predecessors()->at(k);
607         ASSERT(predecessor->end()->IsGoto() ||
608                predecessor->end()->IsDeoptimize());
609         ASSERT(predecessor->last_environment()->ast_id() == id);
610       }
611     }
612   }
613 
614   // Check special property of first block to have no predecessors.
615   ASSERT(blocks_.at(0)->predecessors()->is_empty());
616 
617   if (do_full_verify) {
618     // Check that the graph is fully connected.
619     ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
620     ASSERT(analyzer.visited_count() == blocks_.length());
621 
622     // Check that entry block dominator is NULL.
623     ASSERT(entry_block_->dominator() == NULL);
624 
625     // Check dominators.
626     for (int i = 0; i < blocks_.length(); ++i) {
627       HBasicBlock* block = blocks_.at(i);
628       if (block->dominator() == NULL) {
629         // Only start block may have no dominator assigned to.
630         ASSERT(i == 0);
631       } else {
632         // Assert that block is unreachable if dominator must not be visited.
633         ReachabilityAnalyzer dominator_analyzer(entry_block_,
634                                                 blocks_.length(),
635                                                 block->dominator());
636         ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
637       }
638     }
639   }
640 }
641 
642 #endif
643 
644 
GetConstant(SetOncePointer<HConstant> * pointer,int32_t value)645 HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
646                                int32_t value) {
647   if (!pointer->is_set()) {
648     // Can't pass GetInvalidContext() to HConstant::New, because that will
649     // recursively call GetConstant
650     HConstant* constant = HConstant::New(zone(), NULL, value);
651     constant->InsertAfter(entry_block()->first());
652     pointer->set(constant);
653     return constant;
654   }
655   return ReinsertConstantIfNecessary(pointer->get());
656 }
657 
658 
ReinsertConstantIfNecessary(HConstant * constant)659 HConstant* HGraph::ReinsertConstantIfNecessary(HConstant* constant) {
660   if (!constant->IsLinked()) {
661     // The constant was removed from the graph. Reinsert.
662     constant->ClearFlag(HValue::kIsDead);
663     constant->InsertAfter(entry_block()->first());
664   }
665   return constant;
666 }
667 
668 
GetConstant0()669 HConstant* HGraph::GetConstant0() {
670   return GetConstant(&constant_0_, 0);
671 }
672 
673 
GetConstant1()674 HConstant* HGraph::GetConstant1() {
675   return GetConstant(&constant_1_, 1);
676 }
677 
678 
GetConstantMinus1()679 HConstant* HGraph::GetConstantMinus1() {
680   return GetConstant(&constant_minus1_, -1);
681 }
682 
683 
684 #define DEFINE_GET_CONSTANT(Name, name, type, htype, boolean_value)            \
685 HConstant* HGraph::GetConstant##Name() {                                       \
686   if (!constant_##name##_.is_set()) {                                          \
687     HConstant* constant = new(zone()) HConstant(                               \
688         Unique<Object>::CreateImmovable(isolate()->factory()->name##_value()), \
689         Unique<Map>::CreateImmovable(isolate()->factory()->type##_map()),      \
690         false,                                                                 \
691         Representation::Tagged(),                                              \
692         htype,                                                                 \
693         true,                                                                  \
694         boolean_value,                                                         \
695         false,                                                                 \
696         ODDBALL_TYPE);                                                         \
697     constant->InsertAfter(entry_block()->first());                             \
698     constant_##name##_.set(constant);                                          \
699   }                                                                            \
700   return ReinsertConstantIfNecessary(constant_##name##_.get());                \
701 }
702 
703 
DEFINE_GET_CONSTANT(Undefined,undefined,undefined,HType::Undefined (),false)704 DEFINE_GET_CONSTANT(Undefined, undefined, undefined, HType::Undefined(), false)
705 DEFINE_GET_CONSTANT(True, true, boolean, HType::Boolean(), true)
706 DEFINE_GET_CONSTANT(False, false, boolean, HType::Boolean(), false)
707 DEFINE_GET_CONSTANT(Hole, the_hole, the_hole, HType::None(), false)
708 DEFINE_GET_CONSTANT(Null, null, null, HType::Null(), false)
709 
710 
711 #undef DEFINE_GET_CONSTANT
712 
713 #define DEFINE_IS_CONSTANT(Name, name)                                         \
714 bool HGraph::IsConstant##Name(HConstant* constant) {                           \
715   return constant_##name##_.is_set() && constant == constant_##name##_.get();  \
716 }
717 DEFINE_IS_CONSTANT(Undefined, undefined)
718 DEFINE_IS_CONSTANT(0, 0)
719 DEFINE_IS_CONSTANT(1, 1)
720 DEFINE_IS_CONSTANT(Minus1, minus1)
721 DEFINE_IS_CONSTANT(True, true)
722 DEFINE_IS_CONSTANT(False, false)
723 DEFINE_IS_CONSTANT(Hole, the_hole)
724 DEFINE_IS_CONSTANT(Null, null)
725 
726 #undef DEFINE_IS_CONSTANT
727 
728 
729 HConstant* HGraph::GetInvalidContext() {
730   return GetConstant(&constant_invalid_context_, 0xFFFFC0C7);
731 }
732 
733 
IsStandardConstant(HConstant * constant)734 bool HGraph::IsStandardConstant(HConstant* constant) {
735   if (IsConstantUndefined(constant)) return true;
736   if (IsConstant0(constant)) return true;
737   if (IsConstant1(constant)) return true;
738   if (IsConstantMinus1(constant)) return true;
739   if (IsConstantTrue(constant)) return true;
740   if (IsConstantFalse(constant)) return true;
741   if (IsConstantHole(constant)) return true;
742   if (IsConstantNull(constant)) return true;
743   return false;
744 }
745 
746 
IfBuilder(HGraphBuilder * builder)747 HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder)
748     : builder_(builder),
749       finished_(false),
750       did_then_(false),
751       did_else_(false),
752       did_else_if_(false),
753       did_and_(false),
754       did_or_(false),
755       captured_(false),
756       needs_compare_(true),
757       pending_merge_block_(false),
758       split_edge_merge_block_(NULL),
759       merge_at_join_blocks_(NULL),
760       normal_merge_at_join_block_count_(0),
761       deopt_merge_at_join_block_count_(0) {
762   HEnvironment* env = builder->environment();
763   first_true_block_ = builder->CreateBasicBlock(env->Copy());
764   first_false_block_ = builder->CreateBasicBlock(env->Copy());
765 }
766 
767 
IfBuilder(HGraphBuilder * builder,HIfContinuation * continuation)768 HGraphBuilder::IfBuilder::IfBuilder(
769     HGraphBuilder* builder,
770     HIfContinuation* continuation)
771     : builder_(builder),
772       finished_(false),
773       did_then_(false),
774       did_else_(false),
775       did_else_if_(false),
776       did_and_(false),
777       did_or_(false),
778       captured_(false),
779       needs_compare_(false),
780       pending_merge_block_(false),
781       first_true_block_(NULL),
782       first_false_block_(NULL),
783       split_edge_merge_block_(NULL),
784       merge_at_join_blocks_(NULL),
785       normal_merge_at_join_block_count_(0),
786       deopt_merge_at_join_block_count_(0) {
787   continuation->Continue(&first_true_block_,
788                          &first_false_block_);
789 }
790 
791 
AddCompare(HControlInstruction * compare)792 HControlInstruction* HGraphBuilder::IfBuilder::AddCompare(
793     HControlInstruction* compare) {
794   ASSERT(did_then_ == did_else_);
795   if (did_else_) {
796     // Handle if-then-elseif
797     did_else_if_ = true;
798     did_else_ = false;
799     did_then_ = false;
800     did_and_ = false;
801     did_or_ = false;
802     pending_merge_block_ = false;
803     split_edge_merge_block_ = NULL;
804     HEnvironment* env = builder_->environment();
805     first_true_block_ = builder_->CreateBasicBlock(env->Copy());
806     first_false_block_ = builder_->CreateBasicBlock(env->Copy());
807   }
808   if (split_edge_merge_block_ != NULL) {
809     HEnvironment* env = first_false_block_->last_environment();
810     HBasicBlock* split_edge =
811         builder_->CreateBasicBlock(env->Copy());
812     if (did_or_) {
813       compare->SetSuccessorAt(0, split_edge);
814       compare->SetSuccessorAt(1, first_false_block_);
815     } else {
816       compare->SetSuccessorAt(0, first_true_block_);
817       compare->SetSuccessorAt(1, split_edge);
818     }
819     builder_->GotoNoSimulate(split_edge, split_edge_merge_block_);
820   } else {
821     compare->SetSuccessorAt(0, first_true_block_);
822     compare->SetSuccessorAt(1, first_false_block_);
823   }
824   builder_->FinishCurrentBlock(compare);
825   needs_compare_ = false;
826   return compare;
827 }
828 
829 
Or()830 void HGraphBuilder::IfBuilder::Or() {
831   ASSERT(!needs_compare_);
832   ASSERT(!did_and_);
833   did_or_ = true;
834   HEnvironment* env = first_false_block_->last_environment();
835   if (split_edge_merge_block_ == NULL) {
836     split_edge_merge_block_ =
837         builder_->CreateBasicBlock(env->Copy());
838     builder_->GotoNoSimulate(first_true_block_, split_edge_merge_block_);
839     first_true_block_ = split_edge_merge_block_;
840   }
841   builder_->set_current_block(first_false_block_);
842   first_false_block_ = builder_->CreateBasicBlock(env->Copy());
843 }
844 
845 
And()846 void HGraphBuilder::IfBuilder::And() {
847   ASSERT(!needs_compare_);
848   ASSERT(!did_or_);
849   did_and_ = true;
850   HEnvironment* env = first_false_block_->last_environment();
851   if (split_edge_merge_block_ == NULL) {
852     split_edge_merge_block_ = builder_->CreateBasicBlock(env->Copy());
853     builder_->GotoNoSimulate(first_false_block_, split_edge_merge_block_);
854     first_false_block_ = split_edge_merge_block_;
855   }
856   builder_->set_current_block(first_true_block_);
857   first_true_block_ = builder_->CreateBasicBlock(env->Copy());
858 }
859 
860 
CaptureContinuation(HIfContinuation * continuation)861 void HGraphBuilder::IfBuilder::CaptureContinuation(
862     HIfContinuation* continuation) {
863   ASSERT(!did_else_if_);
864   ASSERT(!finished_);
865   ASSERT(!captured_);
866 
867   HBasicBlock* true_block = NULL;
868   HBasicBlock* false_block = NULL;
869   Finish(&true_block, &false_block);
870   ASSERT(true_block != NULL);
871   ASSERT(false_block != NULL);
872   continuation->Capture(true_block, false_block);
873   captured_ = true;
874   builder_->set_current_block(NULL);
875   End();
876 }
877 
878 
JoinContinuation(HIfContinuation * continuation)879 void HGraphBuilder::IfBuilder::JoinContinuation(HIfContinuation* continuation) {
880   ASSERT(!did_else_if_);
881   ASSERT(!finished_);
882   ASSERT(!captured_);
883   HBasicBlock* true_block = NULL;
884   HBasicBlock* false_block = NULL;
885   Finish(&true_block, &false_block);
886   merge_at_join_blocks_ = NULL;
887   if (true_block != NULL && !true_block->IsFinished()) {
888     ASSERT(continuation->IsTrueReachable());
889     builder_->GotoNoSimulate(true_block, continuation->true_branch());
890   }
891   if (false_block != NULL && !false_block->IsFinished()) {
892     ASSERT(continuation->IsFalseReachable());
893     builder_->GotoNoSimulate(false_block, continuation->false_branch());
894   }
895   captured_ = true;
896   End();
897 }
898 
899 
Then()900 void HGraphBuilder::IfBuilder::Then() {
901   ASSERT(!captured_);
902   ASSERT(!finished_);
903   did_then_ = true;
904   if (needs_compare_) {
905     // Handle if's without any expressions, they jump directly to the "else"
906     // branch. However, we must pretend that the "then" branch is reachable,
907     // so that the graph builder visits it and sees any live range extending
908     // constructs within it.
909     HConstant* constant_false = builder_->graph()->GetConstantFalse();
910     ToBooleanStub::Types boolean_type = ToBooleanStub::Types();
911     boolean_type.Add(ToBooleanStub::BOOLEAN);
912     HBranch* branch = builder()->New<HBranch>(
913         constant_false, boolean_type, first_true_block_, first_false_block_);
914     builder_->FinishCurrentBlock(branch);
915   }
916   builder_->set_current_block(first_true_block_);
917   pending_merge_block_ = true;
918 }
919 
920 
Else()921 void HGraphBuilder::IfBuilder::Else() {
922   ASSERT(did_then_);
923   ASSERT(!captured_);
924   ASSERT(!finished_);
925   AddMergeAtJoinBlock(false);
926   builder_->set_current_block(first_false_block_);
927   pending_merge_block_ = true;
928   did_else_ = true;
929 }
930 
931 
Deopt(const char * reason)932 void HGraphBuilder::IfBuilder::Deopt(const char* reason) {
933   ASSERT(did_then_);
934   builder_->Add<HDeoptimize>(reason, Deoptimizer::EAGER);
935   AddMergeAtJoinBlock(true);
936 }
937 
938 
Return(HValue * value)939 void HGraphBuilder::IfBuilder::Return(HValue* value) {
940   HValue* parameter_count = builder_->graph()->GetConstantMinus1();
941   builder_->FinishExitCurrentBlock(
942       builder_->New<HReturn>(value, parameter_count));
943   AddMergeAtJoinBlock(false);
944 }
945 
946 
AddMergeAtJoinBlock(bool deopt)947 void HGraphBuilder::IfBuilder::AddMergeAtJoinBlock(bool deopt) {
948   if (!pending_merge_block_) return;
949   HBasicBlock* block = builder_->current_block();
950   ASSERT(block == NULL || !block->IsFinished());
951   MergeAtJoinBlock* record =
952       new(builder_->zone()) MergeAtJoinBlock(block, deopt,
953                                              merge_at_join_blocks_);
954   merge_at_join_blocks_ = record;
955   if (block != NULL) {
956     ASSERT(block->end() == NULL);
957     if (deopt) {
958       normal_merge_at_join_block_count_++;
959     } else {
960       deopt_merge_at_join_block_count_++;
961     }
962   }
963   builder_->set_current_block(NULL);
964   pending_merge_block_ = false;
965 }
966 
967 
Finish()968 void HGraphBuilder::IfBuilder::Finish() {
969   ASSERT(!finished_);
970   if (!did_then_) {
971     Then();
972   }
973   AddMergeAtJoinBlock(false);
974   if (!did_else_) {
975     Else();
976     AddMergeAtJoinBlock(false);
977   }
978   finished_ = true;
979 }
980 
981 
Finish(HBasicBlock ** then_continuation,HBasicBlock ** else_continuation)982 void HGraphBuilder::IfBuilder::Finish(HBasicBlock** then_continuation,
983                                       HBasicBlock** else_continuation) {
984   Finish();
985 
986   MergeAtJoinBlock* else_record = merge_at_join_blocks_;
987   if (else_continuation != NULL) {
988     *else_continuation = else_record->block_;
989   }
990   MergeAtJoinBlock* then_record = else_record->next_;
991   if (then_continuation != NULL) {
992     *then_continuation = then_record->block_;
993   }
994   ASSERT(then_record->next_ == NULL);
995 }
996 
997 
End()998 void HGraphBuilder::IfBuilder::End() {
999   if (captured_) return;
1000   Finish();
1001 
1002   int total_merged_blocks = normal_merge_at_join_block_count_ +
1003     deopt_merge_at_join_block_count_;
1004   ASSERT(total_merged_blocks >= 1);
1005   HBasicBlock* merge_block = total_merged_blocks == 1
1006       ? NULL : builder_->graph()->CreateBasicBlock();
1007 
1008   // Merge non-deopt blocks first to ensure environment has right size for
1009   // padding.
1010   MergeAtJoinBlock* current = merge_at_join_blocks_;
1011   while (current != NULL) {
1012     if (!current->deopt_ && current->block_ != NULL) {
1013       // If there is only one block that makes it through to the end of the
1014       // if, then just set it as the current block and continue rather then
1015       // creating an unnecessary merge block.
1016       if (total_merged_blocks == 1) {
1017         builder_->set_current_block(current->block_);
1018         return;
1019       }
1020       builder_->GotoNoSimulate(current->block_, merge_block);
1021     }
1022     current = current->next_;
1023   }
1024 
1025   // Merge deopt blocks, padding when necessary.
1026   current = merge_at_join_blocks_;
1027   while (current != NULL) {
1028     if (current->deopt_ && current->block_ != NULL) {
1029       current->block_->FinishExit(
1030           HAbnormalExit::New(builder_->zone(), NULL),
1031           HSourcePosition::Unknown());
1032     }
1033     current = current->next_;
1034   }
1035   builder_->set_current_block(merge_block);
1036 }
1037 
1038 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction)1039 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
1040                                         HValue* context,
1041                                         LoopBuilder::Direction direction)
1042     : builder_(builder),
1043       context_(context),
1044       direction_(direction),
1045       finished_(false) {
1046   header_block_ = builder->CreateLoopHeaderBlock();
1047   body_block_ = NULL;
1048   exit_block_ = NULL;
1049   exit_trampoline_block_ = NULL;
1050   increment_amount_ = builder_->graph()->GetConstant1();
1051 }
1052 
1053 
LoopBuilder(HGraphBuilder * builder,HValue * context,LoopBuilder::Direction direction,HValue * increment_amount)1054 HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
1055                                         HValue* context,
1056                                         LoopBuilder::Direction direction,
1057                                         HValue* increment_amount)
1058     : builder_(builder),
1059       context_(context),
1060       direction_(direction),
1061       finished_(false) {
1062   header_block_ = builder->CreateLoopHeaderBlock();
1063   body_block_ = NULL;
1064   exit_block_ = NULL;
1065   exit_trampoline_block_ = NULL;
1066   increment_amount_ = increment_amount;
1067 }
1068 
1069 
BeginBody(HValue * initial,HValue * terminating,Token::Value token)1070 HValue* HGraphBuilder::LoopBuilder::BeginBody(
1071     HValue* initial,
1072     HValue* terminating,
1073     Token::Value token) {
1074   HEnvironment* env = builder_->environment();
1075   phi_ = header_block_->AddNewPhi(env->values()->length());
1076   phi_->AddInput(initial);
1077   env->Push(initial);
1078   builder_->GotoNoSimulate(header_block_);
1079 
1080   HEnvironment* body_env = env->Copy();
1081   HEnvironment* exit_env = env->Copy();
1082   // Remove the phi from the expression stack
1083   body_env->Pop();
1084   exit_env->Pop();
1085   body_block_ = builder_->CreateBasicBlock(body_env);
1086   exit_block_ = builder_->CreateBasicBlock(exit_env);
1087 
1088   builder_->set_current_block(header_block_);
1089   env->Pop();
1090   builder_->FinishCurrentBlock(builder_->New<HCompareNumericAndBranch>(
1091           phi_, terminating, token, body_block_, exit_block_));
1092 
1093   builder_->set_current_block(body_block_);
1094   if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
1095     HValue* one = builder_->graph()->GetConstant1();
1096     if (direction_ == kPreIncrement) {
1097       increment_ = HAdd::New(zone(), context_, phi_, one);
1098     } else {
1099       increment_ = HSub::New(zone(), context_, phi_, one);
1100     }
1101     increment_->ClearFlag(HValue::kCanOverflow);
1102     builder_->AddInstruction(increment_);
1103     return increment_;
1104   } else {
1105     return phi_;
1106   }
1107 }
1108 
1109 
Break()1110 void HGraphBuilder::LoopBuilder::Break() {
1111   if (exit_trampoline_block_ == NULL) {
1112     // Its the first time we saw a break.
1113     HEnvironment* env = exit_block_->last_environment()->Copy();
1114     exit_trampoline_block_ = builder_->CreateBasicBlock(env);
1115     builder_->GotoNoSimulate(exit_block_, exit_trampoline_block_);
1116   }
1117 
1118   builder_->GotoNoSimulate(exit_trampoline_block_);
1119   builder_->set_current_block(NULL);
1120 }
1121 
1122 
EndBody()1123 void HGraphBuilder::LoopBuilder::EndBody() {
1124   ASSERT(!finished_);
1125 
1126   if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
1127     if (direction_ == kPostIncrement) {
1128       increment_ = HAdd::New(zone(), context_, phi_, increment_amount_);
1129     } else {
1130       increment_ = HSub::New(zone(), context_, phi_, increment_amount_);
1131     }
1132     increment_->ClearFlag(HValue::kCanOverflow);
1133     builder_->AddInstruction(increment_);
1134   }
1135 
1136   // Push the new increment value on the expression stack to merge into the phi.
1137   builder_->environment()->Push(increment_);
1138   HBasicBlock* last_block = builder_->current_block();
1139   builder_->GotoNoSimulate(last_block, header_block_);
1140   header_block_->loop_information()->RegisterBackEdge(last_block);
1141 
1142   if (exit_trampoline_block_ != NULL) {
1143     builder_->set_current_block(exit_trampoline_block_);
1144   } else {
1145     builder_->set_current_block(exit_block_);
1146   }
1147   finished_ = true;
1148 }
1149 
1150 
CreateGraph()1151 HGraph* HGraphBuilder::CreateGraph() {
1152   graph_ = new(zone()) HGraph(info_);
1153   if (FLAG_hydrogen_stats) isolate()->GetHStatistics()->Initialize(info_);
1154   CompilationPhase phase("H_Block building", info_);
1155   set_current_block(graph()->entry_block());
1156   if (!BuildGraph()) return NULL;
1157   graph()->FinalizeUniqueness();
1158   return graph_;
1159 }
1160 
1161 
AddInstruction(HInstruction * instr)1162 HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
1163   ASSERT(current_block() != NULL);
1164   ASSERT(!FLAG_hydrogen_track_positions ||
1165          !position_.IsUnknown() ||
1166          !info_->IsOptimizing());
1167   current_block()->AddInstruction(instr, source_position());
1168   if (graph()->IsInsideNoSideEffectsScope()) {
1169     instr->SetFlag(HValue::kHasNoObservableSideEffects);
1170   }
1171   return instr;
1172 }
1173 
1174 
FinishCurrentBlock(HControlInstruction * last)1175 void HGraphBuilder::FinishCurrentBlock(HControlInstruction* last) {
1176   ASSERT(!FLAG_hydrogen_track_positions ||
1177          !info_->IsOptimizing() ||
1178          !position_.IsUnknown());
1179   current_block()->Finish(last, source_position());
1180   if (last->IsReturn() || last->IsAbnormalExit()) {
1181     set_current_block(NULL);
1182   }
1183 }
1184 
1185 
FinishExitCurrentBlock(HControlInstruction * instruction)1186 void HGraphBuilder::FinishExitCurrentBlock(HControlInstruction* instruction) {
1187   ASSERT(!FLAG_hydrogen_track_positions || !info_->IsOptimizing() ||
1188          !position_.IsUnknown());
1189   current_block()->FinishExit(instruction, source_position());
1190   if (instruction->IsReturn() || instruction->IsAbnormalExit()) {
1191     set_current_block(NULL);
1192   }
1193 }
1194 
1195 
AddIncrementCounter(StatsCounter * counter)1196 void HGraphBuilder::AddIncrementCounter(StatsCounter* counter) {
1197   if (FLAG_native_code_counters && counter->Enabled()) {
1198     HValue* reference = Add<HConstant>(ExternalReference(counter));
1199     HValue* old_value = Add<HLoadNamedField>(
1200         reference, static_cast<HValue*>(NULL), HObjectAccess::ForCounter());
1201     HValue* new_value = AddUncasted<HAdd>(old_value, graph()->GetConstant1());
1202     new_value->ClearFlag(HValue::kCanOverflow);  // Ignore counter overflow
1203     Add<HStoreNamedField>(reference, HObjectAccess::ForCounter(),
1204                           new_value, STORE_TO_INITIALIZED_ENTRY);
1205   }
1206 }
1207 
1208 
AddSimulate(BailoutId id,RemovableSimulate removable)1209 void HGraphBuilder::AddSimulate(BailoutId id,
1210                                 RemovableSimulate removable) {
1211   ASSERT(current_block() != NULL);
1212   ASSERT(!graph()->IsInsideNoSideEffectsScope());
1213   current_block()->AddNewSimulate(id, source_position(), removable);
1214 }
1215 
1216 
CreateBasicBlock(HEnvironment * env)1217 HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
1218   HBasicBlock* b = graph()->CreateBasicBlock();
1219   b->SetInitialEnvironment(env);
1220   return b;
1221 }
1222 
1223 
CreateLoopHeaderBlock()1224 HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
1225   HBasicBlock* header = graph()->CreateBasicBlock();
1226   HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
1227   header->SetInitialEnvironment(entry_env);
1228   header->AttachLoopInformation();
1229   return header;
1230 }
1231 
1232 
BuildGetElementsKind(HValue * object)1233 HValue* HGraphBuilder::BuildGetElementsKind(HValue* object) {
1234   HValue* map = Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
1235                                      HObjectAccess::ForMap());
1236 
1237   HValue* bit_field2 = Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
1238                                             HObjectAccess::ForMapBitField2());
1239   return BuildDecodeField<Map::ElementsKindBits>(bit_field2);
1240 }
1241 
1242 
BuildCheckHeapObject(HValue * obj)1243 HValue* HGraphBuilder::BuildCheckHeapObject(HValue* obj) {
1244   if (obj->type().IsHeapObject()) return obj;
1245   return Add<HCheckHeapObject>(obj);
1246 }
1247 
1248 
FinishExitWithHardDeoptimization(const char * reason)1249 void HGraphBuilder::FinishExitWithHardDeoptimization(const char* reason) {
1250   Add<HDeoptimize>(reason, Deoptimizer::EAGER);
1251   FinishExitCurrentBlock(New<HAbnormalExit>());
1252 }
1253 
1254 
BuildCheckString(HValue * string)1255 HValue* HGraphBuilder::BuildCheckString(HValue* string) {
1256   if (!string->type().IsString()) {
1257     ASSERT(!string->IsConstant() ||
1258            !HConstant::cast(string)->HasStringValue());
1259     BuildCheckHeapObject(string);
1260     return Add<HCheckInstanceType>(string, HCheckInstanceType::IS_STRING);
1261   }
1262   return string;
1263 }
1264 
1265 
BuildWrapReceiver(HValue * object,HValue * function)1266 HValue* HGraphBuilder::BuildWrapReceiver(HValue* object, HValue* function) {
1267   if (object->type().IsJSObject()) return object;
1268   if (function->IsConstant() &&
1269       HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
1270     Handle<JSFunction> f = Handle<JSFunction>::cast(
1271         HConstant::cast(function)->handle(isolate()));
1272     SharedFunctionInfo* shared = f->shared();
1273     if (shared->strict_mode() == STRICT || shared->native()) return object;
1274   }
1275   return Add<HWrapReceiver>(object, function);
1276 }
1277 
1278 
BuildCheckForCapacityGrow(HValue * object,HValue * elements,ElementsKind kind,HValue * length,HValue * key,bool is_js_array,PropertyAccessType access_type)1279 HValue* HGraphBuilder::BuildCheckForCapacityGrow(
1280     HValue* object,
1281     HValue* elements,
1282     ElementsKind kind,
1283     HValue* length,
1284     HValue* key,
1285     bool is_js_array,
1286     PropertyAccessType access_type) {
1287   IfBuilder length_checker(this);
1288 
1289   Token::Value token = IsHoleyElementsKind(kind) ? Token::GTE : Token::EQ;
1290   length_checker.If<HCompareNumericAndBranch>(key, length, token);
1291 
1292   length_checker.Then();
1293 
1294   HValue* current_capacity = AddLoadFixedArrayLength(elements);
1295 
1296   IfBuilder capacity_checker(this);
1297 
1298   capacity_checker.If<HCompareNumericAndBranch>(key, current_capacity,
1299                                                 Token::GTE);
1300   capacity_checker.Then();
1301 
1302   HValue* max_gap = Add<HConstant>(static_cast<int32_t>(JSObject::kMaxGap));
1303   HValue* max_capacity = AddUncasted<HAdd>(current_capacity, max_gap);
1304 
1305   Add<HBoundsCheck>(key, max_capacity);
1306 
1307   HValue* new_capacity = BuildNewElementsCapacity(key);
1308   HValue* new_elements = BuildGrowElementsCapacity(object, elements,
1309                                                    kind, kind, length,
1310                                                    new_capacity);
1311 
1312   environment()->Push(new_elements);
1313   capacity_checker.Else();
1314 
1315   environment()->Push(elements);
1316   capacity_checker.End();
1317 
1318   if (is_js_array) {
1319     HValue* new_length = AddUncasted<HAdd>(key, graph_->GetConstant1());
1320     new_length->ClearFlag(HValue::kCanOverflow);
1321 
1322     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(kind),
1323                           new_length);
1324   }
1325 
1326   if (access_type == STORE && kind == FAST_SMI_ELEMENTS) {
1327     HValue* checked_elements = environment()->Top();
1328 
1329     // Write zero to ensure that the new element is initialized with some smi.
1330     Add<HStoreKeyed>(checked_elements, key, graph()->GetConstant0(), kind);
1331   }
1332 
1333   length_checker.Else();
1334   Add<HBoundsCheck>(key, length);
1335 
1336   environment()->Push(elements);
1337   length_checker.End();
1338 
1339   return environment()->Pop();
1340 }
1341 
1342 
BuildCopyElementsOnWrite(HValue * object,HValue * elements,ElementsKind kind,HValue * length)1343 HValue* HGraphBuilder::BuildCopyElementsOnWrite(HValue* object,
1344                                                 HValue* elements,
1345                                                 ElementsKind kind,
1346                                                 HValue* length) {
1347   Factory* factory = isolate()->factory();
1348 
1349   IfBuilder cow_checker(this);
1350 
1351   cow_checker.If<HCompareMap>(elements, factory->fixed_cow_array_map());
1352   cow_checker.Then();
1353 
1354   HValue* capacity = AddLoadFixedArrayLength(elements);
1355 
1356   HValue* new_elements = BuildGrowElementsCapacity(object, elements, kind,
1357                                                    kind, length, capacity);
1358 
1359   environment()->Push(new_elements);
1360 
1361   cow_checker.Else();
1362 
1363   environment()->Push(elements);
1364 
1365   cow_checker.End();
1366 
1367   return environment()->Pop();
1368 }
1369 
1370 
BuildTransitionElementsKind(HValue * object,HValue * map,ElementsKind from_kind,ElementsKind to_kind,bool is_jsarray)1371 void HGraphBuilder::BuildTransitionElementsKind(HValue* object,
1372                                                 HValue* map,
1373                                                 ElementsKind from_kind,
1374                                                 ElementsKind to_kind,
1375                                                 bool is_jsarray) {
1376   ASSERT(!IsFastHoleyElementsKind(from_kind) ||
1377          IsFastHoleyElementsKind(to_kind));
1378 
1379   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
1380     Add<HTrapAllocationMemento>(object);
1381   }
1382 
1383   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
1384     HInstruction* elements = AddLoadElements(object);
1385 
1386     HInstruction* empty_fixed_array = Add<HConstant>(
1387         isolate()->factory()->empty_fixed_array());
1388 
1389     IfBuilder if_builder(this);
1390 
1391     if_builder.IfNot<HCompareObjectEqAndBranch>(elements, empty_fixed_array);
1392 
1393     if_builder.Then();
1394 
1395     HInstruction* elements_length = AddLoadFixedArrayLength(elements);
1396 
1397     HInstruction* array_length = is_jsarray
1398         ? Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
1399                                HObjectAccess::ForArrayLength(from_kind))
1400         : elements_length;
1401 
1402     BuildGrowElementsCapacity(object, elements, from_kind, to_kind,
1403                               array_length, elements_length);
1404 
1405     if_builder.End();
1406   }
1407 
1408   Add<HStoreNamedField>(object, HObjectAccess::ForMap(), map);
1409 }
1410 
1411 
BuildJSObjectCheck(HValue * receiver,int bit_field_mask)1412 void HGraphBuilder::BuildJSObjectCheck(HValue* receiver,
1413                                        int bit_field_mask) {
1414   // Check that the object isn't a smi.
1415   Add<HCheckHeapObject>(receiver);
1416 
1417   // Get the map of the receiver.
1418   HValue* map = Add<HLoadNamedField>(receiver, static_cast<HValue*>(NULL),
1419                                      HObjectAccess::ForMap());
1420 
1421   // Check the instance type and if an access check is needed, this can be
1422   // done with a single load, since both bytes are adjacent in the map.
1423   HObjectAccess access(HObjectAccess::ForMapInstanceTypeAndBitField());
1424   HValue* instance_type_and_bit_field =
1425       Add<HLoadNamedField>(map, static_cast<HValue*>(NULL), access);
1426 
1427   HValue* mask = Add<HConstant>(0x00FF | (bit_field_mask << 8));
1428   HValue* and_result = AddUncasted<HBitwise>(Token::BIT_AND,
1429                                              instance_type_and_bit_field,
1430                                              mask);
1431   HValue* sub_result = AddUncasted<HSub>(and_result,
1432                                          Add<HConstant>(JS_OBJECT_TYPE));
1433   Add<HBoundsCheck>(sub_result, Add<HConstant>(0x100 - JS_OBJECT_TYPE));
1434 }
1435 
1436 
BuildKeyedIndexCheck(HValue * key,HIfContinuation * join_continuation)1437 void HGraphBuilder::BuildKeyedIndexCheck(HValue* key,
1438                                          HIfContinuation* join_continuation) {
1439   // The sometimes unintuitively backward ordering of the ifs below is
1440   // convoluted, but necessary.  All of the paths must guarantee that the
1441   // if-true of the continuation returns a smi element index and the if-false of
1442   // the continuation returns either a symbol or a unique string key. All other
1443   // object types cause a deopt to fall back to the runtime.
1444 
1445   IfBuilder key_smi_if(this);
1446   key_smi_if.If<HIsSmiAndBranch>(key);
1447   key_smi_if.Then();
1448   {
1449     Push(key);  // Nothing to do, just continue to true of continuation.
1450   }
1451   key_smi_if.Else();
1452   {
1453     HValue* map = Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
1454                                        HObjectAccess::ForMap());
1455     HValue* instance_type =
1456         Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
1457                              HObjectAccess::ForMapInstanceType());
1458 
1459     // Non-unique string, check for a string with a hash code that is actually
1460     // an index.
1461     STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
1462     IfBuilder not_string_or_name_if(this);
1463     not_string_or_name_if.If<HCompareNumericAndBranch>(
1464         instance_type,
1465         Add<HConstant>(LAST_UNIQUE_NAME_TYPE),
1466         Token::GT);
1467 
1468     not_string_or_name_if.Then();
1469     {
1470       // Non-smi, non-Name, non-String: Try to convert to smi in case of
1471       // HeapNumber.
1472       // TODO(danno): This could call some variant of ToString
1473       Push(AddUncasted<HForceRepresentation>(key, Representation::Smi()));
1474     }
1475     not_string_or_name_if.Else();
1476     {
1477       // String or Name: check explicitly for Name, they can short-circuit
1478       // directly to unique non-index key path.
1479       IfBuilder not_symbol_if(this);
1480       not_symbol_if.If<HCompareNumericAndBranch>(
1481           instance_type,
1482           Add<HConstant>(SYMBOL_TYPE),
1483           Token::NE);
1484 
1485       not_symbol_if.Then();
1486       {
1487         // String: check whether the String is a String of an index. If it is,
1488         // extract the index value from the hash.
1489         HValue* hash =
1490             Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
1491                                  HObjectAccess::ForNameHashField());
1492         HValue* not_index_mask = Add<HConstant>(static_cast<int>(
1493             String::kContainsCachedArrayIndexMask));
1494 
1495         HValue* not_index_test = AddUncasted<HBitwise>(
1496             Token::BIT_AND, hash, not_index_mask);
1497 
1498         IfBuilder string_index_if(this);
1499         string_index_if.If<HCompareNumericAndBranch>(not_index_test,
1500                                                      graph()->GetConstant0(),
1501                                                      Token::EQ);
1502         string_index_if.Then();
1503         {
1504           // String with index in hash: extract string and merge to index path.
1505           Push(BuildDecodeField<String::ArrayIndexValueBits>(hash));
1506         }
1507         string_index_if.Else();
1508         {
1509           // Key is a non-index String, check for uniqueness/internalization. If
1510           // it's not, deopt.
1511           HValue* not_internalized_bit = AddUncasted<HBitwise>(
1512               Token::BIT_AND,
1513               instance_type,
1514               Add<HConstant>(static_cast<int>(kIsNotInternalizedMask)));
1515           DeoptimizeIf<HCompareNumericAndBranch>(
1516               not_internalized_bit,
1517               graph()->GetConstant0(),
1518               Token::NE,
1519               "BuildKeyedIndexCheck: string isn't internalized");
1520           // Key guaranteed to be a unqiue string
1521           Push(key);
1522         }
1523         string_index_if.JoinContinuation(join_continuation);
1524       }
1525       not_symbol_if.Else();
1526       {
1527         Push(key);  // Key is symbol
1528       }
1529       not_symbol_if.JoinContinuation(join_continuation);
1530     }
1531     not_string_or_name_if.JoinContinuation(join_continuation);
1532   }
1533   key_smi_if.JoinContinuation(join_continuation);
1534 }
1535 
1536 
BuildNonGlobalObjectCheck(HValue * receiver)1537 void HGraphBuilder::BuildNonGlobalObjectCheck(HValue* receiver) {
1538   // Get the the instance type of the receiver, and make sure that it is
1539   // not one of the global object types.
1540   HValue* map = Add<HLoadNamedField>(receiver, static_cast<HValue*>(NULL),
1541                                      HObjectAccess::ForMap());
1542   HValue* instance_type =
1543     Add<HLoadNamedField>(map, static_cast<HValue*>(NULL),
1544                          HObjectAccess::ForMapInstanceType());
1545   STATIC_ASSERT(JS_BUILTINS_OBJECT_TYPE == JS_GLOBAL_OBJECT_TYPE + 1);
1546   HValue* min_global_type = Add<HConstant>(JS_GLOBAL_OBJECT_TYPE);
1547   HValue* max_global_type = Add<HConstant>(JS_BUILTINS_OBJECT_TYPE);
1548 
1549   IfBuilder if_global_object(this);
1550   if_global_object.If<HCompareNumericAndBranch>(instance_type,
1551                                                 max_global_type,
1552                                                 Token::LTE);
1553   if_global_object.And();
1554   if_global_object.If<HCompareNumericAndBranch>(instance_type,
1555                                                 min_global_type,
1556                                                 Token::GTE);
1557   if_global_object.ThenDeopt("receiver was a global object");
1558   if_global_object.End();
1559 }
1560 
1561 
BuildTestForDictionaryProperties(HValue * object,HIfContinuation * continuation)1562 void HGraphBuilder::BuildTestForDictionaryProperties(
1563     HValue* object,
1564     HIfContinuation* continuation) {
1565   HValue* properties = Add<HLoadNamedField>(
1566       object, static_cast<HValue*>(NULL),
1567       HObjectAccess::ForPropertiesPointer());
1568   HValue* properties_map =
1569       Add<HLoadNamedField>(properties, static_cast<HValue*>(NULL),
1570                            HObjectAccess::ForMap());
1571   HValue* hash_map = Add<HLoadRoot>(Heap::kHashTableMapRootIndex);
1572   IfBuilder builder(this);
1573   builder.If<HCompareObjectEqAndBranch>(properties_map, hash_map);
1574   builder.CaptureContinuation(continuation);
1575 }
1576 
1577 
BuildKeyedLookupCacheHash(HValue * object,HValue * key)1578 HValue* HGraphBuilder::BuildKeyedLookupCacheHash(HValue* object,
1579                                                  HValue* key) {
1580   // Load the map of the receiver, compute the keyed lookup cache hash
1581   // based on 32 bits of the map pointer and the string hash.
1582   HValue* object_map =
1583       Add<HLoadNamedField>(object, static_cast<HValue*>(NULL),
1584                            HObjectAccess::ForMapAsInteger32());
1585   HValue* shifted_map = AddUncasted<HShr>(
1586       object_map, Add<HConstant>(KeyedLookupCache::kMapHashShift));
1587   HValue* string_hash =
1588       Add<HLoadNamedField>(key, static_cast<HValue*>(NULL),
1589                            HObjectAccess::ForStringHashField());
1590   HValue* shifted_hash = AddUncasted<HShr>(
1591       string_hash, Add<HConstant>(String::kHashShift));
1592   HValue* xor_result = AddUncasted<HBitwise>(Token::BIT_XOR, shifted_map,
1593                                              shifted_hash);
1594   int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
1595   return AddUncasted<HBitwise>(Token::BIT_AND, xor_result,
1596                                Add<HConstant>(mask));
1597 }
1598 
1599 
BuildUncheckedDictionaryElementLoadHelper(HValue * elements,HValue * key,HValue * hash,HValue * mask,int current_probe)1600 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoadHelper(
1601     HValue* elements,
1602     HValue* key,
1603     HValue* hash,
1604     HValue* mask,
1605     int current_probe) {
1606   if (current_probe == kNumberDictionaryProbes) {
1607     return NULL;
1608   }
1609 
1610   int32_t offset = SeededNumberDictionary::GetProbeOffset(current_probe);
1611   HValue* raw_index = (current_probe == 0)
1612       ? hash
1613       : AddUncasted<HAdd>(hash, Add<HConstant>(offset));
1614   raw_index = AddUncasted<HBitwise>(Token::BIT_AND, raw_index, mask);
1615   int32_t entry_size = SeededNumberDictionary::kEntrySize;
1616   raw_index = AddUncasted<HMul>(raw_index, Add<HConstant>(entry_size));
1617   raw_index->ClearFlag(HValue::kCanOverflow);
1618 
1619   int32_t base_offset = SeededNumberDictionary::kElementsStartIndex;
1620   HValue* key_index = AddUncasted<HAdd>(raw_index, Add<HConstant>(base_offset));
1621   key_index->ClearFlag(HValue::kCanOverflow);
1622 
1623   HValue* candidate_key = Add<HLoadKeyed>(elements, key_index,
1624                                           static_cast<HValue*>(NULL),
1625                                           FAST_ELEMENTS);
1626 
1627   IfBuilder key_compare(this);
1628   key_compare.IfNot<HCompareObjectEqAndBranch>(key, candidate_key);
1629   key_compare.Then();
1630   {
1631     // Key at the current probe doesn't match, try at the next probe.
1632     HValue* result = BuildUncheckedDictionaryElementLoadHelper(
1633         elements, key, hash, mask, current_probe + 1);
1634     if (result == NULL) {
1635       key_compare.Deopt("probes exhausted in keyed load dictionary lookup");
1636       result = graph()->GetConstantUndefined();
1637     } else {
1638       Push(result);
1639     }
1640   }
1641   key_compare.Else();
1642   {
1643     // Key at current probe matches. Details must be zero, otherwise the
1644     // dictionary element requires special handling.
1645     HValue* details_index = AddUncasted<HAdd>(
1646         raw_index, Add<HConstant>(base_offset + 2));
1647     details_index->ClearFlag(HValue::kCanOverflow);
1648 
1649     HValue* details = Add<HLoadKeyed>(elements, details_index,
1650                                       static_cast<HValue*>(NULL),
1651                                       FAST_ELEMENTS);
1652     IfBuilder details_compare(this);
1653     details_compare.If<HCompareNumericAndBranch>(details,
1654                                                  graph()->GetConstant0(),
1655                                                  Token::NE);
1656     details_compare.ThenDeopt("keyed load dictionary element not fast case");
1657 
1658     details_compare.Else();
1659     {
1660       // Key matches and details are zero --> fast case. Load and return the
1661       // value.
1662       HValue* result_index = AddUncasted<HAdd>(
1663           raw_index, Add<HConstant>(base_offset + 1));
1664       result_index->ClearFlag(HValue::kCanOverflow);
1665 
1666       Push(Add<HLoadKeyed>(elements, result_index,
1667                            static_cast<HValue*>(NULL),
1668                            FAST_ELEMENTS));
1669     }
1670     details_compare.End();
1671   }
1672   key_compare.End();
1673 
1674   return Pop();
1675 }
1676 
1677 
BuildElementIndexHash(HValue * index)1678 HValue* HGraphBuilder::BuildElementIndexHash(HValue* index) {
1679   int32_t seed_value = static_cast<uint32_t>(isolate()->heap()->HashSeed());
1680   HValue* seed = Add<HConstant>(seed_value);
1681   HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, index, seed);
1682 
1683   // hash = ~hash + (hash << 15);
1684   HValue* shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(15));
1685   HValue* not_hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash,
1686                                            graph()->GetConstantMinus1());
1687   hash = AddUncasted<HAdd>(shifted_hash, not_hash);
1688 
1689   // hash = hash ^ (hash >> 12);
1690   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(12));
1691   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1692 
1693   // hash = hash + (hash << 2);
1694   shifted_hash = AddUncasted<HShl>(hash, Add<HConstant>(2));
1695   hash = AddUncasted<HAdd>(hash, shifted_hash);
1696 
1697   // hash = hash ^ (hash >> 4);
1698   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(4));
1699   hash = AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1700 
1701   // hash = hash * 2057;
1702   hash = AddUncasted<HMul>(hash, Add<HConstant>(2057));
1703   hash->ClearFlag(HValue::kCanOverflow);
1704 
1705   // hash = hash ^ (hash >> 16);
1706   shifted_hash = AddUncasted<HShr>(hash, Add<HConstant>(16));
1707   return AddUncasted<HBitwise>(Token::BIT_XOR, hash, shifted_hash);
1708 }
1709 
1710 
BuildUncheckedDictionaryElementLoad(HValue * receiver,HValue * elements,HValue * key,HValue * hash)1711 HValue* HGraphBuilder::BuildUncheckedDictionaryElementLoad(HValue* receiver,
1712                                                            HValue* elements,
1713                                                            HValue* key,
1714                                                            HValue* hash) {
1715   HValue* capacity = Add<HLoadKeyed>(
1716       elements,
1717       Add<HConstant>(NameDictionary::kCapacityIndex),
1718       static_cast<HValue*>(NULL),
1719       FAST_ELEMENTS);
1720 
1721   HValue* mask = AddUncasted<HSub>(capacity, graph()->GetConstant1());
1722   mask->ChangeRepresentation(Representation::Integer32());
1723   mask->ClearFlag(HValue::kCanOverflow);
1724 
1725   return BuildUncheckedDictionaryElementLoadHelper(elements, key,
1726                                                    hash, mask, 0);
1727 }
1728 
1729 
BuildRegExpConstructResult(HValue * length,HValue * index,HValue * input)1730 HValue* HGraphBuilder::BuildRegExpConstructResult(HValue* length,
1731                                                   HValue* index,
1732                                                   HValue* input) {
1733   NoObservableSideEffectsScope scope(this);
1734   HConstant* max_length = Add<HConstant>(JSObject::kInitialMaxFastElementArray);
1735   Add<HBoundsCheck>(length, max_length);
1736 
1737   // Generate size calculation code here in order to make it dominate
1738   // the JSRegExpResult allocation.
1739   ElementsKind elements_kind = FAST_ELEMENTS;
1740   HValue* size = BuildCalculateElementsSize(elements_kind, length);
1741 
1742   // Allocate the JSRegExpResult and the FixedArray in one step.
1743   HValue* result = Add<HAllocate>(
1744       Add<HConstant>(JSRegExpResult::kSize), HType::JSArray(),
1745       NOT_TENURED, JS_ARRAY_TYPE);
1746 
1747   // Initialize the JSRegExpResult header.
1748   HValue* global_object = Add<HLoadNamedField>(
1749       context(), static_cast<HValue*>(NULL),
1750       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
1751   HValue* native_context = Add<HLoadNamedField>(
1752       global_object, static_cast<HValue*>(NULL),
1753       HObjectAccess::ForGlobalObjectNativeContext());
1754   Add<HStoreNamedField>(
1755       result, HObjectAccess::ForMap(),
1756       Add<HLoadNamedField>(
1757           native_context, static_cast<HValue*>(NULL),
1758           HObjectAccess::ForContextSlot(Context::REGEXP_RESULT_MAP_INDEX)));
1759   HConstant* empty_fixed_array =
1760       Add<HConstant>(isolate()->factory()->empty_fixed_array());
1761   Add<HStoreNamedField>(
1762       result, HObjectAccess::ForJSArrayOffset(JSArray::kPropertiesOffset),
1763       empty_fixed_array);
1764   Add<HStoreNamedField>(
1765       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1766       empty_fixed_array);
1767   Add<HStoreNamedField>(
1768       result, HObjectAccess::ForJSArrayOffset(JSArray::kLengthOffset), length);
1769 
1770   // Initialize the additional fields.
1771   Add<HStoreNamedField>(
1772       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kIndexOffset),
1773       index);
1774   Add<HStoreNamedField>(
1775       result, HObjectAccess::ForJSArrayOffset(JSRegExpResult::kInputOffset),
1776       input);
1777 
1778   // Allocate and initialize the elements header.
1779   HAllocate* elements = BuildAllocateElements(elements_kind, size);
1780   BuildInitializeElementsHeader(elements, elements_kind, length);
1781 
1782   HConstant* size_in_bytes_upper_bound = EstablishElementsAllocationSize(
1783       elements_kind, max_length->Integer32Value());
1784   elements->set_size_upper_bound(size_in_bytes_upper_bound);
1785 
1786   Add<HStoreNamedField>(
1787       result, HObjectAccess::ForJSArrayOffset(JSArray::kElementsOffset),
1788       elements);
1789 
1790   // Initialize the elements contents with undefined.
1791   BuildFillElementsWithValue(
1792       elements, elements_kind, graph()->GetConstant0(), length,
1793       graph()->GetConstantUndefined());
1794 
1795   return result;
1796 }
1797 
1798 
BuildNumberToString(HValue * object,Type * type)1799 HValue* HGraphBuilder::BuildNumberToString(HValue* object, Type* type) {
1800   NoObservableSideEffectsScope scope(this);
1801 
1802   // Convert constant numbers at compile time.
1803   if (object->IsConstant() && HConstant::cast(object)->HasNumberValue()) {
1804     Handle<Object> number = HConstant::cast(object)->handle(isolate());
1805     Handle<String> result = isolate()->factory()->NumberToString(number);
1806     return Add<HConstant>(result);
1807   }
1808 
1809   // Create a joinable continuation.
1810   HIfContinuation found(graph()->CreateBasicBlock(),
1811                         graph()->CreateBasicBlock());
1812 
1813   // Load the number string cache.
1814   HValue* number_string_cache =
1815       Add<HLoadRoot>(Heap::kNumberStringCacheRootIndex);
1816 
1817   // Make the hash mask from the length of the number string cache. It
1818   // contains two elements (number and string) for each cache entry.
1819   HValue* mask = AddLoadFixedArrayLength(number_string_cache);
1820   mask->set_type(HType::Smi());
1821   mask = AddUncasted<HSar>(mask, graph()->GetConstant1());
1822   mask = AddUncasted<HSub>(mask, graph()->GetConstant1());
1823 
1824   // Check whether object is a smi.
1825   IfBuilder if_objectissmi(this);
1826   if_objectissmi.If<HIsSmiAndBranch>(object);
1827   if_objectissmi.Then();
1828   {
1829     // Compute hash for smi similar to smi_get_hash().
1830     HValue* hash = AddUncasted<HBitwise>(Token::BIT_AND, object, mask);
1831 
1832     // Load the key.
1833     HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1834     HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
1835                                   static_cast<HValue*>(NULL),
1836                                   FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1837 
1838     // Check if object == key.
1839     IfBuilder if_objectiskey(this);
1840     if_objectiskey.If<HCompareObjectEqAndBranch>(object, key);
1841     if_objectiskey.Then();
1842     {
1843       // Make the key_index available.
1844       Push(key_index);
1845     }
1846     if_objectiskey.JoinContinuation(&found);
1847   }
1848   if_objectissmi.Else();
1849   {
1850     if (type->Is(Type::SignedSmall())) {
1851       if_objectissmi.Deopt("Expected smi");
1852     } else {
1853       // Check if the object is a heap number.
1854       IfBuilder if_objectisnumber(this);
1855       HValue* objectisnumber = if_objectisnumber.If<HCompareMap>(
1856           object, isolate()->factory()->heap_number_map());
1857       if_objectisnumber.Then();
1858       {
1859         // Compute hash for heap number similar to double_get_hash().
1860         HValue* low = Add<HLoadNamedField>(
1861             object, objectisnumber,
1862             HObjectAccess::ForHeapNumberValueLowestBits());
1863         HValue* high = Add<HLoadNamedField>(
1864             object, objectisnumber,
1865             HObjectAccess::ForHeapNumberValueHighestBits());
1866         HValue* hash = AddUncasted<HBitwise>(Token::BIT_XOR, low, high);
1867         hash = AddUncasted<HBitwise>(Token::BIT_AND, hash, mask);
1868 
1869         // Load the key.
1870         HValue* key_index = AddUncasted<HShl>(hash, graph()->GetConstant1());
1871         HValue* key = Add<HLoadKeyed>(number_string_cache, key_index,
1872                                       static_cast<HValue*>(NULL),
1873                                       FAST_ELEMENTS, ALLOW_RETURN_HOLE);
1874 
1875         // Check if the key is a heap number and compare it with the object.
1876         IfBuilder if_keyisnotsmi(this);
1877         HValue* keyisnotsmi = if_keyisnotsmi.IfNot<HIsSmiAndBranch>(key);
1878         if_keyisnotsmi.Then();
1879         {
1880           IfBuilder if_keyisheapnumber(this);
1881           if_keyisheapnumber.If<HCompareMap>(
1882               key, isolate()->factory()->heap_number_map());
1883           if_keyisheapnumber.Then();
1884           {
1885             // Check if values of key and object match.
1886             IfBuilder if_keyeqobject(this);
1887             if_keyeqobject.If<HCompareNumericAndBranch>(
1888                 Add<HLoadNamedField>(key, keyisnotsmi,
1889                                      HObjectAccess::ForHeapNumberValue()),
1890                 Add<HLoadNamedField>(object, objectisnumber,
1891                                      HObjectAccess::ForHeapNumberValue()),
1892                 Token::EQ);
1893             if_keyeqobject.Then();
1894             {
1895               // Make the key_index available.
1896               Push(key_index);
1897             }
1898             if_keyeqobject.JoinContinuation(&found);
1899           }
1900           if_keyisheapnumber.JoinContinuation(&found);
1901         }
1902         if_keyisnotsmi.JoinContinuation(&found);
1903       }
1904       if_objectisnumber.Else();
1905       {
1906         if (type->Is(Type::Number())) {
1907           if_objectisnumber.Deopt("Expected heap number");
1908         }
1909       }
1910       if_objectisnumber.JoinContinuation(&found);
1911     }
1912   }
1913   if_objectissmi.JoinContinuation(&found);
1914 
1915   // Check for cache hit.
1916   IfBuilder if_found(this, &found);
1917   if_found.Then();
1918   {
1919     // Count number to string operation in native code.
1920     AddIncrementCounter(isolate()->counters()->number_to_string_native());
1921 
1922     // Load the value in case of cache hit.
1923     HValue* key_index = Pop();
1924     HValue* value_index = AddUncasted<HAdd>(key_index, graph()->GetConstant1());
1925     Push(Add<HLoadKeyed>(number_string_cache, value_index,
1926                          static_cast<HValue*>(NULL),
1927                          FAST_ELEMENTS, ALLOW_RETURN_HOLE));
1928   }
1929   if_found.Else();
1930   {
1931     // Cache miss, fallback to runtime.
1932     Add<HPushArguments>(object);
1933     Push(Add<HCallRuntime>(
1934             isolate()->factory()->empty_string(),
1935             Runtime::FunctionForId(Runtime::kHiddenNumberToStringSkipCache),
1936             1));
1937   }
1938   if_found.End();
1939 
1940   return Pop();
1941 }
1942 
1943 
BuildAllocate(HValue * object_size,HType type,InstanceType instance_type,HAllocationMode allocation_mode)1944 HAllocate* HGraphBuilder::BuildAllocate(
1945     HValue* object_size,
1946     HType type,
1947     InstanceType instance_type,
1948     HAllocationMode allocation_mode) {
1949   // Compute the effective allocation size.
1950   HValue* size = object_size;
1951   if (allocation_mode.CreateAllocationMementos()) {
1952     size = AddUncasted<HAdd>(size, Add<HConstant>(AllocationMemento::kSize));
1953     size->ClearFlag(HValue::kCanOverflow);
1954   }
1955 
1956   // Perform the actual allocation.
1957   HAllocate* object = Add<HAllocate>(
1958       size, type, allocation_mode.GetPretenureMode(),
1959       instance_type, allocation_mode.feedback_site());
1960 
1961   // Setup the allocation memento.
1962   if (allocation_mode.CreateAllocationMementos()) {
1963     BuildCreateAllocationMemento(
1964         object, object_size, allocation_mode.current_site());
1965   }
1966 
1967   return object;
1968 }
1969 
1970 
BuildAddStringLengths(HValue * left_length,HValue * right_length)1971 HValue* HGraphBuilder::BuildAddStringLengths(HValue* left_length,
1972                                              HValue* right_length) {
1973   // Compute the combined string length and check against max string length.
1974   HValue* length = AddUncasted<HAdd>(left_length, right_length);
1975   // Check that length <= kMaxLength <=> length < MaxLength + 1.
1976   HValue* max_length = Add<HConstant>(String::kMaxLength + 1);
1977   Add<HBoundsCheck>(length, max_length);
1978   return length;
1979 }
1980 
1981 
BuildCreateConsString(HValue * length,HValue * left,HValue * right,HAllocationMode allocation_mode)1982 HValue* HGraphBuilder::BuildCreateConsString(
1983     HValue* length,
1984     HValue* left,
1985     HValue* right,
1986     HAllocationMode allocation_mode) {
1987   // Determine the string instance types.
1988   HInstruction* left_instance_type = AddLoadStringInstanceType(left);
1989   HInstruction* right_instance_type = AddLoadStringInstanceType(right);
1990 
1991   // Allocate the cons string object. HAllocate does not care whether we
1992   // pass CONS_STRING_TYPE or CONS_ASCII_STRING_TYPE here, so we just use
1993   // CONS_STRING_TYPE here. Below we decide whether the cons string is
1994   // one-byte or two-byte and set the appropriate map.
1995   ASSERT(HAllocate::CompatibleInstanceTypes(CONS_STRING_TYPE,
1996                                             CONS_ASCII_STRING_TYPE));
1997   HAllocate* result = BuildAllocate(Add<HConstant>(ConsString::kSize),
1998                                     HType::String(), CONS_STRING_TYPE,
1999                                     allocation_mode);
2000 
2001   // Compute intersection and difference of instance types.
2002   HValue* anded_instance_types = AddUncasted<HBitwise>(
2003       Token::BIT_AND, left_instance_type, right_instance_type);
2004   HValue* xored_instance_types = AddUncasted<HBitwise>(
2005       Token::BIT_XOR, left_instance_type, right_instance_type);
2006 
2007   // We create a one-byte cons string if
2008   // 1. both strings are one-byte, or
2009   // 2. at least one of the strings is two-byte, but happens to contain only
2010   //    one-byte characters.
2011   // To do this, we check
2012   // 1. if both strings are one-byte, or if the one-byte data hint is set in
2013   //    both strings, or
2014   // 2. if one of the strings has the one-byte data hint set and the other
2015   //    string is one-byte.
2016   IfBuilder if_onebyte(this);
2017   STATIC_ASSERT(kOneByteStringTag != 0);
2018   STATIC_ASSERT(kOneByteDataHintMask != 0);
2019   if_onebyte.If<HCompareNumericAndBranch>(
2020       AddUncasted<HBitwise>(
2021           Token::BIT_AND, anded_instance_types,
2022           Add<HConstant>(static_cast<int32_t>(
2023                   kStringEncodingMask | kOneByteDataHintMask))),
2024       graph()->GetConstant0(), Token::NE);
2025   if_onebyte.Or();
2026   STATIC_ASSERT(kOneByteStringTag != 0 &&
2027                 kOneByteDataHintTag != 0 &&
2028                 kOneByteDataHintTag != kOneByteStringTag);
2029   if_onebyte.If<HCompareNumericAndBranch>(
2030       AddUncasted<HBitwise>(
2031           Token::BIT_AND, xored_instance_types,
2032           Add<HConstant>(static_cast<int32_t>(
2033                   kOneByteStringTag | kOneByteDataHintTag))),
2034       Add<HConstant>(static_cast<int32_t>(
2035               kOneByteStringTag | kOneByteDataHintTag)), Token::EQ);
2036   if_onebyte.Then();
2037   {
2038     // We can safely skip the write barrier for storing the map here.
2039     Add<HStoreNamedField>(
2040         result, HObjectAccess::ForMap(),
2041         Add<HConstant>(isolate()->factory()->cons_ascii_string_map()));
2042   }
2043   if_onebyte.Else();
2044   {
2045     // We can safely skip the write barrier for storing the map here.
2046     Add<HStoreNamedField>(
2047         result, HObjectAccess::ForMap(),
2048         Add<HConstant>(isolate()->factory()->cons_string_map()));
2049   }
2050   if_onebyte.End();
2051 
2052   // Initialize the cons string fields.
2053   Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2054                         Add<HConstant>(String::kEmptyHashField));
2055   Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2056   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringFirst(), left);
2057   Add<HStoreNamedField>(result, HObjectAccess::ForConsStringSecond(), right);
2058 
2059   // Count the native string addition.
2060   AddIncrementCounter(isolate()->counters()->string_add_native());
2061 
2062   return result;
2063 }
2064 
2065 
BuildCopySeqStringChars(HValue * src,HValue * src_offset,String::Encoding src_encoding,HValue * dst,HValue * dst_offset,String::Encoding dst_encoding,HValue * length)2066 void HGraphBuilder::BuildCopySeqStringChars(HValue* src,
2067                                             HValue* src_offset,
2068                                             String::Encoding src_encoding,
2069                                             HValue* dst,
2070                                             HValue* dst_offset,
2071                                             String::Encoding dst_encoding,
2072                                             HValue* length) {
2073   ASSERT(dst_encoding != String::ONE_BYTE_ENCODING ||
2074          src_encoding == String::ONE_BYTE_ENCODING);
2075   LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
2076   HValue* index = loop.BeginBody(graph()->GetConstant0(), length, Token::LT);
2077   {
2078     HValue* src_index = AddUncasted<HAdd>(src_offset, index);
2079     HValue* value =
2080         AddUncasted<HSeqStringGetChar>(src_encoding, src, src_index);
2081     HValue* dst_index = AddUncasted<HAdd>(dst_offset, index);
2082     Add<HSeqStringSetChar>(dst_encoding, dst, dst_index, value);
2083   }
2084   loop.EndBody();
2085 }
2086 
2087 
BuildObjectSizeAlignment(HValue * unaligned_size,int header_size)2088 HValue* HGraphBuilder::BuildObjectSizeAlignment(
2089     HValue* unaligned_size, int header_size) {
2090   ASSERT((header_size & kObjectAlignmentMask) == 0);
2091   HValue* size = AddUncasted<HAdd>(
2092       unaligned_size, Add<HConstant>(static_cast<int32_t>(
2093           header_size + kObjectAlignmentMask)));
2094   size->ClearFlag(HValue::kCanOverflow);
2095   return AddUncasted<HBitwise>(
2096       Token::BIT_AND, size, Add<HConstant>(static_cast<int32_t>(
2097           ~kObjectAlignmentMask)));
2098 }
2099 
2100 
BuildUncheckedStringAdd(HValue * left,HValue * right,HAllocationMode allocation_mode)2101 HValue* HGraphBuilder::BuildUncheckedStringAdd(
2102     HValue* left,
2103     HValue* right,
2104     HAllocationMode allocation_mode) {
2105   // Determine the string lengths.
2106   HValue* left_length = AddLoadStringLength(left);
2107   HValue* right_length = AddLoadStringLength(right);
2108 
2109   // Compute the combined string length.
2110   HValue* length = BuildAddStringLengths(left_length, right_length);
2111 
2112   // Do some manual constant folding here.
2113   if (left_length->IsConstant()) {
2114     HConstant* c_left_length = HConstant::cast(left_length);
2115     ASSERT_NE(0, c_left_length->Integer32Value());
2116     if (c_left_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2117       // The right string contains at least one character.
2118       return BuildCreateConsString(length, left, right, allocation_mode);
2119     }
2120   } else if (right_length->IsConstant()) {
2121     HConstant* c_right_length = HConstant::cast(right_length);
2122     ASSERT_NE(0, c_right_length->Integer32Value());
2123     if (c_right_length->Integer32Value() + 1 >= ConsString::kMinLength) {
2124       // The left string contains at least one character.
2125       return BuildCreateConsString(length, left, right, allocation_mode);
2126     }
2127   }
2128 
2129   // Check if we should create a cons string.
2130   IfBuilder if_createcons(this);
2131   if_createcons.If<HCompareNumericAndBranch>(
2132       length, Add<HConstant>(ConsString::kMinLength), Token::GTE);
2133   if_createcons.Then();
2134   {
2135     // Create a cons string.
2136     Push(BuildCreateConsString(length, left, right, allocation_mode));
2137   }
2138   if_createcons.Else();
2139   {
2140     // Determine the string instance types.
2141     HValue* left_instance_type = AddLoadStringInstanceType(left);
2142     HValue* right_instance_type = AddLoadStringInstanceType(right);
2143 
2144     // Compute union and difference of instance types.
2145     HValue* ored_instance_types = AddUncasted<HBitwise>(
2146         Token::BIT_OR, left_instance_type, right_instance_type);
2147     HValue* xored_instance_types = AddUncasted<HBitwise>(
2148         Token::BIT_XOR, left_instance_type, right_instance_type);
2149 
2150     // Check if both strings have the same encoding and both are
2151     // sequential.
2152     IfBuilder if_sameencodingandsequential(this);
2153     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2154         AddUncasted<HBitwise>(
2155             Token::BIT_AND, xored_instance_types,
2156             Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2157         graph()->GetConstant0(), Token::EQ);
2158     if_sameencodingandsequential.And();
2159     STATIC_ASSERT(kSeqStringTag == 0);
2160     if_sameencodingandsequential.If<HCompareNumericAndBranch>(
2161         AddUncasted<HBitwise>(
2162             Token::BIT_AND, ored_instance_types,
2163             Add<HConstant>(static_cast<int32_t>(kStringRepresentationMask))),
2164         graph()->GetConstant0(), Token::EQ);
2165     if_sameencodingandsequential.Then();
2166     {
2167       HConstant* string_map =
2168           Add<HConstant>(isolate()->factory()->string_map());
2169       HConstant* ascii_string_map =
2170           Add<HConstant>(isolate()->factory()->ascii_string_map());
2171 
2172       // Determine map and size depending on whether result is one-byte string.
2173       IfBuilder if_onebyte(this);
2174       STATIC_ASSERT(kOneByteStringTag != 0);
2175       if_onebyte.If<HCompareNumericAndBranch>(
2176           AddUncasted<HBitwise>(
2177               Token::BIT_AND, ored_instance_types,
2178               Add<HConstant>(static_cast<int32_t>(kStringEncodingMask))),
2179           graph()->GetConstant0(), Token::NE);
2180       if_onebyte.Then();
2181       {
2182         // Allocate sequential one-byte string object.
2183         Push(length);
2184         Push(ascii_string_map);
2185       }
2186       if_onebyte.Else();
2187       {
2188         // Allocate sequential two-byte string object.
2189         HValue* size = AddUncasted<HShl>(length, graph()->GetConstant1());
2190         size->ClearFlag(HValue::kCanOverflow);
2191         size->SetFlag(HValue::kUint32);
2192         Push(size);
2193         Push(string_map);
2194       }
2195       if_onebyte.End();
2196       HValue* map = Pop();
2197 
2198       // Calculate the number of bytes needed for the characters in the
2199       // string while observing object alignment.
2200       STATIC_ASSERT((SeqString::kHeaderSize & kObjectAlignmentMask) == 0);
2201       HValue* size = BuildObjectSizeAlignment(Pop(), SeqString::kHeaderSize);
2202 
2203       // Allocate the string object. HAllocate does not care whether we pass
2204       // STRING_TYPE or ASCII_STRING_TYPE here, so we just use STRING_TYPE here.
2205       HAllocate* result = BuildAllocate(
2206           size, HType::String(), STRING_TYPE, allocation_mode);
2207       Add<HStoreNamedField>(result, HObjectAccess::ForMap(), map);
2208 
2209       // Initialize the string fields.
2210       Add<HStoreNamedField>(result, HObjectAccess::ForStringHashField(),
2211                             Add<HConstant>(String::kEmptyHashField));
2212       Add<HStoreNamedField>(result, HObjectAccess::ForStringLength(), length);
2213 
2214       // Copy characters to the result string.
2215       IfBuilder if_twobyte(this);
2216       if_twobyte.If<HCompareObjectEqAndBranch>(map, string_map);
2217       if_twobyte.Then();
2218       {
2219         // Copy characters from the left string.
2220         BuildCopySeqStringChars(
2221             left, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2222             result, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2223             left_length);
2224 
2225         // Copy characters from the right string.
2226         BuildCopySeqStringChars(
2227             right, graph()->GetConstant0(), String::TWO_BYTE_ENCODING,
2228             result, left_length, String::TWO_BYTE_ENCODING,
2229             right_length);
2230       }
2231       if_twobyte.Else();
2232       {
2233         // Copy characters from the left string.
2234         BuildCopySeqStringChars(
2235             left, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2236             result, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2237             left_length);
2238 
2239         // Copy characters from the right string.
2240         BuildCopySeqStringChars(
2241             right, graph()->GetConstant0(), String::ONE_BYTE_ENCODING,
2242             result, left_length, String::ONE_BYTE_ENCODING,
2243             right_length);
2244       }
2245       if_twobyte.End();
2246 
2247       // Count the native string addition.
2248       AddIncrementCounter(isolate()->counters()->string_add_native());
2249 
2250       // Return the sequential string.
2251       Push(result);
2252     }
2253     if_sameencodingandsequential.Else();
2254     {
2255       // Fallback to the runtime to add the two strings.
2256       Add<HPushArguments>(left, right);
2257       Push(Add<HCallRuntime>(
2258             isolate()->factory()->empty_string(),
2259             Runtime::FunctionForId(Runtime::kHiddenStringAdd),
2260             2));
2261     }
2262     if_sameencodingandsequential.End();
2263   }
2264   if_createcons.End();
2265 
2266   return Pop();
2267 }
2268 
2269 
BuildStringAdd(HValue * left,HValue * right,HAllocationMode allocation_mode)2270 HValue* HGraphBuilder::BuildStringAdd(
2271     HValue* left,
2272     HValue* right,
2273     HAllocationMode allocation_mode) {
2274   NoObservableSideEffectsScope no_effects(this);
2275 
2276   // Determine string lengths.
2277   HValue* left_length = AddLoadStringLength(left);
2278   HValue* right_length = AddLoadStringLength(right);
2279 
2280   // Check if left string is empty.
2281   IfBuilder if_leftempty(this);
2282   if_leftempty.If<HCompareNumericAndBranch>(
2283       left_length, graph()->GetConstant0(), Token::EQ);
2284   if_leftempty.Then();
2285   {
2286     // Count the native string addition.
2287     AddIncrementCounter(isolate()->counters()->string_add_native());
2288 
2289     // Just return the right string.
2290     Push(right);
2291   }
2292   if_leftempty.Else();
2293   {
2294     // Check if right string is empty.
2295     IfBuilder if_rightempty(this);
2296     if_rightempty.If<HCompareNumericAndBranch>(
2297         right_length, graph()->GetConstant0(), Token::EQ);
2298     if_rightempty.Then();
2299     {
2300       // Count the native string addition.
2301       AddIncrementCounter(isolate()->counters()->string_add_native());
2302 
2303       // Just return the left string.
2304       Push(left);
2305     }
2306     if_rightempty.Else();
2307     {
2308       // Add the two non-empty strings.
2309       Push(BuildUncheckedStringAdd(left, right, allocation_mode));
2310     }
2311     if_rightempty.End();
2312   }
2313   if_leftempty.End();
2314 
2315   return Pop();
2316 }
2317 
2318 
BuildUncheckedMonomorphicElementAccess(HValue * checked_object,HValue * key,HValue * val,bool is_js_array,ElementsKind elements_kind,PropertyAccessType access_type,LoadKeyedHoleMode load_mode,KeyedAccessStoreMode store_mode)2319 HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
2320     HValue* checked_object,
2321     HValue* key,
2322     HValue* val,
2323     bool is_js_array,
2324     ElementsKind elements_kind,
2325     PropertyAccessType access_type,
2326     LoadKeyedHoleMode load_mode,
2327     KeyedAccessStoreMode store_mode) {
2328   ASSERT((!IsExternalArrayElementsKind(elements_kind) &&
2329               !IsFixedTypedArrayElementsKind(elements_kind)) ||
2330          !is_js_array);
2331   // No GVNFlag is necessary for ElementsKind if there is an explicit dependency
2332   // on a HElementsTransition instruction. The flag can also be removed if the
2333   // map to check has FAST_HOLEY_ELEMENTS, since there can be no further
2334   // ElementsKind transitions. Finally, the dependency can be removed for stores
2335   // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
2336   // generated store code.
2337   if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
2338       (elements_kind == FAST_ELEMENTS && access_type == STORE)) {
2339     checked_object->ClearDependsOnFlag(kElementsKind);
2340   }
2341 
2342   bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
2343   bool fast_elements = IsFastObjectElementsKind(elements_kind);
2344   HValue* elements = AddLoadElements(checked_object);
2345   if (access_type == STORE && (fast_elements || fast_smi_only_elements) &&
2346       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
2347     HCheckMaps* check_cow_map = Add<HCheckMaps>(
2348         elements, isolate()->factory()->fixed_array_map());
2349     check_cow_map->ClearDependsOnFlag(kElementsKind);
2350   }
2351   HInstruction* length = NULL;
2352   if (is_js_array) {
2353     length = Add<HLoadNamedField>(
2354         checked_object->ActualValue(), checked_object,
2355         HObjectAccess::ForArrayLength(elements_kind));
2356   } else {
2357     length = AddLoadFixedArrayLength(elements);
2358   }
2359   length->set_type(HType::Smi());
2360   HValue* checked_key = NULL;
2361   if (IsExternalArrayElementsKind(elements_kind) ||
2362       IsFixedTypedArrayElementsKind(elements_kind)) {
2363     HValue* backing_store;
2364     if (IsExternalArrayElementsKind(elements_kind)) {
2365       backing_store = Add<HLoadNamedField>(
2366           elements, static_cast<HValue*>(NULL),
2367           HObjectAccess::ForExternalArrayExternalPointer());
2368     } else {
2369       backing_store = elements;
2370     }
2371     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
2372       NoObservableSideEffectsScope no_effects(this);
2373       IfBuilder length_checker(this);
2374       length_checker.If<HCompareNumericAndBranch>(key, length, Token::LT);
2375       length_checker.Then();
2376       IfBuilder negative_checker(this);
2377       HValue* bounds_check = negative_checker.If<HCompareNumericAndBranch>(
2378           key, graph()->GetConstant0(), Token::GTE);
2379       negative_checker.Then();
2380       HInstruction* result = AddElementAccess(
2381           backing_store, key, val, bounds_check, elements_kind, access_type);
2382       negative_checker.ElseDeopt("Negative key encountered");
2383       negative_checker.End();
2384       length_checker.End();
2385       return result;
2386     } else {
2387       ASSERT(store_mode == STANDARD_STORE);
2388       checked_key = Add<HBoundsCheck>(key, length);
2389       return AddElementAccess(
2390           backing_store, checked_key, val,
2391           checked_object, elements_kind, access_type);
2392     }
2393   }
2394   ASSERT(fast_smi_only_elements ||
2395          fast_elements ||
2396          IsFastDoubleElementsKind(elements_kind));
2397 
2398   // In case val is stored into a fast smi array, assure that the value is a smi
2399   // before manipulating the backing store. Otherwise the actual store may
2400   // deopt, leaving the backing store in an invalid state.
2401   if (access_type == STORE && IsFastSmiElementsKind(elements_kind) &&
2402       !val->type().IsSmi()) {
2403     val = AddUncasted<HForceRepresentation>(val, Representation::Smi());
2404   }
2405 
2406   if (IsGrowStoreMode(store_mode)) {
2407     NoObservableSideEffectsScope no_effects(this);
2408     Representation representation = HStoreKeyed::RequiredValueRepresentation(
2409         elements_kind, STORE_TO_INITIALIZED_ENTRY);
2410     val = AddUncasted<HForceRepresentation>(val, representation);
2411     elements = BuildCheckForCapacityGrow(checked_object, elements,
2412                                          elements_kind, length, key,
2413                                          is_js_array, access_type);
2414     checked_key = key;
2415   } else {
2416     checked_key = Add<HBoundsCheck>(key, length);
2417 
2418     if (access_type == STORE && (fast_elements || fast_smi_only_elements)) {
2419       if (store_mode == STORE_NO_TRANSITION_HANDLE_COW) {
2420         NoObservableSideEffectsScope no_effects(this);
2421         elements = BuildCopyElementsOnWrite(checked_object, elements,
2422                                             elements_kind, length);
2423       } else {
2424         HCheckMaps* check_cow_map = Add<HCheckMaps>(
2425             elements, isolate()->factory()->fixed_array_map());
2426         check_cow_map->ClearDependsOnFlag(kElementsKind);
2427       }
2428     }
2429   }
2430   return AddElementAccess(elements, checked_key, val, checked_object,
2431                           elements_kind, access_type, load_mode);
2432 }
2433 
2434 
BuildAllocateArrayFromLength(JSArrayBuilder * array_builder,HValue * length_argument)2435 HValue* HGraphBuilder::BuildAllocateArrayFromLength(
2436     JSArrayBuilder* array_builder,
2437     HValue* length_argument) {
2438   if (length_argument->IsConstant() &&
2439       HConstant::cast(length_argument)->HasSmiValue()) {
2440     int array_length = HConstant::cast(length_argument)->Integer32Value();
2441     if (array_length == 0) {
2442       return array_builder->AllocateEmptyArray();
2443     } else {
2444       return array_builder->AllocateArray(length_argument,
2445                                           array_length,
2446                                           length_argument);
2447     }
2448   }
2449 
2450   HValue* constant_zero = graph()->GetConstant0();
2451   HConstant* max_alloc_length =
2452       Add<HConstant>(JSObject::kInitialMaxFastElementArray);
2453   HInstruction* checked_length = Add<HBoundsCheck>(length_argument,
2454                                                    max_alloc_length);
2455   IfBuilder if_builder(this);
2456   if_builder.If<HCompareNumericAndBranch>(checked_length, constant_zero,
2457                                           Token::EQ);
2458   if_builder.Then();
2459   const int initial_capacity = JSArray::kPreallocatedArrayElements;
2460   HConstant* initial_capacity_node = Add<HConstant>(initial_capacity);
2461   Push(initial_capacity_node);  // capacity
2462   Push(constant_zero);          // length
2463   if_builder.Else();
2464   if (!(top_info()->IsStub()) &&
2465       IsFastPackedElementsKind(array_builder->kind())) {
2466     // We'll come back later with better (holey) feedback.
2467     if_builder.Deopt("Holey array despite packed elements_kind feedback");
2468   } else {
2469     Push(checked_length);         // capacity
2470     Push(checked_length);         // length
2471   }
2472   if_builder.End();
2473 
2474   // Figure out total size
2475   HValue* length = Pop();
2476   HValue* capacity = Pop();
2477   return array_builder->AllocateArray(capacity, max_alloc_length, length);
2478 }
2479 
2480 
BuildCalculateElementsSize(ElementsKind kind,HValue * capacity)2481 HValue* HGraphBuilder::BuildCalculateElementsSize(ElementsKind kind,
2482                                                   HValue* capacity) {
2483   int elements_size = IsFastDoubleElementsKind(kind)
2484       ? kDoubleSize
2485       : kPointerSize;
2486 
2487   HConstant* elements_size_value = Add<HConstant>(elements_size);
2488   HInstruction* mul = HMul::NewImul(zone(), context(),
2489                                     capacity->ActualValue(),
2490                                     elements_size_value);
2491   AddInstruction(mul);
2492   mul->ClearFlag(HValue::kCanOverflow);
2493 
2494   STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize);
2495 
2496   HConstant* header_size = Add<HConstant>(FixedArray::kHeaderSize);
2497   HValue* total_size = AddUncasted<HAdd>(mul, header_size);
2498   total_size->ClearFlag(HValue::kCanOverflow);
2499   return total_size;
2500 }
2501 
2502 
AllocateJSArrayObject(AllocationSiteMode mode)2503 HAllocate* HGraphBuilder::AllocateJSArrayObject(AllocationSiteMode mode) {
2504   int base_size = JSArray::kSize;
2505   if (mode == TRACK_ALLOCATION_SITE) {
2506     base_size += AllocationMemento::kSize;
2507   }
2508   HConstant* size_in_bytes = Add<HConstant>(base_size);
2509   return Add<HAllocate>(
2510       size_in_bytes, HType::JSArray(), NOT_TENURED, JS_OBJECT_TYPE);
2511 }
2512 
2513 
EstablishElementsAllocationSize(ElementsKind kind,int capacity)2514 HConstant* HGraphBuilder::EstablishElementsAllocationSize(
2515     ElementsKind kind,
2516     int capacity) {
2517   int base_size = IsFastDoubleElementsKind(kind)
2518       ? FixedDoubleArray::SizeFor(capacity)
2519       : FixedArray::SizeFor(capacity);
2520 
2521   return Add<HConstant>(base_size);
2522 }
2523 
2524 
BuildAllocateElements(ElementsKind kind,HValue * size_in_bytes)2525 HAllocate* HGraphBuilder::BuildAllocateElements(ElementsKind kind,
2526                                                 HValue* size_in_bytes) {
2527   InstanceType instance_type = IsFastDoubleElementsKind(kind)
2528       ? FIXED_DOUBLE_ARRAY_TYPE
2529       : FIXED_ARRAY_TYPE;
2530 
2531   return Add<HAllocate>(size_in_bytes, HType::HeapObject(), NOT_TENURED,
2532                         instance_type);
2533 }
2534 
2535 
BuildInitializeElementsHeader(HValue * elements,ElementsKind kind,HValue * capacity)2536 void HGraphBuilder::BuildInitializeElementsHeader(HValue* elements,
2537                                                   ElementsKind kind,
2538                                                   HValue* capacity) {
2539   Factory* factory = isolate()->factory();
2540   Handle<Map> map = IsFastDoubleElementsKind(kind)
2541       ? factory->fixed_double_array_map()
2542       : factory->fixed_array_map();
2543 
2544   Add<HStoreNamedField>(elements, HObjectAccess::ForMap(), Add<HConstant>(map));
2545   Add<HStoreNamedField>(elements, HObjectAccess::ForFixedArrayLength(),
2546                         capacity);
2547 }
2548 
2549 
BuildAllocateElementsAndInitializeElementsHeader(ElementsKind kind,HValue * capacity)2550 HValue* HGraphBuilder::BuildAllocateElementsAndInitializeElementsHeader(
2551     ElementsKind kind,
2552     HValue* capacity) {
2553   // The HForceRepresentation is to prevent possible deopt on int-smi
2554   // conversion after allocation but before the new object fields are set.
2555   capacity = AddUncasted<HForceRepresentation>(capacity, Representation::Smi());
2556   HValue* size_in_bytes = BuildCalculateElementsSize(kind, capacity);
2557   HValue* new_elements = BuildAllocateElements(kind, size_in_bytes);
2558   BuildInitializeElementsHeader(new_elements, kind, capacity);
2559   return new_elements;
2560 }
2561 
2562 
BuildJSArrayHeader(HValue * array,HValue * array_map,HValue * elements,AllocationSiteMode mode,ElementsKind elements_kind,HValue * allocation_site_payload,HValue * length_field)2563 void HGraphBuilder::BuildJSArrayHeader(HValue* array,
2564                                        HValue* array_map,
2565                                        HValue* elements,
2566                                        AllocationSiteMode mode,
2567                                        ElementsKind elements_kind,
2568                                        HValue* allocation_site_payload,
2569                                        HValue* length_field) {
2570   Add<HStoreNamedField>(array, HObjectAccess::ForMap(), array_map);
2571 
2572   HConstant* empty_fixed_array =
2573     Add<HConstant>(isolate()->factory()->empty_fixed_array());
2574 
2575   Add<HStoreNamedField>(
2576       array, HObjectAccess::ForPropertiesPointer(), empty_fixed_array);
2577 
2578   Add<HStoreNamedField>(
2579       array, HObjectAccess::ForElementsPointer(),
2580       elements != NULL ? elements : empty_fixed_array);
2581 
2582   Add<HStoreNamedField>(
2583       array, HObjectAccess::ForArrayLength(elements_kind), length_field);
2584 
2585   if (mode == TRACK_ALLOCATION_SITE) {
2586     BuildCreateAllocationMemento(
2587         array, Add<HConstant>(JSArray::kSize), allocation_site_payload);
2588   }
2589 }
2590 
2591 
AddElementAccess(HValue * elements,HValue * checked_key,HValue * val,HValue * dependency,ElementsKind elements_kind,PropertyAccessType access_type,LoadKeyedHoleMode load_mode)2592 HInstruction* HGraphBuilder::AddElementAccess(
2593     HValue* elements,
2594     HValue* checked_key,
2595     HValue* val,
2596     HValue* dependency,
2597     ElementsKind elements_kind,
2598     PropertyAccessType access_type,
2599     LoadKeyedHoleMode load_mode) {
2600   if (access_type == STORE) {
2601     ASSERT(val != NULL);
2602     if (elements_kind == EXTERNAL_UINT8_CLAMPED_ELEMENTS ||
2603         elements_kind == UINT8_CLAMPED_ELEMENTS) {
2604       val = Add<HClampToUint8>(val);
2605     }
2606     return Add<HStoreKeyed>(elements, checked_key, val, elements_kind,
2607                             STORE_TO_INITIALIZED_ENTRY);
2608   }
2609 
2610   ASSERT(access_type == LOAD);
2611   ASSERT(val == NULL);
2612   HLoadKeyed* load = Add<HLoadKeyed>(
2613       elements, checked_key, dependency, elements_kind, load_mode);
2614   if (FLAG_opt_safe_uint32_operations &&
2615       (elements_kind == EXTERNAL_UINT32_ELEMENTS ||
2616        elements_kind == UINT32_ELEMENTS)) {
2617     graph()->RecordUint32Instruction(load);
2618   }
2619   return load;
2620 }
2621 
2622 
AddLoadMap(HValue * object,HValue * dependency)2623 HLoadNamedField* HGraphBuilder::AddLoadMap(HValue* object,
2624                                            HValue* dependency) {
2625   return Add<HLoadNamedField>(object, dependency, HObjectAccess::ForMap());
2626 }
2627 
2628 
AddLoadElements(HValue * object,HValue * dependency)2629 HLoadNamedField* HGraphBuilder::AddLoadElements(HValue* object,
2630                                                 HValue* dependency) {
2631   return Add<HLoadNamedField>(
2632       object, dependency, HObjectAccess::ForElementsPointer());
2633 }
2634 
2635 
AddLoadFixedArrayLength(HValue * array,HValue * dependency)2636 HLoadNamedField* HGraphBuilder::AddLoadFixedArrayLength(
2637     HValue* array,
2638     HValue* dependency) {
2639   return Add<HLoadNamedField>(
2640       array, dependency, HObjectAccess::ForFixedArrayLength());
2641 }
2642 
2643 
AddLoadArrayLength(HValue * array,ElementsKind kind,HValue * dependency)2644 HLoadNamedField* HGraphBuilder::AddLoadArrayLength(HValue* array,
2645                                                    ElementsKind kind,
2646                                                    HValue* dependency) {
2647   return Add<HLoadNamedField>(
2648       array, dependency, HObjectAccess::ForArrayLength(kind));
2649 }
2650 
2651 
BuildNewElementsCapacity(HValue * old_capacity)2652 HValue* HGraphBuilder::BuildNewElementsCapacity(HValue* old_capacity) {
2653   HValue* half_old_capacity = AddUncasted<HShr>(old_capacity,
2654                                                 graph_->GetConstant1());
2655 
2656   HValue* new_capacity = AddUncasted<HAdd>(half_old_capacity, old_capacity);
2657   new_capacity->ClearFlag(HValue::kCanOverflow);
2658 
2659   HValue* min_growth = Add<HConstant>(16);
2660 
2661   new_capacity = AddUncasted<HAdd>(new_capacity, min_growth);
2662   new_capacity->ClearFlag(HValue::kCanOverflow);
2663 
2664   return new_capacity;
2665 }
2666 
2667 
BuildGrowElementsCapacity(HValue * object,HValue * elements,ElementsKind kind,ElementsKind new_kind,HValue * length,HValue * new_capacity)2668 HValue* HGraphBuilder::BuildGrowElementsCapacity(HValue* object,
2669                                                  HValue* elements,
2670                                                  ElementsKind kind,
2671                                                  ElementsKind new_kind,
2672                                                  HValue* length,
2673                                                  HValue* new_capacity) {
2674   Add<HBoundsCheck>(new_capacity, Add<HConstant>(
2675           (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) >>
2676           ElementsKindToShiftSize(kind)));
2677 
2678   HValue* new_elements = BuildAllocateElementsAndInitializeElementsHeader(
2679       new_kind, new_capacity);
2680 
2681   BuildCopyElements(elements, kind, new_elements,
2682                     new_kind, length, new_capacity);
2683 
2684   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
2685                         new_elements);
2686 
2687   return new_elements;
2688 }
2689 
2690 
BuildFillElementsWithValue(HValue * elements,ElementsKind elements_kind,HValue * from,HValue * to,HValue * value)2691 void HGraphBuilder::BuildFillElementsWithValue(HValue* elements,
2692                                                ElementsKind elements_kind,
2693                                                HValue* from,
2694                                                HValue* to,
2695                                                HValue* value) {
2696   if (to == NULL) {
2697     to = AddLoadFixedArrayLength(elements);
2698   }
2699 
2700   // Special loop unfolding case
2701   STATIC_ASSERT(JSArray::kPreallocatedArrayElements <=
2702                 kElementLoopUnrollThreshold);
2703   int initial_capacity = -1;
2704   if (from->IsInteger32Constant() && to->IsInteger32Constant()) {
2705     int constant_from = from->GetInteger32Constant();
2706     int constant_to = to->GetInteger32Constant();
2707 
2708     if (constant_from == 0 && constant_to <= kElementLoopUnrollThreshold) {
2709       initial_capacity = constant_to;
2710     }
2711   }
2712 
2713   // Since we're about to store a hole value, the store instruction below must
2714   // assume an elements kind that supports heap object values.
2715   if (IsFastSmiOrObjectElementsKind(elements_kind)) {
2716     elements_kind = FAST_HOLEY_ELEMENTS;
2717   }
2718 
2719   if (initial_capacity >= 0) {
2720     for (int i = 0; i < initial_capacity; i++) {
2721       HInstruction* key = Add<HConstant>(i);
2722       Add<HStoreKeyed>(elements, key, value, elements_kind);
2723     }
2724   } else {
2725     // Carefully loop backwards so that the "from" remains live through the loop
2726     // rather than the to. This often corresponds to keeping length live rather
2727     // then capacity, which helps register allocation, since length is used more
2728     // other than capacity after filling with holes.
2729     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2730 
2731     HValue* key = builder.BeginBody(to, from, Token::GT);
2732 
2733     HValue* adjusted_key = AddUncasted<HSub>(key, graph()->GetConstant1());
2734     adjusted_key->ClearFlag(HValue::kCanOverflow);
2735 
2736     Add<HStoreKeyed>(elements, adjusted_key, value, elements_kind);
2737 
2738     builder.EndBody();
2739   }
2740 }
2741 
2742 
BuildFillElementsWithHole(HValue * elements,ElementsKind elements_kind,HValue * from,HValue * to)2743 void HGraphBuilder::BuildFillElementsWithHole(HValue* elements,
2744                                               ElementsKind elements_kind,
2745                                               HValue* from,
2746                                               HValue* to) {
2747   // Fast elements kinds need to be initialized in case statements below cause a
2748   // garbage collection.
2749   Factory* factory = isolate()->factory();
2750 
2751   double nan_double = FixedDoubleArray::hole_nan_as_double();
2752   HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
2753       ? Add<HConstant>(factory->the_hole_value())
2754       : Add<HConstant>(nan_double);
2755 
2756   BuildFillElementsWithValue(elements, elements_kind, from, to, hole);
2757 }
2758 
2759 
BuildCopyElements(HValue * from_elements,ElementsKind from_elements_kind,HValue * to_elements,ElementsKind to_elements_kind,HValue * length,HValue * capacity)2760 void HGraphBuilder::BuildCopyElements(HValue* from_elements,
2761                                       ElementsKind from_elements_kind,
2762                                       HValue* to_elements,
2763                                       ElementsKind to_elements_kind,
2764                                       HValue* length,
2765                                       HValue* capacity) {
2766   int constant_capacity = -1;
2767   if (capacity != NULL &&
2768       capacity->IsConstant() &&
2769       HConstant::cast(capacity)->HasInteger32Value()) {
2770     int constant_candidate = HConstant::cast(capacity)->Integer32Value();
2771     if (constant_candidate <= kElementLoopUnrollThreshold) {
2772       constant_capacity = constant_candidate;
2773     }
2774   }
2775 
2776   bool pre_fill_with_holes =
2777     IsFastDoubleElementsKind(from_elements_kind) &&
2778     IsFastObjectElementsKind(to_elements_kind);
2779   if (pre_fill_with_holes) {
2780     // If the copy might trigger a GC, make sure that the FixedArray is
2781     // pre-initialized with holes to make sure that it's always in a
2782     // consistent state.
2783     BuildFillElementsWithHole(to_elements, to_elements_kind,
2784                               graph()->GetConstant0(), NULL);
2785   }
2786 
2787   if (constant_capacity != -1) {
2788     // Unroll the loop for small elements kinds.
2789     for (int i = 0; i < constant_capacity; i++) {
2790       HValue* key_constant = Add<HConstant>(i);
2791       HInstruction* value = Add<HLoadKeyed>(from_elements, key_constant,
2792                                             static_cast<HValue*>(NULL),
2793                                             from_elements_kind);
2794       Add<HStoreKeyed>(to_elements, key_constant, value, to_elements_kind);
2795     }
2796   } else {
2797     if (!pre_fill_with_holes &&
2798         (capacity == NULL || !length->Equals(capacity))) {
2799       BuildFillElementsWithHole(to_elements, to_elements_kind,
2800                                 length, NULL);
2801     }
2802 
2803     if (capacity == NULL) {
2804       capacity = AddLoadFixedArrayLength(to_elements);
2805     }
2806 
2807     LoopBuilder builder(this, context(), LoopBuilder::kPostDecrement);
2808 
2809     HValue* key = builder.BeginBody(length, graph()->GetConstant0(),
2810                                     Token::GT);
2811 
2812     key = AddUncasted<HSub>(key, graph()->GetConstant1());
2813     key->ClearFlag(HValue::kCanOverflow);
2814 
2815     HValue* element = Add<HLoadKeyed>(from_elements, key,
2816                                       static_cast<HValue*>(NULL),
2817                                       from_elements_kind,
2818                                       ALLOW_RETURN_HOLE);
2819 
2820     ElementsKind kind = (IsHoleyElementsKind(from_elements_kind) &&
2821                          IsFastSmiElementsKind(to_elements_kind))
2822       ? FAST_HOLEY_ELEMENTS : to_elements_kind;
2823 
2824     if (IsHoleyElementsKind(from_elements_kind) &&
2825         from_elements_kind != to_elements_kind) {
2826       IfBuilder if_hole(this);
2827       if_hole.If<HCompareHoleAndBranch>(element);
2828       if_hole.Then();
2829       HConstant* hole_constant = IsFastDoubleElementsKind(to_elements_kind)
2830         ? Add<HConstant>(FixedDoubleArray::hole_nan_as_double())
2831         : graph()->GetConstantHole();
2832       Add<HStoreKeyed>(to_elements, key, hole_constant, kind);
2833       if_hole.Else();
2834       HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2835       store->SetFlag(HValue::kAllowUndefinedAsNaN);
2836       if_hole.End();
2837     } else {
2838       HStoreKeyed* store = Add<HStoreKeyed>(to_elements, key, element, kind);
2839       store->SetFlag(HValue::kAllowUndefinedAsNaN);
2840     }
2841 
2842     builder.EndBody();
2843   }
2844 
2845   Counters* counters = isolate()->counters();
2846   AddIncrementCounter(counters->inlined_copied_elements());
2847 }
2848 
2849 
BuildCloneShallowArrayCow(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode,ElementsKind kind)2850 HValue* HGraphBuilder::BuildCloneShallowArrayCow(HValue* boilerplate,
2851                                                  HValue* allocation_site,
2852                                                  AllocationSiteMode mode,
2853                                                  ElementsKind kind) {
2854   HAllocate* array = AllocateJSArrayObject(mode);
2855 
2856   HValue* map = AddLoadMap(boilerplate);
2857   HValue* elements = AddLoadElements(boilerplate);
2858   HValue* length = AddLoadArrayLength(boilerplate, kind);
2859 
2860   BuildJSArrayHeader(array,
2861                      map,
2862                      elements,
2863                      mode,
2864                      FAST_ELEMENTS,
2865                      allocation_site,
2866                      length);
2867   return array;
2868 }
2869 
2870 
BuildCloneShallowArrayEmpty(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode)2871 HValue* HGraphBuilder::BuildCloneShallowArrayEmpty(HValue* boilerplate,
2872                                                    HValue* allocation_site,
2873                                                    AllocationSiteMode mode) {
2874   HAllocate* array = AllocateJSArrayObject(mode);
2875 
2876   HValue* map = AddLoadMap(boilerplate);
2877 
2878   BuildJSArrayHeader(array,
2879                      map,
2880                      NULL,  // set elements to empty fixed array
2881                      mode,
2882                      FAST_ELEMENTS,
2883                      allocation_site,
2884                      graph()->GetConstant0());
2885   return array;
2886 }
2887 
2888 
BuildCloneShallowArrayNonEmpty(HValue * boilerplate,HValue * allocation_site,AllocationSiteMode mode,ElementsKind kind)2889 HValue* HGraphBuilder::BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
2890                                                       HValue* allocation_site,
2891                                                       AllocationSiteMode mode,
2892                                                       ElementsKind kind) {
2893   HValue* boilerplate_elements = AddLoadElements(boilerplate);
2894   HValue* capacity = AddLoadFixedArrayLength(boilerplate_elements);
2895 
2896   // Generate size calculation code here in order to make it dominate
2897   // the JSArray allocation.
2898   HValue* elements_size = BuildCalculateElementsSize(kind, capacity);
2899 
2900   // Create empty JSArray object for now, store elimination should remove
2901   // redundant initialization of elements and length fields and at the same
2902   // time the object will be fully prepared for GC if it happens during
2903   // elements allocation.
2904   HValue* result = BuildCloneShallowArrayEmpty(
2905       boilerplate, allocation_site, mode);
2906 
2907   HAllocate* elements = BuildAllocateElements(kind, elements_size);
2908 
2909   // This function implicitly relies on the fact that the
2910   // FastCloneShallowArrayStub is called only for literals shorter than
2911   // JSObject::kInitialMaxFastElementArray.
2912   // Can't add HBoundsCheck here because otherwise the stub will eager a frame.
2913   HConstant* size_upper_bound = EstablishElementsAllocationSize(
2914       kind, JSObject::kInitialMaxFastElementArray);
2915   elements->set_size_upper_bound(size_upper_bound);
2916 
2917   Add<HStoreNamedField>(result, HObjectAccess::ForElementsPointer(), elements);
2918 
2919   // The allocation for the cloned array above causes register pressure on
2920   // machines with low register counts. Force a reload of the boilerplate
2921   // elements here to free up a register for the allocation to avoid unnecessary
2922   // spillage.
2923   boilerplate_elements = AddLoadElements(boilerplate);
2924   boilerplate_elements->SetFlag(HValue::kCantBeReplaced);
2925 
2926   // Copy the elements array header.
2927   for (int i = 0; i < FixedArrayBase::kHeaderSize; i += kPointerSize) {
2928     HObjectAccess access = HObjectAccess::ForFixedArrayHeader(i);
2929     Add<HStoreNamedField>(elements, access,
2930         Add<HLoadNamedField>(boilerplate_elements,
2931                              static_cast<HValue*>(NULL), access));
2932   }
2933 
2934   // And the result of the length
2935   HValue* length = AddLoadArrayLength(boilerplate, kind);
2936   Add<HStoreNamedField>(result, HObjectAccess::ForArrayLength(kind), length);
2937 
2938   BuildCopyElements(boilerplate_elements, kind, elements,
2939                     kind, length, NULL);
2940   return result;
2941 }
2942 
2943 
BuildCompareNil(HValue * value,Type * type,HIfContinuation * continuation)2944 void HGraphBuilder::BuildCompareNil(
2945     HValue* value,
2946     Type* type,
2947     HIfContinuation* continuation) {
2948   IfBuilder if_nil(this);
2949   bool some_case_handled = false;
2950   bool some_case_missing = false;
2951 
2952   if (type->Maybe(Type::Null())) {
2953     if (some_case_handled) if_nil.Or();
2954     if_nil.If<HCompareObjectEqAndBranch>(value, graph()->GetConstantNull());
2955     some_case_handled = true;
2956   } else {
2957     some_case_missing = true;
2958   }
2959 
2960   if (type->Maybe(Type::Undefined())) {
2961     if (some_case_handled) if_nil.Or();
2962     if_nil.If<HCompareObjectEqAndBranch>(value,
2963                                          graph()->GetConstantUndefined());
2964     some_case_handled = true;
2965   } else {
2966     some_case_missing = true;
2967   }
2968 
2969   if (type->Maybe(Type::Undetectable())) {
2970     if (some_case_handled) if_nil.Or();
2971     if_nil.If<HIsUndetectableAndBranch>(value);
2972     some_case_handled = true;
2973   } else {
2974     some_case_missing = true;
2975   }
2976 
2977   if (some_case_missing) {
2978     if_nil.Then();
2979     if_nil.Else();
2980     if (type->NumClasses() == 1) {
2981       BuildCheckHeapObject(value);
2982       // For ICs, the map checked below is a sentinel map that gets replaced by
2983       // the monomorphic map when the code is used as a template to generate a
2984       // new IC. For optimized functions, there is no sentinel map, the map
2985       // emitted below is the actual monomorphic map.
2986       Add<HCheckMaps>(value, type->Classes().Current());
2987     } else {
2988       if_nil.Deopt("Too many undetectable types");
2989     }
2990   }
2991 
2992   if_nil.CaptureContinuation(continuation);
2993 }
2994 
2995 
BuildCreateAllocationMemento(HValue * previous_object,HValue * previous_object_size,HValue * allocation_site)2996 void HGraphBuilder::BuildCreateAllocationMemento(
2997     HValue* previous_object,
2998     HValue* previous_object_size,
2999     HValue* allocation_site) {
3000   ASSERT(allocation_site != NULL);
3001   HInnerAllocatedObject* allocation_memento = Add<HInnerAllocatedObject>(
3002       previous_object, previous_object_size, HType::HeapObject());
3003   AddStoreMapConstant(
3004       allocation_memento, isolate()->factory()->allocation_memento_map());
3005   Add<HStoreNamedField>(
3006       allocation_memento,
3007       HObjectAccess::ForAllocationMementoSite(),
3008       allocation_site);
3009   if (FLAG_allocation_site_pretenuring) {
3010     HValue* memento_create_count = Add<HLoadNamedField>(
3011         allocation_site, static_cast<HValue*>(NULL),
3012         HObjectAccess::ForAllocationSiteOffset(
3013             AllocationSite::kPretenureCreateCountOffset));
3014     memento_create_count = AddUncasted<HAdd>(
3015         memento_create_count, graph()->GetConstant1());
3016     // This smi value is reset to zero after every gc, overflow isn't a problem
3017     // since the counter is bounded by the new space size.
3018     memento_create_count->ClearFlag(HValue::kCanOverflow);
3019     Add<HStoreNamedField>(
3020         allocation_site, HObjectAccess::ForAllocationSiteOffset(
3021             AllocationSite::kPretenureCreateCountOffset), memento_create_count);
3022   }
3023 }
3024 
3025 
BuildGetNativeContext(HValue * closure)3026 HInstruction* HGraphBuilder::BuildGetNativeContext(HValue* closure) {
3027   // Get the global context, then the native context
3028   HInstruction* context =
3029       Add<HLoadNamedField>(closure, static_cast<HValue*>(NULL),
3030                            HObjectAccess::ForFunctionContextPointer());
3031   HInstruction* global_object = Add<HLoadNamedField>(
3032       context, static_cast<HValue*>(NULL),
3033       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3034   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3035       GlobalObject::kNativeContextOffset);
3036   return Add<HLoadNamedField>(
3037       global_object, static_cast<HValue*>(NULL), access);
3038 }
3039 
3040 
BuildGetNativeContext()3041 HInstruction* HGraphBuilder::BuildGetNativeContext() {
3042   // Get the global context, then the native context
3043   HValue* global_object = Add<HLoadNamedField>(
3044       context(), static_cast<HValue*>(NULL),
3045       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3046   return Add<HLoadNamedField>(
3047       global_object, static_cast<HValue*>(NULL),
3048       HObjectAccess::ForObservableJSObjectOffset(
3049           GlobalObject::kNativeContextOffset));
3050 }
3051 
3052 
BuildGetArrayFunction()3053 HInstruction* HGraphBuilder::BuildGetArrayFunction() {
3054   HInstruction* native_context = BuildGetNativeContext();
3055   HInstruction* index =
3056       Add<HConstant>(static_cast<int32_t>(Context::ARRAY_FUNCTION_INDEX));
3057   return Add<HLoadKeyed>(
3058       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
3059 }
3060 
3061 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * allocation_site_payload,HValue * constructor_function,AllocationSiteOverrideMode override_mode)3062 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3063     ElementsKind kind,
3064     HValue* allocation_site_payload,
3065     HValue* constructor_function,
3066     AllocationSiteOverrideMode override_mode) :
3067         builder_(builder),
3068         kind_(kind),
3069         allocation_site_payload_(allocation_site_payload),
3070         constructor_function_(constructor_function) {
3071   ASSERT(!allocation_site_payload->IsConstant() ||
3072          HConstant::cast(allocation_site_payload)->handle(
3073              builder_->isolate())->IsAllocationSite());
3074   mode_ = override_mode == DISABLE_ALLOCATION_SITES
3075       ? DONT_TRACK_ALLOCATION_SITE
3076       : AllocationSite::GetMode(kind);
3077 }
3078 
3079 
JSArrayBuilder(HGraphBuilder * builder,ElementsKind kind,HValue * constructor_function)3080 HGraphBuilder::JSArrayBuilder::JSArrayBuilder(HGraphBuilder* builder,
3081                                               ElementsKind kind,
3082                                               HValue* constructor_function) :
3083     builder_(builder),
3084     kind_(kind),
3085     mode_(DONT_TRACK_ALLOCATION_SITE),
3086     allocation_site_payload_(NULL),
3087     constructor_function_(constructor_function) {
3088 }
3089 
3090 
EmitMapCode()3091 HValue* HGraphBuilder::JSArrayBuilder::EmitMapCode() {
3092   if (!builder()->top_info()->IsStub()) {
3093     // A constant map is fine.
3094     Handle<Map> map(builder()->isolate()->get_initial_js_array_map(kind_),
3095                     builder()->isolate());
3096     return builder()->Add<HConstant>(map);
3097   }
3098 
3099   if (constructor_function_ != NULL && kind_ == GetInitialFastElementsKind()) {
3100     // No need for a context lookup if the kind_ matches the initial
3101     // map, because we can just load the map in that case.
3102     HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3103     return builder()->Add<HLoadNamedField>(
3104         constructor_function_, static_cast<HValue*>(NULL), access);
3105   }
3106 
3107   // TODO(mvstanton): we should always have a constructor function if we
3108   // are creating a stub.
3109   HInstruction* native_context = constructor_function_ != NULL
3110       ? builder()->BuildGetNativeContext(constructor_function_)
3111       : builder()->BuildGetNativeContext();
3112 
3113   HInstruction* index = builder()->Add<HConstant>(
3114       static_cast<int32_t>(Context::JS_ARRAY_MAPS_INDEX));
3115 
3116   HInstruction* map_array = builder()->Add<HLoadKeyed>(
3117       native_context, index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
3118 
3119   HInstruction* kind_index = builder()->Add<HConstant>(kind_);
3120 
3121   return builder()->Add<HLoadKeyed>(
3122       map_array, kind_index, static_cast<HValue*>(NULL), FAST_ELEMENTS);
3123 }
3124 
3125 
EmitInternalMapCode()3126 HValue* HGraphBuilder::JSArrayBuilder::EmitInternalMapCode() {
3127   // Find the map near the constructor function
3128   HObjectAccess access = HObjectAccess::ForPrototypeOrInitialMap();
3129   return builder()->Add<HLoadNamedField>(
3130       constructor_function_, static_cast<HValue*>(NULL), access);
3131 }
3132 
3133 
AllocateEmptyArray()3134 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateEmptyArray() {
3135   HConstant* capacity = builder()->Add<HConstant>(initial_capacity());
3136   return AllocateArray(capacity,
3137                        capacity,
3138                        builder()->graph()->GetConstant0());
3139 }
3140 
3141 
AllocateArray(HValue * capacity,HConstant * capacity_upper_bound,HValue * length_field,FillMode fill_mode)3142 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3143     HValue* capacity,
3144     HConstant* capacity_upper_bound,
3145     HValue* length_field,
3146     FillMode fill_mode) {
3147   return AllocateArray(capacity,
3148                        capacity_upper_bound->GetInteger32Constant(),
3149                        length_field,
3150                        fill_mode);
3151 }
3152 
3153 
AllocateArray(HValue * capacity,int capacity_upper_bound,HValue * length_field,FillMode fill_mode)3154 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3155     HValue* capacity,
3156     int capacity_upper_bound,
3157     HValue* length_field,
3158     FillMode fill_mode) {
3159   HConstant* elememts_size_upper_bound = capacity->IsInteger32Constant()
3160       ? HConstant::cast(capacity)
3161       : builder()->EstablishElementsAllocationSize(kind_, capacity_upper_bound);
3162 
3163   HAllocate* array = AllocateArray(capacity, length_field, fill_mode);
3164   if (!elements_location_->has_size_upper_bound()) {
3165     elements_location_->set_size_upper_bound(elememts_size_upper_bound);
3166   }
3167   return array;
3168 }
3169 
3170 
AllocateArray(HValue * capacity,HValue * length_field,FillMode fill_mode)3171 HAllocate* HGraphBuilder::JSArrayBuilder::AllocateArray(
3172     HValue* capacity,
3173     HValue* length_field,
3174     FillMode fill_mode) {
3175   // These HForceRepresentations are because we store these as fields in the
3176   // objects we construct, and an int32-to-smi HChange could deopt. Accept
3177   // the deopt possibility now, before allocation occurs.
3178   capacity =
3179       builder()->AddUncasted<HForceRepresentation>(capacity,
3180                                                    Representation::Smi());
3181   length_field =
3182       builder()->AddUncasted<HForceRepresentation>(length_field,
3183                                                    Representation::Smi());
3184 
3185   // Generate size calculation code here in order to make it dominate
3186   // the JSArray allocation.
3187   HValue* elements_size =
3188       builder()->BuildCalculateElementsSize(kind_, capacity);
3189 
3190   // Allocate (dealing with failure appropriately)
3191   HAllocate* array_object = builder()->AllocateJSArrayObject(mode_);
3192 
3193   // Fill in the fields: map, properties, length
3194   HValue* map;
3195   if (allocation_site_payload_ == NULL) {
3196     map = EmitInternalMapCode();
3197   } else {
3198     map = EmitMapCode();
3199   }
3200 
3201   builder()->BuildJSArrayHeader(array_object,
3202                                 map,
3203                                 NULL,  // set elements to empty fixed array
3204                                 mode_,
3205                                 kind_,
3206                                 allocation_site_payload_,
3207                                 length_field);
3208 
3209   // Allocate and initialize the elements
3210   elements_location_ = builder()->BuildAllocateElements(kind_, elements_size);
3211 
3212   builder()->BuildInitializeElementsHeader(elements_location_, kind_, capacity);
3213 
3214   // Set the elements
3215   builder()->Add<HStoreNamedField>(
3216       array_object, HObjectAccess::ForElementsPointer(), elements_location_);
3217 
3218   if (fill_mode == FILL_WITH_HOLE) {
3219     builder()->BuildFillElementsWithHole(elements_location_, kind_,
3220                                          graph()->GetConstant0(), capacity);
3221   }
3222 
3223   return array_object;
3224 }
3225 
3226 
AddLoadJSBuiltin(Builtins::JavaScript builtin)3227 HValue* HGraphBuilder::AddLoadJSBuiltin(Builtins::JavaScript builtin) {
3228   HValue* global_object = Add<HLoadNamedField>(
3229       context(), static_cast<HValue*>(NULL),
3230       HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
3231   HObjectAccess access = HObjectAccess::ForObservableJSObjectOffset(
3232       GlobalObject::kBuiltinsOffset);
3233   HValue* builtins = Add<HLoadNamedField>(
3234       global_object, static_cast<HValue*>(NULL), access);
3235   HObjectAccess function_access = HObjectAccess::ForObservableJSObjectOffset(
3236           JSBuiltinsObject::OffsetOfFunctionWithId(builtin));
3237   return Add<HLoadNamedField>(
3238       builtins, static_cast<HValue*>(NULL), function_access);
3239 }
3240 
3241 
HOptimizedGraphBuilder(CompilationInfo * info)3242 HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info)
3243     : HGraphBuilder(info),
3244       function_state_(NULL),
3245       initial_function_state_(this, info, NORMAL_RETURN, 0),
3246       ast_context_(NULL),
3247       break_scope_(NULL),
3248       inlined_count_(0),
3249       globals_(10, info->zone()),
3250       inline_bailout_(false),
3251       osr_(new(info->zone()) HOsrBuilder(this)) {
3252   // This is not initialized in the initializer list because the
3253   // constructor for the initial state relies on function_state_ == NULL
3254   // to know it's the initial state.
3255   function_state_= &initial_function_state_;
3256   InitializeAstVisitor(info->zone());
3257   if (FLAG_hydrogen_track_positions) {
3258     SetSourcePosition(info->shared_info()->start_position());
3259   }
3260 }
3261 
3262 
CreateJoin(HBasicBlock * first,HBasicBlock * second,BailoutId join_id)3263 HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
3264                                                 HBasicBlock* second,
3265                                                 BailoutId join_id) {
3266   if (first == NULL) {
3267     return second;
3268   } else if (second == NULL) {
3269     return first;
3270   } else {
3271     HBasicBlock* join_block = graph()->CreateBasicBlock();
3272     Goto(first, join_block);
3273     Goto(second, join_block);
3274     join_block->SetJoinId(join_id);
3275     return join_block;
3276   }
3277 }
3278 
3279 
JoinContinue(IterationStatement * statement,HBasicBlock * exit_block,HBasicBlock * continue_block)3280 HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
3281                                                   HBasicBlock* exit_block,
3282                                                   HBasicBlock* continue_block) {
3283   if (continue_block != NULL) {
3284     if (exit_block != NULL) Goto(exit_block, continue_block);
3285     continue_block->SetJoinId(statement->ContinueId());
3286     return continue_block;
3287   }
3288   return exit_block;
3289 }
3290 
3291 
CreateLoop(IterationStatement * statement,HBasicBlock * loop_entry,HBasicBlock * body_exit,HBasicBlock * loop_successor,HBasicBlock * break_block)3292 HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
3293                                                 HBasicBlock* loop_entry,
3294                                                 HBasicBlock* body_exit,
3295                                                 HBasicBlock* loop_successor,
3296                                                 HBasicBlock* break_block) {
3297   if (body_exit != NULL) Goto(body_exit, loop_entry);
3298   loop_entry->PostProcessLoopHeader(statement);
3299   if (break_block != NULL) {
3300     if (loop_successor != NULL) Goto(loop_successor, break_block);
3301     break_block->SetJoinId(statement->ExitId());
3302     return break_block;
3303   }
3304   return loop_successor;
3305 }
3306 
3307 
3308 // Build a new loop header block and set it as the current block.
BuildLoopEntry()3309 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry() {
3310   HBasicBlock* loop_entry = CreateLoopHeaderBlock();
3311   Goto(loop_entry);
3312   set_current_block(loop_entry);
3313   return loop_entry;
3314 }
3315 
3316 
BuildLoopEntry(IterationStatement * statement)3317 HBasicBlock* HOptimizedGraphBuilder::BuildLoopEntry(
3318     IterationStatement* statement) {
3319   HBasicBlock* loop_entry = osr()->HasOsrEntryAt(statement)
3320       ? osr()->BuildOsrLoopEntry(statement)
3321       : BuildLoopEntry();
3322   return loop_entry;
3323 }
3324 
3325 
FinishExit(HControlInstruction * instruction,HSourcePosition position)3326 void HBasicBlock::FinishExit(HControlInstruction* instruction,
3327                              HSourcePosition position) {
3328   Finish(instruction, position);
3329   ClearEnvironment();
3330 }
3331 
3332 
HGraph(CompilationInfo * info)3333 HGraph::HGraph(CompilationInfo* info)
3334     : isolate_(info->isolate()),
3335       next_block_id_(0),
3336       entry_block_(NULL),
3337       blocks_(8, info->zone()),
3338       values_(16, info->zone()),
3339       phi_list_(NULL),
3340       uint32_instructions_(NULL),
3341       osr_(NULL),
3342       info_(info),
3343       zone_(info->zone()),
3344       is_recursive_(false),
3345       use_optimistic_licm_(false),
3346       depends_on_empty_array_proto_elements_(false),
3347       type_change_checksum_(0),
3348       maximum_environment_size_(0),
3349       no_side_effects_scope_count_(0),
3350       disallow_adding_new_values_(false),
3351       next_inline_id_(0),
3352       inlined_functions_(5, info->zone()) {
3353   if (info->IsStub()) {
3354     HydrogenCodeStub* stub = info->code_stub();
3355     CodeStubInterfaceDescriptor* descriptor = stub->GetInterfaceDescriptor();
3356     start_environment_ =
3357         new(zone_) HEnvironment(zone_, descriptor->environment_length());
3358   } else {
3359     TraceInlinedFunction(info->shared_info(), HSourcePosition::Unknown());
3360     start_environment_ =
3361         new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
3362   }
3363   start_environment_->set_ast_id(BailoutId::FunctionEntry());
3364   entry_block_ = CreateBasicBlock();
3365   entry_block_->SetInitialEnvironment(start_environment_);
3366 }
3367 
3368 
CreateBasicBlock()3369 HBasicBlock* HGraph::CreateBasicBlock() {
3370   HBasicBlock* result = new(zone()) HBasicBlock(this);
3371   blocks_.Add(result, zone());
3372   return result;
3373 }
3374 
3375 
FinalizeUniqueness()3376 void HGraph::FinalizeUniqueness() {
3377   DisallowHeapAllocation no_gc;
3378   ASSERT(!OptimizingCompilerThread::IsOptimizerThread(isolate()));
3379   for (int i = 0; i < blocks()->length(); ++i) {
3380     for (HInstructionIterator it(blocks()->at(i)); !it.Done(); it.Advance()) {
3381       it.Current()->FinalizeUniqueness();
3382     }
3383   }
3384 }
3385 
3386 
TraceInlinedFunction(Handle<SharedFunctionInfo> shared,HSourcePosition position)3387 int HGraph::TraceInlinedFunction(
3388     Handle<SharedFunctionInfo> shared,
3389     HSourcePosition position) {
3390   if (!FLAG_hydrogen_track_positions) {
3391     return 0;
3392   }
3393 
3394   int id = 0;
3395   for (; id < inlined_functions_.length(); id++) {
3396     if (inlined_functions_[id].shared().is_identical_to(shared)) {
3397       break;
3398     }
3399   }
3400 
3401   if (id == inlined_functions_.length()) {
3402     inlined_functions_.Add(InlinedFunctionInfo(shared), zone());
3403 
3404     if (!shared->script()->IsUndefined()) {
3405       Handle<Script> script(Script::cast(shared->script()));
3406       if (!script->source()->IsUndefined()) {
3407         CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer());
3408         PrintF(tracing_scope.file(),
3409                "--- FUNCTION SOURCE (%s) id{%d,%d} ---\n",
3410                shared->DebugName()->ToCString().get(),
3411                info()->optimization_id(),
3412                id);
3413 
3414         {
3415           ConsStringIteratorOp op;
3416           StringCharacterStream stream(String::cast(script->source()),
3417                                        &op,
3418                                        shared->start_position());
3419           // fun->end_position() points to the last character in the stream. We
3420           // need to compensate by adding one to calculate the length.
3421           int source_len =
3422               shared->end_position() - shared->start_position() + 1;
3423           for (int i = 0; i < source_len; i++) {
3424             if (stream.HasMore()) {
3425               PrintF(tracing_scope.file(), "%c", stream.GetNext());
3426             }
3427           }
3428         }
3429 
3430         PrintF(tracing_scope.file(), "\n--- END ---\n");
3431       }
3432     }
3433   }
3434 
3435   int inline_id = next_inline_id_++;
3436 
3437   if (inline_id != 0) {
3438     CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer());
3439     PrintF(tracing_scope.file(), "INLINE (%s) id{%d,%d} AS %d AT ",
3440            shared->DebugName()->ToCString().get(),
3441            info()->optimization_id(),
3442            id,
3443            inline_id);
3444     position.PrintTo(tracing_scope.file());
3445     PrintF(tracing_scope.file(), "\n");
3446   }
3447 
3448   return inline_id;
3449 }
3450 
3451 
SourcePositionToScriptPosition(HSourcePosition pos)3452 int HGraph::SourcePositionToScriptPosition(HSourcePosition pos) {
3453   if (!FLAG_hydrogen_track_positions || pos.IsUnknown()) {
3454     return pos.raw();
3455   }
3456 
3457   return inlined_functions_[pos.inlining_id()].start_position() +
3458       pos.position();
3459 }
3460 
3461 
3462 // Block ordering was implemented with two mutually recursive methods,
3463 // HGraph::Postorder and HGraph::PostorderLoopBlocks.
3464 // The recursion could lead to stack overflow so the algorithm has been
3465 // implemented iteratively.
3466 // At a high level the algorithm looks like this:
3467 //
3468 // Postorder(block, loop_header) : {
3469 //   if (block has already been visited or is of another loop) return;
3470 //   mark block as visited;
3471 //   if (block is a loop header) {
3472 //     VisitLoopMembers(block, loop_header);
3473 //     VisitSuccessorsOfLoopHeader(block);
3474 //   } else {
3475 //     VisitSuccessors(block)
3476 //   }
3477 //   put block in result list;
3478 // }
3479 //
3480 // VisitLoopMembers(block, outer_loop_header) {
3481 //   foreach (block b in block loop members) {
3482 //     VisitSuccessorsOfLoopMember(b, outer_loop_header);
3483 //     if (b is loop header) VisitLoopMembers(b);
3484 //   }
3485 // }
3486 //
3487 // VisitSuccessorsOfLoopMember(block, outer_loop_header) {
3488 //   foreach (block b in block successors) Postorder(b, outer_loop_header)
3489 // }
3490 //
3491 // VisitSuccessorsOfLoopHeader(block) {
3492 //   foreach (block b in block successors) Postorder(b, block)
3493 // }
3494 //
3495 // VisitSuccessors(block, loop_header) {
3496 //   foreach (block b in block successors) Postorder(b, loop_header)
3497 // }
3498 //
3499 // The ordering is started calling Postorder(entry, NULL).
3500 //
3501 // Each instance of PostorderProcessor represents the "stack frame" of the
3502 // recursion, and particularly keeps the state of the loop (iteration) of the
3503 // "Visit..." function it represents.
3504 // To recycle memory we keep all the frames in a double linked list but
3505 // this means that we cannot use constructors to initialize the frames.
3506 //
3507 class PostorderProcessor : public ZoneObject {
3508  public:
3509   // Back link (towards the stack bottom).
parent()3510   PostorderProcessor* parent() {return father_; }
3511   // Forward link (towards the stack top).
child()3512   PostorderProcessor* child() {return child_; }
block()3513   HBasicBlock* block() { return block_; }
loop()3514   HLoopInformation* loop() { return loop_; }
loop_header()3515   HBasicBlock* loop_header() { return loop_header_; }
3516 
CreateEntryProcessor(Zone * zone,HBasicBlock * block)3517   static PostorderProcessor* CreateEntryProcessor(Zone* zone,
3518                                                   HBasicBlock* block) {
3519     PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
3520     return result->SetupSuccessors(zone, block, NULL);
3521   }
3522 
PerformStep(Zone * zone,ZoneList<HBasicBlock * > * order)3523   PostorderProcessor* PerformStep(Zone* zone,
3524                                   ZoneList<HBasicBlock*>* order) {
3525     PostorderProcessor* next =
3526         PerformNonBacktrackingStep(zone, order);
3527     if (next != NULL) {
3528       return next;
3529     } else {
3530       return Backtrack(zone, order);
3531     }
3532   }
3533 
3534  private:
PostorderProcessor(PostorderProcessor * father)3535   explicit PostorderProcessor(PostorderProcessor* father)
3536       : father_(father), child_(NULL), successor_iterator(NULL) { }
3537 
3538   // Each enum value states the cycle whose state is kept by this instance.
3539   enum LoopKind {
3540     NONE,
3541     SUCCESSORS,
3542     SUCCESSORS_OF_LOOP_HEADER,
3543     LOOP_MEMBERS,
3544     SUCCESSORS_OF_LOOP_MEMBER
3545   };
3546 
3547   // Each "Setup..." method is like a constructor for a cycle state.
SetupSuccessors(Zone * zone,HBasicBlock * block,HBasicBlock * loop_header)3548   PostorderProcessor* SetupSuccessors(Zone* zone,
3549                                       HBasicBlock* block,
3550                                       HBasicBlock* loop_header) {
3551     if (block == NULL || block->IsOrdered() ||
3552         block->parent_loop_header() != loop_header) {
3553       kind_ = NONE;
3554       block_ = NULL;
3555       loop_ = NULL;
3556       loop_header_ = NULL;
3557       return this;
3558     } else {
3559       block_ = block;
3560       loop_ = NULL;
3561       block->MarkAsOrdered();
3562 
3563       if (block->IsLoopHeader()) {
3564         kind_ = SUCCESSORS_OF_LOOP_HEADER;
3565         loop_header_ = block;
3566         InitializeSuccessors();
3567         PostorderProcessor* result = Push(zone);
3568         return result->SetupLoopMembers(zone, block, block->loop_information(),
3569                                         loop_header);
3570       } else {
3571         ASSERT(block->IsFinished());
3572         kind_ = SUCCESSORS;
3573         loop_header_ = loop_header;
3574         InitializeSuccessors();
3575         return this;
3576       }
3577     }
3578   }
3579 
SetupLoopMembers(Zone * zone,HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3580   PostorderProcessor* SetupLoopMembers(Zone* zone,
3581                                        HBasicBlock* block,
3582                                        HLoopInformation* loop,
3583                                        HBasicBlock* loop_header) {
3584     kind_ = LOOP_MEMBERS;
3585     block_ = block;
3586     loop_ = loop;
3587     loop_header_ = loop_header;
3588     InitializeLoopMembers();
3589     return this;
3590   }
3591 
SetupSuccessorsOfLoopMember(HBasicBlock * block,HLoopInformation * loop,HBasicBlock * loop_header)3592   PostorderProcessor* SetupSuccessorsOfLoopMember(
3593       HBasicBlock* block,
3594       HLoopInformation* loop,
3595       HBasicBlock* loop_header) {
3596     kind_ = SUCCESSORS_OF_LOOP_MEMBER;
3597     block_ = block;
3598     loop_ = loop;
3599     loop_header_ = loop_header;
3600     InitializeSuccessors();
3601     return this;
3602   }
3603 
3604   // This method "allocates" a new stack frame.
Push(Zone * zone)3605   PostorderProcessor* Push(Zone* zone) {
3606     if (child_ == NULL) {
3607       child_ = new(zone) PostorderProcessor(this);
3608     }
3609     return child_;
3610   }
3611 
ClosePostorder(ZoneList<HBasicBlock * > * order,Zone * zone)3612   void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
3613     ASSERT(block_->end()->FirstSuccessor() == NULL ||
3614            order->Contains(block_->end()->FirstSuccessor()) ||
3615            block_->end()->FirstSuccessor()->IsLoopHeader());
3616     ASSERT(block_->end()->SecondSuccessor() == NULL ||
3617            order->Contains(block_->end()->SecondSuccessor()) ||
3618            block_->end()->SecondSuccessor()->IsLoopHeader());
3619     order->Add(block_, zone);
3620   }
3621 
3622   // This method is the basic block to walk up the stack.
Pop(Zone * zone,ZoneList<HBasicBlock * > * order)3623   PostorderProcessor* Pop(Zone* zone,
3624                           ZoneList<HBasicBlock*>* order) {
3625     switch (kind_) {
3626       case SUCCESSORS:
3627       case SUCCESSORS_OF_LOOP_HEADER:
3628         ClosePostorder(order, zone);
3629         return father_;
3630       case LOOP_MEMBERS:
3631         return father_;
3632       case SUCCESSORS_OF_LOOP_MEMBER:
3633         if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
3634           // In this case we need to perform a LOOP_MEMBERS cycle so we
3635           // initialize it and return this instead of father.
3636           return SetupLoopMembers(zone, block(),
3637                                   block()->loop_information(), loop_header_);
3638         } else {
3639           return father_;
3640         }
3641       case NONE:
3642         return father_;
3643     }
3644     UNREACHABLE();
3645     return NULL;
3646   }
3647 
3648   // Walks up the stack.
Backtrack(Zone * zone,ZoneList<HBasicBlock * > * order)3649   PostorderProcessor* Backtrack(Zone* zone,
3650                                 ZoneList<HBasicBlock*>* order) {
3651     PostorderProcessor* parent = Pop(zone, order);
3652     while (parent != NULL) {
3653       PostorderProcessor* next =
3654           parent->PerformNonBacktrackingStep(zone, order);
3655       if (next != NULL) {
3656         return next;
3657       } else {
3658         parent = parent->Pop(zone, order);
3659       }
3660     }
3661     return NULL;
3662   }
3663 
PerformNonBacktrackingStep(Zone * zone,ZoneList<HBasicBlock * > * order)3664   PostorderProcessor* PerformNonBacktrackingStep(
3665       Zone* zone,
3666       ZoneList<HBasicBlock*>* order) {
3667     HBasicBlock* next_block;
3668     switch (kind_) {
3669       case SUCCESSORS:
3670         next_block = AdvanceSuccessors();
3671         if (next_block != NULL) {
3672           PostorderProcessor* result = Push(zone);
3673           return result->SetupSuccessors(zone, next_block, loop_header_);
3674         }
3675         break;
3676       case SUCCESSORS_OF_LOOP_HEADER:
3677         next_block = AdvanceSuccessors();
3678         if (next_block != NULL) {
3679           PostorderProcessor* result = Push(zone);
3680           return result->SetupSuccessors(zone, next_block, block());
3681         }
3682         break;
3683       case LOOP_MEMBERS:
3684         next_block = AdvanceLoopMembers();
3685         if (next_block != NULL) {
3686           PostorderProcessor* result = Push(zone);
3687           return result->SetupSuccessorsOfLoopMember(next_block,
3688                                                      loop_, loop_header_);
3689         }
3690         break;
3691       case SUCCESSORS_OF_LOOP_MEMBER:
3692         next_block = AdvanceSuccessors();
3693         if (next_block != NULL) {
3694           PostorderProcessor* result = Push(zone);
3695           return result->SetupSuccessors(zone, next_block, loop_header_);
3696         }
3697         break;
3698       case NONE:
3699         return NULL;
3700     }
3701     return NULL;
3702   }
3703 
3704   // The following two methods implement a "foreach b in successors" cycle.
InitializeSuccessors()3705   void InitializeSuccessors() {
3706     loop_index = 0;
3707     loop_length = 0;
3708     successor_iterator = HSuccessorIterator(block_->end());
3709   }
3710 
AdvanceSuccessors()3711   HBasicBlock* AdvanceSuccessors() {
3712     if (!successor_iterator.Done()) {
3713       HBasicBlock* result = successor_iterator.Current();
3714       successor_iterator.Advance();
3715       return result;
3716     }
3717     return NULL;
3718   }
3719 
3720   // The following two methods implement a "foreach b in loop members" cycle.
InitializeLoopMembers()3721   void InitializeLoopMembers() {
3722     loop_index = 0;
3723     loop_length = loop_->blocks()->length();
3724   }
3725 
AdvanceLoopMembers()3726   HBasicBlock* AdvanceLoopMembers() {
3727     if (loop_index < loop_length) {
3728       HBasicBlock* result = loop_->blocks()->at(loop_index);
3729       loop_index++;
3730       return result;
3731     } else {
3732       return NULL;
3733     }
3734   }
3735 
3736   LoopKind kind_;
3737   PostorderProcessor* father_;
3738   PostorderProcessor* child_;
3739   HLoopInformation* loop_;
3740   HBasicBlock* block_;
3741   HBasicBlock* loop_header_;
3742   int loop_index;
3743   int loop_length;
3744   HSuccessorIterator successor_iterator;
3745 };
3746 
3747 
OrderBlocks()3748 void HGraph::OrderBlocks() {
3749   CompilationPhase phase("H_Block ordering", info());
3750 
3751 #ifdef DEBUG
3752   // Initially the blocks must not be ordered.
3753   for (int i = 0; i < blocks_.length(); ++i) {
3754     ASSERT(!blocks_[i]->IsOrdered());
3755   }
3756 #endif
3757 
3758   PostorderProcessor* postorder =
3759       PostorderProcessor::CreateEntryProcessor(zone(), blocks_[0]);
3760   blocks_.Rewind(0);
3761   while (postorder) {
3762     postorder = postorder->PerformStep(zone(), &blocks_);
3763   }
3764 
3765 #ifdef DEBUG
3766   // Now all blocks must be marked as ordered.
3767   for (int i = 0; i < blocks_.length(); ++i) {
3768     ASSERT(blocks_[i]->IsOrdered());
3769   }
3770 #endif
3771 
3772   // Reverse block list and assign block IDs.
3773   for (int i = 0, j = blocks_.length(); --j >= i; ++i) {
3774     HBasicBlock* bi = blocks_[i];
3775     HBasicBlock* bj = blocks_[j];
3776     bi->set_block_id(j);
3777     bj->set_block_id(i);
3778     blocks_[i] = bj;
3779     blocks_[j] = bi;
3780   }
3781 }
3782 
3783 
AssignDominators()3784 void HGraph::AssignDominators() {
3785   HPhase phase("H_Assign dominators", this);
3786   for (int i = 0; i < blocks_.length(); ++i) {
3787     HBasicBlock* block = blocks_[i];
3788     if (block->IsLoopHeader()) {
3789       // Only the first predecessor of a loop header is from outside the loop.
3790       // All others are back edges, and thus cannot dominate the loop header.
3791       block->AssignCommonDominator(block->predecessors()->first());
3792       block->AssignLoopSuccessorDominators();
3793     } else {
3794       for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
3795         blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
3796       }
3797     }
3798   }
3799 }
3800 
3801 
CheckArgumentsPhiUses()3802 bool HGraph::CheckArgumentsPhiUses() {
3803   int block_count = blocks_.length();
3804   for (int i = 0; i < block_count; ++i) {
3805     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3806       HPhi* phi = blocks_[i]->phis()->at(j);
3807       // We don't support phi uses of arguments for now.
3808       if (phi->CheckFlag(HValue::kIsArguments)) return false;
3809     }
3810   }
3811   return true;
3812 }
3813 
3814 
CheckConstPhiUses()3815 bool HGraph::CheckConstPhiUses() {
3816   int block_count = blocks_.length();
3817   for (int i = 0; i < block_count; ++i) {
3818     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3819       HPhi* phi = blocks_[i]->phis()->at(j);
3820       // Check for the hole value (from an uninitialized const).
3821       for (int k = 0; k < phi->OperandCount(); k++) {
3822         if (phi->OperandAt(k) == GetConstantHole()) return false;
3823       }
3824     }
3825   }
3826   return true;
3827 }
3828 
3829 
CollectPhis()3830 void HGraph::CollectPhis() {
3831   int block_count = blocks_.length();
3832   phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
3833   for (int i = 0; i < block_count; ++i) {
3834     for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
3835       HPhi* phi = blocks_[i]->phis()->at(j);
3836       phi_list_->Add(phi, zone());
3837     }
3838   }
3839 }
3840 
3841 
3842 // Implementation of utility class to encapsulate the translation state for
3843 // a (possibly inlined) function.
FunctionState(HOptimizedGraphBuilder * owner,CompilationInfo * info,InliningKind inlining_kind,int inlining_id)3844 FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
3845                              CompilationInfo* info,
3846                              InliningKind inlining_kind,
3847                              int inlining_id)
3848     : owner_(owner),
3849       compilation_info_(info),
3850       call_context_(NULL),
3851       inlining_kind_(inlining_kind),
3852       function_return_(NULL),
3853       test_context_(NULL),
3854       entry_(NULL),
3855       arguments_object_(NULL),
3856       arguments_elements_(NULL),
3857       inlining_id_(inlining_id),
3858       outer_source_position_(HSourcePosition::Unknown()),
3859       outer_(owner->function_state()) {
3860   if (outer_ != NULL) {
3861     // State for an inline function.
3862     if (owner->ast_context()->IsTest()) {
3863       HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
3864       HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
3865       if_true->MarkAsInlineReturnTarget(owner->current_block());
3866       if_false->MarkAsInlineReturnTarget(owner->current_block());
3867       TestContext* outer_test_context = TestContext::cast(owner->ast_context());
3868       Expression* cond = outer_test_context->condition();
3869       // The AstContext constructor pushed on the context stack.  This newed
3870       // instance is the reason that AstContext can't be BASE_EMBEDDED.
3871       test_context_ = new TestContext(owner, cond, if_true, if_false);
3872     } else {
3873       function_return_ = owner->graph()->CreateBasicBlock();
3874       function_return()->MarkAsInlineReturnTarget(owner->current_block());
3875     }
3876     // Set this after possibly allocating a new TestContext above.
3877     call_context_ = owner->ast_context();
3878   }
3879 
3880   // Push on the state stack.
3881   owner->set_function_state(this);
3882 
3883   if (FLAG_hydrogen_track_positions) {
3884     outer_source_position_ = owner->source_position();
3885     owner->EnterInlinedSource(
3886       info->shared_info()->start_position(),
3887       inlining_id);
3888     owner->SetSourcePosition(info->shared_info()->start_position());
3889   }
3890 }
3891 
3892 
~FunctionState()3893 FunctionState::~FunctionState() {
3894   delete test_context_;
3895   owner_->set_function_state(outer_);
3896 
3897   if (FLAG_hydrogen_track_positions) {
3898     owner_->set_source_position(outer_source_position_);
3899     owner_->EnterInlinedSource(
3900       outer_->compilation_info()->shared_info()->start_position(),
3901       outer_->inlining_id());
3902   }
3903 }
3904 
3905 
3906 // Implementation of utility classes to represent an expression's context in
3907 // the AST.
AstContext(HOptimizedGraphBuilder * owner,Expression::Context kind)3908 AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
3909     : owner_(owner),
3910       kind_(kind),
3911       outer_(owner->ast_context()),
3912       for_typeof_(false) {
3913   owner->set_ast_context(this);  // Push.
3914 #ifdef DEBUG
3915   ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
3916   original_length_ = owner->environment()->length();
3917 #endif
3918 }
3919 
3920 
~AstContext()3921 AstContext::~AstContext() {
3922   owner_->set_ast_context(outer_);  // Pop.
3923 }
3924 
3925 
~EffectContext()3926 EffectContext::~EffectContext() {
3927   ASSERT(owner()->HasStackOverflow() ||
3928          owner()->current_block() == NULL ||
3929          (owner()->environment()->length() == original_length_ &&
3930           owner()->environment()->frame_type() == JS_FUNCTION));
3931 }
3932 
3933 
~ValueContext()3934 ValueContext::~ValueContext() {
3935   ASSERT(owner()->HasStackOverflow() ||
3936          owner()->current_block() == NULL ||
3937          (owner()->environment()->length() == original_length_ + 1 &&
3938           owner()->environment()->frame_type() == JS_FUNCTION));
3939 }
3940 
3941 
ReturnValue(HValue * value)3942 void EffectContext::ReturnValue(HValue* value) {
3943   // The value is simply ignored.
3944 }
3945 
3946 
ReturnValue(HValue * value)3947 void ValueContext::ReturnValue(HValue* value) {
3948   // The value is tracked in the bailout environment, and communicated
3949   // through the environment as the result of the expression.
3950   if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
3951     owner()->Bailout(kBadValueContextForArgumentsValue);
3952   }
3953   owner()->Push(value);
3954 }
3955 
3956 
ReturnValue(HValue * value)3957 void TestContext::ReturnValue(HValue* value) {
3958   BuildBranch(value);
3959 }
3960 
3961 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)3962 void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
3963   ASSERT(!instr->IsControlInstruction());
3964   owner()->AddInstruction(instr);
3965   if (instr->HasObservableSideEffects()) {
3966     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
3967   }
3968 }
3969 
3970 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)3971 void EffectContext::ReturnControl(HControlInstruction* instr,
3972                                   BailoutId ast_id) {
3973   ASSERT(!instr->HasObservableSideEffects());
3974   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
3975   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
3976   instr->SetSuccessorAt(0, empty_true);
3977   instr->SetSuccessorAt(1, empty_false);
3978   owner()->FinishCurrentBlock(instr);
3979   HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
3980   owner()->set_current_block(join);
3981 }
3982 
3983 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)3984 void EffectContext::ReturnContinuation(HIfContinuation* continuation,
3985                                        BailoutId ast_id) {
3986   HBasicBlock* true_branch = NULL;
3987   HBasicBlock* false_branch = NULL;
3988   continuation->Continue(&true_branch, &false_branch);
3989   if (!continuation->IsTrueReachable()) {
3990     owner()->set_current_block(false_branch);
3991   } else if (!continuation->IsFalseReachable()) {
3992     owner()->set_current_block(true_branch);
3993   } else {
3994     HBasicBlock* join = owner()->CreateJoin(true_branch, false_branch, ast_id);
3995     owner()->set_current_block(join);
3996   }
3997 }
3998 
3999 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)4000 void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4001   ASSERT(!instr->IsControlInstruction());
4002   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4003     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4004   }
4005   owner()->AddInstruction(instr);
4006   owner()->Push(instr);
4007   if (instr->HasObservableSideEffects()) {
4008     owner()->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4009   }
4010 }
4011 
4012 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)4013 void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4014   ASSERT(!instr->HasObservableSideEffects());
4015   if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
4016     return owner()->Bailout(kBadValueContextForArgumentsObjectValue);
4017   }
4018   HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
4019   HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
4020   instr->SetSuccessorAt(0, materialize_true);
4021   instr->SetSuccessorAt(1, materialize_false);
4022   owner()->FinishCurrentBlock(instr);
4023   owner()->set_current_block(materialize_true);
4024   owner()->Push(owner()->graph()->GetConstantTrue());
4025   owner()->set_current_block(materialize_false);
4026   owner()->Push(owner()->graph()->GetConstantFalse());
4027   HBasicBlock* join =
4028     owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4029   owner()->set_current_block(join);
4030 }
4031 
4032 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)4033 void ValueContext::ReturnContinuation(HIfContinuation* continuation,
4034                                       BailoutId ast_id) {
4035   HBasicBlock* materialize_true = NULL;
4036   HBasicBlock* materialize_false = NULL;
4037   continuation->Continue(&materialize_true, &materialize_false);
4038   if (continuation->IsTrueReachable()) {
4039     owner()->set_current_block(materialize_true);
4040     owner()->Push(owner()->graph()->GetConstantTrue());
4041     owner()->set_current_block(materialize_true);
4042   }
4043   if (continuation->IsFalseReachable()) {
4044     owner()->set_current_block(materialize_false);
4045     owner()->Push(owner()->graph()->GetConstantFalse());
4046     owner()->set_current_block(materialize_false);
4047   }
4048   if (continuation->TrueAndFalseReachable()) {
4049     HBasicBlock* join =
4050         owner()->CreateJoin(materialize_true, materialize_false, ast_id);
4051     owner()->set_current_block(join);
4052   }
4053 }
4054 
4055 
ReturnInstruction(HInstruction * instr,BailoutId ast_id)4056 void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
4057   ASSERT(!instr->IsControlInstruction());
4058   HOptimizedGraphBuilder* builder = owner();
4059   builder->AddInstruction(instr);
4060   // We expect a simulate after every expression with side effects, though
4061   // this one isn't actually needed (and wouldn't work if it were targeted).
4062   if (instr->HasObservableSideEffects()) {
4063     builder->Push(instr);
4064     builder->Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
4065     builder->Pop();
4066   }
4067   BuildBranch(instr);
4068 }
4069 
4070 
ReturnControl(HControlInstruction * instr,BailoutId ast_id)4071 void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
4072   ASSERT(!instr->HasObservableSideEffects());
4073   HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
4074   HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
4075   instr->SetSuccessorAt(0, empty_true);
4076   instr->SetSuccessorAt(1, empty_false);
4077   owner()->FinishCurrentBlock(instr);
4078   owner()->Goto(empty_true, if_true(), owner()->function_state());
4079   owner()->Goto(empty_false, if_false(), owner()->function_state());
4080   owner()->set_current_block(NULL);
4081 }
4082 
4083 
ReturnContinuation(HIfContinuation * continuation,BailoutId ast_id)4084 void TestContext::ReturnContinuation(HIfContinuation* continuation,
4085                                      BailoutId ast_id) {
4086   HBasicBlock* true_branch = NULL;
4087   HBasicBlock* false_branch = NULL;
4088   continuation->Continue(&true_branch, &false_branch);
4089   if (continuation->IsTrueReachable()) {
4090     owner()->Goto(true_branch, if_true(), owner()->function_state());
4091   }
4092   if (continuation->IsFalseReachable()) {
4093     owner()->Goto(false_branch, if_false(), owner()->function_state());
4094   }
4095   owner()->set_current_block(NULL);
4096 }
4097 
4098 
BuildBranch(HValue * value)4099 void TestContext::BuildBranch(HValue* value) {
4100   // We expect the graph to be in edge-split form: there is no edge that
4101   // connects a branch node to a join node.  We conservatively ensure that
4102   // property by always adding an empty block on the outgoing edges of this
4103   // branch.
4104   HOptimizedGraphBuilder* builder = owner();
4105   if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
4106     builder->Bailout(kArgumentsObjectValueInATestContext);
4107   }
4108   ToBooleanStub::Types expected(condition()->to_boolean_types());
4109   ReturnControl(owner()->New<HBranch>(value, expected), BailoutId::None());
4110 }
4111 
4112 
4113 // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
4114 #define CHECK_BAILOUT(call)                     \
4115   do {                                          \
4116     call;                                       \
4117     if (HasStackOverflow()) return;             \
4118   } while (false)
4119 
4120 
4121 #define CHECK_ALIVE(call)                                       \
4122   do {                                                          \
4123     call;                                                       \
4124     if (HasStackOverflow() || current_block() == NULL) return;  \
4125   } while (false)
4126 
4127 
4128 #define CHECK_ALIVE_OR_RETURN(call, value)                            \
4129   do {                                                                \
4130     call;                                                             \
4131     if (HasStackOverflow() || current_block() == NULL) return value;  \
4132   } while (false)
4133 
4134 
Bailout(BailoutReason reason)4135 void HOptimizedGraphBuilder::Bailout(BailoutReason reason) {
4136   current_info()->set_bailout_reason(reason);
4137   SetStackOverflow();
4138 }
4139 
4140 
VisitForEffect(Expression * expr)4141 void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
4142   EffectContext for_effect(this);
4143   Visit(expr);
4144 }
4145 
4146 
VisitForValue(Expression * expr,ArgumentsAllowedFlag flag)4147 void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
4148                                            ArgumentsAllowedFlag flag) {
4149   ValueContext for_value(this, flag);
4150   Visit(expr);
4151 }
4152 
4153 
VisitForTypeOf(Expression * expr)4154 void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
4155   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
4156   for_value.set_for_typeof(true);
4157   Visit(expr);
4158 }
4159 
4160 
VisitForControl(Expression * expr,HBasicBlock * true_block,HBasicBlock * false_block)4161 void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
4162                                              HBasicBlock* true_block,
4163                                              HBasicBlock* false_block) {
4164   TestContext for_test(this, expr, true_block, false_block);
4165   Visit(expr);
4166 }
4167 
4168 
VisitExpressions(ZoneList<Expression * > * exprs)4169 void HOptimizedGraphBuilder::VisitExpressions(
4170     ZoneList<Expression*>* exprs) {
4171   for (int i = 0; i < exprs->length(); ++i) {
4172     CHECK_ALIVE(VisitForValue(exprs->at(i)));
4173   }
4174 }
4175 
4176 
BuildGraph()4177 bool HOptimizedGraphBuilder::BuildGraph() {
4178   if (current_info()->function()->is_generator()) {
4179     Bailout(kFunctionIsAGenerator);
4180     return false;
4181   }
4182   Scope* scope = current_info()->scope();
4183   if (scope->HasIllegalRedeclaration()) {
4184     Bailout(kFunctionWithIllegalRedeclaration);
4185     return false;
4186   }
4187   if (scope->calls_eval()) {
4188     Bailout(kFunctionCallsEval);
4189     return false;
4190   }
4191   SetUpScope(scope);
4192 
4193   // Add an edge to the body entry.  This is warty: the graph's start
4194   // environment will be used by the Lithium translation as the initial
4195   // environment on graph entry, but it has now been mutated by the
4196   // Hydrogen translation of the instructions in the start block.  This
4197   // environment uses values which have not been defined yet.  These
4198   // Hydrogen instructions will then be replayed by the Lithium
4199   // translation, so they cannot have an environment effect.  The edge to
4200   // the body's entry block (along with some special logic for the start
4201   // block in HInstruction::InsertAfter) seals the start block from
4202   // getting unwanted instructions inserted.
4203   //
4204   // TODO(kmillikin): Fix this.  Stop mutating the initial environment.
4205   // Make the Hydrogen instructions in the initial block into Hydrogen
4206   // values (but not instructions), present in the initial environment and
4207   // not replayed by the Lithium translation.
4208   HEnvironment* initial_env = environment()->CopyWithoutHistory();
4209   HBasicBlock* body_entry = CreateBasicBlock(initial_env);
4210   Goto(body_entry);
4211   body_entry->SetJoinId(BailoutId::FunctionEntry());
4212   set_current_block(body_entry);
4213 
4214   // Handle implicit declaration of the function name in named function
4215   // expressions before other declarations.
4216   if (scope->is_function_scope() && scope->function() != NULL) {
4217     VisitVariableDeclaration(scope->function());
4218   }
4219   VisitDeclarations(scope->declarations());
4220   Add<HSimulate>(BailoutId::Declarations());
4221 
4222   Add<HStackCheck>(HStackCheck::kFunctionEntry);
4223 
4224   VisitStatements(current_info()->function()->body());
4225   if (HasStackOverflow()) return false;
4226 
4227   if (current_block() != NULL) {
4228     Add<HReturn>(graph()->GetConstantUndefined());
4229     set_current_block(NULL);
4230   }
4231 
4232   // If the checksum of the number of type info changes is the same as the
4233   // last time this function was compiled, then this recompile is likely not
4234   // due to missing/inadequate type feedback, but rather too aggressive
4235   // optimization. Disable optimistic LICM in that case.
4236   Handle<Code> unoptimized_code(current_info()->shared_info()->code());
4237   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
4238   Handle<TypeFeedbackInfo> type_info(
4239       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
4240   int checksum = type_info->own_type_change_checksum();
4241   int composite_checksum = graph()->update_type_change_checksum(checksum);
4242   graph()->set_use_optimistic_licm(
4243       !type_info->matches_inlined_type_change_checksum(composite_checksum));
4244   type_info->set_inlined_type_change_checksum(composite_checksum);
4245 
4246   // Perform any necessary OSR-specific cleanups or changes to the graph.
4247   osr()->FinishGraph();
4248 
4249   return true;
4250 }
4251 
4252 
Optimize(BailoutReason * bailout_reason)4253 bool HGraph::Optimize(BailoutReason* bailout_reason) {
4254   OrderBlocks();
4255   AssignDominators();
4256 
4257   // We need to create a HConstant "zero" now so that GVN will fold every
4258   // zero-valued constant in the graph together.
4259   // The constant is needed to make idef-based bounds check work: the pass
4260   // evaluates relations with "zero" and that zero cannot be created after GVN.
4261   GetConstant0();
4262 
4263 #ifdef DEBUG
4264   // Do a full verify after building the graph and computing dominators.
4265   Verify(true);
4266 #endif
4267 
4268   if (FLAG_analyze_environment_liveness && maximum_environment_size() != 0) {
4269     Run<HEnvironmentLivenessAnalysisPhase>();
4270   }
4271 
4272   if (!CheckConstPhiUses()) {
4273     *bailout_reason = kUnsupportedPhiUseOfConstVariable;
4274     return false;
4275   }
4276   Run<HRedundantPhiEliminationPhase>();
4277   if (!CheckArgumentsPhiUses()) {
4278     *bailout_reason = kUnsupportedPhiUseOfArguments;
4279     return false;
4280   }
4281 
4282   // Find and mark unreachable code to simplify optimizations, especially gvn,
4283   // where unreachable code could unnecessarily defeat LICM.
4284   Run<HMarkUnreachableBlocksPhase>();
4285 
4286   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4287   if (FLAG_use_escape_analysis) Run<HEscapeAnalysisPhase>();
4288 
4289   if (FLAG_load_elimination) Run<HLoadEliminationPhase>();
4290 
4291   CollectPhis();
4292 
4293   if (has_osr()) osr()->FinishOsrValues();
4294 
4295   Run<HInferRepresentationPhase>();
4296 
4297   // Remove HSimulate instructions that have turned out not to be needed
4298   // after all by folding them into the following HSimulate.
4299   // This must happen after inferring representations.
4300   Run<HMergeRemovableSimulatesPhase>();
4301 
4302   Run<HMarkDeoptimizeOnUndefinedPhase>();
4303   Run<HRepresentationChangesPhase>();
4304 
4305   Run<HInferTypesPhase>();
4306 
4307   // Must be performed before canonicalization to ensure that Canonicalize
4308   // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
4309   // zero.
4310   if (FLAG_opt_safe_uint32_operations) Run<HUint32AnalysisPhase>();
4311 
4312   if (FLAG_use_canonicalizing) Run<HCanonicalizePhase>();
4313 
4314   if (FLAG_use_gvn) Run<HGlobalValueNumberingPhase>();
4315 
4316   if (FLAG_check_elimination) Run<HCheckEliminationPhase>();
4317 
4318   if (FLAG_store_elimination) Run<HStoreEliminationPhase>();
4319 
4320   Run<HRangeAnalysisPhase>();
4321 
4322   Run<HComputeChangeUndefinedToNaN>();
4323 
4324   // Eliminate redundant stack checks on backwards branches.
4325   Run<HStackCheckEliminationPhase>();
4326 
4327   if (FLAG_array_bounds_checks_elimination) Run<HBoundsCheckEliminationPhase>();
4328   if (FLAG_array_bounds_checks_hoisting) Run<HBoundsCheckHoistingPhase>();
4329   if (FLAG_array_index_dehoisting) Run<HDehoistIndexComputationsPhase>();
4330   if (FLAG_dead_code_elimination) Run<HDeadCodeEliminationPhase>();
4331 
4332   RestoreActualValues();
4333 
4334   // Find unreachable code a second time, GVN and other optimizations may have
4335   // made blocks unreachable that were previously reachable.
4336   Run<HMarkUnreachableBlocksPhase>();
4337 
4338   return true;
4339 }
4340 
4341 
RestoreActualValues()4342 void HGraph::RestoreActualValues() {
4343   HPhase phase("H_Restore actual values", this);
4344 
4345   for (int block_index = 0; block_index < blocks()->length(); block_index++) {
4346     HBasicBlock* block = blocks()->at(block_index);
4347 
4348 #ifdef DEBUG
4349     for (int i = 0; i < block->phis()->length(); i++) {
4350       HPhi* phi = block->phis()->at(i);
4351       ASSERT(phi->ActualValue() == phi);
4352     }
4353 #endif
4354 
4355     for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
4356       HInstruction* instruction = it.Current();
4357       if (instruction->ActualValue() == instruction) continue;
4358       if (instruction->CheckFlag(HValue::kIsDead)) {
4359         // The instruction was marked as deleted but left in the graph
4360         // as a control flow dependency point for subsequent
4361         // instructions.
4362         instruction->DeleteAndReplaceWith(instruction->ActualValue());
4363       } else {
4364         ASSERT(instruction->IsInformativeDefinition());
4365         if (instruction->IsPurelyInformativeDefinition()) {
4366           instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
4367         } else {
4368           instruction->ReplaceAllUsesWith(instruction->ActualValue());
4369         }
4370       }
4371     }
4372   }
4373 }
4374 
4375 
PushArgumentsFromEnvironment(int count)4376 void HOptimizedGraphBuilder::PushArgumentsFromEnvironment(int count) {
4377   ZoneList<HValue*> arguments(count, zone());
4378   for (int i = 0; i < count; ++i) {
4379     arguments.Add(Pop(), zone());
4380   }
4381 
4382   HPushArguments* push_args = New<HPushArguments>();
4383   while (!arguments.is_empty()) {
4384     push_args->AddInput(arguments.RemoveLast());
4385   }
4386   AddInstruction(push_args);
4387 }
4388 
4389 
4390 template <class Instruction>
PreProcessCall(Instruction * call)4391 HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
4392   PushArgumentsFromEnvironment(call->argument_count());
4393   return call;
4394 }
4395 
4396 
SetUpScope(Scope * scope)4397 void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
4398   // First special is HContext.
4399   HInstruction* context = Add<HContext>();
4400   environment()->BindContext(context);
4401 
4402   // Create an arguments object containing the initial parameters.  Set the
4403   // initial values of parameters including "this" having parameter index 0.
4404   ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
4405   HArgumentsObject* arguments_object =
4406       New<HArgumentsObject>(environment()->parameter_count());
4407   for (int i = 0; i < environment()->parameter_count(); ++i) {
4408     HInstruction* parameter = Add<HParameter>(i);
4409     arguments_object->AddArgument(parameter, zone());
4410     environment()->Bind(i, parameter);
4411   }
4412   AddInstruction(arguments_object);
4413   graph()->SetArgumentsObject(arguments_object);
4414 
4415   HConstant* undefined_constant = graph()->GetConstantUndefined();
4416   // Initialize specials and locals to undefined.
4417   for (int i = environment()->parameter_count() + 1;
4418        i < environment()->length();
4419        ++i) {
4420     environment()->Bind(i, undefined_constant);
4421   }
4422 
4423   // Handle the arguments and arguments shadow variables specially (they do
4424   // not have declarations).
4425   if (scope->arguments() != NULL) {
4426     if (!scope->arguments()->IsStackAllocated()) {
4427       return Bailout(kContextAllocatedArguments);
4428     }
4429 
4430     environment()->Bind(scope->arguments(),
4431                         graph()->GetArgumentsObject());
4432   }
4433 }
4434 
4435 
VisitStatements(ZoneList<Statement * > * statements)4436 void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
4437   for (int i = 0; i < statements->length(); i++) {
4438     Statement* stmt = statements->at(i);
4439     CHECK_ALIVE(Visit(stmt));
4440     if (stmt->IsJump()) break;
4441   }
4442 }
4443 
4444 
VisitBlock(Block * stmt)4445 void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
4446   ASSERT(!HasStackOverflow());
4447   ASSERT(current_block() != NULL);
4448   ASSERT(current_block()->HasPredecessor());
4449 
4450   Scope* outer_scope = scope();
4451   Scope* scope = stmt->scope();
4452   BreakAndContinueInfo break_info(stmt, outer_scope);
4453 
4454   { BreakAndContinueScope push(&break_info, this);
4455     if (scope != NULL) {
4456       // Load the function object.
4457       Scope* declaration_scope = scope->DeclarationScope();
4458       HInstruction* function;
4459       HValue* outer_context = environment()->context();
4460       if (declaration_scope->is_global_scope() ||
4461           declaration_scope->is_eval_scope()) {
4462         function = new(zone()) HLoadContextSlot(
4463             outer_context, Context::CLOSURE_INDEX, HLoadContextSlot::kNoCheck);
4464       } else {
4465         function = New<HThisFunction>();
4466       }
4467       AddInstruction(function);
4468       // Allocate a block context and store it to the stack frame.
4469       HInstruction* inner_context = Add<HAllocateBlockContext>(
4470           outer_context, function, scope->GetScopeInfo());
4471       HInstruction* instr = Add<HStoreFrameContext>(inner_context);
4472       if (instr->HasObservableSideEffects()) {
4473         AddSimulate(stmt->EntryId(), REMOVABLE_SIMULATE);
4474       }
4475       set_scope(scope);
4476       environment()->BindContext(inner_context);
4477       VisitDeclarations(scope->declarations());
4478       AddSimulate(stmt->DeclsId(), REMOVABLE_SIMULATE);
4479     }
4480     CHECK_BAILOUT(VisitStatements(stmt->statements()));
4481   }
4482   set_scope(outer_scope);
4483   if (scope != NULL && current_block() != NULL) {
4484     HValue* inner_context = environment()->context();
4485     HValue* outer_context = Add<HLoadNamedField>(
4486         inner_context, static_cast<HValue*>(NULL),
4487         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4488 
4489     HInstruction* instr = Add<HStoreFrameContext>(outer_context);
4490     if (instr->HasObservableSideEffects()) {
4491       AddSimulate(stmt->ExitId(), REMOVABLE_SIMULATE);
4492     }
4493     environment()->BindContext(outer_context);
4494   }
4495   HBasicBlock* break_block = break_info.break_block();
4496   if (break_block != NULL) {
4497     if (current_block() != NULL) Goto(break_block);
4498     break_block->SetJoinId(stmt->ExitId());
4499     set_current_block(break_block);
4500   }
4501 }
4502 
4503 
VisitExpressionStatement(ExpressionStatement * stmt)4504 void HOptimizedGraphBuilder::VisitExpressionStatement(
4505     ExpressionStatement* stmt) {
4506   ASSERT(!HasStackOverflow());
4507   ASSERT(current_block() != NULL);
4508   ASSERT(current_block()->HasPredecessor());
4509   VisitForEffect(stmt->expression());
4510 }
4511 
4512 
VisitEmptyStatement(EmptyStatement * stmt)4513 void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
4514   ASSERT(!HasStackOverflow());
4515   ASSERT(current_block() != NULL);
4516   ASSERT(current_block()->HasPredecessor());
4517 }
4518 
4519 
VisitIfStatement(IfStatement * stmt)4520 void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
4521   ASSERT(!HasStackOverflow());
4522   ASSERT(current_block() != NULL);
4523   ASSERT(current_block()->HasPredecessor());
4524   if (stmt->condition()->ToBooleanIsTrue()) {
4525     Add<HSimulate>(stmt->ThenId());
4526     Visit(stmt->then_statement());
4527   } else if (stmt->condition()->ToBooleanIsFalse()) {
4528     Add<HSimulate>(stmt->ElseId());
4529     Visit(stmt->else_statement());
4530   } else {
4531     HBasicBlock* cond_true = graph()->CreateBasicBlock();
4532     HBasicBlock* cond_false = graph()->CreateBasicBlock();
4533     CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
4534 
4535     if (cond_true->HasPredecessor()) {
4536       cond_true->SetJoinId(stmt->ThenId());
4537       set_current_block(cond_true);
4538       CHECK_BAILOUT(Visit(stmt->then_statement()));
4539       cond_true = current_block();
4540     } else {
4541       cond_true = NULL;
4542     }
4543 
4544     if (cond_false->HasPredecessor()) {
4545       cond_false->SetJoinId(stmt->ElseId());
4546       set_current_block(cond_false);
4547       CHECK_BAILOUT(Visit(stmt->else_statement()));
4548       cond_false = current_block();
4549     } else {
4550       cond_false = NULL;
4551     }
4552 
4553     HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
4554     set_current_block(join);
4555   }
4556 }
4557 
4558 
Get(BreakableStatement * stmt,BreakType type,Scope ** scope,int * drop_extra)4559 HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
4560     BreakableStatement* stmt,
4561     BreakType type,
4562     Scope** scope,
4563     int* drop_extra) {
4564   *drop_extra = 0;
4565   BreakAndContinueScope* current = this;
4566   while (current != NULL && current->info()->target() != stmt) {
4567     *drop_extra += current->info()->drop_extra();
4568     current = current->next();
4569   }
4570   ASSERT(current != NULL);  // Always found (unless stack is malformed).
4571   *scope = current->info()->scope();
4572 
4573   if (type == BREAK) {
4574     *drop_extra += current->info()->drop_extra();
4575   }
4576 
4577   HBasicBlock* block = NULL;
4578   switch (type) {
4579     case BREAK:
4580       block = current->info()->break_block();
4581       if (block == NULL) {
4582         block = current->owner()->graph()->CreateBasicBlock();
4583         current->info()->set_break_block(block);
4584       }
4585       break;
4586 
4587     case CONTINUE:
4588       block = current->info()->continue_block();
4589       if (block == NULL) {
4590         block = current->owner()->graph()->CreateBasicBlock();
4591         current->info()->set_continue_block(block);
4592       }
4593       break;
4594   }
4595 
4596   return block;
4597 }
4598 
4599 
VisitContinueStatement(ContinueStatement * stmt)4600 void HOptimizedGraphBuilder::VisitContinueStatement(
4601     ContinueStatement* stmt) {
4602   ASSERT(!HasStackOverflow());
4603   ASSERT(current_block() != NULL);
4604   ASSERT(current_block()->HasPredecessor());
4605   Scope* outer_scope = NULL;
4606   Scope* inner_scope = scope();
4607   int drop_extra = 0;
4608   HBasicBlock* continue_block = break_scope()->Get(
4609       stmt->target(), BreakAndContinueScope::CONTINUE,
4610       &outer_scope, &drop_extra);
4611   HValue* context = environment()->context();
4612   Drop(drop_extra);
4613   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4614   if (context_pop_count > 0) {
4615     while (context_pop_count-- > 0) {
4616       HInstruction* context_instruction = Add<HLoadNamedField>(
4617           context, static_cast<HValue*>(NULL),
4618           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4619       context = context_instruction;
4620     }
4621     HInstruction* instr = Add<HStoreFrameContext>(context);
4622     if (instr->HasObservableSideEffects()) {
4623       AddSimulate(stmt->target()->EntryId(), REMOVABLE_SIMULATE);
4624     }
4625     environment()->BindContext(context);
4626   }
4627 
4628   Goto(continue_block);
4629   set_current_block(NULL);
4630 }
4631 
4632 
VisitBreakStatement(BreakStatement * stmt)4633 void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
4634   ASSERT(!HasStackOverflow());
4635   ASSERT(current_block() != NULL);
4636   ASSERT(current_block()->HasPredecessor());
4637   Scope* outer_scope = NULL;
4638   Scope* inner_scope = scope();
4639   int drop_extra = 0;
4640   HBasicBlock* break_block = break_scope()->Get(
4641       stmt->target(), BreakAndContinueScope::BREAK,
4642       &outer_scope, &drop_extra);
4643   HValue* context = environment()->context();
4644   Drop(drop_extra);
4645   int context_pop_count = inner_scope->ContextChainLength(outer_scope);
4646   if (context_pop_count > 0) {
4647     while (context_pop_count-- > 0) {
4648       HInstruction* context_instruction = Add<HLoadNamedField>(
4649           context, static_cast<HValue*>(NULL),
4650           HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
4651       context = context_instruction;
4652     }
4653     HInstruction* instr = Add<HStoreFrameContext>(context);
4654     if (instr->HasObservableSideEffects()) {
4655       AddSimulate(stmt->target()->ExitId(), REMOVABLE_SIMULATE);
4656     }
4657     environment()->BindContext(context);
4658   }
4659   Goto(break_block);
4660   set_current_block(NULL);
4661 }
4662 
4663 
VisitReturnStatement(ReturnStatement * stmt)4664 void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
4665   ASSERT(!HasStackOverflow());
4666   ASSERT(current_block() != NULL);
4667   ASSERT(current_block()->HasPredecessor());
4668   FunctionState* state = function_state();
4669   AstContext* context = call_context();
4670   if (context == NULL) {
4671     // Not an inlined return, so an actual one.
4672     CHECK_ALIVE(VisitForValue(stmt->expression()));
4673     HValue* result = environment()->Pop();
4674     Add<HReturn>(result);
4675   } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
4676     // Return from an inlined construct call. In a test context the return value
4677     // will always evaluate to true, in a value context the return value needs
4678     // to be a JSObject.
4679     if (context->IsTest()) {
4680       TestContext* test = TestContext::cast(context);
4681       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4682       Goto(test->if_true(), state);
4683     } else if (context->IsEffect()) {
4684       CHECK_ALIVE(VisitForEffect(stmt->expression()));
4685       Goto(function_return(), state);
4686     } else {
4687       ASSERT(context->IsValue());
4688       CHECK_ALIVE(VisitForValue(stmt->expression()));
4689       HValue* return_value = Pop();
4690       HValue* receiver = environment()->arguments_environment()->Lookup(0);
4691       HHasInstanceTypeAndBranch* typecheck =
4692           New<HHasInstanceTypeAndBranch>(return_value,
4693                                          FIRST_SPEC_OBJECT_TYPE,
4694                                          LAST_SPEC_OBJECT_TYPE);
4695       HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
4696       HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
4697       typecheck->SetSuccessorAt(0, if_spec_object);
4698       typecheck->SetSuccessorAt(1, not_spec_object);
4699       FinishCurrentBlock(typecheck);
4700       AddLeaveInlined(if_spec_object, return_value, state);
4701       AddLeaveInlined(not_spec_object, receiver, state);
4702     }
4703   } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
4704     // Return from an inlined setter call. The returned value is never used, the
4705     // value of an assignment is always the value of the RHS of the assignment.
4706     CHECK_ALIVE(VisitForEffect(stmt->expression()));
4707     if (context->IsTest()) {
4708       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4709       context->ReturnValue(rhs);
4710     } else if (context->IsEffect()) {
4711       Goto(function_return(), state);
4712     } else {
4713       ASSERT(context->IsValue());
4714       HValue* rhs = environment()->arguments_environment()->Lookup(1);
4715       AddLeaveInlined(rhs, state);
4716     }
4717   } else {
4718     // Return from a normal inlined function. Visit the subexpression in the
4719     // expression context of the call.
4720     if (context->IsTest()) {
4721       TestContext* test = TestContext::cast(context);
4722       VisitForControl(stmt->expression(), test->if_true(), test->if_false());
4723     } else if (context->IsEffect()) {
4724       // Visit in value context and ignore the result. This is needed to keep
4725       // environment in sync with full-codegen since some visitors (e.g.
4726       // VisitCountOperation) use the operand stack differently depending on
4727       // context.
4728       CHECK_ALIVE(VisitForValue(stmt->expression()));
4729       Pop();
4730       Goto(function_return(), state);
4731     } else {
4732       ASSERT(context->IsValue());
4733       CHECK_ALIVE(VisitForValue(stmt->expression()));
4734       AddLeaveInlined(Pop(), state);
4735     }
4736   }
4737   set_current_block(NULL);
4738 }
4739 
4740 
VisitWithStatement(WithStatement * stmt)4741 void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
4742   ASSERT(!HasStackOverflow());
4743   ASSERT(current_block() != NULL);
4744   ASSERT(current_block()->HasPredecessor());
4745   return Bailout(kWithStatement);
4746 }
4747 
4748 
VisitSwitchStatement(SwitchStatement * stmt)4749 void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
4750   ASSERT(!HasStackOverflow());
4751   ASSERT(current_block() != NULL);
4752   ASSERT(current_block()->HasPredecessor());
4753 
4754   // We only optimize switch statements with a bounded number of clauses.
4755   const int kCaseClauseLimit = 128;
4756   ZoneList<CaseClause*>* clauses = stmt->cases();
4757   int clause_count = clauses->length();
4758   ZoneList<HBasicBlock*> body_blocks(clause_count, zone());
4759   if (clause_count > kCaseClauseLimit) {
4760     return Bailout(kSwitchStatementTooManyClauses);
4761   }
4762 
4763   CHECK_ALIVE(VisitForValue(stmt->tag()));
4764   Add<HSimulate>(stmt->EntryId());
4765   HValue* tag_value = Top();
4766   Type* tag_type = stmt->tag()->bounds().lower;
4767 
4768   // 1. Build all the tests, with dangling true branches
4769   BailoutId default_id = BailoutId::None();
4770   for (int i = 0; i < clause_count; ++i) {
4771     CaseClause* clause = clauses->at(i);
4772     if (clause->is_default()) {
4773       body_blocks.Add(NULL, zone());
4774       if (default_id.IsNone()) default_id = clause->EntryId();
4775       continue;
4776     }
4777 
4778     // Generate a compare and branch.
4779     CHECK_ALIVE(VisitForValue(clause->label()));
4780     HValue* label_value = Pop();
4781 
4782     Type* label_type = clause->label()->bounds().lower;
4783     Type* combined_type = clause->compare_type();
4784     HControlInstruction* compare = BuildCompareInstruction(
4785         Token::EQ_STRICT, tag_value, label_value, tag_type, label_type,
4786         combined_type,
4787         ScriptPositionToSourcePosition(stmt->tag()->position()),
4788         ScriptPositionToSourcePosition(clause->label()->position()),
4789         PUSH_BEFORE_SIMULATE, clause->id());
4790 
4791     HBasicBlock* next_test_block = graph()->CreateBasicBlock();
4792     HBasicBlock* body_block = graph()->CreateBasicBlock();
4793     body_blocks.Add(body_block, zone());
4794     compare->SetSuccessorAt(0, body_block);
4795     compare->SetSuccessorAt(1, next_test_block);
4796     FinishCurrentBlock(compare);
4797 
4798     set_current_block(body_block);
4799     Drop(1);  // tag_value
4800 
4801     set_current_block(next_test_block);
4802   }
4803 
4804   // Save the current block to use for the default or to join with the
4805   // exit.
4806   HBasicBlock* last_block = current_block();
4807   Drop(1);  // tag_value
4808 
4809   // 2. Loop over the clauses and the linked list of tests in lockstep,
4810   // translating the clause bodies.
4811   HBasicBlock* fall_through_block = NULL;
4812 
4813   BreakAndContinueInfo break_info(stmt, scope());
4814   { BreakAndContinueScope push(&break_info, this);
4815     for (int i = 0; i < clause_count; ++i) {
4816       CaseClause* clause = clauses->at(i);
4817 
4818       // Identify the block where normal (non-fall-through) control flow
4819       // goes to.
4820       HBasicBlock* normal_block = NULL;
4821       if (clause->is_default()) {
4822         if (last_block == NULL) continue;
4823         normal_block = last_block;
4824         last_block = NULL;  // Cleared to indicate we've handled it.
4825       } else {
4826         normal_block = body_blocks[i];
4827       }
4828 
4829       if (fall_through_block == NULL) {
4830         set_current_block(normal_block);
4831       } else {
4832         HBasicBlock* join = CreateJoin(fall_through_block,
4833                                        normal_block,
4834                                        clause->EntryId());
4835         set_current_block(join);
4836       }
4837 
4838       CHECK_BAILOUT(VisitStatements(clause->statements()));
4839       fall_through_block = current_block();
4840     }
4841   }
4842 
4843   // Create an up-to-3-way join.  Use the break block if it exists since
4844   // it's already a join block.
4845   HBasicBlock* break_block = break_info.break_block();
4846   if (break_block == NULL) {
4847     set_current_block(CreateJoin(fall_through_block,
4848                                  last_block,
4849                                  stmt->ExitId()));
4850   } else {
4851     if (fall_through_block != NULL) Goto(fall_through_block, break_block);
4852     if (last_block != NULL) Goto(last_block, break_block);
4853     break_block->SetJoinId(stmt->ExitId());
4854     set_current_block(break_block);
4855   }
4856 }
4857 
4858 
VisitLoopBody(IterationStatement * stmt,HBasicBlock * loop_entry)4859 void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
4860                                            HBasicBlock* loop_entry) {
4861   Add<HSimulate>(stmt->StackCheckId());
4862   HStackCheck* stack_check =
4863       HStackCheck::cast(Add<HStackCheck>(HStackCheck::kBackwardsBranch));
4864   ASSERT(loop_entry->IsLoopHeader());
4865   loop_entry->loop_information()->set_stack_check(stack_check);
4866   CHECK_BAILOUT(Visit(stmt->body()));
4867 }
4868 
4869 
VisitDoWhileStatement(DoWhileStatement * stmt)4870 void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
4871   ASSERT(!HasStackOverflow());
4872   ASSERT(current_block() != NULL);
4873   ASSERT(current_block()->HasPredecessor());
4874   ASSERT(current_block() != NULL);
4875   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4876 
4877   BreakAndContinueInfo break_info(stmt, scope());
4878   {
4879     BreakAndContinueScope push(&break_info, this);
4880     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
4881   }
4882   HBasicBlock* body_exit =
4883       JoinContinue(stmt, current_block(), break_info.continue_block());
4884   HBasicBlock* loop_successor = NULL;
4885   if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
4886     set_current_block(body_exit);
4887     loop_successor = graph()->CreateBasicBlock();
4888     if (stmt->cond()->ToBooleanIsFalse()) {
4889       loop_entry->loop_information()->stack_check()->Eliminate();
4890       Goto(loop_successor);
4891       body_exit = NULL;
4892     } else {
4893       // The block for a true condition, the actual predecessor block of the
4894       // back edge.
4895       body_exit = graph()->CreateBasicBlock();
4896       CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
4897     }
4898     if (body_exit != NULL && body_exit->HasPredecessor()) {
4899       body_exit->SetJoinId(stmt->BackEdgeId());
4900     } else {
4901       body_exit = NULL;
4902     }
4903     if (loop_successor->HasPredecessor()) {
4904       loop_successor->SetJoinId(stmt->ExitId());
4905     } else {
4906       loop_successor = NULL;
4907     }
4908   }
4909   HBasicBlock* loop_exit = CreateLoop(stmt,
4910                                       loop_entry,
4911                                       body_exit,
4912                                       loop_successor,
4913                                       break_info.break_block());
4914   set_current_block(loop_exit);
4915 }
4916 
4917 
VisitWhileStatement(WhileStatement * stmt)4918 void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
4919   ASSERT(!HasStackOverflow());
4920   ASSERT(current_block() != NULL);
4921   ASSERT(current_block()->HasPredecessor());
4922   ASSERT(current_block() != NULL);
4923   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4924 
4925   // If the condition is constant true, do not generate a branch.
4926   HBasicBlock* loop_successor = NULL;
4927   if (!stmt->cond()->ToBooleanIsTrue()) {
4928     HBasicBlock* body_entry = graph()->CreateBasicBlock();
4929     loop_successor = graph()->CreateBasicBlock();
4930     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
4931     if (body_entry->HasPredecessor()) {
4932       body_entry->SetJoinId(stmt->BodyId());
4933       set_current_block(body_entry);
4934     }
4935     if (loop_successor->HasPredecessor()) {
4936       loop_successor->SetJoinId(stmt->ExitId());
4937     } else {
4938       loop_successor = NULL;
4939     }
4940   }
4941 
4942   BreakAndContinueInfo break_info(stmt, scope());
4943   if (current_block() != NULL) {
4944     BreakAndContinueScope push(&break_info, this);
4945     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
4946   }
4947   HBasicBlock* body_exit =
4948       JoinContinue(stmt, current_block(), break_info.continue_block());
4949   HBasicBlock* loop_exit = CreateLoop(stmt,
4950                                       loop_entry,
4951                                       body_exit,
4952                                       loop_successor,
4953                                       break_info.break_block());
4954   set_current_block(loop_exit);
4955 }
4956 
4957 
VisitForStatement(ForStatement * stmt)4958 void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
4959   ASSERT(!HasStackOverflow());
4960   ASSERT(current_block() != NULL);
4961   ASSERT(current_block()->HasPredecessor());
4962   if (stmt->init() != NULL) {
4963     CHECK_ALIVE(Visit(stmt->init()));
4964   }
4965   ASSERT(current_block() != NULL);
4966   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
4967 
4968   HBasicBlock* loop_successor = NULL;
4969   if (stmt->cond() != NULL) {
4970     HBasicBlock* body_entry = graph()->CreateBasicBlock();
4971     loop_successor = graph()->CreateBasicBlock();
4972     CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
4973     if (body_entry->HasPredecessor()) {
4974       body_entry->SetJoinId(stmt->BodyId());
4975       set_current_block(body_entry);
4976     }
4977     if (loop_successor->HasPredecessor()) {
4978       loop_successor->SetJoinId(stmt->ExitId());
4979     } else {
4980       loop_successor = NULL;
4981     }
4982   }
4983 
4984   BreakAndContinueInfo break_info(stmt, scope());
4985   if (current_block() != NULL) {
4986     BreakAndContinueScope push(&break_info, this);
4987     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
4988   }
4989   HBasicBlock* body_exit =
4990       JoinContinue(stmt, current_block(), break_info.continue_block());
4991 
4992   if (stmt->next() != NULL && body_exit != NULL) {
4993     set_current_block(body_exit);
4994     CHECK_BAILOUT(Visit(stmt->next()));
4995     body_exit = current_block();
4996   }
4997 
4998   HBasicBlock* loop_exit = CreateLoop(stmt,
4999                                       loop_entry,
5000                                       body_exit,
5001                                       loop_successor,
5002                                       break_info.break_block());
5003   set_current_block(loop_exit);
5004 }
5005 
5006 
VisitForInStatement(ForInStatement * stmt)5007 void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
5008   ASSERT(!HasStackOverflow());
5009   ASSERT(current_block() != NULL);
5010   ASSERT(current_block()->HasPredecessor());
5011 
5012   if (!FLAG_optimize_for_in) {
5013     return Bailout(kForInStatementOptimizationIsDisabled);
5014   }
5015 
5016   if (stmt->for_in_type() != ForInStatement::FAST_FOR_IN) {
5017     return Bailout(kForInStatementIsNotFastCase);
5018   }
5019 
5020   if (!stmt->each()->IsVariableProxy() ||
5021       !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
5022     return Bailout(kForInStatementWithNonLocalEachVariable);
5023   }
5024 
5025   Variable* each_var = stmt->each()->AsVariableProxy()->var();
5026 
5027   CHECK_ALIVE(VisitForValue(stmt->enumerable()));
5028   HValue* enumerable = Top();  // Leave enumerable at the top.
5029 
5030   HInstruction* map = Add<HForInPrepareMap>(enumerable);
5031   Add<HSimulate>(stmt->PrepareId());
5032 
5033   HInstruction* array = Add<HForInCacheArray>(
5034       enumerable, map, DescriptorArray::kEnumCacheBridgeCacheIndex);
5035 
5036   HInstruction* enum_length = Add<HMapEnumLength>(map);
5037 
5038   HInstruction* start_index = Add<HConstant>(0);
5039 
5040   Push(map);
5041   Push(array);
5042   Push(enum_length);
5043   Push(start_index);
5044 
5045   HInstruction* index_cache = Add<HForInCacheArray>(
5046       enumerable, map, DescriptorArray::kEnumCacheBridgeIndicesCacheIndex);
5047   HForInCacheArray::cast(array)->set_index_cache(
5048       HForInCacheArray::cast(index_cache));
5049 
5050   HBasicBlock* loop_entry = BuildLoopEntry(stmt);
5051 
5052   HValue* index = environment()->ExpressionStackAt(0);
5053   HValue* limit = environment()->ExpressionStackAt(1);
5054 
5055   // Check that we still have more keys.
5056   HCompareNumericAndBranch* compare_index =
5057       New<HCompareNumericAndBranch>(index, limit, Token::LT);
5058   compare_index->set_observed_input_representation(
5059       Representation::Smi(), Representation::Smi());
5060 
5061   HBasicBlock* loop_body = graph()->CreateBasicBlock();
5062   HBasicBlock* loop_successor = graph()->CreateBasicBlock();
5063 
5064   compare_index->SetSuccessorAt(0, loop_body);
5065   compare_index->SetSuccessorAt(1, loop_successor);
5066   FinishCurrentBlock(compare_index);
5067 
5068   set_current_block(loop_successor);
5069   Drop(5);
5070 
5071   set_current_block(loop_body);
5072 
5073   HValue* key = Add<HLoadKeyed>(
5074       environment()->ExpressionStackAt(2),  // Enum cache.
5075       environment()->ExpressionStackAt(0),  // Iteration index.
5076       environment()->ExpressionStackAt(0),
5077       FAST_ELEMENTS);
5078 
5079   // Check if the expected map still matches that of the enumerable.
5080   // If not just deoptimize.
5081   Add<HCheckMapValue>(environment()->ExpressionStackAt(4),
5082                       environment()->ExpressionStackAt(3));
5083 
5084   Bind(each_var, key);
5085 
5086   BreakAndContinueInfo break_info(stmt, scope(), 5);
5087   {
5088     BreakAndContinueScope push(&break_info, this);
5089     CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry));
5090   }
5091 
5092   HBasicBlock* body_exit =
5093       JoinContinue(stmt, current_block(), break_info.continue_block());
5094 
5095   if (body_exit != NULL) {
5096     set_current_block(body_exit);
5097 
5098     HValue* current_index = Pop();
5099     Push(AddUncasted<HAdd>(current_index, graph()->GetConstant1()));
5100     body_exit = current_block();
5101   }
5102 
5103   HBasicBlock* loop_exit = CreateLoop(stmt,
5104                                       loop_entry,
5105                                       body_exit,
5106                                       loop_successor,
5107                                       break_info.break_block());
5108 
5109   set_current_block(loop_exit);
5110 }
5111 
5112 
VisitForOfStatement(ForOfStatement * stmt)5113 void HOptimizedGraphBuilder::VisitForOfStatement(ForOfStatement* stmt) {
5114   ASSERT(!HasStackOverflow());
5115   ASSERT(current_block() != NULL);
5116   ASSERT(current_block()->HasPredecessor());
5117   return Bailout(kForOfStatement);
5118 }
5119 
5120 
VisitTryCatchStatement(TryCatchStatement * stmt)5121 void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
5122   ASSERT(!HasStackOverflow());
5123   ASSERT(current_block() != NULL);
5124   ASSERT(current_block()->HasPredecessor());
5125   return Bailout(kTryCatchStatement);
5126 }
5127 
5128 
VisitTryFinallyStatement(TryFinallyStatement * stmt)5129 void HOptimizedGraphBuilder::VisitTryFinallyStatement(
5130     TryFinallyStatement* stmt) {
5131   ASSERT(!HasStackOverflow());
5132   ASSERT(current_block() != NULL);
5133   ASSERT(current_block()->HasPredecessor());
5134   return Bailout(kTryFinallyStatement);
5135 }
5136 
5137 
VisitDebuggerStatement(DebuggerStatement * stmt)5138 void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
5139   ASSERT(!HasStackOverflow());
5140   ASSERT(current_block() != NULL);
5141   ASSERT(current_block()->HasPredecessor());
5142   return Bailout(kDebuggerStatement);
5143 }
5144 
5145 
VisitCaseClause(CaseClause * clause)5146 void HOptimizedGraphBuilder::VisitCaseClause(CaseClause* clause) {
5147   UNREACHABLE();
5148 }
5149 
5150 
VisitFunctionLiteral(FunctionLiteral * expr)5151 void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
5152   ASSERT(!HasStackOverflow());
5153   ASSERT(current_block() != NULL);
5154   ASSERT(current_block()->HasPredecessor());
5155   Handle<SharedFunctionInfo> shared_info = expr->shared_info();
5156   if (shared_info.is_null()) {
5157     shared_info = Compiler::BuildFunctionInfo(expr, current_info()->script());
5158   }
5159   // We also have a stack overflow if the recursive compilation did.
5160   if (HasStackOverflow()) return;
5161   HFunctionLiteral* instr =
5162       New<HFunctionLiteral>(shared_info, expr->pretenure());
5163   return ast_context()->ReturnInstruction(instr, expr->id());
5164 }
5165 
5166 
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)5167 void HOptimizedGraphBuilder::VisitNativeFunctionLiteral(
5168     NativeFunctionLiteral* expr) {
5169   ASSERT(!HasStackOverflow());
5170   ASSERT(current_block() != NULL);
5171   ASSERT(current_block()->HasPredecessor());
5172   return Bailout(kNativeFunctionLiteral);
5173 }
5174 
5175 
VisitConditional(Conditional * expr)5176 void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
5177   ASSERT(!HasStackOverflow());
5178   ASSERT(current_block() != NULL);
5179   ASSERT(current_block()->HasPredecessor());
5180   HBasicBlock* cond_true = graph()->CreateBasicBlock();
5181   HBasicBlock* cond_false = graph()->CreateBasicBlock();
5182   CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
5183 
5184   // Visit the true and false subexpressions in the same AST context as the
5185   // whole expression.
5186   if (cond_true->HasPredecessor()) {
5187     cond_true->SetJoinId(expr->ThenId());
5188     set_current_block(cond_true);
5189     CHECK_BAILOUT(Visit(expr->then_expression()));
5190     cond_true = current_block();
5191   } else {
5192     cond_true = NULL;
5193   }
5194 
5195   if (cond_false->HasPredecessor()) {
5196     cond_false->SetJoinId(expr->ElseId());
5197     set_current_block(cond_false);
5198     CHECK_BAILOUT(Visit(expr->else_expression()));
5199     cond_false = current_block();
5200   } else {
5201     cond_false = NULL;
5202   }
5203 
5204   if (!ast_context()->IsTest()) {
5205     HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
5206     set_current_block(join);
5207     if (join != NULL && !ast_context()->IsEffect()) {
5208       return ast_context()->ReturnValue(Pop());
5209     }
5210   }
5211 }
5212 
5213 
5214 HOptimizedGraphBuilder::GlobalPropertyAccess
LookupGlobalProperty(Variable * var,LookupResult * lookup,PropertyAccessType access_type)5215     HOptimizedGraphBuilder::LookupGlobalProperty(
5216         Variable* var, LookupResult* lookup, PropertyAccessType access_type) {
5217   if (var->is_this() || !current_info()->has_global_object()) {
5218     return kUseGeneric;
5219   }
5220   Handle<GlobalObject> global(current_info()->global_object());
5221   global->Lookup(var->name(), lookup);
5222   if (!lookup->IsNormal() ||
5223       (access_type == STORE && lookup->IsReadOnly()) ||
5224       lookup->holder() != *global) {
5225     return kUseGeneric;
5226   }
5227 
5228   return kUseCell;
5229 }
5230 
5231 
BuildContextChainWalk(Variable * var)5232 HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
5233   ASSERT(var->IsContextSlot());
5234   HValue* context = environment()->context();
5235   int length = scope()->ContextChainLength(var->scope());
5236   while (length-- > 0) {
5237     context = Add<HLoadNamedField>(
5238         context, static_cast<HValue*>(NULL),
5239         HObjectAccess::ForContextSlot(Context::PREVIOUS_INDEX));
5240   }
5241   return context;
5242 }
5243 
5244 
VisitVariableProxy(VariableProxy * expr)5245 void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
5246   if (expr->is_this()) {
5247     current_info()->set_this_has_uses(true);
5248   }
5249 
5250   ASSERT(!HasStackOverflow());
5251   ASSERT(current_block() != NULL);
5252   ASSERT(current_block()->HasPredecessor());
5253   Variable* variable = expr->var();
5254   switch (variable->location()) {
5255     case Variable::UNALLOCATED: {
5256       if (IsLexicalVariableMode(variable->mode())) {
5257         // TODO(rossberg): should this be an ASSERT?
5258         return Bailout(kReferenceToGlobalLexicalVariable);
5259       }
5260       // Handle known global constants like 'undefined' specially to avoid a
5261       // load from a global cell for them.
5262       Handle<Object> constant_value =
5263           isolate()->factory()->GlobalConstantFor(variable->name());
5264       if (!constant_value.is_null()) {
5265         HConstant* instr = New<HConstant>(constant_value);
5266         return ast_context()->ReturnInstruction(instr, expr->id());
5267       }
5268 
5269       LookupResult lookup(isolate());
5270       GlobalPropertyAccess type = LookupGlobalProperty(variable, &lookup, LOAD);
5271 
5272       if (type == kUseCell &&
5273           current_info()->global_object()->IsAccessCheckNeeded()) {
5274         type = kUseGeneric;
5275       }
5276 
5277       if (type == kUseCell) {
5278         Handle<GlobalObject> global(current_info()->global_object());
5279         Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
5280         if (cell->type()->IsConstant()) {
5281           PropertyCell::AddDependentCompilationInfo(cell, top_info());
5282           Handle<Object> constant_object = cell->type()->AsConstant()->Value();
5283           if (constant_object->IsConsString()) {
5284             constant_object =
5285                 String::Flatten(Handle<String>::cast(constant_object));
5286           }
5287           HConstant* constant = New<HConstant>(constant_object);
5288           return ast_context()->ReturnInstruction(constant, expr->id());
5289         } else {
5290           HLoadGlobalCell* instr =
5291               New<HLoadGlobalCell>(cell, lookup.GetPropertyDetails());
5292           return ast_context()->ReturnInstruction(instr, expr->id());
5293         }
5294       } else {
5295         HValue* global_object = Add<HLoadNamedField>(
5296             context(), static_cast<HValue*>(NULL),
5297             HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
5298         HLoadGlobalGeneric* instr =
5299             New<HLoadGlobalGeneric>(global_object,
5300                                     variable->name(),
5301                                     ast_context()->is_for_typeof());
5302         return ast_context()->ReturnInstruction(instr, expr->id());
5303       }
5304     }
5305 
5306     case Variable::PARAMETER:
5307     case Variable::LOCAL: {
5308       HValue* value = LookupAndMakeLive(variable);
5309       if (value == graph()->GetConstantHole()) {
5310         ASSERT(IsDeclaredVariableMode(variable->mode()) &&
5311                variable->mode() != VAR);
5312         return Bailout(kReferenceToUninitializedVariable);
5313       }
5314       return ast_context()->ReturnValue(value);
5315     }
5316 
5317     case Variable::CONTEXT: {
5318       HValue* context = BuildContextChainWalk(variable);
5319       HLoadContextSlot::Mode mode;
5320       switch (variable->mode()) {
5321         case LET:
5322         case CONST:
5323           mode = HLoadContextSlot::kCheckDeoptimize;
5324           break;
5325         case CONST_LEGACY:
5326           mode = HLoadContextSlot::kCheckReturnUndefined;
5327           break;
5328         default:
5329           mode = HLoadContextSlot::kNoCheck;
5330           break;
5331       }
5332       HLoadContextSlot* instr =
5333           new(zone()) HLoadContextSlot(context, variable->index(), mode);
5334       return ast_context()->ReturnInstruction(instr, expr->id());
5335     }
5336 
5337     case Variable::LOOKUP:
5338       return Bailout(kReferenceToAVariableWhichRequiresDynamicLookup);
5339   }
5340 }
5341 
5342 
VisitLiteral(Literal * expr)5343 void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
5344   ASSERT(!HasStackOverflow());
5345   ASSERT(current_block() != NULL);
5346   ASSERT(current_block()->HasPredecessor());
5347   HConstant* instr = New<HConstant>(expr->value());
5348   return ast_context()->ReturnInstruction(instr, expr->id());
5349 }
5350 
5351 
VisitRegExpLiteral(RegExpLiteral * expr)5352 void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
5353   ASSERT(!HasStackOverflow());
5354   ASSERT(current_block() != NULL);
5355   ASSERT(current_block()->HasPredecessor());
5356   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5357   Handle<FixedArray> literals(closure->literals());
5358   HRegExpLiteral* instr = New<HRegExpLiteral>(literals,
5359                                               expr->pattern(),
5360                                               expr->flags(),
5361                                               expr->literal_index());
5362   return ast_context()->ReturnInstruction(instr, expr->id());
5363 }
5364 
5365 
CanInlinePropertyAccess(Type * type)5366 static bool CanInlinePropertyAccess(Type* type) {
5367   if (type->Is(Type::NumberOrString())) return true;
5368   if (!type->IsClass()) return false;
5369   Handle<Map> map = type->AsClass()->Map();
5370   return map->IsJSObjectMap() &&
5371       !map->is_dictionary_map() &&
5372       !map->has_named_interceptor();
5373 }
5374 
5375 
5376 // Determines whether the given array or object literal boilerplate satisfies
5377 // all limits to be considered for fast deep-copying and computes the total
5378 // size of all objects that are part of the graph.
IsFastLiteral(Handle<JSObject> boilerplate,int max_depth,int * max_properties)5379 static bool IsFastLiteral(Handle<JSObject> boilerplate,
5380                           int max_depth,
5381                           int* max_properties) {
5382   if (boilerplate->map()->is_deprecated() &&
5383       !JSObject::TryMigrateInstance(boilerplate)) {
5384     return false;
5385   }
5386 
5387   ASSERT(max_depth >= 0 && *max_properties >= 0);
5388   if (max_depth == 0) return false;
5389 
5390   Isolate* isolate = boilerplate->GetIsolate();
5391   Handle<FixedArrayBase> elements(boilerplate->elements());
5392   if (elements->length() > 0 &&
5393       elements->map() != isolate->heap()->fixed_cow_array_map()) {
5394     if (boilerplate->HasFastObjectElements()) {
5395       Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
5396       int length = elements->length();
5397       for (int i = 0; i < length; i++) {
5398         if ((*max_properties)-- == 0) return false;
5399         Handle<Object> value(fast_elements->get(i), isolate);
5400         if (value->IsJSObject()) {
5401           Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5402           if (!IsFastLiteral(value_object,
5403                              max_depth - 1,
5404                              max_properties)) {
5405             return false;
5406           }
5407         }
5408       }
5409     } else if (!boilerplate->HasFastDoubleElements()) {
5410       return false;
5411     }
5412   }
5413 
5414   Handle<FixedArray> properties(boilerplate->properties());
5415   if (properties->length() > 0) {
5416     return false;
5417   } else {
5418     Handle<DescriptorArray> descriptors(
5419         boilerplate->map()->instance_descriptors());
5420     int limit = boilerplate->map()->NumberOfOwnDescriptors();
5421     for (int i = 0; i < limit; i++) {
5422       PropertyDetails details = descriptors->GetDetails(i);
5423       if (details.type() != FIELD) continue;
5424       int index = descriptors->GetFieldIndex(i);
5425       if ((*max_properties)-- == 0) return false;
5426       Handle<Object> value(boilerplate->InObjectPropertyAt(index), isolate);
5427       if (value->IsJSObject()) {
5428         Handle<JSObject> value_object = Handle<JSObject>::cast(value);
5429         if (!IsFastLiteral(value_object,
5430                            max_depth - 1,
5431                            max_properties)) {
5432           return false;
5433         }
5434       }
5435     }
5436   }
5437   return true;
5438 }
5439 
5440 
VisitObjectLiteral(ObjectLiteral * expr)5441 void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
5442   ASSERT(!HasStackOverflow());
5443   ASSERT(current_block() != NULL);
5444   ASSERT(current_block()->HasPredecessor());
5445   expr->BuildConstantProperties(isolate());
5446   Handle<JSFunction> closure = function_state()->compilation_info()->closure();
5447   HInstruction* literal;
5448 
5449   // Check whether to use fast or slow deep-copying for boilerplate.
5450   int max_properties = kMaxFastLiteralProperties;
5451   Handle<Object> literals_cell(closure->literals()->get(expr->literal_index()),
5452                                isolate());
5453   Handle<AllocationSite> site;
5454   Handle<JSObject> boilerplate;
5455   if (!literals_cell->IsUndefined()) {
5456     // Retrieve the boilerplate
5457     site = Handle<AllocationSite>::cast(literals_cell);
5458     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
5459                                    isolate());
5460   }
5461 
5462   if (!boilerplate.is_null() &&
5463       IsFastLiteral(boilerplate, kMaxFastLiteralDepth, &max_properties)) {
5464     AllocationSiteUsageContext usage_context(isolate(), site, false);
5465     usage_context.EnterNewScope();
5466     literal = BuildFastLiteral(boilerplate, &usage_context);
5467     usage_context.ExitScope(site, boilerplate);
5468   } else {
5469     NoObservableSideEffectsScope no_effects(this);
5470     Handle<FixedArray> closure_literals(closure->literals(), isolate());
5471     Handle<FixedArray> constant_properties = expr->constant_properties();
5472     int literal_index = expr->literal_index();
5473     int flags = expr->fast_elements()
5474         ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags;
5475     flags |= expr->has_function()
5476         ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags;
5477 
5478     Add<HPushArguments>(Add<HConstant>(closure_literals),
5479                         Add<HConstant>(literal_index),
5480                         Add<HConstant>(constant_properties),
5481                         Add<HConstant>(flags));
5482 
5483     // TODO(mvstanton): Add a flag to turn off creation of any
5484     // AllocationMementos for this call: we are in crankshaft and should have
5485     // learned enough about transition behavior to stop emitting mementos.
5486     Runtime::FunctionId function_id = Runtime::kHiddenCreateObjectLiteral;
5487     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5488                                 Runtime::FunctionForId(function_id),
5489                                 4);
5490   }
5491 
5492   // The object is expected in the bailout environment during computation
5493   // of the property values and is the value of the entire expression.
5494   Push(literal);
5495 
5496   expr->CalculateEmitStore(zone());
5497 
5498   for (int i = 0; i < expr->properties()->length(); i++) {
5499     ObjectLiteral::Property* property = expr->properties()->at(i);
5500     if (property->IsCompileTimeValue()) continue;
5501 
5502     Literal* key = property->key();
5503     Expression* value = property->value();
5504 
5505     switch (property->kind()) {
5506       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
5507         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
5508         // Fall through.
5509       case ObjectLiteral::Property::COMPUTED:
5510         if (key->value()->IsInternalizedString()) {
5511           if (property->emit_store()) {
5512             CHECK_ALIVE(VisitForValue(value));
5513             HValue* value = Pop();
5514             Handle<Map> map = property->GetReceiverType();
5515             Handle<String> name = property->key()->AsPropertyName();
5516             HInstruction* store;
5517             if (map.is_null()) {
5518               // If we don't know the monomorphic type, do a generic store.
5519               CHECK_ALIVE(store = BuildNamedGeneric(
5520                   STORE, literal, name, value));
5521             } else {
5522               PropertyAccessInfo info(this, STORE, ToType(map), name);
5523               if (info.CanAccessMonomorphic()) {
5524                 HValue* checked_literal = Add<HCheckMaps>(literal, map);
5525                 ASSERT(!info.lookup()->IsPropertyCallbacks());
5526                 store = BuildMonomorphicAccess(
5527                     &info, literal, checked_literal, value,
5528                     BailoutId::None(), BailoutId::None());
5529               } else {
5530                 CHECK_ALIVE(store = BuildNamedGeneric(
5531                     STORE, literal, name, value));
5532               }
5533             }
5534             AddInstruction(store);
5535             if (store->HasObservableSideEffects()) {
5536               Add<HSimulate>(key->id(), REMOVABLE_SIMULATE);
5537             }
5538           } else {
5539             CHECK_ALIVE(VisitForEffect(value));
5540           }
5541           break;
5542         }
5543         // Fall through.
5544       case ObjectLiteral::Property::PROTOTYPE:
5545       case ObjectLiteral::Property::SETTER:
5546       case ObjectLiteral::Property::GETTER:
5547         return Bailout(kObjectLiteralWithComplexProperty);
5548       default: UNREACHABLE();
5549     }
5550   }
5551 
5552   if (expr->has_function()) {
5553     // Return the result of the transformation to fast properties
5554     // instead of the original since this operation changes the map
5555     // of the object. This makes sure that the original object won't
5556     // be used by other optimized code before it is transformed
5557     // (e.g. because of code motion).
5558     HToFastProperties* result = Add<HToFastProperties>(Pop());
5559     return ast_context()->ReturnValue(result);
5560   } else {
5561     return ast_context()->ReturnValue(Pop());
5562   }
5563 }
5564 
5565 
VisitArrayLiteral(ArrayLiteral * expr)5566 void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
5567   ASSERT(!HasStackOverflow());
5568   ASSERT(current_block() != NULL);
5569   ASSERT(current_block()->HasPredecessor());
5570   expr->BuildConstantElements(isolate());
5571   ZoneList<Expression*>* subexprs = expr->values();
5572   int length = subexprs->length();
5573   HInstruction* literal;
5574 
5575   Handle<AllocationSite> site;
5576   Handle<FixedArray> literals(environment()->closure()->literals(), isolate());
5577   bool uninitialized = false;
5578   Handle<Object> literals_cell(literals->get(expr->literal_index()),
5579                                isolate());
5580   Handle<JSObject> boilerplate_object;
5581   if (literals_cell->IsUndefined()) {
5582     uninitialized = true;
5583     Handle<Object> raw_boilerplate;
5584     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5585         isolate(), raw_boilerplate,
5586         Runtime::CreateArrayLiteralBoilerplate(
5587             isolate(), literals, expr->constant_elements()),
5588         Bailout(kArrayBoilerplateCreationFailed));
5589 
5590     boilerplate_object = Handle<JSObject>::cast(raw_boilerplate);
5591     AllocationSiteCreationContext creation_context(isolate());
5592     site = creation_context.EnterNewScope();
5593     if (JSObject::DeepWalk(boilerplate_object, &creation_context).is_null()) {
5594       return Bailout(kArrayBoilerplateCreationFailed);
5595     }
5596     creation_context.ExitScope(site, boilerplate_object);
5597     literals->set(expr->literal_index(), *site);
5598 
5599     if (boilerplate_object->elements()->map() ==
5600         isolate()->heap()->fixed_cow_array_map()) {
5601       isolate()->counters()->cow_arrays_created_runtime()->Increment();
5602     }
5603   } else {
5604     ASSERT(literals_cell->IsAllocationSite());
5605     site = Handle<AllocationSite>::cast(literals_cell);
5606     boilerplate_object = Handle<JSObject>(
5607         JSObject::cast(site->transition_info()), isolate());
5608   }
5609 
5610   ASSERT(!boilerplate_object.is_null());
5611   ASSERT(site->SitePointsToLiteral());
5612 
5613   ElementsKind boilerplate_elements_kind =
5614       boilerplate_object->GetElementsKind();
5615 
5616   // Check whether to use fast or slow deep-copying for boilerplate.
5617   int max_properties = kMaxFastLiteralProperties;
5618   if (IsFastLiteral(boilerplate_object,
5619                     kMaxFastLiteralDepth,
5620                     &max_properties)) {
5621     AllocationSiteUsageContext usage_context(isolate(), site, false);
5622     usage_context.EnterNewScope();
5623     literal = BuildFastLiteral(boilerplate_object, &usage_context);
5624     usage_context.ExitScope(site, boilerplate_object);
5625   } else {
5626     NoObservableSideEffectsScope no_effects(this);
5627     // Boilerplate already exists and constant elements are never accessed,
5628     // pass an empty fixed array to the runtime function instead.
5629     Handle<FixedArray> constants = isolate()->factory()->empty_fixed_array();
5630     int literal_index = expr->literal_index();
5631     int flags = expr->depth() == 1
5632         ? ArrayLiteral::kShallowElements
5633         : ArrayLiteral::kNoFlags;
5634     flags |= ArrayLiteral::kDisableMementos;
5635 
5636     Add<HPushArguments>(Add<HConstant>(literals),
5637                         Add<HConstant>(literal_index),
5638                         Add<HConstant>(constants),
5639                         Add<HConstant>(flags));
5640 
5641     // TODO(mvstanton): Consider a flag to turn off creation of any
5642     // AllocationMementos for this call: we are in crankshaft and should have
5643     // learned enough about transition behavior to stop emitting mementos.
5644     Runtime::FunctionId function_id = Runtime::kHiddenCreateArrayLiteral;
5645     literal = Add<HCallRuntime>(isolate()->factory()->empty_string(),
5646                                 Runtime::FunctionForId(function_id),
5647                                 4);
5648 
5649     // De-opt if elements kind changed from boilerplate_elements_kind.
5650     Handle<Map> map = Handle<Map>(boilerplate_object->map(), isolate());
5651     literal = Add<HCheckMaps>(literal, map);
5652   }
5653 
5654   // The array is expected in the bailout environment during computation
5655   // of the property values and is the value of the entire expression.
5656   Push(literal);
5657   // The literal index is on the stack, too.
5658   Push(Add<HConstant>(expr->literal_index()));
5659 
5660   HInstruction* elements = NULL;
5661 
5662   for (int i = 0; i < length; i++) {
5663     Expression* subexpr = subexprs->at(i);
5664     // If the subexpression is a literal or a simple materialized literal it
5665     // is already set in the cloned array.
5666     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
5667 
5668     CHECK_ALIVE(VisitForValue(subexpr));
5669     HValue* value = Pop();
5670     if (!Smi::IsValid(i)) return Bailout(kNonSmiKeyInArrayLiteral);
5671 
5672     elements = AddLoadElements(literal);
5673 
5674     HValue* key = Add<HConstant>(i);
5675 
5676     switch (boilerplate_elements_kind) {
5677       case FAST_SMI_ELEMENTS:
5678       case FAST_HOLEY_SMI_ELEMENTS:
5679       case FAST_ELEMENTS:
5680       case FAST_HOLEY_ELEMENTS:
5681       case FAST_DOUBLE_ELEMENTS:
5682       case FAST_HOLEY_DOUBLE_ELEMENTS: {
5683         HStoreKeyed* instr = Add<HStoreKeyed>(elements, key, value,
5684                                               boilerplate_elements_kind);
5685         instr->SetUninitialized(uninitialized);
5686         break;
5687       }
5688       default:
5689         UNREACHABLE();
5690         break;
5691     }
5692 
5693     Add<HSimulate>(expr->GetIdForElement(i));
5694   }
5695 
5696   Drop(1);  // array literal index
5697   return ast_context()->ReturnValue(Pop());
5698 }
5699 
5700 
AddCheckMap(HValue * object,Handle<Map> map)5701 HCheckMaps* HOptimizedGraphBuilder::AddCheckMap(HValue* object,
5702                                                 Handle<Map> map) {
5703   BuildCheckHeapObject(object);
5704   return Add<HCheckMaps>(object, map);
5705 }
5706 
5707 
BuildLoadNamedField(PropertyAccessInfo * info,HValue * checked_object)5708 HInstruction* HOptimizedGraphBuilder::BuildLoadNamedField(
5709     PropertyAccessInfo* info,
5710     HValue* checked_object) {
5711   // See if this is a load for an immutable property
5712   if (checked_object->ActualValue()->IsConstant() &&
5713       info->lookup()->IsCacheable() &&
5714       info->lookup()->IsReadOnly() && info->lookup()->IsDontDelete()) {
5715     Handle<Object> object(
5716         HConstant::cast(checked_object->ActualValue())->handle(isolate()));
5717 
5718     if (object->IsJSObject()) {
5719       LookupResult lookup(isolate());
5720       Handle<JSObject>::cast(object)->Lookup(info->name(), &lookup);
5721       Handle<Object> value(lookup.GetLazyValue(), isolate());
5722 
5723       if (!value->IsTheHole()) {
5724         return New<HConstant>(value);
5725       }
5726     }
5727   }
5728 
5729   HObjectAccess access = info->access();
5730   if (access.representation().IsDouble()) {
5731     // Load the heap number.
5732     checked_object = Add<HLoadNamedField>(
5733         checked_object, static_cast<HValue*>(NULL),
5734         access.WithRepresentation(Representation::Tagged()));
5735     // Load the double value from it.
5736     access = HObjectAccess::ForHeapNumberValue();
5737   }
5738 
5739   SmallMapList* map_list = info->field_maps();
5740   if (map_list->length() == 0) {
5741     return New<HLoadNamedField>(checked_object, checked_object, access);
5742   }
5743 
5744   UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>(map_list->length(), zone());
5745   for (int i = 0; i < map_list->length(); ++i) {
5746     maps->Add(Unique<Map>::CreateImmovable(map_list->at(i)), zone());
5747   }
5748   return New<HLoadNamedField>(
5749       checked_object, checked_object, access, maps, info->field_type());
5750 }
5751 
5752 
BuildStoreNamedField(PropertyAccessInfo * info,HValue * checked_object,HValue * value)5753 HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
5754     PropertyAccessInfo* info,
5755     HValue* checked_object,
5756     HValue* value) {
5757   bool transition_to_field = info->lookup()->IsTransition();
5758   // TODO(verwaest): Move this logic into PropertyAccessInfo.
5759   HObjectAccess field_access = info->access();
5760 
5761   HStoreNamedField *instr;
5762   if (field_access.representation().IsDouble()) {
5763     HObjectAccess heap_number_access =
5764         field_access.WithRepresentation(Representation::Tagged());
5765     if (transition_to_field) {
5766       // The store requires a mutable HeapNumber to be allocated.
5767       NoObservableSideEffectsScope no_side_effects(this);
5768       HInstruction* heap_number_size = Add<HConstant>(HeapNumber::kSize);
5769 
5770       // TODO(hpayer): Allocation site pretenuring support.
5771       HInstruction* heap_number = Add<HAllocate>(heap_number_size,
5772           HType::HeapObject(),
5773           NOT_TENURED,
5774           HEAP_NUMBER_TYPE);
5775       AddStoreMapConstant(heap_number, isolate()->factory()->heap_number_map());
5776       Add<HStoreNamedField>(heap_number, HObjectAccess::ForHeapNumberValue(),
5777                             value);
5778       instr = New<HStoreNamedField>(checked_object->ActualValue(),
5779                                     heap_number_access,
5780                                     heap_number);
5781     } else {
5782       // Already holds a HeapNumber; load the box and write its value field.
5783       HInstruction* heap_number = Add<HLoadNamedField>(
5784           checked_object, static_cast<HValue*>(NULL), heap_number_access);
5785       instr = New<HStoreNamedField>(heap_number,
5786                                     HObjectAccess::ForHeapNumberValue(),
5787                                     value, STORE_TO_INITIALIZED_ENTRY);
5788     }
5789   } else {
5790     if (field_access.representation().IsHeapObject()) {
5791       BuildCheckHeapObject(value);
5792     }
5793 
5794     if (!info->field_maps()->is_empty()) {
5795       ASSERT(field_access.representation().IsHeapObject());
5796       value = Add<HCheckMaps>(value, info->field_maps());
5797     }
5798 
5799     // This is a normal store.
5800     instr = New<HStoreNamedField>(
5801         checked_object->ActualValue(), field_access, value,
5802         transition_to_field ? INITIALIZING_STORE : STORE_TO_INITIALIZED_ENTRY);
5803   }
5804 
5805   if (transition_to_field) {
5806     Handle<Map> transition(info->transition());
5807     ASSERT(!transition->is_deprecated());
5808     instr->SetTransition(Add<HConstant>(transition));
5809   }
5810   return instr;
5811 }
5812 
5813 
IsCompatible(PropertyAccessInfo * info)5814 bool HOptimizedGraphBuilder::PropertyAccessInfo::IsCompatible(
5815     PropertyAccessInfo* info) {
5816   if (!CanInlinePropertyAccess(type_)) return false;
5817 
5818   // Currently only handle Type::Number as a polymorphic case.
5819   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
5820   // instruction.
5821   if (type_->Is(Type::Number())) return false;
5822 
5823   // Values are only compatible for monomorphic load if they all behave the same
5824   // regarding value wrappers.
5825   if (type_->Is(Type::NumberOrString())) {
5826     if (!info->type_->Is(Type::NumberOrString())) return false;
5827   } else {
5828     if (info->type_->Is(Type::NumberOrString())) return false;
5829   }
5830 
5831   if (!LookupDescriptor()) return false;
5832 
5833   if (!lookup_.IsFound()) {
5834     return (!info->lookup_.IsFound() || info->has_holder()) &&
5835         map()->prototype() == info->map()->prototype();
5836   }
5837 
5838   // Mismatch if the other access info found the property in the prototype
5839   // chain.
5840   if (info->has_holder()) return false;
5841 
5842   if (lookup_.IsPropertyCallbacks()) {
5843     return accessor_.is_identical_to(info->accessor_) &&
5844         api_holder_.is_identical_to(info->api_holder_);
5845   }
5846 
5847   if (lookup_.IsConstant()) {
5848     return constant_.is_identical_to(info->constant_);
5849   }
5850 
5851   ASSERT(lookup_.IsField());
5852   if (!info->lookup_.IsField()) return false;
5853 
5854   Representation r = access_.representation();
5855   if (IsLoad()) {
5856     if (!info->access_.representation().IsCompatibleForLoad(r)) return false;
5857   } else {
5858     if (!info->access_.representation().IsCompatibleForStore(r)) return false;
5859   }
5860   if (info->access_.offset() != access_.offset()) return false;
5861   if (info->access_.IsInobject() != access_.IsInobject()) return false;
5862   if (IsLoad()) {
5863     if (field_maps_.is_empty()) {
5864       info->field_maps_.Clear();
5865     } else if (!info->field_maps_.is_empty()) {
5866       for (int i = 0; i < field_maps_.length(); ++i) {
5867         info->field_maps_.AddMapIfMissing(field_maps_.at(i), info->zone());
5868       }
5869       info->field_maps_.Sort();
5870     }
5871   } else {
5872     // We can only merge stores that agree on their field maps. The comparison
5873     // below is safe, since we keep the field maps sorted.
5874     if (field_maps_.length() != info->field_maps_.length()) return false;
5875     for (int i = 0; i < field_maps_.length(); ++i) {
5876       if (!field_maps_.at(i).is_identical_to(info->field_maps_.at(i))) {
5877         return false;
5878       }
5879     }
5880   }
5881   info->GeneralizeRepresentation(r);
5882   info->field_type_ = info->field_type_.Combine(field_type_);
5883   return true;
5884 }
5885 
5886 
LookupDescriptor()5887 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupDescriptor() {
5888   if (!type_->IsClass()) return true;
5889   map()->LookupDescriptor(NULL, *name_, &lookup_);
5890   return LoadResult(map());
5891 }
5892 
5893 
LoadResult(Handle<Map> map)5894 bool HOptimizedGraphBuilder::PropertyAccessInfo::LoadResult(Handle<Map> map) {
5895   if (!IsLoad() && lookup_.IsProperty() &&
5896       (lookup_.IsReadOnly() || !lookup_.IsCacheable())) {
5897     return false;
5898   }
5899 
5900   if (lookup_.IsField()) {
5901     // Construct the object field access.
5902     access_ = HObjectAccess::ForField(map, &lookup_, name_);
5903 
5904     // Load field map for heap objects.
5905     LoadFieldMaps(map);
5906   } else if (lookup_.IsPropertyCallbacks()) {
5907     Handle<Object> callback(lookup_.GetValueFromMap(*map), isolate());
5908     if (!callback->IsAccessorPair()) return false;
5909     Object* raw_accessor = IsLoad()
5910         ? Handle<AccessorPair>::cast(callback)->getter()
5911         : Handle<AccessorPair>::cast(callback)->setter();
5912     if (!raw_accessor->IsJSFunction()) return false;
5913     Handle<JSFunction> accessor = handle(JSFunction::cast(raw_accessor));
5914     if (accessor->shared()->IsApiFunction()) {
5915       CallOptimization call_optimization(accessor);
5916       if (call_optimization.is_simple_api_call()) {
5917         CallOptimization::HolderLookup holder_lookup;
5918         Handle<Map> receiver_map = this->map();
5919         api_holder_ = call_optimization.LookupHolderOfExpectedType(
5920             receiver_map, &holder_lookup);
5921       }
5922     }
5923     accessor_ = accessor;
5924   } else if (lookup_.IsConstant()) {
5925     constant_ = handle(lookup_.GetConstantFromMap(*map), isolate());
5926   }
5927 
5928   return true;
5929 }
5930 
5931 
LoadFieldMaps(Handle<Map> map)5932 void HOptimizedGraphBuilder::PropertyAccessInfo::LoadFieldMaps(
5933     Handle<Map> map) {
5934   // Clear any previously collected field maps/type.
5935   field_maps_.Clear();
5936   field_type_ = HType::Tagged();
5937 
5938   // Figure out the field type from the accessor map.
5939   Handle<HeapType> field_type(lookup_.GetFieldTypeFromMap(*map), isolate());
5940 
5941   // Collect the (stable) maps from the field type.
5942   int num_field_maps = field_type->NumClasses();
5943   if (num_field_maps == 0) return;
5944   ASSERT(access_.representation().IsHeapObject());
5945   field_maps_.Reserve(num_field_maps, zone());
5946   HeapType::Iterator<Map> it = field_type->Classes();
5947   while (!it.Done()) {
5948     Handle<Map> field_map = it.Current();
5949     if (!field_map->is_stable()) {
5950       field_maps_.Clear();
5951       return;
5952     }
5953     field_maps_.Add(field_map, zone());
5954     it.Advance();
5955   }
5956   field_maps_.Sort();
5957   ASSERT_EQ(num_field_maps, field_maps_.length());
5958 
5959   // Determine field HType from field HeapType.
5960   field_type_ = HType::FromType<HeapType>(field_type);
5961   ASSERT(field_type_.IsHeapObject());
5962 
5963   // Add dependency on the map that introduced the field.
5964   Map::AddDependentCompilationInfo(
5965       handle(lookup_.GetFieldOwnerFromMap(*map), isolate()),
5966       DependentCode::kFieldTypeGroup, top_info());
5967 }
5968 
5969 
LookupInPrototypes()5970 bool HOptimizedGraphBuilder::PropertyAccessInfo::LookupInPrototypes() {
5971   Handle<Map> map = this->map();
5972 
5973   while (map->prototype()->IsJSObject()) {
5974     holder_ = handle(JSObject::cast(map->prototype()));
5975     if (holder_->map()->is_deprecated()) {
5976       JSObject::TryMigrateInstance(holder_);
5977     }
5978     map = Handle<Map>(holder_->map());
5979     if (!CanInlinePropertyAccess(ToType(map))) {
5980       lookup_.NotFound();
5981       return false;
5982     }
5983     map->LookupDescriptor(*holder_, *name_, &lookup_);
5984     if (lookup_.IsFound()) return LoadResult(map);
5985   }
5986   lookup_.NotFound();
5987   return true;
5988 }
5989 
5990 
CanAccessMonomorphic()5991 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessMonomorphic() {
5992   if (!CanInlinePropertyAccess(type_)) return false;
5993   if (IsJSObjectFieldAccessor()) return IsLoad();
5994   if (!LookupDescriptor()) return false;
5995   if (lookup_.IsFound()) {
5996     if (IsLoad()) return true;
5997     return !lookup_.IsReadOnly() && lookup_.IsCacheable();
5998   }
5999   if (!LookupInPrototypes()) return false;
6000   if (IsLoad()) return true;
6001 
6002   if (lookup_.IsPropertyCallbacks()) return true;
6003   Handle<Map> map = this->map();
6004   map->LookupTransition(NULL, *name_, &lookup_);
6005   if (lookup_.IsTransitionToField() && map->unused_property_fields() > 0) {
6006     // Construct the object field access.
6007     access_ = HObjectAccess::ForField(map, &lookup_, name_);
6008 
6009     // Load field map for heap objects.
6010     LoadFieldMaps(transition());
6011     return true;
6012   }
6013   return false;
6014 }
6015 
6016 
CanAccessAsMonomorphic(SmallMapList * types)6017 bool HOptimizedGraphBuilder::PropertyAccessInfo::CanAccessAsMonomorphic(
6018     SmallMapList* types) {
6019   ASSERT(type_->Is(ToType(types->first())));
6020   if (!CanAccessMonomorphic()) return false;
6021   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6022   if (types->length() > kMaxLoadPolymorphism) return false;
6023 
6024   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6025   if (GetJSObjectFieldAccess(&access)) {
6026     for (int i = 1; i < types->length(); ++i) {
6027       PropertyAccessInfo test_info(
6028           builder_, access_type_, ToType(types->at(i)), name_);
6029       HObjectAccess test_access = HObjectAccess::ForMap();  // bogus default
6030       if (!test_info.GetJSObjectFieldAccess(&test_access)) return false;
6031       if (!access.Equals(test_access)) return false;
6032     }
6033     return true;
6034   }
6035 
6036   // Currently only handle Type::Number as a polymorphic case.
6037   // TODO(verwaest): Support monomorphic handling of numbers with a HCheckNumber
6038   // instruction.
6039   if (type_->Is(Type::Number())) return false;
6040 
6041   // Multiple maps cannot transition to the same target map.
6042   ASSERT(!IsLoad() || !lookup_.IsTransition());
6043   if (lookup_.IsTransition() && types->length() > 1) return false;
6044 
6045   for (int i = 1; i < types->length(); ++i) {
6046     PropertyAccessInfo test_info(
6047         builder_, access_type_, ToType(types->at(i)), name_);
6048     if (!test_info.IsCompatible(this)) return false;
6049   }
6050 
6051   return true;
6052 }
6053 
6054 
NeedsWrappingFor(Type * type,Handle<JSFunction> target)6055 static bool NeedsWrappingFor(Type* type, Handle<JSFunction> target) {
6056   return type->Is(Type::NumberOrString()) &&
6057       target->shared()->strict_mode() == SLOPPY &&
6058       !target->shared()->native();
6059 }
6060 
6061 
BuildMonomorphicAccess(PropertyAccessInfo * info,HValue * object,HValue * checked_object,HValue * value,BailoutId ast_id,BailoutId return_id,bool can_inline_accessor)6062 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicAccess(
6063     PropertyAccessInfo* info,
6064     HValue* object,
6065     HValue* checked_object,
6066     HValue* value,
6067     BailoutId ast_id,
6068     BailoutId return_id,
6069     bool can_inline_accessor) {
6070 
6071   HObjectAccess access = HObjectAccess::ForMap();  // bogus default
6072   if (info->GetJSObjectFieldAccess(&access)) {
6073     ASSERT(info->IsLoad());
6074     return New<HLoadNamedField>(object, checked_object, access);
6075   }
6076 
6077   HValue* checked_holder = checked_object;
6078   if (info->has_holder()) {
6079     Handle<JSObject> prototype(JSObject::cast(info->map()->prototype()));
6080     checked_holder = BuildCheckPrototypeMaps(prototype, info->holder());
6081   }
6082 
6083   if (!info->lookup()->IsFound()) {
6084     ASSERT(info->IsLoad());
6085     return graph()->GetConstantUndefined();
6086   }
6087 
6088   if (info->lookup()->IsField()) {
6089     if (info->IsLoad()) {
6090       return BuildLoadNamedField(info, checked_holder);
6091     } else {
6092       return BuildStoreNamedField(info, checked_object, value);
6093     }
6094   }
6095 
6096   if (info->lookup()->IsTransition()) {
6097     ASSERT(!info->IsLoad());
6098     return BuildStoreNamedField(info, checked_object, value);
6099   }
6100 
6101   if (info->lookup()->IsPropertyCallbacks()) {
6102     Push(checked_object);
6103     int argument_count = 1;
6104     if (!info->IsLoad()) {
6105       argument_count = 2;
6106       Push(value);
6107     }
6108 
6109     if (NeedsWrappingFor(info->type(), info->accessor())) {
6110       HValue* function = Add<HConstant>(info->accessor());
6111       PushArgumentsFromEnvironment(argument_count);
6112       return New<HCallFunction>(function, argument_count, WRAP_AND_CALL);
6113     } else if (FLAG_inline_accessors && can_inline_accessor) {
6114       bool success = info->IsLoad()
6115           ? TryInlineGetter(info->accessor(), info->map(), ast_id, return_id)
6116           : TryInlineSetter(
6117               info->accessor(), info->map(), ast_id, return_id, value);
6118       if (success || HasStackOverflow()) return NULL;
6119     }
6120 
6121     PushArgumentsFromEnvironment(argument_count);
6122     return BuildCallConstantFunction(info->accessor(), argument_count);
6123   }
6124 
6125   ASSERT(info->lookup()->IsConstant());
6126   if (info->IsLoad()) {
6127     return New<HConstant>(info->constant());
6128   } else {
6129     return New<HCheckValue>(value, Handle<JSFunction>::cast(info->constant()));
6130   }
6131 }
6132 
6133 
HandlePolymorphicNamedFieldAccess(PropertyAccessType access_type,BailoutId ast_id,BailoutId return_id,HValue * object,HValue * value,SmallMapList * types,Handle<String> name)6134 void HOptimizedGraphBuilder::HandlePolymorphicNamedFieldAccess(
6135     PropertyAccessType access_type,
6136     BailoutId ast_id,
6137     BailoutId return_id,
6138     HValue* object,
6139     HValue* value,
6140     SmallMapList* types,
6141     Handle<String> name) {
6142   // Something did not match; must use a polymorphic load.
6143   int count = 0;
6144   HBasicBlock* join = NULL;
6145   HBasicBlock* number_block = NULL;
6146   bool handled_string = false;
6147 
6148   bool handle_smi = false;
6149   STATIC_ASSERT(kMaxLoadPolymorphism == kMaxStorePolymorphism);
6150   for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
6151     PropertyAccessInfo info(this, access_type, ToType(types->at(i)), name);
6152     if (info.type()->Is(Type::String())) {
6153       if (handled_string) continue;
6154       handled_string = true;
6155     }
6156     if (info.CanAccessMonomorphic()) {
6157       count++;
6158       if (info.type()->Is(Type::Number())) {
6159         handle_smi = true;
6160         break;
6161       }
6162     }
6163   }
6164 
6165   count = 0;
6166   HControlInstruction* smi_check = NULL;
6167   handled_string = false;
6168 
6169   for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
6170     PropertyAccessInfo info(this, access_type, ToType(types->at(i)), name);
6171     if (info.type()->Is(Type::String())) {
6172       if (handled_string) continue;
6173       handled_string = true;
6174     }
6175     if (!info.CanAccessMonomorphic()) continue;
6176 
6177     if (count == 0) {
6178       join = graph()->CreateBasicBlock();
6179       if (handle_smi) {
6180         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
6181         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
6182         number_block = graph()->CreateBasicBlock();
6183         smi_check = New<HIsSmiAndBranch>(
6184             object, empty_smi_block, not_smi_block);
6185         FinishCurrentBlock(smi_check);
6186         GotoNoSimulate(empty_smi_block, number_block);
6187         set_current_block(not_smi_block);
6188       } else {
6189         BuildCheckHeapObject(object);
6190       }
6191     }
6192     ++count;
6193     HBasicBlock* if_true = graph()->CreateBasicBlock();
6194     HBasicBlock* if_false = graph()->CreateBasicBlock();
6195     HUnaryControlInstruction* compare;
6196 
6197     HValue* dependency;
6198     if (info.type()->Is(Type::Number())) {
6199       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
6200       compare = New<HCompareMap>(object, heap_number_map, if_true, if_false);
6201       dependency = smi_check;
6202     } else if (info.type()->Is(Type::String())) {
6203       compare = New<HIsStringAndBranch>(object, if_true, if_false);
6204       dependency = compare;
6205     } else {
6206       compare = New<HCompareMap>(object, info.map(), if_true, if_false);
6207       dependency = compare;
6208     }
6209     FinishCurrentBlock(compare);
6210 
6211     if (info.type()->Is(Type::Number())) {
6212       GotoNoSimulate(if_true, number_block);
6213       if_true = number_block;
6214     }
6215 
6216     set_current_block(if_true);
6217 
6218     HInstruction* access = BuildMonomorphicAccess(
6219         &info, object, dependency, value, ast_id,
6220         return_id, FLAG_polymorphic_inlining);
6221 
6222     HValue* result = NULL;
6223     switch (access_type) {
6224       case LOAD:
6225         result = access;
6226         break;
6227       case STORE:
6228         result = value;
6229         break;
6230     }
6231 
6232     if (access == NULL) {
6233       if (HasStackOverflow()) return;
6234     } else {
6235       if (!access->IsLinked()) AddInstruction(access);
6236       if (!ast_context()->IsEffect()) Push(result);
6237     }
6238 
6239     if (current_block() != NULL) Goto(join);
6240     set_current_block(if_false);
6241   }
6242 
6243   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
6244   // know about and do not want to handle ones we've never seen.  Otherwise
6245   // use a generic IC.
6246   if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
6247     FinishExitWithHardDeoptimization("Uknown map in polymorphic access");
6248   } else {
6249     HInstruction* instr = BuildNamedGeneric(access_type, object, name, value);
6250     AddInstruction(instr);
6251     if (!ast_context()->IsEffect()) Push(access_type == LOAD ? instr : value);
6252 
6253     if (join != NULL) {
6254       Goto(join);
6255     } else {
6256       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6257       if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6258       return;
6259     }
6260   }
6261 
6262   ASSERT(join != NULL);
6263   if (join->HasPredecessor()) {
6264     join->SetJoinId(ast_id);
6265     set_current_block(join);
6266     if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop());
6267   } else {
6268     set_current_block(NULL);
6269   }
6270 }
6271 
6272 
ComputeReceiverTypes(Expression * expr,HValue * receiver,SmallMapList ** t,Zone * zone)6273 static bool ComputeReceiverTypes(Expression* expr,
6274                                  HValue* receiver,
6275                                  SmallMapList** t,
6276                                  Zone* zone) {
6277   SmallMapList* types = expr->GetReceiverTypes();
6278   *t = types;
6279   bool monomorphic = expr->IsMonomorphic();
6280   if (types != NULL && receiver->HasMonomorphicJSObjectType()) {
6281     Map* root_map = receiver->GetMonomorphicJSObjectMap()->FindRootMap();
6282     types->FilterForPossibleTransitions(root_map);
6283     monomorphic = types->length() == 1;
6284   }
6285   return monomorphic && CanInlinePropertyAccess(
6286       IC::MapToType<Type>(types->first(), zone));
6287 }
6288 
6289 
AreStringTypes(SmallMapList * types)6290 static bool AreStringTypes(SmallMapList* types) {
6291   for (int i = 0; i < types->length(); i++) {
6292     if (types->at(i)->instance_type() >= FIRST_NONSTRING_TYPE) return false;
6293   }
6294   return true;
6295 }
6296 
6297 
BuildStore(Expression * expr,Property * prop,BailoutId ast_id,BailoutId return_id,bool is_uninitialized)6298 void HOptimizedGraphBuilder::BuildStore(Expression* expr,
6299                                         Property* prop,
6300                                         BailoutId ast_id,
6301                                         BailoutId return_id,
6302                                         bool is_uninitialized) {
6303   if (!prop->key()->IsPropertyName()) {
6304     // Keyed store.
6305     HValue* value = environment()->ExpressionStackAt(0);
6306     HValue* key = environment()->ExpressionStackAt(1);
6307     HValue* object = environment()->ExpressionStackAt(2);
6308     bool has_side_effects = false;
6309     HandleKeyedElementAccess(object, key, value, expr,
6310                              STORE, &has_side_effects);
6311     Drop(3);
6312     Push(value);
6313     Add<HSimulate>(return_id, REMOVABLE_SIMULATE);
6314     return ast_context()->ReturnValue(Pop());
6315   }
6316 
6317   // Named store.
6318   HValue* value = Pop();
6319   HValue* object = Pop();
6320 
6321   Literal* key = prop->key()->AsLiteral();
6322   Handle<String> name = Handle<String>::cast(key->value());
6323   ASSERT(!name.is_null());
6324 
6325   HInstruction* instr = BuildNamedAccess(STORE, ast_id, return_id, expr,
6326                                          object, name, value, is_uninitialized);
6327   if (instr == NULL) return;
6328 
6329   if (!ast_context()->IsEffect()) Push(value);
6330   AddInstruction(instr);
6331   if (instr->HasObservableSideEffects()) {
6332     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6333   }
6334   if (!ast_context()->IsEffect()) Drop(1);
6335   return ast_context()->ReturnValue(value);
6336 }
6337 
6338 
HandlePropertyAssignment(Assignment * expr)6339 void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
6340   Property* prop = expr->target()->AsProperty();
6341   ASSERT(prop != NULL);
6342   CHECK_ALIVE(VisitForValue(prop->obj()));
6343   if (!prop->key()->IsPropertyName()) {
6344     CHECK_ALIVE(VisitForValue(prop->key()));
6345   }
6346   CHECK_ALIVE(VisitForValue(expr->value()));
6347   BuildStore(expr, prop, expr->id(),
6348              expr->AssignmentId(), expr->IsUninitialized());
6349 }
6350 
6351 
6352 // Because not every expression has a position and there is not common
6353 // superclass of Assignment and CountOperation, we cannot just pass the
6354 // owning expression instead of position and ast_id separately.
HandleGlobalVariableAssignment(Variable * var,HValue * value,BailoutId ast_id)6355 void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
6356     Variable* var,
6357     HValue* value,
6358     BailoutId ast_id) {
6359   LookupResult lookup(isolate());
6360   GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, STORE);
6361   if (type == kUseCell) {
6362     Handle<GlobalObject> global(current_info()->global_object());
6363     Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
6364     if (cell->type()->IsConstant()) {
6365       Handle<Object> constant = cell->type()->AsConstant()->Value();
6366       if (value->IsConstant()) {
6367         HConstant* c_value = HConstant::cast(value);
6368         if (!constant.is_identical_to(c_value->handle(isolate()))) {
6369           Add<HDeoptimize>("Constant global variable assignment",
6370                            Deoptimizer::EAGER);
6371         }
6372       } else {
6373         HValue* c_constant = Add<HConstant>(constant);
6374         IfBuilder builder(this);
6375         if (constant->IsNumber()) {
6376           builder.If<HCompareNumericAndBranch>(value, c_constant, Token::EQ);
6377         } else {
6378           builder.If<HCompareObjectEqAndBranch>(value, c_constant);
6379         }
6380         builder.Then();
6381         builder.Else();
6382         Add<HDeoptimize>("Constant global variable assignment",
6383                          Deoptimizer::EAGER);
6384         builder.End();
6385       }
6386     }
6387     HInstruction* instr =
6388         Add<HStoreGlobalCell>(value, cell, lookup.GetPropertyDetails());
6389     if (instr->HasObservableSideEffects()) {
6390       Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6391     }
6392   } else {
6393     HValue* global_object = Add<HLoadNamedField>(
6394         context(), static_cast<HValue*>(NULL),
6395         HObjectAccess::ForContextSlot(Context::GLOBAL_OBJECT_INDEX));
6396     HStoreNamedGeneric* instr =
6397         Add<HStoreNamedGeneric>(global_object, var->name(),
6398                                  value, function_strict_mode());
6399     USE(instr);
6400     ASSERT(instr->HasObservableSideEffects());
6401     Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
6402   }
6403 }
6404 
6405 
HandleCompoundAssignment(Assignment * expr)6406 void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
6407   Expression* target = expr->target();
6408   VariableProxy* proxy = target->AsVariableProxy();
6409   Property* prop = target->AsProperty();
6410   ASSERT(proxy == NULL || prop == NULL);
6411 
6412   // We have a second position recorded in the FullCodeGenerator to have
6413   // type feedback for the binary operation.
6414   BinaryOperation* operation = expr->binary_operation();
6415 
6416   if (proxy != NULL) {
6417     Variable* var = proxy->var();
6418     if (var->mode() == LET)  {
6419       return Bailout(kUnsupportedLetCompoundAssignment);
6420     }
6421 
6422     CHECK_ALIVE(VisitForValue(operation));
6423 
6424     switch (var->location()) {
6425       case Variable::UNALLOCATED:
6426         HandleGlobalVariableAssignment(var,
6427                                        Top(),
6428                                        expr->AssignmentId());
6429         break;
6430 
6431       case Variable::PARAMETER:
6432       case Variable::LOCAL:
6433         if (var->mode() == CONST_LEGACY)  {
6434           return Bailout(kUnsupportedConstCompoundAssignment);
6435         }
6436         BindIfLive(var, Top());
6437         break;
6438 
6439       case Variable::CONTEXT: {
6440         // Bail out if we try to mutate a parameter value in a function
6441         // using the arguments object.  We do not (yet) correctly handle the
6442         // arguments property of the function.
6443         if (current_info()->scope()->arguments() != NULL) {
6444           // Parameters will be allocated to context slots.  We have no
6445           // direct way to detect that the variable is a parameter so we do
6446           // a linear search of the parameter variables.
6447           int count = current_info()->scope()->num_parameters();
6448           for (int i = 0; i < count; ++i) {
6449             if (var == current_info()->scope()->parameter(i)) {
6450               Bailout(kAssignmentToParameterFunctionUsesArgumentsObject);
6451             }
6452           }
6453         }
6454 
6455         HStoreContextSlot::Mode mode;
6456 
6457         switch (var->mode()) {
6458           case LET:
6459             mode = HStoreContextSlot::kCheckDeoptimize;
6460             break;
6461           case CONST:
6462             // This case is checked statically so no need to
6463             // perform checks here
6464             UNREACHABLE();
6465           case CONST_LEGACY:
6466             return ast_context()->ReturnValue(Pop());
6467           default:
6468             mode = HStoreContextSlot::kNoCheck;
6469         }
6470 
6471         HValue* context = BuildContextChainWalk(var);
6472         HStoreContextSlot* instr = Add<HStoreContextSlot>(
6473             context, var->index(), mode, Top());
6474         if (instr->HasObservableSideEffects()) {
6475           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
6476         }
6477         break;
6478       }
6479 
6480       case Variable::LOOKUP:
6481         return Bailout(kCompoundAssignmentToLookupSlot);
6482     }
6483     return ast_context()->ReturnValue(Pop());
6484 
6485   } else if (prop != NULL) {
6486     CHECK_ALIVE(VisitForValue(prop->obj()));
6487     HValue* object = Top();
6488     HValue* key = NULL;
6489     if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
6490         prop->IsStringAccess()) {
6491       CHECK_ALIVE(VisitForValue(prop->key()));
6492       key = Top();
6493     }
6494 
6495     CHECK_ALIVE(PushLoad(prop, object, key));
6496 
6497     CHECK_ALIVE(VisitForValue(expr->value()));
6498     HValue* right = Pop();
6499     HValue* left = Pop();
6500 
6501     Push(BuildBinaryOperation(operation, left, right, PUSH_BEFORE_SIMULATE));
6502 
6503     BuildStore(expr, prop, expr->id(),
6504                expr->AssignmentId(), expr->IsUninitialized());
6505   } else {
6506     return Bailout(kInvalidLhsInCompoundAssignment);
6507   }
6508 }
6509 
6510 
VisitAssignment(Assignment * expr)6511 void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
6512   ASSERT(!HasStackOverflow());
6513   ASSERT(current_block() != NULL);
6514   ASSERT(current_block()->HasPredecessor());
6515   VariableProxy* proxy = expr->target()->AsVariableProxy();
6516   Property* prop = expr->target()->AsProperty();
6517   ASSERT(proxy == NULL || prop == NULL);
6518 
6519   if (expr->is_compound()) {
6520     HandleCompoundAssignment(expr);
6521     return;
6522   }
6523 
6524   if (prop != NULL) {
6525     HandlePropertyAssignment(expr);
6526   } else if (proxy != NULL) {
6527     Variable* var = proxy->var();
6528 
6529     if (var->mode() == CONST) {
6530       if (expr->op() != Token::INIT_CONST) {
6531         return Bailout(kNonInitializerAssignmentToConst);
6532       }
6533     } else if (var->mode() == CONST_LEGACY) {
6534       if (expr->op() != Token::INIT_CONST_LEGACY) {
6535         CHECK_ALIVE(VisitForValue(expr->value()));
6536         return ast_context()->ReturnValue(Pop());
6537       }
6538 
6539       if (var->IsStackAllocated()) {
6540         // We insert a use of the old value to detect unsupported uses of const
6541         // variables (e.g. initialization inside a loop).
6542         HValue* old_value = environment()->Lookup(var);
6543         Add<HUseConst>(old_value);
6544       }
6545     }
6546 
6547     if (proxy->IsArguments()) return Bailout(kAssignmentToArguments);
6548 
6549     // Handle the assignment.
6550     switch (var->location()) {
6551       case Variable::UNALLOCATED:
6552         CHECK_ALIVE(VisitForValue(expr->value()));
6553         HandleGlobalVariableAssignment(var,
6554                                        Top(),
6555                                        expr->AssignmentId());
6556         return ast_context()->ReturnValue(Pop());
6557 
6558       case Variable::PARAMETER:
6559       case Variable::LOCAL: {
6560         // Perform an initialization check for let declared variables
6561         // or parameters.
6562         if (var->mode() == LET && expr->op() == Token::ASSIGN) {
6563           HValue* env_value = environment()->Lookup(var);
6564           if (env_value == graph()->GetConstantHole()) {
6565             return Bailout(kAssignmentToLetVariableBeforeInitialization);
6566           }
6567         }
6568         // We do not allow the arguments object to occur in a context where it
6569         // may escape, but assignments to stack-allocated locals are
6570         // permitted.
6571         CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
6572         HValue* value = Pop();
6573         BindIfLive(var, value);
6574         return ast_context()->ReturnValue(value);
6575       }
6576 
6577       case Variable::CONTEXT: {
6578         // Bail out if we try to mutate a parameter value in a function using
6579         // the arguments object.  We do not (yet) correctly handle the
6580         // arguments property of the function.
6581         if (current_info()->scope()->arguments() != NULL) {
6582           // Parameters will rewrite to context slots.  We have no direct way
6583           // to detect that the variable is a parameter.
6584           int count = current_info()->scope()->num_parameters();
6585           for (int i = 0; i < count; ++i) {
6586             if (var == current_info()->scope()->parameter(i)) {
6587               return Bailout(kAssignmentToParameterInArgumentsObject);
6588             }
6589           }
6590         }
6591 
6592         CHECK_ALIVE(VisitForValue(expr->value()));
6593         HStoreContextSlot::Mode mode;
6594         if (expr->op() == Token::ASSIGN) {
6595           switch (var->mode()) {
6596             case LET:
6597               mode = HStoreContextSlot::kCheckDeoptimize;
6598               break;
6599             case CONST:
6600               // This case is checked statically so no need to
6601               // perform checks here
6602               UNREACHABLE();
6603             case CONST_LEGACY:
6604               return ast_context()->ReturnValue(Pop());
6605             default:
6606               mode = HStoreContextSlot::kNoCheck;
6607           }
6608         } else if (expr->op() == Token::INIT_VAR ||
6609                    expr->op() == Token::INIT_LET ||
6610                    expr->op() == Token::INIT_CONST) {
6611           mode = HStoreContextSlot::kNoCheck;
6612         } else {
6613           ASSERT(expr->op() == Token::INIT_CONST_LEGACY);
6614 
6615           mode = HStoreContextSlot::kCheckIgnoreAssignment;
6616         }
6617 
6618         HValue* context = BuildContextChainWalk(var);
6619         HStoreContextSlot* instr = Add<HStoreContextSlot>(
6620             context, var->index(), mode, Top());
6621         if (instr->HasObservableSideEffects()) {
6622           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
6623         }
6624         return ast_context()->ReturnValue(Pop());
6625       }
6626 
6627       case Variable::LOOKUP:
6628         return Bailout(kAssignmentToLOOKUPVariable);
6629     }
6630   } else {
6631     return Bailout(kInvalidLeftHandSideInAssignment);
6632   }
6633 }
6634 
6635 
VisitYield(Yield * expr)6636 void HOptimizedGraphBuilder::VisitYield(Yield* expr) {
6637   // Generators are not optimized, so we should never get here.
6638   UNREACHABLE();
6639 }
6640 
6641 
VisitThrow(Throw * expr)6642 void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
6643   ASSERT(!HasStackOverflow());
6644   ASSERT(current_block() != NULL);
6645   ASSERT(current_block()->HasPredecessor());
6646   // We don't optimize functions with invalid left-hand sides in
6647   // assignments, count operations, or for-in.  Consequently throw can
6648   // currently only occur in an effect context.
6649   ASSERT(ast_context()->IsEffect());
6650   CHECK_ALIVE(VisitForValue(expr->exception()));
6651 
6652   HValue* value = environment()->Pop();
6653   if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
6654   Add<HPushArguments>(value);
6655   Add<HCallRuntime>(isolate()->factory()->empty_string(),
6656                     Runtime::FunctionForId(Runtime::kHiddenThrow), 1);
6657   Add<HSimulate>(expr->id());
6658 
6659   // If the throw definitely exits the function, we can finish with a dummy
6660   // control flow at this point.  This is not the case if the throw is inside
6661   // an inlined function which may be replaced.
6662   if (call_context() == NULL) {
6663     FinishExitCurrentBlock(New<HAbnormalExit>());
6664   }
6665 }
6666 
6667 
AddLoadStringInstanceType(HValue * string)6668 HInstruction* HGraphBuilder::AddLoadStringInstanceType(HValue* string) {
6669   if (string->IsConstant()) {
6670     HConstant* c_string = HConstant::cast(string);
6671     if (c_string->HasStringValue()) {
6672       return Add<HConstant>(c_string->StringValue()->map()->instance_type());
6673     }
6674   }
6675   return Add<HLoadNamedField>(
6676       Add<HLoadNamedField>(string, static_cast<HValue*>(NULL),
6677                            HObjectAccess::ForMap()),
6678       static_cast<HValue*>(NULL), HObjectAccess::ForMapInstanceType());
6679 }
6680 
6681 
AddLoadStringLength(HValue * string)6682 HInstruction* HGraphBuilder::AddLoadStringLength(HValue* string) {
6683   if (string->IsConstant()) {
6684     HConstant* c_string = HConstant::cast(string);
6685     if (c_string->HasStringValue()) {
6686       return Add<HConstant>(c_string->StringValue()->length());
6687     }
6688   }
6689   return Add<HLoadNamedField>(string, static_cast<HValue*>(NULL),
6690                               HObjectAccess::ForStringLength());
6691 }
6692 
6693 
BuildNamedGeneric(PropertyAccessType access_type,HValue * object,Handle<String> name,HValue * value,bool is_uninitialized)6694 HInstruction* HOptimizedGraphBuilder::BuildNamedGeneric(
6695     PropertyAccessType access_type,
6696     HValue* object,
6697     Handle<String> name,
6698     HValue* value,
6699     bool is_uninitialized) {
6700   if (is_uninitialized) {
6701     Add<HDeoptimize>("Insufficient type feedback for generic named access",
6702                      Deoptimizer::SOFT);
6703   }
6704   if (access_type == LOAD) {
6705     return New<HLoadNamedGeneric>(object, name);
6706   } else {
6707     return New<HStoreNamedGeneric>(object, name, value, function_strict_mode());
6708   }
6709 }
6710 
6711 
6712 
BuildKeyedGeneric(PropertyAccessType access_type,HValue * object,HValue * key,HValue * value)6713 HInstruction* HOptimizedGraphBuilder::BuildKeyedGeneric(
6714     PropertyAccessType access_type,
6715     HValue* object,
6716     HValue* key,
6717     HValue* value) {
6718   if (access_type == LOAD) {
6719     return New<HLoadKeyedGeneric>(object, key);
6720   } else {
6721     return New<HStoreKeyedGeneric>(object, key, value, function_strict_mode());
6722   }
6723 }
6724 
6725 
BuildKeyedHoleMode(Handle<Map> map)6726 LoadKeyedHoleMode HOptimizedGraphBuilder::BuildKeyedHoleMode(Handle<Map> map) {
6727   // Loads from a "stock" fast holey double arrays can elide the hole check.
6728   LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE;
6729   if (*map == isolate()->get_initial_js_array_map(FAST_HOLEY_DOUBLE_ELEMENTS) &&
6730       isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
6731     Handle<JSObject> prototype(JSObject::cast(map->prototype()), isolate());
6732     Handle<JSObject> object_prototype = isolate()->initial_object_prototype();
6733     BuildCheckPrototypeMaps(prototype, object_prototype);
6734     load_mode = ALLOW_RETURN_HOLE;
6735     graph()->MarkDependsOnEmptyArrayProtoElements();
6736   }
6737 
6738   return load_mode;
6739 }
6740 
6741 
BuildMonomorphicElementAccess(HValue * object,HValue * key,HValue * val,HValue * dependency,Handle<Map> map,PropertyAccessType access_type,KeyedAccessStoreMode store_mode)6742 HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
6743     HValue* object,
6744     HValue* key,
6745     HValue* val,
6746     HValue* dependency,
6747     Handle<Map> map,
6748     PropertyAccessType access_type,
6749     KeyedAccessStoreMode store_mode) {
6750   HCheckMaps* checked_object = Add<HCheckMaps>(object, map, dependency);
6751   if (dependency) {
6752     checked_object->ClearDependsOnFlag(kElementsKind);
6753   }
6754 
6755   if (access_type == STORE && map->prototype()->IsJSObject()) {
6756     // monomorphic stores need a prototype chain check because shape
6757     // changes could allow callbacks on elements in the chain that
6758     // aren't compatible with monomorphic keyed stores.
6759     Handle<JSObject> prototype(JSObject::cast(map->prototype()));
6760     JSObject* holder = JSObject::cast(map->prototype());
6761     while (!holder->GetPrototype()->IsNull()) {
6762       holder = JSObject::cast(holder->GetPrototype());
6763     }
6764 
6765     BuildCheckPrototypeMaps(prototype,
6766                             Handle<JSObject>(JSObject::cast(holder)));
6767   }
6768 
6769   LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
6770   return BuildUncheckedMonomorphicElementAccess(
6771       checked_object, key, val,
6772       map->instance_type() == JS_ARRAY_TYPE,
6773       map->elements_kind(), access_type,
6774       load_mode, store_mode);
6775 }
6776 
6777 
TryBuildConsolidatedElementLoad(HValue * object,HValue * key,HValue * val,SmallMapList * maps)6778 HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
6779     HValue* object,
6780     HValue* key,
6781     HValue* val,
6782     SmallMapList* maps) {
6783   // For polymorphic loads of similar elements kinds (i.e. all tagged or all
6784   // double), always use the "worst case" code without a transition.  This is
6785   // much faster than transitioning the elements to the worst case, trading a
6786   // HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
6787   bool has_double_maps = false;
6788   bool has_smi_or_object_maps = false;
6789   bool has_js_array_access = false;
6790   bool has_non_js_array_access = false;
6791   bool has_seen_holey_elements = false;
6792   Handle<Map> most_general_consolidated_map;
6793   for (int i = 0; i < maps->length(); ++i) {
6794     Handle<Map> map = maps->at(i);
6795     if (!map->IsJSObjectMap()) return NULL;
6796     // Don't allow mixing of JSArrays with JSObjects.
6797     if (map->instance_type() == JS_ARRAY_TYPE) {
6798       if (has_non_js_array_access) return NULL;
6799       has_js_array_access = true;
6800     } else if (has_js_array_access) {
6801       return NULL;
6802     } else {
6803       has_non_js_array_access = true;
6804     }
6805     // Don't allow mixed, incompatible elements kinds.
6806     if (map->has_fast_double_elements()) {
6807       if (has_smi_or_object_maps) return NULL;
6808       has_double_maps = true;
6809     } else if (map->has_fast_smi_or_object_elements()) {
6810       if (has_double_maps) return NULL;
6811       has_smi_or_object_maps = true;
6812     } else {
6813       return NULL;
6814     }
6815     // Remember if we've ever seen holey elements.
6816     if (IsHoleyElementsKind(map->elements_kind())) {
6817       has_seen_holey_elements = true;
6818     }
6819     // Remember the most general elements kind, the code for its load will
6820     // properly handle all of the more specific cases.
6821     if ((i == 0) || IsMoreGeneralElementsKindTransition(
6822             most_general_consolidated_map->elements_kind(),
6823             map->elements_kind())) {
6824       most_general_consolidated_map = map;
6825     }
6826   }
6827   if (!has_double_maps && !has_smi_or_object_maps) return NULL;
6828 
6829   HCheckMaps* checked_object = Add<HCheckMaps>(object, maps);
6830   // FAST_ELEMENTS is considered more general than FAST_HOLEY_SMI_ELEMENTS.
6831   // If we've seen both, the consolidated load must use FAST_HOLEY_ELEMENTS.
6832   ElementsKind consolidated_elements_kind = has_seen_holey_elements
6833       ? GetHoleyElementsKind(most_general_consolidated_map->elements_kind())
6834       : most_general_consolidated_map->elements_kind();
6835   HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
6836       checked_object, key, val,
6837       most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
6838       consolidated_elements_kind,
6839       LOAD, NEVER_RETURN_HOLE, STANDARD_STORE);
6840   return instr;
6841 }
6842 
6843 
HandlePolymorphicElementAccess(HValue * object,HValue * key,HValue * val,SmallMapList * maps,PropertyAccessType access_type,KeyedAccessStoreMode store_mode,bool * has_side_effects)6844 HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
6845     HValue* object,
6846     HValue* key,
6847     HValue* val,
6848     SmallMapList* maps,
6849     PropertyAccessType access_type,
6850     KeyedAccessStoreMode store_mode,
6851     bool* has_side_effects) {
6852   *has_side_effects = false;
6853   BuildCheckHeapObject(object);
6854 
6855   if (access_type == LOAD) {
6856     HInstruction* consolidated_load =
6857         TryBuildConsolidatedElementLoad(object, key, val, maps);
6858     if (consolidated_load != NULL) {
6859       *has_side_effects |= consolidated_load->HasObservableSideEffects();
6860       return consolidated_load;
6861     }
6862   }
6863 
6864   // Elements_kind transition support.
6865   MapHandleList transition_target(maps->length());
6866   // Collect possible transition targets.
6867   MapHandleList possible_transitioned_maps(maps->length());
6868   for (int i = 0; i < maps->length(); ++i) {
6869     Handle<Map> map = maps->at(i);
6870     ElementsKind elements_kind = map->elements_kind();
6871     if (IsFastElementsKind(elements_kind) &&
6872         elements_kind != GetInitialFastElementsKind()) {
6873       possible_transitioned_maps.Add(map);
6874     }
6875     if (elements_kind == SLOPPY_ARGUMENTS_ELEMENTS) {
6876       HInstruction* result = BuildKeyedGeneric(access_type, object, key, val);
6877       *has_side_effects = result->HasObservableSideEffects();
6878       return AddInstruction(result);
6879     }
6880   }
6881   // Get transition target for each map (NULL == no transition).
6882   for (int i = 0; i < maps->length(); ++i) {
6883     Handle<Map> map = maps->at(i);
6884     Handle<Map> transitioned_map =
6885         map->FindTransitionedMap(&possible_transitioned_maps);
6886     transition_target.Add(transitioned_map);
6887   }
6888 
6889   MapHandleList untransitionable_maps(maps->length());
6890   HTransitionElementsKind* transition = NULL;
6891   for (int i = 0; i < maps->length(); ++i) {
6892     Handle<Map> map = maps->at(i);
6893     ASSERT(map->IsMap());
6894     if (!transition_target.at(i).is_null()) {
6895       ASSERT(Map::IsValidElementsTransition(
6896           map->elements_kind(),
6897           transition_target.at(i)->elements_kind()));
6898       transition = Add<HTransitionElementsKind>(object, map,
6899                                                 transition_target.at(i));
6900     } else {
6901       untransitionable_maps.Add(map);
6902     }
6903   }
6904 
6905   // If only one map is left after transitioning, handle this case
6906   // monomorphically.
6907   ASSERT(untransitionable_maps.length() >= 1);
6908   if (untransitionable_maps.length() == 1) {
6909     Handle<Map> untransitionable_map = untransitionable_maps[0];
6910     HInstruction* instr = NULL;
6911     if (untransitionable_map->has_slow_elements_kind() ||
6912         !untransitionable_map->IsJSObjectMap()) {
6913       instr = AddInstruction(BuildKeyedGeneric(access_type, object, key, val));
6914     } else {
6915       instr = BuildMonomorphicElementAccess(
6916           object, key, val, transition, untransitionable_map, access_type,
6917           store_mode);
6918     }
6919     *has_side_effects |= instr->HasObservableSideEffects();
6920     return access_type == STORE ? NULL : instr;
6921   }
6922 
6923   HBasicBlock* join = graph()->CreateBasicBlock();
6924 
6925   for (int i = 0; i < untransitionable_maps.length(); ++i) {
6926     Handle<Map> map = untransitionable_maps[i];
6927     if (!map->IsJSObjectMap()) continue;
6928     ElementsKind elements_kind = map->elements_kind();
6929     HBasicBlock* this_map = graph()->CreateBasicBlock();
6930     HBasicBlock* other_map = graph()->CreateBasicBlock();
6931     HCompareMap* mapcompare =
6932         New<HCompareMap>(object, map, this_map, other_map);
6933     FinishCurrentBlock(mapcompare);
6934 
6935     set_current_block(this_map);
6936     HInstruction* access = NULL;
6937     if (IsDictionaryElementsKind(elements_kind)) {
6938       access = AddInstruction(BuildKeyedGeneric(access_type, object, key, val));
6939     } else {
6940       ASSERT(IsFastElementsKind(elements_kind) ||
6941              IsExternalArrayElementsKind(elements_kind) ||
6942              IsFixedTypedArrayElementsKind(elements_kind));
6943       LoadKeyedHoleMode load_mode = BuildKeyedHoleMode(map);
6944       // Happily, mapcompare is a checked object.
6945       access = BuildUncheckedMonomorphicElementAccess(
6946           mapcompare, key, val,
6947           map->instance_type() == JS_ARRAY_TYPE,
6948           elements_kind, access_type,
6949           load_mode,
6950           store_mode);
6951     }
6952     *has_side_effects |= access->HasObservableSideEffects();
6953     // The caller will use has_side_effects and add a correct Simulate.
6954     access->SetFlag(HValue::kHasNoObservableSideEffects);
6955     if (access_type == LOAD) {
6956       Push(access);
6957     }
6958     NoObservableSideEffectsScope scope(this);
6959     GotoNoSimulate(join);
6960     set_current_block(other_map);
6961   }
6962 
6963   // Ensure that we visited at least one map above that goes to join. This is
6964   // necessary because FinishExitWithHardDeoptimization does an AbnormalExit
6965   // rather than joining the join block. If this becomes an issue, insert a
6966   // generic access in the case length() == 0.
6967   ASSERT(join->predecessors()->length() > 0);
6968   // Deopt if none of the cases matched.
6969   NoObservableSideEffectsScope scope(this);
6970   FinishExitWithHardDeoptimization("Unknown map in polymorphic element access");
6971   set_current_block(join);
6972   return access_type == STORE ? NULL : Pop();
6973 }
6974 
6975 
HandleKeyedElementAccess(HValue * obj,HValue * key,HValue * val,Expression * expr,PropertyAccessType access_type,bool * has_side_effects)6976 HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
6977     HValue* obj,
6978     HValue* key,
6979     HValue* val,
6980     Expression* expr,
6981     PropertyAccessType access_type,
6982     bool* has_side_effects) {
6983   ASSERT(!expr->IsPropertyName());
6984   HInstruction* instr = NULL;
6985 
6986   SmallMapList* types;
6987   bool monomorphic = ComputeReceiverTypes(expr, obj, &types, zone());
6988 
6989   bool force_generic = false;
6990   if (access_type == STORE &&
6991       (monomorphic || (types != NULL && !types->is_empty()))) {
6992     // Stores can't be mono/polymorphic if their prototype chain has dictionary
6993     // elements. However a receiver map that has dictionary elements itself
6994     // should be left to normal mono/poly behavior (the other maps may benefit
6995     // from highly optimized stores).
6996     for (int i = 0; i < types->length(); i++) {
6997       Handle<Map> current_map = types->at(i);
6998       if (current_map->DictionaryElementsInPrototypeChainOnly()) {
6999         force_generic = true;
7000         monomorphic = false;
7001         break;
7002       }
7003     }
7004   }
7005 
7006   if (monomorphic) {
7007     Handle<Map> map = types->first();
7008     if (map->has_slow_elements_kind() || !map->IsJSObjectMap()) {
7009       instr = AddInstruction(BuildKeyedGeneric(access_type, obj, key, val));
7010     } else {
7011       BuildCheckHeapObject(obj);
7012       instr = BuildMonomorphicElementAccess(
7013           obj, key, val, NULL, map, access_type, expr->GetStoreMode());
7014     }
7015   } else if (!force_generic && (types != NULL && !types->is_empty())) {
7016     return HandlePolymorphicElementAccess(
7017         obj, key, val, types, access_type,
7018         expr->GetStoreMode(), has_side_effects);
7019   } else {
7020     if (access_type == STORE) {
7021       if (expr->IsAssignment() &&
7022           expr->AsAssignment()->HasNoTypeInformation()) {
7023         Add<HDeoptimize>("Insufficient type feedback for keyed store",
7024                          Deoptimizer::SOFT);
7025       }
7026     } else {
7027       if (expr->AsProperty()->HasNoTypeInformation()) {
7028         Add<HDeoptimize>("Insufficient type feedback for keyed load",
7029                          Deoptimizer::SOFT);
7030       }
7031     }
7032     instr = AddInstruction(BuildKeyedGeneric(access_type, obj, key, val));
7033   }
7034   *has_side_effects = instr->HasObservableSideEffects();
7035   return instr;
7036 }
7037 
7038 
EnsureArgumentsArePushedForAccess()7039 void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
7040   // Outermost function already has arguments on the stack.
7041   if (function_state()->outer() == NULL) return;
7042 
7043   if (function_state()->arguments_pushed()) return;
7044 
7045   // Push arguments when entering inlined function.
7046   HEnterInlined* entry = function_state()->entry();
7047   entry->set_arguments_pushed();
7048 
7049   HArgumentsObject* arguments = entry->arguments_object();
7050   const ZoneList<HValue*>* arguments_values = arguments->arguments_values();
7051 
7052   HInstruction* insert_after = entry;
7053   for (int i = 0; i < arguments_values->length(); i++) {
7054     HValue* argument = arguments_values->at(i);
7055     HInstruction* push_argument = New<HPushArguments>(argument);
7056     push_argument->InsertAfter(insert_after);
7057     insert_after = push_argument;
7058   }
7059 
7060   HArgumentsElements* arguments_elements = New<HArgumentsElements>(true);
7061   arguments_elements->ClearFlag(HValue::kUseGVN);
7062   arguments_elements->InsertAfter(insert_after);
7063   function_state()->set_arguments_elements(arguments_elements);
7064 }
7065 
7066 
TryArgumentsAccess(Property * expr)7067 bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
7068   VariableProxy* proxy = expr->obj()->AsVariableProxy();
7069   if (proxy == NULL) return false;
7070   if (!proxy->var()->IsStackAllocated()) return false;
7071   if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
7072     return false;
7073   }
7074 
7075   HInstruction* result = NULL;
7076   if (expr->key()->IsPropertyName()) {
7077     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7078     if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
7079 
7080     if (function_state()->outer() == NULL) {
7081       HInstruction* elements = Add<HArgumentsElements>(false);
7082       result = New<HArgumentsLength>(elements);
7083     } else {
7084       // Number of arguments without receiver.
7085       int argument_count = environment()->
7086           arguments_environment()->parameter_count() - 1;
7087       result = New<HConstant>(argument_count);
7088     }
7089   } else {
7090     Push(graph()->GetArgumentsObject());
7091     CHECK_ALIVE_OR_RETURN(VisitForValue(expr->key()), true);
7092     HValue* key = Pop();
7093     Drop(1);  // Arguments object.
7094     if (function_state()->outer() == NULL) {
7095       HInstruction* elements = Add<HArgumentsElements>(false);
7096       HInstruction* length = Add<HArgumentsLength>(elements);
7097       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7098       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7099     } else {
7100       EnsureArgumentsArePushedForAccess();
7101 
7102       // Number of arguments without receiver.
7103       HInstruction* elements = function_state()->arguments_elements();
7104       int argument_count = environment()->
7105           arguments_environment()->parameter_count() - 1;
7106       HInstruction* length = Add<HConstant>(argument_count);
7107       HInstruction* checked_key = Add<HBoundsCheck>(key, length);
7108       result = New<HAccessArgumentsAt>(elements, length, checked_key);
7109     }
7110   }
7111   ast_context()->ReturnInstruction(result, expr->id());
7112   return true;
7113 }
7114 
7115 
BuildNamedAccess(PropertyAccessType access,BailoutId ast_id,BailoutId return_id,Expression * expr,HValue * object,Handle<String> name,HValue * value,bool is_uninitialized)7116 HInstruction* HOptimizedGraphBuilder::BuildNamedAccess(
7117     PropertyAccessType access,
7118     BailoutId ast_id,
7119     BailoutId return_id,
7120     Expression* expr,
7121     HValue* object,
7122     Handle<String> name,
7123     HValue* value,
7124     bool is_uninitialized) {
7125   SmallMapList* types;
7126   ComputeReceiverTypes(expr, object, &types, zone());
7127   ASSERT(types != NULL);
7128 
7129   if (types->length() > 0) {
7130     PropertyAccessInfo info(this, access, ToType(types->first()), name);
7131     if (!info.CanAccessAsMonomorphic(types)) {
7132       HandlePolymorphicNamedFieldAccess(
7133           access, ast_id, return_id, object, value, types, name);
7134       return NULL;
7135     }
7136 
7137     HValue* checked_object;
7138     // Type::Number() is only supported by polymorphic load/call handling.
7139     ASSERT(!info.type()->Is(Type::Number()));
7140     BuildCheckHeapObject(object);
7141     if (AreStringTypes(types)) {
7142       checked_object =
7143           Add<HCheckInstanceType>(object, HCheckInstanceType::IS_STRING);
7144     } else {
7145       checked_object = Add<HCheckMaps>(object, types);
7146     }
7147     return BuildMonomorphicAccess(
7148         &info, object, checked_object, value, ast_id, return_id);
7149   }
7150 
7151   return BuildNamedGeneric(access, object, name, value, is_uninitialized);
7152 }
7153 
7154 
PushLoad(Property * expr,HValue * object,HValue * key)7155 void HOptimizedGraphBuilder::PushLoad(Property* expr,
7156                                       HValue* object,
7157                                       HValue* key) {
7158   ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
7159   Push(object);
7160   if (key != NULL) Push(key);
7161   BuildLoad(expr, expr->LoadId());
7162 }
7163 
7164 
BuildLoad(Property * expr,BailoutId ast_id)7165 void HOptimizedGraphBuilder::BuildLoad(Property* expr,
7166                                        BailoutId ast_id) {
7167   HInstruction* instr = NULL;
7168   if (expr->IsStringAccess()) {
7169     HValue* index = Pop();
7170     HValue* string = Pop();
7171     HInstruction* char_code = BuildStringCharCodeAt(string, index);
7172     AddInstruction(char_code);
7173     instr = NewUncasted<HStringCharFromCode>(char_code);
7174 
7175   } else if (expr->IsFunctionPrototype()) {
7176     HValue* function = Pop();
7177     BuildCheckHeapObject(function);
7178     instr = New<HLoadFunctionPrototype>(function);
7179 
7180   } else if (expr->key()->IsPropertyName()) {
7181     Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
7182     HValue* object = Pop();
7183 
7184     instr = BuildNamedAccess(LOAD, ast_id, expr->LoadId(), expr,
7185                              object, name, NULL, expr->IsUninitialized());
7186     if (instr == NULL) return;
7187     if (instr->IsLinked()) return ast_context()->ReturnValue(instr);
7188 
7189   } else {
7190     HValue* key = Pop();
7191     HValue* obj = Pop();
7192 
7193     bool has_side_effects = false;
7194     HValue* load = HandleKeyedElementAccess(
7195         obj, key, NULL, expr, LOAD, &has_side_effects);
7196     if (has_side_effects) {
7197       if (ast_context()->IsEffect()) {
7198         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7199       } else {
7200         Push(load);
7201         Add<HSimulate>(ast_id, REMOVABLE_SIMULATE);
7202         Drop(1);
7203       }
7204     }
7205     return ast_context()->ReturnValue(load);
7206   }
7207   return ast_context()->ReturnInstruction(instr, ast_id);
7208 }
7209 
7210 
VisitProperty(Property * expr)7211 void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
7212   ASSERT(!HasStackOverflow());
7213   ASSERT(current_block() != NULL);
7214   ASSERT(current_block()->HasPredecessor());
7215 
7216   if (TryArgumentsAccess(expr)) return;
7217 
7218   CHECK_ALIVE(VisitForValue(expr->obj()));
7219   if ((!expr->IsFunctionPrototype() && !expr->key()->IsPropertyName()) ||
7220       expr->IsStringAccess()) {
7221     CHECK_ALIVE(VisitForValue(expr->key()));
7222   }
7223 
7224   BuildLoad(expr, expr->id());
7225 }
7226 
7227 
BuildConstantMapCheck(Handle<JSObject> constant)7228 HInstruction* HGraphBuilder::BuildConstantMapCheck(Handle<JSObject> constant) {
7229   HCheckMaps* check = Add<HCheckMaps>(
7230       Add<HConstant>(constant), handle(constant->map()));
7231   check->ClearDependsOnFlag(kElementsKind);
7232   return check;
7233 }
7234 
7235 
BuildCheckPrototypeMaps(Handle<JSObject> prototype,Handle<JSObject> holder)7236 HInstruction* HGraphBuilder::BuildCheckPrototypeMaps(Handle<JSObject> prototype,
7237                                                      Handle<JSObject> holder) {
7238   while (holder.is_null() || !prototype.is_identical_to(holder)) {
7239     BuildConstantMapCheck(prototype);
7240     Object* next_prototype = prototype->GetPrototype();
7241     if (next_prototype->IsNull()) return NULL;
7242     CHECK(next_prototype->IsJSObject());
7243     prototype = handle(JSObject::cast(next_prototype));
7244   }
7245   return BuildConstantMapCheck(prototype);
7246 }
7247 
7248 
AddCheckPrototypeMaps(Handle<JSObject> holder,Handle<Map> receiver_map)7249 void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
7250                                                    Handle<Map> receiver_map) {
7251   if (!holder.is_null()) {
7252     Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
7253     BuildCheckPrototypeMaps(prototype, holder);
7254   }
7255 }
7256 
7257 
NewPlainFunctionCall(HValue * fun,int argument_count,bool pass_argument_count)7258 HInstruction* HOptimizedGraphBuilder::NewPlainFunctionCall(
7259     HValue* fun, int argument_count, bool pass_argument_count) {
7260   return New<HCallJSFunction>(
7261       fun, argument_count, pass_argument_count);
7262 }
7263 
7264 
NewArgumentAdaptorCall(HValue * fun,HValue * context,int argument_count,HValue * expected_param_count)7265 HInstruction* HOptimizedGraphBuilder::NewArgumentAdaptorCall(
7266     HValue* fun, HValue* context,
7267     int argument_count, HValue* expected_param_count) {
7268   CallInterfaceDescriptor* descriptor =
7269       isolate()->call_descriptor(Isolate::ArgumentAdaptorCall);
7270 
7271   HValue* arity = Add<HConstant>(argument_count - 1);
7272 
7273   HValue* op_vals[] = { fun, context, arity, expected_param_count };
7274 
7275   Handle<Code> adaptor =
7276       isolate()->builtins()->ArgumentsAdaptorTrampoline();
7277   HConstant* adaptor_value = Add<HConstant>(adaptor);
7278 
7279   return New<HCallWithDescriptor>(
7280       adaptor_value, argument_count, descriptor,
7281       Vector<HValue*>(op_vals, descriptor->environment_length()));
7282 }
7283 
7284 
BuildCallConstantFunction(Handle<JSFunction> jsfun,int argument_count)7285 HInstruction* HOptimizedGraphBuilder::BuildCallConstantFunction(
7286     Handle<JSFunction> jsfun, int argument_count) {
7287   HValue* target = Add<HConstant>(jsfun);
7288   // For constant functions, we try to avoid calling the
7289   // argument adaptor and instead call the function directly
7290   int formal_parameter_count = jsfun->shared()->formal_parameter_count();
7291   bool dont_adapt_arguments =
7292       (formal_parameter_count ==
7293        SharedFunctionInfo::kDontAdaptArgumentsSentinel);
7294   int arity = argument_count - 1;
7295   bool can_invoke_directly =
7296       dont_adapt_arguments || formal_parameter_count == arity;
7297   if (can_invoke_directly) {
7298     if (jsfun.is_identical_to(current_info()->closure())) {
7299       graph()->MarkRecursive();
7300     }
7301     return NewPlainFunctionCall(target, argument_count, dont_adapt_arguments);
7302   } else {
7303     HValue* param_count_value = Add<HConstant>(formal_parameter_count);
7304     HValue* context = Add<HLoadNamedField>(
7305         target, static_cast<HValue*>(NULL),
7306         HObjectAccess::ForFunctionContextPointer());
7307     return NewArgumentAdaptorCall(target, context,
7308         argument_count, param_count_value);
7309   }
7310   UNREACHABLE();
7311   return NULL;
7312 }
7313 
7314 
7315 class FunctionSorter {
7316  public:
FunctionSorter(int index=0,int ticks=0,int size=0)7317   FunctionSorter(int index = 0, int ticks = 0, int size = 0)
7318       : index_(index), ticks_(ticks), size_(size) { }
7319 
index() const7320   int index() const { return index_; }
ticks() const7321   int ticks() const { return ticks_; }
size() const7322   int size() const { return size_; }
7323 
7324  private:
7325   int index_;
7326   int ticks_;
7327   int size_;
7328 };
7329 
7330 
operator <(const FunctionSorter & lhs,const FunctionSorter & rhs)7331 inline bool operator<(const FunctionSorter& lhs, const FunctionSorter& rhs) {
7332   int diff = lhs.ticks() - rhs.ticks();
7333   if (diff != 0) return diff > 0;
7334   return lhs.size() < rhs.size();
7335 }
7336 
7337 
HandlePolymorphicCallNamed(Call * expr,HValue * receiver,SmallMapList * types,Handle<String> name)7338 void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
7339     Call* expr,
7340     HValue* receiver,
7341     SmallMapList* types,
7342     Handle<String> name) {
7343   int argument_count = expr->arguments()->length() + 1;  // Includes receiver.
7344   FunctionSorter order[kMaxCallPolymorphism];
7345 
7346   bool handle_smi = false;
7347   bool handled_string = false;
7348   int ordered_functions = 0;
7349 
7350   for (int i = 0;
7351        i < types->length() && ordered_functions < kMaxCallPolymorphism;
7352        ++i) {
7353     PropertyAccessInfo info(this, LOAD, ToType(types->at(i)), name);
7354     if (info.CanAccessMonomorphic() &&
7355         info.lookup()->IsConstant() &&
7356         info.constant()->IsJSFunction()) {
7357       if (info.type()->Is(Type::String())) {
7358         if (handled_string) continue;
7359         handled_string = true;
7360       }
7361       Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
7362       if (info.type()->Is(Type::Number())) {
7363         handle_smi = true;
7364       }
7365       expr->set_target(target);
7366       order[ordered_functions++] = FunctionSorter(
7367           i, target->shared()->profiler_ticks(), InliningAstSize(target));
7368     }
7369   }
7370 
7371   std::sort(order, order + ordered_functions);
7372 
7373   HBasicBlock* number_block = NULL;
7374   HBasicBlock* join = NULL;
7375   handled_string = false;
7376   int count = 0;
7377 
7378   for (int fn = 0; fn < ordered_functions; ++fn) {
7379     int i = order[fn].index();
7380     PropertyAccessInfo info(this, LOAD, ToType(types->at(i)), name);
7381     if (info.type()->Is(Type::String())) {
7382       if (handled_string) continue;
7383       handled_string = true;
7384     }
7385     // Reloads the target.
7386     info.CanAccessMonomorphic();
7387     Handle<JSFunction> target = Handle<JSFunction>::cast(info.constant());
7388 
7389     expr->set_target(target);
7390     if (count == 0) {
7391       // Only needed once.
7392       join = graph()->CreateBasicBlock();
7393       if (handle_smi) {
7394         HBasicBlock* empty_smi_block = graph()->CreateBasicBlock();
7395         HBasicBlock* not_smi_block = graph()->CreateBasicBlock();
7396         number_block = graph()->CreateBasicBlock();
7397         FinishCurrentBlock(New<HIsSmiAndBranch>(
7398                 receiver, empty_smi_block, not_smi_block));
7399         GotoNoSimulate(empty_smi_block, number_block);
7400         set_current_block(not_smi_block);
7401       } else {
7402         BuildCheckHeapObject(receiver);
7403       }
7404     }
7405     ++count;
7406     HBasicBlock* if_true = graph()->CreateBasicBlock();
7407     HBasicBlock* if_false = graph()->CreateBasicBlock();
7408     HUnaryControlInstruction* compare;
7409 
7410     Handle<Map> map = info.map();
7411     if (info.type()->Is(Type::Number())) {
7412       Handle<Map> heap_number_map = isolate()->factory()->heap_number_map();
7413       compare = New<HCompareMap>(receiver, heap_number_map, if_true, if_false);
7414     } else if (info.type()->Is(Type::String())) {
7415       compare = New<HIsStringAndBranch>(receiver, if_true, if_false);
7416     } else {
7417       compare = New<HCompareMap>(receiver, map, if_true, if_false);
7418     }
7419     FinishCurrentBlock(compare);
7420 
7421     if (info.type()->Is(Type::Number())) {
7422       GotoNoSimulate(if_true, number_block);
7423       if_true = number_block;
7424     }
7425 
7426     set_current_block(if_true);
7427 
7428     AddCheckPrototypeMaps(info.holder(), map);
7429 
7430     HValue* function = Add<HConstant>(expr->target());
7431     environment()->SetExpressionStackAt(0, function);
7432     Push(receiver);
7433     CHECK_ALIVE(VisitExpressions(expr->arguments()));
7434     bool needs_wrapping = NeedsWrappingFor(info.type(), target);
7435     bool try_inline = FLAG_polymorphic_inlining && !needs_wrapping;
7436     if (FLAG_trace_inlining && try_inline) {
7437       Handle<JSFunction> caller = current_info()->closure();
7438       SmartArrayPointer<char> caller_name =
7439           caller->shared()->DebugName()->ToCString();
7440       PrintF("Trying to inline the polymorphic call to %s from %s\n",
7441              name->ToCString().get(),
7442              caller_name.get());
7443     }
7444     if (try_inline && TryInlineCall(expr)) {
7445       // Trying to inline will signal that we should bailout from the
7446       // entire compilation by setting stack overflow on the visitor.
7447       if (HasStackOverflow()) return;
7448     } else {
7449       // Since HWrapReceiver currently cannot actually wrap numbers and strings,
7450       // use the regular CallFunctionStub for method calls to wrap the receiver.
7451       // TODO(verwaest): Support creation of value wrappers directly in
7452       // HWrapReceiver.
7453       HInstruction* call = needs_wrapping
7454           ? NewUncasted<HCallFunction>(
7455               function, argument_count, WRAP_AND_CALL)
7456           : BuildCallConstantFunction(target, argument_count);
7457       PushArgumentsFromEnvironment(argument_count);
7458       AddInstruction(call);
7459       Drop(1);  // Drop the function.
7460       if (!ast_context()->IsEffect()) Push(call);
7461     }
7462 
7463     if (current_block() != NULL) Goto(join);
7464     set_current_block(if_false);
7465   }
7466 
7467   // Finish up.  Unconditionally deoptimize if we've handled all the maps we
7468   // know about and do not want to handle ones we've never seen.  Otherwise
7469   // use a generic IC.
7470   if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
7471     FinishExitWithHardDeoptimization("Unknown map in polymorphic call");
7472   } else {
7473     Property* prop = expr->expression()->AsProperty();
7474     HInstruction* function = BuildNamedGeneric(
7475         LOAD, receiver, name, NULL, prop->IsUninitialized());
7476     AddInstruction(function);
7477     Push(function);
7478     AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
7479 
7480     environment()->SetExpressionStackAt(1, function);
7481     environment()->SetExpressionStackAt(0, receiver);
7482     CHECK_ALIVE(VisitExpressions(expr->arguments()));
7483 
7484     CallFunctionFlags flags = receiver->type().IsJSObject()
7485         ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
7486     HInstruction* call = New<HCallFunction>(
7487         function, argument_count, flags);
7488 
7489     PushArgumentsFromEnvironment(argument_count);
7490 
7491     Drop(1);  // Function.
7492 
7493     if (join != NULL) {
7494       AddInstruction(call);
7495       if (!ast_context()->IsEffect()) Push(call);
7496       Goto(join);
7497     } else {
7498       return ast_context()->ReturnInstruction(call, expr->id());
7499     }
7500   }
7501 
7502   // We assume that control flow is always live after an expression.  So
7503   // even without predecessors to the join block, we set it as the exit
7504   // block and continue by adding instructions there.
7505   ASSERT(join != NULL);
7506   if (join->HasPredecessor()) {
7507     set_current_block(join);
7508     join->SetJoinId(expr->id());
7509     if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
7510   } else {
7511     set_current_block(NULL);
7512   }
7513 }
7514 
7515 
TraceInline(Handle<JSFunction> target,Handle<JSFunction> caller,const char * reason)7516 void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
7517                                          Handle<JSFunction> caller,
7518                                          const char* reason) {
7519   if (FLAG_trace_inlining) {
7520     SmartArrayPointer<char> target_name =
7521         target->shared()->DebugName()->ToCString();
7522     SmartArrayPointer<char> caller_name =
7523         caller->shared()->DebugName()->ToCString();
7524     if (reason == NULL) {
7525       PrintF("Inlined %s called from %s.\n", target_name.get(),
7526              caller_name.get());
7527     } else {
7528       PrintF("Did not inline %s called from %s (%s).\n",
7529              target_name.get(), caller_name.get(), reason);
7530     }
7531   }
7532 }
7533 
7534 
7535 static const int kNotInlinable = 1000000000;
7536 
7537 
InliningAstSize(Handle<JSFunction> target)7538 int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
7539   if (!FLAG_use_inlining) return kNotInlinable;
7540 
7541   // Precondition: call is monomorphic and we have found a target with the
7542   // appropriate arity.
7543   Handle<JSFunction> caller = current_info()->closure();
7544   Handle<SharedFunctionInfo> target_shared(target->shared());
7545 
7546   // Always inline builtins marked for inlining.
7547   if (target->IsBuiltin()) {
7548     return target_shared->inline_builtin() ? 0 : kNotInlinable;
7549   }
7550 
7551   if (target_shared->IsApiFunction()) {
7552     TraceInline(target, caller, "target is api function");
7553     return kNotInlinable;
7554   }
7555 
7556   // Do a quick check on source code length to avoid parsing large
7557   // inlining candidates.
7558   if (target_shared->SourceSize() >
7559       Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
7560     TraceInline(target, caller, "target text too big");
7561     return kNotInlinable;
7562   }
7563 
7564   // Target must be inlineable.
7565   if (!target_shared->IsInlineable()) {
7566     TraceInline(target, caller, "target not inlineable");
7567     return kNotInlinable;
7568   }
7569   if (target_shared->dont_inline() || target_shared->dont_optimize()) {
7570     TraceInline(target, caller, "target contains unsupported syntax [early]");
7571     return kNotInlinable;
7572   }
7573 
7574   int nodes_added = target_shared->ast_node_count();
7575   return nodes_added;
7576 }
7577 
7578 
TryInline(Handle<JSFunction> target,int arguments_count,HValue * implicit_return_value,BailoutId ast_id,BailoutId return_id,InliningKind inlining_kind,HSourcePosition position)7579 bool HOptimizedGraphBuilder::TryInline(Handle<JSFunction> target,
7580                                        int arguments_count,
7581                                        HValue* implicit_return_value,
7582                                        BailoutId ast_id,
7583                                        BailoutId return_id,
7584                                        InliningKind inlining_kind,
7585                                        HSourcePosition position) {
7586   int nodes_added = InliningAstSize(target);
7587   if (nodes_added == kNotInlinable) return false;
7588 
7589   Handle<JSFunction> caller = current_info()->closure();
7590 
7591   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
7592     TraceInline(target, caller, "target AST is too large [early]");
7593     return false;
7594   }
7595 
7596   // Don't inline deeper than the maximum number of inlining levels.
7597   HEnvironment* env = environment();
7598   int current_level = 1;
7599   while (env->outer() != NULL) {
7600     if (current_level == FLAG_max_inlining_levels) {
7601       TraceInline(target, caller, "inline depth limit reached");
7602       return false;
7603     }
7604     if (env->outer()->frame_type() == JS_FUNCTION) {
7605       current_level++;
7606     }
7607     env = env->outer();
7608   }
7609 
7610   // Don't inline recursive functions.
7611   for (FunctionState* state = function_state();
7612        state != NULL;
7613        state = state->outer()) {
7614     if (*state->compilation_info()->closure() == *target) {
7615       TraceInline(target, caller, "target is recursive");
7616       return false;
7617     }
7618   }
7619 
7620   // We don't want to add more than a certain number of nodes from inlining.
7621   if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
7622                            kUnlimitedMaxInlinedNodesCumulative)) {
7623     TraceInline(target, caller, "cumulative AST node limit reached");
7624     return false;
7625   }
7626 
7627   // Parse and allocate variables.
7628   CompilationInfo target_info(target, zone());
7629   Handle<SharedFunctionInfo> target_shared(target->shared());
7630   if (!Parser::Parse(&target_info) || !Scope::Analyze(&target_info)) {
7631     if (target_info.isolate()->has_pending_exception()) {
7632       // Parse or scope error, never optimize this function.
7633       SetStackOverflow();
7634       target_shared->DisableOptimization(kParseScopeError);
7635     }
7636     TraceInline(target, caller, "parse failure");
7637     return false;
7638   }
7639 
7640   if (target_info.scope()->num_heap_slots() > 0) {
7641     TraceInline(target, caller, "target has context-allocated variables");
7642     return false;
7643   }
7644   FunctionLiteral* function = target_info.function();
7645 
7646   // The following conditions must be checked again after re-parsing, because
7647   // earlier the information might not have been complete due to lazy parsing.
7648   nodes_added = function->ast_node_count();
7649   if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
7650     TraceInline(target, caller, "target AST is too large [late]");
7651     return false;
7652   }
7653   AstProperties::Flags* flags(function->flags());
7654   if (flags->Contains(kDontInline) || function->dont_optimize()) {
7655     TraceInline(target, caller, "target contains unsupported syntax [late]");
7656     return false;
7657   }
7658 
7659   // If the function uses the arguments object check that inlining of functions
7660   // with arguments object is enabled and the arguments-variable is
7661   // stack allocated.
7662   if (function->scope()->arguments() != NULL) {
7663     if (!FLAG_inline_arguments) {
7664       TraceInline(target, caller, "target uses arguments object");
7665       return false;
7666     }
7667 
7668     if (!function->scope()->arguments()->IsStackAllocated()) {
7669       TraceInline(target,
7670                   caller,
7671                   "target uses non-stackallocated arguments object");
7672       return false;
7673     }
7674   }
7675 
7676   // All declarations must be inlineable.
7677   ZoneList<Declaration*>* decls = target_info.scope()->declarations();
7678   int decl_count = decls->length();
7679   for (int i = 0; i < decl_count; ++i) {
7680     if (!decls->at(i)->IsInlineable()) {
7681       TraceInline(target, caller, "target has non-trivial declaration");
7682       return false;
7683     }
7684   }
7685 
7686   // Generate the deoptimization data for the unoptimized version of
7687   // the target function if we don't already have it.
7688   if (!target_shared->has_deoptimization_support()) {
7689     // Note that we compile here using the same AST that we will use for
7690     // generating the optimized inline code.
7691     target_info.EnableDeoptimizationSupport();
7692     if (!FullCodeGenerator::MakeCode(&target_info)) {
7693       TraceInline(target, caller, "could not generate deoptimization info");
7694       return false;
7695     }
7696     if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
7697       // The scope info might not have been set if a lazily compiled
7698       // function is inlined before being called for the first time.
7699       Handle<ScopeInfo> target_scope_info =
7700           ScopeInfo::Create(target_info.scope(), zone());
7701       target_shared->set_scope_info(*target_scope_info);
7702     }
7703     target_shared->EnableDeoptimizationSupport(*target_info.code());
7704     target_shared->set_feedback_vector(*target_info.feedback_vector());
7705     Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
7706                                         &target_info,
7707                                         target_shared);
7708   }
7709 
7710   // ----------------------------------------------------------------
7711   // After this point, we've made a decision to inline this function (so
7712   // TryInline should always return true).
7713 
7714   // Type-check the inlined function.
7715   ASSERT(target_shared->has_deoptimization_support());
7716   AstTyper::Run(&target_info);
7717 
7718   int function_id = graph()->TraceInlinedFunction(target_shared, position);
7719 
7720   // Save the pending call context. Set up new one for the inlined function.
7721   // The function state is new-allocated because we need to delete it
7722   // in two different places.
7723   FunctionState* target_state = new FunctionState(
7724       this, &target_info, inlining_kind, function_id);
7725 
7726   HConstant* undefined = graph()->GetConstantUndefined();
7727 
7728   HEnvironment* inner_env =
7729       environment()->CopyForInlining(target,
7730                                      arguments_count,
7731                                      function,
7732                                      undefined,
7733                                      function_state()->inlining_kind());
7734 
7735   HConstant* context = Add<HConstant>(Handle<Context>(target->context()));
7736   inner_env->BindContext(context);
7737 
7738   HArgumentsObject* arguments_object = NULL;
7739 
7740   // If the function uses arguments object create and bind one, also copy
7741   // current arguments values to use them for materialization.
7742   if (function->scope()->arguments() != NULL) {
7743     ASSERT(function->scope()->arguments()->IsStackAllocated());
7744     HEnvironment* arguments_env = inner_env->arguments_environment();
7745     int arguments_count = arguments_env->parameter_count();
7746     arguments_object = Add<HArgumentsObject>(arguments_count);
7747     inner_env->Bind(function->scope()->arguments(), arguments_object);
7748     for (int i = 0; i < arguments_count; i++) {
7749       arguments_object->AddArgument(arguments_env->Lookup(i), zone());
7750     }
7751   }
7752 
7753   // Capture the state before invoking the inlined function for deopt in the
7754   // inlined function. This simulate has no bailout-id since it's not directly
7755   // reachable for deopt, and is only used to capture the state. If the simulate
7756   // becomes reachable by merging, the ast id of the simulate merged into it is
7757   // adopted.
7758   Add<HSimulate>(BailoutId::None());
7759 
7760   current_block()->UpdateEnvironment(inner_env);
7761   Scope* saved_scope = scope();
7762   set_scope(target_info.scope());
7763   HEnterInlined* enter_inlined =
7764       Add<HEnterInlined>(return_id, target, arguments_count, function,
7765                          function_state()->inlining_kind(),
7766                          function->scope()->arguments(),
7767                          arguments_object);
7768   function_state()->set_entry(enter_inlined);
7769 
7770   VisitDeclarations(target_info.scope()->declarations());
7771   VisitStatements(function->body());
7772   set_scope(saved_scope);
7773   if (HasStackOverflow()) {
7774     // Bail out if the inline function did, as we cannot residualize a call
7775     // instead.
7776     TraceInline(target, caller, "inline graph construction failed");
7777     target_shared->DisableOptimization(kInliningBailedOut);
7778     inline_bailout_ = true;
7779     delete target_state;
7780     return true;
7781   }
7782 
7783   // Update inlined nodes count.
7784   inlined_count_ += nodes_added;
7785 
7786   Handle<Code> unoptimized_code(target_shared->code());
7787   ASSERT(unoptimized_code->kind() == Code::FUNCTION);
7788   Handle<TypeFeedbackInfo> type_info(
7789       TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
7790   graph()->update_type_change_checksum(type_info->own_type_change_checksum());
7791 
7792   TraceInline(target, caller, NULL);
7793 
7794   if (current_block() != NULL) {
7795     FunctionState* state = function_state();
7796     if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
7797       // Falling off the end of an inlined construct call. In a test context the
7798       // return value will always evaluate to true, in a value context the
7799       // return value is the newly allocated receiver.
7800       if (call_context()->IsTest()) {
7801         Goto(inlined_test_context()->if_true(), state);
7802       } else if (call_context()->IsEffect()) {
7803         Goto(function_return(), state);
7804       } else {
7805         ASSERT(call_context()->IsValue());
7806         AddLeaveInlined(implicit_return_value, state);
7807       }
7808     } else if (state->inlining_kind() == SETTER_CALL_RETURN) {
7809       // Falling off the end of an inlined setter call. The returned value is
7810       // never used, the value of an assignment is always the value of the RHS
7811       // of the assignment.
7812       if (call_context()->IsTest()) {
7813         inlined_test_context()->ReturnValue(implicit_return_value);
7814       } else if (call_context()->IsEffect()) {
7815         Goto(function_return(), state);
7816       } else {
7817         ASSERT(call_context()->IsValue());
7818         AddLeaveInlined(implicit_return_value, state);
7819       }
7820     } else {
7821       // Falling off the end of a normal inlined function. This basically means
7822       // returning undefined.
7823       if (call_context()->IsTest()) {
7824         Goto(inlined_test_context()->if_false(), state);
7825       } else if (call_context()->IsEffect()) {
7826         Goto(function_return(), state);
7827       } else {
7828         ASSERT(call_context()->IsValue());
7829         AddLeaveInlined(undefined, state);
7830       }
7831     }
7832   }
7833 
7834   // Fix up the function exits.
7835   if (inlined_test_context() != NULL) {
7836     HBasicBlock* if_true = inlined_test_context()->if_true();
7837     HBasicBlock* if_false = inlined_test_context()->if_false();
7838 
7839     HEnterInlined* entry = function_state()->entry();
7840 
7841     // Pop the return test context from the expression context stack.
7842     ASSERT(ast_context() == inlined_test_context());
7843     ClearInlinedTestContext();
7844     delete target_state;
7845 
7846     // Forward to the real test context.
7847     if (if_true->HasPredecessor()) {
7848       entry->RegisterReturnTarget(if_true, zone());
7849       if_true->SetJoinId(ast_id);
7850       HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
7851       Goto(if_true, true_target, function_state());
7852     }
7853     if (if_false->HasPredecessor()) {
7854       entry->RegisterReturnTarget(if_false, zone());
7855       if_false->SetJoinId(ast_id);
7856       HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
7857       Goto(if_false, false_target, function_state());
7858     }
7859     set_current_block(NULL);
7860     return true;
7861 
7862   } else if (function_return()->HasPredecessor()) {
7863     function_state()->entry()->RegisterReturnTarget(function_return(), zone());
7864     function_return()->SetJoinId(ast_id);
7865     set_current_block(function_return());
7866   } else {
7867     set_current_block(NULL);
7868   }
7869   delete target_state;
7870   return true;
7871 }
7872 
7873 
TryInlineCall(Call * expr)7874 bool HOptimizedGraphBuilder::TryInlineCall(Call* expr) {
7875   return TryInline(expr->target(),
7876                    expr->arguments()->length(),
7877                    NULL,
7878                    expr->id(),
7879                    expr->ReturnId(),
7880                    NORMAL_RETURN,
7881                    ScriptPositionToSourcePosition(expr->position()));
7882 }
7883 
7884 
TryInlineConstruct(CallNew * expr,HValue * implicit_return_value)7885 bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
7886                                                 HValue* implicit_return_value) {
7887   return TryInline(expr->target(),
7888                    expr->arguments()->length(),
7889                    implicit_return_value,
7890                    expr->id(),
7891                    expr->ReturnId(),
7892                    CONSTRUCT_CALL_RETURN,
7893                    ScriptPositionToSourcePosition(expr->position()));
7894 }
7895 
7896 
TryInlineGetter(Handle<JSFunction> getter,Handle<Map> receiver_map,BailoutId ast_id,BailoutId return_id)7897 bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
7898                                              Handle<Map> receiver_map,
7899                                              BailoutId ast_id,
7900                                              BailoutId return_id) {
7901   if (TryInlineApiGetter(getter, receiver_map, ast_id)) return true;
7902   return TryInline(getter,
7903                    0,
7904                    NULL,
7905                    ast_id,
7906                    return_id,
7907                    GETTER_CALL_RETURN,
7908                    source_position());
7909 }
7910 
7911 
TryInlineSetter(Handle<JSFunction> setter,Handle<Map> receiver_map,BailoutId id,BailoutId assignment_id,HValue * implicit_return_value)7912 bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
7913                                              Handle<Map> receiver_map,
7914                                              BailoutId id,
7915                                              BailoutId assignment_id,
7916                                              HValue* implicit_return_value) {
7917   if (TryInlineApiSetter(setter, receiver_map, id)) return true;
7918   return TryInline(setter,
7919                    1,
7920                    implicit_return_value,
7921                    id, assignment_id,
7922                    SETTER_CALL_RETURN,
7923                    source_position());
7924 }
7925 
7926 
TryInlineApply(Handle<JSFunction> function,Call * expr,int arguments_count)7927 bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
7928                                             Call* expr,
7929                                             int arguments_count) {
7930   return TryInline(function,
7931                    arguments_count,
7932                    NULL,
7933                    expr->id(),
7934                    expr->ReturnId(),
7935                    NORMAL_RETURN,
7936                    ScriptPositionToSourcePosition(expr->position()));
7937 }
7938 
7939 
TryInlineBuiltinFunctionCall(Call * expr)7940 bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr) {
7941   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
7942   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
7943   switch (id) {
7944     case kMathExp:
7945       if (!FLAG_fast_math) break;
7946       // Fall through if FLAG_fast_math.
7947     case kMathRound:
7948     case kMathFloor:
7949     case kMathAbs:
7950     case kMathSqrt:
7951     case kMathLog:
7952     case kMathClz32:
7953       if (expr->arguments()->length() == 1) {
7954         HValue* argument = Pop();
7955         Drop(2);  // Receiver and function.
7956         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
7957         ast_context()->ReturnInstruction(op, expr->id());
7958         return true;
7959       }
7960       break;
7961     case kMathImul:
7962       if (expr->arguments()->length() == 2) {
7963         HValue* right = Pop();
7964         HValue* left = Pop();
7965         Drop(2);  // Receiver and function.
7966         HInstruction* op = HMul::NewImul(zone(), context(), left, right);
7967         ast_context()->ReturnInstruction(op, expr->id());
7968         return true;
7969       }
7970       break;
7971     default:
7972       // Not supported for inlining yet.
7973       break;
7974   }
7975   return false;
7976 }
7977 
7978 
TryInlineBuiltinMethodCall(Call * expr,HValue * receiver,Handle<Map> receiver_map)7979 bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
7980     Call* expr,
7981     HValue* receiver,
7982     Handle<Map> receiver_map) {
7983   // Try to inline calls like Math.* as operations in the calling function.
7984   if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
7985   BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
7986   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
7987   switch (id) {
7988     case kStringCharCodeAt:
7989     case kStringCharAt:
7990       if (argument_count == 2) {
7991         HValue* index = Pop();
7992         HValue* string = Pop();
7993         Drop(1);  // Function.
7994         HInstruction* char_code =
7995             BuildStringCharCodeAt(string, index);
7996         if (id == kStringCharCodeAt) {
7997           ast_context()->ReturnInstruction(char_code, expr->id());
7998           return true;
7999         }
8000         AddInstruction(char_code);
8001         HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
8002         ast_context()->ReturnInstruction(result, expr->id());
8003         return true;
8004       }
8005       break;
8006     case kStringFromCharCode:
8007       if (argument_count == 2) {
8008         HValue* argument = Pop();
8009         Drop(2);  // Receiver and function.
8010         HInstruction* result = NewUncasted<HStringCharFromCode>(argument);
8011         ast_context()->ReturnInstruction(result, expr->id());
8012         return true;
8013       }
8014       break;
8015     case kMathExp:
8016       if (!FLAG_fast_math) break;
8017       // Fall through if FLAG_fast_math.
8018     case kMathRound:
8019     case kMathFloor:
8020     case kMathAbs:
8021     case kMathSqrt:
8022     case kMathLog:
8023     case kMathClz32:
8024       if (argument_count == 2) {
8025         HValue* argument = Pop();
8026         Drop(2);  // Receiver and function.
8027         HInstruction* op = NewUncasted<HUnaryMathOperation>(argument, id);
8028         ast_context()->ReturnInstruction(op, expr->id());
8029         return true;
8030       }
8031       break;
8032     case kMathPow:
8033       if (argument_count == 3) {
8034         HValue* right = Pop();
8035         HValue* left = Pop();
8036         Drop(2);  // Receiver and function.
8037         HInstruction* result = NULL;
8038         // Use sqrt() if exponent is 0.5 or -0.5.
8039         if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
8040           double exponent = HConstant::cast(right)->DoubleValue();
8041           if (exponent == 0.5) {
8042             result = NewUncasted<HUnaryMathOperation>(left, kMathPowHalf);
8043           } else if (exponent == -0.5) {
8044             HValue* one = graph()->GetConstant1();
8045             HInstruction* sqrt = AddUncasted<HUnaryMathOperation>(
8046                 left, kMathPowHalf);
8047             // MathPowHalf doesn't have side effects so there's no need for
8048             // an environment simulation here.
8049             ASSERT(!sqrt->HasObservableSideEffects());
8050             result = NewUncasted<HDiv>(one, sqrt);
8051           } else if (exponent == 2.0) {
8052             result = NewUncasted<HMul>(left, left);
8053           }
8054         }
8055 
8056         if (result == NULL) {
8057           result = NewUncasted<HPower>(left, right);
8058         }
8059         ast_context()->ReturnInstruction(result, expr->id());
8060         return true;
8061       }
8062       break;
8063     case kMathMax:
8064     case kMathMin:
8065       if (argument_count == 3) {
8066         HValue* right = Pop();
8067         HValue* left = Pop();
8068         Drop(2);  // Receiver and function.
8069         HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
8070                                                      : HMathMinMax::kMathMax;
8071         HInstruction* result = NewUncasted<HMathMinMax>(left, right, op);
8072         ast_context()->ReturnInstruction(result, expr->id());
8073         return true;
8074       }
8075       break;
8076     case kMathImul:
8077       if (argument_count == 3) {
8078         HValue* right = Pop();
8079         HValue* left = Pop();
8080         Drop(2);  // Receiver and function.
8081         HInstruction* result = HMul::NewImul(zone(), context(), left, right);
8082         ast_context()->ReturnInstruction(result, expr->id());
8083         return true;
8084       }
8085       break;
8086     case kArrayPop: {
8087       if (receiver_map.is_null()) return false;
8088       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8089       ElementsKind elements_kind = receiver_map->elements_kind();
8090       if (!IsFastElementsKind(elements_kind)) return false;
8091       if (receiver_map->is_observed()) return false;
8092       ASSERT(receiver_map->is_extensible());
8093 
8094       Drop(expr->arguments()->length());
8095       HValue* result;
8096       HValue* reduced_length;
8097       HValue* receiver = Pop();
8098 
8099       HValue* checked_object = AddCheckMap(receiver, receiver_map);
8100       HValue* length = Add<HLoadNamedField>(
8101           checked_object, static_cast<HValue*>(NULL),
8102           HObjectAccess::ForArrayLength(elements_kind));
8103 
8104       Drop(1);  // Function.
8105 
8106       { NoObservableSideEffectsScope scope(this);
8107         IfBuilder length_checker(this);
8108 
8109         HValue* bounds_check = length_checker.If<HCompareNumericAndBranch>(
8110             length, graph()->GetConstant0(), Token::EQ);
8111         length_checker.Then();
8112 
8113         if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8114 
8115         length_checker.Else();
8116         HValue* elements = AddLoadElements(checked_object);
8117         // Ensure that we aren't popping from a copy-on-write array.
8118         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8119           elements = BuildCopyElementsOnWrite(checked_object, elements,
8120                                               elements_kind, length);
8121         }
8122         reduced_length = AddUncasted<HSub>(length, graph()->GetConstant1());
8123         result = AddElementAccess(elements, reduced_length, NULL,
8124                                   bounds_check, elements_kind, LOAD);
8125         Factory* factory = isolate()->factory();
8126         double nan_double = FixedDoubleArray::hole_nan_as_double();
8127         HValue* hole = IsFastSmiOrObjectElementsKind(elements_kind)
8128             ? Add<HConstant>(factory->the_hole_value())
8129             : Add<HConstant>(nan_double);
8130         if (IsFastSmiOrObjectElementsKind(elements_kind)) {
8131           elements_kind = FAST_HOLEY_ELEMENTS;
8132         }
8133         AddElementAccess(
8134             elements, reduced_length, hole, bounds_check, elements_kind, STORE);
8135         Add<HStoreNamedField>(
8136             checked_object, HObjectAccess::ForArrayLength(elements_kind),
8137             reduced_length, STORE_TO_INITIALIZED_ENTRY);
8138 
8139         if (!ast_context()->IsEffect()) Push(result);
8140 
8141         length_checker.End();
8142       }
8143       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8144       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8145       if (!ast_context()->IsEffect()) Drop(1);
8146 
8147       ast_context()->ReturnValue(result);
8148       return true;
8149     }
8150     case kArrayPush: {
8151       if (receiver_map.is_null()) return false;
8152       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8153       ElementsKind elements_kind = receiver_map->elements_kind();
8154       if (!IsFastElementsKind(elements_kind)) return false;
8155       if (receiver_map->is_observed()) return false;
8156       if (JSArray::IsReadOnlyLengthDescriptor(receiver_map)) return false;
8157       ASSERT(receiver_map->is_extensible());
8158 
8159       // If there may be elements accessors in the prototype chain, the fast
8160       // inlined version can't be used.
8161       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8162       // If there currently can be no elements accessors on the prototype chain,
8163       // it doesn't mean that there won't be any later. Install a full prototype
8164       // chain check to trap element accessors being installed on the prototype
8165       // chain, which would cause elements to go to dictionary mode and result
8166       // in a map change.
8167       Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
8168       BuildCheckPrototypeMaps(prototype, Handle<JSObject>());
8169 
8170       const int argc = expr->arguments()->length();
8171       if (argc != 1) return false;
8172 
8173       HValue* value_to_push = Pop();
8174       HValue* array = Pop();
8175       Drop(1);  // Drop function.
8176 
8177       HInstruction* new_size = NULL;
8178       HValue* length = NULL;
8179 
8180       {
8181         NoObservableSideEffectsScope scope(this);
8182 
8183         length = Add<HLoadNamedField>(array, static_cast<HValue*>(NULL),
8184           HObjectAccess::ForArrayLength(elements_kind));
8185 
8186         new_size = AddUncasted<HAdd>(length, graph()->GetConstant1());
8187 
8188         bool is_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
8189         BuildUncheckedMonomorphicElementAccess(array, length,
8190                                                value_to_push, is_array,
8191                                                elements_kind, STORE,
8192                                                NEVER_RETURN_HOLE,
8193                                                STORE_AND_GROW_NO_TRANSITION);
8194 
8195         if (!ast_context()->IsEffect()) Push(new_size);
8196         Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8197         if (!ast_context()->IsEffect()) Drop(1);
8198       }
8199 
8200       ast_context()->ReturnValue(new_size);
8201       return true;
8202     }
8203     case kArrayShift: {
8204       if (receiver_map.is_null()) return false;
8205       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8206       ElementsKind kind = receiver_map->elements_kind();
8207       if (!IsFastElementsKind(kind)) return false;
8208       if (receiver_map->is_observed()) return false;
8209       ASSERT(receiver_map->is_extensible());
8210 
8211       // If there may be elements accessors in the prototype chain, the fast
8212       // inlined version can't be used.
8213       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8214 
8215       // If there currently can be no elements accessors on the prototype chain,
8216       // it doesn't mean that there won't be any later. Install a full prototype
8217       // chain check to trap element accessors being installed on the prototype
8218       // chain, which would cause elements to go to dictionary mode and result
8219       // in a map change.
8220       BuildCheckPrototypeMaps(
8221           handle(JSObject::cast(receiver_map->prototype()), isolate()),
8222           Handle<JSObject>::null());
8223 
8224       // Threshold for fast inlined Array.shift().
8225       HConstant* inline_threshold = Add<HConstant>(static_cast<int32_t>(16));
8226 
8227       Drop(expr->arguments()->length());
8228       HValue* receiver = Pop();
8229       HValue* function = Pop();
8230       HValue* result;
8231 
8232       {
8233         NoObservableSideEffectsScope scope(this);
8234 
8235         HValue* length = Add<HLoadNamedField>(
8236             receiver, static_cast<HValue*>(NULL),
8237             HObjectAccess::ForArrayLength(kind));
8238 
8239         IfBuilder if_lengthiszero(this);
8240         HValue* lengthiszero = if_lengthiszero.If<HCompareNumericAndBranch>(
8241             length, graph()->GetConstant0(), Token::EQ);
8242         if_lengthiszero.Then();
8243         {
8244           if (!ast_context()->IsEffect()) Push(graph()->GetConstantUndefined());
8245         }
8246         if_lengthiszero.Else();
8247         {
8248           HValue* elements = AddLoadElements(receiver);
8249 
8250           // Check if we can use the fast inlined Array.shift().
8251           IfBuilder if_inline(this);
8252           if_inline.If<HCompareNumericAndBranch>(
8253               length, inline_threshold, Token::LTE);
8254           if (IsFastSmiOrObjectElementsKind(kind)) {
8255             // We cannot handle copy-on-write backing stores here.
8256             if_inline.AndIf<HCompareMap>(
8257                 elements, isolate()->factory()->fixed_array_map());
8258           }
8259           if_inline.Then();
8260           {
8261             // Remember the result.
8262             if (!ast_context()->IsEffect()) {
8263               Push(AddElementAccess(elements, graph()->GetConstant0(), NULL,
8264                                     lengthiszero, kind, LOAD));
8265             }
8266 
8267             // Compute the new length.
8268             HValue* new_length = AddUncasted<HSub>(
8269                 length, graph()->GetConstant1());
8270             new_length->ClearFlag(HValue::kCanOverflow);
8271 
8272             // Copy the remaining elements.
8273             LoopBuilder loop(this, context(), LoopBuilder::kPostIncrement);
8274             {
8275               HValue* new_key = loop.BeginBody(
8276                   graph()->GetConstant0(), new_length, Token::LT);
8277               HValue* key = AddUncasted<HAdd>(new_key, graph()->GetConstant1());
8278               key->ClearFlag(HValue::kCanOverflow);
8279               HValue* element = AddUncasted<HLoadKeyed>(
8280                   elements, key, lengthiszero, kind, ALLOW_RETURN_HOLE);
8281               HStoreKeyed* store = Add<HStoreKeyed>(
8282                   elements, new_key, element, kind);
8283               store->SetFlag(HValue::kAllowUndefinedAsNaN);
8284             }
8285             loop.EndBody();
8286 
8287             // Put a hole at the end.
8288             HValue* hole = IsFastSmiOrObjectElementsKind(kind)
8289                 ? Add<HConstant>(isolate()->factory()->the_hole_value())
8290                 : Add<HConstant>(FixedDoubleArray::hole_nan_as_double());
8291             if (IsFastSmiOrObjectElementsKind(kind)) kind = FAST_HOLEY_ELEMENTS;
8292             Add<HStoreKeyed>(
8293                 elements, new_length, hole, kind, INITIALIZING_STORE);
8294 
8295             // Remember new length.
8296             Add<HStoreNamedField>(
8297                 receiver, HObjectAccess::ForArrayLength(kind),
8298                 new_length, STORE_TO_INITIALIZED_ENTRY);
8299           }
8300           if_inline.Else();
8301           {
8302             Add<HPushArguments>(receiver);
8303             result = Add<HCallJSFunction>(function, 1, true);
8304             if (!ast_context()->IsEffect()) Push(result);
8305           }
8306           if_inline.End();
8307         }
8308         if_lengthiszero.End();
8309       }
8310       result = ast_context()->IsEffect() ? graph()->GetConstant0() : Top();
8311       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8312       if (!ast_context()->IsEffect()) Drop(1);
8313       ast_context()->ReturnValue(result);
8314       return true;
8315     }
8316     case kArrayIndexOf:
8317     case kArrayLastIndexOf: {
8318       if (receiver_map.is_null()) return false;
8319       if (receiver_map->instance_type() != JS_ARRAY_TYPE) return false;
8320       ElementsKind kind = receiver_map->elements_kind();
8321       if (!IsFastElementsKind(kind)) return false;
8322       if (receiver_map->is_observed()) return false;
8323       if (argument_count != 2) return false;
8324       ASSERT(receiver_map->is_extensible());
8325 
8326       // If there may be elements accessors in the prototype chain, the fast
8327       // inlined version can't be used.
8328       if (receiver_map->DictionaryElementsInPrototypeChainOnly()) return false;
8329 
8330       // If there currently can be no elements accessors on the prototype chain,
8331       // it doesn't mean that there won't be any later. Install a full prototype
8332       // chain check to trap element accessors being installed on the prototype
8333       // chain, which would cause elements to go to dictionary mode and result
8334       // in a map change.
8335       BuildCheckPrototypeMaps(
8336           handle(JSObject::cast(receiver_map->prototype()), isolate()),
8337           Handle<JSObject>::null());
8338 
8339       HValue* search_element = Pop();
8340       HValue* receiver = Pop();
8341       Drop(1);  // Drop function.
8342 
8343       ArrayIndexOfMode mode = (id == kArrayIndexOf)
8344           ? kFirstIndexOf : kLastIndexOf;
8345       HValue* index = BuildArrayIndexOf(receiver, search_element, kind, mode);
8346 
8347       if (!ast_context()->IsEffect()) Push(index);
8348       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
8349       if (!ast_context()->IsEffect()) Drop(1);
8350       ast_context()->ReturnValue(index);
8351       return true;
8352     }
8353     default:
8354       // Not yet supported for inlining.
8355       break;
8356   }
8357   return false;
8358 }
8359 
8360 
TryInlineApiFunctionCall(Call * expr,HValue * receiver)8361 bool HOptimizedGraphBuilder::TryInlineApiFunctionCall(Call* expr,
8362                                                       HValue* receiver) {
8363   Handle<JSFunction> function = expr->target();
8364   int argc = expr->arguments()->length();
8365   SmallMapList receiver_maps;
8366   return TryInlineApiCall(function,
8367                           receiver,
8368                           &receiver_maps,
8369                           argc,
8370                           expr->id(),
8371                           kCallApiFunction);
8372 }
8373 
8374 
TryInlineApiMethodCall(Call * expr,HValue * receiver,SmallMapList * receiver_maps)8375 bool HOptimizedGraphBuilder::TryInlineApiMethodCall(
8376     Call* expr,
8377     HValue* receiver,
8378     SmallMapList* receiver_maps) {
8379   Handle<JSFunction> function = expr->target();
8380   int argc = expr->arguments()->length();
8381   return TryInlineApiCall(function,
8382                           receiver,
8383                           receiver_maps,
8384                           argc,
8385                           expr->id(),
8386                           kCallApiMethod);
8387 }
8388 
8389 
TryInlineApiGetter(Handle<JSFunction> function,Handle<Map> receiver_map,BailoutId ast_id)8390 bool HOptimizedGraphBuilder::TryInlineApiGetter(Handle<JSFunction> function,
8391                                                 Handle<Map> receiver_map,
8392                                                 BailoutId ast_id) {
8393   SmallMapList receiver_maps(1, zone());
8394   receiver_maps.Add(receiver_map, zone());
8395   return TryInlineApiCall(function,
8396                           NULL,  // Receiver is on expression stack.
8397                           &receiver_maps,
8398                           0,
8399                           ast_id,
8400                           kCallApiGetter);
8401 }
8402 
8403 
TryInlineApiSetter(Handle<JSFunction> function,Handle<Map> receiver_map,BailoutId ast_id)8404 bool HOptimizedGraphBuilder::TryInlineApiSetter(Handle<JSFunction> function,
8405                                                 Handle<Map> receiver_map,
8406                                                 BailoutId ast_id) {
8407   SmallMapList receiver_maps(1, zone());
8408   receiver_maps.Add(receiver_map, zone());
8409   return TryInlineApiCall(function,
8410                           NULL,  // Receiver is on expression stack.
8411                           &receiver_maps,
8412                           1,
8413                           ast_id,
8414                           kCallApiSetter);
8415 }
8416 
8417 
TryInlineApiCall(Handle<JSFunction> function,HValue * receiver,SmallMapList * receiver_maps,int argc,BailoutId ast_id,ApiCallType call_type)8418 bool HOptimizedGraphBuilder::TryInlineApiCall(Handle<JSFunction> function,
8419                                                HValue* receiver,
8420                                                SmallMapList* receiver_maps,
8421                                                int argc,
8422                                                BailoutId ast_id,
8423                                                ApiCallType call_type) {
8424   CallOptimization optimization(function);
8425   if (!optimization.is_simple_api_call()) return false;
8426   Handle<Map> holder_map;
8427   if (call_type == kCallApiFunction) {
8428     // Cannot embed a direct reference to the global proxy map
8429     // as it maybe dropped on deserialization.
8430     CHECK(!isolate()->serializer_enabled());
8431     ASSERT_EQ(0, receiver_maps->length());
8432     receiver_maps->Add(handle(
8433         function->context()->global_object()->global_receiver()->map()),
8434         zone());
8435   }
8436   CallOptimization::HolderLookup holder_lookup =
8437       CallOptimization::kHolderNotFound;
8438   Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
8439       receiver_maps->first(), &holder_lookup);
8440   if (holder_lookup == CallOptimization::kHolderNotFound) return false;
8441 
8442   if (FLAG_trace_inlining) {
8443     PrintF("Inlining api function ");
8444     function->ShortPrint();
8445     PrintF("\n");
8446   }
8447 
8448   bool drop_extra = false;
8449   bool is_store = false;
8450   switch (call_type) {
8451     case kCallApiFunction:
8452     case kCallApiMethod:
8453       // Need to check that none of the receiver maps could have changed.
8454       Add<HCheckMaps>(receiver, receiver_maps);
8455       // Need to ensure the chain between receiver and api_holder is intact.
8456       if (holder_lookup == CallOptimization::kHolderFound) {
8457         AddCheckPrototypeMaps(api_holder, receiver_maps->first());
8458       } else {
8459         ASSERT_EQ(holder_lookup, CallOptimization::kHolderIsReceiver);
8460       }
8461       // Includes receiver.
8462       PushArgumentsFromEnvironment(argc + 1);
8463       // Drop function after call.
8464       drop_extra = true;
8465       break;
8466     case kCallApiGetter:
8467       // Receiver and prototype chain cannot have changed.
8468       ASSERT_EQ(0, argc);
8469       ASSERT_EQ(NULL, receiver);
8470       // Receiver is on expression stack.
8471       receiver = Pop();
8472       Add<HPushArguments>(receiver);
8473       break;
8474     case kCallApiSetter:
8475       {
8476         is_store = true;
8477         // Receiver and prototype chain cannot have changed.
8478         ASSERT_EQ(1, argc);
8479         ASSERT_EQ(NULL, receiver);
8480         // Receiver and value are on expression stack.
8481         HValue* value = Pop();
8482         receiver = Pop();
8483         Add<HPushArguments>(receiver, value);
8484         break;
8485      }
8486   }
8487 
8488   HValue* holder = NULL;
8489   switch (holder_lookup) {
8490     case CallOptimization::kHolderFound:
8491       holder = Add<HConstant>(api_holder);
8492       break;
8493     case CallOptimization::kHolderIsReceiver:
8494       holder = receiver;
8495       break;
8496     case CallOptimization::kHolderNotFound:
8497       UNREACHABLE();
8498       break;
8499   }
8500   Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
8501   Handle<Object> call_data_obj(api_call_info->data(), isolate());
8502   bool call_data_is_undefined = call_data_obj->IsUndefined();
8503   HValue* call_data = Add<HConstant>(call_data_obj);
8504   ApiFunction fun(v8::ToCData<Address>(api_call_info->callback()));
8505   ExternalReference ref = ExternalReference(&fun,
8506                                             ExternalReference::DIRECT_API_CALL,
8507                                             isolate());
8508   HValue* api_function_address = Add<HConstant>(ExternalReference(ref));
8509 
8510   HValue* op_vals[] = {
8511     Add<HConstant>(function),
8512     call_data,
8513     holder,
8514     api_function_address,
8515     context()
8516   };
8517 
8518   CallInterfaceDescriptor* descriptor =
8519       isolate()->call_descriptor(Isolate::ApiFunctionCall);
8520 
8521   CallApiFunctionStub stub(isolate(), is_store, call_data_is_undefined, argc);
8522   Handle<Code> code = stub.GetCode();
8523   HConstant* code_value = Add<HConstant>(code);
8524 
8525   ASSERT((sizeof(op_vals) / kPointerSize) ==
8526          descriptor->environment_length());
8527 
8528   HInstruction* call = New<HCallWithDescriptor>(
8529       code_value, argc + 1, descriptor,
8530       Vector<HValue*>(op_vals, descriptor->environment_length()));
8531 
8532   if (drop_extra) Drop(1);  // Drop function.
8533   ast_context()->ReturnInstruction(call, ast_id);
8534   return true;
8535 }
8536 
8537 
TryCallApply(Call * expr)8538 bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
8539   ASSERT(expr->expression()->IsProperty());
8540 
8541   if (!expr->IsMonomorphic()) {
8542     return false;
8543   }
8544   Handle<Map> function_map = expr->GetReceiverTypes()->first();
8545   if (function_map->instance_type() != JS_FUNCTION_TYPE ||
8546       !expr->target()->shared()->HasBuiltinFunctionId() ||
8547       expr->target()->shared()->builtin_function_id() != kFunctionApply) {
8548     return false;
8549   }
8550 
8551   if (current_info()->scope()->arguments() == NULL) return false;
8552 
8553   ZoneList<Expression*>* args = expr->arguments();
8554   if (args->length() != 2) return false;
8555 
8556   VariableProxy* arg_two = args->at(1)->AsVariableProxy();
8557   if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
8558   HValue* arg_two_value = LookupAndMakeLive(arg_two->var());
8559   if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
8560 
8561   // Found pattern f.apply(receiver, arguments).
8562   CHECK_ALIVE_OR_RETURN(VisitForValue(args->at(0)), true);
8563   HValue* receiver = Pop();  // receiver
8564   HValue* function = Pop();  // f
8565   Drop(1);  // apply
8566 
8567   HValue* checked_function = AddCheckMap(function, function_map);
8568 
8569   if (function_state()->outer() == NULL) {
8570     HInstruction* elements = Add<HArgumentsElements>(false);
8571     HInstruction* length = Add<HArgumentsLength>(elements);
8572     HValue* wrapped_receiver = BuildWrapReceiver(receiver, checked_function);
8573     HInstruction* result = New<HApplyArguments>(function,
8574                                                 wrapped_receiver,
8575                                                 length,
8576                                                 elements);
8577     ast_context()->ReturnInstruction(result, expr->id());
8578     return true;
8579   } else {
8580     // We are inside inlined function and we know exactly what is inside
8581     // arguments object. But we need to be able to materialize at deopt.
8582     ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
8583               function_state()->entry()->arguments_object()->arguments_count());
8584     HArgumentsObject* args = function_state()->entry()->arguments_object();
8585     const ZoneList<HValue*>* arguments_values = args->arguments_values();
8586     int arguments_count = arguments_values->length();
8587     Push(function);
8588     Push(BuildWrapReceiver(receiver, checked_function));
8589     for (int i = 1; i < arguments_count; i++) {
8590       Push(arguments_values->at(i));
8591     }
8592 
8593     Handle<JSFunction> known_function;
8594     if (function->IsConstant() &&
8595         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
8596       known_function = Handle<JSFunction>::cast(
8597           HConstant::cast(function)->handle(isolate()));
8598       int args_count = arguments_count - 1;  // Excluding receiver.
8599       if (TryInlineApply(known_function, expr, args_count)) return true;
8600     }
8601 
8602     PushArgumentsFromEnvironment(arguments_count);
8603     HInvokeFunction* call = New<HInvokeFunction>(
8604         function, known_function, arguments_count);
8605     Drop(1);  // Function.
8606     ast_context()->ReturnInstruction(call, expr->id());
8607     return true;
8608   }
8609 }
8610 
8611 
ImplicitReceiverFor(HValue * function,Handle<JSFunction> target)8612 HValue* HOptimizedGraphBuilder::ImplicitReceiverFor(HValue* function,
8613                                                     Handle<JSFunction> target) {
8614   SharedFunctionInfo* shared = target->shared();
8615   if (shared->strict_mode() == SLOPPY && !shared->native()) {
8616     // Cannot embed a direct reference to the global proxy
8617     // as is it dropped on deserialization.
8618     CHECK(!isolate()->serializer_enabled());
8619     Handle<JSObject> global_receiver(
8620         target->context()->global_object()->global_receiver());
8621     return Add<HConstant>(global_receiver);
8622   }
8623   return graph()->GetConstantUndefined();
8624 }
8625 
8626 
BuildArrayCall(Expression * expression,int arguments_count,HValue * function,Handle<AllocationSite> site)8627 void HOptimizedGraphBuilder::BuildArrayCall(Expression* expression,
8628                                             int arguments_count,
8629                                             HValue* function,
8630                                             Handle<AllocationSite> site) {
8631   Add<HCheckValue>(function, array_function());
8632 
8633   if (IsCallArrayInlineable(arguments_count, site)) {
8634     BuildInlinedCallArray(expression, arguments_count, site);
8635     return;
8636   }
8637 
8638   HInstruction* call = PreProcessCall(New<HCallNewArray>(
8639       function, arguments_count + 1, site->GetElementsKind()));
8640   if (expression->IsCall()) {
8641     Drop(1);
8642   }
8643   ast_context()->ReturnInstruction(call, expression->id());
8644 }
8645 
8646 
BuildArrayIndexOf(HValue * receiver,HValue * search_element,ElementsKind kind,ArrayIndexOfMode mode)8647 HValue* HOptimizedGraphBuilder::BuildArrayIndexOf(HValue* receiver,
8648                                                   HValue* search_element,
8649                                                   ElementsKind kind,
8650                                                   ArrayIndexOfMode mode) {
8651   ASSERT(IsFastElementsKind(kind));
8652 
8653   NoObservableSideEffectsScope no_effects(this);
8654 
8655   HValue* elements = AddLoadElements(receiver);
8656   HValue* length = AddLoadArrayLength(receiver, kind);
8657 
8658   HValue* initial;
8659   HValue* terminating;
8660   Token::Value token;
8661   LoopBuilder::Direction direction;
8662   if (mode == kFirstIndexOf) {
8663     initial = graph()->GetConstant0();
8664     terminating = length;
8665     token = Token::LT;
8666     direction = LoopBuilder::kPostIncrement;
8667   } else {
8668     ASSERT_EQ(kLastIndexOf, mode);
8669     initial = length;
8670     terminating = graph()->GetConstant0();
8671     token = Token::GT;
8672     direction = LoopBuilder::kPreDecrement;
8673   }
8674 
8675   Push(graph()->GetConstantMinus1());
8676   if (IsFastDoubleElementsKind(kind) || IsFastSmiElementsKind(kind)) {
8677     LoopBuilder loop(this, context(), direction);
8678     {
8679       HValue* index = loop.BeginBody(initial, terminating, token);
8680       HValue* element = AddUncasted<HLoadKeyed>(
8681           elements, index, static_cast<HValue*>(NULL),
8682           kind, ALLOW_RETURN_HOLE);
8683       IfBuilder if_issame(this);
8684       if (IsFastDoubleElementsKind(kind)) {
8685         if_issame.If<HCompareNumericAndBranch>(
8686             element, search_element, Token::EQ_STRICT);
8687       } else {
8688         if_issame.If<HCompareObjectEqAndBranch>(element, search_element);
8689       }
8690       if_issame.Then();
8691       {
8692         Drop(1);
8693         Push(index);
8694         loop.Break();
8695       }
8696       if_issame.End();
8697     }
8698     loop.EndBody();
8699   } else {
8700     IfBuilder if_isstring(this);
8701     if_isstring.If<HIsStringAndBranch>(search_element);
8702     if_isstring.Then();
8703     {
8704       LoopBuilder loop(this, context(), direction);
8705       {
8706         HValue* index = loop.BeginBody(initial, terminating, token);
8707         HValue* element = AddUncasted<HLoadKeyed>(
8708             elements, index, static_cast<HValue*>(NULL),
8709             kind, ALLOW_RETURN_HOLE);
8710         IfBuilder if_issame(this);
8711         if_issame.If<HIsStringAndBranch>(element);
8712         if_issame.AndIf<HStringCompareAndBranch>(
8713             element, search_element, Token::EQ_STRICT);
8714         if_issame.Then();
8715         {
8716           Drop(1);
8717           Push(index);
8718           loop.Break();
8719         }
8720         if_issame.End();
8721       }
8722       loop.EndBody();
8723     }
8724     if_isstring.Else();
8725     {
8726       IfBuilder if_isnumber(this);
8727       if_isnumber.If<HIsSmiAndBranch>(search_element);
8728       if_isnumber.OrIf<HCompareMap>(
8729           search_element, isolate()->factory()->heap_number_map());
8730       if_isnumber.Then();
8731       {
8732         HValue* search_number =
8733             AddUncasted<HForceRepresentation>(search_element,
8734                                               Representation::Double());
8735         LoopBuilder loop(this, context(), direction);
8736         {
8737           HValue* index = loop.BeginBody(initial, terminating, token);
8738           HValue* element = AddUncasted<HLoadKeyed>(
8739               elements, index, static_cast<HValue*>(NULL),
8740               kind, ALLOW_RETURN_HOLE);
8741 
8742           IfBuilder if_element_isnumber(this);
8743           if_element_isnumber.If<HIsSmiAndBranch>(element);
8744           if_element_isnumber.OrIf<HCompareMap>(
8745               element, isolate()->factory()->heap_number_map());
8746           if_element_isnumber.Then();
8747           {
8748             HValue* number =
8749                 AddUncasted<HForceRepresentation>(element,
8750                                                   Representation::Double());
8751             IfBuilder if_issame(this);
8752             if_issame.If<HCompareNumericAndBranch>(
8753                 number, search_number, Token::EQ_STRICT);
8754             if_issame.Then();
8755             {
8756               Drop(1);
8757               Push(index);
8758               loop.Break();
8759             }
8760             if_issame.End();
8761           }
8762           if_element_isnumber.End();
8763         }
8764         loop.EndBody();
8765       }
8766       if_isnumber.Else();
8767       {
8768         LoopBuilder loop(this, context(), direction);
8769         {
8770           HValue* index = loop.BeginBody(initial, terminating, token);
8771           HValue* element = AddUncasted<HLoadKeyed>(
8772               elements, index, static_cast<HValue*>(NULL),
8773               kind, ALLOW_RETURN_HOLE);
8774           IfBuilder if_issame(this);
8775           if_issame.If<HCompareObjectEqAndBranch>(
8776               element, search_element);
8777           if_issame.Then();
8778           {
8779             Drop(1);
8780             Push(index);
8781             loop.Break();
8782           }
8783           if_issame.End();
8784         }
8785         loop.EndBody();
8786       }
8787       if_isnumber.End();
8788     }
8789     if_isstring.End();
8790   }
8791 
8792   return Pop();
8793 }
8794 
8795 
TryHandleArrayCall(Call * expr,HValue * function)8796 bool HOptimizedGraphBuilder::TryHandleArrayCall(Call* expr, HValue* function) {
8797   if (!array_function().is_identical_to(expr->target())) {
8798     return false;
8799   }
8800 
8801   Handle<AllocationSite> site = expr->allocation_site();
8802   if (site.is_null()) return false;
8803 
8804   BuildArrayCall(expr,
8805                  expr->arguments()->length(),
8806                  function,
8807                  site);
8808   return true;
8809 }
8810 
8811 
TryHandleArrayCallNew(CallNew * expr,HValue * function)8812 bool HOptimizedGraphBuilder::TryHandleArrayCallNew(CallNew* expr,
8813                                                    HValue* function) {
8814   if (!array_function().is_identical_to(expr->target())) {
8815     return false;
8816   }
8817 
8818   BuildArrayCall(expr,
8819                  expr->arguments()->length(),
8820                  function,
8821                  expr->allocation_site());
8822   return true;
8823 }
8824 
8825 
VisitCall(Call * expr)8826 void HOptimizedGraphBuilder::VisitCall(Call* expr) {
8827   ASSERT(!HasStackOverflow());
8828   ASSERT(current_block() != NULL);
8829   ASSERT(current_block()->HasPredecessor());
8830   Expression* callee = expr->expression();
8831   int argument_count = expr->arguments()->length() + 1;  // Plus receiver.
8832   HInstruction* call = NULL;
8833 
8834   Property* prop = callee->AsProperty();
8835   if (prop != NULL) {
8836     CHECK_ALIVE(VisitForValue(prop->obj()));
8837     HValue* receiver = Top();
8838 
8839     SmallMapList* types;
8840     ComputeReceiverTypes(expr, receiver, &types, zone());
8841 
8842     if (prop->key()->IsPropertyName() && types->length() > 0) {
8843       Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
8844       PropertyAccessInfo info(this, LOAD, ToType(types->first()), name);
8845       if (!info.CanAccessAsMonomorphic(types)) {
8846         HandlePolymorphicCallNamed(expr, receiver, types, name);
8847         return;
8848       }
8849     }
8850 
8851     HValue* key = NULL;
8852     if (!prop->key()->IsPropertyName()) {
8853       CHECK_ALIVE(VisitForValue(prop->key()));
8854       key = Pop();
8855     }
8856 
8857     CHECK_ALIVE(PushLoad(prop, receiver, key));
8858     HValue* function = Pop();
8859 
8860     if (FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
8861 
8862     // Push the function under the receiver.
8863     environment()->SetExpressionStackAt(0, function);
8864 
8865     Push(receiver);
8866 
8867     if (function->IsConstant() &&
8868         HConstant::cast(function)->handle(isolate())->IsJSFunction()) {
8869       Handle<JSFunction> known_function = Handle<JSFunction>::cast(
8870           HConstant::cast(function)->handle(isolate()));
8871       expr->set_target(known_function);
8872 
8873       if (TryCallApply(expr)) return;
8874       CHECK_ALIVE(VisitExpressions(expr->arguments()));
8875 
8876       Handle<Map> map = types->length() == 1 ? types->first() : Handle<Map>();
8877       if (TryInlineBuiltinMethodCall(expr, receiver, map)) {
8878         if (FLAG_trace_inlining) {
8879           PrintF("Inlining builtin ");
8880           known_function->ShortPrint();
8881           PrintF("\n");
8882         }
8883         return;
8884       }
8885       if (TryInlineApiMethodCall(expr, receiver, types)) return;
8886 
8887       // Wrap the receiver if necessary.
8888       if (NeedsWrappingFor(ToType(types->first()), known_function)) {
8889         // Since HWrapReceiver currently cannot actually wrap numbers and
8890         // strings, use the regular CallFunctionStub for method calls to wrap
8891         // the receiver.
8892         // TODO(verwaest): Support creation of value wrappers directly in
8893         // HWrapReceiver.
8894         call = New<HCallFunction>(
8895             function, argument_count, WRAP_AND_CALL);
8896       } else if (TryInlineCall(expr)) {
8897         return;
8898       } else {
8899         call = BuildCallConstantFunction(known_function, argument_count);
8900       }
8901 
8902     } else {
8903       CHECK_ALIVE(VisitExpressions(expr->arguments()));
8904       CallFunctionFlags flags = receiver->type().IsJSObject()
8905           ? NO_CALL_FUNCTION_FLAGS : CALL_AS_METHOD;
8906       call = New<HCallFunction>(function, argument_count, flags);
8907     }
8908     PushArgumentsFromEnvironment(argument_count);
8909 
8910   } else {
8911     VariableProxy* proxy = expr->expression()->AsVariableProxy();
8912     if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
8913       return Bailout(kPossibleDirectCallToEval);
8914     }
8915 
8916     // The function is on the stack in the unoptimized code during
8917     // evaluation of the arguments.
8918     CHECK_ALIVE(VisitForValue(expr->expression()));
8919     HValue* function = Top();
8920     if (expr->global_call()) {
8921       Variable* var = proxy->var();
8922       bool known_global_function = false;
8923       // If there is a global property cell for the name at compile time and
8924       // access check is not enabled we assume that the function will not change
8925       // and generate optimized code for calling the function.
8926       LookupResult lookup(isolate());
8927       GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, LOAD);
8928       if (type == kUseCell &&
8929           !current_info()->global_object()->IsAccessCheckNeeded()) {
8930         Handle<GlobalObject> global(current_info()->global_object());
8931         known_global_function = expr->ComputeGlobalTarget(global, &lookup);
8932       }
8933       if (known_global_function) {
8934         Add<HCheckValue>(function, expr->target());
8935 
8936         // Placeholder for the receiver.
8937         Push(graph()->GetConstantUndefined());
8938         CHECK_ALIVE(VisitExpressions(expr->arguments()));
8939 
8940         // Patch the global object on the stack by the expected receiver.
8941         HValue* receiver = ImplicitReceiverFor(function, expr->target());
8942         const int receiver_index = argument_count - 1;
8943         environment()->SetExpressionStackAt(receiver_index, receiver);
8944 
8945         if (TryInlineBuiltinFunctionCall(expr)) {
8946           if (FLAG_trace_inlining) {
8947             PrintF("Inlining builtin ");
8948             expr->target()->ShortPrint();
8949             PrintF("\n");
8950           }
8951           return;
8952         }
8953         if (TryInlineApiFunctionCall(expr, receiver)) return;
8954         if (TryHandleArrayCall(expr, function)) return;
8955         if (TryInlineCall(expr)) return;
8956 
8957         PushArgumentsFromEnvironment(argument_count);
8958         call = BuildCallConstantFunction(expr->target(), argument_count);
8959       } else {
8960         Push(graph()->GetConstantUndefined());
8961         CHECK_ALIVE(VisitExpressions(expr->arguments()));
8962         PushArgumentsFromEnvironment(argument_count);
8963         call = New<HCallFunction>(function, argument_count);
8964       }
8965 
8966     } else if (expr->IsMonomorphic()) {
8967       Add<HCheckValue>(function, expr->target());
8968 
8969       Push(graph()->GetConstantUndefined());
8970       CHECK_ALIVE(VisitExpressions(expr->arguments()));
8971 
8972       HValue* receiver = ImplicitReceiverFor(function, expr->target());
8973       const int receiver_index = argument_count - 1;
8974       environment()->SetExpressionStackAt(receiver_index, receiver);
8975 
8976       if (TryInlineBuiltinFunctionCall(expr)) {
8977         if (FLAG_trace_inlining) {
8978           PrintF("Inlining builtin ");
8979           expr->target()->ShortPrint();
8980           PrintF("\n");
8981         }
8982         return;
8983       }
8984       if (TryInlineApiFunctionCall(expr, receiver)) return;
8985 
8986       if (TryInlineCall(expr)) return;
8987 
8988       call = PreProcessCall(New<HInvokeFunction>(
8989           function, expr->target(), argument_count));
8990 
8991     } else {
8992       Push(graph()->GetConstantUndefined());
8993       CHECK_ALIVE(VisitExpressions(expr->arguments()));
8994       PushArgumentsFromEnvironment(argument_count);
8995       call = New<HCallFunction>(function, argument_count);
8996     }
8997   }
8998 
8999   Drop(1);  // Drop the function.
9000   return ast_context()->ReturnInstruction(call, expr->id());
9001 }
9002 
9003 
BuildInlinedCallArray(Expression * expression,int argument_count,Handle<AllocationSite> site)9004 void HOptimizedGraphBuilder::BuildInlinedCallArray(
9005     Expression* expression,
9006     int argument_count,
9007     Handle<AllocationSite> site) {
9008   ASSERT(!site.is_null());
9009   ASSERT(argument_count >= 0 && argument_count <= 1);
9010   NoObservableSideEffectsScope no_effects(this);
9011 
9012   // We should at least have the constructor on the expression stack.
9013   HValue* constructor = environment()->ExpressionStackAt(argument_count);
9014 
9015   // Register on the site for deoptimization if the transition feedback changes.
9016   AllocationSite::AddDependentCompilationInfo(
9017       site, AllocationSite::TRANSITIONS, top_info());
9018   ElementsKind kind = site->GetElementsKind();
9019   HInstruction* site_instruction = Add<HConstant>(site);
9020 
9021   // In the single constant argument case, we may have to adjust elements kind
9022   // to avoid creating a packed non-empty array.
9023   if (argument_count == 1 && !IsHoleyElementsKind(kind)) {
9024     HValue* argument = environment()->Top();
9025     if (argument->IsConstant()) {
9026       HConstant* constant_argument = HConstant::cast(argument);
9027       ASSERT(constant_argument->HasSmiValue());
9028       int constant_array_size = constant_argument->Integer32Value();
9029       if (constant_array_size != 0) {
9030         kind = GetHoleyElementsKind(kind);
9031       }
9032     }
9033   }
9034 
9035   // Build the array.
9036   JSArrayBuilder array_builder(this,
9037                                kind,
9038                                site_instruction,
9039                                constructor,
9040                                DISABLE_ALLOCATION_SITES);
9041   HValue* new_object = argument_count == 0
9042       ? array_builder.AllocateEmptyArray()
9043       : BuildAllocateArrayFromLength(&array_builder, Top());
9044 
9045   int args_to_drop = argument_count + (expression->IsCall() ? 2 : 1);
9046   Drop(args_to_drop);
9047   ast_context()->ReturnValue(new_object);
9048 }
9049 
9050 
9051 // Checks whether allocation using the given constructor can be inlined.
IsAllocationInlineable(Handle<JSFunction> constructor)9052 static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
9053   return constructor->has_initial_map() &&
9054       constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
9055       constructor->initial_map()->instance_size() < HAllocate::kMaxInlineSize &&
9056       constructor->initial_map()->InitialPropertiesLength() == 0;
9057 }
9058 
9059 
IsCallArrayInlineable(int argument_count,Handle<AllocationSite> site)9060 bool HOptimizedGraphBuilder::IsCallArrayInlineable(
9061     int argument_count,
9062     Handle<AllocationSite> site) {
9063   Handle<JSFunction> caller = current_info()->closure();
9064   Handle<JSFunction> target = array_function();
9065   // We should have the function plus array arguments on the environment stack.
9066   ASSERT(environment()->length() >= (argument_count + 1));
9067   ASSERT(!site.is_null());
9068 
9069   bool inline_ok = false;
9070   if (site->CanInlineCall()) {
9071     // We also want to avoid inlining in certain 1 argument scenarios.
9072     if (argument_count == 1) {
9073       HValue* argument = Top();
9074       if (argument->IsConstant()) {
9075         // Do not inline if the constant length argument is not a smi or
9076         // outside the valid range for unrolled loop initialization.
9077         HConstant* constant_argument = HConstant::cast(argument);
9078         if (constant_argument->HasSmiValue()) {
9079           int value = constant_argument->Integer32Value();
9080           inline_ok = value >= 0 && value <= kElementLoopUnrollThreshold;
9081           if (!inline_ok) {
9082             TraceInline(target, caller,
9083                         "Constant length outside of valid inlining range.");
9084           }
9085         }
9086       } else {
9087         TraceInline(target, caller,
9088                     "Dont inline [new] Array(n) where n isn't constant.");
9089       }
9090     } else if (argument_count == 0) {
9091       inline_ok = true;
9092     } else {
9093       TraceInline(target, caller, "Too many arguments to inline.");
9094     }
9095   } else {
9096     TraceInline(target, caller, "AllocationSite requested no inlining.");
9097   }
9098 
9099   if (inline_ok) {
9100     TraceInline(target, caller, NULL);
9101   }
9102   return inline_ok;
9103 }
9104 
9105 
VisitCallNew(CallNew * expr)9106 void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
9107   ASSERT(!HasStackOverflow());
9108   ASSERT(current_block() != NULL);
9109   ASSERT(current_block()->HasPredecessor());
9110   if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
9111   int argument_count = expr->arguments()->length() + 1;  // Plus constructor.
9112   Factory* factory = isolate()->factory();
9113 
9114   // The constructor function is on the stack in the unoptimized code
9115   // during evaluation of the arguments.
9116   CHECK_ALIVE(VisitForValue(expr->expression()));
9117   HValue* function = Top();
9118   CHECK_ALIVE(VisitExpressions(expr->arguments()));
9119 
9120   if (FLAG_inline_construct &&
9121       expr->IsMonomorphic() &&
9122       IsAllocationInlineable(expr->target())) {
9123     Handle<JSFunction> constructor = expr->target();
9124     HValue* check = Add<HCheckValue>(function, constructor);
9125 
9126     // Force completion of inobject slack tracking before generating
9127     // allocation code to finalize instance size.
9128     if (constructor->IsInobjectSlackTrackingInProgress()) {
9129       constructor->CompleteInobjectSlackTracking();
9130     }
9131 
9132     // Calculate instance size from initial map of constructor.
9133     ASSERT(constructor->has_initial_map());
9134     Handle<Map> initial_map(constructor->initial_map());
9135     int instance_size = initial_map->instance_size();
9136     ASSERT(initial_map->InitialPropertiesLength() == 0);
9137 
9138     // Allocate an instance of the implicit receiver object.
9139     HValue* size_in_bytes = Add<HConstant>(instance_size);
9140     HAllocationMode allocation_mode;
9141     if (FLAG_pretenuring_call_new) {
9142       if (FLAG_allocation_site_pretenuring) {
9143         // Try to use pretenuring feedback.
9144         Handle<AllocationSite> allocation_site = expr->allocation_site();
9145         allocation_mode = HAllocationMode(allocation_site);
9146         // Take a dependency on allocation site.
9147         AllocationSite::AddDependentCompilationInfo(allocation_site,
9148                                                     AllocationSite::TENURING,
9149                                                     top_info());
9150       }
9151     }
9152 
9153     HAllocate* receiver = BuildAllocate(
9154         size_in_bytes, HType::JSObject(), JS_OBJECT_TYPE, allocation_mode);
9155     receiver->set_known_initial_map(initial_map);
9156 
9157     // Initialize map and fields of the newly allocated object.
9158     { NoObservableSideEffectsScope no_effects(this);
9159       ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
9160       Add<HStoreNamedField>(receiver,
9161           HObjectAccess::ForMapAndOffset(initial_map, JSObject::kMapOffset),
9162           Add<HConstant>(initial_map));
9163       HValue* empty_fixed_array = Add<HConstant>(factory->empty_fixed_array());
9164       Add<HStoreNamedField>(receiver,
9165           HObjectAccess::ForMapAndOffset(initial_map,
9166                                          JSObject::kPropertiesOffset),
9167           empty_fixed_array);
9168       Add<HStoreNamedField>(receiver,
9169           HObjectAccess::ForMapAndOffset(initial_map,
9170                                          JSObject::kElementsOffset),
9171           empty_fixed_array);
9172       if (initial_map->inobject_properties() != 0) {
9173         HConstant* undefined = graph()->GetConstantUndefined();
9174         for (int i = 0; i < initial_map->inobject_properties(); i++) {
9175           int property_offset = initial_map->GetInObjectPropertyOffset(i);
9176           Add<HStoreNamedField>(receiver,
9177               HObjectAccess::ForMapAndOffset(initial_map, property_offset),
9178               undefined);
9179         }
9180       }
9181     }
9182 
9183     // Replace the constructor function with a newly allocated receiver using
9184     // the index of the receiver from the top of the expression stack.
9185     const int receiver_index = argument_count - 1;
9186     ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
9187     environment()->SetExpressionStackAt(receiver_index, receiver);
9188 
9189     if (TryInlineConstruct(expr, receiver)) {
9190       // Inlining worked, add a dependency on the initial map to make sure that
9191       // this code is deoptimized whenever the initial map of the constructor
9192       // changes.
9193       Map::AddDependentCompilationInfo(
9194           initial_map, DependentCode::kInitialMapChangedGroup, top_info());
9195       return;
9196     }
9197 
9198     // TODO(mstarzinger): For now we remove the previous HAllocate and all
9199     // corresponding instructions and instead add HPushArguments for the
9200     // arguments in case inlining failed.  What we actually should do is for
9201     // inlining to try to build a subgraph without mutating the parent graph.
9202     HInstruction* instr = current_block()->last();
9203     do {
9204       HInstruction* prev_instr = instr->previous();
9205       instr->DeleteAndReplaceWith(NULL);
9206       instr = prev_instr;
9207     } while (instr != check);
9208     environment()->SetExpressionStackAt(receiver_index, function);
9209     HInstruction* call =
9210       PreProcessCall(New<HCallNew>(function, argument_count));
9211     return ast_context()->ReturnInstruction(call, expr->id());
9212   } else {
9213     // The constructor function is both an operand to the instruction and an
9214     // argument to the construct call.
9215     if (TryHandleArrayCallNew(expr, function)) return;
9216 
9217     HInstruction* call =
9218         PreProcessCall(New<HCallNew>(function, argument_count));
9219     return ast_context()->ReturnInstruction(call, expr->id());
9220   }
9221 }
9222 
9223 
9224 // Support for generating inlined runtime functions.
9225 
9226 // Lookup table for generators for runtime calls that are generated inline.
9227 // Elements of the table are member pointers to functions of
9228 // HOptimizedGraphBuilder.
9229 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)  \
9230     &HOptimizedGraphBuilder::Generate##Name,
9231 
9232 const HOptimizedGraphBuilder::InlineFunctionGenerator
9233     HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
9234         INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
9235         INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
9236 };
9237 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
9238 
9239 
9240 template <class ViewClass>
BuildArrayBufferViewInitialization(HValue * obj,HValue * buffer,HValue * byte_offset,HValue * byte_length)9241 void HGraphBuilder::BuildArrayBufferViewInitialization(
9242     HValue* obj,
9243     HValue* buffer,
9244     HValue* byte_offset,
9245     HValue* byte_length) {
9246 
9247   for (int offset = ViewClass::kSize;
9248        offset < ViewClass::kSizeWithInternalFields;
9249        offset += kPointerSize) {
9250     Add<HStoreNamedField>(obj,
9251         HObjectAccess::ForObservableJSObjectOffset(offset),
9252         graph()->GetConstant0());
9253   }
9254 
9255   Add<HStoreNamedField>(
9256       obj,
9257       HObjectAccess::ForJSArrayBufferViewByteOffset(),
9258       byte_offset);
9259   Add<HStoreNamedField>(
9260       obj,
9261       HObjectAccess::ForJSArrayBufferViewByteLength(),
9262       byte_length);
9263 
9264   if (buffer != NULL) {
9265     Add<HStoreNamedField>(
9266         obj,
9267         HObjectAccess::ForJSArrayBufferViewBuffer(), buffer);
9268     HObjectAccess weak_first_view_access =
9269         HObjectAccess::ForJSArrayBufferWeakFirstView();
9270     Add<HStoreNamedField>(obj,
9271         HObjectAccess::ForJSArrayBufferViewWeakNext(),
9272         Add<HLoadNamedField>(buffer,
9273                              static_cast<HValue*>(NULL),
9274                              weak_first_view_access));
9275     Add<HStoreNamedField>(buffer, weak_first_view_access, obj);
9276   } else {
9277     Add<HStoreNamedField>(
9278         obj,
9279         HObjectAccess::ForJSArrayBufferViewBuffer(),
9280         Add<HConstant>(static_cast<int32_t>(0)));
9281     Add<HStoreNamedField>(obj,
9282         HObjectAccess::ForJSArrayBufferViewWeakNext(),
9283         graph()->GetConstantUndefined());
9284   }
9285 }
9286 
9287 
GenerateDataViewInitialize(CallRuntime * expr)9288 void HOptimizedGraphBuilder::GenerateDataViewInitialize(
9289     CallRuntime* expr) {
9290   ZoneList<Expression*>* arguments = expr->arguments();
9291 
9292   ASSERT(arguments->length()== 4);
9293   CHECK_ALIVE(VisitForValue(arguments->at(0)));
9294   HValue* obj = Pop();
9295 
9296   CHECK_ALIVE(VisitForValue(arguments->at(1)));
9297   HValue* buffer = Pop();
9298 
9299   CHECK_ALIVE(VisitForValue(arguments->at(2)));
9300   HValue* byte_offset = Pop();
9301 
9302   CHECK_ALIVE(VisitForValue(arguments->at(3)));
9303   HValue* byte_length = Pop();
9304 
9305   {
9306     NoObservableSideEffectsScope scope(this);
9307     BuildArrayBufferViewInitialization<JSDataView>(
9308         obj, buffer, byte_offset, byte_length);
9309   }
9310 }
9311 
9312 
TypedArrayMap(Isolate * isolate,ExternalArrayType array_type,ElementsKind target_kind)9313 static Handle<Map> TypedArrayMap(Isolate* isolate,
9314                                  ExternalArrayType array_type,
9315                                  ElementsKind target_kind) {
9316   Handle<Context> native_context = isolate->native_context();
9317   Handle<JSFunction> fun;
9318   switch (array_type) {
9319 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                       \
9320     case kExternal##Type##Array:                                              \
9321       fun = Handle<JSFunction>(native_context->type##_array_fun());           \
9322       break;
9323 
9324     TYPED_ARRAYS(TYPED_ARRAY_CASE)
9325 #undef TYPED_ARRAY_CASE
9326   }
9327   Handle<Map> map(fun->initial_map());
9328   return Map::AsElementsKind(map, target_kind);
9329 }
9330 
9331 
BuildAllocateExternalElements(ExternalArrayType array_type,bool is_zero_byte_offset,HValue * buffer,HValue * byte_offset,HValue * length)9332 HValue* HOptimizedGraphBuilder::BuildAllocateExternalElements(
9333     ExternalArrayType array_type,
9334     bool is_zero_byte_offset,
9335     HValue* buffer, HValue* byte_offset, HValue* length) {
9336   Handle<Map> external_array_map(
9337       isolate()->heap()->MapForExternalArrayType(array_type));
9338 
9339   // The HForceRepresentation is to prevent possible deopt on int-smi
9340   // conversion after allocation but before the new object fields are set.
9341   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
9342   HValue* elements =
9343       Add<HAllocate>(
9344           Add<HConstant>(ExternalArray::kAlignedSize),
9345           HType::HeapObject(),
9346           NOT_TENURED,
9347           external_array_map->instance_type());
9348 
9349   AddStoreMapConstant(elements, external_array_map);
9350   Add<HStoreNamedField>(elements,
9351       HObjectAccess::ForFixedArrayLength(), length);
9352 
9353   HValue* backing_store = Add<HLoadNamedField>(
9354       buffer, static_cast<HValue*>(NULL),
9355       HObjectAccess::ForJSArrayBufferBackingStore());
9356 
9357   HValue* typed_array_start;
9358   if (is_zero_byte_offset) {
9359     typed_array_start = backing_store;
9360   } else {
9361     HInstruction* external_pointer =
9362         AddUncasted<HAdd>(backing_store, byte_offset);
9363     // Arguments are checked prior to call to TypedArrayInitialize,
9364     // including byte_offset.
9365     external_pointer->ClearFlag(HValue::kCanOverflow);
9366     typed_array_start = external_pointer;
9367   }
9368 
9369   Add<HStoreNamedField>(elements,
9370       HObjectAccess::ForExternalArrayExternalPointer(),
9371       typed_array_start);
9372 
9373   return elements;
9374 }
9375 
9376 
BuildAllocateFixedTypedArray(ExternalArrayType array_type,size_t element_size,ElementsKind fixed_elements_kind,HValue * byte_length,HValue * length)9377 HValue* HOptimizedGraphBuilder::BuildAllocateFixedTypedArray(
9378     ExternalArrayType array_type, size_t element_size,
9379     ElementsKind fixed_elements_kind,
9380     HValue* byte_length, HValue* length) {
9381   STATIC_ASSERT(
9382       (FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask) == 0);
9383   HValue* total_size;
9384 
9385   // if fixed array's elements are not aligned to object's alignment,
9386   // we need to align the whole array to object alignment.
9387   if (element_size % kObjectAlignment != 0) {
9388     total_size = BuildObjectSizeAlignment(
9389         byte_length, FixedTypedArrayBase::kHeaderSize);
9390   } else {
9391     total_size = AddUncasted<HAdd>(byte_length,
9392         Add<HConstant>(FixedTypedArrayBase::kHeaderSize));
9393     total_size->ClearFlag(HValue::kCanOverflow);
9394   }
9395 
9396   // The HForceRepresentation is to prevent possible deopt on int-smi
9397   // conversion after allocation but before the new object fields are set.
9398   length = AddUncasted<HForceRepresentation>(length, Representation::Smi());
9399   Handle<Map> fixed_typed_array_map(
9400       isolate()->heap()->MapForFixedTypedArray(array_type));
9401   HValue* elements =
9402       Add<HAllocate>(total_size, HType::HeapObject(),
9403                      NOT_TENURED, fixed_typed_array_map->instance_type());
9404   AddStoreMapConstant(elements, fixed_typed_array_map);
9405 
9406   Add<HStoreNamedField>(elements,
9407       HObjectAccess::ForFixedArrayLength(),
9408       length);
9409 
9410   HValue* filler = Add<HConstant>(static_cast<int32_t>(0));
9411 
9412   {
9413     LoopBuilder builder(this, context(), LoopBuilder::kPostIncrement);
9414 
9415     HValue* key = builder.BeginBody(
9416         Add<HConstant>(static_cast<int32_t>(0)),
9417         length, Token::LT);
9418     Add<HStoreKeyed>(elements, key, filler, fixed_elements_kind);
9419 
9420     builder.EndBody();
9421   }
9422   return elements;
9423 }
9424 
9425 
GenerateTypedArrayInitialize(CallRuntime * expr)9426 void HOptimizedGraphBuilder::GenerateTypedArrayInitialize(
9427     CallRuntime* expr) {
9428   ZoneList<Expression*>* arguments = expr->arguments();
9429 
9430   static const int kObjectArg = 0;
9431   static const int kArrayIdArg = 1;
9432   static const int kBufferArg = 2;
9433   static const int kByteOffsetArg = 3;
9434   static const int kByteLengthArg = 4;
9435   static const int kArgsLength = 5;
9436   ASSERT(arguments->length() == kArgsLength);
9437 
9438 
9439   CHECK_ALIVE(VisitForValue(arguments->at(kObjectArg)));
9440   HValue* obj = Pop();
9441 
9442   if (arguments->at(kArrayIdArg)->IsLiteral()) {
9443     // This should never happen in real use, but can happen when fuzzing.
9444     // Just bail out.
9445     Bailout(kNeedSmiLiteral);
9446     return;
9447   }
9448   Handle<Object> value =
9449       static_cast<Literal*>(arguments->at(kArrayIdArg))->value();
9450   if (!value->IsSmi()) {
9451     // This should never happen in real use, but can happen when fuzzing.
9452     // Just bail out.
9453     Bailout(kNeedSmiLiteral);
9454     return;
9455   }
9456   int array_id = Smi::cast(*value)->value();
9457 
9458   HValue* buffer;
9459   if (!arguments->at(kBufferArg)->IsNullLiteral()) {
9460     CHECK_ALIVE(VisitForValue(arguments->at(kBufferArg)));
9461     buffer = Pop();
9462   } else {
9463     buffer = NULL;
9464   }
9465 
9466   HValue* byte_offset;
9467   bool is_zero_byte_offset;
9468 
9469   if (arguments->at(kByteOffsetArg)->IsLiteral()
9470       && Smi::FromInt(0) ==
9471       *static_cast<Literal*>(arguments->at(kByteOffsetArg))->value()) {
9472     byte_offset = Add<HConstant>(static_cast<int32_t>(0));
9473     is_zero_byte_offset = true;
9474   } else {
9475     CHECK_ALIVE(VisitForValue(arguments->at(kByteOffsetArg)));
9476     byte_offset = Pop();
9477     is_zero_byte_offset = false;
9478     ASSERT(buffer != NULL);
9479   }
9480 
9481   CHECK_ALIVE(VisitForValue(arguments->at(kByteLengthArg)));
9482   HValue* byte_length = Pop();
9483 
9484   NoObservableSideEffectsScope scope(this);
9485   IfBuilder byte_offset_smi(this);
9486 
9487   if (!is_zero_byte_offset) {
9488     byte_offset_smi.If<HIsSmiAndBranch>(byte_offset);
9489     byte_offset_smi.Then();
9490   }
9491 
9492   ExternalArrayType array_type =
9493       kExternalInt8Array;  // Bogus initialization.
9494   size_t element_size = 1;  // Bogus initialization.
9495   ElementsKind external_elements_kind =  // Bogus initialization.
9496       EXTERNAL_INT8_ELEMENTS;
9497   ElementsKind fixed_elements_kind =  // Bogus initialization.
9498       INT8_ELEMENTS;
9499   Runtime::ArrayIdToTypeAndSize(array_id,
9500       &array_type,
9501       &external_elements_kind,
9502       &fixed_elements_kind,
9503       &element_size);
9504 
9505 
9506   { //  byte_offset is Smi.
9507     BuildArrayBufferViewInitialization<JSTypedArray>(
9508         obj, buffer, byte_offset, byte_length);
9509 
9510 
9511     HInstruction* length = AddUncasted<HDiv>(byte_length,
9512         Add<HConstant>(static_cast<int32_t>(element_size)));
9513 
9514     Add<HStoreNamedField>(obj,
9515         HObjectAccess::ForJSTypedArrayLength(),
9516         length);
9517 
9518     HValue* elements;
9519     if (buffer != NULL) {
9520       elements = BuildAllocateExternalElements(
9521           array_type, is_zero_byte_offset, buffer, byte_offset, length);
9522       Handle<Map> obj_map = TypedArrayMap(
9523           isolate(), array_type, external_elements_kind);
9524       AddStoreMapConstant(obj, obj_map);
9525     } else {
9526       ASSERT(is_zero_byte_offset);
9527       elements = BuildAllocateFixedTypedArray(
9528           array_type, element_size, fixed_elements_kind,
9529           byte_length, length);
9530     }
9531     Add<HStoreNamedField>(
9532         obj, HObjectAccess::ForElementsPointer(), elements);
9533   }
9534 
9535   if (!is_zero_byte_offset) {
9536     byte_offset_smi.Else();
9537     { //  byte_offset is not Smi.
9538       Push(obj);
9539       CHECK_ALIVE(VisitForValue(arguments->at(kArrayIdArg)));
9540       Push(buffer);
9541       Push(byte_offset);
9542       Push(byte_length);
9543       PushArgumentsFromEnvironment(kArgsLength);
9544       Add<HCallRuntime>(expr->name(), expr->function(), kArgsLength);
9545     }
9546   }
9547   byte_offset_smi.End();
9548 }
9549 
9550 
GenerateMaxSmi(CallRuntime * expr)9551 void HOptimizedGraphBuilder::GenerateMaxSmi(CallRuntime* expr) {
9552   ASSERT(expr->arguments()->length() == 0);
9553   HConstant* max_smi = New<HConstant>(static_cast<int32_t>(Smi::kMaxValue));
9554   return ast_context()->ReturnInstruction(max_smi, expr->id());
9555 }
9556 
9557 
GenerateTypedArrayMaxSizeInHeap(CallRuntime * expr)9558 void HOptimizedGraphBuilder::GenerateTypedArrayMaxSizeInHeap(
9559     CallRuntime* expr) {
9560   ASSERT(expr->arguments()->length() == 0);
9561   HConstant* result = New<HConstant>(static_cast<int32_t>(
9562         FLAG_typed_array_max_size_in_heap));
9563   return ast_context()->ReturnInstruction(result, expr->id());
9564 }
9565 
9566 
GenerateArrayBufferGetByteLength(CallRuntime * expr)9567 void HOptimizedGraphBuilder::GenerateArrayBufferGetByteLength(
9568     CallRuntime* expr) {
9569   ASSERT(expr->arguments()->length() == 1);
9570   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
9571   HValue* buffer = Pop();
9572   HInstruction* result = New<HLoadNamedField>(
9573     buffer,
9574     static_cast<HValue*>(NULL),
9575     HObjectAccess::ForJSArrayBufferByteLength());
9576   return ast_context()->ReturnInstruction(result, expr->id());
9577 }
9578 
9579 
GenerateArrayBufferViewGetByteLength(CallRuntime * expr)9580 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteLength(
9581     CallRuntime* expr) {
9582   ASSERT(expr->arguments()->length() == 1);
9583   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
9584   HValue* buffer = Pop();
9585   HInstruction* result = New<HLoadNamedField>(
9586     buffer,
9587     static_cast<HValue*>(NULL),
9588     HObjectAccess::ForJSArrayBufferViewByteLength());
9589   return ast_context()->ReturnInstruction(result, expr->id());
9590 }
9591 
9592 
GenerateArrayBufferViewGetByteOffset(CallRuntime * expr)9593 void HOptimizedGraphBuilder::GenerateArrayBufferViewGetByteOffset(
9594     CallRuntime* expr) {
9595   ASSERT(expr->arguments()->length() == 1);
9596   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
9597   HValue* buffer = Pop();
9598   HInstruction* result = New<HLoadNamedField>(
9599     buffer,
9600     static_cast<HValue*>(NULL),
9601     HObjectAccess::ForJSArrayBufferViewByteOffset());
9602   return ast_context()->ReturnInstruction(result, expr->id());
9603 }
9604 
9605 
GenerateTypedArrayGetLength(CallRuntime * expr)9606 void HOptimizedGraphBuilder::GenerateTypedArrayGetLength(
9607     CallRuntime* expr) {
9608   ASSERT(expr->arguments()->length() == 1);
9609   CHECK_ALIVE(VisitForValue(expr->arguments()->at(0)));
9610   HValue* buffer = Pop();
9611   HInstruction* result = New<HLoadNamedField>(
9612     buffer,
9613     static_cast<HValue*>(NULL),
9614     HObjectAccess::ForJSTypedArrayLength());
9615   return ast_context()->ReturnInstruction(result, expr->id());
9616 }
9617 
9618 
VisitCallRuntime(CallRuntime * expr)9619 void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
9620   ASSERT(!HasStackOverflow());
9621   ASSERT(current_block() != NULL);
9622   ASSERT(current_block()->HasPredecessor());
9623   if (expr->is_jsruntime()) {
9624     return Bailout(kCallToAJavaScriptRuntimeFunction);
9625   }
9626 
9627   const Runtime::Function* function = expr->function();
9628   ASSERT(function != NULL);
9629 
9630   if (function->intrinsic_type == Runtime::INLINE ||
9631       function->intrinsic_type == Runtime::INLINE_OPTIMIZED) {
9632     ASSERT(expr->name()->length() > 0);
9633     ASSERT(expr->name()->Get(0) == '_');
9634     // Call to an inline function.
9635     int lookup_index = static_cast<int>(function->function_id) -
9636         static_cast<int>(Runtime::kFirstInlineFunction);
9637     ASSERT(lookup_index >= 0);
9638     ASSERT(static_cast<size_t>(lookup_index) <
9639            ARRAY_SIZE(kInlineFunctionGenerators));
9640     InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
9641 
9642     // Call the inline code generator using the pointer-to-member.
9643     (this->*generator)(expr);
9644   } else {
9645     ASSERT(function->intrinsic_type == Runtime::RUNTIME);
9646     Handle<String> name = expr->name();
9647     int argument_count = expr->arguments()->length();
9648     CHECK_ALIVE(VisitExpressions(expr->arguments()));
9649     PushArgumentsFromEnvironment(argument_count);
9650     HCallRuntime* call = New<HCallRuntime>(name, function,
9651                                            argument_count);
9652     return ast_context()->ReturnInstruction(call, expr->id());
9653   }
9654 }
9655 
9656 
VisitUnaryOperation(UnaryOperation * expr)9657 void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
9658   ASSERT(!HasStackOverflow());
9659   ASSERT(current_block() != NULL);
9660   ASSERT(current_block()->HasPredecessor());
9661   switch (expr->op()) {
9662     case Token::DELETE: return VisitDelete(expr);
9663     case Token::VOID: return VisitVoid(expr);
9664     case Token::TYPEOF: return VisitTypeof(expr);
9665     case Token::NOT: return VisitNot(expr);
9666     default: UNREACHABLE();
9667   }
9668 }
9669 
9670 
VisitDelete(UnaryOperation * expr)9671 void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
9672   Property* prop = expr->expression()->AsProperty();
9673   VariableProxy* proxy = expr->expression()->AsVariableProxy();
9674   if (prop != NULL) {
9675     CHECK_ALIVE(VisitForValue(prop->obj()));
9676     CHECK_ALIVE(VisitForValue(prop->key()));
9677     HValue* key = Pop();
9678     HValue* obj = Pop();
9679     HValue* function = AddLoadJSBuiltin(Builtins::DELETE);
9680     Add<HPushArguments>(obj, key, Add<HConstant>(function_strict_mode()));
9681     // TODO(olivf) InvokeFunction produces a check for the parameter count,
9682     // even though we are certain to pass the correct number of arguments here.
9683     HInstruction* instr = New<HInvokeFunction>(function, 3);
9684     return ast_context()->ReturnInstruction(instr, expr->id());
9685   } else if (proxy != NULL) {
9686     Variable* var = proxy->var();
9687     if (var->IsUnallocated()) {
9688       Bailout(kDeleteWithGlobalVariable);
9689     } else if (var->IsStackAllocated() || var->IsContextSlot()) {
9690       // Result of deleting non-global variables is false.  'this' is not
9691       // really a variable, though we implement it as one.  The
9692       // subexpression does not have side effects.
9693       HValue* value = var->is_this()
9694           ? graph()->GetConstantTrue()
9695           : graph()->GetConstantFalse();
9696       return ast_context()->ReturnValue(value);
9697     } else {
9698       Bailout(kDeleteWithNonGlobalVariable);
9699     }
9700   } else {
9701     // Result of deleting non-property, non-variable reference is true.
9702     // Evaluate the subexpression for side effects.
9703     CHECK_ALIVE(VisitForEffect(expr->expression()));
9704     return ast_context()->ReturnValue(graph()->GetConstantTrue());
9705   }
9706 }
9707 
9708 
VisitVoid(UnaryOperation * expr)9709 void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
9710   CHECK_ALIVE(VisitForEffect(expr->expression()));
9711   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
9712 }
9713 
9714 
VisitTypeof(UnaryOperation * expr)9715 void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
9716   CHECK_ALIVE(VisitForTypeOf(expr->expression()));
9717   HValue* value = Pop();
9718   HInstruction* instr = New<HTypeof>(value);
9719   return ast_context()->ReturnInstruction(instr, expr->id());
9720 }
9721 
9722 
VisitNot(UnaryOperation * expr)9723 void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
9724   if (ast_context()->IsTest()) {
9725     TestContext* context = TestContext::cast(ast_context());
9726     VisitForControl(expr->expression(),
9727                     context->if_false(),
9728                     context->if_true());
9729     return;
9730   }
9731 
9732   if (ast_context()->IsEffect()) {
9733     VisitForEffect(expr->expression());
9734     return;
9735   }
9736 
9737   ASSERT(ast_context()->IsValue());
9738   HBasicBlock* materialize_false = graph()->CreateBasicBlock();
9739   HBasicBlock* materialize_true = graph()->CreateBasicBlock();
9740   CHECK_BAILOUT(VisitForControl(expr->expression(),
9741                                 materialize_false,
9742                                 materialize_true));
9743 
9744   if (materialize_false->HasPredecessor()) {
9745     materialize_false->SetJoinId(expr->MaterializeFalseId());
9746     set_current_block(materialize_false);
9747     Push(graph()->GetConstantFalse());
9748   } else {
9749     materialize_false = NULL;
9750   }
9751 
9752   if (materialize_true->HasPredecessor()) {
9753     materialize_true->SetJoinId(expr->MaterializeTrueId());
9754     set_current_block(materialize_true);
9755     Push(graph()->GetConstantTrue());
9756   } else {
9757     materialize_true = NULL;
9758   }
9759 
9760   HBasicBlock* join =
9761     CreateJoin(materialize_false, materialize_true, expr->id());
9762   set_current_block(join);
9763   if (join != NULL) return ast_context()->ReturnValue(Pop());
9764 }
9765 
9766 
BuildIncrement(bool returns_original_input,CountOperation * expr)9767 HInstruction* HOptimizedGraphBuilder::BuildIncrement(
9768     bool returns_original_input,
9769     CountOperation* expr) {
9770   // The input to the count operation is on top of the expression stack.
9771   Representation rep = Representation::FromType(expr->type());
9772   if (rep.IsNone() || rep.IsTagged()) {
9773     rep = Representation::Smi();
9774   }
9775 
9776   if (returns_original_input) {
9777     // We need an explicit HValue representing ToNumber(input).  The
9778     // actual HChange instruction we need is (sometimes) added in a later
9779     // phase, so it is not available now to be used as an input to HAdd and
9780     // as the return value.
9781     HInstruction* number_input = AddUncasted<HForceRepresentation>(Pop(), rep);
9782     if (!rep.IsDouble()) {
9783       number_input->SetFlag(HInstruction::kFlexibleRepresentation);
9784       number_input->SetFlag(HInstruction::kCannotBeTagged);
9785     }
9786     Push(number_input);
9787   }
9788 
9789   // The addition has no side effects, so we do not need
9790   // to simulate the expression stack after this instruction.
9791   // Any later failures deopt to the load of the input or earlier.
9792   HConstant* delta = (expr->op() == Token::INC)
9793       ? graph()->GetConstant1()
9794       : graph()->GetConstantMinus1();
9795   HInstruction* instr = AddUncasted<HAdd>(Top(), delta);
9796   if (instr->IsAdd()) {
9797     HAdd* add = HAdd::cast(instr);
9798     add->set_observed_input_representation(1, rep);
9799     add->set_observed_input_representation(2, Representation::Smi());
9800   }
9801   instr->SetFlag(HInstruction::kCannotBeTagged);
9802   instr->ClearAllSideEffects();
9803   return instr;
9804 }
9805 
9806 
BuildStoreForEffect(Expression * expr,Property * prop,BailoutId ast_id,BailoutId return_id,HValue * object,HValue * key,HValue * value)9807 void HOptimizedGraphBuilder::BuildStoreForEffect(Expression* expr,
9808                                                  Property* prop,
9809                                                  BailoutId ast_id,
9810                                                  BailoutId return_id,
9811                                                  HValue* object,
9812                                                  HValue* key,
9813                                                  HValue* value) {
9814   EffectContext for_effect(this);
9815   Push(object);
9816   if (key != NULL) Push(key);
9817   Push(value);
9818   BuildStore(expr, prop, ast_id, return_id);
9819 }
9820 
9821 
VisitCountOperation(CountOperation * expr)9822 void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
9823   ASSERT(!HasStackOverflow());
9824   ASSERT(current_block() != NULL);
9825   ASSERT(current_block()->HasPredecessor());
9826   if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
9827   Expression* target = expr->expression();
9828   VariableProxy* proxy = target->AsVariableProxy();
9829   Property* prop = target->AsProperty();
9830   if (proxy == NULL && prop == NULL) {
9831     return Bailout(kInvalidLhsInCountOperation);
9832   }
9833 
9834   // Match the full code generator stack by simulating an extra stack
9835   // element for postfix operations in a non-effect context.  The return
9836   // value is ToNumber(input).
9837   bool returns_original_input =
9838       expr->is_postfix() && !ast_context()->IsEffect();
9839   HValue* input = NULL;  // ToNumber(original_input).
9840   HValue* after = NULL;  // The result after incrementing or decrementing.
9841 
9842   if (proxy != NULL) {
9843     Variable* var = proxy->var();
9844     if (var->mode() == CONST_LEGACY)  {
9845       return Bailout(kUnsupportedCountOperationWithConst);
9846     }
9847     // Argument of the count operation is a variable, not a property.
9848     ASSERT(prop == NULL);
9849     CHECK_ALIVE(VisitForValue(target));
9850 
9851     after = BuildIncrement(returns_original_input, expr);
9852     input = returns_original_input ? Top() : Pop();
9853     Push(after);
9854 
9855     switch (var->location()) {
9856       case Variable::UNALLOCATED:
9857         HandleGlobalVariableAssignment(var,
9858                                        after,
9859                                        expr->AssignmentId());
9860         break;
9861 
9862       case Variable::PARAMETER:
9863       case Variable::LOCAL:
9864         BindIfLive(var, after);
9865         break;
9866 
9867       case Variable::CONTEXT: {
9868         // Bail out if we try to mutate a parameter value in a function
9869         // using the arguments object.  We do not (yet) correctly handle the
9870         // arguments property of the function.
9871         if (current_info()->scope()->arguments() != NULL) {
9872           // Parameters will rewrite to context slots.  We have no direct
9873           // way to detect that the variable is a parameter so we use a
9874           // linear search of the parameter list.
9875           int count = current_info()->scope()->num_parameters();
9876           for (int i = 0; i < count; ++i) {
9877             if (var == current_info()->scope()->parameter(i)) {
9878               return Bailout(kAssignmentToParameterInArgumentsObject);
9879             }
9880           }
9881         }
9882 
9883         HValue* context = BuildContextChainWalk(var);
9884         HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
9885             ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
9886         HStoreContextSlot* instr = Add<HStoreContextSlot>(context, var->index(),
9887                                                           mode, after);
9888         if (instr->HasObservableSideEffects()) {
9889           Add<HSimulate>(expr->AssignmentId(), REMOVABLE_SIMULATE);
9890         }
9891         break;
9892       }
9893 
9894       case Variable::LOOKUP:
9895         return Bailout(kLookupVariableInCountOperation);
9896     }
9897 
9898     Drop(returns_original_input ? 2 : 1);
9899     return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
9900   }
9901 
9902   // Argument of the count operation is a property.
9903   ASSERT(prop != NULL);
9904   if (returns_original_input) Push(graph()->GetConstantUndefined());
9905 
9906   CHECK_ALIVE(VisitForValue(prop->obj()));
9907   HValue* object = Top();
9908 
9909   HValue* key = NULL;
9910   if ((!prop->IsFunctionPrototype() && !prop->key()->IsPropertyName()) ||
9911       prop->IsStringAccess()) {
9912     CHECK_ALIVE(VisitForValue(prop->key()));
9913     key = Top();
9914   }
9915 
9916   CHECK_ALIVE(PushLoad(prop, object, key));
9917 
9918   after = BuildIncrement(returns_original_input, expr);
9919 
9920   if (returns_original_input) {
9921     input = Pop();
9922     // Drop object and key to push it again in the effect context below.
9923     Drop(key == NULL ? 1 : 2);
9924     environment()->SetExpressionStackAt(0, input);
9925     CHECK_ALIVE(BuildStoreForEffect(
9926         expr, prop, expr->id(), expr->AssignmentId(), object, key, after));
9927     return ast_context()->ReturnValue(Pop());
9928   }
9929 
9930   environment()->SetExpressionStackAt(0, after);
9931   return BuildStore(expr, prop, expr->id(), expr->AssignmentId());
9932 }
9933 
9934 
BuildStringCharCodeAt(HValue * string,HValue * index)9935 HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
9936     HValue* string,
9937     HValue* index) {
9938   if (string->IsConstant() && index->IsConstant()) {
9939     HConstant* c_string = HConstant::cast(string);
9940     HConstant* c_index = HConstant::cast(index);
9941     if (c_string->HasStringValue() && c_index->HasNumberValue()) {
9942       int32_t i = c_index->NumberValueAsInteger32();
9943       Handle<String> s = c_string->StringValue();
9944       if (i < 0 || i >= s->length()) {
9945         return New<HConstant>(OS::nan_value());
9946       }
9947       return New<HConstant>(s->Get(i));
9948     }
9949   }
9950   string = BuildCheckString(string);
9951   index = Add<HBoundsCheck>(index, AddLoadStringLength(string));
9952   return New<HStringCharCodeAt>(string, index);
9953 }
9954 
9955 
9956 // Checks if the given shift amounts have following forms:
9957 // (N1) and (N2) with N1 + N2 = 32; (sa) and (32 - sa).
ShiftAmountsAllowReplaceByRotate(HValue * sa,HValue * const32_minus_sa)9958 static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
9959                                              HValue* const32_minus_sa) {
9960   if (sa->IsConstant() && const32_minus_sa->IsConstant()) {
9961     const HConstant* c1 = HConstant::cast(sa);
9962     const HConstant* c2 = HConstant::cast(const32_minus_sa);
9963     return c1->HasInteger32Value() && c2->HasInteger32Value() &&
9964         (c1->Integer32Value() + c2->Integer32Value() == 32);
9965   }
9966   if (!const32_minus_sa->IsSub()) return false;
9967   HSub* sub = HSub::cast(const32_minus_sa);
9968   return sub->left()->EqualsInteger32Constant(32) && sub->right() == sa;
9969 }
9970 
9971 
9972 // Checks if the left and the right are shift instructions with the oposite
9973 // directions that can be replaced by one rotate right instruction or not.
9974 // Returns the operand and the shift amount for the rotate instruction in the
9975 // former case.
MatchRotateRight(HValue * left,HValue * right,HValue ** operand,HValue ** shift_amount)9976 bool HGraphBuilder::MatchRotateRight(HValue* left,
9977                                      HValue* right,
9978                                      HValue** operand,
9979                                      HValue** shift_amount) {
9980   HShl* shl;
9981   HShr* shr;
9982   if (left->IsShl() && right->IsShr()) {
9983     shl = HShl::cast(left);
9984     shr = HShr::cast(right);
9985   } else if (left->IsShr() && right->IsShl()) {
9986     shl = HShl::cast(right);
9987     shr = HShr::cast(left);
9988   } else {
9989     return false;
9990   }
9991   if (shl->left() != shr->left()) return false;
9992 
9993   if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
9994       !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
9995     return false;
9996   }
9997   *operand= shr->left();
9998   *shift_amount = shr->right();
9999   return true;
10000 }
10001 
10002 
CanBeZero(HValue * right)10003 bool CanBeZero(HValue* right) {
10004   if (right->IsConstant()) {
10005     HConstant* right_const = HConstant::cast(right);
10006     if (right_const->HasInteger32Value() &&
10007        (right_const->Integer32Value() & 0x1f) != 0) {
10008       return false;
10009     }
10010   }
10011   return true;
10012 }
10013 
10014 
EnforceNumberType(HValue * number,Type * expected)10015 HValue* HGraphBuilder::EnforceNumberType(HValue* number,
10016                                          Type* expected) {
10017   if (expected->Is(Type::SignedSmall())) {
10018     return AddUncasted<HForceRepresentation>(number, Representation::Smi());
10019   }
10020   if (expected->Is(Type::Signed32())) {
10021     return AddUncasted<HForceRepresentation>(number,
10022                                              Representation::Integer32());
10023   }
10024   return number;
10025 }
10026 
10027 
TruncateToNumber(HValue * value,Type ** expected)10028 HValue* HGraphBuilder::TruncateToNumber(HValue* value, Type** expected) {
10029   if (value->IsConstant()) {
10030     HConstant* constant = HConstant::cast(value);
10031     Maybe<HConstant*> number = constant->CopyToTruncatedNumber(zone());
10032     if (number.has_value) {
10033       *expected = Type::Number(zone());
10034       return AddInstruction(number.value);
10035     }
10036   }
10037 
10038   // We put temporary values on the stack, which don't correspond to anything
10039   // in baseline code. Since nothing is observable we avoid recording those
10040   // pushes with a NoObservableSideEffectsScope.
10041   NoObservableSideEffectsScope no_effects(this);
10042 
10043   Type* expected_type = *expected;
10044 
10045   // Separate the number type from the rest.
10046   Type* expected_obj =
10047       Type::Intersect(expected_type, Type::NonNumber(zone()), zone());
10048   Type* expected_number =
10049       Type::Intersect(expected_type, Type::Number(zone()), zone());
10050 
10051   // We expect to get a number.
10052   // (We need to check first, since Type::None->Is(Type::Any()) == true.
10053   if (expected_obj->Is(Type::None())) {
10054     ASSERT(!expected_number->Is(Type::None(zone())));
10055     return value;
10056   }
10057 
10058   if (expected_obj->Is(Type::Undefined(zone()))) {
10059     // This is already done by HChange.
10060     *expected = Type::Union(expected_number, Type::Number(zone()), zone());
10061     return value;
10062   }
10063 
10064   return value;
10065 }
10066 
10067 
BuildBinaryOperation(BinaryOperation * expr,HValue * left,HValue * right,PushBeforeSimulateBehavior push_sim_result)10068 HValue* HOptimizedGraphBuilder::BuildBinaryOperation(
10069     BinaryOperation* expr,
10070     HValue* left,
10071     HValue* right,
10072     PushBeforeSimulateBehavior push_sim_result) {
10073   Type* left_type = expr->left()->bounds().lower;
10074   Type* right_type = expr->right()->bounds().lower;
10075   Type* result_type = expr->bounds().lower;
10076   Maybe<int> fixed_right_arg = expr->fixed_right_arg();
10077   Handle<AllocationSite> allocation_site = expr->allocation_site();
10078 
10079   HAllocationMode allocation_mode;
10080   if (FLAG_allocation_site_pretenuring && !allocation_site.is_null()) {
10081     allocation_mode = HAllocationMode(allocation_site);
10082   }
10083 
10084   HValue* result = HGraphBuilder::BuildBinaryOperation(
10085       expr->op(), left, right, left_type, right_type, result_type,
10086       fixed_right_arg, allocation_mode);
10087   // Add a simulate after instructions with observable side effects, and
10088   // after phis, which are the result of BuildBinaryOperation when we
10089   // inlined some complex subgraph.
10090   if (result->HasObservableSideEffects() || result->IsPhi()) {
10091     if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10092       Push(result);
10093       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10094       Drop(1);
10095     } else {
10096       Add<HSimulate>(expr->id(), REMOVABLE_SIMULATE);
10097     }
10098   }
10099   return result;
10100 }
10101 
10102 
BuildBinaryOperation(Token::Value op,HValue * left,HValue * right,Type * left_type,Type * right_type,Type * result_type,Maybe<int> fixed_right_arg,HAllocationMode allocation_mode)10103 HValue* HGraphBuilder::BuildBinaryOperation(
10104     Token::Value op,
10105     HValue* left,
10106     HValue* right,
10107     Type* left_type,
10108     Type* right_type,
10109     Type* result_type,
10110     Maybe<int> fixed_right_arg,
10111     HAllocationMode allocation_mode) {
10112 
10113   Representation left_rep = Representation::FromType(left_type);
10114   Representation right_rep = Representation::FromType(right_type);
10115 
10116   bool maybe_string_add = op == Token::ADD &&
10117                           (left_type->Maybe(Type::String()) ||
10118                            right_type->Maybe(Type::String()));
10119 
10120   if (left_type->Is(Type::None())) {
10121     Add<HDeoptimize>("Insufficient type feedback for LHS of binary operation",
10122                      Deoptimizer::SOFT);
10123     // TODO(rossberg): we should be able to get rid of non-continuous
10124     // defaults.
10125     left_type = Type::Any(zone());
10126   } else {
10127     if (!maybe_string_add) left = TruncateToNumber(left, &left_type);
10128     left_rep = Representation::FromType(left_type);
10129   }
10130 
10131   if (right_type->Is(Type::None())) {
10132     Add<HDeoptimize>("Insufficient type feedback for RHS of binary operation",
10133                      Deoptimizer::SOFT);
10134     right_type = Type::Any(zone());
10135   } else {
10136     if (!maybe_string_add) right = TruncateToNumber(right, &right_type);
10137     right_rep = Representation::FromType(right_type);
10138   }
10139 
10140   // Special case for string addition here.
10141   if (op == Token::ADD &&
10142       (left_type->Is(Type::String()) || right_type->Is(Type::String()))) {
10143     // Validate type feedback for left argument.
10144     if (left_type->Is(Type::String())) {
10145       left = BuildCheckString(left);
10146     }
10147 
10148     // Validate type feedback for right argument.
10149     if (right_type->Is(Type::String())) {
10150       right = BuildCheckString(right);
10151     }
10152 
10153     // Convert left argument as necessary.
10154     if (left_type->Is(Type::Number())) {
10155       ASSERT(right_type->Is(Type::String()));
10156       left = BuildNumberToString(left, left_type);
10157     } else if (!left_type->Is(Type::String())) {
10158       ASSERT(right_type->Is(Type::String()));
10159       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_RIGHT);
10160       Add<HPushArguments>(left, right);
10161       return AddUncasted<HInvokeFunction>(function, 2);
10162     }
10163 
10164     // Convert right argument as necessary.
10165     if (right_type->Is(Type::Number())) {
10166       ASSERT(left_type->Is(Type::String()));
10167       right = BuildNumberToString(right, right_type);
10168     } else if (!right_type->Is(Type::String())) {
10169       ASSERT(left_type->Is(Type::String()));
10170       HValue* function = AddLoadJSBuiltin(Builtins::STRING_ADD_LEFT);
10171       Add<HPushArguments>(left, right);
10172       return AddUncasted<HInvokeFunction>(function, 2);
10173     }
10174 
10175     // Fast path for empty constant strings.
10176     if (left->IsConstant() &&
10177         HConstant::cast(left)->HasStringValue() &&
10178         HConstant::cast(left)->StringValue()->length() == 0) {
10179       return right;
10180     }
10181     if (right->IsConstant() &&
10182         HConstant::cast(right)->HasStringValue() &&
10183         HConstant::cast(right)->StringValue()->length() == 0) {
10184       return left;
10185     }
10186 
10187     // Register the dependent code with the allocation site.
10188     if (!allocation_mode.feedback_site().is_null()) {
10189       ASSERT(!graph()->info()->IsStub());
10190       Handle<AllocationSite> site(allocation_mode.feedback_site());
10191       AllocationSite::AddDependentCompilationInfo(
10192           site, AllocationSite::TENURING, top_info());
10193     }
10194 
10195     // Inline the string addition into the stub when creating allocation
10196     // mementos to gather allocation site feedback, or if we can statically
10197     // infer that we're going to create a cons string.
10198     if ((graph()->info()->IsStub() &&
10199          allocation_mode.CreateAllocationMementos()) ||
10200         (left->IsConstant() &&
10201          HConstant::cast(left)->HasStringValue() &&
10202          HConstant::cast(left)->StringValue()->length() + 1 >=
10203            ConsString::kMinLength) ||
10204         (right->IsConstant() &&
10205          HConstant::cast(right)->HasStringValue() &&
10206          HConstant::cast(right)->StringValue()->length() + 1 >=
10207            ConsString::kMinLength)) {
10208       return BuildStringAdd(left, right, allocation_mode);
10209     }
10210 
10211     // Fallback to using the string add stub.
10212     return AddUncasted<HStringAdd>(
10213         left, right, allocation_mode.GetPretenureMode(),
10214         STRING_ADD_CHECK_NONE, allocation_mode.feedback_site());
10215   }
10216 
10217   if (graph()->info()->IsStub()) {
10218     left = EnforceNumberType(left, left_type);
10219     right = EnforceNumberType(right, right_type);
10220   }
10221 
10222   Representation result_rep = Representation::FromType(result_type);
10223 
10224   bool is_non_primitive = (left_rep.IsTagged() && !left_rep.IsSmi()) ||
10225                           (right_rep.IsTagged() && !right_rep.IsSmi());
10226 
10227   HInstruction* instr = NULL;
10228   // Only the stub is allowed to call into the runtime, since otherwise we would
10229   // inline several instructions (including the two pushes) for every tagged
10230   // operation in optimized code, which is more expensive, than a stub call.
10231   if (graph()->info()->IsStub() && is_non_primitive) {
10232     HValue* function = AddLoadJSBuiltin(BinaryOpIC::TokenToJSBuiltin(op));
10233     Add<HPushArguments>(left, right);
10234     instr = AddUncasted<HInvokeFunction>(function, 2);
10235   } else {
10236     switch (op) {
10237       case Token::ADD:
10238         instr = AddUncasted<HAdd>(left, right);
10239         break;
10240       case Token::SUB:
10241         instr = AddUncasted<HSub>(left, right);
10242         break;
10243       case Token::MUL:
10244         instr = AddUncasted<HMul>(left, right);
10245         break;
10246       case Token::MOD: {
10247         if (fixed_right_arg.has_value &&
10248             !right->EqualsInteger32Constant(fixed_right_arg.value)) {
10249           HConstant* fixed_right = Add<HConstant>(
10250               static_cast<int>(fixed_right_arg.value));
10251           IfBuilder if_same(this);
10252           if_same.If<HCompareNumericAndBranch>(right, fixed_right, Token::EQ);
10253           if_same.Then();
10254           if_same.ElseDeopt("Unexpected RHS of binary operation");
10255           right = fixed_right;
10256         }
10257         instr = AddUncasted<HMod>(left, right);
10258         break;
10259       }
10260       case Token::DIV:
10261         instr = AddUncasted<HDiv>(left, right);
10262         break;
10263       case Token::BIT_XOR:
10264       case Token::BIT_AND:
10265         instr = AddUncasted<HBitwise>(op, left, right);
10266         break;
10267       case Token::BIT_OR: {
10268         HValue* operand, *shift_amount;
10269         if (left_type->Is(Type::Signed32()) &&
10270             right_type->Is(Type::Signed32()) &&
10271             MatchRotateRight(left, right, &operand, &shift_amount)) {
10272           instr = AddUncasted<HRor>(operand, shift_amount);
10273         } else {
10274           instr = AddUncasted<HBitwise>(op, left, right);
10275         }
10276         break;
10277       }
10278       case Token::SAR:
10279         instr = AddUncasted<HSar>(left, right);
10280         break;
10281       case Token::SHR:
10282         instr = AddUncasted<HShr>(left, right);
10283         if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
10284             CanBeZero(right)) {
10285           graph()->RecordUint32Instruction(instr);
10286         }
10287         break;
10288       case Token::SHL:
10289         instr = AddUncasted<HShl>(left, right);
10290         break;
10291       default:
10292         UNREACHABLE();
10293     }
10294   }
10295 
10296   if (instr->IsBinaryOperation()) {
10297     HBinaryOperation* binop = HBinaryOperation::cast(instr);
10298     binop->set_observed_input_representation(1, left_rep);
10299     binop->set_observed_input_representation(2, right_rep);
10300     binop->initialize_output_representation(result_rep);
10301     if (graph()->info()->IsStub()) {
10302       // Stub should not call into stub.
10303       instr->SetFlag(HValue::kCannotBeTagged);
10304       // And should truncate on HForceRepresentation already.
10305       if (left->IsForceRepresentation()) {
10306         left->CopyFlag(HValue::kTruncatingToSmi, instr);
10307         left->CopyFlag(HValue::kTruncatingToInt32, instr);
10308       }
10309       if (right->IsForceRepresentation()) {
10310         right->CopyFlag(HValue::kTruncatingToSmi, instr);
10311         right->CopyFlag(HValue::kTruncatingToInt32, instr);
10312       }
10313     }
10314   }
10315   return instr;
10316 }
10317 
10318 
10319 // Check for the form (%_ClassOf(foo) === 'BarClass').
IsClassOfTest(CompareOperation * expr)10320 static bool IsClassOfTest(CompareOperation* expr) {
10321   if (expr->op() != Token::EQ_STRICT) return false;
10322   CallRuntime* call = expr->left()->AsCallRuntime();
10323   if (call == NULL) return false;
10324   Literal* literal = expr->right()->AsLiteral();
10325   if (literal == NULL) return false;
10326   if (!literal->value()->IsString()) return false;
10327   if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
10328     return false;
10329   }
10330   ASSERT(call->arguments()->length() == 1);
10331   return true;
10332 }
10333 
10334 
VisitBinaryOperation(BinaryOperation * expr)10335 void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
10336   ASSERT(!HasStackOverflow());
10337   ASSERT(current_block() != NULL);
10338   ASSERT(current_block()->HasPredecessor());
10339   switch (expr->op()) {
10340     case Token::COMMA:
10341       return VisitComma(expr);
10342     case Token::OR:
10343     case Token::AND:
10344       return VisitLogicalExpression(expr);
10345     default:
10346       return VisitArithmeticExpression(expr);
10347   }
10348 }
10349 
10350 
VisitComma(BinaryOperation * expr)10351 void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
10352   CHECK_ALIVE(VisitForEffect(expr->left()));
10353   // Visit the right subexpression in the same AST context as the entire
10354   // expression.
10355   Visit(expr->right());
10356 }
10357 
10358 
VisitLogicalExpression(BinaryOperation * expr)10359 void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
10360   bool is_logical_and = expr->op() == Token::AND;
10361   if (ast_context()->IsTest()) {
10362     TestContext* context = TestContext::cast(ast_context());
10363     // Translate left subexpression.
10364     HBasicBlock* eval_right = graph()->CreateBasicBlock();
10365     if (is_logical_and) {
10366       CHECK_BAILOUT(VisitForControl(expr->left(),
10367                                     eval_right,
10368                                     context->if_false()));
10369     } else {
10370       CHECK_BAILOUT(VisitForControl(expr->left(),
10371                                     context->if_true(),
10372                                     eval_right));
10373     }
10374 
10375     // Translate right subexpression by visiting it in the same AST
10376     // context as the entire expression.
10377     if (eval_right->HasPredecessor()) {
10378       eval_right->SetJoinId(expr->RightId());
10379       set_current_block(eval_right);
10380       Visit(expr->right());
10381     }
10382 
10383   } else if (ast_context()->IsValue()) {
10384     CHECK_ALIVE(VisitForValue(expr->left()));
10385     ASSERT(current_block() != NULL);
10386     HValue* left_value = Top();
10387 
10388     // Short-circuit left values that always evaluate to the same boolean value.
10389     if (expr->left()->ToBooleanIsTrue() || expr->left()->ToBooleanIsFalse()) {
10390       // l (evals true)  && r -> r
10391       // l (evals true)  || r -> l
10392       // l (evals false) && r -> l
10393       // l (evals false) || r -> r
10394       if (is_logical_and == expr->left()->ToBooleanIsTrue()) {
10395         Drop(1);
10396         CHECK_ALIVE(VisitForValue(expr->right()));
10397       }
10398       return ast_context()->ReturnValue(Pop());
10399     }
10400 
10401     // We need an extra block to maintain edge-split form.
10402     HBasicBlock* empty_block = graph()->CreateBasicBlock();
10403     HBasicBlock* eval_right = graph()->CreateBasicBlock();
10404     ToBooleanStub::Types expected(expr->left()->to_boolean_types());
10405     HBranch* test = is_logical_and
10406         ? New<HBranch>(left_value, expected, eval_right, empty_block)
10407         : New<HBranch>(left_value, expected, empty_block, eval_right);
10408     FinishCurrentBlock(test);
10409 
10410     set_current_block(eval_right);
10411     Drop(1);  // Value of the left subexpression.
10412     CHECK_BAILOUT(VisitForValue(expr->right()));
10413 
10414     HBasicBlock* join_block =
10415       CreateJoin(empty_block, current_block(), expr->id());
10416     set_current_block(join_block);
10417     return ast_context()->ReturnValue(Pop());
10418 
10419   } else {
10420     ASSERT(ast_context()->IsEffect());
10421     // In an effect context, we don't need the value of the left subexpression,
10422     // only its control flow and side effects.  We need an extra block to
10423     // maintain edge-split form.
10424     HBasicBlock* empty_block = graph()->CreateBasicBlock();
10425     HBasicBlock* right_block = graph()->CreateBasicBlock();
10426     if (is_logical_and) {
10427       CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
10428     } else {
10429       CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
10430     }
10431 
10432     // TODO(kmillikin): Find a way to fix this.  It's ugly that there are
10433     // actually two empty blocks (one here and one inserted by
10434     // TestContext::BuildBranch, and that they both have an HSimulate though the
10435     // second one is not a merge node, and that we really have no good AST ID to
10436     // put on that first HSimulate.
10437 
10438     if (empty_block->HasPredecessor()) {
10439       empty_block->SetJoinId(expr->id());
10440     } else {
10441       empty_block = NULL;
10442     }
10443 
10444     if (right_block->HasPredecessor()) {
10445       right_block->SetJoinId(expr->RightId());
10446       set_current_block(right_block);
10447       CHECK_BAILOUT(VisitForEffect(expr->right()));
10448       right_block = current_block();
10449     } else {
10450       right_block = NULL;
10451     }
10452 
10453     HBasicBlock* join_block =
10454       CreateJoin(empty_block, right_block, expr->id());
10455     set_current_block(join_block);
10456     // We did not materialize any value in the predecessor environments,
10457     // so there is no need to handle it here.
10458   }
10459 }
10460 
10461 
VisitArithmeticExpression(BinaryOperation * expr)10462 void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
10463   CHECK_ALIVE(VisitForValue(expr->left()));
10464   CHECK_ALIVE(VisitForValue(expr->right()));
10465   SetSourcePosition(expr->position());
10466   HValue* right = Pop();
10467   HValue* left = Pop();
10468   HValue* result =
10469       BuildBinaryOperation(expr, left, right,
10470           ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
10471                                     : PUSH_BEFORE_SIMULATE);
10472   if (FLAG_hydrogen_track_positions && result->IsBinaryOperation()) {
10473     HBinaryOperation::cast(result)->SetOperandPositions(
10474         zone(),
10475         ScriptPositionToSourcePosition(expr->left()->position()),
10476         ScriptPositionToSourcePosition(expr->right()->position()));
10477   }
10478   return ast_context()->ReturnValue(result);
10479 }
10480 
10481 
HandleLiteralCompareTypeof(CompareOperation * expr,Expression * sub_expr,Handle<String> check)10482 void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
10483                                                         Expression* sub_expr,
10484                                                         Handle<String> check) {
10485   CHECK_ALIVE(VisitForTypeOf(sub_expr));
10486   SetSourcePosition(expr->position());
10487   HValue* value = Pop();
10488   HTypeofIsAndBranch* instr = New<HTypeofIsAndBranch>(value, check);
10489   return ast_context()->ReturnControl(instr, expr->id());
10490 }
10491 
10492 
IsLiteralCompareBool(Isolate * isolate,HValue * left,Token::Value op,HValue * right)10493 static bool IsLiteralCompareBool(Isolate* isolate,
10494                                  HValue* left,
10495                                  Token::Value op,
10496                                  HValue* right) {
10497   return op == Token::EQ_STRICT &&
10498       ((left->IsConstant() &&
10499           HConstant::cast(left)->handle(isolate)->IsBoolean()) ||
10500        (right->IsConstant() &&
10501            HConstant::cast(right)->handle(isolate)->IsBoolean()));
10502 }
10503 
10504 
VisitCompareOperation(CompareOperation * expr)10505 void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
10506   ASSERT(!HasStackOverflow());
10507   ASSERT(current_block() != NULL);
10508   ASSERT(current_block()->HasPredecessor());
10509 
10510   if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
10511 
10512   // Check for a few fast cases. The AST visiting behavior must be in sync
10513   // with the full codegen: We don't push both left and right values onto
10514   // the expression stack when one side is a special-case literal.
10515   Expression* sub_expr = NULL;
10516   Handle<String> check;
10517   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
10518     return HandleLiteralCompareTypeof(expr, sub_expr, check);
10519   }
10520   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
10521     return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
10522   }
10523   if (expr->IsLiteralCompareNull(&sub_expr)) {
10524     return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
10525   }
10526 
10527   if (IsClassOfTest(expr)) {
10528     CallRuntime* call = expr->left()->AsCallRuntime();
10529     ASSERT(call->arguments()->length() == 1);
10530     CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
10531     HValue* value = Pop();
10532     Literal* literal = expr->right()->AsLiteral();
10533     Handle<String> rhs = Handle<String>::cast(literal->value());
10534     HClassOfTestAndBranch* instr = New<HClassOfTestAndBranch>(value, rhs);
10535     return ast_context()->ReturnControl(instr, expr->id());
10536   }
10537 
10538   Type* left_type = expr->left()->bounds().lower;
10539   Type* right_type = expr->right()->bounds().lower;
10540   Type* combined_type = expr->combined_type();
10541 
10542   CHECK_ALIVE(VisitForValue(expr->left()));
10543   CHECK_ALIVE(VisitForValue(expr->right()));
10544 
10545   if (FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
10546 
10547   HValue* right = Pop();
10548   HValue* left = Pop();
10549   Token::Value op = expr->op();
10550 
10551   if (IsLiteralCompareBool(isolate(), left, op, right)) {
10552     HCompareObjectEqAndBranch* result =
10553         New<HCompareObjectEqAndBranch>(left, right);
10554     return ast_context()->ReturnControl(result, expr->id());
10555   }
10556 
10557   if (op == Token::INSTANCEOF) {
10558     // Check to see if the rhs of the instanceof is a global function not
10559     // residing in new space. If it is we assume that the function will stay the
10560     // same.
10561     Handle<JSFunction> target = Handle<JSFunction>::null();
10562     VariableProxy* proxy = expr->right()->AsVariableProxy();
10563     bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
10564     if (global_function &&
10565         current_info()->has_global_object() &&
10566         !current_info()->global_object()->IsAccessCheckNeeded()) {
10567       Handle<String> name = proxy->name();
10568       Handle<GlobalObject> global(current_info()->global_object());
10569       LookupResult lookup(isolate());
10570       global->Lookup(name, &lookup);
10571       if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
10572         Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
10573         // If the function is in new space we assume it's more likely to
10574         // change and thus prefer the general IC code.
10575         if (!isolate()->heap()->InNewSpace(*candidate)) {
10576           target = candidate;
10577         }
10578       }
10579     }
10580 
10581     // If the target is not null we have found a known global function that is
10582     // assumed to stay the same for this instanceof.
10583     if (target.is_null()) {
10584       HInstanceOf* result = New<HInstanceOf>(left, right);
10585       return ast_context()->ReturnInstruction(result, expr->id());
10586     } else {
10587       Add<HCheckValue>(right, target);
10588       HInstanceOfKnownGlobal* result =
10589         New<HInstanceOfKnownGlobal>(left, target);
10590       return ast_context()->ReturnInstruction(result, expr->id());
10591     }
10592 
10593     // Code below assumes that we don't fall through.
10594     UNREACHABLE();
10595   } else if (op == Token::IN) {
10596     HValue* function = AddLoadJSBuiltin(Builtins::IN);
10597     Add<HPushArguments>(left, right);
10598     // TODO(olivf) InvokeFunction produces a check for the parameter count,
10599     // even though we are certain to pass the correct number of arguments here.
10600     HInstruction* result = New<HInvokeFunction>(function, 2);
10601     return ast_context()->ReturnInstruction(result, expr->id());
10602   }
10603 
10604   PushBeforeSimulateBehavior push_behavior =
10605     ast_context()->IsEffect() ? NO_PUSH_BEFORE_SIMULATE
10606                               : PUSH_BEFORE_SIMULATE;
10607   HControlInstruction* compare = BuildCompareInstruction(
10608       op, left, right, left_type, right_type, combined_type,
10609       ScriptPositionToSourcePosition(expr->left()->position()),
10610       ScriptPositionToSourcePosition(expr->right()->position()),
10611       push_behavior, expr->id());
10612   if (compare == NULL) return;  // Bailed out.
10613   return ast_context()->ReturnControl(compare, expr->id());
10614 }
10615 
10616 
BuildCompareInstruction(Token::Value op,HValue * left,HValue * right,Type * left_type,Type * right_type,Type * combined_type,HSourcePosition left_position,HSourcePosition right_position,PushBeforeSimulateBehavior push_sim_result,BailoutId bailout_id)10617 HControlInstruction* HOptimizedGraphBuilder::BuildCompareInstruction(
10618     Token::Value op,
10619     HValue* left,
10620     HValue* right,
10621     Type* left_type,
10622     Type* right_type,
10623     Type* combined_type,
10624     HSourcePosition left_position,
10625     HSourcePosition right_position,
10626     PushBeforeSimulateBehavior push_sim_result,
10627     BailoutId bailout_id) {
10628   // Cases handled below depend on collected type feedback. They should
10629   // soft deoptimize when there is no type feedback.
10630   if (combined_type->Is(Type::None())) {
10631     Add<HDeoptimize>("Insufficient type feedback for combined type "
10632                      "of binary operation",
10633                      Deoptimizer::SOFT);
10634     combined_type = left_type = right_type = Type::Any(zone());
10635   }
10636 
10637   Representation left_rep = Representation::FromType(left_type);
10638   Representation right_rep = Representation::FromType(right_type);
10639   Representation combined_rep = Representation::FromType(combined_type);
10640 
10641   if (combined_type->Is(Type::Receiver())) {
10642     if (Token::IsEqualityOp(op)) {
10643       // HCompareObjectEqAndBranch can only deal with object, so
10644       // exclude numbers.
10645       if ((left->IsConstant() &&
10646            HConstant::cast(left)->HasNumberValue()) ||
10647           (right->IsConstant() &&
10648            HConstant::cast(right)->HasNumberValue())) {
10649         Add<HDeoptimize>("Type mismatch between feedback and constant",
10650                          Deoptimizer::SOFT);
10651         // The caller expects a branch instruction, so make it happy.
10652         return New<HBranch>(graph()->GetConstantTrue());
10653       }
10654       // Can we get away with map check and not instance type check?
10655       HValue* operand_to_check =
10656           left->block()->block_id() < right->block()->block_id() ? left : right;
10657       if (combined_type->IsClass()) {
10658         Handle<Map> map = combined_type->AsClass()->Map();
10659         AddCheckMap(operand_to_check, map);
10660         HCompareObjectEqAndBranch* result =
10661             New<HCompareObjectEqAndBranch>(left, right);
10662         if (FLAG_hydrogen_track_positions) {
10663           result->set_operand_position(zone(), 0, left_position);
10664           result->set_operand_position(zone(), 1, right_position);
10665         }
10666         return result;
10667       } else {
10668         BuildCheckHeapObject(operand_to_check);
10669         Add<HCheckInstanceType>(operand_to_check,
10670                                 HCheckInstanceType::IS_SPEC_OBJECT);
10671         HCompareObjectEqAndBranch* result =
10672             New<HCompareObjectEqAndBranch>(left, right);
10673         return result;
10674       }
10675     } else {
10676       Bailout(kUnsupportedNonPrimitiveCompare);
10677       return NULL;
10678     }
10679   } else if (combined_type->Is(Type::InternalizedString()) &&
10680              Token::IsEqualityOp(op)) {
10681     // If we have a constant argument, it should be consistent with the type
10682     // feedback (otherwise we fail assertions in HCompareObjectEqAndBranch).
10683     if ((left->IsConstant() &&
10684          !HConstant::cast(left)->HasInternalizedStringValue()) ||
10685         (right->IsConstant() &&
10686          !HConstant::cast(right)->HasInternalizedStringValue())) {
10687       Add<HDeoptimize>("Type mismatch between feedback and constant",
10688                        Deoptimizer::SOFT);
10689       // The caller expects a branch instruction, so make it happy.
10690       return New<HBranch>(graph()->GetConstantTrue());
10691     }
10692     BuildCheckHeapObject(left);
10693     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_INTERNALIZED_STRING);
10694     BuildCheckHeapObject(right);
10695     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_INTERNALIZED_STRING);
10696     HCompareObjectEqAndBranch* result =
10697         New<HCompareObjectEqAndBranch>(left, right);
10698     return result;
10699   } else if (combined_type->Is(Type::String())) {
10700     BuildCheckHeapObject(left);
10701     Add<HCheckInstanceType>(left, HCheckInstanceType::IS_STRING);
10702     BuildCheckHeapObject(right);
10703     Add<HCheckInstanceType>(right, HCheckInstanceType::IS_STRING);
10704     HStringCompareAndBranch* result =
10705         New<HStringCompareAndBranch>(left, right, op);
10706     return result;
10707   } else {
10708     if (combined_rep.IsTagged() || combined_rep.IsNone()) {
10709       HCompareGeneric* result = Add<HCompareGeneric>(left, right, op);
10710       result->set_observed_input_representation(1, left_rep);
10711       result->set_observed_input_representation(2, right_rep);
10712       if (result->HasObservableSideEffects()) {
10713         if (push_sim_result == PUSH_BEFORE_SIMULATE) {
10714           Push(result);
10715           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
10716           Drop(1);
10717         } else {
10718           AddSimulate(bailout_id, REMOVABLE_SIMULATE);
10719         }
10720       }
10721       // TODO(jkummerow): Can we make this more efficient?
10722       HBranch* branch = New<HBranch>(result);
10723       return branch;
10724     } else {
10725       HCompareNumericAndBranch* result =
10726           New<HCompareNumericAndBranch>(left, right, op);
10727       result->set_observed_input_representation(left_rep, right_rep);
10728       if (FLAG_hydrogen_track_positions) {
10729         result->SetOperandPositions(zone(), left_position, right_position);
10730       }
10731       return result;
10732     }
10733   }
10734 }
10735 
10736 
HandleLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)10737 void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
10738                                                      Expression* sub_expr,
10739                                                      NilValue nil) {
10740   ASSERT(!HasStackOverflow());
10741   ASSERT(current_block() != NULL);
10742   ASSERT(current_block()->HasPredecessor());
10743   ASSERT(expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT);
10744   if (!FLAG_hydrogen_track_positions) SetSourcePosition(expr->position());
10745   CHECK_ALIVE(VisitForValue(sub_expr));
10746   HValue* value = Pop();
10747   if (expr->op() == Token::EQ_STRICT) {
10748     HConstant* nil_constant = nil == kNullValue
10749         ? graph()->GetConstantNull()
10750         : graph()->GetConstantUndefined();
10751     HCompareObjectEqAndBranch* instr =
10752         New<HCompareObjectEqAndBranch>(value, nil_constant);
10753     return ast_context()->ReturnControl(instr, expr->id());
10754   } else {
10755     ASSERT_EQ(Token::EQ, expr->op());
10756     Type* type = expr->combined_type()->Is(Type::None())
10757         ? Type::Any(zone()) : expr->combined_type();
10758     HIfContinuation continuation;
10759     BuildCompareNil(value, type, &continuation);
10760     return ast_context()->ReturnContinuation(&continuation, expr->id());
10761   }
10762 }
10763 
10764 
BuildThisFunction()10765 HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
10766   // If we share optimized code between different closures, the
10767   // this-function is not a constant, except inside an inlined body.
10768   if (function_state()->outer() != NULL) {
10769       return New<HConstant>(
10770           function_state()->compilation_info()->closure());
10771   } else {
10772       return New<HThisFunction>();
10773   }
10774 }
10775 
10776 
BuildFastLiteral(Handle<JSObject> boilerplate_object,AllocationSiteUsageContext * site_context)10777 HInstruction* HOptimizedGraphBuilder::BuildFastLiteral(
10778     Handle<JSObject> boilerplate_object,
10779     AllocationSiteUsageContext* site_context) {
10780   NoObservableSideEffectsScope no_effects(this);
10781   InstanceType instance_type = boilerplate_object->map()->instance_type();
10782   ASSERT(instance_type == JS_ARRAY_TYPE || instance_type == JS_OBJECT_TYPE);
10783 
10784   HType type = instance_type == JS_ARRAY_TYPE
10785       ? HType::JSArray() : HType::JSObject();
10786   HValue* object_size_constant = Add<HConstant>(
10787       boilerplate_object->map()->instance_size());
10788 
10789   PretenureFlag pretenure_flag = NOT_TENURED;
10790   if (FLAG_allocation_site_pretenuring) {
10791     pretenure_flag = site_context->current()->GetPretenureMode();
10792     Handle<AllocationSite> site(site_context->current());
10793     AllocationSite::AddDependentCompilationInfo(
10794         site, AllocationSite::TENURING, top_info());
10795   }
10796 
10797   HInstruction* object = Add<HAllocate>(object_size_constant, type,
10798       pretenure_flag, instance_type, site_context->current());
10799 
10800   // If allocation folding reaches Page::kMaxRegularHeapObjectSize the
10801   // elements array may not get folded into the object. Hence, we set the
10802   // elements pointer to empty fixed array and let store elimination remove
10803   // this store in the folding case.
10804   HConstant* empty_fixed_array = Add<HConstant>(
10805       isolate()->factory()->empty_fixed_array());
10806   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
10807       empty_fixed_array);
10808 
10809   BuildEmitObjectHeader(boilerplate_object, object);
10810 
10811   Handle<FixedArrayBase> elements(boilerplate_object->elements());
10812   int elements_size = (elements->length() > 0 &&
10813       elements->map() != isolate()->heap()->fixed_cow_array_map()) ?
10814           elements->Size() : 0;
10815 
10816   if (pretenure_flag == TENURED &&
10817       elements->map() == isolate()->heap()->fixed_cow_array_map() &&
10818       isolate()->heap()->InNewSpace(*elements)) {
10819     // If we would like to pretenure a fixed cow array, we must ensure that the
10820     // array is already in old space, otherwise we'll create too many old-to-
10821     // new-space pointers (overflowing the store buffer).
10822     elements = Handle<FixedArrayBase>(
10823         isolate()->factory()->CopyAndTenureFixedCOWArray(
10824             Handle<FixedArray>::cast(elements)));
10825     boilerplate_object->set_elements(*elements);
10826   }
10827 
10828   HInstruction* object_elements = NULL;
10829   if (elements_size > 0) {
10830     HValue* object_elements_size = Add<HConstant>(elements_size);
10831     InstanceType instance_type = boilerplate_object->HasFastDoubleElements()
10832         ? FIXED_DOUBLE_ARRAY_TYPE : FIXED_ARRAY_TYPE;
10833     object_elements = Add<HAllocate>(
10834         object_elements_size, HType::HeapObject(),
10835         pretenure_flag, instance_type, site_context->current());
10836   }
10837   BuildInitElementsInObjectHeader(boilerplate_object, object, object_elements);
10838 
10839   // Copy object elements if non-COW.
10840   if (object_elements != NULL) {
10841     BuildEmitElements(boilerplate_object, elements, object_elements,
10842                       site_context);
10843   }
10844 
10845   // Copy in-object properties.
10846   if (boilerplate_object->map()->NumberOfFields() != 0) {
10847     BuildEmitInObjectProperties(boilerplate_object, object, site_context,
10848                                 pretenure_flag);
10849   }
10850   return object;
10851 }
10852 
10853 
BuildEmitObjectHeader(Handle<JSObject> boilerplate_object,HInstruction * object)10854 void HOptimizedGraphBuilder::BuildEmitObjectHeader(
10855     Handle<JSObject> boilerplate_object,
10856     HInstruction* object) {
10857   ASSERT(boilerplate_object->properties()->length() == 0);
10858 
10859   Handle<Map> boilerplate_object_map(boilerplate_object->map());
10860   AddStoreMapConstant(object, boilerplate_object_map);
10861 
10862   Handle<Object> properties_field =
10863       Handle<Object>(boilerplate_object->properties(), isolate());
10864   ASSERT(*properties_field == isolate()->heap()->empty_fixed_array());
10865   HInstruction* properties = Add<HConstant>(properties_field);
10866   HObjectAccess access = HObjectAccess::ForPropertiesPointer();
10867   Add<HStoreNamedField>(object, access, properties);
10868 
10869   if (boilerplate_object->IsJSArray()) {
10870     Handle<JSArray> boilerplate_array =
10871         Handle<JSArray>::cast(boilerplate_object);
10872     Handle<Object> length_field =
10873         Handle<Object>(boilerplate_array->length(), isolate());
10874     HInstruction* length = Add<HConstant>(length_field);
10875 
10876     ASSERT(boilerplate_array->length()->IsSmi());
10877     Add<HStoreNamedField>(object, HObjectAccess::ForArrayLength(
10878         boilerplate_array->GetElementsKind()), length);
10879   }
10880 }
10881 
10882 
BuildInitElementsInObjectHeader(Handle<JSObject> boilerplate_object,HInstruction * object,HInstruction * object_elements)10883 void HOptimizedGraphBuilder::BuildInitElementsInObjectHeader(
10884     Handle<JSObject> boilerplate_object,
10885     HInstruction* object,
10886     HInstruction* object_elements) {
10887   ASSERT(boilerplate_object->properties()->length() == 0);
10888   if (object_elements == NULL) {
10889     Handle<Object> elements_field =
10890         Handle<Object>(boilerplate_object->elements(), isolate());
10891     object_elements = Add<HConstant>(elements_field);
10892   }
10893   Add<HStoreNamedField>(object, HObjectAccess::ForElementsPointer(),
10894       object_elements);
10895 }
10896 
10897 
BuildEmitInObjectProperties(Handle<JSObject> boilerplate_object,HInstruction * object,AllocationSiteUsageContext * site_context,PretenureFlag pretenure_flag)10898 void HOptimizedGraphBuilder::BuildEmitInObjectProperties(
10899     Handle<JSObject> boilerplate_object,
10900     HInstruction* object,
10901     AllocationSiteUsageContext* site_context,
10902     PretenureFlag pretenure_flag) {
10903   Handle<Map> boilerplate_map(boilerplate_object->map());
10904   Handle<DescriptorArray> descriptors(boilerplate_map->instance_descriptors());
10905   int limit = boilerplate_map->NumberOfOwnDescriptors();
10906 
10907   int copied_fields = 0;
10908   for (int i = 0; i < limit; i++) {
10909     PropertyDetails details = descriptors->GetDetails(i);
10910     if (details.type() != FIELD) continue;
10911     copied_fields++;
10912     int index = descriptors->GetFieldIndex(i);
10913     int property_offset = boilerplate_object->GetInObjectPropertyOffset(index);
10914     Handle<Name> name(descriptors->GetKey(i));
10915     Handle<Object> value =
10916         Handle<Object>(boilerplate_object->InObjectPropertyAt(index),
10917         isolate());
10918 
10919     // The access for the store depends on the type of the boilerplate.
10920     HObjectAccess access = boilerplate_object->IsJSArray() ?
10921         HObjectAccess::ForJSArrayOffset(property_offset) :
10922         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
10923 
10924     if (value->IsJSObject()) {
10925       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
10926       Handle<AllocationSite> current_site = site_context->EnterNewScope();
10927       HInstruction* result =
10928           BuildFastLiteral(value_object, site_context);
10929       site_context->ExitScope(current_site, value_object);
10930       Add<HStoreNamedField>(object, access, result);
10931     } else {
10932       Representation representation = details.representation();
10933       HInstruction* value_instruction;
10934 
10935       if (representation.IsDouble()) {
10936         // Allocate a HeapNumber box and store the value into it.
10937         HValue* heap_number_constant = Add<HConstant>(HeapNumber::kSize);
10938         // This heap number alloc does not have a corresponding
10939         // AllocationSite. That is okay because
10940         // 1) it's a child object of another object with a valid allocation site
10941         // 2) we can just use the mode of the parent object for pretenuring
10942         HInstruction* double_box =
10943             Add<HAllocate>(heap_number_constant, HType::HeapObject(),
10944                 pretenure_flag, HEAP_NUMBER_TYPE);
10945         AddStoreMapConstant(double_box,
10946             isolate()->factory()->heap_number_map());
10947         Add<HStoreNamedField>(double_box, HObjectAccess::ForHeapNumberValue(),
10948                               Add<HConstant>(value));
10949         value_instruction = double_box;
10950       } else if (representation.IsSmi()) {
10951         value_instruction = value->IsUninitialized()
10952             ? graph()->GetConstant0()
10953             : Add<HConstant>(value);
10954         // Ensure that value is stored as smi.
10955         access = access.WithRepresentation(representation);
10956       } else {
10957         value_instruction = Add<HConstant>(value);
10958       }
10959 
10960       Add<HStoreNamedField>(object, access, value_instruction);
10961     }
10962   }
10963 
10964   int inobject_properties = boilerplate_object->map()->inobject_properties();
10965   HInstruction* value_instruction =
10966       Add<HConstant>(isolate()->factory()->one_pointer_filler_map());
10967   for (int i = copied_fields; i < inobject_properties; i++) {
10968     ASSERT(boilerplate_object->IsJSObject());
10969     int property_offset = boilerplate_object->GetInObjectPropertyOffset(i);
10970     HObjectAccess access =
10971         HObjectAccess::ForMapAndOffset(boilerplate_map, property_offset);
10972     Add<HStoreNamedField>(object, access, value_instruction);
10973   }
10974 }
10975 
10976 
BuildEmitElements(Handle<JSObject> boilerplate_object,Handle<FixedArrayBase> elements,HValue * object_elements,AllocationSiteUsageContext * site_context)10977 void HOptimizedGraphBuilder::BuildEmitElements(
10978     Handle<JSObject> boilerplate_object,
10979     Handle<FixedArrayBase> elements,
10980     HValue* object_elements,
10981     AllocationSiteUsageContext* site_context) {
10982   ElementsKind kind = boilerplate_object->map()->elements_kind();
10983   int elements_length = elements->length();
10984   HValue* object_elements_length = Add<HConstant>(elements_length);
10985   BuildInitializeElementsHeader(object_elements, kind, object_elements_length);
10986 
10987   // Copy elements backing store content.
10988   if (elements->IsFixedDoubleArray()) {
10989     BuildEmitFixedDoubleArray(elements, kind, object_elements);
10990   } else if (elements->IsFixedArray()) {
10991     BuildEmitFixedArray(elements, kind, object_elements,
10992                         site_context);
10993   } else {
10994     UNREACHABLE();
10995   }
10996 }
10997 
10998 
BuildEmitFixedDoubleArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements)10999 void HOptimizedGraphBuilder::BuildEmitFixedDoubleArray(
11000     Handle<FixedArrayBase> elements,
11001     ElementsKind kind,
11002     HValue* object_elements) {
11003   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11004   int elements_length = elements->length();
11005   for (int i = 0; i < elements_length; i++) {
11006     HValue* key_constant = Add<HConstant>(i);
11007     HInstruction* value_instruction =
11008         Add<HLoadKeyed>(boilerplate_elements, key_constant,
11009                         static_cast<HValue*>(NULL), kind,
11010                         ALLOW_RETURN_HOLE);
11011     HInstruction* store = Add<HStoreKeyed>(object_elements, key_constant,
11012                                            value_instruction, kind);
11013     store->SetFlag(HValue::kAllowUndefinedAsNaN);
11014   }
11015 }
11016 
11017 
BuildEmitFixedArray(Handle<FixedArrayBase> elements,ElementsKind kind,HValue * object_elements,AllocationSiteUsageContext * site_context)11018 void HOptimizedGraphBuilder::BuildEmitFixedArray(
11019     Handle<FixedArrayBase> elements,
11020     ElementsKind kind,
11021     HValue* object_elements,
11022     AllocationSiteUsageContext* site_context) {
11023   HInstruction* boilerplate_elements = Add<HConstant>(elements);
11024   int elements_length = elements->length();
11025   Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
11026   for (int i = 0; i < elements_length; i++) {
11027     Handle<Object> value(fast_elements->get(i), isolate());
11028     HValue* key_constant = Add<HConstant>(i);
11029     if (value->IsJSObject()) {
11030       Handle<JSObject> value_object = Handle<JSObject>::cast(value);
11031       Handle<AllocationSite> current_site = site_context->EnterNewScope();
11032       HInstruction* result =
11033           BuildFastLiteral(value_object, site_context);
11034       site_context->ExitScope(current_site, value_object);
11035       Add<HStoreKeyed>(object_elements, key_constant, result, kind);
11036     } else {
11037       HInstruction* value_instruction =
11038           Add<HLoadKeyed>(boilerplate_elements, key_constant,
11039                           static_cast<HValue*>(NULL), kind,
11040                           ALLOW_RETURN_HOLE);
11041       Add<HStoreKeyed>(object_elements, key_constant, value_instruction, kind);
11042     }
11043   }
11044 }
11045 
11046 
VisitThisFunction(ThisFunction * expr)11047 void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
11048   ASSERT(!HasStackOverflow());
11049   ASSERT(current_block() != NULL);
11050   ASSERT(current_block()->HasPredecessor());
11051   HInstruction* instr = BuildThisFunction();
11052   return ast_context()->ReturnInstruction(instr, expr->id());
11053 }
11054 
11055 
VisitDeclarations(ZoneList<Declaration * > * declarations)11056 void HOptimizedGraphBuilder::VisitDeclarations(
11057     ZoneList<Declaration*>* declarations) {
11058   ASSERT(globals_.is_empty());
11059   AstVisitor::VisitDeclarations(declarations);
11060   if (!globals_.is_empty()) {
11061     Handle<FixedArray> array =
11062        isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
11063     for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
11064     int flags = DeclareGlobalsEvalFlag::encode(current_info()->is_eval()) |
11065         DeclareGlobalsNativeFlag::encode(current_info()->is_native()) |
11066         DeclareGlobalsStrictMode::encode(current_info()->strict_mode());
11067     Add<HDeclareGlobals>(array, flags);
11068     globals_.Rewind(0);
11069   }
11070 }
11071 
11072 
VisitVariableDeclaration(VariableDeclaration * declaration)11073 void HOptimizedGraphBuilder::VisitVariableDeclaration(
11074     VariableDeclaration* declaration) {
11075   VariableProxy* proxy = declaration->proxy();
11076   VariableMode mode = declaration->mode();
11077   Variable* variable = proxy->var();
11078   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
11079   switch (variable->location()) {
11080     case Variable::UNALLOCATED:
11081       globals_.Add(variable->name(), zone());
11082       globals_.Add(variable->binding_needs_init()
11083                        ? isolate()->factory()->the_hole_value()
11084                        : isolate()->factory()->undefined_value(), zone());
11085       return;
11086     case Variable::PARAMETER:
11087     case Variable::LOCAL:
11088       if (hole_init) {
11089         HValue* value = graph()->GetConstantHole();
11090         environment()->Bind(variable, value);
11091       }
11092       break;
11093     case Variable::CONTEXT:
11094       if (hole_init) {
11095         HValue* value = graph()->GetConstantHole();
11096         HValue* context = environment()->context();
11097         HStoreContextSlot* store = Add<HStoreContextSlot>(
11098             context, variable->index(), HStoreContextSlot::kNoCheck, value);
11099         if (store->HasObservableSideEffects()) {
11100           Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11101         }
11102       }
11103       break;
11104     case Variable::LOOKUP:
11105       return Bailout(kUnsupportedLookupSlotInDeclaration);
11106   }
11107 }
11108 
11109 
VisitFunctionDeclaration(FunctionDeclaration * declaration)11110 void HOptimizedGraphBuilder::VisitFunctionDeclaration(
11111     FunctionDeclaration* declaration) {
11112   VariableProxy* proxy = declaration->proxy();
11113   Variable* variable = proxy->var();
11114   switch (variable->location()) {
11115     case Variable::UNALLOCATED: {
11116       globals_.Add(variable->name(), zone());
11117       Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(
11118           declaration->fun(), current_info()->script());
11119       // Check for stack-overflow exception.
11120       if (function.is_null()) return SetStackOverflow();
11121       globals_.Add(function, zone());
11122       return;
11123     }
11124     case Variable::PARAMETER:
11125     case Variable::LOCAL: {
11126       CHECK_ALIVE(VisitForValue(declaration->fun()));
11127       HValue* value = Pop();
11128       BindIfLive(variable, value);
11129       break;
11130     }
11131     case Variable::CONTEXT: {
11132       CHECK_ALIVE(VisitForValue(declaration->fun()));
11133       HValue* value = Pop();
11134       HValue* context = environment()->context();
11135       HStoreContextSlot* store = Add<HStoreContextSlot>(
11136           context, variable->index(), HStoreContextSlot::kNoCheck, value);
11137       if (store->HasObservableSideEffects()) {
11138         Add<HSimulate>(proxy->id(), REMOVABLE_SIMULATE);
11139       }
11140       break;
11141     }
11142     case Variable::LOOKUP:
11143       return Bailout(kUnsupportedLookupSlotInDeclaration);
11144   }
11145 }
11146 
11147 
VisitModuleDeclaration(ModuleDeclaration * declaration)11148 void HOptimizedGraphBuilder::VisitModuleDeclaration(
11149     ModuleDeclaration* declaration) {
11150   UNREACHABLE();
11151 }
11152 
11153 
VisitImportDeclaration(ImportDeclaration * declaration)11154 void HOptimizedGraphBuilder::VisitImportDeclaration(
11155     ImportDeclaration* declaration) {
11156   UNREACHABLE();
11157 }
11158 
11159 
VisitExportDeclaration(ExportDeclaration * declaration)11160 void HOptimizedGraphBuilder::VisitExportDeclaration(
11161     ExportDeclaration* declaration) {
11162   UNREACHABLE();
11163 }
11164 
11165 
VisitModuleLiteral(ModuleLiteral * module)11166 void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
11167   UNREACHABLE();
11168 }
11169 
11170 
VisitModuleVariable(ModuleVariable * module)11171 void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
11172   UNREACHABLE();
11173 }
11174 
11175 
VisitModulePath(ModulePath * module)11176 void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
11177   UNREACHABLE();
11178 }
11179 
11180 
VisitModuleUrl(ModuleUrl * module)11181 void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
11182   UNREACHABLE();
11183 }
11184 
11185 
VisitModuleStatement(ModuleStatement * stmt)11186 void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
11187   UNREACHABLE();
11188 }
11189 
11190 
11191 // Generators for inline runtime functions.
11192 // Support for types.
GenerateIsSmi(CallRuntime * call)11193 void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
11194   ASSERT(call->arguments()->length() == 1);
11195   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11196   HValue* value = Pop();
11197   HIsSmiAndBranch* result = New<HIsSmiAndBranch>(value);
11198   return ast_context()->ReturnControl(result, call->id());
11199 }
11200 
11201 
GenerateIsSpecObject(CallRuntime * call)11202 void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
11203   ASSERT(call->arguments()->length() == 1);
11204   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11205   HValue* value = Pop();
11206   HHasInstanceTypeAndBranch* result =
11207       New<HHasInstanceTypeAndBranch>(value,
11208                                      FIRST_SPEC_OBJECT_TYPE,
11209                                      LAST_SPEC_OBJECT_TYPE);
11210   return ast_context()->ReturnControl(result, call->id());
11211 }
11212 
11213 
GenerateIsFunction(CallRuntime * call)11214 void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
11215   ASSERT(call->arguments()->length() == 1);
11216   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11217   HValue* value = Pop();
11218   HHasInstanceTypeAndBranch* result =
11219       New<HHasInstanceTypeAndBranch>(value, JS_FUNCTION_TYPE);
11220   return ast_context()->ReturnControl(result, call->id());
11221 }
11222 
11223 
GenerateIsMinusZero(CallRuntime * call)11224 void HOptimizedGraphBuilder::GenerateIsMinusZero(CallRuntime* call) {
11225   ASSERT(call->arguments()->length() == 1);
11226   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11227   HValue* value = Pop();
11228   HCompareMinusZeroAndBranch* result = New<HCompareMinusZeroAndBranch>(value);
11229   return ast_context()->ReturnControl(result, call->id());
11230 }
11231 
11232 
GenerateHasCachedArrayIndex(CallRuntime * call)11233 void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
11234   ASSERT(call->arguments()->length() == 1);
11235   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11236   HValue* value = Pop();
11237   HHasCachedArrayIndexAndBranch* result =
11238       New<HHasCachedArrayIndexAndBranch>(value);
11239   return ast_context()->ReturnControl(result, call->id());
11240 }
11241 
11242 
GenerateIsArray(CallRuntime * call)11243 void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
11244   ASSERT(call->arguments()->length() == 1);
11245   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11246   HValue* value = Pop();
11247   HHasInstanceTypeAndBranch* result =
11248       New<HHasInstanceTypeAndBranch>(value, JS_ARRAY_TYPE);
11249   return ast_context()->ReturnControl(result, call->id());
11250 }
11251 
11252 
GenerateIsRegExp(CallRuntime * call)11253 void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
11254   ASSERT(call->arguments()->length() == 1);
11255   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11256   HValue* value = Pop();
11257   HHasInstanceTypeAndBranch* result =
11258       New<HHasInstanceTypeAndBranch>(value, JS_REGEXP_TYPE);
11259   return ast_context()->ReturnControl(result, call->id());
11260 }
11261 
11262 
GenerateIsObject(CallRuntime * call)11263 void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
11264   ASSERT(call->arguments()->length() == 1);
11265   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11266   HValue* value = Pop();
11267   HIsObjectAndBranch* result = New<HIsObjectAndBranch>(value);
11268   return ast_context()->ReturnControl(result, call->id());
11269 }
11270 
11271 
GenerateIsNonNegativeSmi(CallRuntime * call)11272 void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
11273   return Bailout(kInlinedRuntimeFunctionIsNonNegativeSmi);
11274 }
11275 
11276 
GenerateIsUndetectableObject(CallRuntime * call)11277 void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
11278   ASSERT(call->arguments()->length() == 1);
11279   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11280   HValue* value = Pop();
11281   HIsUndetectableAndBranch* result = New<HIsUndetectableAndBranch>(value);
11282   return ast_context()->ReturnControl(result, call->id());
11283 }
11284 
11285 
GenerateIsStringWrapperSafeForDefaultValueOf(CallRuntime * call)11286 void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
11287     CallRuntime* call) {
11288   return Bailout(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf);
11289 }
11290 
11291 
11292 // Support for construct call checks.
GenerateIsConstructCall(CallRuntime * call)11293 void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
11294   ASSERT(call->arguments()->length() == 0);
11295   if (function_state()->outer() != NULL) {
11296     // We are generating graph for inlined function.
11297     HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
11298         ? graph()->GetConstantTrue()
11299         : graph()->GetConstantFalse();
11300     return ast_context()->ReturnValue(value);
11301   } else {
11302     return ast_context()->ReturnControl(New<HIsConstructCallAndBranch>(),
11303                                         call->id());
11304   }
11305 }
11306 
11307 
11308 // Support for arguments.length and arguments[?].
GenerateArgumentsLength(CallRuntime * call)11309 void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
11310   // Our implementation of arguments (based on this stack frame or an
11311   // adapter below it) does not work for inlined functions.  This runtime
11312   // function is blacklisted by AstNode::IsInlineable.
11313   ASSERT(function_state()->outer() == NULL);
11314   ASSERT(call->arguments()->length() == 0);
11315   HInstruction* elements = Add<HArgumentsElements>(false);
11316   HArgumentsLength* result = New<HArgumentsLength>(elements);
11317   return ast_context()->ReturnInstruction(result, call->id());
11318 }
11319 
11320 
GenerateArguments(CallRuntime * call)11321 void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
11322   // Our implementation of arguments (based on this stack frame or an
11323   // adapter below it) does not work for inlined functions.  This runtime
11324   // function is blacklisted by AstNode::IsInlineable.
11325   ASSERT(function_state()->outer() == NULL);
11326   ASSERT(call->arguments()->length() == 1);
11327   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11328   HValue* index = Pop();
11329   HInstruction* elements = Add<HArgumentsElements>(false);
11330   HInstruction* length = Add<HArgumentsLength>(elements);
11331   HInstruction* checked_index = Add<HBoundsCheck>(index, length);
11332   HAccessArgumentsAt* result = New<HAccessArgumentsAt>(
11333       elements, length, checked_index);
11334   return ast_context()->ReturnInstruction(result, call->id());
11335 }
11336 
11337 
11338 // Support for accessing the class and value fields of an object.
GenerateClassOf(CallRuntime * call)11339 void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
11340   // The special form detected by IsClassOfTest is detected before we get here
11341   // and does not cause a bailout.
11342   return Bailout(kInlinedRuntimeFunctionClassOf);
11343 }
11344 
11345 
GenerateValueOf(CallRuntime * call)11346 void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
11347   ASSERT(call->arguments()->length() == 1);
11348   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11349   HValue* object = Pop();
11350 
11351   IfBuilder if_objectisvalue(this);
11352   HValue* objectisvalue = if_objectisvalue.If<HHasInstanceTypeAndBranch>(
11353       object, JS_VALUE_TYPE);
11354   if_objectisvalue.Then();
11355   {
11356     // Return the actual value.
11357     Push(Add<HLoadNamedField>(
11358             object, objectisvalue,
11359             HObjectAccess::ForObservableJSObjectOffset(
11360                 JSValue::kValueOffset)));
11361     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11362   }
11363   if_objectisvalue.Else();
11364   {
11365     // If the object is not a value return the object.
11366     Push(object);
11367     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11368   }
11369   if_objectisvalue.End();
11370   return ast_context()->ReturnValue(Pop());
11371 }
11372 
11373 
GenerateDateField(CallRuntime * call)11374 void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
11375   ASSERT(call->arguments()->length() == 2);
11376   ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
11377   Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->value()));
11378   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11379   HValue* date = Pop();
11380   HDateField* result = New<HDateField>(date, index);
11381   return ast_context()->ReturnInstruction(result, call->id());
11382 }
11383 
11384 
GenerateOneByteSeqStringSetChar(CallRuntime * call)11385 void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
11386     CallRuntime* call) {
11387   ASSERT(call->arguments()->length() == 3);
11388   // We need to follow the evaluation order of full codegen.
11389   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11390   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
11391   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11392   HValue* string = Pop();
11393   HValue* value = Pop();
11394   HValue* index = Pop();
11395   Add<HSeqStringSetChar>(String::ONE_BYTE_ENCODING, string,
11396                          index, value);
11397   Add<HSimulate>(call->id(), FIXED_SIMULATE);
11398   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
11399 }
11400 
11401 
GenerateTwoByteSeqStringSetChar(CallRuntime * call)11402 void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
11403     CallRuntime* call) {
11404   ASSERT(call->arguments()->length() == 3);
11405   // We need to follow the evaluation order of full codegen.
11406   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11407   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
11408   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11409   HValue* string = Pop();
11410   HValue* value = Pop();
11411   HValue* index = Pop();
11412   Add<HSeqStringSetChar>(String::TWO_BYTE_ENCODING, string,
11413                          index, value);
11414   Add<HSimulate>(call->id(), FIXED_SIMULATE);
11415   return ast_context()->ReturnValue(graph()->GetConstantUndefined());
11416 }
11417 
11418 
GenerateSetValueOf(CallRuntime * call)11419 void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
11420   ASSERT(call->arguments()->length() == 2);
11421   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11422   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11423   HValue* value = Pop();
11424   HValue* object = Pop();
11425 
11426   // Check if object is a JSValue.
11427   IfBuilder if_objectisvalue(this);
11428   if_objectisvalue.If<HHasInstanceTypeAndBranch>(object, JS_VALUE_TYPE);
11429   if_objectisvalue.Then();
11430   {
11431     // Create in-object property store to kValueOffset.
11432     Add<HStoreNamedField>(object,
11433         HObjectAccess::ForObservableJSObjectOffset(JSValue::kValueOffset),
11434         value);
11435     if (!ast_context()->IsEffect()) {
11436       Push(value);
11437     }
11438     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11439   }
11440   if_objectisvalue.Else();
11441   {
11442     // Nothing to do in this case.
11443     if (!ast_context()->IsEffect()) {
11444       Push(value);
11445     }
11446     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11447   }
11448   if_objectisvalue.End();
11449   if (!ast_context()->IsEffect()) {
11450     Drop(1);
11451   }
11452   return ast_context()->ReturnValue(value);
11453 }
11454 
11455 
11456 // Fast support for charCodeAt(n).
GenerateStringCharCodeAt(CallRuntime * call)11457 void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
11458   ASSERT(call->arguments()->length() == 2);
11459   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11460   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11461   HValue* index = Pop();
11462   HValue* string = Pop();
11463   HInstruction* result = BuildStringCharCodeAt(string, index);
11464   return ast_context()->ReturnInstruction(result, call->id());
11465 }
11466 
11467 
11468 // Fast support for string.charAt(n) and string[n].
GenerateStringCharFromCode(CallRuntime * call)11469 void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
11470   ASSERT(call->arguments()->length() == 1);
11471   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11472   HValue* char_code = Pop();
11473   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
11474   return ast_context()->ReturnInstruction(result, call->id());
11475 }
11476 
11477 
11478 // Fast support for string.charAt(n) and string[n].
GenerateStringCharAt(CallRuntime * call)11479 void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
11480   ASSERT(call->arguments()->length() == 2);
11481   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11482   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11483   HValue* index = Pop();
11484   HValue* string = Pop();
11485   HInstruction* char_code = BuildStringCharCodeAt(string, index);
11486   AddInstruction(char_code);
11487   HInstruction* result = NewUncasted<HStringCharFromCode>(char_code);
11488   return ast_context()->ReturnInstruction(result, call->id());
11489 }
11490 
11491 
11492 // Fast support for object equality testing.
GenerateObjectEquals(CallRuntime * call)11493 void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
11494   ASSERT(call->arguments()->length() == 2);
11495   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11496   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11497   HValue* right = Pop();
11498   HValue* left = Pop();
11499   HCompareObjectEqAndBranch* result =
11500       New<HCompareObjectEqAndBranch>(left, right);
11501   return ast_context()->ReturnControl(result, call->id());
11502 }
11503 
11504 
11505 // Fast support for StringAdd.
GenerateStringAdd(CallRuntime * call)11506 void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
11507   ASSERT_EQ(2, call->arguments()->length());
11508   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11509   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11510   HValue* right = Pop();
11511   HValue* left = Pop();
11512   HInstruction* result = NewUncasted<HStringAdd>(left, right);
11513   return ast_context()->ReturnInstruction(result, call->id());
11514 }
11515 
11516 
11517 // Fast support for SubString.
GenerateSubString(CallRuntime * call)11518 void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
11519   ASSERT_EQ(3, call->arguments()->length());
11520   CHECK_ALIVE(VisitExpressions(call->arguments()));
11521   PushArgumentsFromEnvironment(call->arguments()->length());
11522   HCallStub* result = New<HCallStub>(CodeStub::SubString, 3);
11523   return ast_context()->ReturnInstruction(result, call->id());
11524 }
11525 
11526 
11527 // Fast support for StringCompare.
GenerateStringCompare(CallRuntime * call)11528 void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
11529   ASSERT_EQ(2, call->arguments()->length());
11530   CHECK_ALIVE(VisitExpressions(call->arguments()));
11531   PushArgumentsFromEnvironment(call->arguments()->length());
11532   HCallStub* result = New<HCallStub>(CodeStub::StringCompare, 2);
11533   return ast_context()->ReturnInstruction(result, call->id());
11534 }
11535 
11536 
11537 // Support for direct calls from JavaScript to native RegExp code.
GenerateRegExpExec(CallRuntime * call)11538 void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
11539   ASSERT_EQ(4, call->arguments()->length());
11540   CHECK_ALIVE(VisitExpressions(call->arguments()));
11541   PushArgumentsFromEnvironment(call->arguments()->length());
11542   HCallStub* result = New<HCallStub>(CodeStub::RegExpExec, 4);
11543   return ast_context()->ReturnInstruction(result, call->id());
11544 }
11545 
11546 
GenerateDoubleLo(CallRuntime * call)11547 void HOptimizedGraphBuilder::GenerateDoubleLo(CallRuntime* call) {
11548   ASSERT_EQ(1, call->arguments()->length());
11549   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11550   HValue* value = Pop();
11551   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::LOW);
11552   return ast_context()->ReturnInstruction(result, call->id());
11553 }
11554 
11555 
GenerateDoubleHi(CallRuntime * call)11556 void HOptimizedGraphBuilder::GenerateDoubleHi(CallRuntime* call) {
11557   ASSERT_EQ(1, call->arguments()->length());
11558   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11559   HValue* value = Pop();
11560   HInstruction* result = NewUncasted<HDoubleBits>(value, HDoubleBits::HIGH);
11561   return ast_context()->ReturnInstruction(result, call->id());
11562 }
11563 
11564 
GenerateConstructDouble(CallRuntime * call)11565 void HOptimizedGraphBuilder::GenerateConstructDouble(CallRuntime* call) {
11566   ASSERT_EQ(2, call->arguments()->length());
11567   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11568   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11569   HValue* lo = Pop();
11570   HValue* hi = Pop();
11571   HInstruction* result = NewUncasted<HConstructDouble>(hi, lo);
11572   return ast_context()->ReturnInstruction(result, call->id());
11573 }
11574 
11575 
11576 // Construct a RegExp exec result with two in-object properties.
GenerateRegExpConstructResult(CallRuntime * call)11577 void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
11578   ASSERT_EQ(3, call->arguments()->length());
11579   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11580   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11581   CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
11582   HValue* input = Pop();
11583   HValue* index = Pop();
11584   HValue* length = Pop();
11585   HValue* result = BuildRegExpConstructResult(length, index, input);
11586   return ast_context()->ReturnValue(result);
11587 }
11588 
11589 
11590 // Support for fast native caches.
GenerateGetFromCache(CallRuntime * call)11591 void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
11592   return Bailout(kInlinedRuntimeFunctionGetFromCache);
11593 }
11594 
11595 
11596 // Fast support for number to string.
GenerateNumberToString(CallRuntime * call)11597 void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
11598   ASSERT_EQ(1, call->arguments()->length());
11599   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11600   HValue* number = Pop();
11601   HValue* result = BuildNumberToString(number, Type::Any(zone()));
11602   return ast_context()->ReturnValue(result);
11603 }
11604 
11605 
11606 // Fast call for custom callbacks.
GenerateCallFunction(CallRuntime * call)11607 void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
11608   // 1 ~ The function to call is not itself an argument to the call.
11609   int arg_count = call->arguments()->length() - 1;
11610   ASSERT(arg_count >= 1);  // There's always at least a receiver.
11611 
11612   CHECK_ALIVE(VisitExpressions(call->arguments()));
11613   // The function is the last argument
11614   HValue* function = Pop();
11615   // Push the arguments to the stack
11616   PushArgumentsFromEnvironment(arg_count);
11617 
11618   IfBuilder if_is_jsfunction(this);
11619   if_is_jsfunction.If<HHasInstanceTypeAndBranch>(function, JS_FUNCTION_TYPE);
11620 
11621   if_is_jsfunction.Then();
11622   {
11623     HInstruction* invoke_result =
11624         Add<HInvokeFunction>(function, arg_count);
11625     if (!ast_context()->IsEffect()) {
11626       Push(invoke_result);
11627     }
11628     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11629   }
11630 
11631   if_is_jsfunction.Else();
11632   {
11633     HInstruction* call_result =
11634         Add<HCallFunction>(function, arg_count);
11635     if (!ast_context()->IsEffect()) {
11636       Push(call_result);
11637     }
11638     Add<HSimulate>(call->id(), FIXED_SIMULATE);
11639   }
11640   if_is_jsfunction.End();
11641 
11642   if (ast_context()->IsEffect()) {
11643     // EffectContext::ReturnValue ignores the value, so we can just pass
11644     // 'undefined' (as we do not have the call result anymore).
11645     return ast_context()->ReturnValue(graph()->GetConstantUndefined());
11646   } else {
11647     return ast_context()->ReturnValue(Pop());
11648   }
11649 }
11650 
11651 
11652 // Fast call to math functions.
GenerateMathPow(CallRuntime * call)11653 void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
11654   ASSERT_EQ(2, call->arguments()->length());
11655   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11656   CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
11657   HValue* right = Pop();
11658   HValue* left = Pop();
11659   HInstruction* result = NewUncasted<HPower>(left, right);
11660   return ast_context()->ReturnInstruction(result, call->id());
11661 }
11662 
11663 
GenerateMathLogRT(CallRuntime * call)11664 void HOptimizedGraphBuilder::GenerateMathLogRT(CallRuntime* call) {
11665   ASSERT(call->arguments()->length() == 1);
11666   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11667   HValue* value = Pop();
11668   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathLog);
11669   return ast_context()->ReturnInstruction(result, call->id());
11670 }
11671 
11672 
GenerateMathSqrtRT(CallRuntime * call)11673 void HOptimizedGraphBuilder::GenerateMathSqrtRT(CallRuntime* call) {
11674   ASSERT(call->arguments()->length() == 1);
11675   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11676   HValue* value = Pop();
11677   HInstruction* result = NewUncasted<HUnaryMathOperation>(value, kMathSqrt);
11678   return ast_context()->ReturnInstruction(result, call->id());
11679 }
11680 
11681 
GenerateGetCachedArrayIndex(CallRuntime * call)11682 void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
11683   ASSERT(call->arguments()->length() == 1);
11684   CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
11685   HValue* value = Pop();
11686   HGetCachedArrayIndex* result = New<HGetCachedArrayIndex>(value);
11687   return ast_context()->ReturnInstruction(result, call->id());
11688 }
11689 
11690 
GenerateFastAsciiArrayJoin(CallRuntime * call)11691 void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
11692   return Bailout(kInlinedRuntimeFunctionFastAsciiArrayJoin);
11693 }
11694 
11695 
11696 // Support for generators.
GenerateGeneratorNext(CallRuntime * call)11697 void HOptimizedGraphBuilder::GenerateGeneratorNext(CallRuntime* call) {
11698   return Bailout(kInlinedRuntimeFunctionGeneratorNext);
11699 }
11700 
11701 
GenerateGeneratorThrow(CallRuntime * call)11702 void HOptimizedGraphBuilder::GenerateGeneratorThrow(CallRuntime* call) {
11703   return Bailout(kInlinedRuntimeFunctionGeneratorThrow);
11704 }
11705 
11706 
GenerateDebugBreakInOptimizedCode(CallRuntime * call)11707 void HOptimizedGraphBuilder::GenerateDebugBreakInOptimizedCode(
11708     CallRuntime* call) {
11709   Add<HDebugBreak>();
11710   return ast_context()->ReturnValue(graph()->GetConstant0());
11711 }
11712 
11713 
GenerateDebugCallbackSupportsStepping(CallRuntime * call)11714 void HOptimizedGraphBuilder::GenerateDebugCallbackSupportsStepping(
11715     CallRuntime* call) {
11716   ASSERT(call->arguments()->length() == 1);
11717   // Debugging is not supported in optimized code.
11718   return ast_context()->ReturnValue(graph()->GetConstantFalse());
11719 }
11720 
11721 
11722 #undef CHECK_BAILOUT
11723 #undef CHECK_ALIVE
11724 
11725 
HEnvironment(HEnvironment * outer,Scope * scope,Handle<JSFunction> closure,Zone * zone)11726 HEnvironment::HEnvironment(HEnvironment* outer,
11727                            Scope* scope,
11728                            Handle<JSFunction> closure,
11729                            Zone* zone)
11730     : closure_(closure),
11731       values_(0, zone),
11732       frame_type_(JS_FUNCTION),
11733       parameter_count_(0),
11734       specials_count_(1),
11735       local_count_(0),
11736       outer_(outer),
11737       entry_(NULL),
11738       pop_count_(0),
11739       push_count_(0),
11740       ast_id_(BailoutId::None()),
11741       zone_(zone) {
11742   Scope* declaration_scope = scope->DeclarationScope();
11743   Initialize(declaration_scope->num_parameters() + 1,
11744              declaration_scope->num_stack_slots(), 0);
11745 }
11746 
11747 
HEnvironment(Zone * zone,int parameter_count)11748 HEnvironment::HEnvironment(Zone* zone, int parameter_count)
11749     : values_(0, zone),
11750       frame_type_(STUB),
11751       parameter_count_(parameter_count),
11752       specials_count_(1),
11753       local_count_(0),
11754       outer_(NULL),
11755       entry_(NULL),
11756       pop_count_(0),
11757       push_count_(0),
11758       ast_id_(BailoutId::None()),
11759       zone_(zone) {
11760   Initialize(parameter_count, 0, 0);
11761 }
11762 
11763 
HEnvironment(const HEnvironment * other,Zone * zone)11764 HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
11765     : values_(0, zone),
11766       frame_type_(JS_FUNCTION),
11767       parameter_count_(0),
11768       specials_count_(0),
11769       local_count_(0),
11770       outer_(NULL),
11771       entry_(NULL),
11772       pop_count_(0),
11773       push_count_(0),
11774       ast_id_(other->ast_id()),
11775       zone_(zone) {
11776   Initialize(other);
11777 }
11778 
11779 
HEnvironment(HEnvironment * outer,Handle<JSFunction> closure,FrameType frame_type,int arguments,Zone * zone)11780 HEnvironment::HEnvironment(HEnvironment* outer,
11781                            Handle<JSFunction> closure,
11782                            FrameType frame_type,
11783                            int arguments,
11784                            Zone* zone)
11785     : closure_(closure),
11786       values_(arguments, zone),
11787       frame_type_(frame_type),
11788       parameter_count_(arguments),
11789       specials_count_(0),
11790       local_count_(0),
11791       outer_(outer),
11792       entry_(NULL),
11793       pop_count_(0),
11794       push_count_(0),
11795       ast_id_(BailoutId::None()),
11796       zone_(zone) {
11797 }
11798 
11799 
Initialize(int parameter_count,int local_count,int stack_height)11800 void HEnvironment::Initialize(int parameter_count,
11801                               int local_count,
11802                               int stack_height) {
11803   parameter_count_ = parameter_count;
11804   local_count_ = local_count;
11805 
11806   // Avoid reallocating the temporaries' backing store on the first Push.
11807   int total = parameter_count + specials_count_ + local_count + stack_height;
11808   values_.Initialize(total + 4, zone());
11809   for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
11810 }
11811 
11812 
Initialize(const HEnvironment * other)11813 void HEnvironment::Initialize(const HEnvironment* other) {
11814   closure_ = other->closure();
11815   values_.AddAll(other->values_, zone());
11816   assigned_variables_.Union(other->assigned_variables_, zone());
11817   frame_type_ = other->frame_type_;
11818   parameter_count_ = other->parameter_count_;
11819   local_count_ = other->local_count_;
11820   if (other->outer_ != NULL) outer_ = other->outer_->Copy();  // Deep copy.
11821   entry_ = other->entry_;
11822   pop_count_ = other->pop_count_;
11823   push_count_ = other->push_count_;
11824   specials_count_ = other->specials_count_;
11825   ast_id_ = other->ast_id_;
11826 }
11827 
11828 
AddIncomingEdge(HBasicBlock * block,HEnvironment * other)11829 void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
11830   ASSERT(!block->IsLoopHeader());
11831   ASSERT(values_.length() == other->values_.length());
11832 
11833   int length = values_.length();
11834   for (int i = 0; i < length; ++i) {
11835     HValue* value = values_[i];
11836     if (value != NULL && value->IsPhi() && value->block() == block) {
11837       // There is already a phi for the i'th value.
11838       HPhi* phi = HPhi::cast(value);
11839       // Assert index is correct and that we haven't missed an incoming edge.
11840       ASSERT(phi->merged_index() == i || !phi->HasMergedIndex());
11841       ASSERT(phi->OperandCount() == block->predecessors()->length());
11842       phi->AddInput(other->values_[i]);
11843     } else if (values_[i] != other->values_[i]) {
11844       // There is a fresh value on the incoming edge, a phi is needed.
11845       ASSERT(values_[i] != NULL && other->values_[i] != NULL);
11846       HPhi* phi = block->AddNewPhi(i);
11847       HValue* old_value = values_[i];
11848       for (int j = 0; j < block->predecessors()->length(); j++) {
11849         phi->AddInput(old_value);
11850       }
11851       phi->AddInput(other->values_[i]);
11852       this->values_[i] = phi;
11853     }
11854   }
11855 }
11856 
11857 
Bind(int index,HValue * value)11858 void HEnvironment::Bind(int index, HValue* value) {
11859   ASSERT(value != NULL);
11860   assigned_variables_.Add(index, zone());
11861   values_[index] = value;
11862 }
11863 
11864 
HasExpressionAt(int index) const11865 bool HEnvironment::HasExpressionAt(int index) const {
11866   return index >= parameter_count_ + specials_count_ + local_count_;
11867 }
11868 
11869 
ExpressionStackIsEmpty() const11870 bool HEnvironment::ExpressionStackIsEmpty() const {
11871   ASSERT(length() >= first_expression_index());
11872   return length() == first_expression_index();
11873 }
11874 
11875 
SetExpressionStackAt(int index_from_top,HValue * value)11876 void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
11877   int count = index_from_top + 1;
11878   int index = values_.length() - count;
11879   ASSERT(HasExpressionAt(index));
11880   // The push count must include at least the element in question or else
11881   // the new value will not be included in this environment's history.
11882   if (push_count_ < count) {
11883     // This is the same effect as popping then re-pushing 'count' elements.
11884     pop_count_ += (count - push_count_);
11885     push_count_ = count;
11886   }
11887   values_[index] = value;
11888 }
11889 
11890 
Drop(int count)11891 void HEnvironment::Drop(int count) {
11892   for (int i = 0; i < count; ++i) {
11893     Pop();
11894   }
11895 }
11896 
11897 
Copy() const11898 HEnvironment* HEnvironment::Copy() const {
11899   return new(zone()) HEnvironment(this, zone());
11900 }
11901 
11902 
CopyWithoutHistory() const11903 HEnvironment* HEnvironment::CopyWithoutHistory() const {
11904   HEnvironment* result = Copy();
11905   result->ClearHistory();
11906   return result;
11907 }
11908 
11909 
CopyAsLoopHeader(HBasicBlock * loop_header) const11910 HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
11911   HEnvironment* new_env = Copy();
11912   for (int i = 0; i < values_.length(); ++i) {
11913     HPhi* phi = loop_header->AddNewPhi(i);
11914     phi->AddInput(values_[i]);
11915     new_env->values_[i] = phi;
11916   }
11917   new_env->ClearHistory();
11918   return new_env;
11919 }
11920 
11921 
CreateStubEnvironment(HEnvironment * outer,Handle<JSFunction> target,FrameType frame_type,int arguments) const11922 HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
11923                                                   Handle<JSFunction> target,
11924                                                   FrameType frame_type,
11925                                                   int arguments) const {
11926   HEnvironment* new_env =
11927       new(zone()) HEnvironment(outer, target, frame_type,
11928                                arguments + 1, zone());
11929   for (int i = 0; i <= arguments; ++i) {  // Include receiver.
11930     new_env->Push(ExpressionStackAt(arguments - i));
11931   }
11932   new_env->ClearHistory();
11933   return new_env;
11934 }
11935 
11936 
CopyForInlining(Handle<JSFunction> target,int arguments,FunctionLiteral * function,HConstant * undefined,InliningKind inlining_kind) const11937 HEnvironment* HEnvironment::CopyForInlining(
11938     Handle<JSFunction> target,
11939     int arguments,
11940     FunctionLiteral* function,
11941     HConstant* undefined,
11942     InliningKind inlining_kind) const {
11943   ASSERT(frame_type() == JS_FUNCTION);
11944 
11945   // Outer environment is a copy of this one without the arguments.
11946   int arity = function->scope()->num_parameters();
11947 
11948   HEnvironment* outer = Copy();
11949   outer->Drop(arguments + 1);  // Including receiver.
11950   outer->ClearHistory();
11951 
11952   if (inlining_kind == CONSTRUCT_CALL_RETURN) {
11953     // Create artificial constructor stub environment.  The receiver should
11954     // actually be the constructor function, but we pass the newly allocated
11955     // object instead, DoComputeConstructStubFrame() relies on that.
11956     outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
11957   } else if (inlining_kind == GETTER_CALL_RETURN) {
11958     // We need an additional StackFrame::INTERNAL frame for restoring the
11959     // correct context.
11960     outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
11961   } else if (inlining_kind == SETTER_CALL_RETURN) {
11962     // We need an additional StackFrame::INTERNAL frame for temporarily saving
11963     // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
11964     outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
11965   }
11966 
11967   if (arity != arguments) {
11968     // Create artificial arguments adaptation environment.
11969     outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
11970   }
11971 
11972   HEnvironment* inner =
11973       new(zone()) HEnvironment(outer, function->scope(), target, zone());
11974   // Get the argument values from the original environment.
11975   for (int i = 0; i <= arity; ++i) {  // Include receiver.
11976     HValue* push = (i <= arguments) ?
11977         ExpressionStackAt(arguments - i) : undefined;
11978     inner->SetValueAt(i, push);
11979   }
11980   inner->SetValueAt(arity + 1, context());
11981   for (int i = arity + 2; i < inner->length(); ++i) {
11982     inner->SetValueAt(i, undefined);
11983   }
11984 
11985   inner->set_ast_id(BailoutId::FunctionEntry());
11986   return inner;
11987 }
11988 
11989 
PrintTo(StringStream * stream)11990 void HEnvironment::PrintTo(StringStream* stream) {
11991   for (int i = 0; i < length(); i++) {
11992     if (i == 0) stream->Add("parameters\n");
11993     if (i == parameter_count()) stream->Add("specials\n");
11994     if (i == parameter_count() + specials_count()) stream->Add("locals\n");
11995     if (i == parameter_count() + specials_count() + local_count()) {
11996       stream->Add("expressions\n");
11997     }
11998     HValue* val = values_.at(i);
11999     stream->Add("%d: ", i);
12000     if (val != NULL) {
12001       val->PrintNameTo(stream);
12002     } else {
12003       stream->Add("NULL");
12004     }
12005     stream->Add("\n");
12006   }
12007   PrintF("\n");
12008 }
12009 
12010 
PrintToStd()12011 void HEnvironment::PrintToStd() {
12012   HeapStringAllocator string_allocator;
12013   StringStream trace(&string_allocator);
12014   PrintTo(&trace);
12015   PrintF("%s", trace.ToCString().get());
12016 }
12017 
12018 
TraceCompilation(CompilationInfo * info)12019 void HTracer::TraceCompilation(CompilationInfo* info) {
12020   Tag tag(this, "compilation");
12021   if (info->IsOptimizing()) {
12022     Handle<String> name = info->function()->debug_name();
12023     PrintStringProperty("name", name->ToCString().get());
12024     PrintIndent();
12025     trace_.Add("method \"%s:%d\"\n",
12026                name->ToCString().get(),
12027                info->optimization_id());
12028   } else {
12029     CodeStub::Major major_key = info->code_stub()->MajorKey();
12030     PrintStringProperty("name", CodeStub::MajorName(major_key, false));
12031     PrintStringProperty("method", "stub");
12032   }
12033   PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
12034 }
12035 
12036 
TraceLithium(const char * name,LChunk * chunk)12037 void HTracer::TraceLithium(const char* name, LChunk* chunk) {
12038   ASSERT(!chunk->isolate()->concurrent_recompilation_enabled());
12039   AllowHandleDereference allow_deref;
12040   AllowDeferredHandleDereference allow_deferred_deref;
12041   Trace(name, chunk->graph(), chunk);
12042 }
12043 
12044 
TraceHydrogen(const char * name,HGraph * graph)12045 void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
12046   ASSERT(!graph->isolate()->concurrent_recompilation_enabled());
12047   AllowHandleDereference allow_deref;
12048   AllowDeferredHandleDereference allow_deferred_deref;
12049   Trace(name, graph, NULL);
12050 }
12051 
12052 
Trace(const char * name,HGraph * graph,LChunk * chunk)12053 void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
12054   Tag tag(this, "cfg");
12055   PrintStringProperty("name", name);
12056   const ZoneList<HBasicBlock*>* blocks = graph->blocks();
12057   for (int i = 0; i < blocks->length(); i++) {
12058     HBasicBlock* current = blocks->at(i);
12059     Tag block_tag(this, "block");
12060     PrintBlockProperty("name", current->block_id());
12061     PrintIntProperty("from_bci", -1);
12062     PrintIntProperty("to_bci", -1);
12063 
12064     if (!current->predecessors()->is_empty()) {
12065       PrintIndent();
12066       trace_.Add("predecessors");
12067       for (int j = 0; j < current->predecessors()->length(); ++j) {
12068         trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
12069       }
12070       trace_.Add("\n");
12071     } else {
12072       PrintEmptyProperty("predecessors");
12073     }
12074 
12075     if (current->end()->SuccessorCount() == 0) {
12076       PrintEmptyProperty("successors");
12077     } else  {
12078       PrintIndent();
12079       trace_.Add("successors");
12080       for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
12081         trace_.Add(" \"B%d\"", it.Current()->block_id());
12082       }
12083       trace_.Add("\n");
12084     }
12085 
12086     PrintEmptyProperty("xhandlers");
12087 
12088     {
12089       PrintIndent();
12090       trace_.Add("flags");
12091       if (current->IsLoopSuccessorDominator()) {
12092         trace_.Add(" \"dom-loop-succ\"");
12093       }
12094       if (current->IsUnreachable()) {
12095         trace_.Add(" \"dead\"");
12096       }
12097       if (current->is_osr_entry()) {
12098         trace_.Add(" \"osr\"");
12099       }
12100       trace_.Add("\n");
12101     }
12102 
12103     if (current->dominator() != NULL) {
12104       PrintBlockProperty("dominator", current->dominator()->block_id());
12105     }
12106 
12107     PrintIntProperty("loop_depth", current->LoopNestingDepth());
12108 
12109     if (chunk != NULL) {
12110       int first_index = current->first_instruction_index();
12111       int last_index = current->last_instruction_index();
12112       PrintIntProperty(
12113           "first_lir_id",
12114           LifetimePosition::FromInstructionIndex(first_index).Value());
12115       PrintIntProperty(
12116           "last_lir_id",
12117           LifetimePosition::FromInstructionIndex(last_index).Value());
12118     }
12119 
12120     {
12121       Tag states_tag(this, "states");
12122       Tag locals_tag(this, "locals");
12123       int total = current->phis()->length();
12124       PrintIntProperty("size", current->phis()->length());
12125       PrintStringProperty("method", "None");
12126       for (int j = 0; j < total; ++j) {
12127         HPhi* phi = current->phis()->at(j);
12128         PrintIndent();
12129         trace_.Add("%d ", phi->merged_index());
12130         phi->PrintNameTo(&trace_);
12131         trace_.Add(" ");
12132         phi->PrintTo(&trace_);
12133         trace_.Add("\n");
12134       }
12135     }
12136 
12137     {
12138       Tag HIR_tag(this, "HIR");
12139       for (HInstructionIterator it(current); !it.Done(); it.Advance()) {
12140         HInstruction* instruction = it.Current();
12141         int uses = instruction->UseCount();
12142         PrintIndent();
12143         trace_.Add("0 %d ", uses);
12144         instruction->PrintNameTo(&trace_);
12145         trace_.Add(" ");
12146         instruction->PrintTo(&trace_);
12147         if (FLAG_hydrogen_track_positions &&
12148             instruction->has_position() &&
12149             instruction->position().raw() != 0) {
12150           const HSourcePosition pos = instruction->position();
12151           trace_.Add(" pos:");
12152           if (pos.inlining_id() != 0) {
12153             trace_.Add("%d_", pos.inlining_id());
12154           }
12155           trace_.Add("%d", pos.position());
12156         }
12157         trace_.Add(" <|@\n");
12158       }
12159     }
12160 
12161 
12162     if (chunk != NULL) {
12163       Tag LIR_tag(this, "LIR");
12164       int first_index = current->first_instruction_index();
12165       int last_index = current->last_instruction_index();
12166       if (first_index != -1 && last_index != -1) {
12167         const ZoneList<LInstruction*>* instructions = chunk->instructions();
12168         for (int i = first_index; i <= last_index; ++i) {
12169           LInstruction* linstr = instructions->at(i);
12170           if (linstr != NULL) {
12171             PrintIndent();
12172             trace_.Add("%d ",
12173                        LifetimePosition::FromInstructionIndex(i).Value());
12174             linstr->PrintTo(&trace_);
12175             trace_.Add(" [hir:");
12176             linstr->hydrogen_value()->PrintNameTo(&trace_);
12177             trace_.Add("]");
12178             trace_.Add(" <|@\n");
12179           }
12180         }
12181       }
12182     }
12183   }
12184 }
12185 
12186 
TraceLiveRanges(const char * name,LAllocator * allocator)12187 void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
12188   Tag tag(this, "intervals");
12189   PrintStringProperty("name", name);
12190 
12191   const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
12192   for (int i = 0; i < fixed_d->length(); ++i) {
12193     TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
12194   }
12195 
12196   const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
12197   for (int i = 0; i < fixed->length(); ++i) {
12198     TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
12199   }
12200 
12201   const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
12202   for (int i = 0; i < live_ranges->length(); ++i) {
12203     TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
12204   }
12205 }
12206 
12207 
TraceLiveRange(LiveRange * range,const char * type,Zone * zone)12208 void HTracer::TraceLiveRange(LiveRange* range, const char* type,
12209                              Zone* zone) {
12210   if (range != NULL && !range->IsEmpty()) {
12211     PrintIndent();
12212     trace_.Add("%d %s", range->id(), type);
12213     if (range->HasRegisterAssigned()) {
12214       LOperand* op = range->CreateAssignedOperand(zone);
12215       int assigned_reg = op->index();
12216       if (op->IsDoubleRegister()) {
12217         trace_.Add(" \"%s\"",
12218                    DoubleRegister::AllocationIndexToString(assigned_reg));
12219       } else {
12220         ASSERT(op->IsRegister());
12221         trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
12222       }
12223     } else if (range->IsSpilled()) {
12224       LOperand* op = range->TopLevel()->GetSpillOperand();
12225       if (op->IsDoubleStackSlot()) {
12226         trace_.Add(" \"double_stack:%d\"", op->index());
12227       } else {
12228         ASSERT(op->IsStackSlot());
12229         trace_.Add(" \"stack:%d\"", op->index());
12230       }
12231     }
12232     int parent_index = -1;
12233     if (range->IsChild()) {
12234       parent_index = range->parent()->id();
12235     } else {
12236       parent_index = range->id();
12237     }
12238     LOperand* op = range->FirstHint();
12239     int hint_index = -1;
12240     if (op != NULL && op->IsUnallocated()) {
12241       hint_index = LUnallocated::cast(op)->virtual_register();
12242     }
12243     trace_.Add(" %d %d", parent_index, hint_index);
12244     UseInterval* cur_interval = range->first_interval();
12245     while (cur_interval != NULL && range->Covers(cur_interval->start())) {
12246       trace_.Add(" [%d, %d[",
12247                  cur_interval->start().Value(),
12248                  cur_interval->end().Value());
12249       cur_interval = cur_interval->next();
12250     }
12251 
12252     UsePosition* current_pos = range->first_pos();
12253     while (current_pos != NULL) {
12254       if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
12255         trace_.Add(" %d M", current_pos->pos().Value());
12256       }
12257       current_pos = current_pos->next();
12258     }
12259 
12260     trace_.Add(" \"\"\n");
12261   }
12262 }
12263 
12264 
FlushToFile()12265 void HTracer::FlushToFile() {
12266   AppendChars(filename_.start(), trace_.ToCString().get(), trace_.length(),
12267               false);
12268   trace_.Reset();
12269 }
12270 
12271 
Initialize(CompilationInfo * info)12272 void HStatistics::Initialize(CompilationInfo* info) {
12273   if (info->shared_info().is_null()) return;
12274   source_size_ += info->shared_info()->SourceSize();
12275 }
12276 
12277 
Print()12278 void HStatistics::Print() {
12279   PrintF("Timing results:\n");
12280   TimeDelta sum;
12281   for (int i = 0; i < times_.length(); ++i) {
12282     sum += times_[i];
12283   }
12284 
12285   for (int i = 0; i < names_.length(); ++i) {
12286     PrintF("%32s", names_[i]);
12287     double ms = times_[i].InMillisecondsF();
12288     double percent = times_[i].PercentOf(sum);
12289     PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
12290 
12291     unsigned size = sizes_[i];
12292     double size_percent = static_cast<double>(size) * 100 / total_size_;
12293     PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
12294   }
12295 
12296   PrintF("----------------------------------------"
12297          "---------------------------------------\n");
12298   TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
12299   PrintF("%32s %8.3f ms / %4.1f %% \n",
12300          "Create graph",
12301          create_graph_.InMillisecondsF(),
12302          create_graph_.PercentOf(total));
12303   PrintF("%32s %8.3f ms / %4.1f %% \n",
12304          "Optimize graph",
12305          optimize_graph_.InMillisecondsF(),
12306          optimize_graph_.PercentOf(total));
12307   PrintF("%32s %8.3f ms / %4.1f %% \n",
12308          "Generate and install code",
12309          generate_code_.InMillisecondsF(),
12310          generate_code_.PercentOf(total));
12311   PrintF("----------------------------------------"
12312          "---------------------------------------\n");
12313   PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
12314          "Total",
12315          total.InMillisecondsF(),
12316          total.TimesOf(full_code_gen_));
12317 
12318   double source_size_in_kb = static_cast<double>(source_size_) / 1024;
12319   double normalized_time =  source_size_in_kb > 0
12320       ? total.InMillisecondsF() / source_size_in_kb
12321       : 0;
12322   double normalized_size_in_kb = source_size_in_kb > 0
12323       ? total_size_ / 1024 / source_size_in_kb
12324       : 0;
12325   PrintF("%32s %8.3f ms           %7.3f kB allocated\n",
12326          "Average per kB source",
12327          normalized_time, normalized_size_in_kb);
12328 }
12329 
12330 
SaveTiming(const char * name,TimeDelta time,unsigned size)12331 void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
12332   total_size_ += size;
12333   for (int i = 0; i < names_.length(); ++i) {
12334     if (strcmp(names_[i], name) == 0) {
12335       times_[i] += time;
12336       sizes_[i] += size;
12337       return;
12338     }
12339   }
12340   names_.Add(name);
12341   times_.Add(time);
12342   sizes_.Add(size);
12343 }
12344 
12345 
~HPhase()12346 HPhase::~HPhase() {
12347   if (ShouldProduceTraceOutput()) {
12348     isolate()->GetHTracer()->TraceHydrogen(name(), graph_);
12349   }
12350 
12351 #ifdef DEBUG
12352   graph_->Verify(false);  // No full verify.
12353 #endif
12354 }
12355 
12356 } }  // namespace v8::internal
12357