1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines layout properties related to datatype size/offset/alignment
11 // information. It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&. None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_IR_DATALAYOUT_H
21 #define LLVM_IR_DATALAYOUT_H
22
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/DataTypes.h"
29
30 // this needs to be outside of the namespace, to avoid conflict with llvm-c decl
31 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
32
33 namespace llvm {
34
35 class Value;
36 class Type;
37 class IntegerType;
38 class StructType;
39 class StructLayout;
40 class Triple;
41 class GlobalVariable;
42 class LLVMContext;
43 template<typename T>
44 class ArrayRef;
45
46 /// Enum used to categorize the alignment types stored by LayoutAlignElem
47 enum AlignTypeEnum {
48 INVALID_ALIGN = 0, ///< An invalid alignment
49 INTEGER_ALIGN = 'i', ///< Integer type alignment
50 VECTOR_ALIGN = 'v', ///< Vector type alignment
51 FLOAT_ALIGN = 'f', ///< Floating point type alignment
52 AGGREGATE_ALIGN = 'a' ///< Aggregate alignment
53 };
54
55 /// Layout alignment element.
56 ///
57 /// Stores the alignment data associated with a given alignment type (integer,
58 /// vector, float) and type bit width.
59 ///
60 /// @note The unusual order of elements in the structure attempts to reduce
61 /// padding and make the structure slightly more cache friendly.
62 struct LayoutAlignElem {
63 unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
64 unsigned TypeBitWidth : 24; ///< Type bit width
65 unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
66 unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
67
68 /// Initializer
69 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
70 unsigned pref_align, uint32_t bit_width);
71 /// Equality predicate
72 bool operator==(const LayoutAlignElem &rhs) const;
73 };
74
75 /// Layout pointer alignment element.
76 ///
77 /// Stores the alignment data associated with a given pointer and address space.
78 ///
79 /// @note The unusual order of elements in the structure attempts to reduce
80 /// padding and make the structure slightly more cache friendly.
81 struct PointerAlignElem {
82 unsigned ABIAlign; ///< ABI alignment for this type/bitw
83 unsigned PrefAlign; ///< Pref. alignment for this type/bitw
84 uint32_t TypeByteWidth; ///< Type byte width
85 uint32_t AddressSpace; ///< Address space for the pointer type
86
87 /// Initializer
88 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
89 unsigned PrefAlign, uint32_t TypeByteWidth);
90 /// Equality predicate
91 bool operator==(const PointerAlignElem &rhs) const;
92 };
93
94 /// This class holds a parsed version of the target data layout string in a
95 /// module and provides methods for querying it. The target data layout string
96 /// is specified *by the target* - a frontend generating LLVM IR is required to
97 /// generate the right target data for the target being codegen'd to.
98 class DataLayout {
99 private:
100 bool LittleEndian; ///< Defaults to false
101 unsigned StackNaturalAlign; ///< Stack natural alignment
102
103 enum ManglingModeT {
104 MM_None,
105 MM_ELF,
106 MM_MachO,
107 MM_WINCOFF,
108 MM_Mips
109 };
110 ManglingModeT ManglingMode;
111
112 SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
113
114 /// Alignments - Where the primitive type alignment data is stored.
115 ///
116 /// @sa reset().
117 /// @note Could support multiple size pointer alignments, e.g., 32-bit
118 /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
119 /// we don't.
120 SmallVector<LayoutAlignElem, 16> Alignments;
121 typedef SmallVector<PointerAlignElem, 8> PointersTy;
122 PointersTy Pointers;
123
124 PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)125 findPointerLowerBound(uint32_t AddressSpace) const {
126 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
127 }
128
129 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
130
131 /// InvalidAlignmentElem - This member is a signal that a requested alignment
132 /// type and bit width were not found in the SmallVector.
133 static const LayoutAlignElem InvalidAlignmentElem;
134
135 /// InvalidPointerElem - This member is a signal that a requested pointer
136 /// type and bit width were not found in the DenseSet.
137 static const PointerAlignElem InvalidPointerElem;
138
139 // The StructType -> StructLayout map.
140 mutable void *LayoutMap;
141
142 //! Set/initialize target alignments
143 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
144 unsigned pref_align, uint32_t bit_width);
145 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
146 bool ABIAlign, Type *Ty) const;
147
148 //! Set/initialize pointer alignments
149 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
150 unsigned PrefAlign, uint32_t TypeByteWidth);
151
152 //! Internal helper method that returns requested alignment for type.
153 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
154
155 /// Valid alignment predicate.
156 ///
157 /// Predicate that tests a LayoutAlignElem reference returned by get() against
158 /// InvalidAlignmentElem.
validAlignment(const LayoutAlignElem & align)159 bool validAlignment(const LayoutAlignElem &align) const {
160 return &align != &InvalidAlignmentElem;
161 }
162
163 /// Valid pointer predicate.
164 ///
165 /// Predicate that tests a PointerAlignElem reference returned by get() against
166 /// InvalidPointerElem.
validPointer(const PointerAlignElem & align)167 bool validPointer(const PointerAlignElem &align) const {
168 return &align != &InvalidPointerElem;
169 }
170
171 /// Parses a target data specification string. Assert if the string is
172 /// malformed.
173 void parseSpecifier(StringRef LayoutDescription);
174
175 // Free all internal data structures.
176 void clear();
177
178 public:
179 /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)180 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
181 reset(LayoutDescription);
182 }
183
184 /// Initialize target data from properties stored in the module.
185 explicit DataLayout(const Module *M);
186
DataLayout(const DataLayout & DL)187 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
188
189 DataLayout &operator=(const DataLayout &DL) {
190 clear();
191 LittleEndian = DL.isLittleEndian();
192 StackNaturalAlign = DL.StackNaturalAlign;
193 ManglingMode = DL.ManglingMode;
194 LegalIntWidths = DL.LegalIntWidths;
195 Alignments = DL.Alignments;
196 Pointers = DL.Pointers;
197 return *this;
198 }
199
200 bool operator==(const DataLayout &Other) const;
201 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
202
203 ~DataLayout(); // Not virtual, do not subclass this class
204
205 /// Parse a data layout string (with fallback to default values).
206 void reset(StringRef LayoutDescription);
207
208 /// Layout endianness...
isLittleEndian()209 bool isLittleEndian() const { return LittleEndian; }
isBigEndian()210 bool isBigEndian() const { return !LittleEndian; }
211
212 /// getStringRepresentation - Return the string representation of the
213 /// DataLayout. This representation is in the same format accepted by the
214 /// string constructor above.
215 std::string getStringRepresentation() const;
216
217 /// isLegalInteger - This function returns true if the specified type is
218 /// known to be a native integer type supported by the CPU. For example,
219 /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
220 /// one. This returns false if the integer width is not legal.
221 ///
222 /// The width is specified in bits.
223 ///
isLegalInteger(unsigned Width)224 bool isLegalInteger(unsigned Width) const {
225 for (unsigned LegalIntWidth : LegalIntWidths)
226 if (LegalIntWidth == Width)
227 return true;
228 return false;
229 }
230
isIllegalInteger(unsigned Width)231 bool isIllegalInteger(unsigned Width) const {
232 return !isLegalInteger(Width);
233 }
234
235 /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(unsigned Align)236 bool exceedsNaturalStackAlignment(unsigned Align) const {
237 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
238 }
239
hasMicrosoftFastStdCallMangling()240 bool hasMicrosoftFastStdCallMangling() const {
241 return ManglingMode == MM_WINCOFF;
242 }
243
hasLinkerPrivateGlobalPrefix()244 bool hasLinkerPrivateGlobalPrefix() const {
245 return ManglingMode == MM_MachO;
246 }
247
getLinkerPrivateGlobalPrefix()248 const char *getLinkerPrivateGlobalPrefix() const {
249 if (ManglingMode == MM_MachO)
250 return "l";
251 return getPrivateGlobalPrefix();
252 }
253
getGlobalPrefix()254 char getGlobalPrefix() const {
255 switch (ManglingMode) {
256 case MM_None:
257 case MM_ELF:
258 case MM_Mips:
259 return '\0';
260 case MM_MachO:
261 case MM_WINCOFF:
262 return '_';
263 }
264 llvm_unreachable("invalid mangling mode");
265 }
266
getPrivateGlobalPrefix()267 const char *getPrivateGlobalPrefix() const {
268 switch (ManglingMode) {
269 case MM_None:
270 return "";
271 case MM_ELF:
272 return ".L";
273 case MM_Mips:
274 return "$";
275 case MM_MachO:
276 case MM_WINCOFF:
277 return "L";
278 }
279 llvm_unreachable("invalid mangling mode");
280 }
281
282 static const char *getManglingComponent(const Triple &T);
283
284 /// fitsInLegalInteger - This function returns true if the specified type fits
285 /// in a native integer type supported by the CPU. For example, if the CPU
286 /// only supports i32 as a native integer type, then i27 fits in a legal
287 /// integer type but i45 does not.
fitsInLegalInteger(unsigned Width)288 bool fitsInLegalInteger(unsigned Width) const {
289 for (unsigned LegalIntWidth : LegalIntWidths)
290 if (Width <= LegalIntWidth)
291 return true;
292 return false;
293 }
294
295 /// Layout pointer alignment
296 /// FIXME: The defaults need to be removed once all of
297 /// the backends/clients are updated.
298 unsigned getPointerABIAlignment(unsigned AS = 0) const;
299
300 /// Return target's alignment for stack-based pointers
301 /// FIXME: The defaults need to be removed once all of
302 /// the backends/clients are updated.
303 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
304
305 /// Layout pointer size
306 /// FIXME: The defaults need to be removed once all of
307 /// the backends/clients are updated.
308 unsigned getPointerSize(unsigned AS = 0) const;
309
310 /// Layout pointer size, in bits
311 /// FIXME: The defaults need to be removed once all of
312 /// the backends/clients are updated.
313 unsigned getPointerSizeInBits(unsigned AS = 0) const {
314 return getPointerSize(AS) * 8;
315 }
316
317 /// Layout pointer size, in bits, based on the type. If this function is
318 /// called with a pointer type, then the type size of the pointer is returned.
319 /// If this function is called with a vector of pointers, then the type size
320 /// of the pointer is returned. This should only be called with a pointer or
321 /// vector of pointers.
322 unsigned getPointerTypeSizeInBits(Type *) const;
323
getPointerTypeSize(Type * Ty)324 unsigned getPointerTypeSize(Type *Ty) const {
325 return getPointerTypeSizeInBits(Ty) / 8;
326 }
327
328 /// Size examples:
329 ///
330 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
331 /// ---- ---------- --------------- ---------------
332 /// i1 1 8 8
333 /// i8 8 8 8
334 /// i19 19 24 32
335 /// i32 32 32 32
336 /// i100 100 104 128
337 /// i128 128 128 128
338 /// Float 32 32 32
339 /// Double 64 64 64
340 /// X86_FP80 80 80 96
341 ///
342 /// [*] The alloc size depends on the alignment, and thus on the target.
343 /// These values are for x86-32 linux.
344
345 /// getTypeSizeInBits - Return the number of bits necessary to hold the
346 /// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
347 /// The type passed must have a size (Type::isSized() must return true).
348 uint64_t getTypeSizeInBits(Type *Ty) const;
349
350 /// getTypeStoreSize - Return the maximum number of bytes that may be
351 /// overwritten by storing the specified type. For example, returns 5
352 /// for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)353 uint64_t getTypeStoreSize(Type *Ty) const {
354 return (getTypeSizeInBits(Ty)+7)/8;
355 }
356
357 /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
358 /// overwritten by storing the specified type; always a multiple of 8. For
359 /// example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)360 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
361 return 8*getTypeStoreSize(Ty);
362 }
363
364 /// getTypeAllocSize - Return the offset in bytes between successive objects
365 /// of the specified type, including alignment padding. This is the amount
366 /// that alloca reserves for this type. For example, returns 12 or 16 for
367 /// x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)368 uint64_t getTypeAllocSize(Type *Ty) const {
369 // Round up to the next alignment boundary.
370 return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
371 }
372
373 /// getTypeAllocSizeInBits - Return the offset in bits between successive
374 /// objects of the specified type, including alignment padding; always a
375 /// multiple of 8. This is the amount that alloca reserves for this type.
376 /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)377 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
378 return 8*getTypeAllocSize(Ty);
379 }
380
381 /// getABITypeAlignment - Return the minimum ABI-required alignment for the
382 /// specified type.
383 unsigned getABITypeAlignment(Type *Ty) const;
384
385 /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
386 /// an integer type of the specified bitwidth.
387 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
388
389 /// getPrefTypeAlignment - Return the preferred stack/global alignment for
390 /// the specified type. This is always at least as good as the ABI alignment.
391 unsigned getPrefTypeAlignment(Type *Ty) const;
392
393 /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
394 /// specified type, returned as log2 of the value (a shift amount).
395 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
396
397 /// getIntPtrType - Return an integer type with size at least as big as that
398 /// of a pointer in the given address space.
399 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
400
401 /// getIntPtrType - Return an integer (vector of integer) type with size at
402 /// least as big as that of a pointer of the given pointer (vector of pointer)
403 /// type.
404 Type *getIntPtrType(Type *) const;
405
406 /// getSmallestLegalIntType - Return the smallest integer type with size at
407 /// least as big as Width bits.
408 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
409
410 /// getLargestLegalIntType - Return the largest legal integer type, or null if
411 /// none are set.
getLargestLegalIntType(LLVMContext & C)412 Type *getLargestLegalIntType(LLVMContext &C) const {
413 unsigned LargestSize = getLargestLegalIntTypeSize();
414 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
415 }
416
417 /// getLargestLegalIntTypeSize - Return the size of largest legal integer
418 /// type size, or 0 if none are set.
419 unsigned getLargestLegalIntTypeSize() const;
420
421 /// getIndexedOffset - return the offset from the beginning of the type for
422 /// the specified indices. This is used to implement getelementptr.
423 uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
424
425 /// getStructLayout - Return a StructLayout object, indicating the alignment
426 /// of the struct, its size, and the offsets of its fields. Note that this
427 /// information is lazily cached.
428 const StructLayout *getStructLayout(StructType *Ty) const;
429
430 /// getPreferredAlignment - Return the preferred alignment of the specified
431 /// global. This includes an explicitly requested alignment (if the global
432 /// has one).
433 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
434
435 /// getPreferredAlignmentLog - Return the preferred alignment of the
436 /// specified global, returned in log form. This includes an explicitly
437 /// requested alignment (if the global has one).
438 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
439
440 /// RoundUpAlignment - Round the specified value up to the next alignment
441 /// boundary specified by Alignment. For example, 7 rounded up to an
442 /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
443 /// is 8 because it is already aligned.
444 template <typename UIntTy>
RoundUpAlignment(UIntTy Val,unsigned Alignment)445 static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
446 assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
447 return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
448 }
449 };
450
unwrap(LLVMTargetDataRef P)451 inline DataLayout *unwrap(LLVMTargetDataRef P) {
452 return reinterpret_cast<DataLayout*>(P);
453 }
454
wrap(const DataLayout * P)455 inline LLVMTargetDataRef wrap(const DataLayout *P) {
456 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
457 }
458
459 class DataLayoutPass : public ImmutablePass {
460 DataLayout DL;
461
462 public:
463 /// This has to exist, because this is a pass, but it should never be used.
464 DataLayoutPass();
465 ~DataLayoutPass();
466
getDataLayout()467 const DataLayout &getDataLayout() const { return DL; }
468
469 // For use with the C API. C++ code should always use the constructor that
470 // takes a module.
471 explicit DataLayoutPass(const DataLayout &DL);
472
473 explicit DataLayoutPass(const Module *M);
474
475 static char ID; // Pass identification, replacement for typeid
476 };
477
478 /// StructLayout - used to lazily calculate structure layout information for a
479 /// target machine, based on the DataLayout structure.
480 ///
481 class StructLayout {
482 uint64_t StructSize;
483 unsigned StructAlignment;
484 unsigned NumElements;
485 uint64_t MemberOffsets[1]; // variable sized array!
486 public:
487
getSizeInBytes()488 uint64_t getSizeInBytes() const {
489 return StructSize;
490 }
491
getSizeInBits()492 uint64_t getSizeInBits() const {
493 return 8*StructSize;
494 }
495
getAlignment()496 unsigned getAlignment() const {
497 return StructAlignment;
498 }
499
500 /// getElementContainingOffset - Given a valid byte offset into the structure,
501 /// return the structure index that contains it.
502 ///
503 unsigned getElementContainingOffset(uint64_t Offset) const;
504
getElementOffset(unsigned Idx)505 uint64_t getElementOffset(unsigned Idx) const {
506 assert(Idx < NumElements && "Invalid element idx!");
507 return MemberOffsets[Idx];
508 }
509
getElementOffsetInBits(unsigned Idx)510 uint64_t getElementOffsetInBits(unsigned Idx) const {
511 return getElementOffset(Idx)*8;
512 }
513
514 private:
515 friend class DataLayout; // Only DataLayout can create this class
516 StructLayout(StructType *ST, const DataLayout &DL);
517 };
518
519
520 // The implementation of this method is provided inline as it is particularly
521 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)522 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
523 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
524 switch (Ty->getTypeID()) {
525 case Type::LabelTyID:
526 return getPointerSizeInBits(0);
527 case Type::PointerTyID:
528 return getPointerSizeInBits(Ty->getPointerAddressSpace());
529 case Type::ArrayTyID: {
530 ArrayType *ATy = cast<ArrayType>(Ty);
531 return ATy->getNumElements() *
532 getTypeAllocSizeInBits(ATy->getElementType());
533 }
534 case Type::StructTyID:
535 // Get the layout annotation... which is lazily created on demand.
536 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
537 case Type::IntegerTyID:
538 return Ty->getIntegerBitWidth();
539 case Type::HalfTyID:
540 return 16;
541 case Type::FloatTyID:
542 return 32;
543 case Type::DoubleTyID:
544 case Type::X86_MMXTyID:
545 return 64;
546 case Type::PPC_FP128TyID:
547 case Type::FP128TyID:
548 return 128;
549 // In memory objects this is always aligned to a higher boundary, but
550 // only 80 bits contain information.
551 case Type::X86_FP80TyID:
552 return 80;
553 case Type::VectorTyID: {
554 VectorType *VTy = cast<VectorType>(Ty);
555 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
556 }
557 default:
558 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
559 }
560 }
561
562 } // End llvm namespace
563
564 #endif
565