1 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains functions (and a class) useful for working with scaled
11 // numbers -- in particular, pairs of integers where one represents digits and
12 // another represents a scale. The functions are helpers and live in the
13 // namespace ScaledNumbers. The class ScaledNumber is useful for modelling
14 // certain cost metrics that need simple, integer-like semantics that are easy
15 // to reason about.
16 //
17 // These might remind you of soft-floats. If you want one of those, you're in
18 // the wrong place. Look at include/llvm/ADT/APFloat.h instead.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
23 #define LLVM_SUPPORT_SCALEDNUMBER_H
24
25 #include "llvm/Support/MathExtras.h"
26
27 #include <algorithm>
28 #include <cstdint>
29 #include <limits>
30 #include <string>
31 #include <tuple>
32 #include <utility>
33
34 namespace llvm {
35 namespace ScaledNumbers {
36
37 /// \brief Maximum scale; same as APFloat for easy debug printing.
38 const int32_t MaxScale = 16383;
39
40 /// \brief Maximum scale; same as APFloat for easy debug printing.
41 const int32_t MinScale = -16382;
42
43 /// \brief Get the width of a number.
getWidth()44 template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
45
46 /// \brief Conditionally round up a scaled number.
47 ///
48 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
49 /// Always returns \c Scale unless there's an overflow, in which case it
50 /// returns \c 1+Scale.
51 ///
52 /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
53 template <class DigitsT>
getRounded(DigitsT Digits,int16_t Scale,bool ShouldRound)54 inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
55 bool ShouldRound) {
56 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
57
58 if (ShouldRound)
59 if (!++Digits)
60 // Overflow.
61 return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
62 return std::make_pair(Digits, Scale);
63 }
64
65 /// \brief Convenience helper for 32-bit rounding.
getRounded32(uint32_t Digits,int16_t Scale,bool ShouldRound)66 inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
67 bool ShouldRound) {
68 return getRounded(Digits, Scale, ShouldRound);
69 }
70
71 /// \brief Convenience helper for 64-bit rounding.
getRounded64(uint64_t Digits,int16_t Scale,bool ShouldRound)72 inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
73 bool ShouldRound) {
74 return getRounded(Digits, Scale, ShouldRound);
75 }
76
77 /// \brief Adjust a 64-bit scaled number down to the appropriate width.
78 ///
79 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
80 template <class DigitsT>
81 inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
82 int16_t Scale = 0) {
83 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
84
85 const int Width = getWidth<DigitsT>();
86 if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
87 return std::make_pair(Digits, Scale);
88
89 // Shift right and round.
90 int Shift = 64 - Width - countLeadingZeros(Digits);
91 return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
92 Digits & (UINT64_C(1) << (Shift - 1)));
93 }
94
95 /// \brief Convenience helper for adjusting to 32 bits.
96 inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
97 int16_t Scale = 0) {
98 return getAdjusted<uint32_t>(Digits, Scale);
99 }
100
101 /// \brief Convenience helper for adjusting to 64 bits.
102 inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
103 int16_t Scale = 0) {
104 return getAdjusted<uint64_t>(Digits, Scale);
105 }
106
107 /// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
108 ///
109 /// Implemented with four 64-bit integer multiplies.
110 std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
111
112 /// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
113 ///
114 /// Implemented with one 64-bit integer multiply.
115 template <class DigitsT>
getProduct(DigitsT LHS,DigitsT RHS)116 inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
117 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
118
119 if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
120 return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
121
122 return multiply64(LHS, RHS);
123 }
124
125 /// \brief Convenience helper for 32-bit product.
getProduct32(uint32_t LHS,uint32_t RHS)126 inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
127 return getProduct(LHS, RHS);
128 }
129
130 /// \brief Convenience helper for 64-bit product.
getProduct64(uint64_t LHS,uint64_t RHS)131 inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
132 return getProduct(LHS, RHS);
133 }
134
135 /// \brief Divide two 64-bit integers to create a 64-bit scaled number.
136 ///
137 /// Implemented with long division.
138 ///
139 /// \pre \c Dividend and \c Divisor are non-zero.
140 std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
141
142 /// \brief Divide two 32-bit integers to create a 32-bit scaled number.
143 ///
144 /// Implemented with one 64-bit integer divide/remainder pair.
145 ///
146 /// \pre \c Dividend and \c Divisor are non-zero.
147 std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
148
149 /// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
150 ///
151 /// Implemented with one 64-bit integer divide/remainder pair.
152 ///
153 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
154 template <class DigitsT>
getQuotient(DigitsT Dividend,DigitsT Divisor)155 std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
156 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
157 static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
158 "expected 32-bit or 64-bit digits");
159
160 // Check for zero.
161 if (!Dividend)
162 return std::make_pair(0, 0);
163 if (!Divisor)
164 return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
165
166 if (getWidth<DigitsT>() == 64)
167 return divide64(Dividend, Divisor);
168 return divide32(Dividend, Divisor);
169 }
170
171 /// \brief Convenience helper for 32-bit quotient.
getQuotient32(uint32_t Dividend,uint32_t Divisor)172 inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
173 uint32_t Divisor) {
174 return getQuotient(Dividend, Divisor);
175 }
176
177 /// \brief Convenience helper for 64-bit quotient.
getQuotient64(uint64_t Dividend,uint64_t Divisor)178 inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
179 uint64_t Divisor) {
180 return getQuotient(Dividend, Divisor);
181 }
182
183 /// \brief Implementation of getLg() and friends.
184 ///
185 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
186 /// this was rounded up (1), down (-1), or exact (0).
187 ///
188 /// Returns \c INT32_MIN when \c Digits is zero.
189 template <class DigitsT>
getLgImpl(DigitsT Digits,int16_t Scale)190 inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
191 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
192
193 if (!Digits)
194 return std::make_pair(INT32_MIN, 0);
195
196 // Get the floor of the lg of Digits.
197 int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
198
199 // Get the actual floor.
200 int32_t Floor = Scale + LocalFloor;
201 if (Digits == UINT64_C(1) << LocalFloor)
202 return std::make_pair(Floor, 0);
203
204 // Round based on the next digit.
205 assert(LocalFloor >= 1);
206 bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
207 return std::make_pair(Floor + Round, Round ? 1 : -1);
208 }
209
210 /// \brief Get the lg (rounded) of a scaled number.
211 ///
212 /// Get the lg of \c Digits*2^Scale.
213 ///
214 /// Returns \c INT32_MIN when \c Digits is zero.
getLg(DigitsT Digits,int16_t Scale)215 template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
216 return getLgImpl(Digits, Scale).first;
217 }
218
219 /// \brief Get the lg floor of a scaled number.
220 ///
221 /// Get the floor of the lg of \c Digits*2^Scale.
222 ///
223 /// Returns \c INT32_MIN when \c Digits is zero.
getLgFloor(DigitsT Digits,int16_t Scale)224 template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
225 auto Lg = getLgImpl(Digits, Scale);
226 return Lg.first - (Lg.second > 0);
227 }
228
229 /// \brief Get the lg ceiling of a scaled number.
230 ///
231 /// Get the ceiling of the lg of \c Digits*2^Scale.
232 ///
233 /// Returns \c INT32_MIN when \c Digits is zero.
getLgCeiling(DigitsT Digits,int16_t Scale)234 template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
235 auto Lg = getLgImpl(Digits, Scale);
236 return Lg.first + (Lg.second < 0);
237 }
238
239 /// \brief Implementation for comparing scaled numbers.
240 ///
241 /// Compare two 64-bit numbers with different scales. Given that the scale of
242 /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
243 /// 1, and 0 for less than, greater than, and equal, respectively.
244 ///
245 /// \pre 0 <= ScaleDiff < 64.
246 int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
247
248 /// \brief Compare two scaled numbers.
249 ///
250 /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
251 /// for greater than.
252 template <class DigitsT>
compare(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)253 int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
254 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
255
256 // Check for zero.
257 if (!LDigits)
258 return RDigits ? -1 : 0;
259 if (!RDigits)
260 return 1;
261
262 // Check for the scale. Use getLgFloor to be sure that the scale difference
263 // is always lower than 64.
264 int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
265 if (lgL != lgR)
266 return lgL < lgR ? -1 : 1;
267
268 // Compare digits.
269 if (LScale < RScale)
270 return compareImpl(LDigits, RDigits, RScale - LScale);
271
272 return -compareImpl(RDigits, LDigits, LScale - RScale);
273 }
274
275 /// \brief Match scales of two numbers.
276 ///
277 /// Given two scaled numbers, match up their scales. Change the digits and
278 /// scales in place. Shift the digits as necessary to form equivalent numbers,
279 /// losing precision only when necessary.
280 ///
281 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
282 /// \c LScale (\c RScale) is unspecified.
283 ///
284 /// As a convenience, returns the matching scale. If the output value of one
285 /// number is zero, returns the scale of the other. If both are zero, which
286 /// scale is returned is unspecifed.
287 template <class DigitsT>
matchScales(DigitsT & LDigits,int16_t & LScale,DigitsT & RDigits,int16_t & RScale)288 int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
289 int16_t &RScale) {
290 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
291
292 if (LScale < RScale)
293 // Swap arguments.
294 return matchScales(RDigits, RScale, LDigits, LScale);
295 if (!LDigits)
296 return RScale;
297 if (!RDigits || LScale == RScale)
298 return LScale;
299
300 // Now LScale > RScale. Get the difference.
301 int32_t ScaleDiff = int32_t(LScale) - RScale;
302 if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
303 // Don't bother shifting. RDigits will get zero-ed out anyway.
304 RDigits = 0;
305 return LScale;
306 }
307
308 // Shift LDigits left as much as possible, then shift RDigits right.
309 int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
310 assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
311
312 int32_t ShiftR = ScaleDiff - ShiftL;
313 if (ShiftR >= getWidth<DigitsT>()) {
314 // Don't bother shifting. RDigits will get zero-ed out anyway.
315 RDigits = 0;
316 return LScale;
317 }
318
319 LDigits <<= ShiftL;
320 RDigits >>= ShiftR;
321
322 LScale -= ShiftL;
323 RScale += ShiftR;
324 assert(LScale == RScale && "scales should match");
325 return LScale;
326 }
327
328 /// \brief Get the sum of two scaled numbers.
329 ///
330 /// Get the sum of two scaled numbers with as much precision as possible.
331 ///
332 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
333 template <class DigitsT>
getSum(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)334 std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
335 DigitsT RDigits, int16_t RScale) {
336 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
337
338 // Check inputs up front. This is only relevent if addition overflows, but
339 // testing here should catch more bugs.
340 assert(LScale < INT16_MAX && "scale too large");
341 assert(RScale < INT16_MAX && "scale too large");
342
343 // Normalize digits to match scales.
344 int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
345
346 // Compute sum.
347 DigitsT Sum = LDigits + RDigits;
348 if (Sum >= RDigits)
349 return std::make_pair(Sum, Scale);
350
351 // Adjust sum after arithmetic overflow.
352 DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
353 return std::make_pair(HighBit | Sum >> 1, Scale + 1);
354 }
355
356 /// \brief Convenience helper for 32-bit sum.
getSum32(uint32_t LDigits,int16_t LScale,uint32_t RDigits,int16_t RScale)357 inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
358 uint32_t RDigits, int16_t RScale) {
359 return getSum(LDigits, LScale, RDigits, RScale);
360 }
361
362 /// \brief Convenience helper for 64-bit sum.
getSum64(uint64_t LDigits,int16_t LScale,uint64_t RDigits,int16_t RScale)363 inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
364 uint64_t RDigits, int16_t RScale) {
365 return getSum(LDigits, LScale, RDigits, RScale);
366 }
367
368 /// \brief Get the difference of two scaled numbers.
369 ///
370 /// Get LHS minus RHS with as much precision as possible.
371 ///
372 /// Returns \c (0, 0) if the RHS is larger than the LHS.
373 template <class DigitsT>
getDifference(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)374 std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
375 DigitsT RDigits, int16_t RScale) {
376 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
377
378 // Normalize digits to match scales.
379 const DigitsT SavedRDigits = RDigits;
380 const int16_t SavedRScale = RScale;
381 matchScales(LDigits, LScale, RDigits, RScale);
382
383 // Compute difference.
384 if (LDigits <= RDigits)
385 return std::make_pair(0, 0);
386 if (RDigits || !SavedRDigits)
387 return std::make_pair(LDigits - RDigits, LScale);
388
389 // Check if RDigits just barely lost its last bit. E.g., for 32-bit:
390 //
391 // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
392 const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
393 if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
394 return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
395
396 return std::make_pair(LDigits, LScale);
397 }
398
399 /// \brief Convenience helper for 32-bit difference.
getDifference32(uint32_t LDigits,int16_t LScale,uint32_t RDigits,int16_t RScale)400 inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
401 int16_t LScale,
402 uint32_t RDigits,
403 int16_t RScale) {
404 return getDifference(LDigits, LScale, RDigits, RScale);
405 }
406
407 /// \brief Convenience helper for 64-bit difference.
getDifference64(uint64_t LDigits,int16_t LScale,uint64_t RDigits,int16_t RScale)408 inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
409 int16_t LScale,
410 uint64_t RDigits,
411 int16_t RScale) {
412 return getDifference(LDigits, LScale, RDigits, RScale);
413 }
414
415 } // end namespace ScaledNumbers
416 } // end namespace llvm
417
418 namespace llvm {
419
420 class raw_ostream;
421 class ScaledNumberBase {
422 public:
423 static const int DefaultPrecision = 10;
424
425 static void dump(uint64_t D, int16_t E, int Width);
426 static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
427 unsigned Precision);
428 static std::string toString(uint64_t D, int16_t E, int Width,
429 unsigned Precision);
countLeadingZeros32(uint32_t N)430 static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
countLeadingZeros64(uint64_t N)431 static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
getHalf(uint64_t N)432 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
433
splitSigned(int64_t N)434 static std::pair<uint64_t, bool> splitSigned(int64_t N) {
435 if (N >= 0)
436 return std::make_pair(N, false);
437 uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
438 return std::make_pair(Unsigned, true);
439 }
joinSigned(uint64_t U,bool IsNeg)440 static int64_t joinSigned(uint64_t U, bool IsNeg) {
441 if (U > uint64_t(INT64_MAX))
442 return IsNeg ? INT64_MIN : INT64_MAX;
443 return IsNeg ? -int64_t(U) : int64_t(U);
444 }
445 };
446
447 /// \brief Simple representation of a scaled number.
448 ///
449 /// ScaledNumber is a number represented by digits and a scale. It uses simple
450 /// saturation arithmetic and every operation is well-defined for every value.
451 /// It's somewhat similar in behaviour to a soft-float, but is *not* a
452 /// replacement for one. If you're doing numerics, look at \a APFloat instead.
453 /// Nevertheless, we've found these semantics useful for modelling certain cost
454 /// metrics.
455 ///
456 /// The number is split into a signed scale and unsigned digits. The number
457 /// represented is \c getDigits()*2^getScale(). In this way, the digits are
458 /// much like the mantissa in the x87 long double, but there is no canonical
459 /// form so the same number can be represented by many bit representations.
460 ///
461 /// ScaledNumber is templated on the underlying integer type for digits, which
462 /// is expected to be unsigned.
463 ///
464 /// Unlike APFloat, ScaledNumber does not model architecture floating point
465 /// behaviour -- while this might make it a little faster and easier to reason
466 /// about, it certainly makes it more dangerous for general numerics.
467 ///
468 /// ScaledNumber is totally ordered. However, there is no canonical form, so
469 /// there are multiple representations of most scalars. E.g.:
470 ///
471 /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
472 /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
473 /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
474 ///
475 /// ScaledNumber implements most arithmetic operations. Precision is kept
476 /// where possible. Uses simple saturation arithmetic, so that operations
477 /// saturate to 0.0 or getLargest() rather than under or overflowing. It has
478 /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
479 /// Any other division by 0.0 is defined to be getLargest().
480 ///
481 /// As a convenience for modifying the exponent, left and right shifting are
482 /// both implemented, and both interpret negative shifts as positive shifts in
483 /// the opposite direction.
484 ///
485 /// Scales are limited to the range accepted by x87 long double. This makes
486 /// it trivial to add functionality to convert to APFloat (this is already
487 /// relied on for the implementation of printing).
488 ///
489 /// Possible (and conflicting) future directions:
490 ///
491 /// 1. Turn this into a wrapper around \a APFloat.
492 /// 2. Share the algorithm implementations with \a APFloat.
493 /// 3. Allow \a ScaledNumber to represent a signed number.
494 template <class DigitsT> class ScaledNumber : ScaledNumberBase {
495 public:
496 static_assert(!std::numeric_limits<DigitsT>::is_signed,
497 "only unsigned floats supported");
498
499 typedef DigitsT DigitsType;
500
501 private:
502 typedef std::numeric_limits<DigitsType> DigitsLimits;
503
504 static const int Width = sizeof(DigitsType) * 8;
505 static_assert(Width <= 64, "invalid integer width for digits");
506
507 private:
508 DigitsType Digits;
509 int16_t Scale;
510
511 public:
ScaledNumber()512 ScaledNumber() : Digits(0), Scale(0) {}
513
ScaledNumber(DigitsType Digits,int16_t Scale)514 ScaledNumber(DigitsType Digits, int16_t Scale)
515 : Digits(Digits), Scale(Scale) {}
516
517 private:
ScaledNumber(const std::pair<uint64_t,int16_t> & X)518 ScaledNumber(const std::pair<uint64_t, int16_t> &X)
519 : Digits(X.first), Scale(X.second) {}
520
521 public:
getZero()522 static ScaledNumber getZero() { return ScaledNumber(0, 0); }
getOne()523 static ScaledNumber getOne() { return ScaledNumber(1, 0); }
getLargest()524 static ScaledNumber getLargest() {
525 return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
526 }
get(uint64_t N)527 static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
getInverse(uint64_t N)528 static ScaledNumber getInverse(uint64_t N) {
529 return get(N).invert();
530 }
getFraction(DigitsType N,DigitsType D)531 static ScaledNumber getFraction(DigitsType N, DigitsType D) {
532 return getQuotient(N, D);
533 }
534
getScale()535 int16_t getScale() const { return Scale; }
getDigits()536 DigitsType getDigits() const { return Digits; }
537
538 /// \brief Convert to the given integer type.
539 ///
540 /// Convert to \c IntT using simple saturating arithmetic, truncating if
541 /// necessary.
542 template <class IntT> IntT toInt() const;
543
isZero()544 bool isZero() const { return !Digits; }
isLargest()545 bool isLargest() const { return *this == getLargest(); }
isOne()546 bool isOne() const {
547 if (Scale > 0 || Scale <= -Width)
548 return false;
549 return Digits == DigitsType(1) << -Scale;
550 }
551
552 /// \brief The log base 2, rounded.
553 ///
554 /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
lg()555 int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
556
557 /// \brief The log base 2, rounded towards INT32_MIN.
558 ///
559 /// Get the lg floor. lg 0 is defined to be INT32_MIN.
lgFloor()560 int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
561
562 /// \brief The log base 2, rounded towards INT32_MAX.
563 ///
564 /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
lgCeiling()565 int32_t lgCeiling() const {
566 return ScaledNumbers::getLgCeiling(Digits, Scale);
567 }
568
569 bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
570 bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
571 bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
572 bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
573 bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
574 bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
575
576 bool operator!() const { return isZero(); }
577
578 /// \brief Convert to a decimal representation in a string.
579 ///
580 /// Convert to a string. Uses scientific notation for very large/small
581 /// numbers. Scientific notation is used roughly for numbers outside of the
582 /// range 2^-64 through 2^64.
583 ///
584 /// \c Precision indicates the number of decimal digits of precision to use;
585 /// 0 requests the maximum available.
586 ///
587 /// As a special case to make debugging easier, if the number is small enough
588 /// to convert without scientific notation and has more than \c Precision
589 /// digits before the decimal place, it's printed accurately to the first
590 /// digit past zero. E.g., assuming 10 digits of precision:
591 ///
592 /// 98765432198.7654... => 98765432198.8
593 /// 8765432198.7654... => 8765432198.8
594 /// 765432198.7654... => 765432198.8
595 /// 65432198.7654... => 65432198.77
596 /// 5432198.7654... => 5432198.765
597 std::string toString(unsigned Precision = DefaultPrecision) {
598 return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
599 }
600
601 /// \brief Print a decimal representation.
602 ///
603 /// Print a string. See toString for documentation.
604 raw_ostream &print(raw_ostream &OS,
605 unsigned Precision = DefaultPrecision) const {
606 return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
607 }
dump()608 void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
609
610 ScaledNumber &operator+=(const ScaledNumber &X) {
611 std::tie(Digits, Scale) =
612 ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
613 // Check for exponent past MaxScale.
614 if (Scale > ScaledNumbers::MaxScale)
615 *this = getLargest();
616 return *this;
617 }
618 ScaledNumber &operator-=(const ScaledNumber &X) {
619 std::tie(Digits, Scale) =
620 ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
621 return *this;
622 }
623 ScaledNumber &operator*=(const ScaledNumber &X);
624 ScaledNumber &operator/=(const ScaledNumber &X);
625 ScaledNumber &operator<<=(int16_t Shift) {
626 shiftLeft(Shift);
627 return *this;
628 }
629 ScaledNumber &operator>>=(int16_t Shift) {
630 shiftRight(Shift);
631 return *this;
632 }
633
634 private:
635 void shiftLeft(int32_t Shift);
636 void shiftRight(int32_t Shift);
637
638 /// \brief Adjust two floats to have matching exponents.
639 ///
640 /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
641 /// by value. Does nothing if \a isZero() for either.
642 ///
643 /// The value that compares smaller will lose precision, and possibly become
644 /// \a isZero().
matchScales(ScaledNumber X)645 ScaledNumber matchScales(ScaledNumber X) {
646 ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
647 return X;
648 }
649
650 public:
651 /// \brief Scale a large number accurately.
652 ///
653 /// Scale N (multiply it by this). Uses full precision multiplication, even
654 /// if Width is smaller than 64, so information is not lost.
655 uint64_t scale(uint64_t N) const;
scaleByInverse(uint64_t N)656 uint64_t scaleByInverse(uint64_t N) const {
657 // TODO: implement directly, rather than relying on inverse. Inverse is
658 // expensive.
659 return inverse().scale(N);
660 }
scale(int64_t N)661 int64_t scale(int64_t N) const {
662 std::pair<uint64_t, bool> Unsigned = splitSigned(N);
663 return joinSigned(scale(Unsigned.first), Unsigned.second);
664 }
scaleByInverse(int64_t N)665 int64_t scaleByInverse(int64_t N) const {
666 std::pair<uint64_t, bool> Unsigned = splitSigned(N);
667 return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
668 }
669
compare(const ScaledNumber & X)670 int compare(const ScaledNumber &X) const {
671 return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
672 }
compareTo(uint64_t N)673 int compareTo(uint64_t N) const {
674 ScaledNumber Scaled = get(N);
675 int Compare = compare(Scaled);
676 if (Width == 64 || Compare != 0)
677 return Compare;
678
679 // Check for precision loss. We know *this == RoundTrip.
680 uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
681 return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
682 }
compareTo(int64_t N)683 int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
684
invert()685 ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
inverse()686 ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
687
688 private:
getProduct(DigitsType LHS,DigitsType RHS)689 static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
690 return ScaledNumbers::getProduct(LHS, RHS);
691 }
getQuotient(DigitsType Dividend,DigitsType Divisor)692 static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
693 return ScaledNumbers::getQuotient(Dividend, Divisor);
694 }
695
countLeadingZerosWidth(DigitsType Digits)696 static int countLeadingZerosWidth(DigitsType Digits) {
697 if (Width == 64)
698 return countLeadingZeros64(Digits);
699 if (Width == 32)
700 return countLeadingZeros32(Digits);
701 return countLeadingZeros32(Digits) + Width - 32;
702 }
703
704 /// \brief Adjust a number to width, rounding up if necessary.
705 ///
706 /// Should only be called for \c Shift close to zero.
707 ///
708 /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
adjustToWidth(uint64_t N,int32_t Shift)709 static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
710 assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
711 assert(Shift <= ScaledNumbers::MaxScale - 64 &&
712 "Shift should be close to 0");
713 auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
714 return Adjusted;
715 }
716
getRounded(ScaledNumber P,bool Round)717 static ScaledNumber getRounded(ScaledNumber P, bool Round) {
718 // Saturate.
719 if (P.isLargest())
720 return P;
721
722 return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
723 }
724 };
725
726 #define SCALED_NUMBER_BOP(op, base) \
727 template <class DigitsT> \
728 ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
729 const ScaledNumber<DigitsT> &R) { \
730 return ScaledNumber<DigitsT>(L) base R; \
731 }
732 SCALED_NUMBER_BOP(+, += )
733 SCALED_NUMBER_BOP(-, -= )
734 SCALED_NUMBER_BOP(*, *= )
735 SCALED_NUMBER_BOP(/, /= )
736 SCALED_NUMBER_BOP(<<, <<= )
737 SCALED_NUMBER_BOP(>>, >>= )
738 #undef SCALED_NUMBER_BOP
739
740 template <class DigitsT>
741 raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
742 return X.print(OS, 10);
743 }
744
745 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
746 template <class DigitsT> \
747 bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
748 return L.compareTo(T2(R)) op 0; \
749 } \
750 template <class DigitsT> \
751 bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
752 return 0 op R.compareTo(T2(L)); \
753 }
754 #define SCALED_NUMBER_COMPARE_TO(op) \
755 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
756 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
757 SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
758 SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
759 SCALED_NUMBER_COMPARE_TO(< )
760 SCALED_NUMBER_COMPARE_TO(> )
761 SCALED_NUMBER_COMPARE_TO(== )
762 SCALED_NUMBER_COMPARE_TO(!= )
763 SCALED_NUMBER_COMPARE_TO(<= )
764 SCALED_NUMBER_COMPARE_TO(>= )
765 #undef SCALED_NUMBER_COMPARE_TO
766 #undef SCALED_NUMBER_COMPARE_TO_TYPE
767
768 template <class DigitsT>
scale(uint64_t N)769 uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
770 if (Width == 64 || N <= DigitsLimits::max())
771 return (get(N) * *this).template toInt<uint64_t>();
772
773 // Defer to the 64-bit version.
774 return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
775 }
776
777 template <class DigitsT>
778 template <class IntT>
toInt()779 IntT ScaledNumber<DigitsT>::toInt() const {
780 typedef std::numeric_limits<IntT> Limits;
781 if (*this < 1)
782 return 0;
783 if (*this >= Limits::max())
784 return Limits::max();
785
786 IntT N = Digits;
787 if (Scale > 0) {
788 assert(size_t(Scale) < sizeof(IntT) * 8);
789 return N << Scale;
790 }
791 if (Scale < 0) {
792 assert(size_t(-Scale) < sizeof(IntT) * 8);
793 return N >> -Scale;
794 }
795 return N;
796 }
797
798 template <class DigitsT>
799 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
800 operator*=(const ScaledNumber &X) {
801 if (isZero())
802 return *this;
803 if (X.isZero())
804 return *this = X;
805
806 // Save the exponents.
807 int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
808
809 // Get the raw product.
810 *this = getProduct(Digits, X.Digits);
811
812 // Combine with exponents.
813 return *this <<= Scales;
814 }
815 template <class DigitsT>
816 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
817 operator/=(const ScaledNumber &X) {
818 if (isZero())
819 return *this;
820 if (X.isZero())
821 return *this = getLargest();
822
823 // Save the exponents.
824 int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
825
826 // Get the raw quotient.
827 *this = getQuotient(Digits, X.Digits);
828
829 // Combine with exponents.
830 return *this <<= Scales;
831 }
shiftLeft(int32_t Shift)832 template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
833 if (!Shift || isZero())
834 return;
835 assert(Shift != INT32_MIN);
836 if (Shift < 0) {
837 shiftRight(-Shift);
838 return;
839 }
840
841 // Shift as much as we can in the exponent.
842 int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
843 Scale += ScaleShift;
844 if (ScaleShift == Shift)
845 return;
846
847 // Check this late, since it's rare.
848 if (isLargest())
849 return;
850
851 // Shift the digits themselves.
852 Shift -= ScaleShift;
853 if (Shift > countLeadingZerosWidth(Digits)) {
854 // Saturate.
855 *this = getLargest();
856 return;
857 }
858
859 Digits <<= Shift;
860 return;
861 }
862
shiftRight(int32_t Shift)863 template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
864 if (!Shift || isZero())
865 return;
866 assert(Shift != INT32_MIN);
867 if (Shift < 0) {
868 shiftLeft(-Shift);
869 return;
870 }
871
872 // Shift as much as we can in the exponent.
873 int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
874 Scale -= ScaleShift;
875 if (ScaleShift == Shift)
876 return;
877
878 // Shift the digits themselves.
879 Shift -= ScaleShift;
880 if (Shift >= Width) {
881 // Saturate.
882 *this = getZero();
883 return;
884 }
885
886 Digits >>= Shift;
887 return;
888 }
889
890 template <typename T> struct isPodLike;
891 template <typename T> struct isPodLike<ScaledNumber<T>> {
892 static const bool value = true;
893 };
894
895 } // end namespace llvm
896
897 #endif
898