1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/blockfile/index_table_v3.h"
6
7 #include <algorithm>
8 #include <set>
9 #include <utility>
10
11 #include "base/bits.h"
12 #include "net/base/io_buffer.h"
13 #include "net/base/net_errors.h"
14 #include "net/disk_cache/disk_cache.h"
15
16 using base::Time;
17 using base::TimeDelta;
18 using disk_cache::CellInfo;
19 using disk_cache::CellList;
20 using disk_cache::IndexCell;
21 using disk_cache::IndexIterator;
22
23 namespace {
24
25 // The following constants describe the bitfields of an IndexCell so they are
26 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h.
27 const uint64 kCellLocationMask = (1 << 22) - 1;
28 const uint64 kCellIdMask = (1 << 18) - 1;
29 const uint64 kCellTimestampMask = (1 << 20) - 1;
30 const uint64 kCellReuseMask = (1 << 4) - 1;
31 const uint8 kCellStateMask = (1 << 3) - 1;
32 const uint8 kCellGroupMask = (1 << 3) - 1;
33 const uint8 kCellSumMask = (1 << 2) - 1;
34
35 const uint64 kCellSmallTableLocationMask = (1 << 16) - 1;
36 const uint64 kCellSmallTableIdMask = (1 << 24) - 1;
37
38 const int kCellIdOffset = 22;
39 const int kCellTimestampOffset = 40;
40 const int kCellReuseOffset = 60;
41 const int kCellGroupOffset = 3;
42 const int kCellSumOffset = 6;
43
44 const int kCellSmallTableIdOffset = 16;
45
46 // The number of bits that a hash has to be shifted to grab the part that
47 // defines the cell id.
48 const int kHashShift = 14;
49 const int kSmallTableHashShift = 8;
50
51 // Unfortunately we have to break the abstaction a little here: the file number
52 // where entries are stored is outside of the control of this code, and it is
53 // usually part of the stored address. However, for small tables we only store
54 // 16 bits of the address so the file number is never stored on a cell. We have
55 // to infere the file number from the type of entry (normal vs evicted), and
56 // the knowledge that given that the table will not keep more than 64k entries,
57 // a single file of each type is enough.
58 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1;
59 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1;
60 const int kMaxLocation = 1 << 22;
61 const int kMinFileNumber = 1 << 16;
62
GetCellLocation(const IndexCell & cell)63 uint32 GetCellLocation(const IndexCell& cell) {
64 return cell.first_part & kCellLocationMask;
65 }
66
GetCellSmallTableLocation(const IndexCell & cell)67 uint32 GetCellSmallTableLocation(const IndexCell& cell) {
68 return cell.first_part & kCellSmallTableLocationMask;
69 }
70
GetCellId(const IndexCell & cell)71 uint32 GetCellId(const IndexCell& cell) {
72 return (cell.first_part >> kCellIdOffset) & kCellIdMask;
73 }
74
GetCellSmallTableId(const IndexCell & cell)75 uint32 GetCellSmallTableId(const IndexCell& cell) {
76 return (cell.first_part >> kCellSmallTableIdOffset) &
77 kCellSmallTableIdMask;
78 }
79
GetCellTimestamp(const IndexCell & cell)80 int GetCellTimestamp(const IndexCell& cell) {
81 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask;
82 }
83
GetCellReuse(const IndexCell & cell)84 int GetCellReuse(const IndexCell& cell) {
85 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask;
86 }
87
GetCellState(const IndexCell & cell)88 int GetCellState(const IndexCell& cell) {
89 return cell.last_part & kCellStateMask;
90 }
91
GetCellGroup(const IndexCell & cell)92 int GetCellGroup(const IndexCell& cell) {
93 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask;
94 }
95
GetCellSum(const IndexCell & cell)96 int GetCellSum(const IndexCell& cell) {
97 return (cell.last_part >> kCellSumOffset) & kCellSumMask;
98 }
99
SetCellLocation(IndexCell * cell,uint32 address)100 void SetCellLocation(IndexCell* cell, uint32 address) {
101 DCHECK_LE(address, static_cast<uint32>(kCellLocationMask));
102 cell->first_part &= ~kCellLocationMask;
103 cell->first_part |= address;
104 }
105
SetCellSmallTableLocation(IndexCell * cell,uint32 address)106 void SetCellSmallTableLocation(IndexCell* cell, uint32 address) {
107 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableLocationMask));
108 cell->first_part &= ~kCellSmallTableLocationMask;
109 cell->first_part |= address;
110 }
111
SetCellId(IndexCell * cell,uint32 hash)112 void SetCellId(IndexCell* cell, uint32 hash) {
113 DCHECK_LE(hash, static_cast<uint32>(kCellIdMask));
114 cell->first_part &= ~(kCellIdMask << kCellIdOffset);
115 cell->first_part |= static_cast<int64>(hash) << kCellIdOffset;
116 }
117
SetCellSmallTableId(IndexCell * cell,uint32 hash)118 void SetCellSmallTableId(IndexCell* cell, uint32 hash) {
119 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableIdMask));
120 cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset);
121 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableIdOffset;
122 }
123
SetCellTimestamp(IndexCell * cell,int timestamp)124 void SetCellTimestamp(IndexCell* cell, int timestamp) {
125 DCHECK_LT(timestamp, 1 << 20);
126 DCHECK_GE(timestamp, 0);
127 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset);
128 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset;
129 }
130
SetCellReuse(IndexCell * cell,int count)131 void SetCellReuse(IndexCell* cell, int count) {
132 DCHECK_LT(count, 16);
133 DCHECK_GE(count, 0);
134 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset);
135 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset;
136 }
137
SetCellState(IndexCell * cell,disk_cache::EntryState state)138 void SetCellState(IndexCell* cell, disk_cache::EntryState state) {
139 cell->last_part &= ~kCellStateMask;
140 cell->last_part |= state;
141 }
142
SetCellGroup(IndexCell * cell,disk_cache::EntryGroup group)143 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) {
144 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset);
145 cell->last_part |= group << kCellGroupOffset;
146 }
147
SetCellSum(IndexCell * cell,int sum)148 void SetCellSum(IndexCell* cell, int sum) {
149 DCHECK_LT(sum, 4);
150 DCHECK_GE(sum, 0);
151 cell->last_part &= ~(kCellSumMask << kCellSumOffset);
152 cell->last_part |= sum << kCellSumOffset;
153 }
154
155 // This is a very particular way to calculate the sum, so it will not match if
156 // compared a gainst a pure 2 bit, modulo 2 sum.
CalculateCellSum(const IndexCell & cell)157 int CalculateCellSum(const IndexCell& cell) {
158 uint32* words = bit_cast<uint32*>(&cell);
159 uint8* bytes = bit_cast<uint8*>(&cell);
160 uint32 result = words[0] + words[1];
161 result += result >> 16;
162 result += (result >> 8) + (bytes[8] & 0x3f);
163 result += result >> 4;
164 result += result >> 2;
165 return result & 3;
166 }
167
SanityCheck(const IndexCell & cell)168 bool SanityCheck(const IndexCell& cell) {
169 if (GetCellSum(cell) != CalculateCellSum(cell))
170 return false;
171
172 if (GetCellState(cell) > disk_cache::ENTRY_USED ||
173 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED ||
174 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) {
175 return false;
176 }
177
178 return true;
179 }
180
FileNumberFromLocation(int location)181 int FileNumberFromLocation(int location) {
182 return location / kMinFileNumber;
183 }
184
StartBlockFromLocation(int location)185 int StartBlockFromLocation(int location) {
186 return location % kMinFileNumber;
187 }
188
IsValidAddress(disk_cache::Addr address)189 bool IsValidAddress(disk_cache::Addr address) {
190 if (!address.is_initialized() ||
191 (address.file_type() != disk_cache::BLOCK_EVICTED &&
192 address.file_type() != disk_cache::BLOCK_ENTRIES)) {
193 return false;
194 }
195
196 return address.FileNumber() < FileNumberFromLocation(kMaxLocation);
197 }
198
IsNormalState(const IndexCell & cell)199 bool IsNormalState(const IndexCell& cell) {
200 disk_cache::EntryState state =
201 static_cast<disk_cache::EntryState>(GetCellState(cell));
202 DCHECK_NE(state, disk_cache::ENTRY_FREE);
203 return state != disk_cache::ENTRY_DELETED &&
204 state != disk_cache::ENTRY_FIXING;
205 }
206
GetNextBucket(int min_bucket_num,int max_bucket_num,disk_cache::IndexBucket * table,disk_cache::IndexBucket ** bucket)207 inline int GetNextBucket(int min_bucket_num, int max_bucket_num,
208 disk_cache::IndexBucket* table,
209 disk_cache::IndexBucket** bucket) {
210 if (!(*bucket)->next)
211 return 0;
212
213 int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket;
214 if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) {
215 // The next bucket must fall within the extra table. Note that this is not
216 // an uncommon path as growing the table may not cleanup the link from the
217 // main table to the extra table, and that cleanup is performed here when
218 // accessing that bucket for the first time. This behavior has to change if
219 // the tables are ever shrinked.
220 (*bucket)->next = 0;
221 return 0;
222 }
223 *bucket = &table[bucket_num - min_bucket_num];
224 return bucket_num;
225 }
226
227 // Updates the |iterator| with the current |cell|. This cell may cause all
228 // previous cells to be deleted (when a new target timestamp is found), the cell
229 // may be added to the list (if it matches the target timestamp), or may it be
230 // ignored.
UpdateIterator(const disk_cache::EntryCell & cell,int limit_time,IndexIterator * iterator)231 void UpdateIterator(const disk_cache::EntryCell& cell,
232 int limit_time,
233 IndexIterator* iterator) {
234 int time = cell.GetTimestamp();
235 // Look for not interesting times.
236 if (iterator->forward && time <= limit_time)
237 return;
238 if (!iterator->forward && time >= limit_time)
239 return;
240
241 if ((iterator->forward && time < iterator->timestamp) ||
242 (!iterator->forward && time > iterator->timestamp)) {
243 // This timestamp is better than the one we had.
244 iterator->timestamp = time;
245 iterator->cells.clear();
246 }
247 if (time == iterator->timestamp) {
248 CellInfo cell_info = { cell.hash(), cell.GetAddress() };
249 iterator->cells.push_back(cell_info);
250 }
251 }
252
InitIterator(IndexIterator * iterator)253 void InitIterator(IndexIterator* iterator) {
254 iterator->cells.clear();
255 iterator->timestamp = iterator->forward ? kint32max : 0;
256 }
257
258 } // namespace
259
260 namespace disk_cache {
261
~EntryCell()262 EntryCell::~EntryCell() {
263 }
264
IsValid() const265 bool EntryCell::IsValid() const {
266 return GetCellLocation(cell_) != 0;
267 }
268
269 // This code has to map the cell address (up to 22 bits) to a general cache Addr
270 // (up to 24 bits of general addressing). It also set the implied file_number
271 // in the case of small tables. See also the comment by the definition of
272 // kEntriesFile.
GetAddress() const273 Addr EntryCell::GetAddress() const {
274 uint32 location = GetLocation();
275 int file_number = FileNumberFromLocation(location);
276 if (small_table_) {
277 DCHECK_EQ(0, file_number);
278 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile :
279 kEntriesFile;
280 }
281 DCHECK_NE(0, file_number);
282 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED :
283 BLOCK_ENTRIES;
284 return Addr(file_type, 1, file_number, StartBlockFromLocation(location));
285 }
286
GetState() const287 EntryState EntryCell::GetState() const {
288 return static_cast<EntryState>(GetCellState(cell_));
289 }
290
GetGroup() const291 EntryGroup EntryCell::GetGroup() const {
292 return static_cast<EntryGroup>(GetCellGroup(cell_));
293 }
294
GetReuse() const295 int EntryCell::GetReuse() const {
296 return GetCellReuse(cell_);
297 }
298
GetTimestamp() const299 int EntryCell::GetTimestamp() const {
300 return GetCellTimestamp(cell_);
301 }
302
SetState(EntryState state)303 void EntryCell::SetState(EntryState state) {
304 SetCellState(&cell_, state);
305 }
306
SetGroup(EntryGroup group)307 void EntryCell::SetGroup(EntryGroup group) {
308 SetCellGroup(&cell_, group);
309 }
310
SetReuse(int count)311 void EntryCell::SetReuse(int count) {
312 SetCellReuse(&cell_, count);
313 }
314
SetTimestamp(int timestamp)315 void EntryCell::SetTimestamp(int timestamp) {
316 SetCellTimestamp(&cell_, timestamp);
317 }
318
319 // Static.
GetEntryCellForTest(int32 cell_num,uint32 hash,Addr address,IndexCell * cell,bool small_table)320 EntryCell EntryCell::GetEntryCellForTest(int32 cell_num,
321 uint32 hash,
322 Addr address,
323 IndexCell* cell,
324 bool small_table) {
325 if (cell) {
326 EntryCell entry_cell(cell_num, hash, *cell, small_table);
327 return entry_cell;
328 }
329
330 return EntryCell(cell_num, hash, address, small_table);
331 }
332
SerializaForTest(IndexCell * destination)333 void EntryCell::SerializaForTest(IndexCell* destination) {
334 FixSum();
335 Serialize(destination);
336 }
337
EntryCell()338 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) {
339 cell_.Clear();
340 }
341
EntryCell(int32 cell_num,uint32 hash,Addr address,bool small_table)342 EntryCell::EntryCell(int32 cell_num,
343 uint32 hash,
344 Addr address,
345 bool small_table)
346 : cell_num_(cell_num),
347 hash_(hash),
348 small_table_(small_table) {
349 DCHECK(IsValidAddress(address) || !address.value());
350
351 cell_.Clear();
352 SetCellState(&cell_, ENTRY_NEW);
353 SetCellGroup(&cell_, ENTRY_NO_USE);
354 if (small_table) {
355 DCHECK(address.FileNumber() == kEntriesFile ||
356 address.FileNumber() == kEvictedEntriesFile);
357 SetCellSmallTableLocation(&cell_, address.start_block());
358 SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift);
359 } else {
360 uint32 location = address.FileNumber() << 16 | address.start_block();
361 SetCellLocation(&cell_, location);
362 SetCellId(&cell_, hash >> kHashShift);
363 }
364 }
365
EntryCell(int32 cell_num,uint32 hash,const IndexCell & cell,bool small_table)366 EntryCell::EntryCell(int32 cell_num,
367 uint32 hash,
368 const IndexCell& cell,
369 bool small_table)
370 : cell_num_(cell_num),
371 hash_(hash),
372 cell_(cell),
373 small_table_(small_table) {
374 }
375
FixSum()376 void EntryCell::FixSum() {
377 SetCellSum(&cell_, CalculateCellSum(cell_));
378 }
379
GetLocation() const380 uint32 EntryCell::GetLocation() const {
381 if (small_table_)
382 return GetCellSmallTableLocation(cell_);
383
384 return GetCellLocation(cell_);
385 }
386
RecomputeHash()387 uint32 EntryCell::RecomputeHash() {
388 if (small_table_) {
389 hash_ &= (1 << kSmallTableHashShift) - 1;
390 hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift;
391 return hash_;
392 }
393
394 hash_ &= (1 << kHashShift) - 1;
395 hash_ |= GetCellId(cell_) << kHashShift;
396 return hash_;
397 }
398
Serialize(IndexCell * destination) const399 void EntryCell::Serialize(IndexCell* destination) const {
400 *destination = cell_;
401 }
402
EntrySet()403 EntrySet::EntrySet() : evicted_count(0), current(0) {
404 }
405
~EntrySet()406 EntrySet::~EntrySet() {
407 }
408
IndexIterator()409 IndexIterator::IndexIterator() {
410 }
411
~IndexIterator()412 IndexIterator::~IndexIterator() {
413 }
414
IndexTableInitData()415 IndexTableInitData::IndexTableInitData() {
416 }
417
~IndexTableInitData()418 IndexTableInitData::~IndexTableInitData() {
419 }
420
421 // -----------------------------------------------------------------------
422
IndexTable(IndexTableBackend * backend)423 IndexTable::IndexTable(IndexTableBackend* backend)
424 : backend_(backend),
425 header_(NULL),
426 main_table_(NULL),
427 extra_table_(NULL),
428 modified_(false),
429 small_table_(false) {
430 }
431
~IndexTable()432 IndexTable::~IndexTable() {
433 }
434
435 // For a general description of the index tables see:
436 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Index
437 //
438 // The index is split between two tables: the main_table_ and the extra_table_.
439 // The main table can grow only by doubling its number of cells, while the
440 // extra table can grow slowly, because it only contain cells that overflow
441 // from the main table. In order to locate a given cell, part of the hash is
442 // used directly as an index into the main table; once that bucket is located,
443 // all cells with that partial hash (i.e., belonging to that bucket) are
444 // inspected, and if present, the next bucket (located on the extra table) is
445 // then located. For more information on bucket chaining see:
446 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Buckets
447 //
448 // There are two cases when increasing the size:
449 // - Doubling the size of the main table
450 // - Adding more entries to the extra table
451 //
452 // For example, consider a 64k main table with 8k cells on the extra table (for
453 // a total of 72k cells). Init can be called to add another 8k cells at the end
454 // (grow to 80k cells). When the size of the extra table approaches 64k, Init
455 // can be called to double the main table (to 128k) and go back to a small extra
456 // table.
Init(IndexTableInitData * params)457 void IndexTable::Init(IndexTableInitData* params) {
458 bool growing = header_ != NULL;
459 scoped_ptr<IndexBucket[]> old_extra_table;
460 header_ = ¶ms->index_bitmap->header;
461
462 if (params->main_table) {
463 if (main_table_) {
464 // This is doubling the size of main table.
465 DCHECK_EQ(base::bits::Log2Floor(header_->table_len),
466 base::bits::Log2Floor(backup_header_->table_len) + 1);
467 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket;
468 DCHECK_GE(extra_size, 0);
469
470 // Doubling the size implies deleting the extra table and moving as many
471 // cells as we can to the main table, so we first copy the old one. This
472 // is not required when just growing the extra table because we don't
473 // move any cell in that case.
474 old_extra_table.reset(new IndexBucket[extra_size]);
475 memcpy(old_extra_table.get(), extra_table_,
476 extra_size * sizeof(IndexBucket));
477 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket));
478 }
479 main_table_ = params->main_table;
480 }
481 DCHECK(main_table_);
482 extra_table_ = params->extra_table;
483
484 // extra_bits_ is really measured against table-size specific values.
485 const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table.
486 const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table.
487
488 extra_bits_ = base::bits::Log2Floor(header_->table_len) -
489 base::bits::Log2Floor(kBaseTableLen);
490 DCHECK_GE(extra_bits_, 0);
491 DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits);
492
493 // Note that following the previous code the constants could be derived as
494 // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) -
495 // base::bits::Log2Floor(kBaseTableLen);
496 // = 22 - base::bits::Log2Floor(1024) = 22 - 10;
497 // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10.
498
499 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1;
500 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable;
501 if (!small_table_)
502 extra_bits_ -= kMaxExtraBitsSmallTable;
503
504 // table_len keeps the max number of cells stored by the index. We need a
505 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
506 int num_words = (header_->table_len + 31) / 32;
507
508 if (old_extra_table) {
509 // All the cells from the extra table are moving to the new tables so before
510 // creating the bitmaps, clear the part of the bitmap referring to the extra
511 // table.
512 int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32;
513 DCHECK_GT(num_words, old_main_table_bit_words);
514 memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0,
515 (num_words - old_main_table_bit_words) * sizeof(int32));
516
517 DCHECK(growing);
518 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
519 DCHECK_GT(old_num_words, old_main_table_bit_words);
520 memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0,
521 (old_num_words - old_main_table_bit_words) * sizeof(int32));
522 }
523 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len,
524 num_words));
525
526 if (growing) {
527 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
528 DCHECK_GE(num_words, old_num_words);
529 scoped_ptr<uint32[]> storage(new uint32[num_words]);
530 memcpy(storage.get(), backup_bitmap_storage_.get(),
531 old_num_words * sizeof(int32));
532 memset(storage.get() + old_num_words, 0,
533 (num_words - old_num_words) * sizeof(int32));
534
535 backup_bitmap_storage_.swap(storage);
536 backup_header_->table_len = header_->table_len;
537 } else {
538 backup_bitmap_storage_.reset(params->backup_bitmap.release());
539 backup_header_.reset(params->backup_header.release());
540 }
541
542 num_words = (backup_header_->table_len + 31) / 32;
543 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(),
544 backup_header_->table_len, num_words));
545 if (old_extra_table)
546 MoveCells(old_extra_table.get());
547
548 if (small_table_)
549 DCHECK(header_->flags & SMALL_CACHE);
550
551 // All tables and backups are needed for operation.
552 DCHECK(main_table_);
553 DCHECK(extra_table_);
554 DCHECK(bitmap_.get());
555 }
556
Shutdown()557 void IndexTable::Shutdown() {
558 header_ = NULL;
559 main_table_ = NULL;
560 extra_table_ = NULL;
561 bitmap_.reset();
562 backup_bitmap_.reset();
563 backup_header_.reset();
564 backup_bitmap_storage_.reset();
565 modified_ = false;
566 }
567
568 // The general method for locating cells is to:
569 // 1. Get the first bucket. This usually means directly indexing the table (as
570 // this method does), or iterating through all possible buckets.
571 // 2. Iterate through all the cells in that first bucket.
572 // 3. If there is a linked bucket, locate it directly in the extra table.
573 // 4. Go back to 2, as needed.
574 //
575 // One consequence of this pattern is that we never start looking at buckets in
576 // the extra table, unless we are following a link from the main table.
LookupEntries(uint32 hash)577 EntrySet IndexTable::LookupEntries(uint32 hash) {
578 EntrySet entries;
579 int bucket_num = static_cast<int>(hash & mask_);
580 IndexBucket* bucket = &main_table_[bucket_num];
581 do {
582 for (int i = 0; i < kCellsPerBucket; i++) {
583 IndexCell* current_cell = &bucket->cells[i];
584 if (!GetLocation(*current_cell))
585 continue;
586 if (!SanityCheck(*current_cell)) {
587 NOTREACHED();
588 int cell_num = bucket_num * kCellsPerBucket + i;
589 current_cell->Clear();
590 bitmap_->Set(cell_num, false);
591 backup_bitmap_->Set(cell_num, false);
592 modified_ = true;
593 continue;
594 }
595 int cell_num = bucket_num * kCellsPerBucket + i;
596 if (MisplacedHash(*current_cell, hash)) {
597 HandleMisplacedCell(current_cell, cell_num, hash & mask_);
598 } else if (IsHashMatch(*current_cell, hash)) {
599 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
600 CheckState(entry_cell);
601 if (entry_cell.GetState() != ENTRY_DELETED) {
602 entries.cells.push_back(entry_cell);
603 if (entry_cell.GetGroup() == ENTRY_EVICTED)
604 entries.evicted_count++;
605 }
606 }
607 }
608 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
609 &bucket);
610 } while (bucket_num);
611 return entries;
612 }
613
CreateEntryCell(uint32 hash,Addr address)614 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) {
615 DCHECK(IsValidAddress(address));
616 DCHECK(address.FileNumber() || address.start_block());
617
618 int bucket_num = static_cast<int>(hash & mask_);
619 int cell_num = 0;
620 IndexBucket* bucket = &main_table_[bucket_num];
621 IndexCell* current_cell = NULL;
622 bool found = false;
623 do {
624 for (int i = 0; i < kCellsPerBucket && !found; i++) {
625 current_cell = &bucket->cells[i];
626 if (!GetLocation(*current_cell)) {
627 cell_num = bucket_num * kCellsPerBucket + i;
628 found = true;
629 }
630 }
631 if (found)
632 break;
633 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
634 &bucket);
635 } while (bucket_num);
636
637 if (!found) {
638 bucket_num = NewExtraBucket();
639 if (bucket_num) {
640 cell_num = bucket_num * kCellsPerBucket;
641 bucket->next = cell_num;
642 bucket = &extra_table_[bucket_num - (mask_ + 1)];
643 bucket->hash = hash & mask_;
644 found = true;
645 } else {
646 // address 0 is a reserved value, and the caller interprets it as invalid.
647 address.set_value(0);
648 }
649 }
650
651 EntryCell entry_cell(cell_num, hash, address, small_table_);
652 if (address.file_type() == BLOCK_EVICTED)
653 entry_cell.SetGroup(ENTRY_EVICTED);
654 else
655 entry_cell.SetGroup(ENTRY_NO_USE);
656 Save(&entry_cell);
657
658 if (found) {
659 bitmap_->Set(cell_num, true);
660 backup_bitmap_->Set(cell_num, true);
661 header()->used_cells++;
662 modified_ = true;
663 }
664
665 return entry_cell;
666 }
667
FindEntryCell(uint32 hash,Addr address)668 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) {
669 return FindEntryCellImpl(hash, address, false);
670 }
671
CalculateTimestamp(Time time)672 int IndexTable::CalculateTimestamp(Time time) {
673 TimeDelta delta = time - Time::FromInternalValue(header_->base_time);
674 return std::max(delta.InMinutes(), 0);
675 }
676
TimeFromTimestamp(int timestamp)677 base::Time IndexTable::TimeFromTimestamp(int timestamp) {
678 return Time::FromInternalValue(header_->base_time) +
679 TimeDelta::FromMinutes(timestamp);
680 }
681
SetSate(uint32 hash,Addr address,EntryState state)682 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) {
683 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE);
684 if (!cell.IsValid()) {
685 NOTREACHED();
686 return;
687 }
688
689 EntryState old_state = cell.GetState();
690 switch (state) {
691 case ENTRY_FREE:
692 DCHECK_EQ(old_state, ENTRY_DELETED);
693 break;
694 case ENTRY_NEW:
695 DCHECK_EQ(old_state, ENTRY_FREE);
696 break;
697 case ENTRY_OPEN:
698 DCHECK_EQ(old_state, ENTRY_USED);
699 break;
700 case ENTRY_MODIFIED:
701 DCHECK_EQ(old_state, ENTRY_OPEN);
702 break;
703 case ENTRY_DELETED:
704 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
705 old_state == ENTRY_MODIFIED);
706 break;
707 case ENTRY_USED:
708 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
709 old_state == ENTRY_MODIFIED);
710 break;
711 case ENTRY_FIXING:
712 break;
713 };
714
715 modified_ = true;
716 if (state == ENTRY_DELETED) {
717 bitmap_->Set(cell.cell_num(), false);
718 backup_bitmap_->Set(cell.cell_num(), false);
719 } else if (state == ENTRY_FREE) {
720 cell.Clear();
721 Write(cell);
722 header()->used_cells--;
723 return;
724 }
725 cell.SetState(state);
726
727 Save(&cell);
728 }
729
UpdateTime(uint32 hash,Addr address,base::Time current)730 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) {
731 EntryCell cell = FindEntryCell(hash, address);
732 if (!cell.IsValid())
733 return;
734
735 int minutes = CalculateTimestamp(current);
736
737 // Keep about 3 months of headroom.
738 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90;
739 if (minutes > kMaxTimestamp) {
740 // TODO(rvargas):
741 // Update header->old_time and trigger a timer
742 // Rebaseline timestamps and don't update sums
743 // Start a timer (about 2 backups)
744 // fix all ckecksums and trigger another timer
745 // update header->old_time because rebaseline is done.
746 minutes = std::min(minutes, (1 << 20) - 1);
747 }
748
749 cell.SetTimestamp(minutes);
750 Save(&cell);
751 }
752
Save(EntryCell * cell)753 void IndexTable::Save(EntryCell* cell) {
754 cell->FixSum();
755 Write(*cell);
756 }
757
GetOldest(IndexIterator * no_use,IndexIterator * low_use,IndexIterator * high_use)758 void IndexTable::GetOldest(IndexIterator* no_use,
759 IndexIterator* low_use,
760 IndexIterator* high_use) {
761 no_use->forward = true;
762 low_use->forward = true;
763 high_use->forward = true;
764 InitIterator(no_use);
765 InitIterator(low_use);
766 InitIterator(high_use);
767
768 WalkTables(-1, no_use, low_use, high_use);
769 }
770
GetNextCells(IndexIterator * iterator)771 bool IndexTable::GetNextCells(IndexIterator* iterator) {
772 int current_time = iterator->timestamp;
773 InitIterator(iterator);
774
775 WalkTables(current_time, iterator, iterator, iterator);
776 return !iterator->cells.empty();
777 }
778
OnBackupTimer()779 void IndexTable::OnBackupTimer() {
780 if (!modified_)
781 return;
782
783 int num_words = (header_->table_len + 31) / 32;
784 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_));
785 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes));
786 memcpy(buffer->data(), header_, sizeof(*header_));
787 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(),
788 num_words * 4);
789 backend_->SaveIndex(buffer, num_bytes);
790 modified_ = false;
791 }
792
793 // -----------------------------------------------------------------------
794
FindEntryCellImpl(uint32 hash,Addr address,bool allow_deleted)795 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address,
796 bool allow_deleted) {
797 int bucket_num = static_cast<int>(hash & mask_);
798 IndexBucket* bucket = &main_table_[bucket_num];
799 do {
800 for (int i = 0; i < kCellsPerBucket; i++) {
801 IndexCell* current_cell = &bucket->cells[i];
802 if (!GetLocation(*current_cell))
803 continue;
804 DCHECK(SanityCheck(*current_cell));
805 if (IsHashMatch(*current_cell, hash)) {
806 // We have a match.
807 int cell_num = bucket_num * kCellsPerBucket + i;
808 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
809 if (entry_cell.GetAddress() != address)
810 continue;
811
812 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED)
813 continue;
814
815 return entry_cell;
816 }
817 }
818 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
819 &bucket);
820 } while (bucket_num);
821 return EntryCell();
822 }
823
CheckState(const EntryCell & cell)824 void IndexTable::CheckState(const EntryCell& cell) {
825 int current_state = cell.GetState();
826 if (current_state != ENTRY_FIXING) {
827 bool present = ((current_state & 3) != 0); // Look at the last two bits.
828 if (present != bitmap_->Get(cell.cell_num()) ||
829 present != backup_bitmap_->Get(cell.cell_num())) {
830 // There's a mismatch.
831 if (current_state == ENTRY_DELETED) {
832 // We were in the process of deleting this entry. Finish now.
833 backend_->DeleteCell(cell);
834 } else {
835 current_state = ENTRY_FIXING;
836 EntryCell bad_cell(cell);
837 bad_cell.SetState(ENTRY_FIXING);
838 Save(&bad_cell);
839 }
840 }
841 }
842
843 if (current_state == ENTRY_FIXING)
844 backend_->FixCell(cell);
845 }
846
Write(const EntryCell & cell)847 void IndexTable::Write(const EntryCell& cell) {
848 IndexBucket* bucket = NULL;
849 int bucket_num = cell.cell_num() / kCellsPerBucket;
850 if (bucket_num < static_cast<int32>(mask_ + 1)) {
851 bucket = &main_table_[bucket_num];
852 } else {
853 DCHECK_LE(bucket_num, header()->max_bucket);
854 bucket = &extra_table_[bucket_num - (mask_ + 1)];
855 }
856
857 int cell_number = cell.cell_num() % kCellsPerBucket;
858 if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) {
859 DCHECK_EQ(cell.GetLocation(),
860 GetLocation(bucket->cells[cell_number]));
861 }
862 cell.Serialize(&bucket->cells[cell_number]);
863 }
864
NewExtraBucket()865 int IndexTable::NewExtraBucket() {
866 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ?
867 kNumExtraBlocks / 4 : kNumExtraBlocks;
868 if (header()->table_len - header()->max_bucket * kCellsPerBucket <
869 safe_window) {
870 backend_->GrowIndex();
871 }
872
873 if (header()->max_bucket * kCellsPerBucket ==
874 header()->table_len - kCellsPerBucket) {
875 return 0;
876 }
877
878 header()->max_bucket++;
879 return header()->max_bucket;
880 }
881
WalkTables(int limit_time,IndexIterator * no_use,IndexIterator * low_use,IndexIterator * high_use)882 void IndexTable::WalkTables(int limit_time,
883 IndexIterator* no_use,
884 IndexIterator* low_use,
885 IndexIterator* high_use) {
886 header_->num_no_use_entries = 0;
887 header_->num_low_use_entries = 0;
888 header_->num_high_use_entries = 0;
889 header_->num_evicted_entries = 0;
890
891 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) {
892 int bucket_num = i;
893 IndexBucket* bucket = &main_table_[i];
894 do {
895 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use);
896
897 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
898 &bucket);
899 } while (bucket_num);
900 }
901 header_->num_entries = header_->num_no_use_entries +
902 header_->num_low_use_entries +
903 header_->num_high_use_entries +
904 header_->num_evicted_entries;
905 modified_ = true;
906 }
907
UpdateFromBucket(IndexBucket * bucket,int bucket_hash,int limit_time,IndexIterator * no_use,IndexIterator * low_use,IndexIterator * high_use)908 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash,
909 int limit_time,
910 IndexIterator* no_use,
911 IndexIterator* low_use,
912 IndexIterator* high_use) {
913 for (int i = 0; i < kCellsPerBucket; i++) {
914 IndexCell& current_cell = bucket->cells[i];
915 if (!GetLocation(current_cell))
916 continue;
917 DCHECK(SanityCheck(current_cell));
918 if (!IsNormalState(current_cell))
919 continue;
920
921 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash),
922 current_cell, small_table_);
923 switch (GetCellGroup(current_cell)) {
924 case ENTRY_NO_USE:
925 UpdateIterator(entry_cell, limit_time, no_use);
926 header_->num_no_use_entries++;
927 break;
928 case ENTRY_LOW_USE:
929 UpdateIterator(entry_cell, limit_time, low_use);
930 header_->num_low_use_entries++;
931 break;
932 case ENTRY_HIGH_USE:
933 UpdateIterator(entry_cell, limit_time, high_use);
934 header_->num_high_use_entries++;
935 break;
936 case ENTRY_EVICTED:
937 header_->num_evicted_entries++;
938 break;
939 default:
940 NOTREACHED();
941 }
942 }
943 }
944
945 // This code is only called from Init() so the internal state of this object is
946 // in flux (this method is performing the last steps of re-initialization). As
947 // such, random methods are not supposed to work at this point, so whatever this
948 // method calls should be relatively well controlled and it may require some
949 // degree of "stable state faking".
MoveCells(IndexBucket * old_extra_table)950 void IndexTable::MoveCells(IndexBucket* old_extra_table) {
951 int max_hash = (mask_ + 1) / 2;
952 int max_bucket = header()->max_bucket;
953 header()->max_bucket = mask_;
954 int used_cells = header()->used_cells;
955
956 // Consider a large cache: a cell stores the upper 18 bits of the hash
957 // (h >> 14). If the table is say 8 times the original size (growing from 4x),
958 // the bit that we are interested in would be the 3rd bit of the stored value,
959 // in other words 'multiplier' >> 1.
960 uint32 new_bit = (1 << extra_bits_) >> 1;
961
962 scoped_ptr<IndexBucket[]> old_main_table;
963 IndexBucket* source_table = main_table_;
964 bool upgrade_format = !extra_bits_;
965 if (upgrade_format) {
966 // This method should deal with migrating a small table to a big one. Given
967 // that the first thing to do is read the old table, set small_table_ for
968 // the size of the old table. Now, when moving a cell, the result cannot be
969 // placed in the old table or we will end up reading it again and attempting
970 // to move it, so we have to copy the whole table at once.
971 DCHECK(!small_table_);
972 small_table_ = true;
973 old_main_table.reset(new IndexBucket[max_hash]);
974 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket));
975 memset(main_table_, 0, max_hash * sizeof(IndexBucket));
976 source_table = old_main_table.get();
977 }
978
979 for (int i = 0; i < max_hash; i++) {
980 int bucket_num = i;
981 IndexBucket* bucket = &source_table[i];
982 do {
983 for (int j = 0; j < kCellsPerBucket; j++) {
984 IndexCell& current_cell = bucket->cells[j];
985 if (!GetLocation(current_cell))
986 continue;
987 DCHECK(SanityCheck(current_cell));
988 if (bucket_num == i) {
989 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) {
990 // Move this cell to the upper half of the table.
991 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i,
992 true);
993 }
994 } else {
995 // All cells on extra buckets have to move.
996 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i,
997 true);
998 }
999 }
1000
1001 // There is no need to clear the old bucket->next value because if falls
1002 // within the main table so it will be fixed when attempting to follow
1003 // the link.
1004 bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table,
1005 &bucket);
1006 } while (bucket_num);
1007 }
1008
1009 DCHECK_EQ(header()->used_cells, used_cells);
1010
1011 if (upgrade_format) {
1012 small_table_ = false;
1013 header()->flags &= ~SMALL_CACHE;
1014 }
1015 }
1016
MoveSingleCell(IndexCell * current_cell,int cell_num,int main_table_index,bool growing)1017 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num,
1018 int main_table_index, bool growing) {
1019 uint32 hash = GetFullHash(*current_cell, main_table_index);
1020 EntryCell old_cell(cell_num, hash, *current_cell, small_table_);
1021
1022 // This method may be called when moving entries from a small table to a
1023 // normal table. In that case, the caller (MoveCells) has to read the old
1024 // table, so it needs small_table_ set to true, but this method needs to
1025 // write to the new table so small_table_ has to be set to false, and the
1026 // value restored to true before returning.
1027 bool upgrade_format = !extra_bits_ && growing;
1028 if (upgrade_format)
1029 small_table_ = false;
1030 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress());
1031
1032 if (!new_cell.IsValid()) {
1033 // We'll deal with this entry later.
1034 if (upgrade_format)
1035 small_table_ = true;
1036 return;
1037 }
1038
1039 new_cell.SetState(old_cell.GetState());
1040 new_cell.SetGroup(old_cell.GetGroup());
1041 new_cell.SetReuse(old_cell.GetReuse());
1042 new_cell.SetTimestamp(old_cell.GetTimestamp());
1043 Save(&new_cell);
1044 modified_ = true;
1045 if (upgrade_format)
1046 small_table_ = true;
1047
1048 if (old_cell.GetState() == ENTRY_DELETED) {
1049 bitmap_->Set(new_cell.cell_num(), false);
1050 backup_bitmap_->Set(new_cell.cell_num(), false);
1051 }
1052
1053 if (!growing || cell_num / kCellsPerBucket == main_table_index) {
1054 // Only delete entries that live on the main table.
1055 if (!upgrade_format) {
1056 old_cell.Clear();
1057 Write(old_cell);
1058 }
1059
1060 if (cell_num != new_cell.cell_num()) {
1061 bitmap_->Set(old_cell.cell_num(), false);
1062 backup_bitmap_->Set(old_cell.cell_num(), false);
1063 }
1064 }
1065 header()->used_cells--;
1066 }
1067
HandleMisplacedCell(IndexCell * current_cell,int cell_num,int main_table_index)1068 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num,
1069 int main_table_index) {
1070 NOTREACHED(); // No unit tests yet.
1071
1072 // The cell may be misplaced, or a duplicate cell exists with this data.
1073 uint32 hash = GetFullHash(*current_cell, main_table_index);
1074 MoveSingleCell(current_cell, cell_num, main_table_index, false);
1075
1076 // Now look for a duplicate cell.
1077 CheckBucketList(hash & mask_);
1078 }
1079
CheckBucketList(int bucket_num)1080 void IndexTable::CheckBucketList(int bucket_num) {
1081 typedef std::pair<int, EntryGroup> AddressAndGroup;
1082 std::set<AddressAndGroup> entries;
1083 IndexBucket* bucket = &main_table_[bucket_num];
1084 int bucket_hash = bucket_num;
1085 do {
1086 for (int i = 0; i < kCellsPerBucket; i++) {
1087 IndexCell* current_cell = &bucket->cells[i];
1088 if (!GetLocation(*current_cell))
1089 continue;
1090 if (!SanityCheck(*current_cell)) {
1091 NOTREACHED();
1092 current_cell->Clear();
1093 continue;
1094 }
1095 int cell_num = bucket_num * kCellsPerBucket + i;
1096 EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash),
1097 *current_cell, small_table_);
1098 if (!entries.insert(std::make_pair(cell.GetAddress().value(),
1099 cell.GetGroup())).second) {
1100 current_cell->Clear();
1101 continue;
1102 }
1103 CheckState(cell);
1104 }
1105
1106 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
1107 &bucket);
1108 } while (bucket_num);
1109 }
1110
GetLocation(const IndexCell & cell)1111 uint32 IndexTable::GetLocation(const IndexCell& cell) {
1112 if (small_table_)
1113 return GetCellSmallTableLocation(cell);
1114
1115 return GetCellLocation(cell);
1116 }
1117
GetHashValue(const IndexCell & cell)1118 uint32 IndexTable::GetHashValue(const IndexCell& cell) {
1119 if (small_table_)
1120 return GetCellSmallTableId(cell);
1121
1122 return GetCellId(cell);
1123 }
1124
GetFullHash(const IndexCell & cell,uint32 lower_part)1125 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) {
1126 // It is OK for the high order bits of lower_part to overlap with the stored
1127 // part of the hash.
1128 if (small_table_)
1129 return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part;
1130
1131 return (GetCellId(cell) << kHashShift) | lower_part;
1132 }
1133
1134 // All the bits stored in the cell should match the provided hash.
IsHashMatch(const IndexCell & cell,uint32 hash)1135 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) {
1136 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
1137 return GetHashValue(cell) == hash;
1138 }
1139
MisplacedHash(const IndexCell & cell,uint32 hash)1140 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) {
1141 if (!extra_bits_)
1142 return false;
1143
1144 uint32 mask = (1 << extra_bits_) - 1;
1145 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
1146 return (GetHashValue(cell) & mask) != (hash & mask);
1147 }
1148
1149 } // namespace disk_cache
1150