• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/factory.h"
6 
7 #include "src/conversions.h"
8 #include "src/isolate-inl.h"
9 #include "src/macro-assembler.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 
15 template<typename T>
New(Handle<Map> map,AllocationSpace space)16 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
17   CALL_HEAP_FUNCTION(
18       isolate(),
19       isolate()->heap()->Allocate(*map, space),
20       T);
21 }
22 
23 
24 template<typename T>
New(Handle<Map> map,AllocationSpace space,Handle<AllocationSite> allocation_site)25 Handle<T> Factory::New(Handle<Map> map,
26                        AllocationSpace space,
27                        Handle<AllocationSite> allocation_site) {
28   CALL_HEAP_FUNCTION(
29       isolate(),
30       isolate()->heap()->Allocate(*map, space, *allocation_site),
31       T);
32 }
33 
34 
NewFillerObject(int size,bool double_align,AllocationSpace space)35 Handle<HeapObject> Factory::NewFillerObject(int size,
36                                             bool double_align,
37                                             AllocationSpace space) {
38   CALL_HEAP_FUNCTION(
39       isolate(),
40       isolate()->heap()->AllocateFillerObject(size, double_align, space),
41       HeapObject);
42 }
43 
44 
NewBox(Handle<Object> value)45 Handle<Box> Factory::NewBox(Handle<Object> value) {
46   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
47   result->set_value(*value);
48   return result;
49 }
50 
51 
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,byte kind)52 Handle<Oddball> Factory::NewOddball(Handle<Map> map,
53                                     const char* to_string,
54                                     Handle<Object> to_number,
55                                     byte kind) {
56   Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
57   Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
58   return oddball;
59 }
60 
61 
NewFixedArray(int size,PretenureFlag pretenure)62 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
63   ASSERT(0 <= size);
64   CALL_HEAP_FUNCTION(
65       isolate(),
66       isolate()->heap()->AllocateFixedArray(size, pretenure),
67       FixedArray);
68 }
69 
70 
NewFixedArrayWithHoles(int size,PretenureFlag pretenure)71 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
72                                                    PretenureFlag pretenure) {
73   ASSERT(0 <= size);
74   CALL_HEAP_FUNCTION(
75       isolate(),
76       isolate()->heap()->AllocateFixedArrayWithFiller(size,
77                                                       pretenure,
78                                                       *the_hole_value()),
79       FixedArray);
80 }
81 
82 
NewUninitializedFixedArray(int size)83 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
84   CALL_HEAP_FUNCTION(
85       isolate(),
86       isolate()->heap()->AllocateUninitializedFixedArray(size),
87       FixedArray);
88 }
89 
90 
NewFixedDoubleArray(int size,PretenureFlag pretenure)91 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
92                                                     PretenureFlag pretenure) {
93   ASSERT(0 <= size);
94   CALL_HEAP_FUNCTION(
95       isolate(),
96       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
97       FixedArrayBase);
98 }
99 
100 
NewFixedDoubleArrayWithHoles(int size,PretenureFlag pretenure)101 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
102     int size,
103     PretenureFlag pretenure) {
104   ASSERT(0 <= size);
105   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
106   if (size > 0) {
107     Handle<FixedDoubleArray> double_array =
108         Handle<FixedDoubleArray>::cast(array);
109     for (int i = 0; i < size; ++i) {
110       double_array->set_the_hole(i);
111     }
112   }
113   return array;
114 }
115 
116 
NewConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small)117 Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
118     const ConstantPoolArray::NumberOfEntries& small) {
119   ASSERT(small.total_count() > 0);
120   CALL_HEAP_FUNCTION(
121       isolate(),
122       isolate()->heap()->AllocateConstantPoolArray(small),
123       ConstantPoolArray);
124 }
125 
126 
NewExtendedConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small,const ConstantPoolArray::NumberOfEntries & extended)127 Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
128     const ConstantPoolArray::NumberOfEntries& small,
129     const ConstantPoolArray::NumberOfEntries& extended) {
130   ASSERT(small.total_count() > 0);
131   ASSERT(extended.total_count() > 0);
132   CALL_HEAP_FUNCTION(
133       isolate(),
134       isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
135       ConstantPoolArray);
136 }
137 
138 
NewOrderedHashSet()139 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
140   return OrderedHashSet::Allocate(isolate(), 4);
141 }
142 
143 
NewOrderedHashMap()144 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
145   return OrderedHashMap::Allocate(isolate(), 4);
146 }
147 
148 
NewAccessorPair()149 Handle<AccessorPair> Factory::NewAccessorPair() {
150   Handle<AccessorPair> accessors =
151       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
152   accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
153   accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
154   accessors->set_access_flags(Smi::FromInt(0), SKIP_WRITE_BARRIER);
155   return accessors;
156 }
157 
158 
NewTypeFeedbackInfo()159 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
160   Handle<TypeFeedbackInfo> info =
161       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
162   info->initialize_storage();
163   return info;
164 }
165 
166 
167 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(Vector<const char> string)168 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
169   Utf8StringKey key(string, isolate()->heap()->HashSeed());
170   return InternalizeStringWithKey(&key);
171 }
172 
173 
174 // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)175 Handle<String> Factory::InternalizeString(Handle<String> string) {
176   if (string->IsInternalizedString()) return string;
177   return StringTable::LookupString(isolate(), string);
178 }
179 
180 
InternalizeOneByteString(Vector<const uint8_t> string)181 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
182   OneByteStringKey key(string, isolate()->heap()->HashSeed());
183   return InternalizeStringWithKey(&key);
184 }
185 
186 
InternalizeOneByteString(Handle<SeqOneByteString> string,int from,int length)187 Handle<String> Factory::InternalizeOneByteString(
188     Handle<SeqOneByteString> string, int from, int length) {
189   SubStringKey<uint8_t> key(string, from, length);
190   return InternalizeStringWithKey(&key);
191 }
192 
193 
InternalizeTwoByteString(Vector<const uc16> string)194 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
195   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
196   return InternalizeStringWithKey(&key);
197 }
198 
199 
200 template<class StringTableKey>
InternalizeStringWithKey(StringTableKey * key)201 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
202   return StringTable::LookupKey(isolate(), key);
203 }
204 
205 
206 template Handle<String> Factory::InternalizeStringWithKey<
207     SubStringKey<uint8_t> > (SubStringKey<uint8_t>* key);
208 template Handle<String> Factory::InternalizeStringWithKey<
209     SubStringKey<uint16_t> > (SubStringKey<uint16_t>* key);
210 
211 
NewStringFromOneByte(Vector<const uint8_t> string,PretenureFlag pretenure)212 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
213                                                   PretenureFlag pretenure) {
214   int length = string.length();
215   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
216   Handle<SeqOneByteString> result;
217   ASSIGN_RETURN_ON_EXCEPTION(
218       isolate(),
219       result,
220       NewRawOneByteString(string.length(), pretenure),
221       String);
222 
223   DisallowHeapAllocation no_gc;
224   // Copy the characters into the new object.
225   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
226             string.start(),
227             length);
228   return result;
229 }
230 
NewStringFromUtf8(Vector<const char> string,PretenureFlag pretenure)231 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
232                                                PretenureFlag pretenure) {
233   // Check for ASCII first since this is the common case.
234   const char* start = string.start();
235   int length = string.length();
236   int non_ascii_start = String::NonAsciiStart(start, length);
237   if (non_ascii_start >= length) {
238     // If the string is ASCII, we do not need to convert the characters
239     // since UTF8 is backwards compatible with ASCII.
240     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
241   }
242 
243   // Non-ASCII and we need to decode.
244   Access<UnicodeCache::Utf8Decoder>
245       decoder(isolate()->unicode_cache()->utf8_decoder());
246   decoder->Reset(string.start() + non_ascii_start,
247                  length - non_ascii_start);
248   int utf16_length = decoder->Utf16Length();
249   ASSERT(utf16_length > 0);
250   // Allocate string.
251   Handle<SeqTwoByteString> result;
252   ASSIGN_RETURN_ON_EXCEPTION(
253       isolate(), result,
254       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
255       String);
256   // Copy ascii portion.
257   uint16_t* data = result->GetChars();
258   const char* ascii_data = string.start();
259   for (int i = 0; i < non_ascii_start; i++) {
260     *data++ = *ascii_data++;
261   }
262   // Now write the remainder.
263   decoder->WriteUtf16(data, utf16_length);
264   return result;
265 }
266 
267 
NewStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)268 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
269                                                   PretenureFlag pretenure) {
270   int length = string.length();
271   const uc16* start = string.start();
272   if (String::IsOneByte(start, length)) {
273     Handle<SeqOneByteString> result;
274     ASSIGN_RETURN_ON_EXCEPTION(
275         isolate(),
276         result,
277         NewRawOneByteString(length, pretenure),
278         String);
279     CopyChars(result->GetChars(), start, length);
280     return result;
281   } else {
282     Handle<SeqTwoByteString> result;
283     ASSIGN_RETURN_ON_EXCEPTION(
284         isolate(),
285         result,
286         NewRawTwoByteString(length, pretenure),
287         String);
288     CopyChars(result->GetChars(), start, length);
289     return result;
290   }
291 }
292 
293 
NewInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)294 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
295                                                       int chars,
296                                                       uint32_t hash_field) {
297   CALL_HEAP_FUNCTION(
298       isolate(),
299       isolate()->heap()->AllocateInternalizedStringFromUtf8(
300           str, chars, hash_field),
301       String);
302 }
303 
304 
NewOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)305 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
306       Vector<const uint8_t> str,
307       uint32_t hash_field) {
308   CALL_HEAP_FUNCTION(
309       isolate(),
310       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
311       String);
312 }
313 
314 
NewTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)315 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
316       Vector<const uc16> str,
317       uint32_t hash_field) {
318   CALL_HEAP_FUNCTION(
319       isolate(),
320       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
321       String);
322 }
323 
324 
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)325 Handle<String> Factory::NewInternalizedStringImpl(
326     Handle<String> string, int chars, uint32_t hash_field) {
327   CALL_HEAP_FUNCTION(
328       isolate(),
329       isolate()->heap()->AllocateInternalizedStringImpl(
330           *string, chars, hash_field),
331       String);
332 }
333 
334 
InternalizedStringMapForString(Handle<String> string)335 MaybeHandle<Map> Factory::InternalizedStringMapForString(
336     Handle<String> string) {
337   // If the string is in new space it cannot be used as internalized.
338   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
339 
340   // Find the corresponding internalized string map for strings.
341   switch (string->map()->instance_type()) {
342     case STRING_TYPE: return internalized_string_map();
343     case ASCII_STRING_TYPE: return ascii_internalized_string_map();
344     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
345     case EXTERNAL_ASCII_STRING_TYPE:
346       return external_ascii_internalized_string_map();
347     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
348       return external_internalized_string_with_one_byte_data_map();
349     case SHORT_EXTERNAL_STRING_TYPE:
350       return short_external_internalized_string_map();
351     case SHORT_EXTERNAL_ASCII_STRING_TYPE:
352       return short_external_ascii_internalized_string_map();
353     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
354       return short_external_internalized_string_with_one_byte_data_map();
355     default: return MaybeHandle<Map>();  // No match found.
356   }
357 }
358 
359 
NewRawOneByteString(int length,PretenureFlag pretenure)360 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
361     int length, PretenureFlag pretenure) {
362   if (length > String::kMaxLength || length < 0) {
363     return isolate()->Throw<SeqOneByteString>(NewInvalidStringLengthError());
364   }
365   CALL_HEAP_FUNCTION(
366       isolate(),
367       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
368       SeqOneByteString);
369 }
370 
371 
NewRawTwoByteString(int length,PretenureFlag pretenure)372 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
373     int length, PretenureFlag pretenure) {
374   if (length > String::kMaxLength || length < 0) {
375     return isolate()->Throw<SeqTwoByteString>(NewInvalidStringLengthError());
376   }
377   CALL_HEAP_FUNCTION(
378       isolate(),
379       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
380       SeqTwoByteString);
381 }
382 
383 
LookupSingleCharacterStringFromCode(uint32_t code)384 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
385   if (code <= String::kMaxOneByteCharCodeU) {
386     {
387       DisallowHeapAllocation no_allocation;
388       Object* value = single_character_string_cache()->get(code);
389       if (value != *undefined_value()) {
390         return handle(String::cast(value), isolate());
391       }
392     }
393     uint8_t buffer[1];
394     buffer[0] = static_cast<uint8_t>(code);
395     Handle<String> result =
396         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
397     single_character_string_cache()->set(code, *result);
398     return result;
399   }
400   ASSERT(code <= String::kMaxUtf16CodeUnitU);
401 
402   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
403   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
404   return result;
405 }
406 
407 
408 // Returns true for a character in a range.  Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)409 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
410   // This makes uses of the the unsigned wraparound.
411   return character - from <= to - from;
412 }
413 
414 
MakeOrFindTwoCharacterString(Isolate * isolate,uint16_t c1,uint16_t c2)415 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
416                                                           uint16_t c1,
417                                                           uint16_t c2) {
418   // Numeric strings have a different hash algorithm not known by
419   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
420   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
421     Handle<String> result;
422     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
423         ToHandle(&result)) {
424       return result;
425     }
426   }
427 
428   // Now we know the length is 2, we might as well make use of that fact
429   // when building the new string.
430   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
431     // We can do this.
432     ASSERT(IsPowerOf2(String::kMaxOneByteCharCodeU + 1));  // because of this.
433     Handle<SeqOneByteString> str =
434         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
435     uint8_t* dest = str->GetChars();
436     dest[0] = static_cast<uint8_t>(c1);
437     dest[1] = static_cast<uint8_t>(c2);
438     return str;
439   } else {
440     Handle<SeqTwoByteString> str =
441         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
442     uc16* dest = str->GetChars();
443     dest[0] = c1;
444     dest[1] = c2;
445     return str;
446   }
447 }
448 
449 
450 template<typename SinkChar, typename StringType>
ConcatStringContent(Handle<StringType> result,Handle<String> first,Handle<String> second)451 Handle<String> ConcatStringContent(Handle<StringType> result,
452                                    Handle<String> first,
453                                    Handle<String> second) {
454   DisallowHeapAllocation pointer_stays_valid;
455   SinkChar* sink = result->GetChars();
456   String::WriteToFlat(*first, sink, 0, first->length());
457   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
458   return result;
459 }
460 
461 
NewConsString(Handle<String> left,Handle<String> right)462 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
463                                            Handle<String> right) {
464   int left_length = left->length();
465   if (left_length == 0) return right;
466   int right_length = right->length();
467   if (right_length == 0) return left;
468 
469   int length = left_length + right_length;
470 
471   if (length == 2) {
472     uint16_t c1 = left->Get(0);
473     uint16_t c2 = right->Get(0);
474     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
475   }
476 
477   // Make sure that an out of memory exception is thrown if the length
478   // of the new cons string is too large.
479   if (length > String::kMaxLength || length < 0) {
480     return isolate()->Throw<String>(NewInvalidStringLengthError());
481   }
482 
483   bool left_is_one_byte = left->IsOneByteRepresentation();
484   bool right_is_one_byte = right->IsOneByteRepresentation();
485   bool is_one_byte = left_is_one_byte && right_is_one_byte;
486   bool is_one_byte_data_in_two_byte_string = false;
487   if (!is_one_byte) {
488     // At least one of the strings uses two-byte representation so we
489     // can't use the fast case code for short ASCII strings below, but
490     // we can try to save memory if all chars actually fit in ASCII.
491     is_one_byte_data_in_two_byte_string =
492         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
493     if (is_one_byte_data_in_two_byte_string) {
494       isolate()->counters()->string_add_runtime_ext_to_ascii()->Increment();
495     }
496   }
497 
498   // If the resulting string is small make a flat string.
499   if (length < ConsString::kMinLength) {
500     // Note that neither of the two inputs can be a slice because:
501     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
502     ASSERT(left->IsFlat());
503     ASSERT(right->IsFlat());
504 
505     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
506     if (is_one_byte) {
507       Handle<SeqOneByteString> result =
508           NewRawOneByteString(length).ToHandleChecked();
509       DisallowHeapAllocation no_gc;
510       uint8_t* dest = result->GetChars();
511       // Copy left part.
512       const uint8_t* src = left->IsExternalString()
513           ? Handle<ExternalAsciiString>::cast(left)->GetChars()
514           : Handle<SeqOneByteString>::cast(left)->GetChars();
515       for (int i = 0; i < left_length; i++) *dest++ = src[i];
516       // Copy right part.
517       src = right->IsExternalString()
518           ? Handle<ExternalAsciiString>::cast(right)->GetChars()
519           : Handle<SeqOneByteString>::cast(right)->GetChars();
520       for (int i = 0; i < right_length; i++) *dest++ = src[i];
521       return result;
522     }
523 
524     return (is_one_byte_data_in_two_byte_string)
525         ? ConcatStringContent<uint8_t>(
526             NewRawOneByteString(length).ToHandleChecked(), left, right)
527         : ConcatStringContent<uc16>(
528             NewRawTwoByteString(length).ToHandleChecked(), left, right);
529   }
530 
531   Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
532       ? cons_ascii_string_map()  : cons_string_map();
533   Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
534 
535   DisallowHeapAllocation no_gc;
536   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
537 
538   result->set_hash_field(String::kEmptyHashField);
539   result->set_length(length);
540   result->set_first(*left, mode);
541   result->set_second(*right, mode);
542   return result;
543 }
544 
545 
NewFlatConcatString(Handle<String> first,Handle<String> second)546 Handle<String> Factory::NewFlatConcatString(Handle<String> first,
547                                             Handle<String> second) {
548   int total_length = first->length() + second->length();
549   if (first->IsOneByteRepresentation() && second->IsOneByteRepresentation()) {
550     return ConcatStringContent<uint8_t>(
551         NewRawOneByteString(total_length).ToHandleChecked(), first, second);
552   } else {
553     return ConcatStringContent<uc16>(
554         NewRawTwoByteString(total_length).ToHandleChecked(), first, second);
555   }
556 }
557 
558 
NewProperSubString(Handle<String> str,int begin,int end)559 Handle<String> Factory::NewProperSubString(Handle<String> str,
560                                            int begin,
561                                            int end) {
562 #if VERIFY_HEAP
563   if (FLAG_verify_heap) str->StringVerify();
564 #endif
565   ASSERT(begin > 0 || end < str->length());
566 
567   str = String::Flatten(str);
568 
569   int length = end - begin;
570   if (length <= 0) return empty_string();
571   if (length == 1) {
572     return LookupSingleCharacterStringFromCode(str->Get(begin));
573   }
574   if (length == 2) {
575     // Optimization for 2-byte strings often used as keys in a decompression
576     // dictionary.  Check whether we already have the string in the string
577     // table to prevent creation of many unnecessary strings.
578     uint16_t c1 = str->Get(begin);
579     uint16_t c2 = str->Get(begin + 1);
580     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
581   }
582 
583   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
584     if (str->IsOneByteRepresentation()) {
585       Handle<SeqOneByteString> result =
586           NewRawOneByteString(length).ToHandleChecked();
587       uint8_t* dest = result->GetChars();
588       DisallowHeapAllocation no_gc;
589       String::WriteToFlat(*str, dest, begin, end);
590       return result;
591     } else {
592       Handle<SeqTwoByteString> result =
593           NewRawTwoByteString(length).ToHandleChecked();
594       uc16* dest = result->GetChars();
595       DisallowHeapAllocation no_gc;
596       String::WriteToFlat(*str, dest, begin, end);
597       return result;
598     }
599   }
600 
601   int offset = begin;
602 
603   if (str->IsSlicedString()) {
604     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
605     str = Handle<String>(slice->parent(), isolate());
606     offset += slice->offset();
607   }
608 
609   ASSERT(str->IsSeqString() || str->IsExternalString());
610   Handle<Map> map = str->IsOneByteRepresentation() ? sliced_ascii_string_map()
611                                                    : sliced_string_map();
612   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
613 
614   slice->set_hash_field(String::kEmptyHashField);
615   slice->set_length(length);
616   slice->set_parent(*str);
617   slice->set_offset(offset);
618   return slice;
619 }
620 
621 
NewExternalStringFromAscii(const ExternalAsciiString::Resource * resource)622 MaybeHandle<String> Factory::NewExternalStringFromAscii(
623     const ExternalAsciiString::Resource* resource) {
624   size_t length = resource->length();
625   if (length > static_cast<size_t>(String::kMaxLength)) {
626     return isolate()->Throw<String>(NewInvalidStringLengthError());
627   }
628 
629   Handle<Map> map = external_ascii_string_map();
630   Handle<ExternalAsciiString> external_string =
631       New<ExternalAsciiString>(map, NEW_SPACE);
632   external_string->set_length(static_cast<int>(length));
633   external_string->set_hash_field(String::kEmptyHashField);
634   external_string->set_resource(resource);
635 
636   return external_string;
637 }
638 
639 
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)640 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
641     const ExternalTwoByteString::Resource* resource) {
642   size_t length = resource->length();
643   if (length > static_cast<size_t>(String::kMaxLength)) {
644     return isolate()->Throw<String>(NewInvalidStringLengthError());
645   }
646 
647   // For small strings we check whether the resource contains only
648   // one byte characters.  If yes, we use a different string map.
649   static const size_t kOneByteCheckLengthLimit = 32;
650   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
651       String::IsOneByte(resource->data(), static_cast<int>(length));
652   Handle<Map> map = is_one_byte ?
653       external_string_with_one_byte_data_map() : external_string_map();
654   Handle<ExternalTwoByteString> external_string =
655       New<ExternalTwoByteString>(map, NEW_SPACE);
656   external_string->set_length(static_cast<int>(length));
657   external_string->set_hash_field(String::kEmptyHashField);
658   external_string->set_resource(resource);
659 
660   return external_string;
661 }
662 
663 
NewSymbol()664 Handle<Symbol> Factory::NewSymbol() {
665   CALL_HEAP_FUNCTION(
666       isolate(),
667       isolate()->heap()->AllocateSymbol(),
668       Symbol);
669 }
670 
671 
NewPrivateSymbol()672 Handle<Symbol> Factory::NewPrivateSymbol() {
673   Handle<Symbol> symbol = NewSymbol();
674   symbol->set_is_private(true);
675   return symbol;
676 }
677 
678 
NewNativeContext()679 Handle<Context> Factory::NewNativeContext() {
680   Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
681   array->set_map_no_write_barrier(*native_context_map());
682   Handle<Context> context = Handle<Context>::cast(array);
683   context->set_js_array_maps(*undefined_value());
684   ASSERT(context->IsNativeContext());
685   return context;
686 }
687 
688 
NewGlobalContext(Handle<JSFunction> function,Handle<ScopeInfo> scope_info)689 Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
690                                           Handle<ScopeInfo> scope_info) {
691   Handle<FixedArray> array =
692       NewFixedArray(scope_info->ContextLength(), TENURED);
693   array->set_map_no_write_barrier(*global_context_map());
694   Handle<Context> context = Handle<Context>::cast(array);
695   context->set_closure(*function);
696   context->set_previous(function->context());
697   context->set_extension(*scope_info);
698   context->set_global_object(function->context()->global_object());
699   ASSERT(context->IsGlobalContext());
700   return context;
701 }
702 
703 
NewModuleContext(Handle<ScopeInfo> scope_info)704 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
705   Handle<FixedArray> array =
706       NewFixedArray(scope_info->ContextLength(), TENURED);
707   array->set_map_no_write_barrier(*module_context_map());
708   // Instance link will be set later.
709   Handle<Context> context = Handle<Context>::cast(array);
710   context->set_extension(Smi::FromInt(0));
711   return context;
712 }
713 
714 
NewFunctionContext(int length,Handle<JSFunction> function)715 Handle<Context> Factory::NewFunctionContext(int length,
716                                             Handle<JSFunction> function) {
717   ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
718   Handle<FixedArray> array = NewFixedArray(length);
719   array->set_map_no_write_barrier(*function_context_map());
720   Handle<Context> context = Handle<Context>::cast(array);
721   context->set_closure(*function);
722   context->set_previous(function->context());
723   context->set_extension(Smi::FromInt(0));
724   context->set_global_object(function->context()->global_object());
725   return context;
726 }
727 
728 
NewCatchContext(Handle<JSFunction> function,Handle<Context> previous,Handle<String> name,Handle<Object> thrown_object)729 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
730                                          Handle<Context> previous,
731                                          Handle<String> name,
732                                          Handle<Object> thrown_object) {
733   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
734   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
735   array->set_map_no_write_barrier(*catch_context_map());
736   Handle<Context> context = Handle<Context>::cast(array);
737   context->set_closure(*function);
738   context->set_previous(*previous);
739   context->set_extension(*name);
740   context->set_global_object(previous->global_object());
741   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
742   return context;
743 }
744 
745 
NewWithContext(Handle<JSFunction> function,Handle<Context> previous,Handle<JSReceiver> extension)746 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
747                                         Handle<Context> previous,
748                                         Handle<JSReceiver> extension) {
749   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
750   array->set_map_no_write_barrier(*with_context_map());
751   Handle<Context> context = Handle<Context>::cast(array);
752   context->set_closure(*function);
753   context->set_previous(*previous);
754   context->set_extension(*extension);
755   context->set_global_object(previous->global_object());
756   return context;
757 }
758 
759 
NewBlockContext(Handle<JSFunction> function,Handle<Context> previous,Handle<ScopeInfo> scope_info)760 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
761                                          Handle<Context> previous,
762                                          Handle<ScopeInfo> scope_info) {
763   Handle<FixedArray> array =
764       NewFixedArrayWithHoles(scope_info->ContextLength());
765   array->set_map_no_write_barrier(*block_context_map());
766   Handle<Context> context = Handle<Context>::cast(array);
767   context->set_closure(*function);
768   context->set_previous(*previous);
769   context->set_extension(*scope_info);
770   context->set_global_object(previous->global_object());
771   return context;
772 }
773 
774 
NewStruct(InstanceType type)775 Handle<Struct> Factory::NewStruct(InstanceType type) {
776   CALL_HEAP_FUNCTION(
777       isolate(),
778       isolate()->heap()->AllocateStruct(type),
779       Struct);
780 }
781 
782 
NewCodeCache()783 Handle<CodeCache> Factory::NewCodeCache() {
784   Handle<CodeCache> code_cache =
785       Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
786   code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
787   code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
788   return code_cache;
789 }
790 
791 
NewAliasedArgumentsEntry(int aliased_context_slot)792 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
793     int aliased_context_slot) {
794   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
795       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
796   entry->set_aliased_context_slot(aliased_context_slot);
797   return entry;
798 }
799 
800 
NewDeclaredAccessorDescriptor()801 Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
802   return Handle<DeclaredAccessorDescriptor>::cast(
803       NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
804 }
805 
806 
NewDeclaredAccessorInfo()807 Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
808   Handle<DeclaredAccessorInfo> info =
809       Handle<DeclaredAccessorInfo>::cast(
810           NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
811   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
812   return info;
813 }
814 
815 
NewExecutableAccessorInfo()816 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
817   Handle<ExecutableAccessorInfo> info =
818       Handle<ExecutableAccessorInfo>::cast(
819           NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
820   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
821   return info;
822 }
823 
824 
NewScript(Handle<String> source)825 Handle<Script> Factory::NewScript(Handle<String> source) {
826   // Generate id for this script.
827   Heap* heap = isolate()->heap();
828   int id = heap->last_script_id()->value() + 1;
829   if (!Smi::IsValid(id) || id < 0) id = 1;
830   heap->set_last_script_id(Smi::FromInt(id));
831 
832   // Create and initialize script object.
833   Handle<Foreign> wrapper = NewForeign(0, TENURED);
834   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
835   script->set_source(*source);
836   script->set_name(heap->undefined_value());
837   script->set_id(Smi::FromInt(id));
838   script->set_line_offset(Smi::FromInt(0));
839   script->set_column_offset(Smi::FromInt(0));
840   script->set_context_data(heap->undefined_value());
841   script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
842   script->set_wrapper(*wrapper);
843   script->set_line_ends(heap->undefined_value());
844   script->set_eval_from_shared(heap->undefined_value());
845   script->set_eval_from_instructions_offset(Smi::FromInt(0));
846   script->set_flags(Smi::FromInt(0));
847 
848   return script;
849 }
850 
851 
NewForeign(Address addr,PretenureFlag pretenure)852 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
853   CALL_HEAP_FUNCTION(isolate(),
854                      isolate()->heap()->AllocateForeign(addr, pretenure),
855                      Foreign);
856 }
857 
858 
NewForeign(const AccessorDescriptor * desc)859 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
860   return NewForeign((Address) desc, TENURED);
861 }
862 
863 
NewByteArray(int length,PretenureFlag pretenure)864 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
865   ASSERT(0 <= length);
866   CALL_HEAP_FUNCTION(
867       isolate(),
868       isolate()->heap()->AllocateByteArray(length, pretenure),
869       ByteArray);
870 }
871 
872 
NewExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)873 Handle<ExternalArray> Factory::NewExternalArray(int length,
874                                                 ExternalArrayType array_type,
875                                                 void* external_pointer,
876                                                 PretenureFlag pretenure) {
877   ASSERT(0 <= length && length <= Smi::kMaxValue);
878   CALL_HEAP_FUNCTION(
879       isolate(),
880       isolate()->heap()->AllocateExternalArray(length,
881                                                array_type,
882                                                external_pointer,
883                                                pretenure),
884       ExternalArray);
885 }
886 
887 
NewFixedTypedArray(int length,ExternalArrayType array_type,PretenureFlag pretenure)888 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
889     int length,
890     ExternalArrayType array_type,
891     PretenureFlag pretenure) {
892   ASSERT(0 <= length && length <= Smi::kMaxValue);
893   CALL_HEAP_FUNCTION(
894       isolate(),
895       isolate()->heap()->AllocateFixedTypedArray(length,
896                                                  array_type,
897                                                  pretenure),
898       FixedTypedArrayBase);
899 }
900 
901 
NewCell(Handle<Object> value)902 Handle<Cell> Factory::NewCell(Handle<Object> value) {
903   AllowDeferredHandleDereference convert_to_cell;
904   CALL_HEAP_FUNCTION(
905       isolate(),
906       isolate()->heap()->AllocateCell(*value),
907       Cell);
908 }
909 
910 
NewPropertyCellWithHole()911 Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
912   CALL_HEAP_FUNCTION(
913       isolate(),
914       isolate()->heap()->AllocatePropertyCell(),
915       PropertyCell);
916 }
917 
918 
NewPropertyCell(Handle<Object> value)919 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
920   AllowDeferredHandleDereference convert_to_cell;
921   Handle<PropertyCell> cell = NewPropertyCellWithHole();
922   PropertyCell::SetValueInferType(cell, value);
923   return cell;
924 }
925 
926 
NewAllocationSite()927 Handle<AllocationSite> Factory::NewAllocationSite() {
928   Handle<Map> map = allocation_site_map();
929   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
930   site->Initialize();
931 
932   // Link the site
933   site->set_weak_next(isolate()->heap()->allocation_sites_list());
934   isolate()->heap()->set_allocation_sites_list(*site);
935   return site;
936 }
937 
938 
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind)939 Handle<Map> Factory::NewMap(InstanceType type,
940                             int instance_size,
941                             ElementsKind elements_kind) {
942   CALL_HEAP_FUNCTION(
943       isolate(),
944       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
945       Map);
946 }
947 
948 
CopyJSObject(Handle<JSObject> object)949 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
950   CALL_HEAP_FUNCTION(isolate(),
951                      isolate()->heap()->CopyJSObject(*object, NULL),
952                      JSObject);
953 }
954 
955 
CopyJSObjectWithAllocationSite(Handle<JSObject> object,Handle<AllocationSite> site)956 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
957     Handle<JSObject> object,
958     Handle<AllocationSite> site) {
959   CALL_HEAP_FUNCTION(isolate(),
960                      isolate()->heap()->CopyJSObject(
961                          *object,
962                          site.is_null() ? NULL : *site),
963                      JSObject);
964 }
965 
966 
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)967 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
968                                                   Handle<Map> map) {
969   CALL_HEAP_FUNCTION(isolate(),
970                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
971                      FixedArray);
972 }
973 
974 
CopyFixedArray(Handle<FixedArray> array)975 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
976   CALL_HEAP_FUNCTION(isolate(),
977                      isolate()->heap()->CopyFixedArray(*array),
978                      FixedArray);
979 }
980 
981 
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)982 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
983     Handle<FixedArray> array) {
984   ASSERT(isolate()->heap()->InNewSpace(*array));
985   CALL_HEAP_FUNCTION(isolate(),
986                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
987                      FixedArray);
988 }
989 
990 
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)991 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
992     Handle<FixedDoubleArray> array) {
993   CALL_HEAP_FUNCTION(isolate(),
994                      isolate()->heap()->CopyFixedDoubleArray(*array),
995                      FixedDoubleArray);
996 }
997 
998 
CopyConstantPoolArray(Handle<ConstantPoolArray> array)999 Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1000     Handle<ConstantPoolArray> array) {
1001   CALL_HEAP_FUNCTION(isolate(),
1002                      isolate()->heap()->CopyConstantPoolArray(*array),
1003                      ConstantPoolArray);
1004 }
1005 
1006 
NewNumber(double value,PretenureFlag pretenure)1007 Handle<Object> Factory::NewNumber(double value,
1008                                   PretenureFlag pretenure) {
1009   // We need to distinguish the minus zero value and this cannot be
1010   // done after conversion to int. Doing this by comparing bit
1011   // patterns is faster than using fpclassify() et al.
1012   if (IsMinusZero(value)) return NewHeapNumber(-0.0, pretenure);
1013 
1014   int int_value = FastD2I(value);
1015   if (value == int_value && Smi::IsValid(int_value)) {
1016     return handle(Smi::FromInt(int_value), isolate());
1017   }
1018 
1019   // Materialize the value in the heap.
1020   return NewHeapNumber(value, pretenure);
1021 }
1022 
1023 
NewNumberFromInt(int32_t value,PretenureFlag pretenure)1024 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1025                                          PretenureFlag pretenure) {
1026   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1027   // Bypass NumberFromDouble to avoid various redundant checks.
1028   return NewHeapNumber(FastI2D(value), pretenure);
1029 }
1030 
1031 
NewNumberFromUint(uint32_t value,PretenureFlag pretenure)1032 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1033                                           PretenureFlag pretenure) {
1034   int32_t int32v = static_cast<int32_t>(value);
1035   if (int32v >= 0 && Smi::IsValid(int32v)) {
1036     return handle(Smi::FromInt(int32v), isolate());
1037   }
1038   return NewHeapNumber(FastUI2D(value), pretenure);
1039 }
1040 
1041 
NewHeapNumber(double value,PretenureFlag pretenure)1042 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1043                                           PretenureFlag pretenure) {
1044   CALL_HEAP_FUNCTION(
1045       isolate(),
1046       isolate()->heap()->AllocateHeapNumber(value, pretenure), HeapNumber);
1047 }
1048 
1049 
NewTypeError(const char * message,Vector<Handle<Object>> args)1050 Handle<Object> Factory::NewTypeError(const char* message,
1051                                      Vector< Handle<Object> > args) {
1052   return NewError("MakeTypeError", message, args);
1053 }
1054 
1055 
NewTypeError(Handle<String> message)1056 Handle<Object> Factory::NewTypeError(Handle<String> message) {
1057   return NewError("$TypeError", message);
1058 }
1059 
1060 
NewRangeError(const char * message,Vector<Handle<Object>> args)1061 Handle<Object> Factory::NewRangeError(const char* message,
1062                                       Vector< Handle<Object> > args) {
1063   return NewError("MakeRangeError", message, args);
1064 }
1065 
1066 
NewRangeError(Handle<String> message)1067 Handle<Object> Factory::NewRangeError(Handle<String> message) {
1068   return NewError("$RangeError", message);
1069 }
1070 
1071 
NewSyntaxError(const char * message,Handle<JSArray> args)1072 Handle<Object> Factory::NewSyntaxError(const char* message,
1073                                        Handle<JSArray> args) {
1074   return NewError("MakeSyntaxError", message, args);
1075 }
1076 
1077 
NewSyntaxError(Handle<String> message)1078 Handle<Object> Factory::NewSyntaxError(Handle<String> message) {
1079   return NewError("$SyntaxError", message);
1080 }
1081 
1082 
NewReferenceError(const char * message,Vector<Handle<Object>> args)1083 Handle<Object> Factory::NewReferenceError(const char* message,
1084                                           Vector< Handle<Object> > args) {
1085   return NewError("MakeReferenceError", message, args);
1086 }
1087 
1088 
NewReferenceError(const char * message,Handle<JSArray> args)1089 Handle<Object> Factory::NewReferenceError(const char* message,
1090                                           Handle<JSArray> args) {
1091   return NewError("MakeReferenceError", message, args);
1092 }
1093 
1094 
NewReferenceError(Handle<String> message)1095 Handle<Object> Factory::NewReferenceError(Handle<String> message) {
1096   return NewError("$ReferenceError", message);
1097 }
1098 
1099 
NewError(const char * maker,const char * message,Vector<Handle<Object>> args)1100 Handle<Object> Factory::NewError(const char* maker,
1101                                  const char* message,
1102                                  Vector< Handle<Object> > args) {
1103   // Instantiate a closeable HandleScope for EscapeFrom.
1104   v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1105   Handle<FixedArray> array = NewFixedArray(args.length());
1106   for (int i = 0; i < args.length(); i++) {
1107     array->set(i, *args[i]);
1108   }
1109   Handle<JSArray> object = NewJSArrayWithElements(array);
1110   Handle<Object> result = NewError(maker, message, object);
1111   return result.EscapeFrom(&scope);
1112 }
1113 
1114 
NewEvalError(const char * message,Vector<Handle<Object>> args)1115 Handle<Object> Factory::NewEvalError(const char* message,
1116                                      Vector< Handle<Object> > args) {
1117   return NewError("MakeEvalError", message, args);
1118 }
1119 
1120 
NewError(const char * message,Vector<Handle<Object>> args)1121 Handle<Object> Factory::NewError(const char* message,
1122                                  Vector< Handle<Object> > args) {
1123   return NewError("MakeError", message, args);
1124 }
1125 
1126 
EmergencyNewError(const char * message,Handle<JSArray> args)1127 Handle<String> Factory::EmergencyNewError(const char* message,
1128                                           Handle<JSArray> args) {
1129   const int kBufferSize = 1000;
1130   char buffer[kBufferSize];
1131   size_t space = kBufferSize;
1132   char* p = &buffer[0];
1133 
1134   Vector<char> v(buffer, kBufferSize);
1135   StrNCpy(v, message, space);
1136   space -= Min(space, strlen(message));
1137   p = &buffer[kBufferSize] - space;
1138 
1139   for (unsigned i = 0; i < ARRAY_SIZE(args); i++) {
1140     if (space > 0) {
1141       *p++ = ' ';
1142       space--;
1143       if (space > 0) {
1144         Handle<String> arg_str = Handle<String>::cast(
1145             Object::GetElement(isolate(), args, i).ToHandleChecked());
1146         SmartArrayPointer<char> arg = arg_str->ToCString();
1147         Vector<char> v2(p, static_cast<int>(space));
1148         StrNCpy(v2, arg.get(), space);
1149         space -= Min(space, strlen(arg.get()));
1150         p = &buffer[kBufferSize] - space;
1151       }
1152     }
1153   }
1154   if (space > 0) {
1155     *p = '\0';
1156   } else {
1157     buffer[kBufferSize - 1] = '\0';
1158   }
1159   return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1160 }
1161 
1162 
NewError(const char * maker,const char * message,Handle<JSArray> args)1163 Handle<Object> Factory::NewError(const char* maker,
1164                                  const char* message,
1165                                  Handle<JSArray> args) {
1166   Handle<String> make_str = InternalizeUtf8String(maker);
1167   Handle<Object> fun_obj = Object::GetProperty(
1168       isolate()->js_builtins_object(), make_str).ToHandleChecked();
1169   // If the builtins haven't been properly configured yet this error
1170   // constructor may not have been defined.  Bail out.
1171   if (!fun_obj->IsJSFunction()) {
1172     return EmergencyNewError(message, args);
1173   }
1174   Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1175   Handle<Object> message_obj = InternalizeUtf8String(message);
1176   Handle<Object> argv[] = { message_obj, args };
1177 
1178   // Invoke the JavaScript factory method. If an exception is thrown while
1179   // running the factory method, use the exception as the result.
1180   Handle<Object> result;
1181   Handle<Object> exception;
1182   if (!Execution::TryCall(fun,
1183                           isolate()->js_builtins_object(),
1184                           ARRAY_SIZE(argv),
1185                           argv,
1186                           &exception).ToHandle(&result)) {
1187     return exception;
1188   }
1189   return result;
1190 }
1191 
1192 
NewError(Handle<String> message)1193 Handle<Object> Factory::NewError(Handle<String> message) {
1194   return NewError("$Error", message);
1195 }
1196 
1197 
NewError(const char * constructor,Handle<String> message)1198 Handle<Object> Factory::NewError(const char* constructor,
1199                                  Handle<String> message) {
1200   Handle<String> constr = InternalizeUtf8String(constructor);
1201   Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1202       isolate()->js_builtins_object(), constr).ToHandleChecked());
1203   Handle<Object> argv[] = { message };
1204 
1205   // Invoke the JavaScript factory method. If an exception is thrown while
1206   // running the factory method, use the exception as the result.
1207   Handle<Object> result;
1208   Handle<Object> exception;
1209   if (!Execution::TryCall(fun,
1210                           isolate()->js_builtins_object(),
1211                           ARRAY_SIZE(argv),
1212                           argv,
1213                           &exception).ToHandle(&result)) {
1214     return exception;
1215   }
1216   return result;
1217 }
1218 
1219 
InitializeFunction(Handle<JSFunction> function,Handle<SharedFunctionInfo> info,Handle<Context> context)1220 void Factory::InitializeFunction(Handle<JSFunction> function,
1221                                  Handle<SharedFunctionInfo> info,
1222                                  Handle<Context> context) {
1223   function->initialize_properties();
1224   function->initialize_elements();
1225   function->set_shared(*info);
1226   function->set_code(info->code());
1227   function->set_context(*context);
1228   function->set_prototype_or_initial_map(*the_hole_value());
1229   function->set_literals_or_bindings(*empty_fixed_array());
1230   function->set_next_function_link(*undefined_value());
1231 }
1232 
1233 
NewFunction(Handle<Map> map,Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1234 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1235                                         Handle<SharedFunctionInfo> info,
1236                                         Handle<Context> context,
1237                                         PretenureFlag pretenure) {
1238   AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1239   Handle<JSFunction> result = New<JSFunction>(map, space);
1240   InitializeFunction(result, info, context);
1241   return result;
1242 }
1243 
1244 
NewFunction(Handle<Map> map,Handle<String> name,MaybeHandle<Code> code)1245 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1246                                         Handle<String> name,
1247                                         MaybeHandle<Code> code) {
1248   Handle<Context> context(isolate()->context()->native_context());
1249   Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1250   ASSERT((info->strict_mode() == SLOPPY) &&
1251          (map.is_identical_to(isolate()->sloppy_function_map()) ||
1252           map.is_identical_to(
1253               isolate()->sloppy_function_without_prototype_map()) ||
1254           map.is_identical_to(
1255               isolate()->sloppy_function_with_readonly_prototype_map())));
1256   return NewFunction(map, info, context);
1257 }
1258 
1259 
NewFunction(Handle<String> name)1260 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1261   return NewFunction(
1262       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1263 }
1264 
1265 
NewFunctionWithoutPrototype(Handle<String> name,Handle<Code> code)1266 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1267                                                         Handle<Code> code) {
1268   return NewFunction(
1269       isolate()->sloppy_function_without_prototype_map(), name, code);
1270 }
1271 
1272 
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,bool read_only_prototype)1273 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1274                                         Handle<Code> code,
1275                                         Handle<Object> prototype,
1276                                         bool read_only_prototype) {
1277   Handle<Map> map = read_only_prototype
1278       ? isolate()->sloppy_function_with_readonly_prototype_map()
1279       : isolate()->sloppy_function_map();
1280   Handle<JSFunction> result = NewFunction(map, name, code);
1281   result->set_prototype_or_initial_map(*prototype);
1282   return result;
1283 }
1284 
1285 
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,InstanceType type,int instance_size,bool read_only_prototype)1286 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1287                                         Handle<Code> code,
1288                                         Handle<Object> prototype,
1289                                         InstanceType type,
1290                                         int instance_size,
1291                                         bool read_only_prototype) {
1292   // Allocate the function
1293   Handle<JSFunction> function = NewFunction(
1294       name, code, prototype, read_only_prototype);
1295 
1296   Handle<Map> initial_map = NewMap(
1297       type, instance_size, GetInitialFastElementsKind());
1298   if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1299     prototype = NewFunctionPrototype(function);
1300   }
1301   initial_map->set_prototype(*prototype);
1302   function->set_initial_map(*initial_map);
1303   initial_map->set_constructor(*function);
1304 
1305   return function;
1306 }
1307 
1308 
NewFunction(Handle<String> name,Handle<Code> code,InstanceType type,int instance_size)1309 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1310                                         Handle<Code> code,
1311                                         InstanceType type,
1312                                         int instance_size) {
1313   return NewFunction(name, code, the_hole_value(), type, instance_size);
1314 }
1315 
1316 
NewFunctionPrototype(Handle<JSFunction> function)1317 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1318   // Make sure to use globals from the function's context, since the function
1319   // can be from a different context.
1320   Handle<Context> native_context(function->context()->native_context());
1321   Handle<Map> new_map;
1322   if (function->shared()->is_generator()) {
1323     // Generator prototypes can share maps since they don't have "constructor"
1324     // properties.
1325     new_map = handle(native_context->generator_object_prototype_map());
1326   } else {
1327     // Each function prototype gets a fresh map to avoid unwanted sharing of
1328     // maps between prototypes of different constructors.
1329     Handle<JSFunction> object_function(native_context->object_function());
1330     ASSERT(object_function->has_initial_map());
1331     new_map = Map::Copy(handle(object_function->initial_map()));
1332   }
1333 
1334   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1335 
1336   if (!function->shared()->is_generator()) {
1337     JSObject::SetOwnPropertyIgnoreAttributes(prototype,
1338                                              constructor_string(),
1339                                              function,
1340                                              DONT_ENUM).Assert();
1341   }
1342 
1343   return prototype;
1344 }
1345 
1346 
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1347 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1348     Handle<SharedFunctionInfo> info,
1349     Handle<Context> context,
1350     PretenureFlag pretenure) {
1351   int map_index = Context::FunctionMapIndex(info->strict_mode(),
1352                                             info->is_generator());
1353   Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1354   Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1355 
1356   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1357     info->ResetForNewContext(isolate()->heap()->global_ic_age());
1358   }
1359 
1360   int index = info->SearchOptimizedCodeMap(context->native_context(),
1361                                            BailoutId::None());
1362   if (!info->bound() && index < 0) {
1363     int number_of_literals = info->num_literals();
1364     Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1365     if (number_of_literals > 0) {
1366       // Store the native context in the literals array prefix. This
1367       // context will be used when creating object, regexp and array
1368       // literals in this function.
1369       literals->set(JSFunction::kLiteralNativeContextIndex,
1370                     context->native_context());
1371     }
1372     result->set_literals(*literals);
1373   }
1374 
1375   if (index > 0) {
1376     // Caching of optimized code enabled and optimized code found.
1377     FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1378     if (literals != NULL) result->set_literals(literals);
1379     Code* code = info->GetCodeFromOptimizedCodeMap(index);
1380     ASSERT(!code->marked_for_deoptimization());
1381     result->ReplaceCode(code);
1382     return result;
1383   }
1384 
1385   if (isolate()->use_crankshaft() &&
1386       FLAG_always_opt &&
1387       result->is_compiled() &&
1388       !info->is_toplevel() &&
1389       info->allows_lazy_compilation() &&
1390       !info->optimization_disabled() &&
1391       !isolate()->DebuggerHasBreakPoints()) {
1392     result->MarkForOptimization();
1393   }
1394   return result;
1395 }
1396 
1397 
NewIteratorResultObject(Handle<Object> value,bool done)1398 Handle<JSObject> Factory::NewIteratorResultObject(Handle<Object> value,
1399                                                      bool done) {
1400   Handle<Map> map(isolate()->native_context()->iterator_result_map());
1401   Handle<JSObject> result = NewJSObjectFromMap(map, NOT_TENURED, false);
1402   result->InObjectPropertyAtPut(
1403       JSGeneratorObject::kResultValuePropertyIndex, *value);
1404   result->InObjectPropertyAtPut(
1405       JSGeneratorObject::kResultDonePropertyIndex, *ToBoolean(done));
1406   return result;
1407 }
1408 
1409 
NewScopeInfo(int length)1410 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1411   Handle<FixedArray> array = NewFixedArray(length, TENURED);
1412   array->set_map_no_write_barrier(*scope_info_map());
1413   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1414   return scope_info;
1415 }
1416 
1417 
NewExternal(void * value)1418 Handle<JSObject> Factory::NewExternal(void* value) {
1419   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1420   Handle<JSObject> external = NewJSObjectFromMap(external_map());
1421   external->SetInternalField(0, *foreign);
1422   return external;
1423 }
1424 
1425 
NewCodeRaw(int object_size,bool immovable)1426 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1427   CALL_HEAP_FUNCTION(isolate(),
1428                      isolate()->heap()->AllocateCode(object_size, immovable),
1429                      Code);
1430 }
1431 
1432 
NewCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_ref,bool immovable,bool crankshafted,int prologue_offset,bool is_debug)1433 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1434                               Code::Flags flags,
1435                               Handle<Object> self_ref,
1436                               bool immovable,
1437                               bool crankshafted,
1438                               int prologue_offset,
1439                               bool is_debug) {
1440   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1441   Handle<ConstantPoolArray> constant_pool =
1442       desc.origin->NewConstantPool(isolate());
1443 
1444   // Compute size.
1445   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1446   int obj_size = Code::SizeFor(body_size);
1447 
1448   Handle<Code> code = NewCodeRaw(obj_size, immovable);
1449   ASSERT(isolate()->code_range() == NULL ||
1450          !isolate()->code_range()->valid() ||
1451          isolate()->code_range()->contains(code->address()));
1452 
1453   // The code object has not been fully initialized yet.  We rely on the
1454   // fact that no allocation will happen from this point on.
1455   DisallowHeapAllocation no_gc;
1456   code->set_gc_metadata(Smi::FromInt(0));
1457   code->set_ic_age(isolate()->heap()->global_ic_age());
1458   code->set_instruction_size(desc.instr_size);
1459   code->set_relocation_info(*reloc_info);
1460   code->set_flags(flags);
1461   code->set_raw_kind_specific_flags1(0);
1462   code->set_raw_kind_specific_flags2(0);
1463   code->set_is_crankshafted(crankshafted);
1464   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1465   code->set_raw_type_feedback_info(*undefined_value());
1466   code->set_next_code_link(*undefined_value());
1467   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1468   code->set_prologue_offset(prologue_offset);
1469   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1470     code->set_marked_for_deoptimization(false);
1471   }
1472 
1473   if (is_debug) {
1474     ASSERT(code->kind() == Code::FUNCTION);
1475     code->set_has_debug_break_slots(true);
1476   }
1477 
1478   desc.origin->PopulateConstantPool(*constant_pool);
1479   code->set_constant_pool(*constant_pool);
1480 
1481   // Allow self references to created code object by patching the handle to
1482   // point to the newly allocated Code object.
1483   if (!self_ref.is_null()) *(self_ref.location()) = *code;
1484 
1485   // Migrate generated code.
1486   // The generated code can contain Object** values (typically from handles)
1487   // that are dereferenced during the copy to point directly to the actual heap
1488   // objects. These pointers can include references to the code object itself,
1489   // through the self_reference parameter.
1490   code->CopyFrom(desc);
1491 
1492 #ifdef VERIFY_HEAP
1493   if (FLAG_verify_heap) code->ObjectVerify();
1494 #endif
1495   return code;
1496 }
1497 
1498 
CopyCode(Handle<Code> code)1499 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1500   CALL_HEAP_FUNCTION(isolate(),
1501                      isolate()->heap()->CopyCode(*code),
1502                      Code);
1503 }
1504 
1505 
CopyCode(Handle<Code> code,Vector<byte> reloc_info)1506 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1507   CALL_HEAP_FUNCTION(isolate(),
1508                      isolate()->heap()->CopyCode(*code, reloc_info),
1509                      Code);
1510 }
1511 
1512 
NewJSObject(Handle<JSFunction> constructor,PretenureFlag pretenure)1513 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1514                                       PretenureFlag pretenure) {
1515   JSFunction::EnsureHasInitialMap(constructor);
1516   CALL_HEAP_FUNCTION(
1517       isolate(),
1518       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1519 }
1520 
1521 
NewJSObjectWithMemento(Handle<JSFunction> constructor,Handle<AllocationSite> site)1522 Handle<JSObject> Factory::NewJSObjectWithMemento(
1523     Handle<JSFunction> constructor,
1524     Handle<AllocationSite> site) {
1525   JSFunction::EnsureHasInitialMap(constructor);
1526   CALL_HEAP_FUNCTION(
1527       isolate(),
1528       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1529       JSObject);
1530 }
1531 
1532 
NewJSModule(Handle<Context> context,Handle<ScopeInfo> scope_info)1533 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1534                                       Handle<ScopeInfo> scope_info) {
1535   // Allocate a fresh map. Modules do not have a prototype.
1536   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1537   // Allocate the object based on the map.
1538   Handle<JSModule> module =
1539       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1540   module->set_context(*context);
1541   module->set_scope_info(*scope_info);
1542   return module;
1543 }
1544 
1545 
NewGlobalObject(Handle<JSFunction> constructor)1546 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1547   ASSERT(constructor->has_initial_map());
1548   Handle<Map> map(constructor->initial_map());
1549   ASSERT(map->is_dictionary_map());
1550 
1551   // Make sure no field properties are described in the initial map.
1552   // This guarantees us that normalizing the properties does not
1553   // require us to change property values to PropertyCells.
1554   ASSERT(map->NextFreePropertyIndex() == 0);
1555 
1556   // Make sure we don't have a ton of pre-allocated slots in the
1557   // global objects. They will be unused once we normalize the object.
1558   ASSERT(map->unused_property_fields() == 0);
1559   ASSERT(map->inobject_properties() == 0);
1560 
1561   // Initial size of the backing store to avoid resize of the storage during
1562   // bootstrapping. The size differs between the JS global object ad the
1563   // builtins object.
1564   int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1565 
1566   // Allocate a dictionary object for backing storage.
1567   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1568   Handle<NameDictionary> dictionary =
1569       NameDictionary::New(isolate(), at_least_space_for);
1570 
1571   // The global object might be created from an object template with accessors.
1572   // Fill these accessors into the dictionary.
1573   Handle<DescriptorArray> descs(map->instance_descriptors());
1574   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1575     PropertyDetails details = descs->GetDetails(i);
1576     ASSERT(details.type() == CALLBACKS);  // Only accessors are expected.
1577     PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1578     Handle<Name> name(descs->GetKey(i));
1579     Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1580     Handle<PropertyCell> cell = NewPropertyCell(value);
1581     // |dictionary| already contains enough space for all properties.
1582     USE(NameDictionary::Add(dictionary, name, cell, d));
1583   }
1584 
1585   // Allocate the global object and initialize it with the backing store.
1586   Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1587   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1588 
1589   // Create a new map for the global object.
1590   Handle<Map> new_map = Map::CopyDropDescriptors(map);
1591   new_map->set_dictionary_map(true);
1592 
1593   // Set up the global object as a normalized object.
1594   global->set_map(*new_map);
1595   global->set_properties(*dictionary);
1596 
1597   // Make sure result is a global object with properties in dictionary.
1598   ASSERT(global->IsGlobalObject() && !global->HasFastProperties());
1599   return global;
1600 }
1601 
1602 
NewJSObjectFromMap(Handle<Map> map,PretenureFlag pretenure,bool alloc_props,Handle<AllocationSite> allocation_site)1603 Handle<JSObject> Factory::NewJSObjectFromMap(
1604     Handle<Map> map,
1605     PretenureFlag pretenure,
1606     bool alloc_props,
1607     Handle<AllocationSite> allocation_site) {
1608   CALL_HEAP_FUNCTION(
1609       isolate(),
1610       isolate()->heap()->AllocateJSObjectFromMap(
1611           *map,
1612           pretenure,
1613           alloc_props,
1614           allocation_site.is_null() ? NULL : *allocation_site),
1615       JSObject);
1616 }
1617 
1618 
NewJSArray(ElementsKind elements_kind,PretenureFlag pretenure)1619 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1620                                     PretenureFlag pretenure) {
1621   Context* native_context = isolate()->context()->native_context();
1622   JSFunction* array_function = native_context->array_function();
1623   Map* map = array_function->initial_map();
1624   Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1625   if (transition_map != NULL) map = transition_map;
1626   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1627 }
1628 
1629 
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)1630 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1631                                     int length,
1632                                     int capacity,
1633                                     ArrayStorageAllocationMode mode,
1634                                     PretenureFlag pretenure) {
1635   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1636   NewJSArrayStorage(array, length, capacity, mode);
1637   return array;
1638 }
1639 
1640 
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,PretenureFlag pretenure)1641 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1642                                                 ElementsKind elements_kind,
1643                                                 int length,
1644                                                 PretenureFlag pretenure) {
1645   ASSERT(length <= elements->length());
1646   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1647 
1648   array->set_elements(*elements);
1649   array->set_length(Smi::FromInt(length));
1650   JSObject::ValidateElements(array);
1651   return array;
1652 }
1653 
1654 
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)1655 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1656                                 int length,
1657                                 int capacity,
1658                                 ArrayStorageAllocationMode mode) {
1659   ASSERT(capacity >= length);
1660 
1661   if (capacity == 0) {
1662     array->set_length(Smi::FromInt(0));
1663     array->set_elements(*empty_fixed_array());
1664     return;
1665   }
1666 
1667   Handle<FixedArrayBase> elms;
1668   ElementsKind elements_kind = array->GetElementsKind();
1669   if (IsFastDoubleElementsKind(elements_kind)) {
1670     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1671       elms = NewFixedDoubleArray(capacity);
1672     } else {
1673       ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1674       elms = NewFixedDoubleArrayWithHoles(capacity);
1675     }
1676   } else {
1677     ASSERT(IsFastSmiOrObjectElementsKind(elements_kind));
1678     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1679       elms = NewUninitializedFixedArray(capacity);
1680     } else {
1681       ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1682       elms = NewFixedArrayWithHoles(capacity);
1683     }
1684   }
1685 
1686   array->set_elements(*elms);
1687   array->set_length(Smi::FromInt(length));
1688 }
1689 
1690 
NewJSGeneratorObject(Handle<JSFunction> function)1691 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1692     Handle<JSFunction> function) {
1693   ASSERT(function->shared()->is_generator());
1694   JSFunction::EnsureHasInitialMap(function);
1695   Handle<Map> map(function->initial_map());
1696   ASSERT(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1697   CALL_HEAP_FUNCTION(
1698       isolate(),
1699       isolate()->heap()->AllocateJSObjectFromMap(*map),
1700       JSGeneratorObject);
1701 }
1702 
1703 
NewJSArrayBuffer()1704 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1705   Handle<JSFunction> array_buffer_fun(
1706       isolate()->context()->native_context()->array_buffer_fun());
1707   CALL_HEAP_FUNCTION(
1708       isolate(),
1709       isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1710       JSArrayBuffer);
1711 }
1712 
1713 
NewJSDataView()1714 Handle<JSDataView> Factory::NewJSDataView() {
1715   Handle<JSFunction> data_view_fun(
1716       isolate()->context()->native_context()->data_view_fun());
1717   CALL_HEAP_FUNCTION(
1718       isolate(),
1719       isolate()->heap()->AllocateJSObject(*data_view_fun),
1720       JSDataView);
1721 }
1722 
1723 
GetTypedArrayFun(ExternalArrayType type,Isolate * isolate)1724 static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1725                                     Isolate* isolate) {
1726   Context* native_context = isolate->context()->native_context();
1727   switch (type) {
1728 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1729     case kExternal##Type##Array:                                              \
1730       return native_context->type##_array_fun();
1731 
1732     TYPED_ARRAYS(TYPED_ARRAY_FUN)
1733 #undef TYPED_ARRAY_FUN
1734 
1735     default:
1736       UNREACHABLE();
1737       return NULL;
1738   }
1739 }
1740 
1741 
NewJSTypedArray(ExternalArrayType type)1742 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1743   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1744 
1745   CALL_HEAP_FUNCTION(
1746       isolate(),
1747       isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1748       JSTypedArray);
1749 }
1750 
1751 
NewJSProxy(Handle<Object> handler,Handle<Object> prototype)1752 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1753                                     Handle<Object> prototype) {
1754   // Allocate map.
1755   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1756   // maps. Will probably depend on the identity of the handler object, too.
1757   Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1758   map->set_prototype(*prototype);
1759 
1760   // Allocate the proxy object.
1761   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1762   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1763   result->set_handler(*handler);
1764   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1765   return result;
1766 }
1767 
1768 
NewJSFunctionProxy(Handle<Object> handler,Handle<Object> call_trap,Handle<Object> construct_trap,Handle<Object> prototype)1769 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1770                                             Handle<Object> call_trap,
1771                                             Handle<Object> construct_trap,
1772                                             Handle<Object> prototype) {
1773   // Allocate map.
1774   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1775   // maps. Will probably depend on the identity of the handler object, too.
1776   Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1777   map->set_prototype(*prototype);
1778 
1779   // Allocate the proxy object.
1780   Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1781   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1782   result->set_handler(*handler);
1783   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1784   result->set_call_trap(*call_trap);
1785   result->set_construct_trap(*construct_trap);
1786   return result;
1787 }
1788 
1789 
ReinitializeJSReceiver(Handle<JSReceiver> object,InstanceType type,int size)1790 void Factory::ReinitializeJSReceiver(Handle<JSReceiver> object,
1791                                      InstanceType type,
1792                                      int size) {
1793   ASSERT(type >= FIRST_JS_OBJECT_TYPE);
1794 
1795   // Allocate fresh map.
1796   // TODO(rossberg): Once we optimize proxies, cache these maps.
1797   Handle<Map> map = NewMap(type, size);
1798 
1799   // Check that the receiver has at least the size of the fresh object.
1800   int size_difference = object->map()->instance_size() - map->instance_size();
1801   ASSERT(size_difference >= 0);
1802 
1803   map->set_prototype(object->map()->prototype());
1804 
1805   // Allocate the backing storage for the properties.
1806   int prop_size = map->InitialPropertiesLength();
1807   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1808 
1809   Heap* heap = isolate()->heap();
1810   MaybeHandle<SharedFunctionInfo> shared;
1811   if (type == JS_FUNCTION_TYPE) {
1812     OneByteStringKey key(STATIC_ASCII_VECTOR("<freezing call trap>"),
1813                          heap->HashSeed());
1814     Handle<String> name = InternalizeStringWithKey(&key);
1815     shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1816   }
1817 
1818   // In order to keep heap in consistent state there must be no allocations
1819   // before object re-initialization is finished and filler object is installed.
1820   DisallowHeapAllocation no_allocation;
1821 
1822   // Reset the map for the object.
1823   object->set_map(*map);
1824   Handle<JSObject> jsobj = Handle<JSObject>::cast(object);
1825 
1826   // Reinitialize the object from the constructor map.
1827   heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1828 
1829   // Functions require some minimal initialization.
1830   if (type == JS_FUNCTION_TYPE) {
1831     map->set_function_with_prototype(true);
1832     Handle<JSFunction> js_function = Handle<JSFunction>::cast(object);
1833     Handle<Context> context(isolate()->context()->native_context());
1834     InitializeFunction(js_function, shared.ToHandleChecked(), context);
1835   }
1836 
1837   // Put in filler if the new object is smaller than the old.
1838   if (size_difference > 0) {
1839     heap->CreateFillerObjectAt(
1840         object->address() + map->instance_size(), size_difference);
1841   }
1842 }
1843 
1844 
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)1845 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1846                                         Handle<JSFunction> constructor) {
1847   ASSERT(constructor->has_initial_map());
1848   Handle<Map> map(constructor->initial_map(), isolate());
1849 
1850   // The proxy's hash should be retained across reinitialization.
1851   Handle<Object> hash(object->hash(), isolate());
1852 
1853   // Check that the already allocated object has the same size and type as
1854   // objects allocated using the constructor.
1855   ASSERT(map->instance_size() == object->map()->instance_size());
1856   ASSERT(map->instance_type() == object->map()->instance_type());
1857 
1858   // Allocate the backing storage for the properties.
1859   int prop_size = map->InitialPropertiesLength();
1860   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1861 
1862   // In order to keep heap in consistent state there must be no allocations
1863   // before object re-initialization is finished.
1864   DisallowHeapAllocation no_allocation;
1865 
1866   // Reset the map for the object.
1867   object->set_map(constructor->initial_map());
1868 
1869   Heap* heap = isolate()->heap();
1870   // Reinitialize the object from the constructor map.
1871   heap->InitializeJSObjectFromMap(*object, *properties, *map);
1872 
1873   // Restore the saved hash.
1874   object->set_hash(*hash);
1875 }
1876 
1877 
BecomeJSObject(Handle<JSReceiver> object)1878 void Factory::BecomeJSObject(Handle<JSReceiver> object) {
1879   ReinitializeJSReceiver(object, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1880 }
1881 
1882 
BecomeJSFunction(Handle<JSReceiver> object)1883 void Factory::BecomeJSFunction(Handle<JSReceiver> object) {
1884   ReinitializeJSReceiver(object, JS_FUNCTION_TYPE, JSFunction::kSize);
1885 }
1886 
1887 
NewTypeFeedbackVector(int slot_count)1888 Handle<FixedArray> Factory::NewTypeFeedbackVector(int slot_count) {
1889   // Ensure we can skip the write barrier
1890   ASSERT_EQ(isolate()->heap()->uninitialized_symbol(),
1891             *TypeFeedbackInfo::UninitializedSentinel(isolate()));
1892 
1893   CALL_HEAP_FUNCTION(
1894       isolate(),
1895       isolate()->heap()->AllocateFixedArrayWithFiller(
1896           slot_count,
1897           TENURED,
1898           *TypeFeedbackInfo::UninitializedSentinel(isolate())),
1899       FixedArray);
1900 }
1901 
1902 
NewSharedFunctionInfo(Handle<String> name,int number_of_literals,bool is_generator,Handle<Code> code,Handle<ScopeInfo> scope_info,Handle<FixedArray> feedback_vector)1903 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1904     Handle<String> name,
1905     int number_of_literals,
1906     bool is_generator,
1907     Handle<Code> code,
1908     Handle<ScopeInfo> scope_info,
1909     Handle<FixedArray> feedback_vector) {
1910   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1911   shared->set_scope_info(*scope_info);
1912   shared->set_feedback_vector(*feedback_vector);
1913   int literals_array_size = number_of_literals;
1914   // If the function contains object, regexp or array literals,
1915   // allocate extra space for a literals array prefix containing the
1916   // context.
1917   if (number_of_literals > 0) {
1918     literals_array_size += JSFunction::kLiteralsPrefixSize;
1919   }
1920   shared->set_num_literals(literals_array_size);
1921   if (is_generator) {
1922     shared->set_instance_class_name(isolate()->heap()->Generator_string());
1923     shared->DisableOptimization(kGenerator);
1924   }
1925   return shared;
1926 }
1927 
1928 
NewJSMessageObject(Handle<String> type,Handle<JSArray> arguments,int start_position,int end_position,Handle<Object> script,Handle<Object> stack_frames)1929 Handle<JSMessageObject> Factory::NewJSMessageObject(
1930     Handle<String> type,
1931     Handle<JSArray> arguments,
1932     int start_position,
1933     int end_position,
1934     Handle<Object> script,
1935     Handle<Object> stack_frames) {
1936   Handle<Map> map = message_object_map();
1937   Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1938   message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1939   message->initialize_elements();
1940   message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1941   message->set_type(*type);
1942   message->set_arguments(*arguments);
1943   message->set_start_position(start_position);
1944   message->set_end_position(end_position);
1945   message->set_script(*script);
1946   message->set_stack_frames(*stack_frames);
1947   return message;
1948 }
1949 
1950 
NewSharedFunctionInfo(Handle<String> name,MaybeHandle<Code> maybe_code)1951 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1952     Handle<String> name,
1953     MaybeHandle<Code> maybe_code) {
1954   Handle<Map> map = shared_function_info_map();
1955   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1956                                                              OLD_POINTER_SPACE);
1957 
1958   // Set pointer fields.
1959   share->set_name(*name);
1960   Handle<Code> code;
1961   if (!maybe_code.ToHandle(&code)) {
1962     code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1963   }
1964   share->set_code(*code);
1965   share->set_optimized_code_map(Smi::FromInt(0));
1966   share->set_scope_info(ScopeInfo::Empty(isolate()));
1967   Code* construct_stub =
1968       isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1969   share->set_construct_stub(construct_stub);
1970   share->set_instance_class_name(*Object_string());
1971   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1972   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1973   share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
1974   share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
1975   share->set_feedback_vector(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1976   share->set_profiler_ticks(0);
1977   share->set_ast_node_count(0);
1978   share->set_counters(0);
1979 
1980   // Set integer fields (smi or int, depending on the architecture).
1981   share->set_length(0);
1982   share->set_formal_parameter_count(0);
1983   share->set_expected_nof_properties(0);
1984   share->set_num_literals(0);
1985   share->set_start_position_and_type(0);
1986   share->set_end_position(0);
1987   share->set_function_token_position(0);
1988   // All compiler hints default to false or 0.
1989   share->set_compiler_hints(0);
1990   share->set_opt_count_and_bailout_reason(0);
1991 
1992   return share;
1993 }
1994 
1995 
NumberCacheHash(Handle<FixedArray> cache,Handle<Object> number)1996 static inline int NumberCacheHash(Handle<FixedArray> cache,
1997                                   Handle<Object> number) {
1998   int mask = (cache->length() >> 1) - 1;
1999   if (number->IsSmi()) {
2000     return Handle<Smi>::cast(number)->value() & mask;
2001   } else {
2002     DoubleRepresentation rep(number->Number());
2003     return
2004         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2005   }
2006 }
2007 
2008 
GetNumberStringCache(Handle<Object> number)2009 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2010   DisallowHeapAllocation no_gc;
2011   int hash = NumberCacheHash(number_string_cache(), number);
2012   Object* key = number_string_cache()->get(hash * 2);
2013   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2014                          key->Number() == number->Number())) {
2015     return Handle<String>(
2016         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2017   }
2018   return undefined_value();
2019 }
2020 
2021 
SetNumberStringCache(Handle<Object> number,Handle<String> string)2022 void Factory::SetNumberStringCache(Handle<Object> number,
2023                                    Handle<String> string) {
2024   int hash = NumberCacheHash(number_string_cache(), number);
2025   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2026     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2027     if (number_string_cache()->length() != full_size) {
2028       // The first time we have a hash collision, we move to the full sized
2029       // number string cache.  The idea is to have a small number string
2030       // cache in the snapshot to keep  boot-time memory usage down.
2031       // If we expand the number string cache already while creating
2032       // the snapshot then that didn't work out.
2033       ASSERT(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2034       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2035       isolate()->heap()->set_number_string_cache(*new_cache);
2036       return;
2037     }
2038   }
2039   number_string_cache()->set(hash * 2, *number);
2040   number_string_cache()->set(hash * 2 + 1, *string);
2041 }
2042 
2043 
NumberToString(Handle<Object> number,bool check_number_string_cache)2044 Handle<String> Factory::NumberToString(Handle<Object> number,
2045                                        bool check_number_string_cache) {
2046   isolate()->counters()->number_to_string_runtime()->Increment();
2047   if (check_number_string_cache) {
2048     Handle<Object> cached = GetNumberStringCache(number);
2049     if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2050   }
2051 
2052   char arr[100];
2053   Vector<char> buffer(arr, ARRAY_SIZE(arr));
2054   const char* str;
2055   if (number->IsSmi()) {
2056     int num = Handle<Smi>::cast(number)->value();
2057     str = IntToCString(num, buffer);
2058   } else {
2059     double num = Handle<HeapNumber>::cast(number)->value();
2060     str = DoubleToCString(num, buffer);
2061   }
2062 
2063   // We tenure the allocated string since it is referenced from the
2064   // number-string cache which lives in the old space.
2065   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2066   SetNumberStringCache(number, js_string);
2067   return js_string;
2068 }
2069 
2070 
NewDebugInfo(Handle<SharedFunctionInfo> shared)2071 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2072   // Get the original code of the function.
2073   Handle<Code> code(shared->code());
2074 
2075   // Create a copy of the code before allocating the debug info object to avoid
2076   // allocation while setting up the debug info object.
2077   Handle<Code> original_code(*Factory::CopyCode(code));
2078 
2079   // Allocate initial fixed array for active break points before allocating the
2080   // debug info object to avoid allocation while setting up the debug info
2081   // object.
2082   Handle<FixedArray> break_points(
2083       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2084 
2085   // Create and set up the debug info object. Debug info contains function, a
2086   // copy of the original code, the executing code and initial fixed array for
2087   // active break points.
2088   Handle<DebugInfo> debug_info =
2089       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2090   debug_info->set_shared(*shared);
2091   debug_info->set_original_code(*original_code);
2092   debug_info->set_code(*code);
2093   debug_info->set_break_points(*break_points);
2094 
2095   // Link debug info to function.
2096   shared->set_debug_info(*debug_info);
2097 
2098   return debug_info;
2099 }
2100 
2101 
NewArgumentsObject(Handle<Object> callee,int length)2102 Handle<JSObject> Factory::NewArgumentsObject(Handle<Object> callee,
2103                                              int length) {
2104   CALL_HEAP_FUNCTION(
2105       isolate(),
2106       isolate()->heap()->AllocateArgumentsObject(*callee, length), JSObject);
2107 }
2108 
2109 
CreateApiFunction(Handle<FunctionTemplateInfo> obj,Handle<Object> prototype,ApiInstanceType instance_type)2110 Handle<JSFunction> Factory::CreateApiFunction(
2111     Handle<FunctionTemplateInfo> obj,
2112     Handle<Object> prototype,
2113     ApiInstanceType instance_type) {
2114   Handle<Code> code = isolate()->builtins()->HandleApiCall();
2115   Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2116 
2117   Handle<JSFunction> result;
2118   if (obj->remove_prototype()) {
2119     result = NewFunctionWithoutPrototype(empty_string(), code);
2120   } else {
2121     int internal_field_count = 0;
2122     if (!obj->instance_template()->IsUndefined()) {
2123       Handle<ObjectTemplateInfo> instance_template =
2124           Handle<ObjectTemplateInfo>(
2125               ObjectTemplateInfo::cast(obj->instance_template()));
2126       internal_field_count =
2127           Smi::cast(instance_template->internal_field_count())->value();
2128     }
2129 
2130     // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2131     // JSObject::GetHeaderSize.
2132     int instance_size = kPointerSize * internal_field_count;
2133     InstanceType type;
2134     switch (instance_type) {
2135       case JavaScriptObject:
2136         type = JS_OBJECT_TYPE;
2137         instance_size += JSObject::kHeaderSize;
2138         break;
2139       case InnerGlobalObject:
2140         type = JS_GLOBAL_OBJECT_TYPE;
2141         instance_size += JSGlobalObject::kSize;
2142         break;
2143       case OuterGlobalObject:
2144         type = JS_GLOBAL_PROXY_TYPE;
2145         instance_size += JSGlobalProxy::kSize;
2146         break;
2147       default:
2148         UNREACHABLE();
2149         type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2150         break;
2151     }
2152 
2153     result = NewFunction(empty_string(), code, prototype, type,
2154                          instance_size, obj->read_only_prototype());
2155   }
2156 
2157   result->shared()->set_length(obj->length());
2158   Handle<Object> class_name(obj->class_name(), isolate());
2159   if (class_name->IsString()) {
2160     result->shared()->set_instance_class_name(*class_name);
2161     result->shared()->set_name(*class_name);
2162   }
2163   result->shared()->set_function_data(*obj);
2164   result->shared()->set_construct_stub(*construct_stub);
2165   result->shared()->DontAdaptArguments();
2166 
2167   if (obj->remove_prototype()) {
2168     ASSERT(result->shared()->IsApiFunction());
2169     ASSERT(!result->has_initial_map());
2170     ASSERT(!result->has_prototype());
2171     return result;
2172   }
2173 
2174   JSObject::SetOwnPropertyIgnoreAttributes(
2175       handle(JSObject::cast(result->prototype())),
2176       constructor_string(),
2177       result,
2178       DONT_ENUM).Assert();
2179 
2180   // Down from here is only valid for API functions that can be used as a
2181   // constructor (don't set the "remove prototype" flag).
2182 
2183   Handle<Map> map(result->initial_map());
2184 
2185   // Mark as undetectable if needed.
2186   if (obj->undetectable()) {
2187     map->set_is_undetectable();
2188   }
2189 
2190   // Mark as hidden for the __proto__ accessor if needed.
2191   if (obj->hidden_prototype()) {
2192     map->set_is_hidden_prototype();
2193   }
2194 
2195   // Mark as needs_access_check if needed.
2196   if (obj->needs_access_check()) {
2197     map->set_is_access_check_needed(true);
2198   }
2199 
2200   // Set interceptor information in the map.
2201   if (!obj->named_property_handler()->IsUndefined()) {
2202     map->set_has_named_interceptor();
2203   }
2204   if (!obj->indexed_property_handler()->IsUndefined()) {
2205     map->set_has_indexed_interceptor();
2206   }
2207 
2208   // Set instance call-as-function information in the map.
2209   if (!obj->instance_call_handler()->IsUndefined()) {
2210     map->set_has_instance_call_handler();
2211   }
2212 
2213   // Recursively copy parent instance templates' accessors,
2214   // 'data' may be modified.
2215   int max_number_of_additional_properties = 0;
2216   int max_number_of_static_properties = 0;
2217   FunctionTemplateInfo* info = *obj;
2218   while (true) {
2219     if (!info->instance_template()->IsUndefined()) {
2220       Object* props =
2221           ObjectTemplateInfo::cast(
2222               info->instance_template())->property_accessors();
2223       if (!props->IsUndefined()) {
2224         Handle<Object> props_handle(props, isolate());
2225         NeanderArray props_array(props_handle);
2226         max_number_of_additional_properties += props_array.length();
2227       }
2228     }
2229     if (!info->property_accessors()->IsUndefined()) {
2230       Object* props = info->property_accessors();
2231       if (!props->IsUndefined()) {
2232         Handle<Object> props_handle(props, isolate());
2233         NeanderArray props_array(props_handle);
2234         max_number_of_static_properties += props_array.length();
2235       }
2236     }
2237     Object* parent = info->parent_template();
2238     if (parent->IsUndefined()) break;
2239     info = FunctionTemplateInfo::cast(parent);
2240   }
2241 
2242   Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2243 
2244   // Use a temporary FixedArray to acculumate static accessors
2245   int valid_descriptors = 0;
2246   Handle<FixedArray> array;
2247   if (max_number_of_static_properties > 0) {
2248     array = NewFixedArray(max_number_of_static_properties);
2249   }
2250 
2251   while (true) {
2252     // Install instance descriptors
2253     if (!obj->instance_template()->IsUndefined()) {
2254       Handle<ObjectTemplateInfo> instance =
2255           Handle<ObjectTemplateInfo>(
2256               ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2257       Handle<Object> props = Handle<Object>(instance->property_accessors(),
2258                                             isolate());
2259       if (!props->IsUndefined()) {
2260         Map::AppendCallbackDescriptors(map, props);
2261       }
2262     }
2263     // Accumulate static accessors
2264     if (!obj->property_accessors()->IsUndefined()) {
2265       Handle<Object> props = Handle<Object>(obj->property_accessors(),
2266                                             isolate());
2267       valid_descriptors =
2268           AccessorInfo::AppendUnique(props, array, valid_descriptors);
2269     }
2270     // Climb parent chain
2271     Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2272     if (parent->IsUndefined()) break;
2273     obj = Handle<FunctionTemplateInfo>::cast(parent);
2274   }
2275 
2276   // Install accumulated static accessors
2277   for (int i = 0; i < valid_descriptors; i++) {
2278     Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2279     JSObject::SetAccessor(result, accessor).Assert();
2280   }
2281 
2282   ASSERT(result->shared()->IsApiFunction());
2283   return result;
2284 }
2285 
2286 
AddToMapCache(Handle<Context> context,Handle<FixedArray> keys,Handle<Map> map)2287 Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2288                                         Handle<FixedArray> keys,
2289                                         Handle<Map> map) {
2290   Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2291   Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2292   context->set_map_cache(*result);
2293   return result;
2294 }
2295 
2296 
ObjectLiteralMapFromCache(Handle<Context> context,Handle<FixedArray> keys)2297 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2298                                                Handle<FixedArray> keys) {
2299   if (context->map_cache()->IsUndefined()) {
2300     // Allocate the new map cache for the native context.
2301     Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2302     context->set_map_cache(*new_cache);
2303   }
2304   // Check to see whether there is a matching element in the cache.
2305   Handle<MapCache> cache =
2306       Handle<MapCache>(MapCache::cast(context->map_cache()));
2307   Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2308   if (result->IsMap()) return Handle<Map>::cast(result);
2309   // Create a new map and add it to the cache.
2310   Handle<Map> map = Map::Create(
2311       handle(context->object_function()), keys->length());
2312   AddToMapCache(context, keys, map);
2313   return map;
2314 }
2315 
2316 
SetRegExpAtomData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)2317 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2318                                 JSRegExp::Type type,
2319                                 Handle<String> source,
2320                                 JSRegExp::Flags flags,
2321                                 Handle<Object> data) {
2322   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2323 
2324   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2325   store->set(JSRegExp::kSourceIndex, *source);
2326   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2327   store->set(JSRegExp::kAtomPatternIndex, *data);
2328   regexp->set_data(*store);
2329 }
2330 
SetRegExpIrregexpData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,int capture_count)2331 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2332                                     JSRegExp::Type type,
2333                                     Handle<String> source,
2334                                     JSRegExp::Flags flags,
2335                                     int capture_count) {
2336   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2337   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2338   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2339   store->set(JSRegExp::kSourceIndex, *source);
2340   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2341   store->set(JSRegExp::kIrregexpASCIICodeIndex, uninitialized);
2342   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2343   store->set(JSRegExp::kIrregexpASCIICodeSavedIndex, uninitialized);
2344   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2345   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2346   store->set(JSRegExp::kIrregexpCaptureCountIndex,
2347              Smi::FromInt(capture_count));
2348   regexp->set_data(*store);
2349 }
2350 
2351 
2352 
ConfigureInstance(Handle<FunctionTemplateInfo> desc,Handle<JSObject> instance)2353 MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2354     Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2355   // Configure the instance by adding the properties specified by the
2356   // instance template.
2357   Handle<Object> instance_template(desc->instance_template(), isolate());
2358   if (!instance_template->IsUndefined()) {
2359       RETURN_ON_EXCEPTION(
2360           isolate(),
2361           Execution::ConfigureInstance(isolate(), instance, instance_template),
2362           FunctionTemplateInfo);
2363   }
2364   return desc;
2365 }
2366 
2367 
GlobalConstantFor(Handle<String> name)2368 Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2369   if (String::Equals(name, undefined_string())) return undefined_value();
2370   if (String::Equals(name, nan_string())) return nan_value();
2371   if (String::Equals(name, infinity_string())) return infinity_value();
2372   return Handle<Object>::null();
2373 }
2374 
2375 
ToBoolean(bool value)2376 Handle<Object> Factory::ToBoolean(bool value) {
2377   return value ? true_value() : false_value();
2378 }
2379 
2380 
2381 } }  // namespace v8::internal
2382