1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/factory.h"
6
7 #include "src/conversions.h"
8 #include "src/isolate-inl.h"
9 #include "src/macro-assembler.h"
10
11 namespace v8 {
12 namespace internal {
13
14
15 template<typename T>
New(Handle<Map> map,AllocationSpace space)16 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
17 CALL_HEAP_FUNCTION(
18 isolate(),
19 isolate()->heap()->Allocate(*map, space),
20 T);
21 }
22
23
24 template<typename T>
New(Handle<Map> map,AllocationSpace space,Handle<AllocationSite> allocation_site)25 Handle<T> Factory::New(Handle<Map> map,
26 AllocationSpace space,
27 Handle<AllocationSite> allocation_site) {
28 CALL_HEAP_FUNCTION(
29 isolate(),
30 isolate()->heap()->Allocate(*map, space, *allocation_site),
31 T);
32 }
33
34
NewFillerObject(int size,bool double_align,AllocationSpace space)35 Handle<HeapObject> Factory::NewFillerObject(int size,
36 bool double_align,
37 AllocationSpace space) {
38 CALL_HEAP_FUNCTION(
39 isolate(),
40 isolate()->heap()->AllocateFillerObject(size, double_align, space),
41 HeapObject);
42 }
43
44
NewBox(Handle<Object> value)45 Handle<Box> Factory::NewBox(Handle<Object> value) {
46 Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
47 result->set_value(*value);
48 return result;
49 }
50
51
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,byte kind)52 Handle<Oddball> Factory::NewOddball(Handle<Map> map,
53 const char* to_string,
54 Handle<Object> to_number,
55 byte kind) {
56 Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
57 Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
58 return oddball;
59 }
60
61
NewFixedArray(int size,PretenureFlag pretenure)62 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
63 ASSERT(0 <= size);
64 CALL_HEAP_FUNCTION(
65 isolate(),
66 isolate()->heap()->AllocateFixedArray(size, pretenure),
67 FixedArray);
68 }
69
70
NewFixedArrayWithHoles(int size,PretenureFlag pretenure)71 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
72 PretenureFlag pretenure) {
73 ASSERT(0 <= size);
74 CALL_HEAP_FUNCTION(
75 isolate(),
76 isolate()->heap()->AllocateFixedArrayWithFiller(size,
77 pretenure,
78 *the_hole_value()),
79 FixedArray);
80 }
81
82
NewUninitializedFixedArray(int size)83 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
84 CALL_HEAP_FUNCTION(
85 isolate(),
86 isolate()->heap()->AllocateUninitializedFixedArray(size),
87 FixedArray);
88 }
89
90
NewFixedDoubleArray(int size,PretenureFlag pretenure)91 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
92 PretenureFlag pretenure) {
93 ASSERT(0 <= size);
94 CALL_HEAP_FUNCTION(
95 isolate(),
96 isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
97 FixedArrayBase);
98 }
99
100
NewFixedDoubleArrayWithHoles(int size,PretenureFlag pretenure)101 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
102 int size,
103 PretenureFlag pretenure) {
104 ASSERT(0 <= size);
105 Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
106 if (size > 0) {
107 Handle<FixedDoubleArray> double_array =
108 Handle<FixedDoubleArray>::cast(array);
109 for (int i = 0; i < size; ++i) {
110 double_array->set_the_hole(i);
111 }
112 }
113 return array;
114 }
115
116
NewConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small)117 Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
118 const ConstantPoolArray::NumberOfEntries& small) {
119 ASSERT(small.total_count() > 0);
120 CALL_HEAP_FUNCTION(
121 isolate(),
122 isolate()->heap()->AllocateConstantPoolArray(small),
123 ConstantPoolArray);
124 }
125
126
NewExtendedConstantPoolArray(const ConstantPoolArray::NumberOfEntries & small,const ConstantPoolArray::NumberOfEntries & extended)127 Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
128 const ConstantPoolArray::NumberOfEntries& small,
129 const ConstantPoolArray::NumberOfEntries& extended) {
130 ASSERT(small.total_count() > 0);
131 ASSERT(extended.total_count() > 0);
132 CALL_HEAP_FUNCTION(
133 isolate(),
134 isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
135 ConstantPoolArray);
136 }
137
138
NewOrderedHashSet()139 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
140 return OrderedHashSet::Allocate(isolate(), 4);
141 }
142
143
NewOrderedHashMap()144 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
145 return OrderedHashMap::Allocate(isolate(), 4);
146 }
147
148
NewAccessorPair()149 Handle<AccessorPair> Factory::NewAccessorPair() {
150 Handle<AccessorPair> accessors =
151 Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
152 accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
153 accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
154 accessors->set_access_flags(Smi::FromInt(0), SKIP_WRITE_BARRIER);
155 return accessors;
156 }
157
158
NewTypeFeedbackInfo()159 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
160 Handle<TypeFeedbackInfo> info =
161 Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
162 info->initialize_storage();
163 return info;
164 }
165
166
167 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(Vector<const char> string)168 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
169 Utf8StringKey key(string, isolate()->heap()->HashSeed());
170 return InternalizeStringWithKey(&key);
171 }
172
173
174 // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)175 Handle<String> Factory::InternalizeString(Handle<String> string) {
176 if (string->IsInternalizedString()) return string;
177 return StringTable::LookupString(isolate(), string);
178 }
179
180
InternalizeOneByteString(Vector<const uint8_t> string)181 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
182 OneByteStringKey key(string, isolate()->heap()->HashSeed());
183 return InternalizeStringWithKey(&key);
184 }
185
186
InternalizeOneByteString(Handle<SeqOneByteString> string,int from,int length)187 Handle<String> Factory::InternalizeOneByteString(
188 Handle<SeqOneByteString> string, int from, int length) {
189 SubStringKey<uint8_t> key(string, from, length);
190 return InternalizeStringWithKey(&key);
191 }
192
193
InternalizeTwoByteString(Vector<const uc16> string)194 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
195 TwoByteStringKey key(string, isolate()->heap()->HashSeed());
196 return InternalizeStringWithKey(&key);
197 }
198
199
200 template<class StringTableKey>
InternalizeStringWithKey(StringTableKey * key)201 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
202 return StringTable::LookupKey(isolate(), key);
203 }
204
205
206 template Handle<String> Factory::InternalizeStringWithKey<
207 SubStringKey<uint8_t> > (SubStringKey<uint8_t>* key);
208 template Handle<String> Factory::InternalizeStringWithKey<
209 SubStringKey<uint16_t> > (SubStringKey<uint16_t>* key);
210
211
NewStringFromOneByte(Vector<const uint8_t> string,PretenureFlag pretenure)212 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
213 PretenureFlag pretenure) {
214 int length = string.length();
215 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
216 Handle<SeqOneByteString> result;
217 ASSIGN_RETURN_ON_EXCEPTION(
218 isolate(),
219 result,
220 NewRawOneByteString(string.length(), pretenure),
221 String);
222
223 DisallowHeapAllocation no_gc;
224 // Copy the characters into the new object.
225 CopyChars(SeqOneByteString::cast(*result)->GetChars(),
226 string.start(),
227 length);
228 return result;
229 }
230
NewStringFromUtf8(Vector<const char> string,PretenureFlag pretenure)231 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
232 PretenureFlag pretenure) {
233 // Check for ASCII first since this is the common case.
234 const char* start = string.start();
235 int length = string.length();
236 int non_ascii_start = String::NonAsciiStart(start, length);
237 if (non_ascii_start >= length) {
238 // If the string is ASCII, we do not need to convert the characters
239 // since UTF8 is backwards compatible with ASCII.
240 return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
241 }
242
243 // Non-ASCII and we need to decode.
244 Access<UnicodeCache::Utf8Decoder>
245 decoder(isolate()->unicode_cache()->utf8_decoder());
246 decoder->Reset(string.start() + non_ascii_start,
247 length - non_ascii_start);
248 int utf16_length = decoder->Utf16Length();
249 ASSERT(utf16_length > 0);
250 // Allocate string.
251 Handle<SeqTwoByteString> result;
252 ASSIGN_RETURN_ON_EXCEPTION(
253 isolate(), result,
254 NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
255 String);
256 // Copy ascii portion.
257 uint16_t* data = result->GetChars();
258 const char* ascii_data = string.start();
259 for (int i = 0; i < non_ascii_start; i++) {
260 *data++ = *ascii_data++;
261 }
262 // Now write the remainder.
263 decoder->WriteUtf16(data, utf16_length);
264 return result;
265 }
266
267
NewStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)268 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
269 PretenureFlag pretenure) {
270 int length = string.length();
271 const uc16* start = string.start();
272 if (String::IsOneByte(start, length)) {
273 Handle<SeqOneByteString> result;
274 ASSIGN_RETURN_ON_EXCEPTION(
275 isolate(),
276 result,
277 NewRawOneByteString(length, pretenure),
278 String);
279 CopyChars(result->GetChars(), start, length);
280 return result;
281 } else {
282 Handle<SeqTwoByteString> result;
283 ASSIGN_RETURN_ON_EXCEPTION(
284 isolate(),
285 result,
286 NewRawTwoByteString(length, pretenure),
287 String);
288 CopyChars(result->GetChars(), start, length);
289 return result;
290 }
291 }
292
293
NewInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)294 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
295 int chars,
296 uint32_t hash_field) {
297 CALL_HEAP_FUNCTION(
298 isolate(),
299 isolate()->heap()->AllocateInternalizedStringFromUtf8(
300 str, chars, hash_field),
301 String);
302 }
303
304
NewOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)305 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
306 Vector<const uint8_t> str,
307 uint32_t hash_field) {
308 CALL_HEAP_FUNCTION(
309 isolate(),
310 isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
311 String);
312 }
313
314
NewTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)315 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
316 Vector<const uc16> str,
317 uint32_t hash_field) {
318 CALL_HEAP_FUNCTION(
319 isolate(),
320 isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
321 String);
322 }
323
324
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)325 Handle<String> Factory::NewInternalizedStringImpl(
326 Handle<String> string, int chars, uint32_t hash_field) {
327 CALL_HEAP_FUNCTION(
328 isolate(),
329 isolate()->heap()->AllocateInternalizedStringImpl(
330 *string, chars, hash_field),
331 String);
332 }
333
334
InternalizedStringMapForString(Handle<String> string)335 MaybeHandle<Map> Factory::InternalizedStringMapForString(
336 Handle<String> string) {
337 // If the string is in new space it cannot be used as internalized.
338 if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
339
340 // Find the corresponding internalized string map for strings.
341 switch (string->map()->instance_type()) {
342 case STRING_TYPE: return internalized_string_map();
343 case ASCII_STRING_TYPE: return ascii_internalized_string_map();
344 case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
345 case EXTERNAL_ASCII_STRING_TYPE:
346 return external_ascii_internalized_string_map();
347 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
348 return external_internalized_string_with_one_byte_data_map();
349 case SHORT_EXTERNAL_STRING_TYPE:
350 return short_external_internalized_string_map();
351 case SHORT_EXTERNAL_ASCII_STRING_TYPE:
352 return short_external_ascii_internalized_string_map();
353 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
354 return short_external_internalized_string_with_one_byte_data_map();
355 default: return MaybeHandle<Map>(); // No match found.
356 }
357 }
358
359
NewRawOneByteString(int length,PretenureFlag pretenure)360 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
361 int length, PretenureFlag pretenure) {
362 if (length > String::kMaxLength || length < 0) {
363 return isolate()->Throw<SeqOneByteString>(NewInvalidStringLengthError());
364 }
365 CALL_HEAP_FUNCTION(
366 isolate(),
367 isolate()->heap()->AllocateRawOneByteString(length, pretenure),
368 SeqOneByteString);
369 }
370
371
NewRawTwoByteString(int length,PretenureFlag pretenure)372 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
373 int length, PretenureFlag pretenure) {
374 if (length > String::kMaxLength || length < 0) {
375 return isolate()->Throw<SeqTwoByteString>(NewInvalidStringLengthError());
376 }
377 CALL_HEAP_FUNCTION(
378 isolate(),
379 isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
380 SeqTwoByteString);
381 }
382
383
LookupSingleCharacterStringFromCode(uint32_t code)384 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
385 if (code <= String::kMaxOneByteCharCodeU) {
386 {
387 DisallowHeapAllocation no_allocation;
388 Object* value = single_character_string_cache()->get(code);
389 if (value != *undefined_value()) {
390 return handle(String::cast(value), isolate());
391 }
392 }
393 uint8_t buffer[1];
394 buffer[0] = static_cast<uint8_t>(code);
395 Handle<String> result =
396 InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
397 single_character_string_cache()->set(code, *result);
398 return result;
399 }
400 ASSERT(code <= String::kMaxUtf16CodeUnitU);
401
402 Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
403 result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
404 return result;
405 }
406
407
408 // Returns true for a character in a range. Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)409 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
410 // This makes uses of the the unsigned wraparound.
411 return character - from <= to - from;
412 }
413
414
MakeOrFindTwoCharacterString(Isolate * isolate,uint16_t c1,uint16_t c2)415 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
416 uint16_t c1,
417 uint16_t c2) {
418 // Numeric strings have a different hash algorithm not known by
419 // LookupTwoCharsStringIfExists, so we skip this step for such strings.
420 if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
421 Handle<String> result;
422 if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
423 ToHandle(&result)) {
424 return result;
425 }
426 }
427
428 // Now we know the length is 2, we might as well make use of that fact
429 // when building the new string.
430 if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
431 // We can do this.
432 ASSERT(IsPowerOf2(String::kMaxOneByteCharCodeU + 1)); // because of this.
433 Handle<SeqOneByteString> str =
434 isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
435 uint8_t* dest = str->GetChars();
436 dest[0] = static_cast<uint8_t>(c1);
437 dest[1] = static_cast<uint8_t>(c2);
438 return str;
439 } else {
440 Handle<SeqTwoByteString> str =
441 isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
442 uc16* dest = str->GetChars();
443 dest[0] = c1;
444 dest[1] = c2;
445 return str;
446 }
447 }
448
449
450 template<typename SinkChar, typename StringType>
ConcatStringContent(Handle<StringType> result,Handle<String> first,Handle<String> second)451 Handle<String> ConcatStringContent(Handle<StringType> result,
452 Handle<String> first,
453 Handle<String> second) {
454 DisallowHeapAllocation pointer_stays_valid;
455 SinkChar* sink = result->GetChars();
456 String::WriteToFlat(*first, sink, 0, first->length());
457 String::WriteToFlat(*second, sink + first->length(), 0, second->length());
458 return result;
459 }
460
461
NewConsString(Handle<String> left,Handle<String> right)462 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
463 Handle<String> right) {
464 int left_length = left->length();
465 if (left_length == 0) return right;
466 int right_length = right->length();
467 if (right_length == 0) return left;
468
469 int length = left_length + right_length;
470
471 if (length == 2) {
472 uint16_t c1 = left->Get(0);
473 uint16_t c2 = right->Get(0);
474 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
475 }
476
477 // Make sure that an out of memory exception is thrown if the length
478 // of the new cons string is too large.
479 if (length > String::kMaxLength || length < 0) {
480 return isolate()->Throw<String>(NewInvalidStringLengthError());
481 }
482
483 bool left_is_one_byte = left->IsOneByteRepresentation();
484 bool right_is_one_byte = right->IsOneByteRepresentation();
485 bool is_one_byte = left_is_one_byte && right_is_one_byte;
486 bool is_one_byte_data_in_two_byte_string = false;
487 if (!is_one_byte) {
488 // At least one of the strings uses two-byte representation so we
489 // can't use the fast case code for short ASCII strings below, but
490 // we can try to save memory if all chars actually fit in ASCII.
491 is_one_byte_data_in_two_byte_string =
492 left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
493 if (is_one_byte_data_in_two_byte_string) {
494 isolate()->counters()->string_add_runtime_ext_to_ascii()->Increment();
495 }
496 }
497
498 // If the resulting string is small make a flat string.
499 if (length < ConsString::kMinLength) {
500 // Note that neither of the two inputs can be a slice because:
501 STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
502 ASSERT(left->IsFlat());
503 ASSERT(right->IsFlat());
504
505 STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
506 if (is_one_byte) {
507 Handle<SeqOneByteString> result =
508 NewRawOneByteString(length).ToHandleChecked();
509 DisallowHeapAllocation no_gc;
510 uint8_t* dest = result->GetChars();
511 // Copy left part.
512 const uint8_t* src = left->IsExternalString()
513 ? Handle<ExternalAsciiString>::cast(left)->GetChars()
514 : Handle<SeqOneByteString>::cast(left)->GetChars();
515 for (int i = 0; i < left_length; i++) *dest++ = src[i];
516 // Copy right part.
517 src = right->IsExternalString()
518 ? Handle<ExternalAsciiString>::cast(right)->GetChars()
519 : Handle<SeqOneByteString>::cast(right)->GetChars();
520 for (int i = 0; i < right_length; i++) *dest++ = src[i];
521 return result;
522 }
523
524 return (is_one_byte_data_in_two_byte_string)
525 ? ConcatStringContent<uint8_t>(
526 NewRawOneByteString(length).ToHandleChecked(), left, right)
527 : ConcatStringContent<uc16>(
528 NewRawTwoByteString(length).ToHandleChecked(), left, right);
529 }
530
531 Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
532 ? cons_ascii_string_map() : cons_string_map();
533 Handle<ConsString> result = New<ConsString>(map, NEW_SPACE);
534
535 DisallowHeapAllocation no_gc;
536 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
537
538 result->set_hash_field(String::kEmptyHashField);
539 result->set_length(length);
540 result->set_first(*left, mode);
541 result->set_second(*right, mode);
542 return result;
543 }
544
545
NewFlatConcatString(Handle<String> first,Handle<String> second)546 Handle<String> Factory::NewFlatConcatString(Handle<String> first,
547 Handle<String> second) {
548 int total_length = first->length() + second->length();
549 if (first->IsOneByteRepresentation() && second->IsOneByteRepresentation()) {
550 return ConcatStringContent<uint8_t>(
551 NewRawOneByteString(total_length).ToHandleChecked(), first, second);
552 } else {
553 return ConcatStringContent<uc16>(
554 NewRawTwoByteString(total_length).ToHandleChecked(), first, second);
555 }
556 }
557
558
NewProperSubString(Handle<String> str,int begin,int end)559 Handle<String> Factory::NewProperSubString(Handle<String> str,
560 int begin,
561 int end) {
562 #if VERIFY_HEAP
563 if (FLAG_verify_heap) str->StringVerify();
564 #endif
565 ASSERT(begin > 0 || end < str->length());
566
567 str = String::Flatten(str);
568
569 int length = end - begin;
570 if (length <= 0) return empty_string();
571 if (length == 1) {
572 return LookupSingleCharacterStringFromCode(str->Get(begin));
573 }
574 if (length == 2) {
575 // Optimization for 2-byte strings often used as keys in a decompression
576 // dictionary. Check whether we already have the string in the string
577 // table to prevent creation of many unnecessary strings.
578 uint16_t c1 = str->Get(begin);
579 uint16_t c2 = str->Get(begin + 1);
580 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
581 }
582
583 if (!FLAG_string_slices || length < SlicedString::kMinLength) {
584 if (str->IsOneByteRepresentation()) {
585 Handle<SeqOneByteString> result =
586 NewRawOneByteString(length).ToHandleChecked();
587 uint8_t* dest = result->GetChars();
588 DisallowHeapAllocation no_gc;
589 String::WriteToFlat(*str, dest, begin, end);
590 return result;
591 } else {
592 Handle<SeqTwoByteString> result =
593 NewRawTwoByteString(length).ToHandleChecked();
594 uc16* dest = result->GetChars();
595 DisallowHeapAllocation no_gc;
596 String::WriteToFlat(*str, dest, begin, end);
597 return result;
598 }
599 }
600
601 int offset = begin;
602
603 if (str->IsSlicedString()) {
604 Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
605 str = Handle<String>(slice->parent(), isolate());
606 offset += slice->offset();
607 }
608
609 ASSERT(str->IsSeqString() || str->IsExternalString());
610 Handle<Map> map = str->IsOneByteRepresentation() ? sliced_ascii_string_map()
611 : sliced_string_map();
612 Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
613
614 slice->set_hash_field(String::kEmptyHashField);
615 slice->set_length(length);
616 slice->set_parent(*str);
617 slice->set_offset(offset);
618 return slice;
619 }
620
621
NewExternalStringFromAscii(const ExternalAsciiString::Resource * resource)622 MaybeHandle<String> Factory::NewExternalStringFromAscii(
623 const ExternalAsciiString::Resource* resource) {
624 size_t length = resource->length();
625 if (length > static_cast<size_t>(String::kMaxLength)) {
626 return isolate()->Throw<String>(NewInvalidStringLengthError());
627 }
628
629 Handle<Map> map = external_ascii_string_map();
630 Handle<ExternalAsciiString> external_string =
631 New<ExternalAsciiString>(map, NEW_SPACE);
632 external_string->set_length(static_cast<int>(length));
633 external_string->set_hash_field(String::kEmptyHashField);
634 external_string->set_resource(resource);
635
636 return external_string;
637 }
638
639
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)640 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
641 const ExternalTwoByteString::Resource* resource) {
642 size_t length = resource->length();
643 if (length > static_cast<size_t>(String::kMaxLength)) {
644 return isolate()->Throw<String>(NewInvalidStringLengthError());
645 }
646
647 // For small strings we check whether the resource contains only
648 // one byte characters. If yes, we use a different string map.
649 static const size_t kOneByteCheckLengthLimit = 32;
650 bool is_one_byte = length <= kOneByteCheckLengthLimit &&
651 String::IsOneByte(resource->data(), static_cast<int>(length));
652 Handle<Map> map = is_one_byte ?
653 external_string_with_one_byte_data_map() : external_string_map();
654 Handle<ExternalTwoByteString> external_string =
655 New<ExternalTwoByteString>(map, NEW_SPACE);
656 external_string->set_length(static_cast<int>(length));
657 external_string->set_hash_field(String::kEmptyHashField);
658 external_string->set_resource(resource);
659
660 return external_string;
661 }
662
663
NewSymbol()664 Handle<Symbol> Factory::NewSymbol() {
665 CALL_HEAP_FUNCTION(
666 isolate(),
667 isolate()->heap()->AllocateSymbol(),
668 Symbol);
669 }
670
671
NewPrivateSymbol()672 Handle<Symbol> Factory::NewPrivateSymbol() {
673 Handle<Symbol> symbol = NewSymbol();
674 symbol->set_is_private(true);
675 return symbol;
676 }
677
678
NewNativeContext()679 Handle<Context> Factory::NewNativeContext() {
680 Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
681 array->set_map_no_write_barrier(*native_context_map());
682 Handle<Context> context = Handle<Context>::cast(array);
683 context->set_js_array_maps(*undefined_value());
684 ASSERT(context->IsNativeContext());
685 return context;
686 }
687
688
NewGlobalContext(Handle<JSFunction> function,Handle<ScopeInfo> scope_info)689 Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
690 Handle<ScopeInfo> scope_info) {
691 Handle<FixedArray> array =
692 NewFixedArray(scope_info->ContextLength(), TENURED);
693 array->set_map_no_write_barrier(*global_context_map());
694 Handle<Context> context = Handle<Context>::cast(array);
695 context->set_closure(*function);
696 context->set_previous(function->context());
697 context->set_extension(*scope_info);
698 context->set_global_object(function->context()->global_object());
699 ASSERT(context->IsGlobalContext());
700 return context;
701 }
702
703
NewModuleContext(Handle<ScopeInfo> scope_info)704 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
705 Handle<FixedArray> array =
706 NewFixedArray(scope_info->ContextLength(), TENURED);
707 array->set_map_no_write_barrier(*module_context_map());
708 // Instance link will be set later.
709 Handle<Context> context = Handle<Context>::cast(array);
710 context->set_extension(Smi::FromInt(0));
711 return context;
712 }
713
714
NewFunctionContext(int length,Handle<JSFunction> function)715 Handle<Context> Factory::NewFunctionContext(int length,
716 Handle<JSFunction> function) {
717 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
718 Handle<FixedArray> array = NewFixedArray(length);
719 array->set_map_no_write_barrier(*function_context_map());
720 Handle<Context> context = Handle<Context>::cast(array);
721 context->set_closure(*function);
722 context->set_previous(function->context());
723 context->set_extension(Smi::FromInt(0));
724 context->set_global_object(function->context()->global_object());
725 return context;
726 }
727
728
NewCatchContext(Handle<JSFunction> function,Handle<Context> previous,Handle<String> name,Handle<Object> thrown_object)729 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
730 Handle<Context> previous,
731 Handle<String> name,
732 Handle<Object> thrown_object) {
733 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
734 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
735 array->set_map_no_write_barrier(*catch_context_map());
736 Handle<Context> context = Handle<Context>::cast(array);
737 context->set_closure(*function);
738 context->set_previous(*previous);
739 context->set_extension(*name);
740 context->set_global_object(previous->global_object());
741 context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
742 return context;
743 }
744
745
NewWithContext(Handle<JSFunction> function,Handle<Context> previous,Handle<JSReceiver> extension)746 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
747 Handle<Context> previous,
748 Handle<JSReceiver> extension) {
749 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
750 array->set_map_no_write_barrier(*with_context_map());
751 Handle<Context> context = Handle<Context>::cast(array);
752 context->set_closure(*function);
753 context->set_previous(*previous);
754 context->set_extension(*extension);
755 context->set_global_object(previous->global_object());
756 return context;
757 }
758
759
NewBlockContext(Handle<JSFunction> function,Handle<Context> previous,Handle<ScopeInfo> scope_info)760 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
761 Handle<Context> previous,
762 Handle<ScopeInfo> scope_info) {
763 Handle<FixedArray> array =
764 NewFixedArrayWithHoles(scope_info->ContextLength());
765 array->set_map_no_write_barrier(*block_context_map());
766 Handle<Context> context = Handle<Context>::cast(array);
767 context->set_closure(*function);
768 context->set_previous(*previous);
769 context->set_extension(*scope_info);
770 context->set_global_object(previous->global_object());
771 return context;
772 }
773
774
NewStruct(InstanceType type)775 Handle<Struct> Factory::NewStruct(InstanceType type) {
776 CALL_HEAP_FUNCTION(
777 isolate(),
778 isolate()->heap()->AllocateStruct(type),
779 Struct);
780 }
781
782
NewCodeCache()783 Handle<CodeCache> Factory::NewCodeCache() {
784 Handle<CodeCache> code_cache =
785 Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
786 code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
787 code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
788 return code_cache;
789 }
790
791
NewAliasedArgumentsEntry(int aliased_context_slot)792 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
793 int aliased_context_slot) {
794 Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
795 NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
796 entry->set_aliased_context_slot(aliased_context_slot);
797 return entry;
798 }
799
800
NewDeclaredAccessorDescriptor()801 Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
802 return Handle<DeclaredAccessorDescriptor>::cast(
803 NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
804 }
805
806
NewDeclaredAccessorInfo()807 Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
808 Handle<DeclaredAccessorInfo> info =
809 Handle<DeclaredAccessorInfo>::cast(
810 NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
811 info->set_flag(0); // Must clear the flag, it was initialized as undefined.
812 return info;
813 }
814
815
NewExecutableAccessorInfo()816 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
817 Handle<ExecutableAccessorInfo> info =
818 Handle<ExecutableAccessorInfo>::cast(
819 NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
820 info->set_flag(0); // Must clear the flag, it was initialized as undefined.
821 return info;
822 }
823
824
NewScript(Handle<String> source)825 Handle<Script> Factory::NewScript(Handle<String> source) {
826 // Generate id for this script.
827 Heap* heap = isolate()->heap();
828 int id = heap->last_script_id()->value() + 1;
829 if (!Smi::IsValid(id) || id < 0) id = 1;
830 heap->set_last_script_id(Smi::FromInt(id));
831
832 // Create and initialize script object.
833 Handle<Foreign> wrapper = NewForeign(0, TENURED);
834 Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
835 script->set_source(*source);
836 script->set_name(heap->undefined_value());
837 script->set_id(Smi::FromInt(id));
838 script->set_line_offset(Smi::FromInt(0));
839 script->set_column_offset(Smi::FromInt(0));
840 script->set_context_data(heap->undefined_value());
841 script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
842 script->set_wrapper(*wrapper);
843 script->set_line_ends(heap->undefined_value());
844 script->set_eval_from_shared(heap->undefined_value());
845 script->set_eval_from_instructions_offset(Smi::FromInt(0));
846 script->set_flags(Smi::FromInt(0));
847
848 return script;
849 }
850
851
NewForeign(Address addr,PretenureFlag pretenure)852 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
853 CALL_HEAP_FUNCTION(isolate(),
854 isolate()->heap()->AllocateForeign(addr, pretenure),
855 Foreign);
856 }
857
858
NewForeign(const AccessorDescriptor * desc)859 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
860 return NewForeign((Address) desc, TENURED);
861 }
862
863
NewByteArray(int length,PretenureFlag pretenure)864 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
865 ASSERT(0 <= length);
866 CALL_HEAP_FUNCTION(
867 isolate(),
868 isolate()->heap()->AllocateByteArray(length, pretenure),
869 ByteArray);
870 }
871
872
NewExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)873 Handle<ExternalArray> Factory::NewExternalArray(int length,
874 ExternalArrayType array_type,
875 void* external_pointer,
876 PretenureFlag pretenure) {
877 ASSERT(0 <= length && length <= Smi::kMaxValue);
878 CALL_HEAP_FUNCTION(
879 isolate(),
880 isolate()->heap()->AllocateExternalArray(length,
881 array_type,
882 external_pointer,
883 pretenure),
884 ExternalArray);
885 }
886
887
NewFixedTypedArray(int length,ExternalArrayType array_type,PretenureFlag pretenure)888 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
889 int length,
890 ExternalArrayType array_type,
891 PretenureFlag pretenure) {
892 ASSERT(0 <= length && length <= Smi::kMaxValue);
893 CALL_HEAP_FUNCTION(
894 isolate(),
895 isolate()->heap()->AllocateFixedTypedArray(length,
896 array_type,
897 pretenure),
898 FixedTypedArrayBase);
899 }
900
901
NewCell(Handle<Object> value)902 Handle<Cell> Factory::NewCell(Handle<Object> value) {
903 AllowDeferredHandleDereference convert_to_cell;
904 CALL_HEAP_FUNCTION(
905 isolate(),
906 isolate()->heap()->AllocateCell(*value),
907 Cell);
908 }
909
910
NewPropertyCellWithHole()911 Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
912 CALL_HEAP_FUNCTION(
913 isolate(),
914 isolate()->heap()->AllocatePropertyCell(),
915 PropertyCell);
916 }
917
918
NewPropertyCell(Handle<Object> value)919 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
920 AllowDeferredHandleDereference convert_to_cell;
921 Handle<PropertyCell> cell = NewPropertyCellWithHole();
922 PropertyCell::SetValueInferType(cell, value);
923 return cell;
924 }
925
926
NewAllocationSite()927 Handle<AllocationSite> Factory::NewAllocationSite() {
928 Handle<Map> map = allocation_site_map();
929 Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
930 site->Initialize();
931
932 // Link the site
933 site->set_weak_next(isolate()->heap()->allocation_sites_list());
934 isolate()->heap()->set_allocation_sites_list(*site);
935 return site;
936 }
937
938
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind)939 Handle<Map> Factory::NewMap(InstanceType type,
940 int instance_size,
941 ElementsKind elements_kind) {
942 CALL_HEAP_FUNCTION(
943 isolate(),
944 isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
945 Map);
946 }
947
948
CopyJSObject(Handle<JSObject> object)949 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
950 CALL_HEAP_FUNCTION(isolate(),
951 isolate()->heap()->CopyJSObject(*object, NULL),
952 JSObject);
953 }
954
955
CopyJSObjectWithAllocationSite(Handle<JSObject> object,Handle<AllocationSite> site)956 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
957 Handle<JSObject> object,
958 Handle<AllocationSite> site) {
959 CALL_HEAP_FUNCTION(isolate(),
960 isolate()->heap()->CopyJSObject(
961 *object,
962 site.is_null() ? NULL : *site),
963 JSObject);
964 }
965
966
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)967 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
968 Handle<Map> map) {
969 CALL_HEAP_FUNCTION(isolate(),
970 isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
971 FixedArray);
972 }
973
974
CopyFixedArray(Handle<FixedArray> array)975 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
976 CALL_HEAP_FUNCTION(isolate(),
977 isolate()->heap()->CopyFixedArray(*array),
978 FixedArray);
979 }
980
981
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)982 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
983 Handle<FixedArray> array) {
984 ASSERT(isolate()->heap()->InNewSpace(*array));
985 CALL_HEAP_FUNCTION(isolate(),
986 isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
987 FixedArray);
988 }
989
990
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)991 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
992 Handle<FixedDoubleArray> array) {
993 CALL_HEAP_FUNCTION(isolate(),
994 isolate()->heap()->CopyFixedDoubleArray(*array),
995 FixedDoubleArray);
996 }
997
998
CopyConstantPoolArray(Handle<ConstantPoolArray> array)999 Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1000 Handle<ConstantPoolArray> array) {
1001 CALL_HEAP_FUNCTION(isolate(),
1002 isolate()->heap()->CopyConstantPoolArray(*array),
1003 ConstantPoolArray);
1004 }
1005
1006
NewNumber(double value,PretenureFlag pretenure)1007 Handle<Object> Factory::NewNumber(double value,
1008 PretenureFlag pretenure) {
1009 // We need to distinguish the minus zero value and this cannot be
1010 // done after conversion to int. Doing this by comparing bit
1011 // patterns is faster than using fpclassify() et al.
1012 if (IsMinusZero(value)) return NewHeapNumber(-0.0, pretenure);
1013
1014 int int_value = FastD2I(value);
1015 if (value == int_value && Smi::IsValid(int_value)) {
1016 return handle(Smi::FromInt(int_value), isolate());
1017 }
1018
1019 // Materialize the value in the heap.
1020 return NewHeapNumber(value, pretenure);
1021 }
1022
1023
NewNumberFromInt(int32_t value,PretenureFlag pretenure)1024 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1025 PretenureFlag pretenure) {
1026 if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1027 // Bypass NumberFromDouble to avoid various redundant checks.
1028 return NewHeapNumber(FastI2D(value), pretenure);
1029 }
1030
1031
NewNumberFromUint(uint32_t value,PretenureFlag pretenure)1032 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1033 PretenureFlag pretenure) {
1034 int32_t int32v = static_cast<int32_t>(value);
1035 if (int32v >= 0 && Smi::IsValid(int32v)) {
1036 return handle(Smi::FromInt(int32v), isolate());
1037 }
1038 return NewHeapNumber(FastUI2D(value), pretenure);
1039 }
1040
1041
NewHeapNumber(double value,PretenureFlag pretenure)1042 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1043 PretenureFlag pretenure) {
1044 CALL_HEAP_FUNCTION(
1045 isolate(),
1046 isolate()->heap()->AllocateHeapNumber(value, pretenure), HeapNumber);
1047 }
1048
1049
NewTypeError(const char * message,Vector<Handle<Object>> args)1050 Handle<Object> Factory::NewTypeError(const char* message,
1051 Vector< Handle<Object> > args) {
1052 return NewError("MakeTypeError", message, args);
1053 }
1054
1055
NewTypeError(Handle<String> message)1056 Handle<Object> Factory::NewTypeError(Handle<String> message) {
1057 return NewError("$TypeError", message);
1058 }
1059
1060
NewRangeError(const char * message,Vector<Handle<Object>> args)1061 Handle<Object> Factory::NewRangeError(const char* message,
1062 Vector< Handle<Object> > args) {
1063 return NewError("MakeRangeError", message, args);
1064 }
1065
1066
NewRangeError(Handle<String> message)1067 Handle<Object> Factory::NewRangeError(Handle<String> message) {
1068 return NewError("$RangeError", message);
1069 }
1070
1071
NewSyntaxError(const char * message,Handle<JSArray> args)1072 Handle<Object> Factory::NewSyntaxError(const char* message,
1073 Handle<JSArray> args) {
1074 return NewError("MakeSyntaxError", message, args);
1075 }
1076
1077
NewSyntaxError(Handle<String> message)1078 Handle<Object> Factory::NewSyntaxError(Handle<String> message) {
1079 return NewError("$SyntaxError", message);
1080 }
1081
1082
NewReferenceError(const char * message,Vector<Handle<Object>> args)1083 Handle<Object> Factory::NewReferenceError(const char* message,
1084 Vector< Handle<Object> > args) {
1085 return NewError("MakeReferenceError", message, args);
1086 }
1087
1088
NewReferenceError(const char * message,Handle<JSArray> args)1089 Handle<Object> Factory::NewReferenceError(const char* message,
1090 Handle<JSArray> args) {
1091 return NewError("MakeReferenceError", message, args);
1092 }
1093
1094
NewReferenceError(Handle<String> message)1095 Handle<Object> Factory::NewReferenceError(Handle<String> message) {
1096 return NewError("$ReferenceError", message);
1097 }
1098
1099
NewError(const char * maker,const char * message,Vector<Handle<Object>> args)1100 Handle<Object> Factory::NewError(const char* maker,
1101 const char* message,
1102 Vector< Handle<Object> > args) {
1103 // Instantiate a closeable HandleScope for EscapeFrom.
1104 v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1105 Handle<FixedArray> array = NewFixedArray(args.length());
1106 for (int i = 0; i < args.length(); i++) {
1107 array->set(i, *args[i]);
1108 }
1109 Handle<JSArray> object = NewJSArrayWithElements(array);
1110 Handle<Object> result = NewError(maker, message, object);
1111 return result.EscapeFrom(&scope);
1112 }
1113
1114
NewEvalError(const char * message,Vector<Handle<Object>> args)1115 Handle<Object> Factory::NewEvalError(const char* message,
1116 Vector< Handle<Object> > args) {
1117 return NewError("MakeEvalError", message, args);
1118 }
1119
1120
NewError(const char * message,Vector<Handle<Object>> args)1121 Handle<Object> Factory::NewError(const char* message,
1122 Vector< Handle<Object> > args) {
1123 return NewError("MakeError", message, args);
1124 }
1125
1126
EmergencyNewError(const char * message,Handle<JSArray> args)1127 Handle<String> Factory::EmergencyNewError(const char* message,
1128 Handle<JSArray> args) {
1129 const int kBufferSize = 1000;
1130 char buffer[kBufferSize];
1131 size_t space = kBufferSize;
1132 char* p = &buffer[0];
1133
1134 Vector<char> v(buffer, kBufferSize);
1135 StrNCpy(v, message, space);
1136 space -= Min(space, strlen(message));
1137 p = &buffer[kBufferSize] - space;
1138
1139 for (unsigned i = 0; i < ARRAY_SIZE(args); i++) {
1140 if (space > 0) {
1141 *p++ = ' ';
1142 space--;
1143 if (space > 0) {
1144 Handle<String> arg_str = Handle<String>::cast(
1145 Object::GetElement(isolate(), args, i).ToHandleChecked());
1146 SmartArrayPointer<char> arg = arg_str->ToCString();
1147 Vector<char> v2(p, static_cast<int>(space));
1148 StrNCpy(v2, arg.get(), space);
1149 space -= Min(space, strlen(arg.get()));
1150 p = &buffer[kBufferSize] - space;
1151 }
1152 }
1153 }
1154 if (space > 0) {
1155 *p = '\0';
1156 } else {
1157 buffer[kBufferSize - 1] = '\0';
1158 }
1159 return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1160 }
1161
1162
NewError(const char * maker,const char * message,Handle<JSArray> args)1163 Handle<Object> Factory::NewError(const char* maker,
1164 const char* message,
1165 Handle<JSArray> args) {
1166 Handle<String> make_str = InternalizeUtf8String(maker);
1167 Handle<Object> fun_obj = Object::GetProperty(
1168 isolate()->js_builtins_object(), make_str).ToHandleChecked();
1169 // If the builtins haven't been properly configured yet this error
1170 // constructor may not have been defined. Bail out.
1171 if (!fun_obj->IsJSFunction()) {
1172 return EmergencyNewError(message, args);
1173 }
1174 Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1175 Handle<Object> message_obj = InternalizeUtf8String(message);
1176 Handle<Object> argv[] = { message_obj, args };
1177
1178 // Invoke the JavaScript factory method. If an exception is thrown while
1179 // running the factory method, use the exception as the result.
1180 Handle<Object> result;
1181 Handle<Object> exception;
1182 if (!Execution::TryCall(fun,
1183 isolate()->js_builtins_object(),
1184 ARRAY_SIZE(argv),
1185 argv,
1186 &exception).ToHandle(&result)) {
1187 return exception;
1188 }
1189 return result;
1190 }
1191
1192
NewError(Handle<String> message)1193 Handle<Object> Factory::NewError(Handle<String> message) {
1194 return NewError("$Error", message);
1195 }
1196
1197
NewError(const char * constructor,Handle<String> message)1198 Handle<Object> Factory::NewError(const char* constructor,
1199 Handle<String> message) {
1200 Handle<String> constr = InternalizeUtf8String(constructor);
1201 Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1202 isolate()->js_builtins_object(), constr).ToHandleChecked());
1203 Handle<Object> argv[] = { message };
1204
1205 // Invoke the JavaScript factory method. If an exception is thrown while
1206 // running the factory method, use the exception as the result.
1207 Handle<Object> result;
1208 Handle<Object> exception;
1209 if (!Execution::TryCall(fun,
1210 isolate()->js_builtins_object(),
1211 ARRAY_SIZE(argv),
1212 argv,
1213 &exception).ToHandle(&result)) {
1214 return exception;
1215 }
1216 return result;
1217 }
1218
1219
InitializeFunction(Handle<JSFunction> function,Handle<SharedFunctionInfo> info,Handle<Context> context)1220 void Factory::InitializeFunction(Handle<JSFunction> function,
1221 Handle<SharedFunctionInfo> info,
1222 Handle<Context> context) {
1223 function->initialize_properties();
1224 function->initialize_elements();
1225 function->set_shared(*info);
1226 function->set_code(info->code());
1227 function->set_context(*context);
1228 function->set_prototype_or_initial_map(*the_hole_value());
1229 function->set_literals_or_bindings(*empty_fixed_array());
1230 function->set_next_function_link(*undefined_value());
1231 }
1232
1233
NewFunction(Handle<Map> map,Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1234 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1235 Handle<SharedFunctionInfo> info,
1236 Handle<Context> context,
1237 PretenureFlag pretenure) {
1238 AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1239 Handle<JSFunction> result = New<JSFunction>(map, space);
1240 InitializeFunction(result, info, context);
1241 return result;
1242 }
1243
1244
NewFunction(Handle<Map> map,Handle<String> name,MaybeHandle<Code> code)1245 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1246 Handle<String> name,
1247 MaybeHandle<Code> code) {
1248 Handle<Context> context(isolate()->context()->native_context());
1249 Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1250 ASSERT((info->strict_mode() == SLOPPY) &&
1251 (map.is_identical_to(isolate()->sloppy_function_map()) ||
1252 map.is_identical_to(
1253 isolate()->sloppy_function_without_prototype_map()) ||
1254 map.is_identical_to(
1255 isolate()->sloppy_function_with_readonly_prototype_map())));
1256 return NewFunction(map, info, context);
1257 }
1258
1259
NewFunction(Handle<String> name)1260 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1261 return NewFunction(
1262 isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1263 }
1264
1265
NewFunctionWithoutPrototype(Handle<String> name,Handle<Code> code)1266 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1267 Handle<Code> code) {
1268 return NewFunction(
1269 isolate()->sloppy_function_without_prototype_map(), name, code);
1270 }
1271
1272
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,bool read_only_prototype)1273 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1274 Handle<Code> code,
1275 Handle<Object> prototype,
1276 bool read_only_prototype) {
1277 Handle<Map> map = read_only_prototype
1278 ? isolate()->sloppy_function_with_readonly_prototype_map()
1279 : isolate()->sloppy_function_map();
1280 Handle<JSFunction> result = NewFunction(map, name, code);
1281 result->set_prototype_or_initial_map(*prototype);
1282 return result;
1283 }
1284
1285
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,InstanceType type,int instance_size,bool read_only_prototype)1286 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1287 Handle<Code> code,
1288 Handle<Object> prototype,
1289 InstanceType type,
1290 int instance_size,
1291 bool read_only_prototype) {
1292 // Allocate the function
1293 Handle<JSFunction> function = NewFunction(
1294 name, code, prototype, read_only_prototype);
1295
1296 Handle<Map> initial_map = NewMap(
1297 type, instance_size, GetInitialFastElementsKind());
1298 if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1299 prototype = NewFunctionPrototype(function);
1300 }
1301 initial_map->set_prototype(*prototype);
1302 function->set_initial_map(*initial_map);
1303 initial_map->set_constructor(*function);
1304
1305 return function;
1306 }
1307
1308
NewFunction(Handle<String> name,Handle<Code> code,InstanceType type,int instance_size)1309 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1310 Handle<Code> code,
1311 InstanceType type,
1312 int instance_size) {
1313 return NewFunction(name, code, the_hole_value(), type, instance_size);
1314 }
1315
1316
NewFunctionPrototype(Handle<JSFunction> function)1317 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1318 // Make sure to use globals from the function's context, since the function
1319 // can be from a different context.
1320 Handle<Context> native_context(function->context()->native_context());
1321 Handle<Map> new_map;
1322 if (function->shared()->is_generator()) {
1323 // Generator prototypes can share maps since they don't have "constructor"
1324 // properties.
1325 new_map = handle(native_context->generator_object_prototype_map());
1326 } else {
1327 // Each function prototype gets a fresh map to avoid unwanted sharing of
1328 // maps between prototypes of different constructors.
1329 Handle<JSFunction> object_function(native_context->object_function());
1330 ASSERT(object_function->has_initial_map());
1331 new_map = Map::Copy(handle(object_function->initial_map()));
1332 }
1333
1334 Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1335
1336 if (!function->shared()->is_generator()) {
1337 JSObject::SetOwnPropertyIgnoreAttributes(prototype,
1338 constructor_string(),
1339 function,
1340 DONT_ENUM).Assert();
1341 }
1342
1343 return prototype;
1344 }
1345
1346
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1347 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1348 Handle<SharedFunctionInfo> info,
1349 Handle<Context> context,
1350 PretenureFlag pretenure) {
1351 int map_index = Context::FunctionMapIndex(info->strict_mode(),
1352 info->is_generator());
1353 Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1354 Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1355
1356 if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1357 info->ResetForNewContext(isolate()->heap()->global_ic_age());
1358 }
1359
1360 int index = info->SearchOptimizedCodeMap(context->native_context(),
1361 BailoutId::None());
1362 if (!info->bound() && index < 0) {
1363 int number_of_literals = info->num_literals();
1364 Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1365 if (number_of_literals > 0) {
1366 // Store the native context in the literals array prefix. This
1367 // context will be used when creating object, regexp and array
1368 // literals in this function.
1369 literals->set(JSFunction::kLiteralNativeContextIndex,
1370 context->native_context());
1371 }
1372 result->set_literals(*literals);
1373 }
1374
1375 if (index > 0) {
1376 // Caching of optimized code enabled and optimized code found.
1377 FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1378 if (literals != NULL) result->set_literals(literals);
1379 Code* code = info->GetCodeFromOptimizedCodeMap(index);
1380 ASSERT(!code->marked_for_deoptimization());
1381 result->ReplaceCode(code);
1382 return result;
1383 }
1384
1385 if (isolate()->use_crankshaft() &&
1386 FLAG_always_opt &&
1387 result->is_compiled() &&
1388 !info->is_toplevel() &&
1389 info->allows_lazy_compilation() &&
1390 !info->optimization_disabled() &&
1391 !isolate()->DebuggerHasBreakPoints()) {
1392 result->MarkForOptimization();
1393 }
1394 return result;
1395 }
1396
1397
NewIteratorResultObject(Handle<Object> value,bool done)1398 Handle<JSObject> Factory::NewIteratorResultObject(Handle<Object> value,
1399 bool done) {
1400 Handle<Map> map(isolate()->native_context()->iterator_result_map());
1401 Handle<JSObject> result = NewJSObjectFromMap(map, NOT_TENURED, false);
1402 result->InObjectPropertyAtPut(
1403 JSGeneratorObject::kResultValuePropertyIndex, *value);
1404 result->InObjectPropertyAtPut(
1405 JSGeneratorObject::kResultDonePropertyIndex, *ToBoolean(done));
1406 return result;
1407 }
1408
1409
NewScopeInfo(int length)1410 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1411 Handle<FixedArray> array = NewFixedArray(length, TENURED);
1412 array->set_map_no_write_barrier(*scope_info_map());
1413 Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1414 return scope_info;
1415 }
1416
1417
NewExternal(void * value)1418 Handle<JSObject> Factory::NewExternal(void* value) {
1419 Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1420 Handle<JSObject> external = NewJSObjectFromMap(external_map());
1421 external->SetInternalField(0, *foreign);
1422 return external;
1423 }
1424
1425
NewCodeRaw(int object_size,bool immovable)1426 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1427 CALL_HEAP_FUNCTION(isolate(),
1428 isolate()->heap()->AllocateCode(object_size, immovable),
1429 Code);
1430 }
1431
1432
NewCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_ref,bool immovable,bool crankshafted,int prologue_offset,bool is_debug)1433 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1434 Code::Flags flags,
1435 Handle<Object> self_ref,
1436 bool immovable,
1437 bool crankshafted,
1438 int prologue_offset,
1439 bool is_debug) {
1440 Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1441 Handle<ConstantPoolArray> constant_pool =
1442 desc.origin->NewConstantPool(isolate());
1443
1444 // Compute size.
1445 int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1446 int obj_size = Code::SizeFor(body_size);
1447
1448 Handle<Code> code = NewCodeRaw(obj_size, immovable);
1449 ASSERT(isolate()->code_range() == NULL ||
1450 !isolate()->code_range()->valid() ||
1451 isolate()->code_range()->contains(code->address()));
1452
1453 // The code object has not been fully initialized yet. We rely on the
1454 // fact that no allocation will happen from this point on.
1455 DisallowHeapAllocation no_gc;
1456 code->set_gc_metadata(Smi::FromInt(0));
1457 code->set_ic_age(isolate()->heap()->global_ic_age());
1458 code->set_instruction_size(desc.instr_size);
1459 code->set_relocation_info(*reloc_info);
1460 code->set_flags(flags);
1461 code->set_raw_kind_specific_flags1(0);
1462 code->set_raw_kind_specific_flags2(0);
1463 code->set_is_crankshafted(crankshafted);
1464 code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1465 code->set_raw_type_feedback_info(*undefined_value());
1466 code->set_next_code_link(*undefined_value());
1467 code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1468 code->set_prologue_offset(prologue_offset);
1469 if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1470 code->set_marked_for_deoptimization(false);
1471 }
1472
1473 if (is_debug) {
1474 ASSERT(code->kind() == Code::FUNCTION);
1475 code->set_has_debug_break_slots(true);
1476 }
1477
1478 desc.origin->PopulateConstantPool(*constant_pool);
1479 code->set_constant_pool(*constant_pool);
1480
1481 // Allow self references to created code object by patching the handle to
1482 // point to the newly allocated Code object.
1483 if (!self_ref.is_null()) *(self_ref.location()) = *code;
1484
1485 // Migrate generated code.
1486 // The generated code can contain Object** values (typically from handles)
1487 // that are dereferenced during the copy to point directly to the actual heap
1488 // objects. These pointers can include references to the code object itself,
1489 // through the self_reference parameter.
1490 code->CopyFrom(desc);
1491
1492 #ifdef VERIFY_HEAP
1493 if (FLAG_verify_heap) code->ObjectVerify();
1494 #endif
1495 return code;
1496 }
1497
1498
CopyCode(Handle<Code> code)1499 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1500 CALL_HEAP_FUNCTION(isolate(),
1501 isolate()->heap()->CopyCode(*code),
1502 Code);
1503 }
1504
1505
CopyCode(Handle<Code> code,Vector<byte> reloc_info)1506 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1507 CALL_HEAP_FUNCTION(isolate(),
1508 isolate()->heap()->CopyCode(*code, reloc_info),
1509 Code);
1510 }
1511
1512
NewJSObject(Handle<JSFunction> constructor,PretenureFlag pretenure)1513 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1514 PretenureFlag pretenure) {
1515 JSFunction::EnsureHasInitialMap(constructor);
1516 CALL_HEAP_FUNCTION(
1517 isolate(),
1518 isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1519 }
1520
1521
NewJSObjectWithMemento(Handle<JSFunction> constructor,Handle<AllocationSite> site)1522 Handle<JSObject> Factory::NewJSObjectWithMemento(
1523 Handle<JSFunction> constructor,
1524 Handle<AllocationSite> site) {
1525 JSFunction::EnsureHasInitialMap(constructor);
1526 CALL_HEAP_FUNCTION(
1527 isolate(),
1528 isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1529 JSObject);
1530 }
1531
1532
NewJSModule(Handle<Context> context,Handle<ScopeInfo> scope_info)1533 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1534 Handle<ScopeInfo> scope_info) {
1535 // Allocate a fresh map. Modules do not have a prototype.
1536 Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1537 // Allocate the object based on the map.
1538 Handle<JSModule> module =
1539 Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1540 module->set_context(*context);
1541 module->set_scope_info(*scope_info);
1542 return module;
1543 }
1544
1545
NewGlobalObject(Handle<JSFunction> constructor)1546 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1547 ASSERT(constructor->has_initial_map());
1548 Handle<Map> map(constructor->initial_map());
1549 ASSERT(map->is_dictionary_map());
1550
1551 // Make sure no field properties are described in the initial map.
1552 // This guarantees us that normalizing the properties does not
1553 // require us to change property values to PropertyCells.
1554 ASSERT(map->NextFreePropertyIndex() == 0);
1555
1556 // Make sure we don't have a ton of pre-allocated slots in the
1557 // global objects. They will be unused once we normalize the object.
1558 ASSERT(map->unused_property_fields() == 0);
1559 ASSERT(map->inobject_properties() == 0);
1560
1561 // Initial size of the backing store to avoid resize of the storage during
1562 // bootstrapping. The size differs between the JS global object ad the
1563 // builtins object.
1564 int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1565
1566 // Allocate a dictionary object for backing storage.
1567 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1568 Handle<NameDictionary> dictionary =
1569 NameDictionary::New(isolate(), at_least_space_for);
1570
1571 // The global object might be created from an object template with accessors.
1572 // Fill these accessors into the dictionary.
1573 Handle<DescriptorArray> descs(map->instance_descriptors());
1574 for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1575 PropertyDetails details = descs->GetDetails(i);
1576 ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
1577 PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1578 Handle<Name> name(descs->GetKey(i));
1579 Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1580 Handle<PropertyCell> cell = NewPropertyCell(value);
1581 // |dictionary| already contains enough space for all properties.
1582 USE(NameDictionary::Add(dictionary, name, cell, d));
1583 }
1584
1585 // Allocate the global object and initialize it with the backing store.
1586 Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1587 isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1588
1589 // Create a new map for the global object.
1590 Handle<Map> new_map = Map::CopyDropDescriptors(map);
1591 new_map->set_dictionary_map(true);
1592
1593 // Set up the global object as a normalized object.
1594 global->set_map(*new_map);
1595 global->set_properties(*dictionary);
1596
1597 // Make sure result is a global object with properties in dictionary.
1598 ASSERT(global->IsGlobalObject() && !global->HasFastProperties());
1599 return global;
1600 }
1601
1602
NewJSObjectFromMap(Handle<Map> map,PretenureFlag pretenure,bool alloc_props,Handle<AllocationSite> allocation_site)1603 Handle<JSObject> Factory::NewJSObjectFromMap(
1604 Handle<Map> map,
1605 PretenureFlag pretenure,
1606 bool alloc_props,
1607 Handle<AllocationSite> allocation_site) {
1608 CALL_HEAP_FUNCTION(
1609 isolate(),
1610 isolate()->heap()->AllocateJSObjectFromMap(
1611 *map,
1612 pretenure,
1613 alloc_props,
1614 allocation_site.is_null() ? NULL : *allocation_site),
1615 JSObject);
1616 }
1617
1618
NewJSArray(ElementsKind elements_kind,PretenureFlag pretenure)1619 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1620 PretenureFlag pretenure) {
1621 Context* native_context = isolate()->context()->native_context();
1622 JSFunction* array_function = native_context->array_function();
1623 Map* map = array_function->initial_map();
1624 Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1625 if (transition_map != NULL) map = transition_map;
1626 return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1627 }
1628
1629
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)1630 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1631 int length,
1632 int capacity,
1633 ArrayStorageAllocationMode mode,
1634 PretenureFlag pretenure) {
1635 Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1636 NewJSArrayStorage(array, length, capacity, mode);
1637 return array;
1638 }
1639
1640
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,PretenureFlag pretenure)1641 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1642 ElementsKind elements_kind,
1643 int length,
1644 PretenureFlag pretenure) {
1645 ASSERT(length <= elements->length());
1646 Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1647
1648 array->set_elements(*elements);
1649 array->set_length(Smi::FromInt(length));
1650 JSObject::ValidateElements(array);
1651 return array;
1652 }
1653
1654
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)1655 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1656 int length,
1657 int capacity,
1658 ArrayStorageAllocationMode mode) {
1659 ASSERT(capacity >= length);
1660
1661 if (capacity == 0) {
1662 array->set_length(Smi::FromInt(0));
1663 array->set_elements(*empty_fixed_array());
1664 return;
1665 }
1666
1667 Handle<FixedArrayBase> elms;
1668 ElementsKind elements_kind = array->GetElementsKind();
1669 if (IsFastDoubleElementsKind(elements_kind)) {
1670 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1671 elms = NewFixedDoubleArray(capacity);
1672 } else {
1673 ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1674 elms = NewFixedDoubleArrayWithHoles(capacity);
1675 }
1676 } else {
1677 ASSERT(IsFastSmiOrObjectElementsKind(elements_kind));
1678 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1679 elms = NewUninitializedFixedArray(capacity);
1680 } else {
1681 ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1682 elms = NewFixedArrayWithHoles(capacity);
1683 }
1684 }
1685
1686 array->set_elements(*elms);
1687 array->set_length(Smi::FromInt(length));
1688 }
1689
1690
NewJSGeneratorObject(Handle<JSFunction> function)1691 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1692 Handle<JSFunction> function) {
1693 ASSERT(function->shared()->is_generator());
1694 JSFunction::EnsureHasInitialMap(function);
1695 Handle<Map> map(function->initial_map());
1696 ASSERT(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1697 CALL_HEAP_FUNCTION(
1698 isolate(),
1699 isolate()->heap()->AllocateJSObjectFromMap(*map),
1700 JSGeneratorObject);
1701 }
1702
1703
NewJSArrayBuffer()1704 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1705 Handle<JSFunction> array_buffer_fun(
1706 isolate()->context()->native_context()->array_buffer_fun());
1707 CALL_HEAP_FUNCTION(
1708 isolate(),
1709 isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1710 JSArrayBuffer);
1711 }
1712
1713
NewJSDataView()1714 Handle<JSDataView> Factory::NewJSDataView() {
1715 Handle<JSFunction> data_view_fun(
1716 isolate()->context()->native_context()->data_view_fun());
1717 CALL_HEAP_FUNCTION(
1718 isolate(),
1719 isolate()->heap()->AllocateJSObject(*data_view_fun),
1720 JSDataView);
1721 }
1722
1723
GetTypedArrayFun(ExternalArrayType type,Isolate * isolate)1724 static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1725 Isolate* isolate) {
1726 Context* native_context = isolate->context()->native_context();
1727 switch (type) {
1728 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1729 case kExternal##Type##Array: \
1730 return native_context->type##_array_fun();
1731
1732 TYPED_ARRAYS(TYPED_ARRAY_FUN)
1733 #undef TYPED_ARRAY_FUN
1734
1735 default:
1736 UNREACHABLE();
1737 return NULL;
1738 }
1739 }
1740
1741
NewJSTypedArray(ExternalArrayType type)1742 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1743 Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1744
1745 CALL_HEAP_FUNCTION(
1746 isolate(),
1747 isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1748 JSTypedArray);
1749 }
1750
1751
NewJSProxy(Handle<Object> handler,Handle<Object> prototype)1752 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1753 Handle<Object> prototype) {
1754 // Allocate map.
1755 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1756 // maps. Will probably depend on the identity of the handler object, too.
1757 Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1758 map->set_prototype(*prototype);
1759
1760 // Allocate the proxy object.
1761 Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1762 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1763 result->set_handler(*handler);
1764 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1765 return result;
1766 }
1767
1768
NewJSFunctionProxy(Handle<Object> handler,Handle<Object> call_trap,Handle<Object> construct_trap,Handle<Object> prototype)1769 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1770 Handle<Object> call_trap,
1771 Handle<Object> construct_trap,
1772 Handle<Object> prototype) {
1773 // Allocate map.
1774 // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1775 // maps. Will probably depend on the identity of the handler object, too.
1776 Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1777 map->set_prototype(*prototype);
1778
1779 // Allocate the proxy object.
1780 Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1781 result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1782 result->set_handler(*handler);
1783 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1784 result->set_call_trap(*call_trap);
1785 result->set_construct_trap(*construct_trap);
1786 return result;
1787 }
1788
1789
ReinitializeJSReceiver(Handle<JSReceiver> object,InstanceType type,int size)1790 void Factory::ReinitializeJSReceiver(Handle<JSReceiver> object,
1791 InstanceType type,
1792 int size) {
1793 ASSERT(type >= FIRST_JS_OBJECT_TYPE);
1794
1795 // Allocate fresh map.
1796 // TODO(rossberg): Once we optimize proxies, cache these maps.
1797 Handle<Map> map = NewMap(type, size);
1798
1799 // Check that the receiver has at least the size of the fresh object.
1800 int size_difference = object->map()->instance_size() - map->instance_size();
1801 ASSERT(size_difference >= 0);
1802
1803 map->set_prototype(object->map()->prototype());
1804
1805 // Allocate the backing storage for the properties.
1806 int prop_size = map->InitialPropertiesLength();
1807 Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1808
1809 Heap* heap = isolate()->heap();
1810 MaybeHandle<SharedFunctionInfo> shared;
1811 if (type == JS_FUNCTION_TYPE) {
1812 OneByteStringKey key(STATIC_ASCII_VECTOR("<freezing call trap>"),
1813 heap->HashSeed());
1814 Handle<String> name = InternalizeStringWithKey(&key);
1815 shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1816 }
1817
1818 // In order to keep heap in consistent state there must be no allocations
1819 // before object re-initialization is finished and filler object is installed.
1820 DisallowHeapAllocation no_allocation;
1821
1822 // Reset the map for the object.
1823 object->set_map(*map);
1824 Handle<JSObject> jsobj = Handle<JSObject>::cast(object);
1825
1826 // Reinitialize the object from the constructor map.
1827 heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1828
1829 // Functions require some minimal initialization.
1830 if (type == JS_FUNCTION_TYPE) {
1831 map->set_function_with_prototype(true);
1832 Handle<JSFunction> js_function = Handle<JSFunction>::cast(object);
1833 Handle<Context> context(isolate()->context()->native_context());
1834 InitializeFunction(js_function, shared.ToHandleChecked(), context);
1835 }
1836
1837 // Put in filler if the new object is smaller than the old.
1838 if (size_difference > 0) {
1839 heap->CreateFillerObjectAt(
1840 object->address() + map->instance_size(), size_difference);
1841 }
1842 }
1843
1844
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)1845 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1846 Handle<JSFunction> constructor) {
1847 ASSERT(constructor->has_initial_map());
1848 Handle<Map> map(constructor->initial_map(), isolate());
1849
1850 // The proxy's hash should be retained across reinitialization.
1851 Handle<Object> hash(object->hash(), isolate());
1852
1853 // Check that the already allocated object has the same size and type as
1854 // objects allocated using the constructor.
1855 ASSERT(map->instance_size() == object->map()->instance_size());
1856 ASSERT(map->instance_type() == object->map()->instance_type());
1857
1858 // Allocate the backing storage for the properties.
1859 int prop_size = map->InitialPropertiesLength();
1860 Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1861
1862 // In order to keep heap in consistent state there must be no allocations
1863 // before object re-initialization is finished.
1864 DisallowHeapAllocation no_allocation;
1865
1866 // Reset the map for the object.
1867 object->set_map(constructor->initial_map());
1868
1869 Heap* heap = isolate()->heap();
1870 // Reinitialize the object from the constructor map.
1871 heap->InitializeJSObjectFromMap(*object, *properties, *map);
1872
1873 // Restore the saved hash.
1874 object->set_hash(*hash);
1875 }
1876
1877
BecomeJSObject(Handle<JSReceiver> object)1878 void Factory::BecomeJSObject(Handle<JSReceiver> object) {
1879 ReinitializeJSReceiver(object, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1880 }
1881
1882
BecomeJSFunction(Handle<JSReceiver> object)1883 void Factory::BecomeJSFunction(Handle<JSReceiver> object) {
1884 ReinitializeJSReceiver(object, JS_FUNCTION_TYPE, JSFunction::kSize);
1885 }
1886
1887
NewTypeFeedbackVector(int slot_count)1888 Handle<FixedArray> Factory::NewTypeFeedbackVector(int slot_count) {
1889 // Ensure we can skip the write barrier
1890 ASSERT_EQ(isolate()->heap()->uninitialized_symbol(),
1891 *TypeFeedbackInfo::UninitializedSentinel(isolate()));
1892
1893 CALL_HEAP_FUNCTION(
1894 isolate(),
1895 isolate()->heap()->AllocateFixedArrayWithFiller(
1896 slot_count,
1897 TENURED,
1898 *TypeFeedbackInfo::UninitializedSentinel(isolate())),
1899 FixedArray);
1900 }
1901
1902
NewSharedFunctionInfo(Handle<String> name,int number_of_literals,bool is_generator,Handle<Code> code,Handle<ScopeInfo> scope_info,Handle<FixedArray> feedback_vector)1903 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1904 Handle<String> name,
1905 int number_of_literals,
1906 bool is_generator,
1907 Handle<Code> code,
1908 Handle<ScopeInfo> scope_info,
1909 Handle<FixedArray> feedback_vector) {
1910 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1911 shared->set_scope_info(*scope_info);
1912 shared->set_feedback_vector(*feedback_vector);
1913 int literals_array_size = number_of_literals;
1914 // If the function contains object, regexp or array literals,
1915 // allocate extra space for a literals array prefix containing the
1916 // context.
1917 if (number_of_literals > 0) {
1918 literals_array_size += JSFunction::kLiteralsPrefixSize;
1919 }
1920 shared->set_num_literals(literals_array_size);
1921 if (is_generator) {
1922 shared->set_instance_class_name(isolate()->heap()->Generator_string());
1923 shared->DisableOptimization(kGenerator);
1924 }
1925 return shared;
1926 }
1927
1928
NewJSMessageObject(Handle<String> type,Handle<JSArray> arguments,int start_position,int end_position,Handle<Object> script,Handle<Object> stack_frames)1929 Handle<JSMessageObject> Factory::NewJSMessageObject(
1930 Handle<String> type,
1931 Handle<JSArray> arguments,
1932 int start_position,
1933 int end_position,
1934 Handle<Object> script,
1935 Handle<Object> stack_frames) {
1936 Handle<Map> map = message_object_map();
1937 Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1938 message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1939 message->initialize_elements();
1940 message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1941 message->set_type(*type);
1942 message->set_arguments(*arguments);
1943 message->set_start_position(start_position);
1944 message->set_end_position(end_position);
1945 message->set_script(*script);
1946 message->set_stack_frames(*stack_frames);
1947 return message;
1948 }
1949
1950
NewSharedFunctionInfo(Handle<String> name,MaybeHandle<Code> maybe_code)1951 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1952 Handle<String> name,
1953 MaybeHandle<Code> maybe_code) {
1954 Handle<Map> map = shared_function_info_map();
1955 Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1956 OLD_POINTER_SPACE);
1957
1958 // Set pointer fields.
1959 share->set_name(*name);
1960 Handle<Code> code;
1961 if (!maybe_code.ToHandle(&code)) {
1962 code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1963 }
1964 share->set_code(*code);
1965 share->set_optimized_code_map(Smi::FromInt(0));
1966 share->set_scope_info(ScopeInfo::Empty(isolate()));
1967 Code* construct_stub =
1968 isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1969 share->set_construct_stub(construct_stub);
1970 share->set_instance_class_name(*Object_string());
1971 share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1972 share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1973 share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
1974 share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
1975 share->set_feedback_vector(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1976 share->set_profiler_ticks(0);
1977 share->set_ast_node_count(0);
1978 share->set_counters(0);
1979
1980 // Set integer fields (smi or int, depending on the architecture).
1981 share->set_length(0);
1982 share->set_formal_parameter_count(0);
1983 share->set_expected_nof_properties(0);
1984 share->set_num_literals(0);
1985 share->set_start_position_and_type(0);
1986 share->set_end_position(0);
1987 share->set_function_token_position(0);
1988 // All compiler hints default to false or 0.
1989 share->set_compiler_hints(0);
1990 share->set_opt_count_and_bailout_reason(0);
1991
1992 return share;
1993 }
1994
1995
NumberCacheHash(Handle<FixedArray> cache,Handle<Object> number)1996 static inline int NumberCacheHash(Handle<FixedArray> cache,
1997 Handle<Object> number) {
1998 int mask = (cache->length() >> 1) - 1;
1999 if (number->IsSmi()) {
2000 return Handle<Smi>::cast(number)->value() & mask;
2001 } else {
2002 DoubleRepresentation rep(number->Number());
2003 return
2004 (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2005 }
2006 }
2007
2008
GetNumberStringCache(Handle<Object> number)2009 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2010 DisallowHeapAllocation no_gc;
2011 int hash = NumberCacheHash(number_string_cache(), number);
2012 Object* key = number_string_cache()->get(hash * 2);
2013 if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2014 key->Number() == number->Number())) {
2015 return Handle<String>(
2016 String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2017 }
2018 return undefined_value();
2019 }
2020
2021
SetNumberStringCache(Handle<Object> number,Handle<String> string)2022 void Factory::SetNumberStringCache(Handle<Object> number,
2023 Handle<String> string) {
2024 int hash = NumberCacheHash(number_string_cache(), number);
2025 if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2026 int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2027 if (number_string_cache()->length() != full_size) {
2028 // The first time we have a hash collision, we move to the full sized
2029 // number string cache. The idea is to have a small number string
2030 // cache in the snapshot to keep boot-time memory usage down.
2031 // If we expand the number string cache already while creating
2032 // the snapshot then that didn't work out.
2033 ASSERT(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2034 Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2035 isolate()->heap()->set_number_string_cache(*new_cache);
2036 return;
2037 }
2038 }
2039 number_string_cache()->set(hash * 2, *number);
2040 number_string_cache()->set(hash * 2 + 1, *string);
2041 }
2042
2043
NumberToString(Handle<Object> number,bool check_number_string_cache)2044 Handle<String> Factory::NumberToString(Handle<Object> number,
2045 bool check_number_string_cache) {
2046 isolate()->counters()->number_to_string_runtime()->Increment();
2047 if (check_number_string_cache) {
2048 Handle<Object> cached = GetNumberStringCache(number);
2049 if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2050 }
2051
2052 char arr[100];
2053 Vector<char> buffer(arr, ARRAY_SIZE(arr));
2054 const char* str;
2055 if (number->IsSmi()) {
2056 int num = Handle<Smi>::cast(number)->value();
2057 str = IntToCString(num, buffer);
2058 } else {
2059 double num = Handle<HeapNumber>::cast(number)->value();
2060 str = DoubleToCString(num, buffer);
2061 }
2062
2063 // We tenure the allocated string since it is referenced from the
2064 // number-string cache which lives in the old space.
2065 Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2066 SetNumberStringCache(number, js_string);
2067 return js_string;
2068 }
2069
2070
NewDebugInfo(Handle<SharedFunctionInfo> shared)2071 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2072 // Get the original code of the function.
2073 Handle<Code> code(shared->code());
2074
2075 // Create a copy of the code before allocating the debug info object to avoid
2076 // allocation while setting up the debug info object.
2077 Handle<Code> original_code(*Factory::CopyCode(code));
2078
2079 // Allocate initial fixed array for active break points before allocating the
2080 // debug info object to avoid allocation while setting up the debug info
2081 // object.
2082 Handle<FixedArray> break_points(
2083 NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2084
2085 // Create and set up the debug info object. Debug info contains function, a
2086 // copy of the original code, the executing code and initial fixed array for
2087 // active break points.
2088 Handle<DebugInfo> debug_info =
2089 Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2090 debug_info->set_shared(*shared);
2091 debug_info->set_original_code(*original_code);
2092 debug_info->set_code(*code);
2093 debug_info->set_break_points(*break_points);
2094
2095 // Link debug info to function.
2096 shared->set_debug_info(*debug_info);
2097
2098 return debug_info;
2099 }
2100
2101
NewArgumentsObject(Handle<Object> callee,int length)2102 Handle<JSObject> Factory::NewArgumentsObject(Handle<Object> callee,
2103 int length) {
2104 CALL_HEAP_FUNCTION(
2105 isolate(),
2106 isolate()->heap()->AllocateArgumentsObject(*callee, length), JSObject);
2107 }
2108
2109
CreateApiFunction(Handle<FunctionTemplateInfo> obj,Handle<Object> prototype,ApiInstanceType instance_type)2110 Handle<JSFunction> Factory::CreateApiFunction(
2111 Handle<FunctionTemplateInfo> obj,
2112 Handle<Object> prototype,
2113 ApiInstanceType instance_type) {
2114 Handle<Code> code = isolate()->builtins()->HandleApiCall();
2115 Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2116
2117 Handle<JSFunction> result;
2118 if (obj->remove_prototype()) {
2119 result = NewFunctionWithoutPrototype(empty_string(), code);
2120 } else {
2121 int internal_field_count = 0;
2122 if (!obj->instance_template()->IsUndefined()) {
2123 Handle<ObjectTemplateInfo> instance_template =
2124 Handle<ObjectTemplateInfo>(
2125 ObjectTemplateInfo::cast(obj->instance_template()));
2126 internal_field_count =
2127 Smi::cast(instance_template->internal_field_count())->value();
2128 }
2129
2130 // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2131 // JSObject::GetHeaderSize.
2132 int instance_size = kPointerSize * internal_field_count;
2133 InstanceType type;
2134 switch (instance_type) {
2135 case JavaScriptObject:
2136 type = JS_OBJECT_TYPE;
2137 instance_size += JSObject::kHeaderSize;
2138 break;
2139 case InnerGlobalObject:
2140 type = JS_GLOBAL_OBJECT_TYPE;
2141 instance_size += JSGlobalObject::kSize;
2142 break;
2143 case OuterGlobalObject:
2144 type = JS_GLOBAL_PROXY_TYPE;
2145 instance_size += JSGlobalProxy::kSize;
2146 break;
2147 default:
2148 UNREACHABLE();
2149 type = JS_OBJECT_TYPE; // Keep the compiler happy.
2150 break;
2151 }
2152
2153 result = NewFunction(empty_string(), code, prototype, type,
2154 instance_size, obj->read_only_prototype());
2155 }
2156
2157 result->shared()->set_length(obj->length());
2158 Handle<Object> class_name(obj->class_name(), isolate());
2159 if (class_name->IsString()) {
2160 result->shared()->set_instance_class_name(*class_name);
2161 result->shared()->set_name(*class_name);
2162 }
2163 result->shared()->set_function_data(*obj);
2164 result->shared()->set_construct_stub(*construct_stub);
2165 result->shared()->DontAdaptArguments();
2166
2167 if (obj->remove_prototype()) {
2168 ASSERT(result->shared()->IsApiFunction());
2169 ASSERT(!result->has_initial_map());
2170 ASSERT(!result->has_prototype());
2171 return result;
2172 }
2173
2174 JSObject::SetOwnPropertyIgnoreAttributes(
2175 handle(JSObject::cast(result->prototype())),
2176 constructor_string(),
2177 result,
2178 DONT_ENUM).Assert();
2179
2180 // Down from here is only valid for API functions that can be used as a
2181 // constructor (don't set the "remove prototype" flag).
2182
2183 Handle<Map> map(result->initial_map());
2184
2185 // Mark as undetectable if needed.
2186 if (obj->undetectable()) {
2187 map->set_is_undetectable();
2188 }
2189
2190 // Mark as hidden for the __proto__ accessor if needed.
2191 if (obj->hidden_prototype()) {
2192 map->set_is_hidden_prototype();
2193 }
2194
2195 // Mark as needs_access_check if needed.
2196 if (obj->needs_access_check()) {
2197 map->set_is_access_check_needed(true);
2198 }
2199
2200 // Set interceptor information in the map.
2201 if (!obj->named_property_handler()->IsUndefined()) {
2202 map->set_has_named_interceptor();
2203 }
2204 if (!obj->indexed_property_handler()->IsUndefined()) {
2205 map->set_has_indexed_interceptor();
2206 }
2207
2208 // Set instance call-as-function information in the map.
2209 if (!obj->instance_call_handler()->IsUndefined()) {
2210 map->set_has_instance_call_handler();
2211 }
2212
2213 // Recursively copy parent instance templates' accessors,
2214 // 'data' may be modified.
2215 int max_number_of_additional_properties = 0;
2216 int max_number_of_static_properties = 0;
2217 FunctionTemplateInfo* info = *obj;
2218 while (true) {
2219 if (!info->instance_template()->IsUndefined()) {
2220 Object* props =
2221 ObjectTemplateInfo::cast(
2222 info->instance_template())->property_accessors();
2223 if (!props->IsUndefined()) {
2224 Handle<Object> props_handle(props, isolate());
2225 NeanderArray props_array(props_handle);
2226 max_number_of_additional_properties += props_array.length();
2227 }
2228 }
2229 if (!info->property_accessors()->IsUndefined()) {
2230 Object* props = info->property_accessors();
2231 if (!props->IsUndefined()) {
2232 Handle<Object> props_handle(props, isolate());
2233 NeanderArray props_array(props_handle);
2234 max_number_of_static_properties += props_array.length();
2235 }
2236 }
2237 Object* parent = info->parent_template();
2238 if (parent->IsUndefined()) break;
2239 info = FunctionTemplateInfo::cast(parent);
2240 }
2241
2242 Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2243
2244 // Use a temporary FixedArray to acculumate static accessors
2245 int valid_descriptors = 0;
2246 Handle<FixedArray> array;
2247 if (max_number_of_static_properties > 0) {
2248 array = NewFixedArray(max_number_of_static_properties);
2249 }
2250
2251 while (true) {
2252 // Install instance descriptors
2253 if (!obj->instance_template()->IsUndefined()) {
2254 Handle<ObjectTemplateInfo> instance =
2255 Handle<ObjectTemplateInfo>(
2256 ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2257 Handle<Object> props = Handle<Object>(instance->property_accessors(),
2258 isolate());
2259 if (!props->IsUndefined()) {
2260 Map::AppendCallbackDescriptors(map, props);
2261 }
2262 }
2263 // Accumulate static accessors
2264 if (!obj->property_accessors()->IsUndefined()) {
2265 Handle<Object> props = Handle<Object>(obj->property_accessors(),
2266 isolate());
2267 valid_descriptors =
2268 AccessorInfo::AppendUnique(props, array, valid_descriptors);
2269 }
2270 // Climb parent chain
2271 Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2272 if (parent->IsUndefined()) break;
2273 obj = Handle<FunctionTemplateInfo>::cast(parent);
2274 }
2275
2276 // Install accumulated static accessors
2277 for (int i = 0; i < valid_descriptors; i++) {
2278 Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2279 JSObject::SetAccessor(result, accessor).Assert();
2280 }
2281
2282 ASSERT(result->shared()->IsApiFunction());
2283 return result;
2284 }
2285
2286
AddToMapCache(Handle<Context> context,Handle<FixedArray> keys,Handle<Map> map)2287 Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2288 Handle<FixedArray> keys,
2289 Handle<Map> map) {
2290 Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2291 Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2292 context->set_map_cache(*result);
2293 return result;
2294 }
2295
2296
ObjectLiteralMapFromCache(Handle<Context> context,Handle<FixedArray> keys)2297 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2298 Handle<FixedArray> keys) {
2299 if (context->map_cache()->IsUndefined()) {
2300 // Allocate the new map cache for the native context.
2301 Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2302 context->set_map_cache(*new_cache);
2303 }
2304 // Check to see whether there is a matching element in the cache.
2305 Handle<MapCache> cache =
2306 Handle<MapCache>(MapCache::cast(context->map_cache()));
2307 Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2308 if (result->IsMap()) return Handle<Map>::cast(result);
2309 // Create a new map and add it to the cache.
2310 Handle<Map> map = Map::Create(
2311 handle(context->object_function()), keys->length());
2312 AddToMapCache(context, keys, map);
2313 return map;
2314 }
2315
2316
SetRegExpAtomData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)2317 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2318 JSRegExp::Type type,
2319 Handle<String> source,
2320 JSRegExp::Flags flags,
2321 Handle<Object> data) {
2322 Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2323
2324 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2325 store->set(JSRegExp::kSourceIndex, *source);
2326 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2327 store->set(JSRegExp::kAtomPatternIndex, *data);
2328 regexp->set_data(*store);
2329 }
2330
SetRegExpIrregexpData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,int capture_count)2331 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2332 JSRegExp::Type type,
2333 Handle<String> source,
2334 JSRegExp::Flags flags,
2335 int capture_count) {
2336 Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2337 Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2338 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2339 store->set(JSRegExp::kSourceIndex, *source);
2340 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2341 store->set(JSRegExp::kIrregexpASCIICodeIndex, uninitialized);
2342 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2343 store->set(JSRegExp::kIrregexpASCIICodeSavedIndex, uninitialized);
2344 store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2345 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2346 store->set(JSRegExp::kIrregexpCaptureCountIndex,
2347 Smi::FromInt(capture_count));
2348 regexp->set_data(*store);
2349 }
2350
2351
2352
ConfigureInstance(Handle<FunctionTemplateInfo> desc,Handle<JSObject> instance)2353 MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2354 Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2355 // Configure the instance by adding the properties specified by the
2356 // instance template.
2357 Handle<Object> instance_template(desc->instance_template(), isolate());
2358 if (!instance_template->IsUndefined()) {
2359 RETURN_ON_EXCEPTION(
2360 isolate(),
2361 Execution::ConfigureInstance(isolate(), instance, instance_template),
2362 FunctionTemplateInfo);
2363 }
2364 return desc;
2365 }
2366
2367
GlobalConstantFor(Handle<String> name)2368 Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2369 if (String::Equals(name, undefined_string())) return undefined_value();
2370 if (String::Equals(name, nan_string())) return nan_value();
2371 if (String::Equals(name, infinity_string())) return infinity_value();
2372 return Handle<Object>::null();
2373 }
2374
2375
ToBoolean(bool value)2376 Handle<Object> Factory::ToBoolean(bool value) {
2377 return value ? true_value() : false_value();
2378 }
2379
2380
2381 } } // namespace v8::internal
2382