• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/ScheduleDAG.h"
16 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
17 #include "llvm/CodeGen/SelectionDAGNodes.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include <climits>
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "pre-RA-sched"
28 
29 #ifndef NDEBUG
30 static cl::opt<bool> StressSchedOpt(
31   "stress-sched", cl::Hidden, cl::init(false),
32   cl::desc("Stress test instruction scheduling"));
33 #endif
34 
anchor()35 void SchedulingPriorityQueue::anchor() { }
36 
ScheduleDAG(MachineFunction & mf)37 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
38   : TM(mf.getTarget()),
39     TII(TM.getInstrInfo()),
40     TRI(TM.getRegisterInfo()),
41     MF(mf), MRI(mf.getRegInfo()),
42     EntrySU(), ExitSU() {
43 #ifndef NDEBUG
44   StressSched = StressSchedOpt;
45 #endif
46 }
47 
~ScheduleDAG()48 ScheduleDAG::~ScheduleDAG() {}
49 
50 /// Clear the DAG state (e.g. between scheduling regions).
clearDAG()51 void ScheduleDAG::clearDAG() {
52   SUnits.clear();
53   EntrySU = SUnit();
54   ExitSU = SUnit();
55 }
56 
57 /// getInstrDesc helper to handle SDNodes.
getNodeDesc(const SDNode * Node) const58 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
59   if (!Node || !Node->isMachineOpcode()) return nullptr;
60   return &TII->get(Node->getMachineOpcode());
61 }
62 
63 /// addPred - This adds the specified edge as a pred of the current node if
64 /// not already.  It also adds the current node as a successor of the
65 /// specified node.
addPred(const SDep & D,bool Required)66 bool SUnit::addPred(const SDep &D, bool Required) {
67   // If this node already has this dependence, don't add a redundant one.
68   for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
69          I != E; ++I) {
70     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
71     // add them if another kind of edge already exists.
72     if (!Required && I->getSUnit() == D.getSUnit())
73       return false;
74     if (I->overlaps(D)) {
75       // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
76       if (I->getLatency() < D.getLatency()) {
77         SUnit *PredSU = I->getSUnit();
78         // Find the corresponding successor in N.
79         SDep ForwardD = *I;
80         ForwardD.setSUnit(this);
81         for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(),
82                EE = PredSU->Succs.end(); II != EE; ++II) {
83           if (*II == ForwardD) {
84             II->setLatency(D.getLatency());
85             break;
86           }
87         }
88         I->setLatency(D.getLatency());
89       }
90       return false;
91     }
92   }
93   // Now add a corresponding succ to N.
94   SDep P = D;
95   P.setSUnit(this);
96   SUnit *N = D.getSUnit();
97   // Update the bookkeeping.
98   if (D.getKind() == SDep::Data) {
99     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
100     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
101     ++NumPreds;
102     ++N->NumSuccs;
103   }
104   if (!N->isScheduled) {
105     if (D.isWeak()) {
106       ++WeakPredsLeft;
107     }
108     else {
109       assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
110       ++NumPredsLeft;
111     }
112   }
113   if (!isScheduled) {
114     if (D.isWeak()) {
115       ++N->WeakSuccsLeft;
116     }
117     else {
118       assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
119       ++N->NumSuccsLeft;
120     }
121   }
122   Preds.push_back(D);
123   N->Succs.push_back(P);
124   if (P.getLatency() != 0) {
125     this->setDepthDirty();
126     N->setHeightDirty();
127   }
128   return true;
129 }
130 
131 /// removePred - This removes the specified edge as a pred of the current
132 /// node if it exists.  It also removes the current node as a successor of
133 /// the specified node.
removePred(const SDep & D)134 void SUnit::removePred(const SDep &D) {
135   // Find the matching predecessor.
136   for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
137          I != E; ++I)
138     if (*I == D) {
139       // Find the corresponding successor in N.
140       SDep P = D;
141       P.setSUnit(this);
142       SUnit *N = D.getSUnit();
143       SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(),
144                                                        N->Succs.end(), P);
145       assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
146       N->Succs.erase(Succ);
147       Preds.erase(I);
148       // Update the bookkeeping.
149       if (P.getKind() == SDep::Data) {
150         assert(NumPreds > 0 && "NumPreds will underflow!");
151         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
152         --NumPreds;
153         --N->NumSuccs;
154       }
155       if (!N->isScheduled) {
156         if (D.isWeak())
157           --WeakPredsLeft;
158         else {
159           assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
160           --NumPredsLeft;
161         }
162       }
163       if (!isScheduled) {
164         if (D.isWeak())
165           --N->WeakSuccsLeft;
166         else {
167           assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
168           --N->NumSuccsLeft;
169         }
170       }
171       if (P.getLatency() != 0) {
172         this->setDepthDirty();
173         N->setHeightDirty();
174       }
175       return;
176     }
177 }
178 
setDepthDirty()179 void SUnit::setDepthDirty() {
180   if (!isDepthCurrent) return;
181   SmallVector<SUnit*, 8> WorkList;
182   WorkList.push_back(this);
183   do {
184     SUnit *SU = WorkList.pop_back_val();
185     SU->isDepthCurrent = false;
186     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
187          E = SU->Succs.end(); I != E; ++I) {
188       SUnit *SuccSU = I->getSUnit();
189       if (SuccSU->isDepthCurrent)
190         WorkList.push_back(SuccSU);
191     }
192   } while (!WorkList.empty());
193 }
194 
setHeightDirty()195 void SUnit::setHeightDirty() {
196   if (!isHeightCurrent) return;
197   SmallVector<SUnit*, 8> WorkList;
198   WorkList.push_back(this);
199   do {
200     SUnit *SU = WorkList.pop_back_val();
201     SU->isHeightCurrent = false;
202     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
203          E = SU->Preds.end(); I != E; ++I) {
204       SUnit *PredSU = I->getSUnit();
205       if (PredSU->isHeightCurrent)
206         WorkList.push_back(PredSU);
207     }
208   } while (!WorkList.empty());
209 }
210 
211 /// setDepthToAtLeast - Update this node's successors to reflect the
212 /// fact that this node's depth just increased.
213 ///
setDepthToAtLeast(unsigned NewDepth)214 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
215   if (NewDepth <= getDepth())
216     return;
217   setDepthDirty();
218   Depth = NewDepth;
219   isDepthCurrent = true;
220 }
221 
222 /// setHeightToAtLeast - Update this node's predecessors to reflect the
223 /// fact that this node's height just increased.
224 ///
setHeightToAtLeast(unsigned NewHeight)225 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
226   if (NewHeight <= getHeight())
227     return;
228   setHeightDirty();
229   Height = NewHeight;
230   isHeightCurrent = true;
231 }
232 
233 /// ComputeDepth - Calculate the maximal path from the node to the exit.
234 ///
ComputeDepth()235 void SUnit::ComputeDepth() {
236   SmallVector<SUnit*, 8> WorkList;
237   WorkList.push_back(this);
238   do {
239     SUnit *Cur = WorkList.back();
240 
241     bool Done = true;
242     unsigned MaxPredDepth = 0;
243     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
244          E = Cur->Preds.end(); I != E; ++I) {
245       SUnit *PredSU = I->getSUnit();
246       if (PredSU->isDepthCurrent)
247         MaxPredDepth = std::max(MaxPredDepth,
248                                 PredSU->Depth + I->getLatency());
249       else {
250         Done = false;
251         WorkList.push_back(PredSU);
252       }
253     }
254 
255     if (Done) {
256       WorkList.pop_back();
257       if (MaxPredDepth != Cur->Depth) {
258         Cur->setDepthDirty();
259         Cur->Depth = MaxPredDepth;
260       }
261       Cur->isDepthCurrent = true;
262     }
263   } while (!WorkList.empty());
264 }
265 
266 /// ComputeHeight - Calculate the maximal path from the node to the entry.
267 ///
ComputeHeight()268 void SUnit::ComputeHeight() {
269   SmallVector<SUnit*, 8> WorkList;
270   WorkList.push_back(this);
271   do {
272     SUnit *Cur = WorkList.back();
273 
274     bool Done = true;
275     unsigned MaxSuccHeight = 0;
276     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
277          E = Cur->Succs.end(); I != E; ++I) {
278       SUnit *SuccSU = I->getSUnit();
279       if (SuccSU->isHeightCurrent)
280         MaxSuccHeight = std::max(MaxSuccHeight,
281                                  SuccSU->Height + I->getLatency());
282       else {
283         Done = false;
284         WorkList.push_back(SuccSU);
285       }
286     }
287 
288     if (Done) {
289       WorkList.pop_back();
290       if (MaxSuccHeight != Cur->Height) {
291         Cur->setHeightDirty();
292         Cur->Height = MaxSuccHeight;
293       }
294       Cur->isHeightCurrent = true;
295     }
296   } while (!WorkList.empty());
297 }
298 
biasCriticalPath()299 void SUnit::biasCriticalPath() {
300   if (NumPreds < 2)
301     return;
302 
303   SUnit::pred_iterator BestI = Preds.begin();
304   unsigned MaxDepth = BestI->getSUnit()->getDepth();
305   for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
306        ++I) {
307     if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
308       BestI = I;
309   }
310   if (BestI != Preds.begin())
311     std::swap(*Preds.begin(), *BestI);
312 }
313 
314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
315 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
316 /// a group of nodes flagged together.
dump(const ScheduleDAG * G) const317 void SUnit::dump(const ScheduleDAG *G) const {
318   dbgs() << "SU(" << NodeNum << "): ";
319   G->dumpNode(this);
320 }
321 
dumpAll(const ScheduleDAG * G) const322 void SUnit::dumpAll(const ScheduleDAG *G) const {
323   dump(G);
324 
325   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
326   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
327   if (WeakPredsLeft)
328     dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
329   if (WeakSuccsLeft)
330     dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
331   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
332   dbgs() << "  Latency            : " << Latency << "\n";
333   dbgs() << "  Depth              : " << getDepth() << "\n";
334   dbgs() << "  Height             : " << getHeight() << "\n";
335 
336   if (Preds.size() != 0) {
337     dbgs() << "  Predecessors:\n";
338     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
339          I != E; ++I) {
340       dbgs() << "   ";
341       switch (I->getKind()) {
342       case SDep::Data:        dbgs() << "val "; break;
343       case SDep::Anti:        dbgs() << "anti"; break;
344       case SDep::Output:      dbgs() << "out "; break;
345       case SDep::Order:       dbgs() << "ch  "; break;
346       }
347       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
348       if (I->isArtificial())
349         dbgs() << " *";
350       dbgs() << ": Latency=" << I->getLatency();
351       if (I->isAssignedRegDep())
352         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
353       dbgs() << "\n";
354     }
355   }
356   if (Succs.size() != 0) {
357     dbgs() << "  Successors:\n";
358     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
359          I != E; ++I) {
360       dbgs() << "   ";
361       switch (I->getKind()) {
362       case SDep::Data:        dbgs() << "val "; break;
363       case SDep::Anti:        dbgs() << "anti"; break;
364       case SDep::Output:      dbgs() << "out "; break;
365       case SDep::Order:       dbgs() << "ch  "; break;
366       }
367       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
368       if (I->isArtificial())
369         dbgs() << " *";
370       dbgs() << ": Latency=" << I->getLatency();
371       if (I->isAssignedRegDep())
372         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
373       dbgs() << "\n";
374     }
375   }
376   dbgs() << "\n";
377 }
378 #endif
379 
380 #ifndef NDEBUG
381 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
382 /// their state is consistent. Return the number of scheduled nodes.
383 ///
VerifyScheduledDAG(bool isBottomUp)384 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
385   bool AnyNotSched = false;
386   unsigned DeadNodes = 0;
387   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
388     if (!SUnits[i].isScheduled) {
389       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
390         ++DeadNodes;
391         continue;
392       }
393       if (!AnyNotSched)
394         dbgs() << "*** Scheduling failed! ***\n";
395       SUnits[i].dump(this);
396       dbgs() << "has not been scheduled!\n";
397       AnyNotSched = true;
398     }
399     if (SUnits[i].isScheduled &&
400         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
401           unsigned(INT_MAX)) {
402       if (!AnyNotSched)
403         dbgs() << "*** Scheduling failed! ***\n";
404       SUnits[i].dump(this);
405       dbgs() << "has an unexpected "
406            << (isBottomUp ? "Height" : "Depth") << " value!\n";
407       AnyNotSched = true;
408     }
409     if (isBottomUp) {
410       if (SUnits[i].NumSuccsLeft != 0) {
411         if (!AnyNotSched)
412           dbgs() << "*** Scheduling failed! ***\n";
413         SUnits[i].dump(this);
414         dbgs() << "has successors left!\n";
415         AnyNotSched = true;
416       }
417     } else {
418       if (SUnits[i].NumPredsLeft != 0) {
419         if (!AnyNotSched)
420           dbgs() << "*** Scheduling failed! ***\n";
421         SUnits[i].dump(this);
422         dbgs() << "has predecessors left!\n";
423         AnyNotSched = true;
424       }
425     }
426   }
427   assert(!AnyNotSched);
428   return SUnits.size() - DeadNodes;
429 }
430 #endif
431 
432 /// InitDAGTopologicalSorting - create the initial topological
433 /// ordering from the DAG to be scheduled.
434 ///
435 /// The idea of the algorithm is taken from
436 /// "Online algorithms for managing the topological order of
437 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
438 /// This is the MNR algorithm, which was first introduced by
439 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
440 /// "Maintaining a topological order under edge insertions".
441 ///
442 /// Short description of the algorithm:
443 ///
444 /// Topological ordering, ord, of a DAG maps each node to a topological
445 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
446 ///
447 /// This means that if there is a path from the node X to the node Z,
448 /// then ord(X) < ord(Z).
449 ///
450 /// This property can be used to check for reachability of nodes:
451 /// if Z is reachable from X, then an insertion of the edge Z->X would
452 /// create a cycle.
453 ///
454 /// The algorithm first computes a topological ordering for the DAG by
455 /// initializing the Index2Node and Node2Index arrays and then tries to keep
456 /// the ordering up-to-date after edge insertions by reordering the DAG.
457 ///
458 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
459 /// the nodes reachable from Y, and then shifts them using Shift to lie
460 /// immediately after X in Index2Node.
InitDAGTopologicalSorting()461 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
462   unsigned DAGSize = SUnits.size();
463   std::vector<SUnit*> WorkList;
464   WorkList.reserve(DAGSize);
465 
466   Index2Node.resize(DAGSize);
467   Node2Index.resize(DAGSize);
468 
469   // Initialize the data structures.
470   if (ExitSU)
471     WorkList.push_back(ExitSU);
472   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
473     SUnit *SU = &SUnits[i];
474     int NodeNum = SU->NodeNum;
475     unsigned Degree = SU->Succs.size();
476     // Temporarily use the Node2Index array as scratch space for degree counts.
477     Node2Index[NodeNum] = Degree;
478 
479     // Is it a node without dependencies?
480     if (Degree == 0) {
481       assert(SU->Succs.empty() && "SUnit should have no successors");
482       // Collect leaf nodes.
483       WorkList.push_back(SU);
484     }
485   }
486 
487   int Id = DAGSize;
488   while (!WorkList.empty()) {
489     SUnit *SU = WorkList.back();
490     WorkList.pop_back();
491     if (SU->NodeNum < DAGSize)
492       Allocate(SU->NodeNum, --Id);
493     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
494          I != E; ++I) {
495       SUnit *SU = I->getSUnit();
496       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
497         // If all dependencies of the node are processed already,
498         // then the node can be computed now.
499         WorkList.push_back(SU);
500     }
501   }
502 
503   Visited.resize(DAGSize);
504 
505 #ifndef NDEBUG
506   // Check correctness of the ordering
507   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
508     SUnit *SU = &SUnits[i];
509     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
510          I != E; ++I) {
511       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
512       "Wrong topological sorting");
513     }
514   }
515 #endif
516 }
517 
518 /// AddPred - Updates the topological ordering to accommodate an edge
519 /// to be added from SUnit X to SUnit Y.
AddPred(SUnit * Y,SUnit * X)520 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
521   int UpperBound, LowerBound;
522   LowerBound = Node2Index[Y->NodeNum];
523   UpperBound = Node2Index[X->NodeNum];
524   bool HasLoop = false;
525   // Is Ord(X) < Ord(Y) ?
526   if (LowerBound < UpperBound) {
527     // Update the topological order.
528     Visited.reset();
529     DFS(Y, UpperBound, HasLoop);
530     assert(!HasLoop && "Inserted edge creates a loop!");
531     // Recompute topological indexes.
532     Shift(Visited, LowerBound, UpperBound);
533   }
534 }
535 
536 /// RemovePred - Updates the topological ordering to accommodate an
537 /// an edge to be removed from the specified node N from the predecessors
538 /// of the current node M.
RemovePred(SUnit * M,SUnit * N)539 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
540   // InitDAGTopologicalSorting();
541 }
542 
543 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
544 /// all nodes affected by the edge insertion. These nodes will later get new
545 /// topological indexes by means of the Shift method.
DFS(const SUnit * SU,int UpperBound,bool & HasLoop)546 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
547                                      bool &HasLoop) {
548   std::vector<const SUnit*> WorkList;
549   WorkList.reserve(SUnits.size());
550 
551   WorkList.push_back(SU);
552   do {
553     SU = WorkList.back();
554     WorkList.pop_back();
555     Visited.set(SU->NodeNum);
556     for (int I = SU->Succs.size()-1; I >= 0; --I) {
557       unsigned s = SU->Succs[I].getSUnit()->NodeNum;
558       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
559       if (s >= Node2Index.size())
560         continue;
561       if (Node2Index[s] == UpperBound) {
562         HasLoop = true;
563         return;
564       }
565       // Visit successors if not already and in affected region.
566       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
567         WorkList.push_back(SU->Succs[I].getSUnit());
568       }
569     }
570   } while (!WorkList.empty());
571 }
572 
573 /// Shift - Renumber the nodes so that the topological ordering is
574 /// preserved.
Shift(BitVector & Visited,int LowerBound,int UpperBound)575 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
576                                        int UpperBound) {
577   std::vector<int> L;
578   int shift = 0;
579   int i;
580 
581   for (i = LowerBound; i <= UpperBound; ++i) {
582     // w is node at topological index i.
583     int w = Index2Node[i];
584     if (Visited.test(w)) {
585       // Unmark.
586       Visited.reset(w);
587       L.push_back(w);
588       shift = shift + 1;
589     } else {
590       Allocate(w, i - shift);
591     }
592   }
593 
594   for (unsigned j = 0; j < L.size(); ++j) {
595     Allocate(L[j], i - shift);
596     i = i + 1;
597   }
598 }
599 
600 
601 /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will
602 /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU).
WillCreateCycle(SUnit * TargetSU,SUnit * SU)603 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
604   // Is SU reachable from TargetSU via successor edges?
605   if (IsReachable(SU, TargetSU))
606     return true;
607   for (SUnit::pred_iterator
608          I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I)
609     if (I->isAssignedRegDep() &&
610         IsReachable(SU, I->getSUnit()))
611       return true;
612   return false;
613 }
614 
615 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)616 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
617                                              const SUnit *TargetSU) {
618   // If insertion of the edge SU->TargetSU would create a cycle
619   // then there is a path from TargetSU to SU.
620   int UpperBound, LowerBound;
621   LowerBound = Node2Index[TargetSU->NodeNum];
622   UpperBound = Node2Index[SU->NodeNum];
623   bool HasLoop = false;
624   // Is Ord(TargetSU) < Ord(SU) ?
625   if (LowerBound < UpperBound) {
626     Visited.reset();
627     // There may be a path from TargetSU to SU. Check for it.
628     DFS(TargetSU, UpperBound, HasLoop);
629   }
630   return HasLoop;
631 }
632 
633 /// Allocate - assign the topological index to the node n.
Allocate(int n,int index)634 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
635   Node2Index[n] = index;
636   Index2Node[index] = n;
637 }
638 
639 ScheduleDAGTopologicalSort::
ScheduleDAGTopologicalSort(std::vector<SUnit> & sunits,SUnit * exitsu)640 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
641   : SUnits(sunits), ExitSU(exitsu) {}
642 
~ScheduleHazardRecognizer()643 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
644