• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_FACTORY_H_
6 #define V8_FACTORY_H_
7 
8 #include "src/isolate.h"
9 
10 namespace v8 {
11 namespace internal {
12 
13 // Interface for handle based allocation.
14 
15 class Factory V8_FINAL {
16  public:
17   Handle<Oddball> NewOddball(Handle<Map> map,
18                              const char* to_string,
19                              Handle<Object> to_number,
20                              byte kind);
21 
22   // Allocates a fixed array initialized with undefined values.
23   Handle<FixedArray> NewFixedArray(
24       int size,
25       PretenureFlag pretenure = NOT_TENURED);
26 
27   // Allocate a new fixed array with non-existing entries (the hole).
28   Handle<FixedArray> NewFixedArrayWithHoles(
29       int size,
30       PretenureFlag pretenure = NOT_TENURED);
31 
32   // Allocates an uninitialized fixed array. It must be filled by the caller.
33   Handle<FixedArray> NewUninitializedFixedArray(int size);
34 
35   // Allocate a new uninitialized fixed double array.
36   // The function returns a pre-allocated empty fixed array for capacity = 0,
37   // so the return type must be the general fixed array class.
38   Handle<FixedArrayBase> NewFixedDoubleArray(
39       int size,
40       PretenureFlag pretenure = NOT_TENURED);
41 
42   // Allocate a new fixed double array with hole values.
43   Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
44       int size,
45       PretenureFlag pretenure = NOT_TENURED);
46 
47   Handle<ConstantPoolArray> NewConstantPoolArray(
48       const ConstantPoolArray::NumberOfEntries& small);
49 
50   Handle<ConstantPoolArray> NewExtendedConstantPoolArray(
51       const ConstantPoolArray::NumberOfEntries& small,
52       const ConstantPoolArray::NumberOfEntries& extended);
53 
54   Handle<OrderedHashSet> NewOrderedHashSet();
55   Handle<OrderedHashMap> NewOrderedHashMap();
56 
57   // Create a new boxed value.
58   Handle<Box> NewBox(Handle<Object> value);
59 
60   // Create a pre-tenured empty AccessorPair.
61   Handle<AccessorPair> NewAccessorPair();
62 
63   // Create an empty TypeFeedbackInfo.
64   Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
65 
66   // Finds the internalized copy for string in the string table.
67   // If not found, a new string is added to the table and returned.
68   Handle<String> InternalizeUtf8String(Vector<const char> str);
InternalizeUtf8String(const char * str)69   Handle<String> InternalizeUtf8String(const char* str) {
70     return InternalizeUtf8String(CStrVector(str));
71   }
72   Handle<String> InternalizeString(Handle<String> str);
73   Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
74   Handle<String> InternalizeOneByteString(
75       Handle<SeqOneByteString>, int from, int length);
76 
77   Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
78 
79   template<class StringTableKey>
80   Handle<String> InternalizeStringWithKey(StringTableKey* key);
81 
82 
83   // String creation functions.  Most of the string creation functions take
84   // a Heap::PretenureFlag argument to optionally request that they be
85   // allocated in the old generation.  The pretenure flag defaults to
86   // DONT_TENURE.
87   //
88   // Creates a new String object.  There are two String encodings: ASCII and
89   // two byte.  One should choose between the three string factory functions
90   // based on the encoding of the string buffer that the string is
91   // initialized from.
92   //   - ...FromAscii initializes the string from a buffer that is ASCII
93   //     encoded (it does not check that the buffer is ASCII encoded) and
94   //     the result will be ASCII encoded.
95   //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
96   //     encoded.  If the characters are all single-byte characters, the
97   //     result will be ASCII encoded, otherwise it will converted to two
98   //     byte.
99   //   - ...FromTwoByte initializes the string from a buffer that is two
100   //     byte encoded.  If the characters are all single-byte characters,
101   //     the result will be converted to ASCII, otherwise it will be left as
102   //     two byte.
103   //
104   // ASCII strings are pretenured when used as keys in the SourceCodeCache.
105   MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
106       Vector<const uint8_t> str,
107       PretenureFlag pretenure = NOT_TENURED);
108 
109   template<size_t N>
110   inline Handle<String> NewStringFromStaticAscii(
111       const char (&str)[N],
112       PretenureFlag pretenure = NOT_TENURED) {
113     ASSERT(N == StrLength(str) + 1);
114     return NewStringFromOneByte(
115         STATIC_ASCII_VECTOR(str), pretenure).ToHandleChecked();
116   }
117 
118   inline Handle<String> NewStringFromAsciiChecked(
119       const char* str,
120       PretenureFlag pretenure = NOT_TENURED) {
121     return NewStringFromOneByte(
122         OneByteVector(str), pretenure).ToHandleChecked();
123   }
124 
125 
126   // Allocates and fully initializes a String.  There are two String
127   // encodings: ASCII and two byte. One should choose between the three string
128   // allocation functions based on the encoding of the string buffer used to
129   // initialized the string.
130   //   - ...FromAscii initializes the string from a buffer that is ASCII
131   //     encoded (it does not check that the buffer is ASCII encoded) and the
132   //     result will be ASCII encoded.
133   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
134   //     encoded.  If the characters are all single-byte characters, the
135   //     result will be ASCII encoded, otherwise it will converted to two
136   //     byte.
137   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
138   //     encoded.  If the characters are all single-byte characters, the
139   //     result will be converted to ASCII, otherwise it will be left as
140   //     two-byte.
141 
142   // TODO(dcarney): remove this function.
143   MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
144       Vector<const char> str,
145       PretenureFlag pretenure = NOT_TENURED) {
146     return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
147   }
148 
149   // UTF8 strings are pretenured when used for regexp literal patterns and
150   // flags in the parser.
151   MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
152       Vector<const char> str,
153       PretenureFlag pretenure = NOT_TENURED);
154 
155   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
156       Vector<const uc16> str,
157       PretenureFlag pretenure = NOT_TENURED);
158 
159   // Allocates an internalized string in old space based on the character
160   // stream.
161   MUST_USE_RESULT Handle<String> NewInternalizedStringFromUtf8(
162       Vector<const char> str,
163       int chars,
164       uint32_t hash_field);
165 
166   MUST_USE_RESULT Handle<String> NewOneByteInternalizedString(
167         Vector<const uint8_t> str,
168         uint32_t hash_field);
169 
170   MUST_USE_RESULT Handle<String> NewTwoByteInternalizedString(
171         Vector<const uc16> str,
172         uint32_t hash_field);
173 
174   MUST_USE_RESULT Handle<String> NewInternalizedStringImpl(
175       Handle<String> string, int chars, uint32_t hash_field);
176 
177   // Compute the matching internalized string map for a string if possible.
178   // Empty handle is returned if string is in new space or not flattened.
179   MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
180       Handle<String> string);
181 
182   // Allocates and partially initializes an ASCII or TwoByte String. The
183   // characters of the string are uninitialized. Currently used in regexp code
184   // only, where they are pretenured.
185   MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
186       int length,
187       PretenureFlag pretenure = NOT_TENURED);
188   MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
189       int length,
190       PretenureFlag pretenure = NOT_TENURED);
191 
192   // Creates a single character string where the character has given code.
193   // A cache is used for ASCII codes.
194   Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
195 
196   // Create a new cons string object which consists of a pair of strings.
197   MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
198                                                     Handle<String> right);
199 
200   // Create a new sequential string containing the concatenation of the inputs.
201   Handle<String> NewFlatConcatString(Handle<String> first,
202                                      Handle<String> second);
203 
204   // Create a new string object which holds a proper substring of a string.
205   Handle<String> NewProperSubString(Handle<String> str,
206                                     int begin,
207                                     int end);
208 
209   // Create a new string object which holds a substring of a string.
NewSubString(Handle<String> str,int begin,int end)210   Handle<String> NewSubString(Handle<String> str, int begin, int end) {
211     if (begin == 0 && end == str->length()) return str;
212     return NewProperSubString(str, begin, end);
213   }
214 
215   // Creates a new external String object.  There are two String encodings
216   // in the system: ASCII and two byte.  Unlike other String types, it does
217   // not make sense to have a UTF-8 factory function for external strings,
218   // because we cannot change the underlying buffer.  Note that these strings
219   // are backed by a string resource that resides outside the V8 heap.
220   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromAscii(
221       const ExternalAsciiString::Resource* resource);
222   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
223       const ExternalTwoByteString::Resource* resource);
224 
225   // Create a symbol.
226   Handle<Symbol> NewSymbol();
227   Handle<Symbol> NewPrivateSymbol();
228 
229   // Create a global (but otherwise uninitialized) context.
230   Handle<Context> NewNativeContext();
231 
232   // Create a global context.
233   Handle<Context> NewGlobalContext(Handle<JSFunction> function,
234                                    Handle<ScopeInfo> scope_info);
235 
236   // Create a module context.
237   Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
238 
239   // Create a function context.
240   Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
241 
242   // Create a catch context.
243   Handle<Context> NewCatchContext(Handle<JSFunction> function,
244                                   Handle<Context> previous,
245                                   Handle<String> name,
246                                   Handle<Object> thrown_object);
247 
248   // Create a 'with' context.
249   Handle<Context> NewWithContext(Handle<JSFunction> function,
250                                  Handle<Context> previous,
251                                  Handle<JSReceiver> extension);
252 
253   // Create a block context.
254   Handle<Context> NewBlockContext(Handle<JSFunction> function,
255                                   Handle<Context> previous,
256                                   Handle<ScopeInfo> scope_info);
257 
258   // Allocate a new struct.  The struct is pretenured (allocated directly in
259   // the old generation).
260   Handle<Struct> NewStruct(InstanceType type);
261 
262   Handle<CodeCache> NewCodeCache();
263 
264   Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
265       int aliased_context_slot);
266 
267   Handle<DeclaredAccessorDescriptor> NewDeclaredAccessorDescriptor();
268 
269   Handle<DeclaredAccessorInfo> NewDeclaredAccessorInfo();
270 
271   Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo();
272 
273   Handle<Script> NewScript(Handle<String> source);
274 
275   // Foreign objects are pretenured when allocated by the bootstrapper.
276   Handle<Foreign> NewForeign(Address addr,
277                              PretenureFlag pretenure = NOT_TENURED);
278 
279   // Allocate a new foreign object.  The foreign is pretenured (allocated
280   // directly in the old generation).
281   Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
282 
283   Handle<ByteArray> NewByteArray(int length,
284                                  PretenureFlag pretenure = NOT_TENURED);
285 
286   Handle<ExternalArray> NewExternalArray(
287       int length,
288       ExternalArrayType array_type,
289       void* external_pointer,
290       PretenureFlag pretenure = NOT_TENURED);
291 
292   Handle<FixedTypedArrayBase> NewFixedTypedArray(
293       int length,
294       ExternalArrayType array_type,
295       PretenureFlag pretenure = NOT_TENURED);
296 
297   Handle<Cell> NewCell(Handle<Object> value);
298 
299   Handle<PropertyCell> NewPropertyCellWithHole();
300 
301   Handle<PropertyCell> NewPropertyCell(Handle<Object> value);
302 
303   // Allocate a tenured AllocationSite. It's payload is null.
304   Handle<AllocationSite> NewAllocationSite();
305 
306   Handle<Map> NewMap(
307       InstanceType type,
308       int instance_size,
309       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
310 
311   Handle<HeapObject> NewFillerObject(int size,
312                                      bool double_align,
313                                      AllocationSpace space);
314 
315   Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
316 
317   Handle<JSObject> CopyJSObject(Handle<JSObject> object);
318 
319   Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
320                                                   Handle<AllocationSite> site);
321 
322   Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
323                                            Handle<Map> map);
324 
325   Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
326 
327   // This method expects a COW array in new space, and creates a copy
328   // of it in old space.
329   Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
330 
331   Handle<FixedDoubleArray> CopyFixedDoubleArray(
332       Handle<FixedDoubleArray> array);
333 
334   Handle<ConstantPoolArray> CopyConstantPoolArray(
335       Handle<ConstantPoolArray> array);
336 
337   // Numbers (e.g. literals) are pretenured by the parser.
338   // The return value may be a smi or a heap number.
339   Handle<Object> NewNumber(double value,
340                            PretenureFlag pretenure = NOT_TENURED);
341 
342   Handle<Object> NewNumberFromInt(int32_t value,
343                                   PretenureFlag pretenure = NOT_TENURED);
344   Handle<Object> NewNumberFromUint(uint32_t value,
345                                   PretenureFlag pretenure = NOT_TENURED);
346   Handle<Object> NewNumberFromSize(size_t value,
347                                    PretenureFlag pretenure = NOT_TENURED) {
348     if (Smi::IsValid(static_cast<intptr_t>(value))) {
349       return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
350                             isolate());
351     }
352     return NewNumber(static_cast<double>(value), pretenure);
353   }
354   Handle<HeapNumber> NewHeapNumber(double value,
355                                    PretenureFlag pretenure = NOT_TENURED);
356 
357 
358   // These objects are used by the api to create env-independent data
359   // structures in the heap.
NewNeanderObject()360   inline Handle<JSObject> NewNeanderObject() {
361     return NewJSObjectFromMap(neander_map());
362   }
363 
364   Handle<JSObject> NewArgumentsObject(Handle<Object> callee, int length);
365 
366   // JS objects are pretenured when allocated by the bootstrapper and
367   // runtime.
368   Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
369                                PretenureFlag pretenure = NOT_TENURED);
370   // JSObject that should have a memento pointing to the allocation site.
371   Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
372                                           Handle<AllocationSite> site);
373 
374   // Global objects are pretenured and initialized based on a constructor.
375   Handle<GlobalObject> NewGlobalObject(Handle<JSFunction> constructor);
376 
377   // JS objects are pretenured when allocated by the bootstrapper and
378   // runtime.
379   Handle<JSObject> NewJSObjectFromMap(
380       Handle<Map> map,
381       PretenureFlag pretenure = NOT_TENURED,
382       bool allocate_properties = true,
383       Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
384 
385   // JS modules are pretenured.
386   Handle<JSModule> NewJSModule(Handle<Context> context,
387                                Handle<ScopeInfo> scope_info);
388 
389   // JS arrays are pretenured when allocated by the parser.
390 
391   // Create a JSArray with no elements.
392   Handle<JSArray> NewJSArray(
393       ElementsKind elements_kind,
394       PretenureFlag pretenure = NOT_TENURED);
395 
396   // Create a JSArray with a specified length and elements initialized
397   // according to the specified mode.
398   Handle<JSArray> NewJSArray(
399       ElementsKind elements_kind,
400       int length,
401       int capacity,
402       ArrayStorageAllocationMode mode = INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE,
403       PretenureFlag pretenure = NOT_TENURED);
404 
405   Handle<JSArray> NewJSArray(
406       int capacity,
407       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
408       PretenureFlag pretenure = NOT_TENURED) {
409     if (capacity != 0) {
410       elements_kind = GetHoleyElementsKind(elements_kind);
411     }
412     return NewJSArray(elements_kind, 0, capacity,
413                       INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
414   }
415 
416   // Create a JSArray with the given elements.
417   Handle<JSArray> NewJSArrayWithElements(
418       Handle<FixedArrayBase> elements,
419       ElementsKind elements_kind,
420       int length,
421       PretenureFlag pretenure = NOT_TENURED);
422 
423   Handle<JSArray> NewJSArrayWithElements(
424       Handle<FixedArrayBase> elements,
425       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
426       PretenureFlag pretenure = NOT_TENURED) {
427     return NewJSArrayWithElements(
428         elements, elements_kind, elements->length(), pretenure);
429   }
430 
431   void NewJSArrayStorage(
432       Handle<JSArray> array,
433       int length,
434       int capacity,
435       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
436 
437   Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
438 
439   Handle<JSArrayBuffer> NewJSArrayBuffer();
440 
441   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type);
442 
443   Handle<JSDataView> NewJSDataView();
444 
445   // Allocates a Harmony proxy.
446   Handle<JSProxy> NewJSProxy(Handle<Object> handler, Handle<Object> prototype);
447 
448   // Allocates a Harmony function proxy.
449   Handle<JSProxy> NewJSFunctionProxy(Handle<Object> handler,
450                                      Handle<Object> call_trap,
451                                      Handle<Object> construct_trap,
452                                      Handle<Object> prototype);
453 
454   // Reinitialize a JSReceiver into an (empty) JS object of respective type and
455   // size, but keeping the original prototype.  The receiver must have at least
456   // the size of the new object.  The object is reinitialized and behaves as an
457   // object that has been freshly allocated.
458   void ReinitializeJSReceiver(
459       Handle<JSReceiver> object, InstanceType type, int size);
460 
461   // Reinitialize an JSGlobalProxy based on a constructor.  The object
462   // must have the same size as objects allocated using the
463   // constructor.  The object is reinitialized and behaves as an
464   // object that has been freshly allocated using the constructor.
465   void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
466                                  Handle<JSFunction> constructor);
467 
468   // Change the type of the argument into a JS object/function and reinitialize.
469   void BecomeJSObject(Handle<JSReceiver> object);
470   void BecomeJSFunction(Handle<JSReceiver> object);
471 
472   Handle<JSFunction> NewFunction(Handle<String> name,
473                                  Handle<Code> code,
474                                  Handle<Object> prototype,
475                                  bool read_only_prototype = false);
476   Handle<JSFunction> NewFunction(Handle<String> name);
477   Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
478                                                  Handle<Code> code);
479 
480   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
481       Handle<SharedFunctionInfo> function_info,
482       Handle<Context> context,
483       PretenureFlag pretenure = TENURED);
484 
485   Handle<JSFunction> NewFunction(Handle<String> name,
486                                  Handle<Code> code,
487                                  Handle<Object> prototype,
488                                  InstanceType type,
489                                  int instance_size,
490                                  bool read_only_prototype = false);
491   Handle<JSFunction> NewFunction(Handle<String> name,
492                                  Handle<Code> code,
493                                  InstanceType type,
494                                  int instance_size);
495 
496   // Create a serialized scope info.
497   Handle<ScopeInfo> NewScopeInfo(int length);
498 
499   // Create an External object for V8's external API.
500   Handle<JSObject> NewExternal(void* value);
501 
502   // The reference to the Code object is stored in self_reference.
503   // This allows generated code to reference its own Code object
504   // by containing this handle.
505   Handle<Code> NewCode(const CodeDesc& desc,
506                        Code::Flags flags,
507                        Handle<Object> self_reference,
508                        bool immovable = false,
509                        bool crankshafted = false,
510                        int prologue_offset = Code::kPrologueOffsetNotSet,
511                        bool is_debug = false);
512 
513   Handle<Code> CopyCode(Handle<Code> code);
514 
515   Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
516 
517   // Interface for creating error objects.
518 
519   Handle<Object> NewError(const char* maker, const char* message,
520                           Handle<JSArray> args);
521   Handle<String> EmergencyNewError(const char* message, Handle<JSArray> args);
522   Handle<Object> NewError(const char* maker, const char* message,
523                           Vector< Handle<Object> > args);
524   Handle<Object> NewError(const char* message,
525                           Vector< Handle<Object> > args);
526   Handle<Object> NewError(Handle<String> message);
527   Handle<Object> NewError(const char* constructor,
528                           Handle<String> message);
529 
530   Handle<Object> NewTypeError(const char* message,
531                               Vector< Handle<Object> > args);
532   Handle<Object> NewTypeError(Handle<String> message);
533 
534   Handle<Object> NewRangeError(const char* message,
535                                Vector< Handle<Object> > args);
536   Handle<Object> NewRangeError(Handle<String> message);
537 
NewInvalidStringLengthError()538   Handle<Object> NewInvalidStringLengthError() {
539     return NewRangeError("invalid_string_length",
540                          HandleVector<Object>(NULL, 0));
541   }
542 
543   Handle<Object> NewSyntaxError(const char* message, Handle<JSArray> args);
544   Handle<Object> NewSyntaxError(Handle<String> message);
545 
546   Handle<Object> NewReferenceError(const char* message,
547                                    Vector< Handle<Object> > args);
548   Handle<Object> NewReferenceError(const char* message, Handle<JSArray> args);
549   Handle<Object> NewReferenceError(Handle<String> message);
550 
551   Handle<Object> NewEvalError(const char* message,
552                               Vector< Handle<Object> > args);
553 
554   Handle<JSObject> NewIteratorResultObject(Handle<Object> value, bool done);
555 
556   Handle<String> NumberToString(Handle<Object> number,
557                                 bool check_number_string_cache = true);
558 
Uint32ToString(uint32_t value)559   Handle<String> Uint32ToString(uint32_t value) {
560     return NumberToString(NewNumberFromUint(value));
561   }
562 
563   enum ApiInstanceType {
564     JavaScriptObject,
565     InnerGlobalObject,
566     OuterGlobalObject
567   };
568 
569   Handle<JSFunction> CreateApiFunction(
570       Handle<FunctionTemplateInfo> data,
571       Handle<Object> prototype,
572       ApiInstanceType type = JavaScriptObject);
573 
574   Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
575 
576   // Installs interceptors on the instance.  'desc' is a function template,
577   // and instance is an object instance created by the function of this
578   // function template.
579   MUST_USE_RESULT MaybeHandle<FunctionTemplateInfo> ConfigureInstance(
580       Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance);
581 
582 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
583   inline Handle<type> name() {                                                 \
584     return Handle<type>(BitCast<type**>(                                       \
585         &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex]));          \
586   }
587   ROOT_LIST(ROOT_ACCESSOR)
588 #undef ROOT_ACCESSOR
589 
590 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                                  \
591   inline Handle<Map> name##_map() {                                            \
592     return Handle<Map>(BitCast<Map**>(                                         \
593         &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex]));             \
594     }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)595   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
596 #undef STRUCT_MAP_ACCESSOR
597 
598 #define STRING_ACCESSOR(name, str)                                             \
599   inline Handle<String> name() {                                               \
600     return Handle<String>(BitCast<String**>(                                   \
601         &isolate()->heap()->roots_[Heap::k##name##RootIndex]));                \
602   }
603   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
604 #undef STRING_ACCESSOR
605 
606   inline void set_string_table(Handle<StringTable> table) {
607     isolate()->heap()->set_string_table(*table);
608   }
609 
hidden_string()610   Handle<String> hidden_string() {
611     return Handle<String>(&isolate()->heap()->hidden_string_);
612   }
613 
614   // Allocates a new SharedFunctionInfo object.
615   Handle<SharedFunctionInfo> NewSharedFunctionInfo(
616       Handle<String> name,
617       int number_of_literals,
618       bool is_generator,
619       Handle<Code> code,
620       Handle<ScopeInfo> scope_info,
621       Handle<FixedArray> feedback_vector);
622   Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
623                                                    MaybeHandle<Code> code);
624 
625   // Allocate a new type feedback vector
626   Handle<FixedArray> NewTypeFeedbackVector(int slot_count);
627 
628   // Allocates a new JSMessageObject object.
629   Handle<JSMessageObject> NewJSMessageObject(
630       Handle<String> type,
631       Handle<JSArray> arguments,
632       int start_position,
633       int end_position,
634       Handle<Object> script,
635       Handle<Object> stack_frames);
636 
637   Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
638 
639   // Return a map using the map cache in the native context.
640   // The key the an ordered set of property names.
641   Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
642                                         Handle<FixedArray> keys);
643 
644   // Creates a new FixedArray that holds the data associated with the
645   // atom regexp and stores it in the regexp.
646   void SetRegExpAtomData(Handle<JSRegExp> regexp,
647                          JSRegExp::Type type,
648                          Handle<String> source,
649                          JSRegExp::Flags flags,
650                          Handle<Object> match_pattern);
651 
652   // Creates a new FixedArray that holds the data associated with the
653   // irregexp regexp and stores it in the regexp.
654   void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
655                              JSRegExp::Type type,
656                              Handle<String> source,
657                              JSRegExp::Flags flags,
658                              int capture_count);
659 
660   // Returns the value for a known global constant (a property of the global
661   // object which is neither configurable nor writable) like 'undefined'.
662   // Returns a null handle when the given name is unknown.
663   Handle<Object> GlobalConstantFor(Handle<String> name);
664 
665   // Converts the given boolean condition to JavaScript boolean value.
666   Handle<Object> ToBoolean(bool value);
667 
668  private:
isolate()669   Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
670 
671   // Creates a heap object based on the map. The fields of the heap object are
672   // not initialized by New<>() functions. It's the responsibility of the caller
673   // to do that.
674   template<typename T>
675   Handle<T> New(Handle<Map> map, AllocationSpace space);
676 
677   template<typename T>
678   Handle<T> New(Handle<Map> map,
679                 AllocationSpace space,
680                 Handle<AllocationSite> allocation_site);
681 
682   // Creates a code object that is not yet fully initialized yet.
683   inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
684 
685   // Create a new map cache.
686   Handle<MapCache> NewMapCache(int at_least_space_for);
687 
688   // Update the map cache in the native context with (keys, map)
689   Handle<MapCache> AddToMapCache(Handle<Context> context,
690                                  Handle<FixedArray> keys,
691                                  Handle<Map> map);
692 
693   // Attempt to find the number in a small cache.  If we finds it, return
694   // the string representation of the number.  Otherwise return undefined.
695   Handle<Object> GetNumberStringCache(Handle<Object> number);
696 
697   // Update the cache with a new number-string pair.
698   void SetNumberStringCache(Handle<Object> number, Handle<String> string);
699 
700   // Initializes a function with a shared part and prototype.
701   // Note: this code was factored out of NewFunction such that other parts of
702   // the VM could use it. Specifically, a function that creates instances of
703   // type JS_FUNCTION_TYPE benefit from the use of this function.
704   inline void InitializeFunction(Handle<JSFunction> function,
705                                  Handle<SharedFunctionInfo> info,
706                                  Handle<Context> context);
707 
708   // Creates a function initialized with a shared part.
709   Handle<JSFunction> NewFunction(Handle<Map> map,
710                                  Handle<SharedFunctionInfo> info,
711                                  Handle<Context> context,
712                                  PretenureFlag pretenure = TENURED);
713 
714   Handle<JSFunction> NewFunction(Handle<Map> map,
715                                  Handle<String> name,
716                                  MaybeHandle<Code> maybe_code);
717 };
718 
719 } }  // namespace v8::internal
720 
721 #endif  // V8_FACTORY_H_
722