1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/DeclSpec.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/SmallBitVector.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/StringExtras.h"
34 using namespace clang;
35 using namespace sema;
36
37 // Exported for use by Parser.
38 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)39 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
40 unsigned N) {
41 if (!N) return SourceRange();
42 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
43 }
44
45 /// \brief Determine whether the declaration found is acceptable as the name
46 /// of a template and, if so, return that template declaration. Otherwise,
47 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)48 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
49 NamedDecl *Orig,
50 bool AllowFunctionTemplates) {
51 NamedDecl *D = Orig->getUnderlyingDecl();
52
53 if (isa<TemplateDecl>(D)) {
54 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
55 return nullptr;
56
57 return Orig;
58 }
59
60 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
61 // C++ [temp.local]p1:
62 // Like normal (non-template) classes, class templates have an
63 // injected-class-name (Clause 9). The injected-class-name
64 // can be used with or without a template-argument-list. When
65 // it is used without a template-argument-list, it is
66 // equivalent to the injected-class-name followed by the
67 // template-parameters of the class template enclosed in
68 // <>. When it is used with a template-argument-list, it
69 // refers to the specified class template specialization,
70 // which could be the current specialization or another
71 // specialization.
72 if (Record->isInjectedClassName()) {
73 Record = cast<CXXRecordDecl>(Record->getDeclContext());
74 if (Record->getDescribedClassTemplate())
75 return Record->getDescribedClassTemplate();
76
77 if (ClassTemplateSpecializationDecl *Spec
78 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
79 return Spec->getSpecializedTemplate();
80 }
81
82 return nullptr;
83 }
84
85 return nullptr;
86 }
87
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)88 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
89 bool AllowFunctionTemplates) {
90 // The set of class templates we've already seen.
91 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
92 LookupResult::Filter filter = R.makeFilter();
93 while (filter.hasNext()) {
94 NamedDecl *Orig = filter.next();
95 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
96 AllowFunctionTemplates);
97 if (!Repl)
98 filter.erase();
99 else if (Repl != Orig) {
100
101 // C++ [temp.local]p3:
102 // A lookup that finds an injected-class-name (10.2) can result in an
103 // ambiguity in certain cases (for example, if it is found in more than
104 // one base class). If all of the injected-class-names that are found
105 // refer to specializations of the same class template, and if the name
106 // is used as a template-name, the reference refers to the class
107 // template itself and not a specialization thereof, and is not
108 // ambiguous.
109 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
110 if (!ClassTemplates.insert(ClassTmpl)) {
111 filter.erase();
112 continue;
113 }
114
115 // FIXME: we promote access to public here as a workaround to
116 // the fact that LookupResult doesn't let us remember that we
117 // found this template through a particular injected class name,
118 // which means we end up doing nasty things to the invariants.
119 // Pretending that access is public is *much* safer.
120 filter.replace(Repl, AS_public);
121 }
122 }
123 filter.done();
124 }
125
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)126 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
127 bool AllowFunctionTemplates) {
128 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
129 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
130 return true;
131
132 return false;
133 }
134
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)135 TemplateNameKind Sema::isTemplateName(Scope *S,
136 CXXScopeSpec &SS,
137 bool hasTemplateKeyword,
138 UnqualifiedId &Name,
139 ParsedType ObjectTypePtr,
140 bool EnteringContext,
141 TemplateTy &TemplateResult,
142 bool &MemberOfUnknownSpecialization) {
143 assert(getLangOpts().CPlusPlus && "No template names in C!");
144
145 DeclarationName TName;
146 MemberOfUnknownSpecialization = false;
147
148 switch (Name.getKind()) {
149 case UnqualifiedId::IK_Identifier:
150 TName = DeclarationName(Name.Identifier);
151 break;
152
153 case UnqualifiedId::IK_OperatorFunctionId:
154 TName = Context.DeclarationNames.getCXXOperatorName(
155 Name.OperatorFunctionId.Operator);
156 break;
157
158 case UnqualifiedId::IK_LiteralOperatorId:
159 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
160 break;
161
162 default:
163 return TNK_Non_template;
164 }
165
166 QualType ObjectType = ObjectTypePtr.get();
167
168 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
169 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
170 MemberOfUnknownSpecialization);
171 if (R.empty()) return TNK_Non_template;
172 if (R.isAmbiguous()) {
173 // Suppress diagnostics; we'll redo this lookup later.
174 R.suppressDiagnostics();
175
176 // FIXME: we might have ambiguous templates, in which case we
177 // should at least parse them properly!
178 return TNK_Non_template;
179 }
180
181 TemplateName Template;
182 TemplateNameKind TemplateKind;
183
184 unsigned ResultCount = R.end() - R.begin();
185 if (ResultCount > 1) {
186 // We assume that we'll preserve the qualifier from a function
187 // template name in other ways.
188 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
189 TemplateKind = TNK_Function_template;
190
191 // We'll do this lookup again later.
192 R.suppressDiagnostics();
193 } else {
194 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
195
196 if (SS.isSet() && !SS.isInvalid()) {
197 NestedNameSpecifier *Qualifier = SS.getScopeRep();
198 Template = Context.getQualifiedTemplateName(Qualifier,
199 hasTemplateKeyword, TD);
200 } else {
201 Template = TemplateName(TD);
202 }
203
204 if (isa<FunctionTemplateDecl>(TD)) {
205 TemplateKind = TNK_Function_template;
206
207 // We'll do this lookup again later.
208 R.suppressDiagnostics();
209 } else {
210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212 TemplateKind =
213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214 }
215 }
216
217 TemplateResult = TemplateTy::make(Template);
218 return TemplateKind;
219 }
220
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222 SourceLocation IILoc,
223 Scope *S,
224 const CXXScopeSpec *SS,
225 TemplateTy &SuggestedTemplate,
226 TemplateNameKind &SuggestedKind) {
227 // We can't recover unless there's a dependent scope specifier preceding the
228 // template name.
229 // FIXME: Typo correction?
230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231 computeDeclContext(*SS))
232 return false;
233
234 // The code is missing a 'template' keyword prior to the dependent template
235 // name.
236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237 Diag(IILoc, diag::err_template_kw_missing)
238 << Qualifier << II.getName()
239 << FixItHint::CreateInsertion(IILoc, "template ");
240 SuggestedTemplate
241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242 SuggestedKind = TNK_Dependent_template_name;
243 return true;
244 }
245
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247 Scope *S, CXXScopeSpec &SS,
248 QualType ObjectType,
249 bool EnteringContext,
250 bool &MemberOfUnknownSpecialization) {
251 // Determine where to perform name lookup
252 MemberOfUnknownSpecialization = false;
253 DeclContext *LookupCtx = nullptr;
254 bool isDependent = false;
255 if (!ObjectType.isNull()) {
256 // This nested-name-specifier occurs in a member access expression, e.g.,
257 // x->B::f, and we are looking into the type of the object.
258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259 LookupCtx = computeDeclContext(ObjectType);
260 isDependent = ObjectType->isDependentType();
261 assert((isDependent || !ObjectType->isIncompleteType() ||
262 ObjectType->castAs<TagType>()->isBeingDefined()) &&
263 "Caller should have completed object type");
264
265 // Template names cannot appear inside an Objective-C class or object type.
266 if (ObjectType->isObjCObjectOrInterfaceType()) {
267 Found.clear();
268 return;
269 }
270 } else if (SS.isSet()) {
271 // This nested-name-specifier occurs after another nested-name-specifier,
272 // so long into the context associated with the prior nested-name-specifier.
273 LookupCtx = computeDeclContext(SS, EnteringContext);
274 isDependent = isDependentScopeSpecifier(SS);
275
276 // The declaration context must be complete.
277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278 return;
279 }
280
281 bool ObjectTypeSearchedInScope = false;
282 bool AllowFunctionTemplatesInLookup = true;
283 if (LookupCtx) {
284 // Perform "qualified" name lookup into the declaration context we
285 // computed, which is either the type of the base of a member access
286 // expression or the declaration context associated with a prior
287 // nested-name-specifier.
288 LookupQualifiedName(Found, LookupCtx);
289 if (!ObjectType.isNull() && Found.empty()) {
290 // C++ [basic.lookup.classref]p1:
291 // In a class member access expression (5.2.5), if the . or -> token is
292 // immediately followed by an identifier followed by a <, the
293 // identifier must be looked up to determine whether the < is the
294 // beginning of a template argument list (14.2) or a less-than operator.
295 // The identifier is first looked up in the class of the object
296 // expression. If the identifier is not found, it is then looked up in
297 // the context of the entire postfix-expression and shall name a class
298 // or function template.
299 if (S) LookupName(Found, S);
300 ObjectTypeSearchedInScope = true;
301 AllowFunctionTemplatesInLookup = false;
302 }
303 } else if (isDependent && (!S || ObjectType.isNull())) {
304 // We cannot look into a dependent object type or nested nme
305 // specifier.
306 MemberOfUnknownSpecialization = true;
307 return;
308 } else {
309 // Perform unqualified name lookup in the current scope.
310 LookupName(Found, S);
311
312 if (!ObjectType.isNull())
313 AllowFunctionTemplatesInLookup = false;
314 }
315
316 if (Found.empty() && !isDependent) {
317 // If we did not find any names, attempt to correct any typos.
318 DeclarationName Name = Found.getLookupName();
319 Found.clear();
320 // Simple filter callback that, for keywords, only accepts the C++ *_cast
321 CorrectionCandidateCallback FilterCCC;
322 FilterCCC.WantTypeSpecifiers = false;
323 FilterCCC.WantExpressionKeywords = false;
324 FilterCCC.WantRemainingKeywords = false;
325 FilterCCC.WantCXXNamedCasts = true;
326 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327 Found.getLookupKind(), S, &SS,
328 FilterCCC, CTK_ErrorRecovery,
329 LookupCtx)) {
330 Found.setLookupName(Corrected.getCorrection());
331 if (Corrected.getCorrectionDecl())
332 Found.addDecl(Corrected.getCorrectionDecl());
333 FilterAcceptableTemplateNames(Found);
334 if (!Found.empty()) {
335 if (LookupCtx) {
336 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
337 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
338 Name.getAsString() == CorrectedStr;
339 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
340 << Name << LookupCtx << DroppedSpecifier
341 << SS.getRange());
342 } else {
343 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
344 }
345 }
346 } else {
347 Found.setLookupName(Name);
348 }
349 }
350
351 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
352 if (Found.empty()) {
353 if (isDependent)
354 MemberOfUnknownSpecialization = true;
355 return;
356 }
357
358 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
359 !getLangOpts().CPlusPlus11) {
360 // C++03 [basic.lookup.classref]p1:
361 // [...] If the lookup in the class of the object expression finds a
362 // template, the name is also looked up in the context of the entire
363 // postfix-expression and [...]
364 //
365 // Note: C++11 does not perform this second lookup.
366 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
367 LookupOrdinaryName);
368 LookupName(FoundOuter, S);
369 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
370
371 if (FoundOuter.empty()) {
372 // - if the name is not found, the name found in the class of the
373 // object expression is used, otherwise
374 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
375 FoundOuter.isAmbiguous()) {
376 // - if the name is found in the context of the entire
377 // postfix-expression and does not name a class template, the name
378 // found in the class of the object expression is used, otherwise
379 FoundOuter.clear();
380 } else if (!Found.isSuppressingDiagnostics()) {
381 // - if the name found is a class template, it must refer to the same
382 // entity as the one found in the class of the object expression,
383 // otherwise the program is ill-formed.
384 if (!Found.isSingleResult() ||
385 Found.getFoundDecl()->getCanonicalDecl()
386 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
387 Diag(Found.getNameLoc(),
388 diag::ext_nested_name_member_ref_lookup_ambiguous)
389 << Found.getLookupName()
390 << ObjectType;
391 Diag(Found.getRepresentativeDecl()->getLocation(),
392 diag::note_ambig_member_ref_object_type)
393 << ObjectType;
394 Diag(FoundOuter.getFoundDecl()->getLocation(),
395 diag::note_ambig_member_ref_scope);
396
397 // Recover by taking the template that we found in the object
398 // expression's type.
399 }
400 }
401 }
402 }
403
404 /// ActOnDependentIdExpression - Handle a dependent id-expression that
405 /// was just parsed. This is only possible with an explicit scope
406 /// specifier naming a dependent type.
407 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)408 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
409 SourceLocation TemplateKWLoc,
410 const DeclarationNameInfo &NameInfo,
411 bool isAddressOfOperand,
412 const TemplateArgumentListInfo *TemplateArgs) {
413 DeclContext *DC = getFunctionLevelDeclContext();
414
415 if (!isAddressOfOperand &&
416 isa<CXXMethodDecl>(DC) &&
417 cast<CXXMethodDecl>(DC)->isInstance()) {
418 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
419
420 // Since the 'this' expression is synthesized, we don't need to
421 // perform the double-lookup check.
422 NamedDecl *FirstQualifierInScope = nullptr;
423
424 return CXXDependentScopeMemberExpr::Create(
425 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
426 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
427 FirstQualifierInScope, NameInfo, TemplateArgs);
428 }
429
430 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
431 }
432
433 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)434 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
435 SourceLocation TemplateKWLoc,
436 const DeclarationNameInfo &NameInfo,
437 const TemplateArgumentListInfo *TemplateArgs) {
438 return DependentScopeDeclRefExpr::Create(
439 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
440 TemplateArgs);
441 }
442
443 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
444 /// that the template parameter 'PrevDecl' is being shadowed by a new
445 /// declaration at location Loc. Returns true to indicate that this is
446 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)447 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
448 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
449
450 // Microsoft Visual C++ permits template parameters to be shadowed.
451 if (getLangOpts().MicrosoftExt)
452 return;
453
454 // C++ [temp.local]p4:
455 // A template-parameter shall not be redeclared within its
456 // scope (including nested scopes).
457 Diag(Loc, diag::err_template_param_shadow)
458 << cast<NamedDecl>(PrevDecl)->getDeclName();
459 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
460 return;
461 }
462
463 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
464 /// the parameter D to reference the templated declaration and return a pointer
465 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)466 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
467 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
468 D = Temp->getTemplatedDecl();
469 return Temp;
470 }
471 return nullptr;
472 }
473
getTemplatePackExpansion(SourceLocation EllipsisLoc) const474 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
475 SourceLocation EllipsisLoc) const {
476 assert(Kind == Template &&
477 "Only template template arguments can be pack expansions here");
478 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
479 "Template template argument pack expansion without packs");
480 ParsedTemplateArgument Result(*this);
481 Result.EllipsisLoc = EllipsisLoc;
482 return Result;
483 }
484
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)485 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
486 const ParsedTemplateArgument &Arg) {
487
488 switch (Arg.getKind()) {
489 case ParsedTemplateArgument::Type: {
490 TypeSourceInfo *DI;
491 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
492 if (!DI)
493 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
494 return TemplateArgumentLoc(TemplateArgument(T), DI);
495 }
496
497 case ParsedTemplateArgument::NonType: {
498 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
499 return TemplateArgumentLoc(TemplateArgument(E), E);
500 }
501
502 case ParsedTemplateArgument::Template: {
503 TemplateName Template = Arg.getAsTemplate().get();
504 TemplateArgument TArg;
505 if (Arg.getEllipsisLoc().isValid())
506 TArg = TemplateArgument(Template, Optional<unsigned int>());
507 else
508 TArg = Template;
509 return TemplateArgumentLoc(TArg,
510 Arg.getScopeSpec().getWithLocInContext(
511 SemaRef.Context),
512 Arg.getLocation(),
513 Arg.getEllipsisLoc());
514 }
515 }
516
517 llvm_unreachable("Unhandled parsed template argument");
518 }
519
520 /// \brief Translates template arguments as provided by the parser
521 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)522 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
523 TemplateArgumentListInfo &TemplateArgs) {
524 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
525 TemplateArgs.addArgument(translateTemplateArgument(*this,
526 TemplateArgsIn[I]));
527 }
528
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)529 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
530 SourceLocation Loc,
531 IdentifierInfo *Name) {
532 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
533 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
534 if (PrevDecl && PrevDecl->isTemplateParameter())
535 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
536 }
537
538 /// ActOnTypeParameter - Called when a C++ template type parameter
539 /// (e.g., "typename T") has been parsed. Typename specifies whether
540 /// the keyword "typename" was used to declare the type parameter
541 /// (otherwise, "class" was used), and KeyLoc is the location of the
542 /// "class" or "typename" keyword. ParamName is the name of the
543 /// parameter (NULL indicates an unnamed template parameter) and
544 /// ParamNameLoc is the location of the parameter name (if any).
545 /// If the type parameter has a default argument, it will be added
546 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)547 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
548 SourceLocation EllipsisLoc,
549 SourceLocation KeyLoc,
550 IdentifierInfo *ParamName,
551 SourceLocation ParamNameLoc,
552 unsigned Depth, unsigned Position,
553 SourceLocation EqualLoc,
554 ParsedType DefaultArg) {
555 assert(S->isTemplateParamScope() &&
556 "Template type parameter not in template parameter scope!");
557 bool Invalid = false;
558
559 SourceLocation Loc = ParamNameLoc;
560 if (!ParamName)
561 Loc = KeyLoc;
562
563 bool IsParameterPack = EllipsisLoc.isValid();
564 TemplateTypeParmDecl *Param
565 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
566 KeyLoc, Loc, Depth, Position, ParamName,
567 Typename, IsParameterPack);
568 Param->setAccess(AS_public);
569 if (Invalid)
570 Param->setInvalidDecl();
571
572 if (ParamName) {
573 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
574
575 // Add the template parameter into the current scope.
576 S->AddDecl(Param);
577 IdResolver.AddDecl(Param);
578 }
579
580 // C++0x [temp.param]p9:
581 // A default template-argument may be specified for any kind of
582 // template-parameter that is not a template parameter pack.
583 if (DefaultArg && IsParameterPack) {
584 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
585 DefaultArg = ParsedType();
586 }
587
588 // Handle the default argument, if provided.
589 if (DefaultArg) {
590 TypeSourceInfo *DefaultTInfo;
591 GetTypeFromParser(DefaultArg, &DefaultTInfo);
592
593 assert(DefaultTInfo && "expected source information for type");
594
595 // Check for unexpanded parameter packs.
596 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
597 UPPC_DefaultArgument))
598 return Param;
599
600 // Check the template argument itself.
601 if (CheckTemplateArgument(Param, DefaultTInfo)) {
602 Param->setInvalidDecl();
603 return Param;
604 }
605
606 Param->setDefaultArgument(DefaultTInfo, false);
607 }
608
609 return Param;
610 }
611
612 /// \brief Check that the type of a non-type template parameter is
613 /// well-formed.
614 ///
615 /// \returns the (possibly-promoted) parameter type if valid;
616 /// otherwise, produces a diagnostic and returns a NULL type.
617 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)618 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
619 // We don't allow variably-modified types as the type of non-type template
620 // parameters.
621 if (T->isVariablyModifiedType()) {
622 Diag(Loc, diag::err_variably_modified_nontype_template_param)
623 << T;
624 return QualType();
625 }
626
627 // C++ [temp.param]p4:
628 //
629 // A non-type template-parameter shall have one of the following
630 // (optionally cv-qualified) types:
631 //
632 // -- integral or enumeration type,
633 if (T->isIntegralOrEnumerationType() ||
634 // -- pointer to object or pointer to function,
635 T->isPointerType() ||
636 // -- reference to object or reference to function,
637 T->isReferenceType() ||
638 // -- pointer to member,
639 T->isMemberPointerType() ||
640 // -- std::nullptr_t.
641 T->isNullPtrType() ||
642 // If T is a dependent type, we can't do the check now, so we
643 // assume that it is well-formed.
644 T->isDependentType()) {
645 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
646 // are ignored when determining its type.
647 return T.getUnqualifiedType();
648 }
649
650 // C++ [temp.param]p8:
651 //
652 // A non-type template-parameter of type "array of T" or
653 // "function returning T" is adjusted to be of type "pointer to
654 // T" or "pointer to function returning T", respectively.
655 else if (T->isArrayType())
656 // FIXME: Keep the type prior to promotion?
657 return Context.getArrayDecayedType(T);
658 else if (T->isFunctionType())
659 // FIXME: Keep the type prior to promotion?
660 return Context.getPointerType(T);
661
662 Diag(Loc, diag::err_template_nontype_parm_bad_type)
663 << T;
664
665 return QualType();
666 }
667
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)668 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
669 unsigned Depth,
670 unsigned Position,
671 SourceLocation EqualLoc,
672 Expr *Default) {
673 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
674 QualType T = TInfo->getType();
675
676 assert(S->isTemplateParamScope() &&
677 "Non-type template parameter not in template parameter scope!");
678 bool Invalid = false;
679
680 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
681 if (T.isNull()) {
682 T = Context.IntTy; // Recover with an 'int' type.
683 Invalid = true;
684 }
685
686 IdentifierInfo *ParamName = D.getIdentifier();
687 bool IsParameterPack = D.hasEllipsis();
688 NonTypeTemplateParmDecl *Param
689 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
690 D.getLocStart(),
691 D.getIdentifierLoc(),
692 Depth, Position, ParamName, T,
693 IsParameterPack, TInfo);
694 Param->setAccess(AS_public);
695
696 if (Invalid)
697 Param->setInvalidDecl();
698
699 if (ParamName) {
700 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
701 ParamName);
702
703 // Add the template parameter into the current scope.
704 S->AddDecl(Param);
705 IdResolver.AddDecl(Param);
706 }
707
708 // C++0x [temp.param]p9:
709 // A default template-argument may be specified for any kind of
710 // template-parameter that is not a template parameter pack.
711 if (Default && IsParameterPack) {
712 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
713 Default = nullptr;
714 }
715
716 // Check the well-formedness of the default template argument, if provided.
717 if (Default) {
718 // Check for unexpanded parameter packs.
719 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
720 return Param;
721
722 TemplateArgument Converted;
723 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
724 if (DefaultRes.isInvalid()) {
725 Param->setInvalidDecl();
726 return Param;
727 }
728 Default = DefaultRes.get();
729
730 Param->setDefaultArgument(Default, false);
731 }
732
733 return Param;
734 }
735
736 /// ActOnTemplateTemplateParameter - Called when a C++ template template
737 /// parameter (e.g. T in template <template \<typename> class T> class array)
738 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)739 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
740 SourceLocation TmpLoc,
741 TemplateParameterList *Params,
742 SourceLocation EllipsisLoc,
743 IdentifierInfo *Name,
744 SourceLocation NameLoc,
745 unsigned Depth,
746 unsigned Position,
747 SourceLocation EqualLoc,
748 ParsedTemplateArgument Default) {
749 assert(S->isTemplateParamScope() &&
750 "Template template parameter not in template parameter scope!");
751
752 // Construct the parameter object.
753 bool IsParameterPack = EllipsisLoc.isValid();
754 TemplateTemplateParmDecl *Param =
755 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
756 NameLoc.isInvalid()? TmpLoc : NameLoc,
757 Depth, Position, IsParameterPack,
758 Name, Params);
759 Param->setAccess(AS_public);
760
761 // If the template template parameter has a name, then link the identifier
762 // into the scope and lookup mechanisms.
763 if (Name) {
764 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
765
766 S->AddDecl(Param);
767 IdResolver.AddDecl(Param);
768 }
769
770 if (Params->size() == 0) {
771 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
772 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
773 Param->setInvalidDecl();
774 }
775
776 // C++0x [temp.param]p9:
777 // A default template-argument may be specified for any kind of
778 // template-parameter that is not a template parameter pack.
779 if (IsParameterPack && !Default.isInvalid()) {
780 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
781 Default = ParsedTemplateArgument();
782 }
783
784 if (!Default.isInvalid()) {
785 // Check only that we have a template template argument. We don't want to
786 // try to check well-formedness now, because our template template parameter
787 // might have dependent types in its template parameters, which we wouldn't
788 // be able to match now.
789 //
790 // If none of the template template parameter's template arguments mention
791 // other template parameters, we could actually perform more checking here.
792 // However, it isn't worth doing.
793 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
794 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
795 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
796 << DefaultArg.getSourceRange();
797 return Param;
798 }
799
800 // Check for unexpanded parameter packs.
801 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
802 DefaultArg.getArgument().getAsTemplate(),
803 UPPC_DefaultArgument))
804 return Param;
805
806 Param->setDefaultArgument(DefaultArg, false);
807 }
808
809 return Param;
810 }
811
812 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
813 /// contains the template parameters in Params/NumParams.
814 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)815 Sema::ActOnTemplateParameterList(unsigned Depth,
816 SourceLocation ExportLoc,
817 SourceLocation TemplateLoc,
818 SourceLocation LAngleLoc,
819 Decl **Params, unsigned NumParams,
820 SourceLocation RAngleLoc) {
821 if (ExportLoc.isValid())
822 Diag(ExportLoc, diag::warn_template_export_unsupported);
823
824 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
825 (NamedDecl**)Params, NumParams,
826 RAngleLoc);
827 }
828
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)829 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
830 if (SS.isSet())
831 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
832 }
833
834 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)835 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
836 SourceLocation KWLoc, CXXScopeSpec &SS,
837 IdentifierInfo *Name, SourceLocation NameLoc,
838 AttributeList *Attr,
839 TemplateParameterList *TemplateParams,
840 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
841 unsigned NumOuterTemplateParamLists,
842 TemplateParameterList** OuterTemplateParamLists) {
843 assert(TemplateParams && TemplateParams->size() > 0 &&
844 "No template parameters");
845 assert(TUK != TUK_Reference && "Can only declare or define class templates");
846 bool Invalid = false;
847
848 // Check that we can declare a template here.
849 if (CheckTemplateDeclScope(S, TemplateParams))
850 return true;
851
852 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
853 assert(Kind != TTK_Enum && "can't build template of enumerated type");
854
855 // There is no such thing as an unnamed class template.
856 if (!Name) {
857 Diag(KWLoc, diag::err_template_unnamed_class);
858 return true;
859 }
860
861 // Find any previous declaration with this name. For a friend with no
862 // scope explicitly specified, we only look for tag declarations (per
863 // C++11 [basic.lookup.elab]p2).
864 DeclContext *SemanticContext;
865 LookupResult Previous(*this, Name, NameLoc,
866 (SS.isEmpty() && TUK == TUK_Friend)
867 ? LookupTagName : LookupOrdinaryName,
868 ForRedeclaration);
869 if (SS.isNotEmpty() && !SS.isInvalid()) {
870 SemanticContext = computeDeclContext(SS, true);
871 if (!SemanticContext) {
872 // FIXME: Horrible, horrible hack! We can't currently represent this
873 // in the AST, and historically we have just ignored such friend
874 // class templates, so don't complain here.
875 Diag(NameLoc, TUK == TUK_Friend
876 ? diag::warn_template_qualified_friend_ignored
877 : diag::err_template_qualified_declarator_no_match)
878 << SS.getScopeRep() << SS.getRange();
879 return TUK != TUK_Friend;
880 }
881
882 if (RequireCompleteDeclContext(SS, SemanticContext))
883 return true;
884
885 // If we're adding a template to a dependent context, we may need to
886 // rebuilding some of the types used within the template parameter list,
887 // now that we know what the current instantiation is.
888 if (SemanticContext->isDependentContext()) {
889 ContextRAII SavedContext(*this, SemanticContext);
890 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
891 Invalid = true;
892 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
893 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
894
895 LookupQualifiedName(Previous, SemanticContext);
896 } else {
897 SemanticContext = CurContext;
898 LookupName(Previous, S);
899 }
900
901 if (Previous.isAmbiguous())
902 return true;
903
904 NamedDecl *PrevDecl = nullptr;
905 if (Previous.begin() != Previous.end())
906 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
907
908 // If there is a previous declaration with the same name, check
909 // whether this is a valid redeclaration.
910 ClassTemplateDecl *PrevClassTemplate
911 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
912
913 // We may have found the injected-class-name of a class template,
914 // class template partial specialization, or class template specialization.
915 // In these cases, grab the template that is being defined or specialized.
916 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
917 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
918 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
919 PrevClassTemplate
920 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
921 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
922 PrevClassTemplate
923 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
924 ->getSpecializedTemplate();
925 }
926 }
927
928 if (TUK == TUK_Friend) {
929 // C++ [namespace.memdef]p3:
930 // [...] When looking for a prior declaration of a class or a function
931 // declared as a friend, and when the name of the friend class or
932 // function is neither a qualified name nor a template-id, scopes outside
933 // the innermost enclosing namespace scope are not considered.
934 if (!SS.isSet()) {
935 DeclContext *OutermostContext = CurContext;
936 while (!OutermostContext->isFileContext())
937 OutermostContext = OutermostContext->getLookupParent();
938
939 if (PrevDecl &&
940 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
941 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
942 SemanticContext = PrevDecl->getDeclContext();
943 } else {
944 // Declarations in outer scopes don't matter. However, the outermost
945 // context we computed is the semantic context for our new
946 // declaration.
947 PrevDecl = PrevClassTemplate = nullptr;
948 SemanticContext = OutermostContext;
949
950 // Check that the chosen semantic context doesn't already contain a
951 // declaration of this name as a non-tag type.
952 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
953 ForRedeclaration);
954 DeclContext *LookupContext = SemanticContext;
955 while (LookupContext->isTransparentContext())
956 LookupContext = LookupContext->getLookupParent();
957 LookupQualifiedName(Previous, LookupContext);
958
959 if (Previous.isAmbiguous())
960 return true;
961
962 if (Previous.begin() != Previous.end())
963 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
964 }
965 }
966 } else if (PrevDecl &&
967 !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
968 PrevDecl = PrevClassTemplate = nullptr;
969
970 if (PrevClassTemplate) {
971 // Ensure that the template parameter lists are compatible. Skip this check
972 // for a friend in a dependent context: the template parameter list itself
973 // could be dependent.
974 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
975 !TemplateParameterListsAreEqual(TemplateParams,
976 PrevClassTemplate->getTemplateParameters(),
977 /*Complain=*/true,
978 TPL_TemplateMatch))
979 return true;
980
981 // C++ [temp.class]p4:
982 // In a redeclaration, partial specialization, explicit
983 // specialization or explicit instantiation of a class template,
984 // the class-key shall agree in kind with the original class
985 // template declaration (7.1.5.3).
986 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
987 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
988 TUK == TUK_Definition, KWLoc, *Name)) {
989 Diag(KWLoc, diag::err_use_with_wrong_tag)
990 << Name
991 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
992 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
993 Kind = PrevRecordDecl->getTagKind();
994 }
995
996 // Check for redefinition of this class template.
997 if (TUK == TUK_Definition) {
998 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
999 Diag(NameLoc, diag::err_redefinition) << Name;
1000 Diag(Def->getLocation(), diag::note_previous_definition);
1001 // FIXME: Would it make sense to try to "forget" the previous
1002 // definition, as part of error recovery?
1003 return true;
1004 }
1005 }
1006 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1007 // Maybe we will complain about the shadowed template parameter.
1008 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1009 // Just pretend that we didn't see the previous declaration.
1010 PrevDecl = nullptr;
1011 } else if (PrevDecl) {
1012 // C++ [temp]p5:
1013 // A class template shall not have the same name as any other
1014 // template, class, function, object, enumeration, enumerator,
1015 // namespace, or type in the same scope (3.3), except as specified
1016 // in (14.5.4).
1017 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1018 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1019 return true;
1020 }
1021
1022 // Check the template parameter list of this declaration, possibly
1023 // merging in the template parameter list from the previous class
1024 // template declaration. Skip this check for a friend in a dependent
1025 // context, because the template parameter list might be dependent.
1026 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1027 CheckTemplateParameterList(
1028 TemplateParams,
1029 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1030 : nullptr,
1031 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1032 SemanticContext->isDependentContext())
1033 ? TPC_ClassTemplateMember
1034 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1035 : TPC_ClassTemplate))
1036 Invalid = true;
1037
1038 if (SS.isSet()) {
1039 // If the name of the template was qualified, we must be defining the
1040 // template out-of-line.
1041 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1042 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1043 : diag::err_member_decl_does_not_match)
1044 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1045 Invalid = true;
1046 }
1047 }
1048
1049 CXXRecordDecl *NewClass =
1050 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1051 PrevClassTemplate?
1052 PrevClassTemplate->getTemplatedDecl() : nullptr,
1053 /*DelayTypeCreation=*/true);
1054 SetNestedNameSpecifier(NewClass, SS);
1055 if (NumOuterTemplateParamLists > 0)
1056 NewClass->setTemplateParameterListsInfo(Context,
1057 NumOuterTemplateParamLists,
1058 OuterTemplateParamLists);
1059
1060 // Add alignment attributes if necessary; these attributes are checked when
1061 // the ASTContext lays out the structure.
1062 if (TUK == TUK_Definition) {
1063 AddAlignmentAttributesForRecord(NewClass);
1064 AddMsStructLayoutForRecord(NewClass);
1065 }
1066
1067 ClassTemplateDecl *NewTemplate
1068 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1069 DeclarationName(Name), TemplateParams,
1070 NewClass, PrevClassTemplate);
1071 NewClass->setDescribedClassTemplate(NewTemplate);
1072
1073 if (ModulePrivateLoc.isValid())
1074 NewTemplate->setModulePrivate();
1075
1076 // Build the type for the class template declaration now.
1077 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1078 T = Context.getInjectedClassNameType(NewClass, T);
1079 assert(T->isDependentType() && "Class template type is not dependent?");
1080 (void)T;
1081
1082 // If we are providing an explicit specialization of a member that is a
1083 // class template, make a note of that.
1084 if (PrevClassTemplate &&
1085 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1086 PrevClassTemplate->setMemberSpecialization();
1087
1088 // Set the access specifier.
1089 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1090 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1091
1092 // Set the lexical context of these templates
1093 NewClass->setLexicalDeclContext(CurContext);
1094 NewTemplate->setLexicalDeclContext(CurContext);
1095
1096 if (TUK == TUK_Definition)
1097 NewClass->startDefinition();
1098
1099 if (Attr)
1100 ProcessDeclAttributeList(S, NewClass, Attr);
1101
1102 if (PrevClassTemplate)
1103 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1104
1105 AddPushedVisibilityAttribute(NewClass);
1106
1107 if (TUK != TUK_Friend)
1108 PushOnScopeChains(NewTemplate, S);
1109 else {
1110 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1111 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1112 NewClass->setAccess(PrevClassTemplate->getAccess());
1113 }
1114
1115 NewTemplate->setObjectOfFriendDecl();
1116
1117 // Friend templates are visible in fairly strange ways.
1118 if (!CurContext->isDependentContext()) {
1119 DeclContext *DC = SemanticContext->getRedeclContext();
1120 DC->makeDeclVisibleInContext(NewTemplate);
1121 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1122 PushOnScopeChains(NewTemplate, EnclosingScope,
1123 /* AddToContext = */ false);
1124 }
1125
1126 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1127 NewClass->getLocation(),
1128 NewTemplate,
1129 /*FIXME:*/NewClass->getLocation());
1130 Friend->setAccess(AS_public);
1131 CurContext->addDecl(Friend);
1132 }
1133
1134 if (Invalid) {
1135 NewTemplate->setInvalidDecl();
1136 NewClass->setInvalidDecl();
1137 }
1138
1139 ActOnDocumentableDecl(NewTemplate);
1140
1141 return NewTemplate;
1142 }
1143
1144 /// \brief Diagnose the presence of a default template argument on a
1145 /// template parameter, which is ill-formed in certain contexts.
1146 ///
1147 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1148 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1149 Sema::TemplateParamListContext TPC,
1150 SourceLocation ParamLoc,
1151 SourceRange DefArgRange) {
1152 switch (TPC) {
1153 case Sema::TPC_ClassTemplate:
1154 case Sema::TPC_VarTemplate:
1155 case Sema::TPC_TypeAliasTemplate:
1156 return false;
1157
1158 case Sema::TPC_FunctionTemplate:
1159 case Sema::TPC_FriendFunctionTemplateDefinition:
1160 // C++ [temp.param]p9:
1161 // A default template-argument shall not be specified in a
1162 // function template declaration or a function template
1163 // definition [...]
1164 // If a friend function template declaration specifies a default
1165 // template-argument, that declaration shall be a definition and shall be
1166 // the only declaration of the function template in the translation unit.
1167 // (C++98/03 doesn't have this wording; see DR226).
1168 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1169 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1170 : diag::ext_template_parameter_default_in_function_template)
1171 << DefArgRange;
1172 return false;
1173
1174 case Sema::TPC_ClassTemplateMember:
1175 // C++0x [temp.param]p9:
1176 // A default template-argument shall not be specified in the
1177 // template-parameter-lists of the definition of a member of a
1178 // class template that appears outside of the member's class.
1179 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1180 << DefArgRange;
1181 return true;
1182
1183 case Sema::TPC_FriendClassTemplate:
1184 case Sema::TPC_FriendFunctionTemplate:
1185 // C++ [temp.param]p9:
1186 // A default template-argument shall not be specified in a
1187 // friend template declaration.
1188 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1189 << DefArgRange;
1190 return true;
1191
1192 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1193 // for friend function templates if there is only a single
1194 // declaration (and it is a definition). Strange!
1195 }
1196
1197 llvm_unreachable("Invalid TemplateParamListContext!");
1198 }
1199
1200 /// \brief Check for unexpanded parameter packs within the template parameters
1201 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1202 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1203 TemplateTemplateParmDecl *TTP) {
1204 // A template template parameter which is a parameter pack is also a pack
1205 // expansion.
1206 if (TTP->isParameterPack())
1207 return false;
1208
1209 TemplateParameterList *Params = TTP->getTemplateParameters();
1210 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1211 NamedDecl *P = Params->getParam(I);
1212 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1213 if (!NTTP->isParameterPack() &&
1214 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1215 NTTP->getTypeSourceInfo(),
1216 Sema::UPPC_NonTypeTemplateParameterType))
1217 return true;
1218
1219 continue;
1220 }
1221
1222 if (TemplateTemplateParmDecl *InnerTTP
1223 = dyn_cast<TemplateTemplateParmDecl>(P))
1224 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1225 return true;
1226 }
1227
1228 return false;
1229 }
1230
1231 /// \brief Checks the validity of a template parameter list, possibly
1232 /// considering the template parameter list from a previous
1233 /// declaration.
1234 ///
1235 /// If an "old" template parameter list is provided, it must be
1236 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1237 /// template parameter list.
1238 ///
1239 /// \param NewParams Template parameter list for a new template
1240 /// declaration. This template parameter list will be updated with any
1241 /// default arguments that are carried through from the previous
1242 /// template parameter list.
1243 ///
1244 /// \param OldParams If provided, template parameter list from a
1245 /// previous declaration of the same template. Default template
1246 /// arguments will be merged from the old template parameter list to
1247 /// the new template parameter list.
1248 ///
1249 /// \param TPC Describes the context in which we are checking the given
1250 /// template parameter list.
1251 ///
1252 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1253 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1254 TemplateParameterList *OldParams,
1255 TemplateParamListContext TPC) {
1256 bool Invalid = false;
1257
1258 // C++ [temp.param]p10:
1259 // The set of default template-arguments available for use with a
1260 // template declaration or definition is obtained by merging the
1261 // default arguments from the definition (if in scope) and all
1262 // declarations in scope in the same way default function
1263 // arguments are (8.3.6).
1264 bool SawDefaultArgument = false;
1265 SourceLocation PreviousDefaultArgLoc;
1266
1267 // Dummy initialization to avoid warnings.
1268 TemplateParameterList::iterator OldParam = NewParams->end();
1269 if (OldParams)
1270 OldParam = OldParams->begin();
1271
1272 bool RemoveDefaultArguments = false;
1273 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1274 NewParamEnd = NewParams->end();
1275 NewParam != NewParamEnd; ++NewParam) {
1276 // Variables used to diagnose redundant default arguments
1277 bool RedundantDefaultArg = false;
1278 SourceLocation OldDefaultLoc;
1279 SourceLocation NewDefaultLoc;
1280
1281 // Variable used to diagnose missing default arguments
1282 bool MissingDefaultArg = false;
1283
1284 // Variable used to diagnose non-final parameter packs
1285 bool SawParameterPack = false;
1286
1287 if (TemplateTypeParmDecl *NewTypeParm
1288 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1289 // Check the presence of a default argument here.
1290 if (NewTypeParm->hasDefaultArgument() &&
1291 DiagnoseDefaultTemplateArgument(*this, TPC,
1292 NewTypeParm->getLocation(),
1293 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1294 .getSourceRange()))
1295 NewTypeParm->removeDefaultArgument();
1296
1297 // Merge default arguments for template type parameters.
1298 TemplateTypeParmDecl *OldTypeParm
1299 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1300
1301 if (NewTypeParm->isParameterPack()) {
1302 assert(!NewTypeParm->hasDefaultArgument() &&
1303 "Parameter packs can't have a default argument!");
1304 SawParameterPack = true;
1305 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1306 NewTypeParm->hasDefaultArgument()) {
1307 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1308 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1309 SawDefaultArgument = true;
1310 RedundantDefaultArg = true;
1311 PreviousDefaultArgLoc = NewDefaultLoc;
1312 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1313 // Merge the default argument from the old declaration to the
1314 // new declaration.
1315 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1316 true);
1317 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1318 } else if (NewTypeParm->hasDefaultArgument()) {
1319 SawDefaultArgument = true;
1320 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1321 } else if (SawDefaultArgument)
1322 MissingDefaultArg = true;
1323 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1324 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1325 // Check for unexpanded parameter packs.
1326 if (!NewNonTypeParm->isParameterPack() &&
1327 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1328 NewNonTypeParm->getTypeSourceInfo(),
1329 UPPC_NonTypeTemplateParameterType)) {
1330 Invalid = true;
1331 continue;
1332 }
1333
1334 // Check the presence of a default argument here.
1335 if (NewNonTypeParm->hasDefaultArgument() &&
1336 DiagnoseDefaultTemplateArgument(*this, TPC,
1337 NewNonTypeParm->getLocation(),
1338 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1339 NewNonTypeParm->removeDefaultArgument();
1340 }
1341
1342 // Merge default arguments for non-type template parameters
1343 NonTypeTemplateParmDecl *OldNonTypeParm
1344 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1345 if (NewNonTypeParm->isParameterPack()) {
1346 assert(!NewNonTypeParm->hasDefaultArgument() &&
1347 "Parameter packs can't have a default argument!");
1348 if (!NewNonTypeParm->isPackExpansion())
1349 SawParameterPack = true;
1350 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1351 NewNonTypeParm->hasDefaultArgument()) {
1352 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1353 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1354 SawDefaultArgument = true;
1355 RedundantDefaultArg = true;
1356 PreviousDefaultArgLoc = NewDefaultLoc;
1357 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1358 // Merge the default argument from the old declaration to the
1359 // new declaration.
1360 // FIXME: We need to create a new kind of "default argument"
1361 // expression that points to a previous non-type template
1362 // parameter.
1363 NewNonTypeParm->setDefaultArgument(
1364 OldNonTypeParm->getDefaultArgument(),
1365 /*Inherited=*/ true);
1366 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1367 } else if (NewNonTypeParm->hasDefaultArgument()) {
1368 SawDefaultArgument = true;
1369 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1370 } else if (SawDefaultArgument)
1371 MissingDefaultArg = true;
1372 } else {
1373 TemplateTemplateParmDecl *NewTemplateParm
1374 = cast<TemplateTemplateParmDecl>(*NewParam);
1375
1376 // Check for unexpanded parameter packs, recursively.
1377 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1378 Invalid = true;
1379 continue;
1380 }
1381
1382 // Check the presence of a default argument here.
1383 if (NewTemplateParm->hasDefaultArgument() &&
1384 DiagnoseDefaultTemplateArgument(*this, TPC,
1385 NewTemplateParm->getLocation(),
1386 NewTemplateParm->getDefaultArgument().getSourceRange()))
1387 NewTemplateParm->removeDefaultArgument();
1388
1389 // Merge default arguments for template template parameters
1390 TemplateTemplateParmDecl *OldTemplateParm
1391 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1392 if (NewTemplateParm->isParameterPack()) {
1393 assert(!NewTemplateParm->hasDefaultArgument() &&
1394 "Parameter packs can't have a default argument!");
1395 if (!NewTemplateParm->isPackExpansion())
1396 SawParameterPack = true;
1397 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1398 NewTemplateParm->hasDefaultArgument()) {
1399 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1400 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1401 SawDefaultArgument = true;
1402 RedundantDefaultArg = true;
1403 PreviousDefaultArgLoc = NewDefaultLoc;
1404 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1405 // Merge the default argument from the old declaration to the
1406 // new declaration.
1407 // FIXME: We need to create a new kind of "default argument" expression
1408 // that points to a previous template template parameter.
1409 NewTemplateParm->setDefaultArgument(
1410 OldTemplateParm->getDefaultArgument(),
1411 /*Inherited=*/ true);
1412 PreviousDefaultArgLoc
1413 = OldTemplateParm->getDefaultArgument().getLocation();
1414 } else if (NewTemplateParm->hasDefaultArgument()) {
1415 SawDefaultArgument = true;
1416 PreviousDefaultArgLoc
1417 = NewTemplateParm->getDefaultArgument().getLocation();
1418 } else if (SawDefaultArgument)
1419 MissingDefaultArg = true;
1420 }
1421
1422 // C++11 [temp.param]p11:
1423 // If a template parameter of a primary class template or alias template
1424 // is a template parameter pack, it shall be the last template parameter.
1425 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1426 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1427 TPC == TPC_TypeAliasTemplate)) {
1428 Diag((*NewParam)->getLocation(),
1429 diag::err_template_param_pack_must_be_last_template_parameter);
1430 Invalid = true;
1431 }
1432
1433 if (RedundantDefaultArg) {
1434 // C++ [temp.param]p12:
1435 // A template-parameter shall not be given default arguments
1436 // by two different declarations in the same scope.
1437 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1438 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1439 Invalid = true;
1440 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1441 // C++ [temp.param]p11:
1442 // If a template-parameter of a class template has a default
1443 // template-argument, each subsequent template-parameter shall either
1444 // have a default template-argument supplied or be a template parameter
1445 // pack.
1446 Diag((*NewParam)->getLocation(),
1447 diag::err_template_param_default_arg_missing);
1448 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1449 Invalid = true;
1450 RemoveDefaultArguments = true;
1451 }
1452
1453 // If we have an old template parameter list that we're merging
1454 // in, move on to the next parameter.
1455 if (OldParams)
1456 ++OldParam;
1457 }
1458
1459 // We were missing some default arguments at the end of the list, so remove
1460 // all of the default arguments.
1461 if (RemoveDefaultArguments) {
1462 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1463 NewParamEnd = NewParams->end();
1464 NewParam != NewParamEnd; ++NewParam) {
1465 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1466 TTP->removeDefaultArgument();
1467 else if (NonTypeTemplateParmDecl *NTTP
1468 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1469 NTTP->removeDefaultArgument();
1470 else
1471 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1472 }
1473 }
1474
1475 return Invalid;
1476 }
1477
1478 namespace {
1479
1480 /// A class which looks for a use of a certain level of template
1481 /// parameter.
1482 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1483 typedef RecursiveASTVisitor<DependencyChecker> super;
1484
1485 unsigned Depth;
1486 bool Match;
1487 SourceLocation MatchLoc;
1488
DependencyChecker__anon62cb9c370111::DependencyChecker1489 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1490
DependencyChecker__anon62cb9c370111::DependencyChecker1491 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1492 NamedDecl *ND = Params->getParam(0);
1493 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1494 Depth = PD->getDepth();
1495 } else if (NonTypeTemplateParmDecl *PD =
1496 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1497 Depth = PD->getDepth();
1498 } else {
1499 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1500 }
1501 }
1502
Matches__anon62cb9c370111::DependencyChecker1503 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1504 if (ParmDepth >= Depth) {
1505 Match = true;
1506 MatchLoc = Loc;
1507 return true;
1508 }
1509 return false;
1510 }
1511
VisitTemplateTypeParmTypeLoc__anon62cb9c370111::DependencyChecker1512 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1513 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1514 }
1515
VisitTemplateTypeParmType__anon62cb9c370111::DependencyChecker1516 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1517 return !Matches(T->getDepth());
1518 }
1519
TraverseTemplateName__anon62cb9c370111::DependencyChecker1520 bool TraverseTemplateName(TemplateName N) {
1521 if (TemplateTemplateParmDecl *PD =
1522 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1523 if (Matches(PD->getDepth()))
1524 return false;
1525 return super::TraverseTemplateName(N);
1526 }
1527
VisitDeclRefExpr__anon62cb9c370111::DependencyChecker1528 bool VisitDeclRefExpr(DeclRefExpr *E) {
1529 if (NonTypeTemplateParmDecl *PD =
1530 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1531 if (Matches(PD->getDepth(), E->getExprLoc()))
1532 return false;
1533 return super::VisitDeclRefExpr(E);
1534 }
1535
VisitSubstTemplateTypeParmType__anon62cb9c370111::DependencyChecker1536 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1537 return TraverseType(T->getReplacementType());
1538 }
1539
1540 bool
VisitSubstTemplateTypeParmPackType__anon62cb9c370111::DependencyChecker1541 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1542 return TraverseTemplateArgument(T->getArgumentPack());
1543 }
1544
TraverseInjectedClassNameType__anon62cb9c370111::DependencyChecker1545 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1546 return TraverseType(T->getInjectedSpecializationType());
1547 }
1548 };
1549 }
1550
1551 /// Determines whether a given type depends on the given parameter
1552 /// list.
1553 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1554 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1555 DependencyChecker Checker(Params);
1556 Checker.TraverseType(T);
1557 return Checker.Match;
1558 }
1559
1560 // Find the source range corresponding to the named type in the given
1561 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1562 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1563 QualType T,
1564 const CXXScopeSpec &SS) {
1565 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1566 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1567 if (const Type *CurType = NNS->getAsType()) {
1568 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1569 return NNSLoc.getTypeLoc().getSourceRange();
1570 } else
1571 break;
1572
1573 NNSLoc = NNSLoc.getPrefix();
1574 }
1575
1576 return SourceRange();
1577 }
1578
1579 /// \brief Match the given template parameter lists to the given scope
1580 /// specifier, returning the template parameter list that applies to the
1581 /// name.
1582 ///
1583 /// \param DeclStartLoc the start of the declaration that has a scope
1584 /// specifier or a template parameter list.
1585 ///
1586 /// \param DeclLoc The location of the declaration itself.
1587 ///
1588 /// \param SS the scope specifier that will be matched to the given template
1589 /// parameter lists. This scope specifier precedes a qualified name that is
1590 /// being declared.
1591 ///
1592 /// \param TemplateId The template-id following the scope specifier, if there
1593 /// is one. Used to check for a missing 'template<>'.
1594 ///
1595 /// \param ParamLists the template parameter lists, from the outermost to the
1596 /// innermost template parameter lists.
1597 ///
1598 /// \param IsFriend Whether to apply the slightly different rules for
1599 /// matching template parameters to scope specifiers in friend
1600 /// declarations.
1601 ///
1602 /// \param IsExplicitSpecialization will be set true if the entity being
1603 /// declared is an explicit specialization, false otherwise.
1604 ///
1605 /// \returns the template parameter list, if any, that corresponds to the
1606 /// name that is preceded by the scope specifier @p SS. This template
1607 /// parameter list may have template parameters (if we're declaring a
1608 /// template) or may have no template parameters (if we're declaring a
1609 /// template specialization), or may be NULL (if what we're declaring isn't
1610 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1611 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1612 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1613 TemplateIdAnnotation *TemplateId,
1614 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1615 bool &IsExplicitSpecialization, bool &Invalid) {
1616 IsExplicitSpecialization = false;
1617 Invalid = false;
1618
1619 // The sequence of nested types to which we will match up the template
1620 // parameter lists. We first build this list by starting with the type named
1621 // by the nested-name-specifier and walking out until we run out of types.
1622 SmallVector<QualType, 4> NestedTypes;
1623 QualType T;
1624 if (SS.getScopeRep()) {
1625 if (CXXRecordDecl *Record
1626 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1627 T = Context.getTypeDeclType(Record);
1628 else
1629 T = QualType(SS.getScopeRep()->getAsType(), 0);
1630 }
1631
1632 // If we found an explicit specialization that prevents us from needing
1633 // 'template<>' headers, this will be set to the location of that
1634 // explicit specialization.
1635 SourceLocation ExplicitSpecLoc;
1636
1637 while (!T.isNull()) {
1638 NestedTypes.push_back(T);
1639
1640 // Retrieve the parent of a record type.
1641 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1642 // If this type is an explicit specialization, we're done.
1643 if (ClassTemplateSpecializationDecl *Spec
1644 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1645 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1646 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1647 ExplicitSpecLoc = Spec->getLocation();
1648 break;
1649 }
1650 } else if (Record->getTemplateSpecializationKind()
1651 == TSK_ExplicitSpecialization) {
1652 ExplicitSpecLoc = Record->getLocation();
1653 break;
1654 }
1655
1656 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1657 T = Context.getTypeDeclType(Parent);
1658 else
1659 T = QualType();
1660 continue;
1661 }
1662
1663 if (const TemplateSpecializationType *TST
1664 = T->getAs<TemplateSpecializationType>()) {
1665 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1666 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1667 T = Context.getTypeDeclType(Parent);
1668 else
1669 T = QualType();
1670 continue;
1671 }
1672 }
1673
1674 // Look one step prior in a dependent template specialization type.
1675 if (const DependentTemplateSpecializationType *DependentTST
1676 = T->getAs<DependentTemplateSpecializationType>()) {
1677 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1678 T = QualType(NNS->getAsType(), 0);
1679 else
1680 T = QualType();
1681 continue;
1682 }
1683
1684 // Look one step prior in a dependent name type.
1685 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1686 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1687 T = QualType(NNS->getAsType(), 0);
1688 else
1689 T = QualType();
1690 continue;
1691 }
1692
1693 // Retrieve the parent of an enumeration type.
1694 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1695 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1696 // check here.
1697 EnumDecl *Enum = EnumT->getDecl();
1698
1699 // Get to the parent type.
1700 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1701 T = Context.getTypeDeclType(Parent);
1702 else
1703 T = QualType();
1704 continue;
1705 }
1706
1707 T = QualType();
1708 }
1709 // Reverse the nested types list, since we want to traverse from the outermost
1710 // to the innermost while checking template-parameter-lists.
1711 std::reverse(NestedTypes.begin(), NestedTypes.end());
1712
1713 // C++0x [temp.expl.spec]p17:
1714 // A member or a member template may be nested within many
1715 // enclosing class templates. In an explicit specialization for
1716 // such a member, the member declaration shall be preceded by a
1717 // template<> for each enclosing class template that is
1718 // explicitly specialized.
1719 bool SawNonEmptyTemplateParameterList = false;
1720
1721 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1722 if (SawNonEmptyTemplateParameterList) {
1723 Diag(DeclLoc, diag::err_specialize_member_of_template)
1724 << !Recovery << Range;
1725 Invalid = true;
1726 IsExplicitSpecialization = false;
1727 return true;
1728 }
1729
1730 return false;
1731 };
1732
1733 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1734 // Check that we can have an explicit specialization here.
1735 if (CheckExplicitSpecialization(Range, true))
1736 return true;
1737
1738 // We don't have a template header, but we should.
1739 SourceLocation ExpectedTemplateLoc;
1740 if (!ParamLists.empty())
1741 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1742 else
1743 ExpectedTemplateLoc = DeclStartLoc;
1744
1745 Diag(DeclLoc, diag::err_template_spec_needs_header)
1746 << Range
1747 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1748 return false;
1749 };
1750
1751 unsigned ParamIdx = 0;
1752 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1753 ++TypeIdx) {
1754 T = NestedTypes[TypeIdx];
1755
1756 // Whether we expect a 'template<>' header.
1757 bool NeedEmptyTemplateHeader = false;
1758
1759 // Whether we expect a template header with parameters.
1760 bool NeedNonemptyTemplateHeader = false;
1761
1762 // For a dependent type, the set of template parameters that we
1763 // expect to see.
1764 TemplateParameterList *ExpectedTemplateParams = nullptr;
1765
1766 // C++0x [temp.expl.spec]p15:
1767 // A member or a member template may be nested within many enclosing
1768 // class templates. In an explicit specialization for such a member, the
1769 // member declaration shall be preceded by a template<> for each
1770 // enclosing class template that is explicitly specialized.
1771 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1772 if (ClassTemplatePartialSpecializationDecl *Partial
1773 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1774 ExpectedTemplateParams = Partial->getTemplateParameters();
1775 NeedNonemptyTemplateHeader = true;
1776 } else if (Record->isDependentType()) {
1777 if (Record->getDescribedClassTemplate()) {
1778 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1779 ->getTemplateParameters();
1780 NeedNonemptyTemplateHeader = true;
1781 }
1782 } else if (ClassTemplateSpecializationDecl *Spec
1783 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1784 // C++0x [temp.expl.spec]p4:
1785 // Members of an explicitly specialized class template are defined
1786 // in the same manner as members of normal classes, and not using
1787 // the template<> syntax.
1788 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1789 NeedEmptyTemplateHeader = true;
1790 else
1791 continue;
1792 } else if (Record->getTemplateSpecializationKind()) {
1793 if (Record->getTemplateSpecializationKind()
1794 != TSK_ExplicitSpecialization &&
1795 TypeIdx == NumTypes - 1)
1796 IsExplicitSpecialization = true;
1797
1798 continue;
1799 }
1800 } else if (const TemplateSpecializationType *TST
1801 = T->getAs<TemplateSpecializationType>()) {
1802 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1803 ExpectedTemplateParams = Template->getTemplateParameters();
1804 NeedNonemptyTemplateHeader = true;
1805 }
1806 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1807 // FIXME: We actually could/should check the template arguments here
1808 // against the corresponding template parameter list.
1809 NeedNonemptyTemplateHeader = false;
1810 }
1811
1812 // C++ [temp.expl.spec]p16:
1813 // In an explicit specialization declaration for a member of a class
1814 // template or a member template that ap- pears in namespace scope, the
1815 // member template and some of its enclosing class templates may remain
1816 // unspecialized, except that the declaration shall not explicitly
1817 // specialize a class member template if its en- closing class templates
1818 // are not explicitly specialized as well.
1819 if (ParamIdx < ParamLists.size()) {
1820 if (ParamLists[ParamIdx]->size() == 0) {
1821 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1822 false))
1823 return nullptr;
1824 } else
1825 SawNonEmptyTemplateParameterList = true;
1826 }
1827
1828 if (NeedEmptyTemplateHeader) {
1829 // If we're on the last of the types, and we need a 'template<>' header
1830 // here, then it's an explicit specialization.
1831 if (TypeIdx == NumTypes - 1)
1832 IsExplicitSpecialization = true;
1833
1834 if (ParamIdx < ParamLists.size()) {
1835 if (ParamLists[ParamIdx]->size() > 0) {
1836 // The header has template parameters when it shouldn't. Complain.
1837 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1838 diag::err_template_param_list_matches_nontemplate)
1839 << T
1840 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1841 ParamLists[ParamIdx]->getRAngleLoc())
1842 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1843 Invalid = true;
1844 return nullptr;
1845 }
1846
1847 // Consume this template header.
1848 ++ParamIdx;
1849 continue;
1850 }
1851
1852 if (!IsFriend)
1853 if (DiagnoseMissingExplicitSpecialization(
1854 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1855 return nullptr;
1856
1857 continue;
1858 }
1859
1860 if (NeedNonemptyTemplateHeader) {
1861 // In friend declarations we can have template-ids which don't
1862 // depend on the corresponding template parameter lists. But
1863 // assume that empty parameter lists are supposed to match this
1864 // template-id.
1865 if (IsFriend && T->isDependentType()) {
1866 if (ParamIdx < ParamLists.size() &&
1867 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1868 ExpectedTemplateParams = nullptr;
1869 else
1870 continue;
1871 }
1872
1873 if (ParamIdx < ParamLists.size()) {
1874 // Check the template parameter list, if we can.
1875 if (ExpectedTemplateParams &&
1876 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1877 ExpectedTemplateParams,
1878 true, TPL_TemplateMatch))
1879 Invalid = true;
1880
1881 if (!Invalid &&
1882 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1883 TPC_ClassTemplateMember))
1884 Invalid = true;
1885
1886 ++ParamIdx;
1887 continue;
1888 }
1889
1890 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1891 << T
1892 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1893 Invalid = true;
1894 continue;
1895 }
1896 }
1897
1898 // If there were at least as many template-ids as there were template
1899 // parameter lists, then there are no template parameter lists remaining for
1900 // the declaration itself.
1901 if (ParamIdx >= ParamLists.size()) {
1902 if (TemplateId && !IsFriend) {
1903 // We don't have a template header for the declaration itself, but we
1904 // should.
1905 IsExplicitSpecialization = true;
1906 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1907 TemplateId->RAngleLoc));
1908
1909 // Fabricate an empty template parameter list for the invented header.
1910 return TemplateParameterList::Create(Context, SourceLocation(),
1911 SourceLocation(), nullptr, 0,
1912 SourceLocation());
1913 }
1914
1915 return nullptr;
1916 }
1917
1918 // If there were too many template parameter lists, complain about that now.
1919 if (ParamIdx < ParamLists.size() - 1) {
1920 bool HasAnyExplicitSpecHeader = false;
1921 bool AllExplicitSpecHeaders = true;
1922 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1923 if (ParamLists[I]->size() == 0)
1924 HasAnyExplicitSpecHeader = true;
1925 else
1926 AllExplicitSpecHeaders = false;
1927 }
1928
1929 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1930 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1931 : diag::err_template_spec_extra_headers)
1932 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1933 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1934
1935 // If there was a specialization somewhere, such that 'template<>' is
1936 // not required, and there were any 'template<>' headers, note where the
1937 // specialization occurred.
1938 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1939 Diag(ExplicitSpecLoc,
1940 diag::note_explicit_template_spec_does_not_need_header)
1941 << NestedTypes.back();
1942
1943 // We have a template parameter list with no corresponding scope, which
1944 // means that the resulting template declaration can't be instantiated
1945 // properly (we'll end up with dependent nodes when we shouldn't).
1946 if (!AllExplicitSpecHeaders)
1947 Invalid = true;
1948 }
1949
1950 // C++ [temp.expl.spec]p16:
1951 // In an explicit specialization declaration for a member of a class
1952 // template or a member template that ap- pears in namespace scope, the
1953 // member template and some of its enclosing class templates may remain
1954 // unspecialized, except that the declaration shall not explicitly
1955 // specialize a class member template if its en- closing class templates
1956 // are not explicitly specialized as well.
1957 if (ParamLists.back()->size() == 0 &&
1958 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1959 false))
1960 return nullptr;
1961
1962 // Return the last template parameter list, which corresponds to the
1963 // entity being declared.
1964 return ParamLists.back();
1965 }
1966
NoteAllFoundTemplates(TemplateName Name)1967 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1968 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1969 Diag(Template->getLocation(), diag::note_template_declared_here)
1970 << (isa<FunctionTemplateDecl>(Template)
1971 ? 0
1972 : isa<ClassTemplateDecl>(Template)
1973 ? 1
1974 : isa<VarTemplateDecl>(Template)
1975 ? 2
1976 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1977 << Template->getDeclName();
1978 return;
1979 }
1980
1981 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1982 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1983 IEnd = OST->end();
1984 I != IEnd; ++I)
1985 Diag((*I)->getLocation(), diag::note_template_declared_here)
1986 << 0 << (*I)->getDeclName();
1987
1988 return;
1989 }
1990 }
1991
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1992 QualType Sema::CheckTemplateIdType(TemplateName Name,
1993 SourceLocation TemplateLoc,
1994 TemplateArgumentListInfo &TemplateArgs) {
1995 DependentTemplateName *DTN
1996 = Name.getUnderlying().getAsDependentTemplateName();
1997 if (DTN && DTN->isIdentifier())
1998 // When building a template-id where the template-name is dependent,
1999 // assume the template is a type template. Either our assumption is
2000 // correct, or the code is ill-formed and will be diagnosed when the
2001 // dependent name is substituted.
2002 return Context.getDependentTemplateSpecializationType(ETK_None,
2003 DTN->getQualifier(),
2004 DTN->getIdentifier(),
2005 TemplateArgs);
2006
2007 TemplateDecl *Template = Name.getAsTemplateDecl();
2008 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2009 isa<VarTemplateDecl>(Template)) {
2010 // We might have a substituted template template parameter pack. If so,
2011 // build a template specialization type for it.
2012 if (Name.getAsSubstTemplateTemplateParmPack())
2013 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2014
2015 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2016 << Name;
2017 NoteAllFoundTemplates(Name);
2018 return QualType();
2019 }
2020
2021 // Check that the template argument list is well-formed for this
2022 // template.
2023 SmallVector<TemplateArgument, 4> Converted;
2024 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2025 false, Converted))
2026 return QualType();
2027
2028 QualType CanonType;
2029
2030 bool InstantiationDependent = false;
2031 if (TypeAliasTemplateDecl *AliasTemplate =
2032 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2033 // Find the canonical type for this type alias template specialization.
2034 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2035 if (Pattern->isInvalidDecl())
2036 return QualType();
2037
2038 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2039 Converted.data(), Converted.size());
2040
2041 // Only substitute for the innermost template argument list.
2042 MultiLevelTemplateArgumentList TemplateArgLists;
2043 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2044 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2045 for (unsigned I = 0; I < Depth; ++I)
2046 TemplateArgLists.addOuterTemplateArguments(None);
2047
2048 LocalInstantiationScope Scope(*this);
2049 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2050 if (Inst.isInvalid())
2051 return QualType();
2052
2053 CanonType = SubstType(Pattern->getUnderlyingType(),
2054 TemplateArgLists, AliasTemplate->getLocation(),
2055 AliasTemplate->getDeclName());
2056 if (CanonType.isNull())
2057 return QualType();
2058 } else if (Name.isDependent() ||
2059 TemplateSpecializationType::anyDependentTemplateArguments(
2060 TemplateArgs, InstantiationDependent)) {
2061 // This class template specialization is a dependent
2062 // type. Therefore, its canonical type is another class template
2063 // specialization type that contains all of the converted
2064 // arguments in canonical form. This ensures that, e.g., A<T> and
2065 // A<T, T> have identical types when A is declared as:
2066 //
2067 // template<typename T, typename U = T> struct A;
2068 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2069 CanonType = Context.getTemplateSpecializationType(CanonName,
2070 Converted.data(),
2071 Converted.size());
2072
2073 // FIXME: CanonType is not actually the canonical type, and unfortunately
2074 // it is a TemplateSpecializationType that we will never use again.
2075 // In the future, we need to teach getTemplateSpecializationType to only
2076 // build the canonical type and return that to us.
2077 CanonType = Context.getCanonicalType(CanonType);
2078
2079 // This might work out to be a current instantiation, in which
2080 // case the canonical type needs to be the InjectedClassNameType.
2081 //
2082 // TODO: in theory this could be a simple hashtable lookup; most
2083 // changes to CurContext don't change the set of current
2084 // instantiations.
2085 if (isa<ClassTemplateDecl>(Template)) {
2086 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2087 // If we get out to a namespace, we're done.
2088 if (Ctx->isFileContext()) break;
2089
2090 // If this isn't a record, keep looking.
2091 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2092 if (!Record) continue;
2093
2094 // Look for one of the two cases with InjectedClassNameTypes
2095 // and check whether it's the same template.
2096 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2097 !Record->getDescribedClassTemplate())
2098 continue;
2099
2100 // Fetch the injected class name type and check whether its
2101 // injected type is equal to the type we just built.
2102 QualType ICNT = Context.getTypeDeclType(Record);
2103 QualType Injected = cast<InjectedClassNameType>(ICNT)
2104 ->getInjectedSpecializationType();
2105
2106 if (CanonType != Injected->getCanonicalTypeInternal())
2107 continue;
2108
2109 // If so, the canonical type of this TST is the injected
2110 // class name type of the record we just found.
2111 assert(ICNT.isCanonical());
2112 CanonType = ICNT;
2113 break;
2114 }
2115 }
2116 } else if (ClassTemplateDecl *ClassTemplate
2117 = dyn_cast<ClassTemplateDecl>(Template)) {
2118 // Find the class template specialization declaration that
2119 // corresponds to these arguments.
2120 void *InsertPos = nullptr;
2121 ClassTemplateSpecializationDecl *Decl
2122 = ClassTemplate->findSpecialization(Converted, InsertPos);
2123 if (!Decl) {
2124 // This is the first time we have referenced this class template
2125 // specialization. Create the canonical declaration and add it to
2126 // the set of specializations.
2127 Decl = ClassTemplateSpecializationDecl::Create(Context,
2128 ClassTemplate->getTemplatedDecl()->getTagKind(),
2129 ClassTemplate->getDeclContext(),
2130 ClassTemplate->getTemplatedDecl()->getLocStart(),
2131 ClassTemplate->getLocation(),
2132 ClassTemplate,
2133 Converted.data(),
2134 Converted.size(), nullptr);
2135 ClassTemplate->AddSpecialization(Decl, InsertPos);
2136 if (ClassTemplate->isOutOfLine())
2137 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2138 }
2139
2140 // Diagnose uses of this specialization.
2141 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2142
2143 CanonType = Context.getTypeDeclType(Decl);
2144 assert(isa<RecordType>(CanonType) &&
2145 "type of non-dependent specialization is not a RecordType");
2146 }
2147
2148 // Build the fully-sugared type for this class template
2149 // specialization, which refers back to the class template
2150 // specialization we created or found.
2151 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2152 }
2153
2154 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2155 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2156 TemplateTy TemplateD, SourceLocation TemplateLoc,
2157 SourceLocation LAngleLoc,
2158 ASTTemplateArgsPtr TemplateArgsIn,
2159 SourceLocation RAngleLoc,
2160 bool IsCtorOrDtorName) {
2161 if (SS.isInvalid())
2162 return true;
2163
2164 TemplateName Template = TemplateD.get();
2165
2166 // Translate the parser's template argument list in our AST format.
2167 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2168 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2169
2170 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2171 QualType T
2172 = Context.getDependentTemplateSpecializationType(ETK_None,
2173 DTN->getQualifier(),
2174 DTN->getIdentifier(),
2175 TemplateArgs);
2176 // Build type-source information.
2177 TypeLocBuilder TLB;
2178 DependentTemplateSpecializationTypeLoc SpecTL
2179 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2180 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2181 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2182 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2183 SpecTL.setTemplateNameLoc(TemplateLoc);
2184 SpecTL.setLAngleLoc(LAngleLoc);
2185 SpecTL.setRAngleLoc(RAngleLoc);
2186 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2187 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2188 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2189 }
2190
2191 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2192
2193 if (Result.isNull())
2194 return true;
2195
2196 // Build type-source information.
2197 TypeLocBuilder TLB;
2198 TemplateSpecializationTypeLoc SpecTL
2199 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2200 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2201 SpecTL.setTemplateNameLoc(TemplateLoc);
2202 SpecTL.setLAngleLoc(LAngleLoc);
2203 SpecTL.setRAngleLoc(RAngleLoc);
2204 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2205 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2206
2207 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2208 // constructor or destructor name (in such a case, the scope specifier
2209 // will be attached to the enclosing Decl or Expr node).
2210 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2211 // Create an elaborated-type-specifier containing the nested-name-specifier.
2212 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2213 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2214 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2215 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2216 }
2217
2218 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2219 }
2220
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2221 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2222 TypeSpecifierType TagSpec,
2223 SourceLocation TagLoc,
2224 CXXScopeSpec &SS,
2225 SourceLocation TemplateKWLoc,
2226 TemplateTy TemplateD,
2227 SourceLocation TemplateLoc,
2228 SourceLocation LAngleLoc,
2229 ASTTemplateArgsPtr TemplateArgsIn,
2230 SourceLocation RAngleLoc) {
2231 TemplateName Template = TemplateD.get();
2232
2233 // Translate the parser's template argument list in our AST format.
2234 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2235 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2236
2237 // Determine the tag kind
2238 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2239 ElaboratedTypeKeyword Keyword
2240 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2241
2242 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2243 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2244 DTN->getQualifier(),
2245 DTN->getIdentifier(),
2246 TemplateArgs);
2247
2248 // Build type-source information.
2249 TypeLocBuilder TLB;
2250 DependentTemplateSpecializationTypeLoc SpecTL
2251 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2252 SpecTL.setElaboratedKeywordLoc(TagLoc);
2253 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2254 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2255 SpecTL.setTemplateNameLoc(TemplateLoc);
2256 SpecTL.setLAngleLoc(LAngleLoc);
2257 SpecTL.setRAngleLoc(RAngleLoc);
2258 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2259 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2260 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2261 }
2262
2263 if (TypeAliasTemplateDecl *TAT =
2264 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2265 // C++0x [dcl.type.elab]p2:
2266 // If the identifier resolves to a typedef-name or the simple-template-id
2267 // resolves to an alias template specialization, the
2268 // elaborated-type-specifier is ill-formed.
2269 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2270 Diag(TAT->getLocation(), diag::note_declared_at);
2271 }
2272
2273 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2274 if (Result.isNull())
2275 return TypeResult(true);
2276
2277 // Check the tag kind
2278 if (const RecordType *RT = Result->getAs<RecordType>()) {
2279 RecordDecl *D = RT->getDecl();
2280
2281 IdentifierInfo *Id = D->getIdentifier();
2282 assert(Id && "templated class must have an identifier");
2283
2284 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2285 TagLoc, *Id)) {
2286 Diag(TagLoc, diag::err_use_with_wrong_tag)
2287 << Result
2288 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2289 Diag(D->getLocation(), diag::note_previous_use);
2290 }
2291 }
2292
2293 // Provide source-location information for the template specialization.
2294 TypeLocBuilder TLB;
2295 TemplateSpecializationTypeLoc SpecTL
2296 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2297 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2298 SpecTL.setTemplateNameLoc(TemplateLoc);
2299 SpecTL.setLAngleLoc(LAngleLoc);
2300 SpecTL.setRAngleLoc(RAngleLoc);
2301 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2302 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2303
2304 // Construct an elaborated type containing the nested-name-specifier (if any)
2305 // and tag keyword.
2306 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2307 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2308 ElabTL.setElaboratedKeywordLoc(TagLoc);
2309 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2310 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2311 }
2312
2313 static bool CheckTemplatePartialSpecializationArgs(
2314 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2315 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2316
2317 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2318 NamedDecl *PrevDecl,
2319 SourceLocation Loc,
2320 bool IsPartialSpecialization);
2321
2322 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2323
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2324 static bool isTemplateArgumentTemplateParameter(
2325 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2326 switch (Arg.getKind()) {
2327 case TemplateArgument::Null:
2328 case TemplateArgument::NullPtr:
2329 case TemplateArgument::Integral:
2330 case TemplateArgument::Declaration:
2331 case TemplateArgument::Pack:
2332 case TemplateArgument::TemplateExpansion:
2333 return false;
2334
2335 case TemplateArgument::Type: {
2336 QualType Type = Arg.getAsType();
2337 const TemplateTypeParmType *TPT =
2338 Arg.getAsType()->getAs<TemplateTypeParmType>();
2339 return TPT && !Type.hasQualifiers() &&
2340 TPT->getDepth() == Depth && TPT->getIndex() == Index;
2341 }
2342
2343 case TemplateArgument::Expression: {
2344 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2345 if (!DRE || !DRE->getDecl())
2346 return false;
2347 const NonTypeTemplateParmDecl *NTTP =
2348 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2349 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2350 }
2351
2352 case TemplateArgument::Template:
2353 const TemplateTemplateParmDecl *TTP =
2354 dyn_cast_or_null<TemplateTemplateParmDecl>(
2355 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2356 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2357 }
2358 llvm_unreachable("unexpected kind of template argument");
2359 }
2360
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2361 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2362 ArrayRef<TemplateArgument> Args) {
2363 if (Params->size() != Args.size())
2364 return false;
2365
2366 unsigned Depth = Params->getDepth();
2367
2368 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2369 TemplateArgument Arg = Args[I];
2370
2371 // If the parameter is a pack expansion, the argument must be a pack
2372 // whose only element is a pack expansion.
2373 if (Params->getParam(I)->isParameterPack()) {
2374 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2375 !Arg.pack_begin()->isPackExpansion())
2376 return false;
2377 Arg = Arg.pack_begin()->getPackExpansionPattern();
2378 }
2379
2380 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2381 return false;
2382 }
2383
2384 return true;
2385 }
2386
2387 /// Convert the parser's template argument list representation into our form.
2388 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2389 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2390 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2391 TemplateId.RAngleLoc);
2392 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2393 TemplateId.NumArgs);
2394 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2395 return TemplateArgs;
2396 }
2397
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,VarDecl::StorageClass SC,bool IsPartialSpecialization)2398 DeclResult Sema::ActOnVarTemplateSpecialization(
2399 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2400 TemplateParameterList *TemplateParams, VarDecl::StorageClass SC,
2401 bool IsPartialSpecialization) {
2402 // D must be variable template id.
2403 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2404 "Variable template specialization is declared with a template it.");
2405
2406 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2407 TemplateArgumentListInfo TemplateArgs =
2408 makeTemplateArgumentListInfo(*this, *TemplateId);
2409 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2410 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2411 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2412
2413 TemplateName Name = TemplateId->Template.get();
2414
2415 // The template-id must name a variable template.
2416 VarTemplateDecl *VarTemplate =
2417 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2418 if (!VarTemplate) {
2419 NamedDecl *FnTemplate;
2420 if (auto *OTS = Name.getAsOverloadedTemplate())
2421 FnTemplate = *OTS->begin();
2422 else
2423 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2424 if (FnTemplate)
2425 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2426 << FnTemplate->getDeclName();
2427 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2428 << IsPartialSpecialization;
2429 }
2430
2431 // Check for unexpanded parameter packs in any of the template arguments.
2432 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2433 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2434 UPPC_PartialSpecialization))
2435 return true;
2436
2437 // Check that the template argument list is well-formed for this
2438 // template.
2439 SmallVector<TemplateArgument, 4> Converted;
2440 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2441 false, Converted))
2442 return true;
2443
2444 // Check that the type of this variable template specialization
2445 // matches the expected type.
2446 TypeSourceInfo *ExpectedDI;
2447 {
2448 // Do substitution on the type of the declaration
2449 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2450 Converted.data(), Converted.size());
2451 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2452 if (Inst.isInvalid())
2453 return true;
2454 VarDecl *Templated = VarTemplate->getTemplatedDecl();
2455 ExpectedDI =
2456 SubstType(Templated->getTypeSourceInfo(),
2457 MultiLevelTemplateArgumentList(TemplateArgList),
2458 Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2459 }
2460 if (!ExpectedDI)
2461 return true;
2462
2463 // Find the variable template (partial) specialization declaration that
2464 // corresponds to these arguments.
2465 if (IsPartialSpecialization) {
2466 if (CheckTemplatePartialSpecializationArgs(
2467 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2468 TemplateArgs.size(), Converted))
2469 return true;
2470
2471 bool InstantiationDependent;
2472 if (!Name.isDependent() &&
2473 !TemplateSpecializationType::anyDependentTemplateArguments(
2474 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2475 InstantiationDependent)) {
2476 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2477 << VarTemplate->getDeclName();
2478 IsPartialSpecialization = false;
2479 }
2480
2481 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2482 Converted)) {
2483 // C++ [temp.class.spec]p9b3:
2484 //
2485 // -- The argument list of the specialization shall not be identical
2486 // to the implicit argument list of the primary template.
2487 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2488 << /*variable template*/ 1
2489 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2490 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2491 // FIXME: Recover from this by treating the declaration as a redeclaration
2492 // of the primary template.
2493 return true;
2494 }
2495 }
2496
2497 void *InsertPos = nullptr;
2498 VarTemplateSpecializationDecl *PrevDecl = nullptr;
2499
2500 if (IsPartialSpecialization)
2501 // FIXME: Template parameter list matters too
2502 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2503 else
2504 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2505
2506 VarTemplateSpecializationDecl *Specialization = nullptr;
2507
2508 // Check whether we can declare a variable template specialization in
2509 // the current scope.
2510 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2511 TemplateNameLoc,
2512 IsPartialSpecialization))
2513 return true;
2514
2515 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2516 // Since the only prior variable template specialization with these
2517 // arguments was referenced but not declared, reuse that
2518 // declaration node as our own, updating its source location and
2519 // the list of outer template parameters to reflect our new declaration.
2520 Specialization = PrevDecl;
2521 Specialization->setLocation(TemplateNameLoc);
2522 PrevDecl = nullptr;
2523 } else if (IsPartialSpecialization) {
2524 // Create a new class template partial specialization declaration node.
2525 VarTemplatePartialSpecializationDecl *PrevPartial =
2526 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2527 VarTemplatePartialSpecializationDecl *Partial =
2528 VarTemplatePartialSpecializationDecl::Create(
2529 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2530 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2531 Converted.data(), Converted.size(), TemplateArgs);
2532
2533 if (!PrevPartial)
2534 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2535 Specialization = Partial;
2536
2537 // If we are providing an explicit specialization of a member variable
2538 // template specialization, make a note of that.
2539 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2540 PrevPartial->setMemberSpecialization();
2541
2542 // Check that all of the template parameters of the variable template
2543 // partial specialization are deducible from the template
2544 // arguments. If not, this variable template partial specialization
2545 // will never be used.
2546 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2547 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2548 TemplateParams->getDepth(), DeducibleParams);
2549
2550 if (!DeducibleParams.all()) {
2551 unsigned NumNonDeducible =
2552 DeducibleParams.size() - DeducibleParams.count();
2553 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2554 << /*variable template*/ 1 << (NumNonDeducible > 1)
2555 << SourceRange(TemplateNameLoc, RAngleLoc);
2556 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2557 if (!DeducibleParams[I]) {
2558 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2559 if (Param->getDeclName())
2560 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2561 << Param->getDeclName();
2562 else
2563 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2564 << "(anonymous)";
2565 }
2566 }
2567 }
2568 } else {
2569 // Create a new class template specialization declaration node for
2570 // this explicit specialization or friend declaration.
2571 Specialization = VarTemplateSpecializationDecl::Create(
2572 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2573 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2574 Specialization->setTemplateArgsInfo(TemplateArgs);
2575
2576 if (!PrevDecl)
2577 VarTemplate->AddSpecialization(Specialization, InsertPos);
2578 }
2579
2580 // C++ [temp.expl.spec]p6:
2581 // If a template, a member template or the member of a class template is
2582 // explicitly specialized then that specialization shall be declared
2583 // before the first use of that specialization that would cause an implicit
2584 // instantiation to take place, in every translation unit in which such a
2585 // use occurs; no diagnostic is required.
2586 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2587 bool Okay = false;
2588 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2589 // Is there any previous explicit specialization declaration?
2590 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2591 Okay = true;
2592 break;
2593 }
2594 }
2595
2596 if (!Okay) {
2597 SourceRange Range(TemplateNameLoc, RAngleLoc);
2598 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2599 << Name << Range;
2600
2601 Diag(PrevDecl->getPointOfInstantiation(),
2602 diag::note_instantiation_required_here)
2603 << (PrevDecl->getTemplateSpecializationKind() !=
2604 TSK_ImplicitInstantiation);
2605 return true;
2606 }
2607 }
2608
2609 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2610 Specialization->setLexicalDeclContext(CurContext);
2611
2612 // Add the specialization into its lexical context, so that it can
2613 // be seen when iterating through the list of declarations in that
2614 // context. However, specializations are not found by name lookup.
2615 CurContext->addDecl(Specialization);
2616
2617 // Note that this is an explicit specialization.
2618 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2619
2620 if (PrevDecl) {
2621 // Check that this isn't a redefinition of this specialization,
2622 // merging with previous declarations.
2623 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2624 ForRedeclaration);
2625 PrevSpec.addDecl(PrevDecl);
2626 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2627 } else if (Specialization->isStaticDataMember() &&
2628 Specialization->isOutOfLine()) {
2629 Specialization->setAccess(VarTemplate->getAccess());
2630 }
2631
2632 // Link instantiations of static data members back to the template from
2633 // which they were instantiated.
2634 if (Specialization->isStaticDataMember())
2635 Specialization->setInstantiationOfStaticDataMember(
2636 VarTemplate->getTemplatedDecl(),
2637 Specialization->getSpecializationKind());
2638
2639 return Specialization;
2640 }
2641
2642 namespace {
2643 /// \brief A partial specialization whose template arguments have matched
2644 /// a given template-id.
2645 struct PartialSpecMatchResult {
2646 VarTemplatePartialSpecializationDecl *Partial;
2647 TemplateArgumentList *Args;
2648 };
2649 }
2650
2651 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2652 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2653 SourceLocation TemplateNameLoc,
2654 const TemplateArgumentListInfo &TemplateArgs) {
2655 assert(Template && "A variable template id without template?");
2656
2657 // Check that the template argument list is well-formed for this template.
2658 SmallVector<TemplateArgument, 4> Converted;
2659 if (CheckTemplateArgumentList(
2660 Template, TemplateNameLoc,
2661 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2662 Converted))
2663 return true;
2664
2665 // Find the variable template specialization declaration that
2666 // corresponds to these arguments.
2667 void *InsertPos = nullptr;
2668 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2669 Converted, InsertPos))
2670 // If we already have a variable template specialization, return it.
2671 return Spec;
2672
2673 // This is the first time we have referenced this variable template
2674 // specialization. Create the canonical declaration and add it to
2675 // the set of specializations, based on the closest partial specialization
2676 // that it represents. That is,
2677 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2678 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2679 Converted.data(), Converted.size());
2680 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2681 bool AmbiguousPartialSpec = false;
2682 typedef PartialSpecMatchResult MatchResult;
2683 SmallVector<MatchResult, 4> Matched;
2684 SourceLocation PointOfInstantiation = TemplateNameLoc;
2685 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2686
2687 // 1. Attempt to find the closest partial specialization that this
2688 // specializes, if any.
2689 // If any of the template arguments is dependent, then this is probably
2690 // a placeholder for an incomplete declarative context; which must be
2691 // complete by instantiation time. Thus, do not search through the partial
2692 // specializations yet.
2693 // TODO: Unify with InstantiateClassTemplateSpecialization()?
2694 // Perhaps better after unification of DeduceTemplateArguments() and
2695 // getMoreSpecializedPartialSpecialization().
2696 bool InstantiationDependent = false;
2697 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2698 TemplateArgs, InstantiationDependent)) {
2699
2700 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2701 Template->getPartialSpecializations(PartialSpecs);
2702
2703 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2704 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2705 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2706
2707 if (TemplateDeductionResult Result =
2708 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2709 // Store the failed-deduction information for use in diagnostics, later.
2710 // TODO: Actually use the failed-deduction info?
2711 FailedCandidates.addCandidate()
2712 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2713 (void)Result;
2714 } else {
2715 Matched.push_back(PartialSpecMatchResult());
2716 Matched.back().Partial = Partial;
2717 Matched.back().Args = Info.take();
2718 }
2719 }
2720
2721 if (Matched.size() >= 1) {
2722 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2723 if (Matched.size() == 1) {
2724 // -- If exactly one matching specialization is found, the
2725 // instantiation is generated from that specialization.
2726 // We don't need to do anything for this.
2727 } else {
2728 // -- If more than one matching specialization is found, the
2729 // partial order rules (14.5.4.2) are used to determine
2730 // whether one of the specializations is more specialized
2731 // than the others. If none of the specializations is more
2732 // specialized than all of the other matching
2733 // specializations, then the use of the variable template is
2734 // ambiguous and the program is ill-formed.
2735 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2736 PEnd = Matched.end();
2737 P != PEnd; ++P) {
2738 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2739 PointOfInstantiation) ==
2740 P->Partial)
2741 Best = P;
2742 }
2743
2744 // Determine if the best partial specialization is more specialized than
2745 // the others.
2746 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2747 PEnd = Matched.end();
2748 P != PEnd; ++P) {
2749 if (P != Best && getMoreSpecializedPartialSpecialization(
2750 P->Partial, Best->Partial,
2751 PointOfInstantiation) != Best->Partial) {
2752 AmbiguousPartialSpec = true;
2753 break;
2754 }
2755 }
2756 }
2757
2758 // Instantiate using the best variable template partial specialization.
2759 InstantiationPattern = Best->Partial;
2760 InstantiationArgs = Best->Args;
2761 } else {
2762 // -- If no match is found, the instantiation is generated
2763 // from the primary template.
2764 // InstantiationPattern = Template->getTemplatedDecl();
2765 }
2766 }
2767
2768 // 2. Create the canonical declaration.
2769 // Note that we do not instantiate the variable just yet, since
2770 // instantiation is handled in DoMarkVarDeclReferenced().
2771 // FIXME: LateAttrs et al.?
2772 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2773 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2774 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2775 if (!Decl)
2776 return true;
2777
2778 if (AmbiguousPartialSpec) {
2779 // Partial ordering did not produce a clear winner. Complain.
2780 Decl->setInvalidDecl();
2781 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2782 << Decl;
2783
2784 // Print the matching partial specializations.
2785 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2786 PEnd = Matched.end();
2787 P != PEnd; ++P)
2788 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2789 << getTemplateArgumentBindingsText(
2790 P->Partial->getTemplateParameters(), *P->Args);
2791 return true;
2792 }
2793
2794 if (VarTemplatePartialSpecializationDecl *D =
2795 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2796 Decl->setInstantiationOf(D, InstantiationArgs);
2797
2798 assert(Decl && "No variable template specialization?");
2799 return Decl;
2800 }
2801
2802 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2803 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2804 const DeclarationNameInfo &NameInfo,
2805 VarTemplateDecl *Template, SourceLocation TemplateLoc,
2806 const TemplateArgumentListInfo *TemplateArgs) {
2807
2808 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2809 *TemplateArgs);
2810 if (Decl.isInvalid())
2811 return ExprError();
2812
2813 VarDecl *Var = cast<VarDecl>(Decl.get());
2814 if (!Var->getTemplateSpecializationKind())
2815 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2816 NameInfo.getLoc());
2817
2818 // Build an ordinary singleton decl ref.
2819 return BuildDeclarationNameExpr(SS, NameInfo, Var,
2820 /*FoundD=*/nullptr, TemplateArgs);
2821 }
2822
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2823 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2824 SourceLocation TemplateKWLoc,
2825 LookupResult &R,
2826 bool RequiresADL,
2827 const TemplateArgumentListInfo *TemplateArgs) {
2828 // FIXME: Can we do any checking at this point? I guess we could check the
2829 // template arguments that we have against the template name, if the template
2830 // name refers to a single template. That's not a terribly common case,
2831 // though.
2832 // foo<int> could identify a single function unambiguously
2833 // This approach does NOT work, since f<int>(1);
2834 // gets resolved prior to resorting to overload resolution
2835 // i.e., template<class T> void f(double);
2836 // vs template<class T, class U> void f(U);
2837
2838 // These should be filtered out by our callers.
2839 assert(!R.empty() && "empty lookup results when building templateid");
2840 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2841
2842 // In C++1y, check variable template ids.
2843 bool InstantiationDependent;
2844 if (R.getAsSingle<VarTemplateDecl>() &&
2845 !TemplateSpecializationType::anyDependentTemplateArguments(
2846 *TemplateArgs, InstantiationDependent)) {
2847 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2848 R.getAsSingle<VarTemplateDecl>(),
2849 TemplateKWLoc, TemplateArgs);
2850 }
2851
2852 // We don't want lookup warnings at this point.
2853 R.suppressDiagnostics();
2854
2855 UnresolvedLookupExpr *ULE
2856 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2857 SS.getWithLocInContext(Context),
2858 TemplateKWLoc,
2859 R.getLookupNameInfo(),
2860 RequiresADL, TemplateArgs,
2861 R.begin(), R.end());
2862
2863 return ULE;
2864 }
2865
2866 // We actually only call this from template instantiation.
2867 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2868 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2869 SourceLocation TemplateKWLoc,
2870 const DeclarationNameInfo &NameInfo,
2871 const TemplateArgumentListInfo *TemplateArgs) {
2872
2873 assert(TemplateArgs || TemplateKWLoc.isValid());
2874 DeclContext *DC;
2875 if (!(DC = computeDeclContext(SS, false)) ||
2876 DC->isDependentContext() ||
2877 RequireCompleteDeclContext(SS, DC))
2878 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2879
2880 bool MemberOfUnknownSpecialization;
2881 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2882 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2883 MemberOfUnknownSpecialization);
2884
2885 if (R.isAmbiguous())
2886 return ExprError();
2887
2888 if (R.empty()) {
2889 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2890 << NameInfo.getName() << SS.getRange();
2891 return ExprError();
2892 }
2893
2894 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2895 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2896 << SS.getScopeRep()
2897 << NameInfo.getName().getAsString() << SS.getRange();
2898 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2899 return ExprError();
2900 }
2901
2902 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2903 }
2904
2905 /// \brief Form a dependent template name.
2906 ///
2907 /// This action forms a dependent template name given the template
2908 /// name and its (presumably dependent) scope specifier. For
2909 /// example, given "MetaFun::template apply", the scope specifier \p
2910 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2911 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2912 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2913 CXXScopeSpec &SS,
2914 SourceLocation TemplateKWLoc,
2915 UnqualifiedId &Name,
2916 ParsedType ObjectType,
2917 bool EnteringContext,
2918 TemplateTy &Result) {
2919 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2920 Diag(TemplateKWLoc,
2921 getLangOpts().CPlusPlus11 ?
2922 diag::warn_cxx98_compat_template_outside_of_template :
2923 diag::ext_template_outside_of_template)
2924 << FixItHint::CreateRemoval(TemplateKWLoc);
2925
2926 DeclContext *LookupCtx = nullptr;
2927 if (SS.isSet())
2928 LookupCtx = computeDeclContext(SS, EnteringContext);
2929 if (!LookupCtx && ObjectType)
2930 LookupCtx = computeDeclContext(ObjectType.get());
2931 if (LookupCtx) {
2932 // C++0x [temp.names]p5:
2933 // If a name prefixed by the keyword template is not the name of
2934 // a template, the program is ill-formed. [Note: the keyword
2935 // template may not be applied to non-template members of class
2936 // templates. -end note ] [ Note: as is the case with the
2937 // typename prefix, the template prefix is allowed in cases
2938 // where it is not strictly necessary; i.e., when the
2939 // nested-name-specifier or the expression on the left of the ->
2940 // or . is not dependent on a template-parameter, or the use
2941 // does not appear in the scope of a template. -end note]
2942 //
2943 // Note: C++03 was more strict here, because it banned the use of
2944 // the "template" keyword prior to a template-name that was not a
2945 // dependent name. C++ DR468 relaxed this requirement (the
2946 // "template" keyword is now permitted). We follow the C++0x
2947 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2948 bool MemberOfUnknownSpecialization;
2949 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2950 ObjectType, EnteringContext, Result,
2951 MemberOfUnknownSpecialization);
2952 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2953 isa<CXXRecordDecl>(LookupCtx) &&
2954 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2955 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2956 // This is a dependent template. Handle it below.
2957 } else if (TNK == TNK_Non_template) {
2958 Diag(Name.getLocStart(),
2959 diag::err_template_kw_refers_to_non_template)
2960 << GetNameFromUnqualifiedId(Name).getName()
2961 << Name.getSourceRange()
2962 << TemplateKWLoc;
2963 return TNK_Non_template;
2964 } else {
2965 // We found something; return it.
2966 return TNK;
2967 }
2968 }
2969
2970 NestedNameSpecifier *Qualifier = SS.getScopeRep();
2971
2972 switch (Name.getKind()) {
2973 case UnqualifiedId::IK_Identifier:
2974 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2975 Name.Identifier));
2976 return TNK_Dependent_template_name;
2977
2978 case UnqualifiedId::IK_OperatorFunctionId:
2979 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2980 Name.OperatorFunctionId.Operator));
2981 return TNK_Function_template;
2982
2983 case UnqualifiedId::IK_LiteralOperatorId:
2984 llvm_unreachable("literal operator id cannot have a dependent scope");
2985
2986 default:
2987 break;
2988 }
2989
2990 Diag(Name.getLocStart(),
2991 diag::err_template_kw_refers_to_non_template)
2992 << GetNameFromUnqualifiedId(Name).getName()
2993 << Name.getSourceRange()
2994 << TemplateKWLoc;
2995 return TNK_Non_template;
2996 }
2997
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2998 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2999 TemplateArgumentLoc &AL,
3000 SmallVectorImpl<TemplateArgument> &Converted) {
3001 const TemplateArgument &Arg = AL.getArgument();
3002 QualType ArgType;
3003 TypeSourceInfo *TSI = nullptr;
3004
3005 // Check template type parameter.
3006 switch(Arg.getKind()) {
3007 case TemplateArgument::Type:
3008 // C++ [temp.arg.type]p1:
3009 // A template-argument for a template-parameter which is a
3010 // type shall be a type-id.
3011 ArgType = Arg.getAsType();
3012 TSI = AL.getTypeSourceInfo();
3013 break;
3014 case TemplateArgument::Template: {
3015 // We have a template type parameter but the template argument
3016 // is a template without any arguments.
3017 SourceRange SR = AL.getSourceRange();
3018 TemplateName Name = Arg.getAsTemplate();
3019 Diag(SR.getBegin(), diag::err_template_missing_args)
3020 << Name << SR;
3021 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3022 Diag(Decl->getLocation(), diag::note_template_decl_here);
3023
3024 return true;
3025 }
3026 case TemplateArgument::Expression: {
3027 // We have a template type parameter but the template argument is an
3028 // expression; see if maybe it is missing the "typename" keyword.
3029 CXXScopeSpec SS;
3030 DeclarationNameInfo NameInfo;
3031
3032 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3033 SS.Adopt(ArgExpr->getQualifierLoc());
3034 NameInfo = ArgExpr->getNameInfo();
3035 } else if (DependentScopeDeclRefExpr *ArgExpr =
3036 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3037 SS.Adopt(ArgExpr->getQualifierLoc());
3038 NameInfo = ArgExpr->getNameInfo();
3039 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3040 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3041 if (ArgExpr->isImplicitAccess()) {
3042 SS.Adopt(ArgExpr->getQualifierLoc());
3043 NameInfo = ArgExpr->getMemberNameInfo();
3044 }
3045 }
3046
3047 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3048 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3049 LookupParsedName(Result, CurScope, &SS);
3050
3051 if (Result.getAsSingle<TypeDecl>() ||
3052 Result.getResultKind() ==
3053 LookupResult::NotFoundInCurrentInstantiation) {
3054 // Suggest that the user add 'typename' before the NNS.
3055 SourceLocation Loc = AL.getSourceRange().getBegin();
3056 Diag(Loc, getLangOpts().MSVCCompat
3057 ? diag::ext_ms_template_type_arg_missing_typename
3058 : diag::err_template_arg_must_be_type_suggest)
3059 << FixItHint::CreateInsertion(Loc, "typename ");
3060 Diag(Param->getLocation(), diag::note_template_param_here);
3061
3062 // Recover by synthesizing a type using the location information that we
3063 // already have.
3064 ArgType =
3065 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3066 TypeLocBuilder TLB;
3067 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3068 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3069 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3070 TL.setNameLoc(NameInfo.getLoc());
3071 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3072
3073 // Overwrite our input TemplateArgumentLoc so that we can recover
3074 // properly.
3075 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3076 TemplateArgumentLocInfo(TSI));
3077
3078 break;
3079 }
3080 }
3081 // fallthrough
3082 }
3083 default: {
3084 // We have a template type parameter but the template argument
3085 // is not a type.
3086 SourceRange SR = AL.getSourceRange();
3087 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3088 Diag(Param->getLocation(), diag::note_template_param_here);
3089
3090 return true;
3091 }
3092 }
3093
3094 if (CheckTemplateArgument(Param, TSI))
3095 return true;
3096
3097 // Add the converted template type argument.
3098 ArgType = Context.getCanonicalType(ArgType);
3099
3100 // Objective-C ARC:
3101 // If an explicitly-specified template argument type is a lifetime type
3102 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3103 if (getLangOpts().ObjCAutoRefCount &&
3104 ArgType->isObjCLifetimeType() &&
3105 !ArgType.getObjCLifetime()) {
3106 Qualifiers Qs;
3107 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3108 ArgType = Context.getQualifiedType(ArgType, Qs);
3109 }
3110
3111 Converted.push_back(TemplateArgument(ArgType));
3112 return false;
3113 }
3114
3115 /// \brief Substitute template arguments into the default template argument for
3116 /// the given template type parameter.
3117 ///
3118 /// \param SemaRef the semantic analysis object for which we are performing
3119 /// the substitution.
3120 ///
3121 /// \param Template the template that we are synthesizing template arguments
3122 /// for.
3123 ///
3124 /// \param TemplateLoc the location of the template name that started the
3125 /// template-id we are checking.
3126 ///
3127 /// \param RAngleLoc the location of the right angle bracket ('>') that
3128 /// terminates the template-id.
3129 ///
3130 /// \param Param the template template parameter whose default we are
3131 /// substituting into.
3132 ///
3133 /// \param Converted the list of template arguments provided for template
3134 /// parameters that precede \p Param in the template parameter list.
3135 /// \returns the substituted template argument, or NULL if an error occurred.
3136 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3137 SubstDefaultTemplateArgument(Sema &SemaRef,
3138 TemplateDecl *Template,
3139 SourceLocation TemplateLoc,
3140 SourceLocation RAngleLoc,
3141 TemplateTypeParmDecl *Param,
3142 SmallVectorImpl<TemplateArgument> &Converted) {
3143 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3144
3145 // If the argument type is dependent, instantiate it now based
3146 // on the previously-computed template arguments.
3147 if (ArgType->getType()->isDependentType()) {
3148 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3149 Template, Converted,
3150 SourceRange(TemplateLoc, RAngleLoc));
3151 if (Inst.isInvalid())
3152 return nullptr;
3153
3154 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3155 Converted.data(), Converted.size());
3156
3157 // Only substitute for the innermost template argument list.
3158 MultiLevelTemplateArgumentList TemplateArgLists;
3159 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3160 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3161 TemplateArgLists.addOuterTemplateArguments(None);
3162
3163 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3164 ArgType =
3165 SemaRef.SubstType(ArgType, TemplateArgLists,
3166 Param->getDefaultArgumentLoc(), Param->getDeclName());
3167 }
3168
3169 return ArgType;
3170 }
3171
3172 /// \brief Substitute template arguments into the default template argument for
3173 /// the given non-type template parameter.
3174 ///
3175 /// \param SemaRef the semantic analysis object for which we are performing
3176 /// the substitution.
3177 ///
3178 /// \param Template the template that we are synthesizing template arguments
3179 /// for.
3180 ///
3181 /// \param TemplateLoc the location of the template name that started the
3182 /// template-id we are checking.
3183 ///
3184 /// \param RAngleLoc the location of the right angle bracket ('>') that
3185 /// terminates the template-id.
3186 ///
3187 /// \param Param the non-type template parameter whose default we are
3188 /// substituting into.
3189 ///
3190 /// \param Converted the list of template arguments provided for template
3191 /// parameters that precede \p Param in the template parameter list.
3192 ///
3193 /// \returns the substituted template argument, or NULL if an error occurred.
3194 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3195 SubstDefaultTemplateArgument(Sema &SemaRef,
3196 TemplateDecl *Template,
3197 SourceLocation TemplateLoc,
3198 SourceLocation RAngleLoc,
3199 NonTypeTemplateParmDecl *Param,
3200 SmallVectorImpl<TemplateArgument> &Converted) {
3201 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3202 Template, Converted,
3203 SourceRange(TemplateLoc, RAngleLoc));
3204 if (Inst.isInvalid())
3205 return ExprError();
3206
3207 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3208 Converted.data(), Converted.size());
3209
3210 // Only substitute for the innermost template argument list.
3211 MultiLevelTemplateArgumentList TemplateArgLists;
3212 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3213 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3214 TemplateArgLists.addOuterTemplateArguments(None);
3215
3216 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3217 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3218 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3219 }
3220
3221 /// \brief Substitute template arguments into the default template argument for
3222 /// the given template template parameter.
3223 ///
3224 /// \param SemaRef the semantic analysis object for which we are performing
3225 /// the substitution.
3226 ///
3227 /// \param Template the template that we are synthesizing template arguments
3228 /// for.
3229 ///
3230 /// \param TemplateLoc the location of the template name that started the
3231 /// template-id we are checking.
3232 ///
3233 /// \param RAngleLoc the location of the right angle bracket ('>') that
3234 /// terminates the template-id.
3235 ///
3236 /// \param Param the template template parameter whose default we are
3237 /// substituting into.
3238 ///
3239 /// \param Converted the list of template arguments provided for template
3240 /// parameters that precede \p Param in the template parameter list.
3241 ///
3242 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3243 /// source-location information) that precedes the template name.
3244 ///
3245 /// \returns the substituted template argument, or NULL if an error occurred.
3246 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3247 SubstDefaultTemplateArgument(Sema &SemaRef,
3248 TemplateDecl *Template,
3249 SourceLocation TemplateLoc,
3250 SourceLocation RAngleLoc,
3251 TemplateTemplateParmDecl *Param,
3252 SmallVectorImpl<TemplateArgument> &Converted,
3253 NestedNameSpecifierLoc &QualifierLoc) {
3254 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3255 SourceRange(TemplateLoc, RAngleLoc));
3256 if (Inst.isInvalid())
3257 return TemplateName();
3258
3259 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3260 Converted.data(), Converted.size());
3261
3262 // Only substitute for the innermost template argument list.
3263 MultiLevelTemplateArgumentList TemplateArgLists;
3264 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3265 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3266 TemplateArgLists.addOuterTemplateArguments(None);
3267
3268 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3269 // Substitute into the nested-name-specifier first,
3270 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3271 if (QualifierLoc) {
3272 QualifierLoc =
3273 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3274 if (!QualifierLoc)
3275 return TemplateName();
3276 }
3277
3278 return SemaRef.SubstTemplateName(
3279 QualifierLoc,
3280 Param->getDefaultArgument().getArgument().getAsTemplate(),
3281 Param->getDefaultArgument().getTemplateNameLoc(),
3282 TemplateArgLists);
3283 }
3284
3285 /// \brief If the given template parameter has a default template
3286 /// argument, substitute into that default template argument and
3287 /// return the corresponding template argument.
3288 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3289 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3290 SourceLocation TemplateLoc,
3291 SourceLocation RAngleLoc,
3292 Decl *Param,
3293 SmallVectorImpl<TemplateArgument>
3294 &Converted,
3295 bool &HasDefaultArg) {
3296 HasDefaultArg = false;
3297
3298 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3299 if (!TypeParm->hasDefaultArgument())
3300 return TemplateArgumentLoc();
3301
3302 HasDefaultArg = true;
3303 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3304 TemplateLoc,
3305 RAngleLoc,
3306 TypeParm,
3307 Converted);
3308 if (DI)
3309 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3310
3311 return TemplateArgumentLoc();
3312 }
3313
3314 if (NonTypeTemplateParmDecl *NonTypeParm
3315 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3316 if (!NonTypeParm->hasDefaultArgument())
3317 return TemplateArgumentLoc();
3318
3319 HasDefaultArg = true;
3320 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3321 TemplateLoc,
3322 RAngleLoc,
3323 NonTypeParm,
3324 Converted);
3325 if (Arg.isInvalid())
3326 return TemplateArgumentLoc();
3327
3328 Expr *ArgE = Arg.getAs<Expr>();
3329 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3330 }
3331
3332 TemplateTemplateParmDecl *TempTempParm
3333 = cast<TemplateTemplateParmDecl>(Param);
3334 if (!TempTempParm->hasDefaultArgument())
3335 return TemplateArgumentLoc();
3336
3337 HasDefaultArg = true;
3338 NestedNameSpecifierLoc QualifierLoc;
3339 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3340 TemplateLoc,
3341 RAngleLoc,
3342 TempTempParm,
3343 Converted,
3344 QualifierLoc);
3345 if (TName.isNull())
3346 return TemplateArgumentLoc();
3347
3348 return TemplateArgumentLoc(TemplateArgument(TName),
3349 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3350 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3351 }
3352
3353 /// \brief Check that the given template argument corresponds to the given
3354 /// template parameter.
3355 ///
3356 /// \param Param The template parameter against which the argument will be
3357 /// checked.
3358 ///
3359 /// \param Arg The template argument.
3360 ///
3361 /// \param Template The template in which the template argument resides.
3362 ///
3363 /// \param TemplateLoc The location of the template name for the template
3364 /// whose argument list we're matching.
3365 ///
3366 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3367 /// the template argument list.
3368 ///
3369 /// \param ArgumentPackIndex The index into the argument pack where this
3370 /// argument will be placed. Only valid if the parameter is a parameter pack.
3371 ///
3372 /// \param Converted The checked, converted argument will be added to the
3373 /// end of this small vector.
3374 ///
3375 /// \param CTAK Describes how we arrived at this particular template argument:
3376 /// explicitly written, deduced, etc.
3377 ///
3378 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3379 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3380 TemplateArgumentLoc &Arg,
3381 NamedDecl *Template,
3382 SourceLocation TemplateLoc,
3383 SourceLocation RAngleLoc,
3384 unsigned ArgumentPackIndex,
3385 SmallVectorImpl<TemplateArgument> &Converted,
3386 CheckTemplateArgumentKind CTAK) {
3387 // Check template type parameters.
3388 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3389 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3390
3391 // Check non-type template parameters.
3392 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3393 // Do substitution on the type of the non-type template parameter
3394 // with the template arguments we've seen thus far. But if the
3395 // template has a dependent context then we cannot substitute yet.
3396 QualType NTTPType = NTTP->getType();
3397 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3398 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3399
3400 if (NTTPType->isDependentType() &&
3401 !isa<TemplateTemplateParmDecl>(Template) &&
3402 !Template->getDeclContext()->isDependentContext()) {
3403 // Do substitution on the type of the non-type template parameter.
3404 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3405 NTTP, Converted,
3406 SourceRange(TemplateLoc, RAngleLoc));
3407 if (Inst.isInvalid())
3408 return true;
3409
3410 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3411 Converted.data(), Converted.size());
3412 NTTPType = SubstType(NTTPType,
3413 MultiLevelTemplateArgumentList(TemplateArgs),
3414 NTTP->getLocation(),
3415 NTTP->getDeclName());
3416 // If that worked, check the non-type template parameter type
3417 // for validity.
3418 if (!NTTPType.isNull())
3419 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3420 NTTP->getLocation());
3421 if (NTTPType.isNull())
3422 return true;
3423 }
3424
3425 switch (Arg.getArgument().getKind()) {
3426 case TemplateArgument::Null:
3427 llvm_unreachable("Should never see a NULL template argument here");
3428
3429 case TemplateArgument::Expression: {
3430 TemplateArgument Result;
3431 ExprResult Res =
3432 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3433 Result, CTAK);
3434 if (Res.isInvalid())
3435 return true;
3436
3437 Converted.push_back(Result);
3438 break;
3439 }
3440
3441 case TemplateArgument::Declaration:
3442 case TemplateArgument::Integral:
3443 case TemplateArgument::NullPtr:
3444 // We've already checked this template argument, so just copy
3445 // it to the list of converted arguments.
3446 Converted.push_back(Arg.getArgument());
3447 break;
3448
3449 case TemplateArgument::Template:
3450 case TemplateArgument::TemplateExpansion:
3451 // We were given a template template argument. It may not be ill-formed;
3452 // see below.
3453 if (DependentTemplateName *DTN
3454 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3455 .getAsDependentTemplateName()) {
3456 // We have a template argument such as \c T::template X, which we
3457 // parsed as a template template argument. However, since we now
3458 // know that we need a non-type template argument, convert this
3459 // template name into an expression.
3460
3461 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3462 Arg.getTemplateNameLoc());
3463
3464 CXXScopeSpec SS;
3465 SS.Adopt(Arg.getTemplateQualifierLoc());
3466 // FIXME: the template-template arg was a DependentTemplateName,
3467 // so it was provided with a template keyword. However, its source
3468 // location is not stored in the template argument structure.
3469 SourceLocation TemplateKWLoc;
3470 ExprResult E = DependentScopeDeclRefExpr::Create(
3471 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3472 nullptr);
3473
3474 // If we parsed the template argument as a pack expansion, create a
3475 // pack expansion expression.
3476 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3477 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3478 if (E.isInvalid())
3479 return true;
3480 }
3481
3482 TemplateArgument Result;
3483 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3484 if (E.isInvalid())
3485 return true;
3486
3487 Converted.push_back(Result);
3488 break;
3489 }
3490
3491 // We have a template argument that actually does refer to a class
3492 // template, alias template, or template template parameter, and
3493 // therefore cannot be a non-type template argument.
3494 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3495 << Arg.getSourceRange();
3496
3497 Diag(Param->getLocation(), diag::note_template_param_here);
3498 return true;
3499
3500 case TemplateArgument::Type: {
3501 // We have a non-type template parameter but the template
3502 // argument is a type.
3503
3504 // C++ [temp.arg]p2:
3505 // In a template-argument, an ambiguity between a type-id and
3506 // an expression is resolved to a type-id, regardless of the
3507 // form of the corresponding template-parameter.
3508 //
3509 // We warn specifically about this case, since it can be rather
3510 // confusing for users.
3511 QualType T = Arg.getArgument().getAsType();
3512 SourceRange SR = Arg.getSourceRange();
3513 if (T->isFunctionType())
3514 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3515 else
3516 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3517 Diag(Param->getLocation(), diag::note_template_param_here);
3518 return true;
3519 }
3520
3521 case TemplateArgument::Pack:
3522 llvm_unreachable("Caller must expand template argument packs");
3523 }
3524
3525 return false;
3526 }
3527
3528
3529 // Check template template parameters.
3530 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3531
3532 // Substitute into the template parameter list of the template
3533 // template parameter, since previously-supplied template arguments
3534 // may appear within the template template parameter.
3535 {
3536 // Set up a template instantiation context.
3537 LocalInstantiationScope Scope(*this);
3538 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3539 TempParm, Converted,
3540 SourceRange(TemplateLoc, RAngleLoc));
3541 if (Inst.isInvalid())
3542 return true;
3543
3544 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3545 Converted.data(), Converted.size());
3546 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3547 SubstDecl(TempParm, CurContext,
3548 MultiLevelTemplateArgumentList(TemplateArgs)));
3549 if (!TempParm)
3550 return true;
3551 }
3552
3553 switch (Arg.getArgument().getKind()) {
3554 case TemplateArgument::Null:
3555 llvm_unreachable("Should never see a NULL template argument here");
3556
3557 case TemplateArgument::Template:
3558 case TemplateArgument::TemplateExpansion:
3559 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3560 return true;
3561
3562 Converted.push_back(Arg.getArgument());
3563 break;
3564
3565 case TemplateArgument::Expression:
3566 case TemplateArgument::Type:
3567 // We have a template template parameter but the template
3568 // argument does not refer to a template.
3569 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3570 << getLangOpts().CPlusPlus11;
3571 return true;
3572
3573 case TemplateArgument::Declaration:
3574 llvm_unreachable("Declaration argument with template template parameter");
3575 case TemplateArgument::Integral:
3576 llvm_unreachable("Integral argument with template template parameter");
3577 case TemplateArgument::NullPtr:
3578 llvm_unreachable("Null pointer argument with template template parameter");
3579
3580 case TemplateArgument::Pack:
3581 llvm_unreachable("Caller must expand template argument packs");
3582 }
3583
3584 return false;
3585 }
3586
3587 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3588 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3589 SourceLocation TemplateLoc,
3590 TemplateArgumentListInfo &TemplateArgs) {
3591 TemplateParameterList *Params = Template->getTemplateParameters();
3592 unsigned NumParams = Params->size();
3593 unsigned NumArgs = TemplateArgs.size();
3594
3595 SourceRange Range;
3596 if (NumArgs > NumParams)
3597 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3598 TemplateArgs.getRAngleLoc());
3599 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3600 << (NumArgs > NumParams)
3601 << (isa<ClassTemplateDecl>(Template)? 0 :
3602 isa<FunctionTemplateDecl>(Template)? 1 :
3603 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3604 << Template << Range;
3605 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3606 << Params->getSourceRange();
3607 return true;
3608 }
3609
3610 /// \brief Check whether the template parameter is a pack expansion, and if so,
3611 /// determine the number of parameters produced by that expansion. For instance:
3612 ///
3613 /// \code
3614 /// template<typename ...Ts> struct A {
3615 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3616 /// };
3617 /// \endcode
3618 ///
3619 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3620 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3621 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3622 if (NonTypeTemplateParmDecl *NTTP
3623 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3624 if (NTTP->isExpandedParameterPack())
3625 return NTTP->getNumExpansionTypes();
3626 }
3627
3628 if (TemplateTemplateParmDecl *TTP
3629 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3630 if (TTP->isExpandedParameterPack())
3631 return TTP->getNumExpansionTemplateParameters();
3632 }
3633
3634 return None;
3635 }
3636
3637 /// \brief Check that the given template argument list is well-formed
3638 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3639 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3640 SourceLocation TemplateLoc,
3641 TemplateArgumentListInfo &TemplateArgs,
3642 bool PartialTemplateArgs,
3643 SmallVectorImpl<TemplateArgument> &Converted) {
3644 TemplateParameterList *Params = Template->getTemplateParameters();
3645
3646 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3647
3648 // C++ [temp.arg]p1:
3649 // [...] The type and form of each template-argument specified in
3650 // a template-id shall match the type and form specified for the
3651 // corresponding parameter declared by the template in its
3652 // template-parameter-list.
3653 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3654 SmallVector<TemplateArgument, 2> ArgumentPack;
3655 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3656 LocalInstantiationScope InstScope(*this, true);
3657 for (TemplateParameterList::iterator Param = Params->begin(),
3658 ParamEnd = Params->end();
3659 Param != ParamEnd; /* increment in loop */) {
3660 // If we have an expanded parameter pack, make sure we don't have too
3661 // many arguments.
3662 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3663 if (*Expansions == ArgumentPack.size()) {
3664 // We're done with this parameter pack. Pack up its arguments and add
3665 // them to the list.
3666 Converted.push_back(
3667 TemplateArgument::CreatePackCopy(Context,
3668 ArgumentPack.data(),
3669 ArgumentPack.size()));
3670 ArgumentPack.clear();
3671
3672 // This argument is assigned to the next parameter.
3673 ++Param;
3674 continue;
3675 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3676 // Not enough arguments for this parameter pack.
3677 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3678 << false
3679 << (isa<ClassTemplateDecl>(Template)? 0 :
3680 isa<FunctionTemplateDecl>(Template)? 1 :
3681 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3682 << Template;
3683 Diag(Template->getLocation(), diag::note_template_decl_here)
3684 << Params->getSourceRange();
3685 return true;
3686 }
3687 }
3688
3689 if (ArgIdx < NumArgs) {
3690 // Check the template argument we were given.
3691 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3692 TemplateLoc, RAngleLoc,
3693 ArgumentPack.size(), Converted))
3694 return true;
3695
3696 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion() &&
3697 isa<TypeAliasTemplateDecl>(Template) &&
3698 !(Param + 1 == ParamEnd && (*Param)->isTemplateParameterPack() &&
3699 !getExpandedPackSize(*Param))) {
3700 // Core issue 1430: we have a pack expansion as an argument to an
3701 // alias template, and it's not part of a final parameter pack. This
3702 // can't be canonicalized, so reject it now.
3703 Diag(TemplateArgs[ArgIdx].getLocation(),
3704 diag::err_alias_template_expansion_into_fixed_list)
3705 << TemplateArgs[ArgIdx].getSourceRange();
3706 Diag((*Param)->getLocation(), diag::note_template_param_here);
3707 return true;
3708 }
3709
3710 // We're now done with this argument.
3711 ++ArgIdx;
3712
3713 if ((*Param)->isTemplateParameterPack()) {
3714 // The template parameter was a template parameter pack, so take the
3715 // deduced argument and place it on the argument pack. Note that we
3716 // stay on the same template parameter so that we can deduce more
3717 // arguments.
3718 ArgumentPack.push_back(Converted.pop_back_val());
3719 } else {
3720 // Move to the next template parameter.
3721 ++Param;
3722 }
3723
3724 // If we just saw a pack expansion, then directly convert the remaining
3725 // arguments, because we don't know what parameters they'll match up
3726 // with.
3727 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3728 bool InFinalParameterPack = Param != ParamEnd &&
3729 Param + 1 == ParamEnd &&
3730 (*Param)->isTemplateParameterPack() &&
3731 !getExpandedPackSize(*Param);
3732
3733 if (!InFinalParameterPack && !ArgumentPack.empty()) {
3734 // If we were part way through filling in an expanded parameter pack,
3735 // fall back to just producing individual arguments.
3736 Converted.insert(Converted.end(),
3737 ArgumentPack.begin(), ArgumentPack.end());
3738 ArgumentPack.clear();
3739 }
3740
3741 while (ArgIdx < NumArgs) {
3742 if (InFinalParameterPack)
3743 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3744 else
3745 Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3746 ++ArgIdx;
3747 }
3748
3749 // Push the argument pack onto the list of converted arguments.
3750 if (InFinalParameterPack) {
3751 Converted.push_back(
3752 TemplateArgument::CreatePackCopy(Context,
3753 ArgumentPack.data(),
3754 ArgumentPack.size()));
3755 ArgumentPack.clear();
3756 }
3757
3758 return false;
3759 }
3760
3761 continue;
3762 }
3763
3764 // If we're checking a partial template argument list, we're done.
3765 if (PartialTemplateArgs) {
3766 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3767 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3768 ArgumentPack.data(),
3769 ArgumentPack.size()));
3770
3771 return false;
3772 }
3773
3774 // If we have a template parameter pack with no more corresponding
3775 // arguments, just break out now and we'll fill in the argument pack below.
3776 if ((*Param)->isTemplateParameterPack()) {
3777 assert(!getExpandedPackSize(*Param) &&
3778 "Should have dealt with this already");
3779
3780 // A non-expanded parameter pack before the end of the parameter list
3781 // only occurs for an ill-formed template parameter list, unless we've
3782 // got a partial argument list for a function template, so just bail out.
3783 if (Param + 1 != ParamEnd)
3784 return true;
3785
3786 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3787 ArgumentPack.data(),
3788 ArgumentPack.size()));
3789 ArgumentPack.clear();
3790
3791 ++Param;
3792 continue;
3793 }
3794
3795 // Check whether we have a default argument.
3796 TemplateArgumentLoc Arg;
3797
3798 // Retrieve the default template argument from the template
3799 // parameter. For each kind of template parameter, we substitute the
3800 // template arguments provided thus far and any "outer" template arguments
3801 // (when the template parameter was part of a nested template) into
3802 // the default argument.
3803 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3804 if (!TTP->hasDefaultArgument())
3805 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3806 TemplateArgs);
3807
3808 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3809 Template,
3810 TemplateLoc,
3811 RAngleLoc,
3812 TTP,
3813 Converted);
3814 if (!ArgType)
3815 return true;
3816
3817 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3818 ArgType);
3819 } else if (NonTypeTemplateParmDecl *NTTP
3820 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3821 if (!NTTP->hasDefaultArgument())
3822 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3823 TemplateArgs);
3824
3825 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3826 TemplateLoc,
3827 RAngleLoc,
3828 NTTP,
3829 Converted);
3830 if (E.isInvalid())
3831 return true;
3832
3833 Expr *Ex = E.getAs<Expr>();
3834 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3835 } else {
3836 TemplateTemplateParmDecl *TempParm
3837 = cast<TemplateTemplateParmDecl>(*Param);
3838
3839 if (!TempParm->hasDefaultArgument())
3840 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3841 TemplateArgs);
3842
3843 NestedNameSpecifierLoc QualifierLoc;
3844 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3845 TemplateLoc,
3846 RAngleLoc,
3847 TempParm,
3848 Converted,
3849 QualifierLoc);
3850 if (Name.isNull())
3851 return true;
3852
3853 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3854 TempParm->getDefaultArgument().getTemplateNameLoc());
3855 }
3856
3857 // Introduce an instantiation record that describes where we are using
3858 // the default template argument.
3859 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3860 SourceRange(TemplateLoc, RAngleLoc));
3861 if (Inst.isInvalid())
3862 return true;
3863
3864 // Check the default template argument.
3865 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3866 RAngleLoc, 0, Converted))
3867 return true;
3868
3869 // Core issue 150 (assumed resolution): if this is a template template
3870 // parameter, keep track of the default template arguments from the
3871 // template definition.
3872 if (isTemplateTemplateParameter)
3873 TemplateArgs.addArgument(Arg);
3874
3875 // Move to the next template parameter and argument.
3876 ++Param;
3877 ++ArgIdx;
3878 }
3879
3880 // If we're performing a partial argument substitution, allow any trailing
3881 // pack expansions; they might be empty. This can happen even if
3882 // PartialTemplateArgs is false (the list of arguments is complete but
3883 // still dependent).
3884 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3885 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3886 while (ArgIdx < NumArgs &&
3887 TemplateArgs[ArgIdx].getArgument().isPackExpansion())
3888 Converted.push_back(TemplateArgs[ArgIdx++].getArgument());
3889 }
3890
3891 // If we have any leftover arguments, then there were too many arguments.
3892 // Complain and fail.
3893 if (ArgIdx < NumArgs)
3894 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3895
3896 return false;
3897 }
3898
3899 namespace {
3900 class UnnamedLocalNoLinkageFinder
3901 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3902 {
3903 Sema &S;
3904 SourceRange SR;
3905
3906 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3907
3908 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3909 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3910
Visit(QualType T)3911 bool Visit(QualType T) {
3912 return inherited::Visit(T.getTypePtr());
3913 }
3914
3915 #define TYPE(Class, Parent) \
3916 bool Visit##Class##Type(const Class##Type *);
3917 #define ABSTRACT_TYPE(Class, Parent) \
3918 bool Visit##Class##Type(const Class##Type *) { return false; }
3919 #define NON_CANONICAL_TYPE(Class, Parent) \
3920 bool Visit##Class##Type(const Class##Type *) { return false; }
3921 #include "clang/AST/TypeNodes.def"
3922
3923 bool VisitTagDecl(const TagDecl *Tag);
3924 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3925 };
3926 }
3927
VisitBuiltinType(const BuiltinType *)3928 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3929 return false;
3930 }
3931
VisitComplexType(const ComplexType * T)3932 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3933 return Visit(T->getElementType());
3934 }
3935
VisitPointerType(const PointerType * T)3936 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3937 return Visit(T->getPointeeType());
3938 }
3939
VisitBlockPointerType(const BlockPointerType * T)3940 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3941 const BlockPointerType* T) {
3942 return Visit(T->getPointeeType());
3943 }
3944
VisitLValueReferenceType(const LValueReferenceType * T)3945 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3946 const LValueReferenceType* T) {
3947 return Visit(T->getPointeeType());
3948 }
3949
VisitRValueReferenceType(const RValueReferenceType * T)3950 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3951 const RValueReferenceType* T) {
3952 return Visit(T->getPointeeType());
3953 }
3954
VisitMemberPointerType(const MemberPointerType * T)3955 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3956 const MemberPointerType* T) {
3957 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3958 }
3959
VisitConstantArrayType(const ConstantArrayType * T)3960 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3961 const ConstantArrayType* T) {
3962 return Visit(T->getElementType());
3963 }
3964
VisitIncompleteArrayType(const IncompleteArrayType * T)3965 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3966 const IncompleteArrayType* T) {
3967 return Visit(T->getElementType());
3968 }
3969
VisitVariableArrayType(const VariableArrayType * T)3970 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3971 const VariableArrayType* T) {
3972 return Visit(T->getElementType());
3973 }
3974
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3975 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3976 const DependentSizedArrayType* T) {
3977 return Visit(T->getElementType());
3978 }
3979
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3980 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3981 const DependentSizedExtVectorType* T) {
3982 return Visit(T->getElementType());
3983 }
3984
VisitVectorType(const VectorType * T)3985 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3986 return Visit(T->getElementType());
3987 }
3988
VisitExtVectorType(const ExtVectorType * T)3989 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3990 return Visit(T->getElementType());
3991 }
3992
VisitFunctionProtoType(const FunctionProtoType * T)3993 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3994 const FunctionProtoType* T) {
3995 for (const auto &A : T->param_types()) {
3996 if (Visit(A))
3997 return true;
3998 }
3999
4000 return Visit(T->getReturnType());
4001 }
4002
VisitFunctionNoProtoType(const FunctionNoProtoType * T)4003 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4004 const FunctionNoProtoType* T) {
4005 return Visit(T->getReturnType());
4006 }
4007
VisitUnresolvedUsingType(const UnresolvedUsingType *)4008 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4009 const UnresolvedUsingType*) {
4010 return false;
4011 }
4012
VisitTypeOfExprType(const TypeOfExprType *)4013 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4014 return false;
4015 }
4016
VisitTypeOfType(const TypeOfType * T)4017 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4018 return Visit(T->getUnderlyingType());
4019 }
4020
VisitDecltypeType(const DecltypeType *)4021 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4022 return false;
4023 }
4024
VisitUnaryTransformType(const UnaryTransformType *)4025 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4026 const UnaryTransformType*) {
4027 return false;
4028 }
4029
VisitAutoType(const AutoType * T)4030 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4031 return Visit(T->getDeducedType());
4032 }
4033
VisitRecordType(const RecordType * T)4034 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4035 return VisitTagDecl(T->getDecl());
4036 }
4037
VisitEnumType(const EnumType * T)4038 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4039 return VisitTagDecl(T->getDecl());
4040 }
4041
VisitTemplateTypeParmType(const TemplateTypeParmType *)4042 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4043 const TemplateTypeParmType*) {
4044 return false;
4045 }
4046
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4047 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4048 const SubstTemplateTypeParmPackType *) {
4049 return false;
4050 }
4051
VisitTemplateSpecializationType(const TemplateSpecializationType *)4052 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4053 const TemplateSpecializationType*) {
4054 return false;
4055 }
4056
VisitInjectedClassNameType(const InjectedClassNameType * T)4057 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4058 const InjectedClassNameType* T) {
4059 return VisitTagDecl(T->getDecl());
4060 }
4061
VisitDependentNameType(const DependentNameType * T)4062 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4063 const DependentNameType* T) {
4064 return VisitNestedNameSpecifier(T->getQualifier());
4065 }
4066
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4067 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4068 const DependentTemplateSpecializationType* T) {
4069 return VisitNestedNameSpecifier(T->getQualifier());
4070 }
4071
VisitPackExpansionType(const PackExpansionType * T)4072 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4073 const PackExpansionType* T) {
4074 return Visit(T->getPattern());
4075 }
4076
VisitObjCObjectType(const ObjCObjectType *)4077 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4078 return false;
4079 }
4080
VisitObjCInterfaceType(const ObjCInterfaceType *)4081 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4082 const ObjCInterfaceType *) {
4083 return false;
4084 }
4085
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4086 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4087 const ObjCObjectPointerType *) {
4088 return false;
4089 }
4090
VisitAtomicType(const AtomicType * T)4091 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4092 return Visit(T->getValueType());
4093 }
4094
VisitTagDecl(const TagDecl * Tag)4095 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4096 if (Tag->getDeclContext()->isFunctionOrMethod()) {
4097 S.Diag(SR.getBegin(),
4098 S.getLangOpts().CPlusPlus11 ?
4099 diag::warn_cxx98_compat_template_arg_local_type :
4100 diag::ext_template_arg_local_type)
4101 << S.Context.getTypeDeclType(Tag) << SR;
4102 return true;
4103 }
4104
4105 if (!Tag->hasNameForLinkage()) {
4106 S.Diag(SR.getBegin(),
4107 S.getLangOpts().CPlusPlus11 ?
4108 diag::warn_cxx98_compat_template_arg_unnamed_type :
4109 diag::ext_template_arg_unnamed_type) << SR;
4110 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4111 return true;
4112 }
4113
4114 return false;
4115 }
4116
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4117 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4118 NestedNameSpecifier *NNS) {
4119 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4120 return true;
4121
4122 switch (NNS->getKind()) {
4123 case NestedNameSpecifier::Identifier:
4124 case NestedNameSpecifier::Namespace:
4125 case NestedNameSpecifier::NamespaceAlias:
4126 case NestedNameSpecifier::Global:
4127 return false;
4128
4129 case NestedNameSpecifier::TypeSpec:
4130 case NestedNameSpecifier::TypeSpecWithTemplate:
4131 return Visit(QualType(NNS->getAsType(), 0));
4132 }
4133 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4134 }
4135
4136
4137 /// \brief Check a template argument against its corresponding
4138 /// template type parameter.
4139 ///
4140 /// This routine implements the semantics of C++ [temp.arg.type]. It
4141 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4142 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4143 TypeSourceInfo *ArgInfo) {
4144 assert(ArgInfo && "invalid TypeSourceInfo");
4145 QualType Arg = ArgInfo->getType();
4146 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4147
4148 if (Arg->isVariablyModifiedType()) {
4149 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4150 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4151 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4152 }
4153
4154 // C++03 [temp.arg.type]p2:
4155 // A local type, a type with no linkage, an unnamed type or a type
4156 // compounded from any of these types shall not be used as a
4157 // template-argument for a template type-parameter.
4158 //
4159 // C++11 allows these, and even in C++03 we allow them as an extension with
4160 // a warning.
4161 bool NeedsCheck;
4162 if (LangOpts.CPlusPlus11)
4163 NeedsCheck =
4164 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4165 SR.getBegin()) ||
4166 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4167 SR.getBegin());
4168 else
4169 NeedsCheck = Arg->hasUnnamedOrLocalType();
4170
4171 if (NeedsCheck) {
4172 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4173 (void)Finder.Visit(Context.getCanonicalType(Arg));
4174 }
4175
4176 return false;
4177 }
4178
4179 enum NullPointerValueKind {
4180 NPV_NotNullPointer,
4181 NPV_NullPointer,
4182 NPV_Error
4183 };
4184
4185 /// \brief Determine whether the given template argument is a null pointer
4186 /// value of the appropriate type.
4187 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4188 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4189 QualType ParamType, Expr *Arg) {
4190 if (Arg->isValueDependent() || Arg->isTypeDependent())
4191 return NPV_NotNullPointer;
4192
4193 if (!S.getLangOpts().CPlusPlus11 || S.getLangOpts().MSVCCompat)
4194 return NPV_NotNullPointer;
4195
4196 // Determine whether we have a constant expression.
4197 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4198 if (ArgRV.isInvalid())
4199 return NPV_Error;
4200 Arg = ArgRV.get();
4201
4202 Expr::EvalResult EvalResult;
4203 SmallVector<PartialDiagnosticAt, 8> Notes;
4204 EvalResult.Diag = &Notes;
4205 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4206 EvalResult.HasSideEffects) {
4207 SourceLocation DiagLoc = Arg->getExprLoc();
4208
4209 // If our only note is the usual "invalid subexpression" note, just point
4210 // the caret at its location rather than producing an essentially
4211 // redundant note.
4212 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4213 diag::note_invalid_subexpr_in_const_expr) {
4214 DiagLoc = Notes[0].first;
4215 Notes.clear();
4216 }
4217
4218 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4219 << Arg->getType() << Arg->getSourceRange();
4220 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4221 S.Diag(Notes[I].first, Notes[I].second);
4222
4223 S.Diag(Param->getLocation(), diag::note_template_param_here);
4224 return NPV_Error;
4225 }
4226
4227 // C++11 [temp.arg.nontype]p1:
4228 // - an address constant expression of type std::nullptr_t
4229 if (Arg->getType()->isNullPtrType())
4230 return NPV_NullPointer;
4231
4232 // - a constant expression that evaluates to a null pointer value (4.10); or
4233 // - a constant expression that evaluates to a null member pointer value
4234 // (4.11); or
4235 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4236 (EvalResult.Val.isMemberPointer() &&
4237 !EvalResult.Val.getMemberPointerDecl())) {
4238 // If our expression has an appropriate type, we've succeeded.
4239 bool ObjCLifetimeConversion;
4240 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4241 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4242 ObjCLifetimeConversion))
4243 return NPV_NullPointer;
4244
4245 // The types didn't match, but we know we got a null pointer; complain,
4246 // then recover as if the types were correct.
4247 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4248 << Arg->getType() << ParamType << Arg->getSourceRange();
4249 S.Diag(Param->getLocation(), diag::note_template_param_here);
4250 return NPV_NullPointer;
4251 }
4252
4253 // If we don't have a null pointer value, but we do have a NULL pointer
4254 // constant, suggest a cast to the appropriate type.
4255 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4256 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4257 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4258 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4259 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4260 ")");
4261 S.Diag(Param->getLocation(), diag::note_template_param_here);
4262 return NPV_NullPointer;
4263 }
4264
4265 // FIXME: If we ever want to support general, address-constant expressions
4266 // as non-type template arguments, we should return the ExprResult here to
4267 // be interpreted by the caller.
4268 return NPV_NotNullPointer;
4269 }
4270
4271 /// \brief Checks whether the given template argument is compatible with its
4272 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4273 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4274 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4275 Expr *Arg, QualType ArgType) {
4276 bool ObjCLifetimeConversion;
4277 if (ParamType->isPointerType() &&
4278 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4279 S.IsQualificationConversion(ArgType, ParamType, false,
4280 ObjCLifetimeConversion)) {
4281 // For pointer-to-object types, qualification conversions are
4282 // permitted.
4283 } else {
4284 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4285 if (!ParamRef->getPointeeType()->isFunctionType()) {
4286 // C++ [temp.arg.nontype]p5b3:
4287 // For a non-type template-parameter of type reference to
4288 // object, no conversions apply. The type referred to by the
4289 // reference may be more cv-qualified than the (otherwise
4290 // identical) type of the template- argument. The
4291 // template-parameter is bound directly to the
4292 // template-argument, which shall be an lvalue.
4293
4294 // FIXME: Other qualifiers?
4295 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4296 unsigned ArgQuals = ArgType.getCVRQualifiers();
4297
4298 if ((ParamQuals | ArgQuals) != ParamQuals) {
4299 S.Diag(Arg->getLocStart(),
4300 diag::err_template_arg_ref_bind_ignores_quals)
4301 << ParamType << Arg->getType() << Arg->getSourceRange();
4302 S.Diag(Param->getLocation(), diag::note_template_param_here);
4303 return true;
4304 }
4305 }
4306 }
4307
4308 // At this point, the template argument refers to an object or
4309 // function with external linkage. We now need to check whether the
4310 // argument and parameter types are compatible.
4311 if (!S.Context.hasSameUnqualifiedType(ArgType,
4312 ParamType.getNonReferenceType())) {
4313 // We can't perform this conversion or binding.
4314 if (ParamType->isReferenceType())
4315 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4316 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4317 else
4318 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4319 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4320 S.Diag(Param->getLocation(), diag::note_template_param_here);
4321 return true;
4322 }
4323 }
4324
4325 return false;
4326 }
4327
4328 /// \brief Checks whether the given template argument is the address
4329 /// of an object or function according to C++ [temp.arg.nontype]p1.
4330 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4331 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4332 NonTypeTemplateParmDecl *Param,
4333 QualType ParamType,
4334 Expr *ArgIn,
4335 TemplateArgument &Converted) {
4336 bool Invalid = false;
4337 Expr *Arg = ArgIn;
4338 QualType ArgType = Arg->getType();
4339
4340 bool AddressTaken = false;
4341 SourceLocation AddrOpLoc;
4342 if (S.getLangOpts().MicrosoftExt) {
4343 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4344 // dereference and address-of operators.
4345 Arg = Arg->IgnoreParenCasts();
4346
4347 bool ExtWarnMSTemplateArg = false;
4348 UnaryOperatorKind FirstOpKind;
4349 SourceLocation FirstOpLoc;
4350 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4351 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4352 if (UnOpKind == UO_Deref)
4353 ExtWarnMSTemplateArg = true;
4354 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4355 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4356 if (!AddrOpLoc.isValid()) {
4357 FirstOpKind = UnOpKind;
4358 FirstOpLoc = UnOp->getOperatorLoc();
4359 }
4360 } else
4361 break;
4362 }
4363 if (FirstOpLoc.isValid()) {
4364 if (ExtWarnMSTemplateArg)
4365 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4366 << ArgIn->getSourceRange();
4367
4368 if (FirstOpKind == UO_AddrOf)
4369 AddressTaken = true;
4370 else if (Arg->getType()->isPointerType()) {
4371 // We cannot let pointers get dereferenced here, that is obviously not a
4372 // constant expression.
4373 assert(FirstOpKind == UO_Deref);
4374 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4375 << Arg->getSourceRange();
4376 }
4377 }
4378 } else {
4379 // See through any implicit casts we added to fix the type.
4380 Arg = Arg->IgnoreImpCasts();
4381
4382 // C++ [temp.arg.nontype]p1:
4383 //
4384 // A template-argument for a non-type, non-template
4385 // template-parameter shall be one of: [...]
4386 //
4387 // -- the address of an object or function with external
4388 // linkage, including function templates and function
4389 // template-ids but excluding non-static class members,
4390 // expressed as & id-expression where the & is optional if
4391 // the name refers to a function or array, or if the
4392 // corresponding template-parameter is a reference; or
4393
4394 // In C++98/03 mode, give an extension warning on any extra parentheses.
4395 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4396 bool ExtraParens = false;
4397 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4398 if (!Invalid && !ExtraParens) {
4399 S.Diag(Arg->getLocStart(),
4400 S.getLangOpts().CPlusPlus11
4401 ? diag::warn_cxx98_compat_template_arg_extra_parens
4402 : diag::ext_template_arg_extra_parens)
4403 << Arg->getSourceRange();
4404 ExtraParens = true;
4405 }
4406
4407 Arg = Parens->getSubExpr();
4408 }
4409
4410 while (SubstNonTypeTemplateParmExpr *subst =
4411 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4412 Arg = subst->getReplacement()->IgnoreImpCasts();
4413
4414 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4415 if (UnOp->getOpcode() == UO_AddrOf) {
4416 Arg = UnOp->getSubExpr();
4417 AddressTaken = true;
4418 AddrOpLoc = UnOp->getOperatorLoc();
4419 }
4420 }
4421
4422 while (SubstNonTypeTemplateParmExpr *subst =
4423 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4424 Arg = subst->getReplacement()->IgnoreImpCasts();
4425 }
4426
4427 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4428 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4429
4430 // If our parameter has pointer type, check for a null template value.
4431 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4432 NullPointerValueKind NPV;
4433 // dllimport'd entities aren't constant but are available inside of template
4434 // arguments.
4435 if (Entity && Entity->hasAttr<DLLImportAttr>())
4436 NPV = NPV_NotNullPointer;
4437 else
4438 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4439 switch (NPV) {
4440 case NPV_NullPointer:
4441 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4442 Converted = TemplateArgument(ParamType, /*isNullPtr=*/true);
4443 return false;
4444
4445 case NPV_Error:
4446 return true;
4447
4448 case NPV_NotNullPointer:
4449 break;
4450 }
4451 }
4452
4453 // Stop checking the precise nature of the argument if it is value dependent,
4454 // it should be checked when instantiated.
4455 if (Arg->isValueDependent()) {
4456 Converted = TemplateArgument(ArgIn);
4457 return false;
4458 }
4459
4460 if (isa<CXXUuidofExpr>(Arg)) {
4461 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4462 ArgIn, Arg, ArgType))
4463 return true;
4464
4465 Converted = TemplateArgument(ArgIn);
4466 return false;
4467 }
4468
4469 if (!DRE) {
4470 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4471 << Arg->getSourceRange();
4472 S.Diag(Param->getLocation(), diag::note_template_param_here);
4473 return true;
4474 }
4475
4476 // Cannot refer to non-static data members
4477 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4478 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4479 << Entity << Arg->getSourceRange();
4480 S.Diag(Param->getLocation(), diag::note_template_param_here);
4481 return true;
4482 }
4483
4484 // Cannot refer to non-static member functions
4485 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4486 if (!Method->isStatic()) {
4487 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4488 << Method << Arg->getSourceRange();
4489 S.Diag(Param->getLocation(), diag::note_template_param_here);
4490 return true;
4491 }
4492 }
4493
4494 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4495 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4496
4497 // A non-type template argument must refer to an object or function.
4498 if (!Func && !Var) {
4499 // We found something, but we don't know specifically what it is.
4500 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4501 << Arg->getSourceRange();
4502 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4503 return true;
4504 }
4505
4506 // Address / reference template args must have external linkage in C++98.
4507 if (Entity->getFormalLinkage() == InternalLinkage) {
4508 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4509 diag::warn_cxx98_compat_template_arg_object_internal :
4510 diag::ext_template_arg_object_internal)
4511 << !Func << Entity << Arg->getSourceRange();
4512 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4513 << !Func;
4514 } else if (!Entity->hasLinkage()) {
4515 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4516 << !Func << Entity << Arg->getSourceRange();
4517 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4518 << !Func;
4519 return true;
4520 }
4521
4522 if (Func) {
4523 // If the template parameter has pointer type, the function decays.
4524 if (ParamType->isPointerType() && !AddressTaken)
4525 ArgType = S.Context.getPointerType(Func->getType());
4526 else if (AddressTaken && ParamType->isReferenceType()) {
4527 // If we originally had an address-of operator, but the
4528 // parameter has reference type, complain and (if things look
4529 // like they will work) drop the address-of operator.
4530 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4531 ParamType.getNonReferenceType())) {
4532 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4533 << ParamType;
4534 S.Diag(Param->getLocation(), diag::note_template_param_here);
4535 return true;
4536 }
4537
4538 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4539 << ParamType
4540 << FixItHint::CreateRemoval(AddrOpLoc);
4541 S.Diag(Param->getLocation(), diag::note_template_param_here);
4542
4543 ArgType = Func->getType();
4544 }
4545 } else {
4546 // A value of reference type is not an object.
4547 if (Var->getType()->isReferenceType()) {
4548 S.Diag(Arg->getLocStart(),
4549 diag::err_template_arg_reference_var)
4550 << Var->getType() << Arg->getSourceRange();
4551 S.Diag(Param->getLocation(), diag::note_template_param_here);
4552 return true;
4553 }
4554
4555 // A template argument must have static storage duration.
4556 if (Var->getTLSKind()) {
4557 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4558 << Arg->getSourceRange();
4559 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4560 return true;
4561 }
4562
4563 // If the template parameter has pointer type, we must have taken
4564 // the address of this object.
4565 if (ParamType->isReferenceType()) {
4566 if (AddressTaken) {
4567 // If we originally had an address-of operator, but the
4568 // parameter has reference type, complain and (if things look
4569 // like they will work) drop the address-of operator.
4570 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4571 ParamType.getNonReferenceType())) {
4572 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4573 << ParamType;
4574 S.Diag(Param->getLocation(), diag::note_template_param_here);
4575 return true;
4576 }
4577
4578 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4579 << ParamType
4580 << FixItHint::CreateRemoval(AddrOpLoc);
4581 S.Diag(Param->getLocation(), diag::note_template_param_here);
4582
4583 ArgType = Var->getType();
4584 }
4585 } else if (!AddressTaken && ParamType->isPointerType()) {
4586 if (Var->getType()->isArrayType()) {
4587 // Array-to-pointer decay.
4588 ArgType = S.Context.getArrayDecayedType(Var->getType());
4589 } else {
4590 // If the template parameter has pointer type but the address of
4591 // this object was not taken, complain and (possibly) recover by
4592 // taking the address of the entity.
4593 ArgType = S.Context.getPointerType(Var->getType());
4594 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4595 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4596 << ParamType;
4597 S.Diag(Param->getLocation(), diag::note_template_param_here);
4598 return true;
4599 }
4600
4601 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4602 << ParamType
4603 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4604
4605 S.Diag(Param->getLocation(), diag::note_template_param_here);
4606 }
4607 }
4608 }
4609
4610 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4611 Arg, ArgType))
4612 return true;
4613
4614 // Create the template argument.
4615 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4616 ParamType->isReferenceType());
4617 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4618 return false;
4619 }
4620
4621 /// \brief Checks whether the given template argument is a pointer to
4622 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4623 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4624 NonTypeTemplateParmDecl *Param,
4625 QualType ParamType,
4626 Expr *&ResultArg,
4627 TemplateArgument &Converted) {
4628 bool Invalid = false;
4629
4630 // Check for a null pointer value.
4631 Expr *Arg = ResultArg;
4632 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4633 case NPV_Error:
4634 return true;
4635 case NPV_NullPointer:
4636 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4637 Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4638 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
4639 S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
4640 return false;
4641 case NPV_NotNullPointer:
4642 break;
4643 }
4644
4645 bool ObjCLifetimeConversion;
4646 if (S.IsQualificationConversion(Arg->getType(),
4647 ParamType.getNonReferenceType(),
4648 false, ObjCLifetimeConversion)) {
4649 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4650 Arg->getValueKind()).get();
4651 ResultArg = Arg;
4652 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4653 ParamType.getNonReferenceType())) {
4654 // We can't perform this conversion.
4655 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4656 << Arg->getType() << ParamType << Arg->getSourceRange();
4657 S.Diag(Param->getLocation(), diag::note_template_param_here);
4658 return true;
4659 }
4660
4661 // See through any implicit casts we added to fix the type.
4662 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4663 Arg = Cast->getSubExpr();
4664
4665 // C++ [temp.arg.nontype]p1:
4666 //
4667 // A template-argument for a non-type, non-template
4668 // template-parameter shall be one of: [...]
4669 //
4670 // -- a pointer to member expressed as described in 5.3.1.
4671 DeclRefExpr *DRE = nullptr;
4672
4673 // In C++98/03 mode, give an extension warning on any extra parentheses.
4674 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4675 bool ExtraParens = false;
4676 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4677 if (!Invalid && !ExtraParens) {
4678 S.Diag(Arg->getLocStart(),
4679 S.getLangOpts().CPlusPlus11 ?
4680 diag::warn_cxx98_compat_template_arg_extra_parens :
4681 diag::ext_template_arg_extra_parens)
4682 << Arg->getSourceRange();
4683 ExtraParens = true;
4684 }
4685
4686 Arg = Parens->getSubExpr();
4687 }
4688
4689 while (SubstNonTypeTemplateParmExpr *subst =
4690 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4691 Arg = subst->getReplacement()->IgnoreImpCasts();
4692
4693 // A pointer-to-member constant written &Class::member.
4694 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4695 if (UnOp->getOpcode() == UO_AddrOf) {
4696 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4697 if (DRE && !DRE->getQualifier())
4698 DRE = nullptr;
4699 }
4700 }
4701 // A constant of pointer-to-member type.
4702 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4703 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4704 if (VD->getType()->isMemberPointerType()) {
4705 if (isa<NonTypeTemplateParmDecl>(VD)) {
4706 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4707 Converted = TemplateArgument(Arg);
4708 } else {
4709 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4710 Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4711 }
4712 return Invalid;
4713 }
4714 }
4715 }
4716
4717 DRE = nullptr;
4718 }
4719
4720 if (!DRE)
4721 return S.Diag(Arg->getLocStart(),
4722 diag::err_template_arg_not_pointer_to_member_form)
4723 << Arg->getSourceRange();
4724
4725 if (isa<FieldDecl>(DRE->getDecl()) ||
4726 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4727 isa<CXXMethodDecl>(DRE->getDecl())) {
4728 assert((isa<FieldDecl>(DRE->getDecl()) ||
4729 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4730 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4731 "Only non-static member pointers can make it here");
4732
4733 // Okay: this is the address of a non-static member, and therefore
4734 // a member pointer constant.
4735 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4736 Converted = TemplateArgument(Arg);
4737 } else {
4738 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4739 Converted = TemplateArgument(D, /*isReferenceParam*/false);
4740 }
4741 return Invalid;
4742 }
4743
4744 // We found something else, but we don't know specifically what it is.
4745 S.Diag(Arg->getLocStart(),
4746 diag::err_template_arg_not_pointer_to_member_form)
4747 << Arg->getSourceRange();
4748 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4749 return true;
4750 }
4751
4752 /// \brief Check a template argument against its corresponding
4753 /// non-type template parameter.
4754 ///
4755 /// This routine implements the semantics of C++ [temp.arg.nontype].
4756 /// If an error occurred, it returns ExprError(); otherwise, it
4757 /// returns the converted template argument. \p
4758 /// InstantiatedParamType is the type of the non-type template
4759 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4760 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4761 QualType InstantiatedParamType, Expr *Arg,
4762 TemplateArgument &Converted,
4763 CheckTemplateArgumentKind CTAK) {
4764 SourceLocation StartLoc = Arg->getLocStart();
4765
4766 // If either the parameter has a dependent type or the argument is
4767 // type-dependent, there's nothing we can check now.
4768 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4769 // FIXME: Produce a cloned, canonical expression?
4770 Converted = TemplateArgument(Arg);
4771 return Arg;
4772 }
4773
4774 // C++ [temp.arg.nontype]p5:
4775 // The following conversions are performed on each expression used
4776 // as a non-type template-argument. If a non-type
4777 // template-argument cannot be converted to the type of the
4778 // corresponding template-parameter then the program is
4779 // ill-formed.
4780 QualType ParamType = InstantiatedParamType;
4781 if (ParamType->isIntegralOrEnumerationType()) {
4782 // C++11:
4783 // -- for a non-type template-parameter of integral or
4784 // enumeration type, conversions permitted in a converted
4785 // constant expression are applied.
4786 //
4787 // C++98:
4788 // -- for a non-type template-parameter of integral or
4789 // enumeration type, integral promotions (4.5) and integral
4790 // conversions (4.7) are applied.
4791
4792 if (CTAK == CTAK_Deduced &&
4793 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4794 // C++ [temp.deduct.type]p17:
4795 // If, in the declaration of a function template with a non-type
4796 // template-parameter, the non-type template-parameter is used
4797 // in an expression in the function parameter-list and, if the
4798 // corresponding template-argument is deduced, the
4799 // template-argument type shall match the type of the
4800 // template-parameter exactly, except that a template-argument
4801 // deduced from an array bound may be of any integral type.
4802 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4803 << Arg->getType().getUnqualifiedType()
4804 << ParamType.getUnqualifiedType();
4805 Diag(Param->getLocation(), diag::note_template_param_here);
4806 return ExprError();
4807 }
4808
4809 if (getLangOpts().CPlusPlus11) {
4810 // We can't check arbitrary value-dependent arguments.
4811 // FIXME: If there's no viable conversion to the template parameter type,
4812 // we should be able to diagnose that prior to instantiation.
4813 if (Arg->isValueDependent()) {
4814 Converted = TemplateArgument(Arg);
4815 return Arg;
4816 }
4817
4818 // C++ [temp.arg.nontype]p1:
4819 // A template-argument for a non-type, non-template template-parameter
4820 // shall be one of:
4821 //
4822 // -- for a non-type template-parameter of integral or enumeration
4823 // type, a converted constant expression of the type of the
4824 // template-parameter; or
4825 llvm::APSInt Value;
4826 ExprResult ArgResult =
4827 CheckConvertedConstantExpression(Arg, ParamType, Value,
4828 CCEK_TemplateArg);
4829 if (ArgResult.isInvalid())
4830 return ExprError();
4831
4832 // Widen the argument value to sizeof(parameter type). This is almost
4833 // always a no-op, except when the parameter type is bool. In
4834 // that case, this may extend the argument from 1 bit to 8 bits.
4835 QualType IntegerType = ParamType;
4836 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4837 IntegerType = Enum->getDecl()->getIntegerType();
4838 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4839
4840 Converted = TemplateArgument(Context, Value,
4841 Context.getCanonicalType(ParamType));
4842 return ArgResult;
4843 }
4844
4845 ExprResult ArgResult = DefaultLvalueConversion(Arg);
4846 if (ArgResult.isInvalid())
4847 return ExprError();
4848 Arg = ArgResult.get();
4849
4850 QualType ArgType = Arg->getType();
4851
4852 // C++ [temp.arg.nontype]p1:
4853 // A template-argument for a non-type, non-template
4854 // template-parameter shall be one of:
4855 //
4856 // -- an integral constant-expression of integral or enumeration
4857 // type; or
4858 // -- the name of a non-type template-parameter; or
4859 SourceLocation NonConstantLoc;
4860 llvm::APSInt Value;
4861 if (!ArgType->isIntegralOrEnumerationType()) {
4862 Diag(Arg->getLocStart(),
4863 diag::err_template_arg_not_integral_or_enumeral)
4864 << ArgType << Arg->getSourceRange();
4865 Diag(Param->getLocation(), diag::note_template_param_here);
4866 return ExprError();
4867 } else if (!Arg->isValueDependent()) {
4868 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4869 QualType T;
4870
4871 public:
4872 TmplArgICEDiagnoser(QualType T) : T(T) { }
4873
4874 void diagnoseNotICE(Sema &S, SourceLocation Loc,
4875 SourceRange SR) override {
4876 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4877 }
4878 } Diagnoser(ArgType);
4879
4880 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4881 false).get();
4882 if (!Arg)
4883 return ExprError();
4884 }
4885
4886 // From here on out, all we care about are the unqualified forms
4887 // of the parameter and argument types.
4888 ParamType = ParamType.getUnqualifiedType();
4889 ArgType = ArgType.getUnqualifiedType();
4890
4891 // Try to convert the argument to the parameter's type.
4892 if (Context.hasSameType(ParamType, ArgType)) {
4893 // Okay: no conversion necessary
4894 } else if (ParamType->isBooleanType()) {
4895 // This is an integral-to-boolean conversion.
4896 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
4897 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4898 !ParamType->isEnumeralType()) {
4899 // This is an integral promotion or conversion.
4900 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
4901 } else {
4902 // We can't perform this conversion.
4903 Diag(Arg->getLocStart(),
4904 diag::err_template_arg_not_convertible)
4905 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4906 Diag(Param->getLocation(), diag::note_template_param_here);
4907 return ExprError();
4908 }
4909
4910 // Add the value of this argument to the list of converted
4911 // arguments. We use the bitwidth and signedness of the template
4912 // parameter.
4913 if (Arg->isValueDependent()) {
4914 // The argument is value-dependent. Create a new
4915 // TemplateArgument with the converted expression.
4916 Converted = TemplateArgument(Arg);
4917 return Arg;
4918 }
4919
4920 QualType IntegerType = Context.getCanonicalType(ParamType);
4921 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4922 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4923
4924 if (ParamType->isBooleanType()) {
4925 // Value must be zero or one.
4926 Value = Value != 0;
4927 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4928 if (Value.getBitWidth() != AllowedBits)
4929 Value = Value.extOrTrunc(AllowedBits);
4930 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4931 } else {
4932 llvm::APSInt OldValue = Value;
4933
4934 // Coerce the template argument's value to the value it will have
4935 // based on the template parameter's type.
4936 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4937 if (Value.getBitWidth() != AllowedBits)
4938 Value = Value.extOrTrunc(AllowedBits);
4939 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4940
4941 // Complain if an unsigned parameter received a negative value.
4942 if (IntegerType->isUnsignedIntegerOrEnumerationType()
4943 && (OldValue.isSigned() && OldValue.isNegative())) {
4944 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4945 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4946 << Arg->getSourceRange();
4947 Diag(Param->getLocation(), diag::note_template_param_here);
4948 }
4949
4950 // Complain if we overflowed the template parameter's type.
4951 unsigned RequiredBits;
4952 if (IntegerType->isUnsignedIntegerOrEnumerationType())
4953 RequiredBits = OldValue.getActiveBits();
4954 else if (OldValue.isUnsigned())
4955 RequiredBits = OldValue.getActiveBits() + 1;
4956 else
4957 RequiredBits = OldValue.getMinSignedBits();
4958 if (RequiredBits > AllowedBits) {
4959 Diag(Arg->getLocStart(),
4960 diag::warn_template_arg_too_large)
4961 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4962 << Arg->getSourceRange();
4963 Diag(Param->getLocation(), diag::note_template_param_here);
4964 }
4965 }
4966
4967 Converted = TemplateArgument(Context, Value,
4968 ParamType->isEnumeralType()
4969 ? Context.getCanonicalType(ParamType)
4970 : IntegerType);
4971 return Arg;
4972 }
4973
4974 QualType ArgType = Arg->getType();
4975 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4976
4977 // Handle pointer-to-function, reference-to-function, and
4978 // pointer-to-member-function all in (roughly) the same way.
4979 if (// -- For a non-type template-parameter of type pointer to
4980 // function, only the function-to-pointer conversion (4.3) is
4981 // applied. If the template-argument represents a set of
4982 // overloaded functions (or a pointer to such), the matching
4983 // function is selected from the set (13.4).
4984 (ParamType->isPointerType() &&
4985 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4986 // -- For a non-type template-parameter of type reference to
4987 // function, no conversions apply. If the template-argument
4988 // represents a set of overloaded functions, the matching
4989 // function is selected from the set (13.4).
4990 (ParamType->isReferenceType() &&
4991 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4992 // -- For a non-type template-parameter of type pointer to
4993 // member function, no conversions apply. If the
4994 // template-argument represents a set of overloaded member
4995 // functions, the matching member function is selected from
4996 // the set (13.4).
4997 (ParamType->isMemberPointerType() &&
4998 ParamType->getAs<MemberPointerType>()->getPointeeType()
4999 ->isFunctionType())) {
5000
5001 if (Arg->getType() == Context.OverloadTy) {
5002 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5003 true,
5004 FoundResult)) {
5005 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5006 return ExprError();
5007
5008 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5009 ArgType = Arg->getType();
5010 } else
5011 return ExprError();
5012 }
5013
5014 if (!ParamType->isMemberPointerType()) {
5015 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5016 ParamType,
5017 Arg, Converted))
5018 return ExprError();
5019 return Arg;
5020 }
5021
5022 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5023 Converted))
5024 return ExprError();
5025 return Arg;
5026 }
5027
5028 if (ParamType->isPointerType()) {
5029 // -- for a non-type template-parameter of type pointer to
5030 // object, qualification conversions (4.4) and the
5031 // array-to-pointer conversion (4.2) are applied.
5032 // C++0x also allows a value of std::nullptr_t.
5033 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5034 "Only object pointers allowed here");
5035
5036 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5037 ParamType,
5038 Arg, Converted))
5039 return ExprError();
5040 return Arg;
5041 }
5042
5043 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5044 // -- For a non-type template-parameter of type reference to
5045 // object, no conversions apply. The type referred to by the
5046 // reference may be more cv-qualified than the (otherwise
5047 // identical) type of the template-argument. The
5048 // template-parameter is bound directly to the
5049 // template-argument, which must be an lvalue.
5050 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5051 "Only object references allowed here");
5052
5053 if (Arg->getType() == Context.OverloadTy) {
5054 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5055 ParamRefType->getPointeeType(),
5056 true,
5057 FoundResult)) {
5058 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5059 return ExprError();
5060
5061 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5062 ArgType = Arg->getType();
5063 } else
5064 return ExprError();
5065 }
5066
5067 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5068 ParamType,
5069 Arg, Converted))
5070 return ExprError();
5071 return Arg;
5072 }
5073
5074 // Deal with parameters of type std::nullptr_t.
5075 if (ParamType->isNullPtrType()) {
5076 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5077 Converted = TemplateArgument(Arg);
5078 return Arg;
5079 }
5080
5081 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5082 case NPV_NotNullPointer:
5083 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5084 << Arg->getType() << ParamType;
5085 Diag(Param->getLocation(), diag::note_template_param_here);
5086 return ExprError();
5087
5088 case NPV_Error:
5089 return ExprError();
5090
5091 case NPV_NullPointer:
5092 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5093 Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
5094 return Arg;
5095 }
5096 }
5097
5098 // -- For a non-type template-parameter of type pointer to data
5099 // member, qualification conversions (4.4) are applied.
5100 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5101
5102 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5103 Converted))
5104 return ExprError();
5105 return Arg;
5106 }
5107
5108 /// \brief Check a template argument against its corresponding
5109 /// template template parameter.
5110 ///
5111 /// This routine implements the semantics of C++ [temp.arg.template].
5112 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5113 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5114 TemplateArgumentLoc &Arg,
5115 unsigned ArgumentPackIndex) {
5116 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5117 TemplateDecl *Template = Name.getAsTemplateDecl();
5118 if (!Template) {
5119 // Any dependent template name is fine.
5120 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5121 return false;
5122 }
5123
5124 // C++0x [temp.arg.template]p1:
5125 // A template-argument for a template template-parameter shall be
5126 // the name of a class template or an alias template, expressed as an
5127 // id-expression. When the template-argument names a class template, only
5128 // primary class templates are considered when matching the
5129 // template template argument with the corresponding parameter;
5130 // partial specializations are not considered even if their
5131 // parameter lists match that of the template template parameter.
5132 //
5133 // Note that we also allow template template parameters here, which
5134 // will happen when we are dealing with, e.g., class template
5135 // partial specializations.
5136 if (!isa<ClassTemplateDecl>(Template) &&
5137 !isa<TemplateTemplateParmDecl>(Template) &&
5138 !isa<TypeAliasTemplateDecl>(Template)) {
5139 assert(isa<FunctionTemplateDecl>(Template) &&
5140 "Only function templates are possible here");
5141 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5142 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5143 << Template;
5144 }
5145
5146 TemplateParameterList *Params = Param->getTemplateParameters();
5147 if (Param->isExpandedParameterPack())
5148 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5149
5150 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5151 Params,
5152 true,
5153 TPL_TemplateTemplateArgumentMatch,
5154 Arg.getLocation());
5155 }
5156
5157 /// \brief Given a non-type template argument that refers to a
5158 /// declaration and the type of its corresponding non-type template
5159 /// parameter, produce an expression that properly refers to that
5160 /// declaration.
5161 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5162 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5163 QualType ParamType,
5164 SourceLocation Loc) {
5165 // C++ [temp.param]p8:
5166 //
5167 // A non-type template-parameter of type "array of T" or
5168 // "function returning T" is adjusted to be of type "pointer to
5169 // T" or "pointer to function returning T", respectively.
5170 if (ParamType->isArrayType())
5171 ParamType = Context.getArrayDecayedType(ParamType);
5172 else if (ParamType->isFunctionType())
5173 ParamType = Context.getPointerType(ParamType);
5174
5175 // For a NULL non-type template argument, return nullptr casted to the
5176 // parameter's type.
5177 if (Arg.getKind() == TemplateArgument::NullPtr) {
5178 return ImpCastExprToType(
5179 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5180 ParamType,
5181 ParamType->getAs<MemberPointerType>()
5182 ? CK_NullToMemberPointer
5183 : CK_NullToPointer);
5184 }
5185 assert(Arg.getKind() == TemplateArgument::Declaration &&
5186 "Only declaration template arguments permitted here");
5187
5188 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5189
5190 if (VD->getDeclContext()->isRecord() &&
5191 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5192 isa<IndirectFieldDecl>(VD))) {
5193 // If the value is a class member, we might have a pointer-to-member.
5194 // Determine whether the non-type template template parameter is of
5195 // pointer-to-member type. If so, we need to build an appropriate
5196 // expression for a pointer-to-member, since a "normal" DeclRefExpr
5197 // would refer to the member itself.
5198 if (ParamType->isMemberPointerType()) {
5199 QualType ClassType
5200 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5201 NestedNameSpecifier *Qualifier
5202 = NestedNameSpecifier::Create(Context, nullptr, false,
5203 ClassType.getTypePtr());
5204 CXXScopeSpec SS;
5205 SS.MakeTrivial(Context, Qualifier, Loc);
5206
5207 // The actual value-ness of this is unimportant, but for
5208 // internal consistency's sake, references to instance methods
5209 // are r-values.
5210 ExprValueKind VK = VK_LValue;
5211 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5212 VK = VK_RValue;
5213
5214 ExprResult RefExpr = BuildDeclRefExpr(VD,
5215 VD->getType().getNonReferenceType(),
5216 VK,
5217 Loc,
5218 &SS);
5219 if (RefExpr.isInvalid())
5220 return ExprError();
5221
5222 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5223
5224 // We might need to perform a trailing qualification conversion, since
5225 // the element type on the parameter could be more qualified than the
5226 // element type in the expression we constructed.
5227 bool ObjCLifetimeConversion;
5228 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5229 ParamType.getUnqualifiedType(), false,
5230 ObjCLifetimeConversion))
5231 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5232
5233 assert(!RefExpr.isInvalid() &&
5234 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5235 ParamType.getUnqualifiedType()));
5236 return RefExpr;
5237 }
5238 }
5239
5240 QualType T = VD->getType().getNonReferenceType();
5241
5242 if (ParamType->isPointerType()) {
5243 // When the non-type template parameter is a pointer, take the
5244 // address of the declaration.
5245 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5246 if (RefExpr.isInvalid())
5247 return ExprError();
5248
5249 if (T->isFunctionType() || T->isArrayType()) {
5250 // Decay functions and arrays.
5251 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5252 if (RefExpr.isInvalid())
5253 return ExprError();
5254
5255 return RefExpr;
5256 }
5257
5258 // Take the address of everything else
5259 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5260 }
5261
5262 ExprValueKind VK = VK_RValue;
5263
5264 // If the non-type template parameter has reference type, qualify the
5265 // resulting declaration reference with the extra qualifiers on the
5266 // type that the reference refers to.
5267 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5268 VK = VK_LValue;
5269 T = Context.getQualifiedType(T,
5270 TargetRef->getPointeeType().getQualifiers());
5271 } else if (isa<FunctionDecl>(VD)) {
5272 // References to functions are always lvalues.
5273 VK = VK_LValue;
5274 }
5275
5276 return BuildDeclRefExpr(VD, T, VK, Loc);
5277 }
5278
5279 /// \brief Construct a new expression that refers to the given
5280 /// integral template argument with the given source-location
5281 /// information.
5282 ///
5283 /// This routine takes care of the mapping from an integral template
5284 /// argument (which may have any integral type) to the appropriate
5285 /// literal value.
5286 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5287 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5288 SourceLocation Loc) {
5289 assert(Arg.getKind() == TemplateArgument::Integral &&
5290 "Operation is only valid for integral template arguments");
5291 QualType OrigT = Arg.getIntegralType();
5292
5293 // If this is an enum type that we're instantiating, we need to use an integer
5294 // type the same size as the enumerator. We don't want to build an
5295 // IntegerLiteral with enum type. The integer type of an enum type can be of
5296 // any integral type with C++11 enum classes, make sure we create the right
5297 // type of literal for it.
5298 QualType T = OrigT;
5299 if (const EnumType *ET = OrigT->getAs<EnumType>())
5300 T = ET->getDecl()->getIntegerType();
5301
5302 Expr *E;
5303 if (T->isAnyCharacterType()) {
5304 CharacterLiteral::CharacterKind Kind;
5305 if (T->isWideCharType())
5306 Kind = CharacterLiteral::Wide;
5307 else if (T->isChar16Type())
5308 Kind = CharacterLiteral::UTF16;
5309 else if (T->isChar32Type())
5310 Kind = CharacterLiteral::UTF32;
5311 else
5312 Kind = CharacterLiteral::Ascii;
5313
5314 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5315 Kind, T, Loc);
5316 } else if (T->isBooleanType()) {
5317 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5318 T, Loc);
5319 } else if (T->isNullPtrType()) {
5320 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5321 } else {
5322 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5323 }
5324
5325 if (OrigT->isEnumeralType()) {
5326 // FIXME: This is a hack. We need a better way to handle substituted
5327 // non-type template parameters.
5328 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5329 nullptr,
5330 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5331 Loc, Loc);
5332 }
5333
5334 return E;
5335 }
5336
5337 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5338 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5339 bool Complain,
5340 Sema::TemplateParameterListEqualKind Kind,
5341 SourceLocation TemplateArgLoc) {
5342 // Check the actual kind (type, non-type, template).
5343 if (Old->getKind() != New->getKind()) {
5344 if (Complain) {
5345 unsigned NextDiag = diag::err_template_param_different_kind;
5346 if (TemplateArgLoc.isValid()) {
5347 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5348 NextDiag = diag::note_template_param_different_kind;
5349 }
5350 S.Diag(New->getLocation(), NextDiag)
5351 << (Kind != Sema::TPL_TemplateMatch);
5352 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5353 << (Kind != Sema::TPL_TemplateMatch);
5354 }
5355
5356 return false;
5357 }
5358
5359 // Check that both are parameter packs are neither are parameter packs.
5360 // However, if we are matching a template template argument to a
5361 // template template parameter, the template template parameter can have
5362 // a parameter pack where the template template argument does not.
5363 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5364 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5365 Old->isTemplateParameterPack())) {
5366 if (Complain) {
5367 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5368 if (TemplateArgLoc.isValid()) {
5369 S.Diag(TemplateArgLoc,
5370 diag::err_template_arg_template_params_mismatch);
5371 NextDiag = diag::note_template_parameter_pack_non_pack;
5372 }
5373
5374 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5375 : isa<NonTypeTemplateParmDecl>(New)? 1
5376 : 2;
5377 S.Diag(New->getLocation(), NextDiag)
5378 << ParamKind << New->isParameterPack();
5379 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5380 << ParamKind << Old->isParameterPack();
5381 }
5382
5383 return false;
5384 }
5385
5386 // For non-type template parameters, check the type of the parameter.
5387 if (NonTypeTemplateParmDecl *OldNTTP
5388 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5389 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5390
5391 // If we are matching a template template argument to a template
5392 // template parameter and one of the non-type template parameter types
5393 // is dependent, then we must wait until template instantiation time
5394 // to actually compare the arguments.
5395 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5396 (OldNTTP->getType()->isDependentType() ||
5397 NewNTTP->getType()->isDependentType()))
5398 return true;
5399
5400 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5401 if (Complain) {
5402 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5403 if (TemplateArgLoc.isValid()) {
5404 S.Diag(TemplateArgLoc,
5405 diag::err_template_arg_template_params_mismatch);
5406 NextDiag = diag::note_template_nontype_parm_different_type;
5407 }
5408 S.Diag(NewNTTP->getLocation(), NextDiag)
5409 << NewNTTP->getType()
5410 << (Kind != Sema::TPL_TemplateMatch);
5411 S.Diag(OldNTTP->getLocation(),
5412 diag::note_template_nontype_parm_prev_declaration)
5413 << OldNTTP->getType();
5414 }
5415
5416 return false;
5417 }
5418
5419 return true;
5420 }
5421
5422 // For template template parameters, check the template parameter types.
5423 // The template parameter lists of template template
5424 // parameters must agree.
5425 if (TemplateTemplateParmDecl *OldTTP
5426 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5427 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5428 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5429 OldTTP->getTemplateParameters(),
5430 Complain,
5431 (Kind == Sema::TPL_TemplateMatch
5432 ? Sema::TPL_TemplateTemplateParmMatch
5433 : Kind),
5434 TemplateArgLoc);
5435 }
5436
5437 return true;
5438 }
5439
5440 /// \brief Diagnose a known arity mismatch when comparing template argument
5441 /// lists.
5442 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5443 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5444 TemplateParameterList *New,
5445 TemplateParameterList *Old,
5446 Sema::TemplateParameterListEqualKind Kind,
5447 SourceLocation TemplateArgLoc) {
5448 unsigned NextDiag = diag::err_template_param_list_different_arity;
5449 if (TemplateArgLoc.isValid()) {
5450 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5451 NextDiag = diag::note_template_param_list_different_arity;
5452 }
5453 S.Diag(New->getTemplateLoc(), NextDiag)
5454 << (New->size() > Old->size())
5455 << (Kind != Sema::TPL_TemplateMatch)
5456 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5457 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5458 << (Kind != Sema::TPL_TemplateMatch)
5459 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5460 }
5461
5462 /// \brief Determine whether the given template parameter lists are
5463 /// equivalent.
5464 ///
5465 /// \param New The new template parameter list, typically written in the
5466 /// source code as part of a new template declaration.
5467 ///
5468 /// \param Old The old template parameter list, typically found via
5469 /// name lookup of the template declared with this template parameter
5470 /// list.
5471 ///
5472 /// \param Complain If true, this routine will produce a diagnostic if
5473 /// the template parameter lists are not equivalent.
5474 ///
5475 /// \param Kind describes how we are to match the template parameter lists.
5476 ///
5477 /// \param TemplateArgLoc If this source location is valid, then we
5478 /// are actually checking the template parameter list of a template
5479 /// argument (New) against the template parameter list of its
5480 /// corresponding template template parameter (Old). We produce
5481 /// slightly different diagnostics in this scenario.
5482 ///
5483 /// \returns True if the template parameter lists are equal, false
5484 /// otherwise.
5485 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5486 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5487 TemplateParameterList *Old,
5488 bool Complain,
5489 TemplateParameterListEqualKind Kind,
5490 SourceLocation TemplateArgLoc) {
5491 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5492 if (Complain)
5493 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5494 TemplateArgLoc);
5495
5496 return false;
5497 }
5498
5499 // C++0x [temp.arg.template]p3:
5500 // A template-argument matches a template template-parameter (call it P)
5501 // when each of the template parameters in the template-parameter-list of
5502 // the template-argument's corresponding class template or alias template
5503 // (call it A) matches the corresponding template parameter in the
5504 // template-parameter-list of P. [...]
5505 TemplateParameterList::iterator NewParm = New->begin();
5506 TemplateParameterList::iterator NewParmEnd = New->end();
5507 for (TemplateParameterList::iterator OldParm = Old->begin(),
5508 OldParmEnd = Old->end();
5509 OldParm != OldParmEnd; ++OldParm) {
5510 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5511 !(*OldParm)->isTemplateParameterPack()) {
5512 if (NewParm == NewParmEnd) {
5513 if (Complain)
5514 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5515 TemplateArgLoc);
5516
5517 return false;
5518 }
5519
5520 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5521 Kind, TemplateArgLoc))
5522 return false;
5523
5524 ++NewParm;
5525 continue;
5526 }
5527
5528 // C++0x [temp.arg.template]p3:
5529 // [...] When P's template- parameter-list contains a template parameter
5530 // pack (14.5.3), the template parameter pack will match zero or more
5531 // template parameters or template parameter packs in the
5532 // template-parameter-list of A with the same type and form as the
5533 // template parameter pack in P (ignoring whether those template
5534 // parameters are template parameter packs).
5535 for (; NewParm != NewParmEnd; ++NewParm) {
5536 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5537 Kind, TemplateArgLoc))
5538 return false;
5539 }
5540 }
5541
5542 // Make sure we exhausted all of the arguments.
5543 if (NewParm != NewParmEnd) {
5544 if (Complain)
5545 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5546 TemplateArgLoc);
5547
5548 return false;
5549 }
5550
5551 return true;
5552 }
5553
5554 /// \brief Check whether a template can be declared within this scope.
5555 ///
5556 /// If the template declaration is valid in this scope, returns
5557 /// false. Otherwise, issues a diagnostic and returns true.
5558 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5559 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5560 if (!S)
5561 return false;
5562
5563 // Find the nearest enclosing declaration scope.
5564 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5565 (S->getFlags() & Scope::TemplateParamScope) != 0)
5566 S = S->getParent();
5567
5568 // C++ [temp]p4:
5569 // A template [...] shall not have C linkage.
5570 DeclContext *Ctx = S->getEntity();
5571 if (Ctx && Ctx->isExternCContext())
5572 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5573 << TemplateParams->getSourceRange();
5574
5575 while (Ctx && isa<LinkageSpecDecl>(Ctx))
5576 Ctx = Ctx->getParent();
5577
5578 // C++ [temp]p2:
5579 // A template-declaration can appear only as a namespace scope or
5580 // class scope declaration.
5581 if (Ctx) {
5582 if (Ctx->isFileContext())
5583 return false;
5584 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5585 // C++ [temp.mem]p2:
5586 // A local class shall not have member templates.
5587 if (RD->isLocalClass())
5588 return Diag(TemplateParams->getTemplateLoc(),
5589 diag::err_template_inside_local_class)
5590 << TemplateParams->getSourceRange();
5591 else
5592 return false;
5593 }
5594 }
5595
5596 return Diag(TemplateParams->getTemplateLoc(),
5597 diag::err_template_outside_namespace_or_class_scope)
5598 << TemplateParams->getSourceRange();
5599 }
5600
5601 /// \brief Determine what kind of template specialization the given declaration
5602 /// is.
getTemplateSpecializationKind(Decl * D)5603 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5604 if (!D)
5605 return TSK_Undeclared;
5606
5607 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5608 return Record->getTemplateSpecializationKind();
5609 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5610 return Function->getTemplateSpecializationKind();
5611 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5612 return Var->getTemplateSpecializationKind();
5613
5614 return TSK_Undeclared;
5615 }
5616
5617 /// \brief Check whether a specialization is well-formed in the current
5618 /// context.
5619 ///
5620 /// This routine determines whether a template specialization can be declared
5621 /// in the current context (C++ [temp.expl.spec]p2).
5622 ///
5623 /// \param S the semantic analysis object for which this check is being
5624 /// performed.
5625 ///
5626 /// \param Specialized the entity being specialized or instantiated, which
5627 /// may be a kind of template (class template, function template, etc.) or
5628 /// a member of a class template (member function, static data member,
5629 /// member class).
5630 ///
5631 /// \param PrevDecl the previous declaration of this entity, if any.
5632 ///
5633 /// \param Loc the location of the explicit specialization or instantiation of
5634 /// this entity.
5635 ///
5636 /// \param IsPartialSpecialization whether this is a partial specialization of
5637 /// a class template.
5638 ///
5639 /// \returns true if there was an error that we cannot recover from, false
5640 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5641 static bool CheckTemplateSpecializationScope(Sema &S,
5642 NamedDecl *Specialized,
5643 NamedDecl *PrevDecl,
5644 SourceLocation Loc,
5645 bool IsPartialSpecialization) {
5646 // Keep these "kind" numbers in sync with the %select statements in the
5647 // various diagnostics emitted by this routine.
5648 int EntityKind = 0;
5649 if (isa<ClassTemplateDecl>(Specialized))
5650 EntityKind = IsPartialSpecialization? 1 : 0;
5651 else if (isa<VarTemplateDecl>(Specialized))
5652 EntityKind = IsPartialSpecialization ? 3 : 2;
5653 else if (isa<FunctionTemplateDecl>(Specialized))
5654 EntityKind = 4;
5655 else if (isa<CXXMethodDecl>(Specialized))
5656 EntityKind = 5;
5657 else if (isa<VarDecl>(Specialized))
5658 EntityKind = 6;
5659 else if (isa<RecordDecl>(Specialized))
5660 EntityKind = 7;
5661 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5662 EntityKind = 8;
5663 else {
5664 S.Diag(Loc, diag::err_template_spec_unknown_kind)
5665 << S.getLangOpts().CPlusPlus11;
5666 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5667 return true;
5668 }
5669
5670 // C++ [temp.expl.spec]p2:
5671 // An explicit specialization shall be declared in the namespace
5672 // of which the template is a member, or, for member templates, in
5673 // the namespace of which the enclosing class or enclosing class
5674 // template is a member. An explicit specialization of a member
5675 // function, member class or static data member of a class
5676 // template shall be declared in the namespace of which the class
5677 // template is a member. Such a declaration may also be a
5678 // definition. If the declaration is not a definition, the
5679 // specialization may be defined later in the name- space in which
5680 // the explicit specialization was declared, or in a namespace
5681 // that encloses the one in which the explicit specialization was
5682 // declared.
5683 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5684 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5685 << Specialized;
5686 return true;
5687 }
5688
5689 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5690 if (S.getLangOpts().MicrosoftExt) {
5691 // Do not warn for class scope explicit specialization during
5692 // instantiation, warning was already emitted during pattern
5693 // semantic analysis.
5694 if (!S.ActiveTemplateInstantiations.size())
5695 S.Diag(Loc, diag::ext_function_specialization_in_class)
5696 << Specialized;
5697 } else {
5698 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5699 << Specialized;
5700 return true;
5701 }
5702 }
5703
5704 if (S.CurContext->isRecord() &&
5705 !S.CurContext->Equals(Specialized->getDeclContext())) {
5706 // Make sure that we're specializing in the right record context.
5707 // Otherwise, things can go horribly wrong.
5708 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5709 << Specialized;
5710 return true;
5711 }
5712
5713 // C++ [temp.class.spec]p6:
5714 // A class template partial specialization may be declared or redeclared
5715 // in any namespace scope in which its definition may be defined (14.5.1
5716 // and 14.5.2).
5717 DeclContext *SpecializedContext
5718 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5719 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5720
5721 // Make sure that this redeclaration (or definition) occurs in an enclosing
5722 // namespace.
5723 // Note that HandleDeclarator() performs this check for explicit
5724 // specializations of function templates, static data members, and member
5725 // functions, so we skip the check here for those kinds of entities.
5726 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5727 // Should we refactor that check, so that it occurs later?
5728 if (!DC->Encloses(SpecializedContext) &&
5729 !(isa<FunctionTemplateDecl>(Specialized) ||
5730 isa<FunctionDecl>(Specialized) ||
5731 isa<VarTemplateDecl>(Specialized) ||
5732 isa<VarDecl>(Specialized))) {
5733 if (isa<TranslationUnitDecl>(SpecializedContext))
5734 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5735 << EntityKind << Specialized;
5736 else if (isa<NamespaceDecl>(SpecializedContext))
5737 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5738 << EntityKind << Specialized
5739 << cast<NamedDecl>(SpecializedContext);
5740 else
5741 llvm_unreachable("unexpected namespace context for specialization");
5742
5743 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5744 } else if ((!PrevDecl ||
5745 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5746 getTemplateSpecializationKind(PrevDecl) ==
5747 TSK_ImplicitInstantiation)) {
5748 // C++ [temp.exp.spec]p2:
5749 // An explicit specialization shall be declared in the namespace of which
5750 // the template is a member, or, for member templates, in the namespace
5751 // of which the enclosing class or enclosing class template is a member.
5752 // An explicit specialization of a member function, member class or
5753 // static data member of a class template shall be declared in the
5754 // namespace of which the class template is a member.
5755 //
5756 // C++11 [temp.expl.spec]p2:
5757 // An explicit specialization shall be declared in a namespace enclosing
5758 // the specialized template.
5759 // C++11 [temp.explicit]p3:
5760 // An explicit instantiation shall appear in an enclosing namespace of its
5761 // template.
5762 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5763 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5764 if (isa<TranslationUnitDecl>(SpecializedContext)) {
5765 assert(!IsCPlusPlus11Extension &&
5766 "DC encloses TU but isn't in enclosing namespace set");
5767 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5768 << EntityKind << Specialized;
5769 } else if (isa<NamespaceDecl>(SpecializedContext)) {
5770 int Diag;
5771 if (!IsCPlusPlus11Extension)
5772 Diag = diag::err_template_spec_decl_out_of_scope;
5773 else if (!S.getLangOpts().CPlusPlus11)
5774 Diag = diag::ext_template_spec_decl_out_of_scope;
5775 else
5776 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5777 S.Diag(Loc, Diag)
5778 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5779 }
5780
5781 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5782 }
5783 }
5784
5785 return false;
5786 }
5787
findTemplateParameter(unsigned Depth,Expr * E)5788 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5789 if (!E->isInstantiationDependent())
5790 return SourceLocation();
5791 DependencyChecker Checker(Depth);
5792 Checker.TraverseStmt(E);
5793 if (Checker.Match && Checker.MatchLoc.isInvalid())
5794 return E->getSourceRange();
5795 return Checker.MatchLoc;
5796 }
5797
findTemplateParameter(unsigned Depth,TypeLoc TL)5798 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
5799 if (!TL.getType()->isDependentType())
5800 return SourceLocation();
5801 DependencyChecker Checker(Depth);
5802 Checker.TraverseTypeLoc(TL);
5803 if (Checker.Match && Checker.MatchLoc.isInvalid())
5804 return TL.getSourceRange();
5805 return Checker.MatchLoc;
5806 }
5807
5808 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5809 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)5810 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5811 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
5812 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
5813 for (unsigned I = 0; I != NumArgs; ++I) {
5814 if (Args[I].getKind() == TemplateArgument::Pack) {
5815 if (CheckNonTypeTemplatePartialSpecializationArgs(
5816 S, TemplateNameLoc, Param, Args[I].pack_begin(),
5817 Args[I].pack_size(), IsDefaultArgument))
5818 return true;
5819
5820 continue;
5821 }
5822
5823 if (Args[I].getKind() != TemplateArgument::Expression)
5824 continue;
5825
5826 Expr *ArgExpr = Args[I].getAsExpr();
5827
5828 // We can have a pack expansion of any of the bullets below.
5829 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5830 ArgExpr = Expansion->getPattern();
5831
5832 // Strip off any implicit casts we added as part of type checking.
5833 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5834 ArgExpr = ICE->getSubExpr();
5835
5836 // C++ [temp.class.spec]p8:
5837 // A non-type argument is non-specialized if it is the name of a
5838 // non-type parameter. All other non-type arguments are
5839 // specialized.
5840 //
5841 // Below, we check the two conditions that only apply to
5842 // specialized non-type arguments, so skip any non-specialized
5843 // arguments.
5844 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5845 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5846 continue;
5847
5848 // C++ [temp.class.spec]p9:
5849 // Within the argument list of a class template partial
5850 // specialization, the following restrictions apply:
5851 // -- A partially specialized non-type argument expression
5852 // shall not involve a template parameter of the partial
5853 // specialization except when the argument expression is a
5854 // simple identifier.
5855 SourceRange ParamUseRange =
5856 findTemplateParameter(Param->getDepth(), ArgExpr);
5857 if (ParamUseRange.isValid()) {
5858 if (IsDefaultArgument) {
5859 S.Diag(TemplateNameLoc,
5860 diag::err_dependent_non_type_arg_in_partial_spec);
5861 S.Diag(ParamUseRange.getBegin(),
5862 diag::note_dependent_non_type_default_arg_in_partial_spec)
5863 << ParamUseRange;
5864 } else {
5865 S.Diag(ParamUseRange.getBegin(),
5866 diag::err_dependent_non_type_arg_in_partial_spec)
5867 << ParamUseRange;
5868 }
5869 return true;
5870 }
5871
5872 // -- The type of a template parameter corresponding to a
5873 // specialized non-type argument shall not be dependent on a
5874 // parameter of the specialization.
5875 //
5876 // FIXME: We need to delay this check until instantiation in some cases:
5877 //
5878 // template<template<typename> class X> struct A {
5879 // template<typename T, X<T> N> struct B;
5880 // template<typename T> struct B<T, 0>;
5881 // };
5882 // template<typename> using X = int;
5883 // A<X>::B<int, 0> b;
5884 ParamUseRange = findTemplateParameter(
5885 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
5886 if (ParamUseRange.isValid()) {
5887 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
5888 diag::err_dependent_typed_non_type_arg_in_partial_spec)
5889 << Param->getType() << ParamUseRange;
5890 S.Diag(Param->getLocation(), diag::note_template_param_here)
5891 << (IsDefaultArgument ? ParamUseRange : SourceRange());
5892 return true;
5893 }
5894 }
5895
5896 return false;
5897 }
5898
5899 /// \brief Check the non-type template arguments of a class template
5900 /// partial specialization according to C++ [temp.class.spec]p9.
5901 ///
5902 /// \param TemplateNameLoc the location of the template name.
5903 /// \param TemplateParams the template parameters of the primary class
5904 /// template.
5905 /// \param NumExplicit the number of explicitly-specified template arguments.
5906 /// \param TemplateArgs the template arguments of the class template
5907 /// partial specialization.
5908 ///
5909 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)5910 static bool CheckTemplatePartialSpecializationArgs(
5911 Sema &S, SourceLocation TemplateNameLoc,
5912 TemplateParameterList *TemplateParams, unsigned NumExplicit,
5913 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5914 const TemplateArgument *ArgList = TemplateArgs.data();
5915
5916 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5917 NonTypeTemplateParmDecl *Param
5918 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5919 if (!Param)
5920 continue;
5921
5922 if (CheckNonTypeTemplatePartialSpecializationArgs(
5923 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
5924 return true;
5925 }
5926
5927 return false;
5928 }
5929
5930 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5931 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5932 TagUseKind TUK,
5933 SourceLocation KWLoc,
5934 SourceLocation ModulePrivateLoc,
5935 TemplateIdAnnotation &TemplateId,
5936 AttributeList *Attr,
5937 MultiTemplateParamsArg TemplateParameterLists) {
5938 assert(TUK != TUK_Reference && "References are not specializations");
5939
5940 CXXScopeSpec &SS = TemplateId.SS;
5941
5942 // NOTE: KWLoc is the location of the tag keyword. This will instead
5943 // store the location of the outermost template keyword in the declaration.
5944 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5945 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
5946 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
5947 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
5948 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
5949
5950 // Find the class template we're specializing
5951 TemplateName Name = TemplateId.Template.get();
5952 ClassTemplateDecl *ClassTemplate
5953 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5954
5955 if (!ClassTemplate) {
5956 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5957 << (Name.getAsTemplateDecl() &&
5958 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5959 return true;
5960 }
5961
5962 bool isExplicitSpecialization = false;
5963 bool isPartialSpecialization = false;
5964
5965 // Check the validity of the template headers that introduce this
5966 // template.
5967 // FIXME: We probably shouldn't complain about these headers for
5968 // friend declarations.
5969 bool Invalid = false;
5970 TemplateParameterList *TemplateParams =
5971 MatchTemplateParametersToScopeSpecifier(
5972 KWLoc, TemplateNameLoc, SS, &TemplateId,
5973 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
5974 Invalid);
5975 if (Invalid)
5976 return true;
5977
5978 if (TemplateParams && TemplateParams->size() > 0) {
5979 isPartialSpecialization = true;
5980
5981 if (TUK == TUK_Friend) {
5982 Diag(KWLoc, diag::err_partial_specialization_friend)
5983 << SourceRange(LAngleLoc, RAngleLoc);
5984 return true;
5985 }
5986
5987 // C++ [temp.class.spec]p10:
5988 // The template parameter list of a specialization shall not
5989 // contain default template argument values.
5990 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5991 Decl *Param = TemplateParams->getParam(I);
5992 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5993 if (TTP->hasDefaultArgument()) {
5994 Diag(TTP->getDefaultArgumentLoc(),
5995 diag::err_default_arg_in_partial_spec);
5996 TTP->removeDefaultArgument();
5997 }
5998 } else if (NonTypeTemplateParmDecl *NTTP
5999 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6000 if (Expr *DefArg = NTTP->getDefaultArgument()) {
6001 Diag(NTTP->getDefaultArgumentLoc(),
6002 diag::err_default_arg_in_partial_spec)
6003 << DefArg->getSourceRange();
6004 NTTP->removeDefaultArgument();
6005 }
6006 } else {
6007 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6008 if (TTP->hasDefaultArgument()) {
6009 Diag(TTP->getDefaultArgument().getLocation(),
6010 diag::err_default_arg_in_partial_spec)
6011 << TTP->getDefaultArgument().getSourceRange();
6012 TTP->removeDefaultArgument();
6013 }
6014 }
6015 }
6016 } else if (TemplateParams) {
6017 if (TUK == TUK_Friend)
6018 Diag(KWLoc, diag::err_template_spec_friend)
6019 << FixItHint::CreateRemoval(
6020 SourceRange(TemplateParams->getTemplateLoc(),
6021 TemplateParams->getRAngleLoc()))
6022 << SourceRange(LAngleLoc, RAngleLoc);
6023 else
6024 isExplicitSpecialization = true;
6025 } else {
6026 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6027 }
6028
6029 // Check that the specialization uses the same tag kind as the
6030 // original template.
6031 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6032 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6033 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6034 Kind, TUK == TUK_Definition, KWLoc,
6035 *ClassTemplate->getIdentifier())) {
6036 Diag(KWLoc, diag::err_use_with_wrong_tag)
6037 << ClassTemplate
6038 << FixItHint::CreateReplacement(KWLoc,
6039 ClassTemplate->getTemplatedDecl()->getKindName());
6040 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6041 diag::note_previous_use);
6042 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6043 }
6044
6045 // Translate the parser's template argument list in our AST format.
6046 TemplateArgumentListInfo TemplateArgs =
6047 makeTemplateArgumentListInfo(*this, TemplateId);
6048
6049 // Check for unexpanded parameter packs in any of the template arguments.
6050 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6051 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6052 UPPC_PartialSpecialization))
6053 return true;
6054
6055 // Check that the template argument list is well-formed for this
6056 // template.
6057 SmallVector<TemplateArgument, 4> Converted;
6058 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6059 TemplateArgs, false, Converted))
6060 return true;
6061
6062 // Find the class template (partial) specialization declaration that
6063 // corresponds to these arguments.
6064 if (isPartialSpecialization) {
6065 if (CheckTemplatePartialSpecializationArgs(
6066 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6067 TemplateArgs.size(), Converted))
6068 return true;
6069
6070 bool InstantiationDependent;
6071 if (!Name.isDependent() &&
6072 !TemplateSpecializationType::anyDependentTemplateArguments(
6073 TemplateArgs.getArgumentArray(),
6074 TemplateArgs.size(),
6075 InstantiationDependent)) {
6076 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6077 << ClassTemplate->getDeclName();
6078 isPartialSpecialization = false;
6079 }
6080 }
6081
6082 void *InsertPos = nullptr;
6083 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6084
6085 if (isPartialSpecialization)
6086 // FIXME: Template parameter list matters, too
6087 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6088 else
6089 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6090
6091 ClassTemplateSpecializationDecl *Specialization = nullptr;
6092
6093 // Check whether we can declare a class template specialization in
6094 // the current scope.
6095 if (TUK != TUK_Friend &&
6096 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6097 TemplateNameLoc,
6098 isPartialSpecialization))
6099 return true;
6100
6101 // The canonical type
6102 QualType CanonType;
6103 if (isPartialSpecialization) {
6104 // Build the canonical type that describes the converted template
6105 // arguments of the class template partial specialization.
6106 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6107 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6108 Converted.data(),
6109 Converted.size());
6110
6111 if (Context.hasSameType(CanonType,
6112 ClassTemplate->getInjectedClassNameSpecialization())) {
6113 // C++ [temp.class.spec]p9b3:
6114 //
6115 // -- The argument list of the specialization shall not be identical
6116 // to the implicit argument list of the primary template.
6117 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6118 << /*class template*/0 << (TUK == TUK_Definition)
6119 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6120 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6121 ClassTemplate->getIdentifier(),
6122 TemplateNameLoc,
6123 Attr,
6124 TemplateParams,
6125 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6126 TemplateParameterLists.size() - 1,
6127 TemplateParameterLists.data());
6128 }
6129
6130 // Create a new class template partial specialization declaration node.
6131 ClassTemplatePartialSpecializationDecl *PrevPartial
6132 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6133 ClassTemplatePartialSpecializationDecl *Partial
6134 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6135 ClassTemplate->getDeclContext(),
6136 KWLoc, TemplateNameLoc,
6137 TemplateParams,
6138 ClassTemplate,
6139 Converted.data(),
6140 Converted.size(),
6141 TemplateArgs,
6142 CanonType,
6143 PrevPartial);
6144 SetNestedNameSpecifier(Partial, SS);
6145 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6146 Partial->setTemplateParameterListsInfo(Context,
6147 TemplateParameterLists.size() - 1,
6148 TemplateParameterLists.data());
6149 }
6150
6151 if (!PrevPartial)
6152 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6153 Specialization = Partial;
6154
6155 // If we are providing an explicit specialization of a member class
6156 // template specialization, make a note of that.
6157 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6158 PrevPartial->setMemberSpecialization();
6159
6160 // Check that all of the template parameters of the class template
6161 // partial specialization are deducible from the template
6162 // arguments. If not, this class template partial specialization
6163 // will never be used.
6164 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6165 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6166 TemplateParams->getDepth(),
6167 DeducibleParams);
6168
6169 if (!DeducibleParams.all()) {
6170 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6171 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6172 << /*class template*/0 << (NumNonDeducible > 1)
6173 << SourceRange(TemplateNameLoc, RAngleLoc);
6174 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6175 if (!DeducibleParams[I]) {
6176 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6177 if (Param->getDeclName())
6178 Diag(Param->getLocation(),
6179 diag::note_partial_spec_unused_parameter)
6180 << Param->getDeclName();
6181 else
6182 Diag(Param->getLocation(),
6183 diag::note_partial_spec_unused_parameter)
6184 << "(anonymous)";
6185 }
6186 }
6187 }
6188 } else {
6189 // Create a new class template specialization declaration node for
6190 // this explicit specialization or friend declaration.
6191 Specialization
6192 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6193 ClassTemplate->getDeclContext(),
6194 KWLoc, TemplateNameLoc,
6195 ClassTemplate,
6196 Converted.data(),
6197 Converted.size(),
6198 PrevDecl);
6199 SetNestedNameSpecifier(Specialization, SS);
6200 if (TemplateParameterLists.size() > 0) {
6201 Specialization->setTemplateParameterListsInfo(Context,
6202 TemplateParameterLists.size(),
6203 TemplateParameterLists.data());
6204 }
6205
6206 if (!PrevDecl)
6207 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6208
6209 CanonType = Context.getTypeDeclType(Specialization);
6210 }
6211
6212 // C++ [temp.expl.spec]p6:
6213 // If a template, a member template or the member of a class template is
6214 // explicitly specialized then that specialization shall be declared
6215 // before the first use of that specialization that would cause an implicit
6216 // instantiation to take place, in every translation unit in which such a
6217 // use occurs; no diagnostic is required.
6218 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6219 bool Okay = false;
6220 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6221 // Is there any previous explicit specialization declaration?
6222 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6223 Okay = true;
6224 break;
6225 }
6226 }
6227
6228 if (!Okay) {
6229 SourceRange Range(TemplateNameLoc, RAngleLoc);
6230 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6231 << Context.getTypeDeclType(Specialization) << Range;
6232
6233 Diag(PrevDecl->getPointOfInstantiation(),
6234 diag::note_instantiation_required_here)
6235 << (PrevDecl->getTemplateSpecializationKind()
6236 != TSK_ImplicitInstantiation);
6237 return true;
6238 }
6239 }
6240
6241 // If this is not a friend, note that this is an explicit specialization.
6242 if (TUK != TUK_Friend)
6243 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6244
6245 // Check that this isn't a redefinition of this specialization.
6246 if (TUK == TUK_Definition) {
6247 if (RecordDecl *Def = Specialization->getDefinition()) {
6248 SourceRange Range(TemplateNameLoc, RAngleLoc);
6249 Diag(TemplateNameLoc, diag::err_redefinition)
6250 << Context.getTypeDeclType(Specialization) << Range;
6251 Diag(Def->getLocation(), diag::note_previous_definition);
6252 Specialization->setInvalidDecl();
6253 return true;
6254 }
6255 }
6256
6257 if (Attr)
6258 ProcessDeclAttributeList(S, Specialization, Attr);
6259
6260 // Add alignment attributes if necessary; these attributes are checked when
6261 // the ASTContext lays out the structure.
6262 if (TUK == TUK_Definition) {
6263 AddAlignmentAttributesForRecord(Specialization);
6264 AddMsStructLayoutForRecord(Specialization);
6265 }
6266
6267 if (ModulePrivateLoc.isValid())
6268 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6269 << (isPartialSpecialization? 1 : 0)
6270 << FixItHint::CreateRemoval(ModulePrivateLoc);
6271
6272 // Build the fully-sugared type for this class template
6273 // specialization as the user wrote in the specialization
6274 // itself. This means that we'll pretty-print the type retrieved
6275 // from the specialization's declaration the way that the user
6276 // actually wrote the specialization, rather than formatting the
6277 // name based on the "canonical" representation used to store the
6278 // template arguments in the specialization.
6279 TypeSourceInfo *WrittenTy
6280 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6281 TemplateArgs, CanonType);
6282 if (TUK != TUK_Friend) {
6283 Specialization->setTypeAsWritten(WrittenTy);
6284 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6285 }
6286
6287 // C++ [temp.expl.spec]p9:
6288 // A template explicit specialization is in the scope of the
6289 // namespace in which the template was defined.
6290 //
6291 // We actually implement this paragraph where we set the semantic
6292 // context (in the creation of the ClassTemplateSpecializationDecl),
6293 // but we also maintain the lexical context where the actual
6294 // definition occurs.
6295 Specialization->setLexicalDeclContext(CurContext);
6296
6297 // We may be starting the definition of this specialization.
6298 if (TUK == TUK_Definition)
6299 Specialization->startDefinition();
6300
6301 if (TUK == TUK_Friend) {
6302 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6303 TemplateNameLoc,
6304 WrittenTy,
6305 /*FIXME:*/KWLoc);
6306 Friend->setAccess(AS_public);
6307 CurContext->addDecl(Friend);
6308 } else {
6309 // Add the specialization into its lexical context, so that it can
6310 // be seen when iterating through the list of declarations in that
6311 // context. However, specializations are not found by name lookup.
6312 CurContext->addDecl(Specialization);
6313 }
6314 return Specialization;
6315 }
6316
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6317 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6318 MultiTemplateParamsArg TemplateParameterLists,
6319 Declarator &D) {
6320 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6321 ActOnDocumentableDecl(NewDecl);
6322 return NewDecl;
6323 }
6324
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6325 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6326 MultiTemplateParamsArg TemplateParameterLists,
6327 Declarator &D) {
6328 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
6329 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6330
6331 if (FTI.hasPrototype) {
6332 // FIXME: Diagnose arguments without names in C.
6333 }
6334
6335 Scope *ParentScope = FnBodyScope->getParent();
6336
6337 D.setFunctionDefinitionKind(FDK_Definition);
6338 Decl *DP = HandleDeclarator(ParentScope, D,
6339 TemplateParameterLists);
6340 return ActOnStartOfFunctionDef(FnBodyScope, DP);
6341 }
6342
6343 /// \brief Strips various properties off an implicit instantiation
6344 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6345 static void StripImplicitInstantiation(NamedDecl *D) {
6346 D->dropAttrs();
6347
6348 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6349 FD->setInlineSpecified(false);
6350
6351 for (auto I : FD->params())
6352 I->dropAttrs();
6353 }
6354 }
6355
6356 /// \brief Compute the diagnostic location for an explicit instantiation
6357 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6358 static SourceLocation DiagLocForExplicitInstantiation(
6359 NamedDecl* D, SourceLocation PointOfInstantiation) {
6360 // Explicit instantiations following a specialization have no effect and
6361 // hence no PointOfInstantiation. In that case, walk decl backwards
6362 // until a valid name loc is found.
6363 SourceLocation PrevDiagLoc = PointOfInstantiation;
6364 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6365 Prev = Prev->getPreviousDecl()) {
6366 PrevDiagLoc = Prev->getLocation();
6367 }
6368 assert(PrevDiagLoc.isValid() &&
6369 "Explicit instantiation without point of instantiation?");
6370 return PrevDiagLoc;
6371 }
6372
6373 /// \brief Diagnose cases where we have an explicit template specialization
6374 /// before/after an explicit template instantiation, producing diagnostics
6375 /// for those cases where they are required and determining whether the
6376 /// new specialization/instantiation will have any effect.
6377 ///
6378 /// \param NewLoc the location of the new explicit specialization or
6379 /// instantiation.
6380 ///
6381 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6382 ///
6383 /// \param PrevDecl the previous declaration of the entity.
6384 ///
6385 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6386 ///
6387 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6388 /// declaration was instantiated (either implicitly or explicitly).
6389 ///
6390 /// \param HasNoEffect will be set to true to indicate that the new
6391 /// specialization or instantiation has no effect and should be ignored.
6392 ///
6393 /// \returns true if there was an error that should prevent the introduction of
6394 /// the new declaration into the AST, false otherwise.
6395 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6396 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6397 TemplateSpecializationKind NewTSK,
6398 NamedDecl *PrevDecl,
6399 TemplateSpecializationKind PrevTSK,
6400 SourceLocation PrevPointOfInstantiation,
6401 bool &HasNoEffect) {
6402 HasNoEffect = false;
6403
6404 switch (NewTSK) {
6405 case TSK_Undeclared:
6406 case TSK_ImplicitInstantiation:
6407 assert(
6408 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6409 "previous declaration must be implicit!");
6410 return false;
6411
6412 case TSK_ExplicitSpecialization:
6413 switch (PrevTSK) {
6414 case TSK_Undeclared:
6415 case TSK_ExplicitSpecialization:
6416 // Okay, we're just specializing something that is either already
6417 // explicitly specialized or has merely been mentioned without any
6418 // instantiation.
6419 return false;
6420
6421 case TSK_ImplicitInstantiation:
6422 if (PrevPointOfInstantiation.isInvalid()) {
6423 // The declaration itself has not actually been instantiated, so it is
6424 // still okay to specialize it.
6425 StripImplicitInstantiation(PrevDecl);
6426 return false;
6427 }
6428 // Fall through
6429
6430 case TSK_ExplicitInstantiationDeclaration:
6431 case TSK_ExplicitInstantiationDefinition:
6432 assert((PrevTSK == TSK_ImplicitInstantiation ||
6433 PrevPointOfInstantiation.isValid()) &&
6434 "Explicit instantiation without point of instantiation?");
6435
6436 // C++ [temp.expl.spec]p6:
6437 // If a template, a member template or the member of a class template
6438 // is explicitly specialized then that specialization shall be declared
6439 // before the first use of that specialization that would cause an
6440 // implicit instantiation to take place, in every translation unit in
6441 // which such a use occurs; no diagnostic is required.
6442 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6443 // Is there any previous explicit specialization declaration?
6444 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6445 return false;
6446 }
6447
6448 Diag(NewLoc, diag::err_specialization_after_instantiation)
6449 << PrevDecl;
6450 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6451 << (PrevTSK != TSK_ImplicitInstantiation);
6452
6453 return true;
6454 }
6455
6456 case TSK_ExplicitInstantiationDeclaration:
6457 switch (PrevTSK) {
6458 case TSK_ExplicitInstantiationDeclaration:
6459 // This explicit instantiation declaration is redundant (that's okay).
6460 HasNoEffect = true;
6461 return false;
6462
6463 case TSK_Undeclared:
6464 case TSK_ImplicitInstantiation:
6465 // We're explicitly instantiating something that may have already been
6466 // implicitly instantiated; that's fine.
6467 return false;
6468
6469 case TSK_ExplicitSpecialization:
6470 // C++0x [temp.explicit]p4:
6471 // For a given set of template parameters, if an explicit instantiation
6472 // of a template appears after a declaration of an explicit
6473 // specialization for that template, the explicit instantiation has no
6474 // effect.
6475 HasNoEffect = true;
6476 return false;
6477
6478 case TSK_ExplicitInstantiationDefinition:
6479 // C++0x [temp.explicit]p10:
6480 // If an entity is the subject of both an explicit instantiation
6481 // declaration and an explicit instantiation definition in the same
6482 // translation unit, the definition shall follow the declaration.
6483 Diag(NewLoc,
6484 diag::err_explicit_instantiation_declaration_after_definition);
6485
6486 // Explicit instantiations following a specialization have no effect and
6487 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6488 // until a valid name loc is found.
6489 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6490 diag::note_explicit_instantiation_definition_here);
6491 HasNoEffect = true;
6492 return false;
6493 }
6494
6495 case TSK_ExplicitInstantiationDefinition:
6496 switch (PrevTSK) {
6497 case TSK_Undeclared:
6498 case TSK_ImplicitInstantiation:
6499 // We're explicitly instantiating something that may have already been
6500 // implicitly instantiated; that's fine.
6501 return false;
6502
6503 case TSK_ExplicitSpecialization:
6504 // C++ DR 259, C++0x [temp.explicit]p4:
6505 // For a given set of template parameters, if an explicit
6506 // instantiation of a template appears after a declaration of
6507 // an explicit specialization for that template, the explicit
6508 // instantiation has no effect.
6509 //
6510 // In C++98/03 mode, we only give an extension warning here, because it
6511 // is not harmful to try to explicitly instantiate something that
6512 // has been explicitly specialized.
6513 Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6514 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6515 diag::ext_explicit_instantiation_after_specialization)
6516 << PrevDecl;
6517 Diag(PrevDecl->getLocation(),
6518 diag::note_previous_template_specialization);
6519 HasNoEffect = true;
6520 return false;
6521
6522 case TSK_ExplicitInstantiationDeclaration:
6523 // We're explicity instantiating a definition for something for which we
6524 // were previously asked to suppress instantiations. That's fine.
6525
6526 // C++0x [temp.explicit]p4:
6527 // For a given set of template parameters, if an explicit instantiation
6528 // of a template appears after a declaration of an explicit
6529 // specialization for that template, the explicit instantiation has no
6530 // effect.
6531 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6532 // Is there any previous explicit specialization declaration?
6533 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6534 HasNoEffect = true;
6535 break;
6536 }
6537 }
6538
6539 return false;
6540
6541 case TSK_ExplicitInstantiationDefinition:
6542 // C++0x [temp.spec]p5:
6543 // For a given template and a given set of template-arguments,
6544 // - an explicit instantiation definition shall appear at most once
6545 // in a program,
6546
6547 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6548 Diag(NewLoc, (getLangOpts().MSVCCompat)
6549 ? diag::warn_explicit_instantiation_duplicate
6550 : diag::err_explicit_instantiation_duplicate)
6551 << PrevDecl;
6552 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6553 diag::note_previous_explicit_instantiation);
6554 HasNoEffect = true;
6555 return false;
6556 }
6557 }
6558
6559 llvm_unreachable("Missing specialization/instantiation case?");
6560 }
6561
6562 /// \brief Perform semantic analysis for the given dependent function
6563 /// template specialization.
6564 ///
6565 /// The only possible way to get a dependent function template specialization
6566 /// is with a friend declaration, like so:
6567 ///
6568 /// \code
6569 /// template \<class T> void foo(T);
6570 /// template \<class T> class A {
6571 /// friend void foo<>(T);
6572 /// };
6573 /// \endcode
6574 ///
6575 /// There really isn't any useful analysis we can do here, so we
6576 /// just store the information.
6577 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6578 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6579 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6580 LookupResult &Previous) {
6581 // Remove anything from Previous that isn't a function template in
6582 // the correct context.
6583 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6584 LookupResult::Filter F = Previous.makeFilter();
6585 while (F.hasNext()) {
6586 NamedDecl *D = F.next()->getUnderlyingDecl();
6587 if (!isa<FunctionTemplateDecl>(D) ||
6588 !FDLookupContext->InEnclosingNamespaceSetOf(
6589 D->getDeclContext()->getRedeclContext()))
6590 F.erase();
6591 }
6592 F.done();
6593
6594 // Should this be diagnosed here?
6595 if (Previous.empty()) return true;
6596
6597 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6598 ExplicitTemplateArgs);
6599 return false;
6600 }
6601
6602 /// \brief Perform semantic analysis for the given function template
6603 /// specialization.
6604 ///
6605 /// This routine performs all of the semantic analysis required for an
6606 /// explicit function template specialization. On successful completion,
6607 /// the function declaration \p FD will become a function template
6608 /// specialization.
6609 ///
6610 /// \param FD the function declaration, which will be updated to become a
6611 /// function template specialization.
6612 ///
6613 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6614 /// if any. Note that this may be valid info even when 0 arguments are
6615 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6616 /// as it anyway contains info on the angle brackets locations.
6617 ///
6618 /// \param Previous the set of declarations that may be specialized by
6619 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6620 bool Sema::CheckFunctionTemplateSpecialization(
6621 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6622 LookupResult &Previous) {
6623 // The set of function template specializations that could match this
6624 // explicit function template specialization.
6625 UnresolvedSet<8> Candidates;
6626 TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6627
6628 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6629 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6630 I != E; ++I) {
6631 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6632 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6633 // Only consider templates found within the same semantic lookup scope as
6634 // FD.
6635 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6636 Ovl->getDeclContext()->getRedeclContext()))
6637 continue;
6638
6639 // When matching a constexpr member function template specialization
6640 // against the primary template, we don't yet know whether the
6641 // specialization has an implicit 'const' (because we don't know whether
6642 // it will be a static member function until we know which template it
6643 // specializes), so adjust it now assuming it specializes this template.
6644 QualType FT = FD->getType();
6645 if (FD->isConstexpr()) {
6646 CXXMethodDecl *OldMD =
6647 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6648 if (OldMD && OldMD->isConst()) {
6649 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6650 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6651 EPI.TypeQuals |= Qualifiers::Const;
6652 FT = Context.getFunctionType(FPT->getReturnType(),
6653 FPT->getParamTypes(), EPI);
6654 }
6655 }
6656
6657 // C++ [temp.expl.spec]p11:
6658 // A trailing template-argument can be left unspecified in the
6659 // template-id naming an explicit function template specialization
6660 // provided it can be deduced from the function argument type.
6661 // Perform template argument deduction to determine whether we may be
6662 // specializing this template.
6663 // FIXME: It is somewhat wasteful to build
6664 TemplateDeductionInfo Info(FailedCandidates.getLocation());
6665 FunctionDecl *Specialization = nullptr;
6666 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6667 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6668 ExplicitTemplateArgs, FT, Specialization, Info)) {
6669 // Template argument deduction failed; record why it failed, so
6670 // that we can provide nifty diagnostics.
6671 FailedCandidates.addCandidate()
6672 .set(FunTmpl->getTemplatedDecl(),
6673 MakeDeductionFailureInfo(Context, TDK, Info));
6674 (void)TDK;
6675 continue;
6676 }
6677
6678 // Record this candidate.
6679 Candidates.addDecl(Specialization, I.getAccess());
6680 }
6681 }
6682
6683 // Find the most specialized function template.
6684 UnresolvedSetIterator Result = getMostSpecialized(
6685 Candidates.begin(), Candidates.end(), FailedCandidates,
6686 FD->getLocation(),
6687 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6688 PDiag(diag::err_function_template_spec_ambiguous)
6689 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6690 PDiag(diag::note_function_template_spec_matched));
6691
6692 if (Result == Candidates.end())
6693 return true;
6694
6695 // Ignore access information; it doesn't figure into redeclaration checking.
6696 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6697
6698 FunctionTemplateSpecializationInfo *SpecInfo
6699 = Specialization->getTemplateSpecializationInfo();
6700 assert(SpecInfo && "Function template specialization info missing?");
6701
6702 // Note: do not overwrite location info if previous template
6703 // specialization kind was explicit.
6704 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6705 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6706 Specialization->setLocation(FD->getLocation());
6707 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6708 // function can differ from the template declaration with respect to
6709 // the constexpr specifier.
6710 Specialization->setConstexpr(FD->isConstexpr());
6711 }
6712
6713 // FIXME: Check if the prior specialization has a point of instantiation.
6714 // If so, we have run afoul of .
6715
6716 // If this is a friend declaration, then we're not really declaring
6717 // an explicit specialization.
6718 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6719
6720 // Check the scope of this explicit specialization.
6721 if (!isFriend &&
6722 CheckTemplateSpecializationScope(*this,
6723 Specialization->getPrimaryTemplate(),
6724 Specialization, FD->getLocation(),
6725 false))
6726 return true;
6727
6728 // C++ [temp.expl.spec]p6:
6729 // If a template, a member template or the member of a class template is
6730 // explicitly specialized then that specialization shall be declared
6731 // before the first use of that specialization that would cause an implicit
6732 // instantiation to take place, in every translation unit in which such a
6733 // use occurs; no diagnostic is required.
6734 bool HasNoEffect = false;
6735 if (!isFriend &&
6736 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6737 TSK_ExplicitSpecialization,
6738 Specialization,
6739 SpecInfo->getTemplateSpecializationKind(),
6740 SpecInfo->getPointOfInstantiation(),
6741 HasNoEffect))
6742 return true;
6743
6744 // Mark the prior declaration as an explicit specialization, so that later
6745 // clients know that this is an explicit specialization.
6746 if (!isFriend) {
6747 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6748 MarkUnusedFileScopedDecl(Specialization);
6749 }
6750
6751 // Turn the given function declaration into a function template
6752 // specialization, with the template arguments from the previous
6753 // specialization.
6754 // Take copies of (semantic and syntactic) template argument lists.
6755 const TemplateArgumentList* TemplArgs = new (Context)
6756 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6757 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6758 TemplArgs, /*InsertPos=*/nullptr,
6759 SpecInfo->getTemplateSpecializationKind(),
6760 ExplicitTemplateArgs);
6761
6762 // The "previous declaration" for this function template specialization is
6763 // the prior function template specialization.
6764 Previous.clear();
6765 Previous.addDecl(Specialization);
6766 return false;
6767 }
6768
6769 /// \brief Perform semantic analysis for the given non-template member
6770 /// specialization.
6771 ///
6772 /// This routine performs all of the semantic analysis required for an
6773 /// explicit member function specialization. On successful completion,
6774 /// the function declaration \p FD will become a member function
6775 /// specialization.
6776 ///
6777 /// \param Member the member declaration, which will be updated to become a
6778 /// specialization.
6779 ///
6780 /// \param Previous the set of declarations, one of which may be specialized
6781 /// by this function specialization; the set will be modified to contain the
6782 /// redeclared member.
6783 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6784 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6785 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6786
6787 // Try to find the member we are instantiating.
6788 NamedDecl *Instantiation = nullptr;
6789 NamedDecl *InstantiatedFrom = nullptr;
6790 MemberSpecializationInfo *MSInfo = nullptr;
6791
6792 if (Previous.empty()) {
6793 // Nowhere to look anyway.
6794 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6795 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6796 I != E; ++I) {
6797 NamedDecl *D = (*I)->getUnderlyingDecl();
6798 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6799 QualType Adjusted = Function->getType();
6800 if (!hasExplicitCallingConv(Adjusted))
6801 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
6802 if (Context.hasSameType(Adjusted, Method->getType())) {
6803 Instantiation = Method;
6804 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6805 MSInfo = Method->getMemberSpecializationInfo();
6806 break;
6807 }
6808 }
6809 }
6810 } else if (isa<VarDecl>(Member)) {
6811 VarDecl *PrevVar;
6812 if (Previous.isSingleResult() &&
6813 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6814 if (PrevVar->isStaticDataMember()) {
6815 Instantiation = PrevVar;
6816 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6817 MSInfo = PrevVar->getMemberSpecializationInfo();
6818 }
6819 } else if (isa<RecordDecl>(Member)) {
6820 CXXRecordDecl *PrevRecord;
6821 if (Previous.isSingleResult() &&
6822 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6823 Instantiation = PrevRecord;
6824 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6825 MSInfo = PrevRecord->getMemberSpecializationInfo();
6826 }
6827 } else if (isa<EnumDecl>(Member)) {
6828 EnumDecl *PrevEnum;
6829 if (Previous.isSingleResult() &&
6830 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6831 Instantiation = PrevEnum;
6832 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6833 MSInfo = PrevEnum->getMemberSpecializationInfo();
6834 }
6835 }
6836
6837 if (!Instantiation) {
6838 // There is no previous declaration that matches. Since member
6839 // specializations are always out-of-line, the caller will complain about
6840 // this mismatch later.
6841 return false;
6842 }
6843
6844 // If this is a friend, just bail out here before we start turning
6845 // things into explicit specializations.
6846 if (Member->getFriendObjectKind() != Decl::FOK_None) {
6847 // Preserve instantiation information.
6848 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6849 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6850 cast<CXXMethodDecl>(InstantiatedFrom),
6851 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6852 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6853 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6854 cast<CXXRecordDecl>(InstantiatedFrom),
6855 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6856 }
6857
6858 Previous.clear();
6859 Previous.addDecl(Instantiation);
6860 return false;
6861 }
6862
6863 // Make sure that this is a specialization of a member.
6864 if (!InstantiatedFrom) {
6865 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6866 << Member;
6867 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6868 return true;
6869 }
6870
6871 // C++ [temp.expl.spec]p6:
6872 // If a template, a member template or the member of a class template is
6873 // explicitly specialized then that specialization shall be declared
6874 // before the first use of that specialization that would cause an implicit
6875 // instantiation to take place, in every translation unit in which such a
6876 // use occurs; no diagnostic is required.
6877 assert(MSInfo && "Member specialization info missing?");
6878
6879 bool HasNoEffect = false;
6880 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6881 TSK_ExplicitSpecialization,
6882 Instantiation,
6883 MSInfo->getTemplateSpecializationKind(),
6884 MSInfo->getPointOfInstantiation(),
6885 HasNoEffect))
6886 return true;
6887
6888 // Check the scope of this explicit specialization.
6889 if (CheckTemplateSpecializationScope(*this,
6890 InstantiatedFrom,
6891 Instantiation, Member->getLocation(),
6892 false))
6893 return true;
6894
6895 // Note that this is an explicit instantiation of a member.
6896 // the original declaration to note that it is an explicit specialization
6897 // (if it was previously an implicit instantiation). This latter step
6898 // makes bookkeeping easier.
6899 if (isa<FunctionDecl>(Member)) {
6900 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6901 if (InstantiationFunction->getTemplateSpecializationKind() ==
6902 TSK_ImplicitInstantiation) {
6903 InstantiationFunction->setTemplateSpecializationKind(
6904 TSK_ExplicitSpecialization);
6905 InstantiationFunction->setLocation(Member->getLocation());
6906 }
6907
6908 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6909 cast<CXXMethodDecl>(InstantiatedFrom),
6910 TSK_ExplicitSpecialization);
6911 MarkUnusedFileScopedDecl(InstantiationFunction);
6912 } else if (isa<VarDecl>(Member)) {
6913 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6914 if (InstantiationVar->getTemplateSpecializationKind() ==
6915 TSK_ImplicitInstantiation) {
6916 InstantiationVar->setTemplateSpecializationKind(
6917 TSK_ExplicitSpecialization);
6918 InstantiationVar->setLocation(Member->getLocation());
6919 }
6920
6921 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6922 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6923 MarkUnusedFileScopedDecl(InstantiationVar);
6924 } else if (isa<CXXRecordDecl>(Member)) {
6925 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6926 if (InstantiationClass->getTemplateSpecializationKind() ==
6927 TSK_ImplicitInstantiation) {
6928 InstantiationClass->setTemplateSpecializationKind(
6929 TSK_ExplicitSpecialization);
6930 InstantiationClass->setLocation(Member->getLocation());
6931 }
6932
6933 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6934 cast<CXXRecordDecl>(InstantiatedFrom),
6935 TSK_ExplicitSpecialization);
6936 } else {
6937 assert(isa<EnumDecl>(Member) && "Only member enums remain");
6938 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6939 if (InstantiationEnum->getTemplateSpecializationKind() ==
6940 TSK_ImplicitInstantiation) {
6941 InstantiationEnum->setTemplateSpecializationKind(
6942 TSK_ExplicitSpecialization);
6943 InstantiationEnum->setLocation(Member->getLocation());
6944 }
6945
6946 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6947 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6948 }
6949
6950 // Save the caller the trouble of having to figure out which declaration
6951 // this specialization matches.
6952 Previous.clear();
6953 Previous.addDecl(Instantiation);
6954 return false;
6955 }
6956
6957 /// \brief Check the scope of an explicit instantiation.
6958 ///
6959 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6960 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6961 SourceLocation InstLoc,
6962 bool WasQualifiedName) {
6963 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6964 DeclContext *CurContext = S.CurContext->getRedeclContext();
6965
6966 if (CurContext->isRecord()) {
6967 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6968 << D;
6969 return true;
6970 }
6971
6972 // C++11 [temp.explicit]p3:
6973 // An explicit instantiation shall appear in an enclosing namespace of its
6974 // template. If the name declared in the explicit instantiation is an
6975 // unqualified name, the explicit instantiation shall appear in the
6976 // namespace where its template is declared or, if that namespace is inline
6977 // (7.3.1), any namespace from its enclosing namespace set.
6978 //
6979 // This is DR275, which we do not retroactively apply to C++98/03.
6980 if (WasQualifiedName) {
6981 if (CurContext->Encloses(OrigContext))
6982 return false;
6983 } else {
6984 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6985 return false;
6986 }
6987
6988 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6989 if (WasQualifiedName)
6990 S.Diag(InstLoc,
6991 S.getLangOpts().CPlusPlus11?
6992 diag::err_explicit_instantiation_out_of_scope :
6993 diag::warn_explicit_instantiation_out_of_scope_0x)
6994 << D << NS;
6995 else
6996 S.Diag(InstLoc,
6997 S.getLangOpts().CPlusPlus11?
6998 diag::err_explicit_instantiation_unqualified_wrong_namespace :
6999 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7000 << D << NS;
7001 } else
7002 S.Diag(InstLoc,
7003 S.getLangOpts().CPlusPlus11?
7004 diag::err_explicit_instantiation_must_be_global :
7005 diag::warn_explicit_instantiation_must_be_global_0x)
7006 << D;
7007 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7008 return false;
7009 }
7010
7011 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7012 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7013 if (!SS.isSet())
7014 return false;
7015
7016 // C++11 [temp.explicit]p3:
7017 // If the explicit instantiation is for a member function, a member class
7018 // or a static data member of a class template specialization, the name of
7019 // the class template specialization in the qualified-id for the member
7020 // name shall be a simple-template-id.
7021 //
7022 // C++98 has the same restriction, just worded differently.
7023 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7024 NNS = NNS->getPrefix())
7025 if (const Type *T = NNS->getAsType())
7026 if (isa<TemplateSpecializationType>(T))
7027 return true;
7028
7029 return false;
7030 }
7031
7032 // Explicit instantiation of a class template specialization
7033 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7034 Sema::ActOnExplicitInstantiation(Scope *S,
7035 SourceLocation ExternLoc,
7036 SourceLocation TemplateLoc,
7037 unsigned TagSpec,
7038 SourceLocation KWLoc,
7039 const CXXScopeSpec &SS,
7040 TemplateTy TemplateD,
7041 SourceLocation TemplateNameLoc,
7042 SourceLocation LAngleLoc,
7043 ASTTemplateArgsPtr TemplateArgsIn,
7044 SourceLocation RAngleLoc,
7045 AttributeList *Attr) {
7046 // Find the class template we're specializing
7047 TemplateName Name = TemplateD.get();
7048 TemplateDecl *TD = Name.getAsTemplateDecl();
7049 // Check that the specialization uses the same tag kind as the
7050 // original template.
7051 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7052 assert(Kind != TTK_Enum &&
7053 "Invalid enum tag in class template explicit instantiation!");
7054
7055 if (isa<TypeAliasTemplateDecl>(TD)) {
7056 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7057 Diag(TD->getTemplatedDecl()->getLocation(),
7058 diag::note_previous_use);
7059 return true;
7060 }
7061
7062 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7063
7064 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7065 Kind, /*isDefinition*/false, KWLoc,
7066 *ClassTemplate->getIdentifier())) {
7067 Diag(KWLoc, diag::err_use_with_wrong_tag)
7068 << ClassTemplate
7069 << FixItHint::CreateReplacement(KWLoc,
7070 ClassTemplate->getTemplatedDecl()->getKindName());
7071 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7072 diag::note_previous_use);
7073 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7074 }
7075
7076 // C++0x [temp.explicit]p2:
7077 // There are two forms of explicit instantiation: an explicit instantiation
7078 // definition and an explicit instantiation declaration. An explicit
7079 // instantiation declaration begins with the extern keyword. [...]
7080 TemplateSpecializationKind TSK
7081 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7082 : TSK_ExplicitInstantiationDeclaration;
7083
7084 // Translate the parser's template argument list in our AST format.
7085 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7086 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7087
7088 // Check that the template argument list is well-formed for this
7089 // template.
7090 SmallVector<TemplateArgument, 4> Converted;
7091 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7092 TemplateArgs, false, Converted))
7093 return true;
7094
7095 // Find the class template specialization declaration that
7096 // corresponds to these arguments.
7097 void *InsertPos = nullptr;
7098 ClassTemplateSpecializationDecl *PrevDecl
7099 = ClassTemplate->findSpecialization(Converted, InsertPos);
7100
7101 TemplateSpecializationKind PrevDecl_TSK
7102 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7103
7104 // C++0x [temp.explicit]p2:
7105 // [...] An explicit instantiation shall appear in an enclosing
7106 // namespace of its template. [...]
7107 //
7108 // This is C++ DR 275.
7109 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7110 SS.isSet()))
7111 return true;
7112
7113 ClassTemplateSpecializationDecl *Specialization = nullptr;
7114
7115 bool HasNoEffect = false;
7116 if (PrevDecl) {
7117 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7118 PrevDecl, PrevDecl_TSK,
7119 PrevDecl->getPointOfInstantiation(),
7120 HasNoEffect))
7121 return PrevDecl;
7122
7123 // Even though HasNoEffect == true means that this explicit instantiation
7124 // has no effect on semantics, we go on to put its syntax in the AST.
7125
7126 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7127 PrevDecl_TSK == TSK_Undeclared) {
7128 // Since the only prior class template specialization with these
7129 // arguments was referenced but not declared, reuse that
7130 // declaration node as our own, updating the source location
7131 // for the template name to reflect our new declaration.
7132 // (Other source locations will be updated later.)
7133 Specialization = PrevDecl;
7134 Specialization->setLocation(TemplateNameLoc);
7135 PrevDecl = nullptr;
7136 }
7137 }
7138
7139 if (!Specialization) {
7140 // Create a new class template specialization declaration node for
7141 // this explicit specialization.
7142 Specialization
7143 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7144 ClassTemplate->getDeclContext(),
7145 KWLoc, TemplateNameLoc,
7146 ClassTemplate,
7147 Converted.data(),
7148 Converted.size(),
7149 PrevDecl);
7150 SetNestedNameSpecifier(Specialization, SS);
7151
7152 if (!HasNoEffect && !PrevDecl) {
7153 // Insert the new specialization.
7154 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7155 }
7156 }
7157
7158 // Build the fully-sugared type for this explicit instantiation as
7159 // the user wrote in the explicit instantiation itself. This means
7160 // that we'll pretty-print the type retrieved from the
7161 // specialization's declaration the way that the user actually wrote
7162 // the explicit instantiation, rather than formatting the name based
7163 // on the "canonical" representation used to store the template
7164 // arguments in the specialization.
7165 TypeSourceInfo *WrittenTy
7166 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7167 TemplateArgs,
7168 Context.getTypeDeclType(Specialization));
7169 Specialization->setTypeAsWritten(WrittenTy);
7170
7171 // Set source locations for keywords.
7172 Specialization->setExternLoc(ExternLoc);
7173 Specialization->setTemplateKeywordLoc(TemplateLoc);
7174 Specialization->setRBraceLoc(SourceLocation());
7175
7176 if (Attr)
7177 ProcessDeclAttributeList(S, Specialization, Attr);
7178
7179 // Add the explicit instantiation into its lexical context. However,
7180 // since explicit instantiations are never found by name lookup, we
7181 // just put it into the declaration context directly.
7182 Specialization->setLexicalDeclContext(CurContext);
7183 CurContext->addDecl(Specialization);
7184
7185 // Syntax is now OK, so return if it has no other effect on semantics.
7186 if (HasNoEffect) {
7187 // Set the template specialization kind.
7188 Specialization->setTemplateSpecializationKind(TSK);
7189 return Specialization;
7190 }
7191
7192 // C++ [temp.explicit]p3:
7193 // A definition of a class template or class member template
7194 // shall be in scope at the point of the explicit instantiation of
7195 // the class template or class member template.
7196 //
7197 // This check comes when we actually try to perform the
7198 // instantiation.
7199 ClassTemplateSpecializationDecl *Def
7200 = cast_or_null<ClassTemplateSpecializationDecl>(
7201 Specialization->getDefinition());
7202 if (!Def)
7203 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7204 else if (TSK == TSK_ExplicitInstantiationDefinition) {
7205 MarkVTableUsed(TemplateNameLoc, Specialization, true);
7206 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7207 }
7208
7209 // Instantiate the members of this class template specialization.
7210 Def = cast_or_null<ClassTemplateSpecializationDecl>(
7211 Specialization->getDefinition());
7212 if (Def) {
7213 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7214
7215 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7216 // TSK_ExplicitInstantiationDefinition
7217 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7218 TSK == TSK_ExplicitInstantiationDefinition)
7219 // FIXME: Need to notify the ASTMutationListener that we did this.
7220 Def->setTemplateSpecializationKind(TSK);
7221
7222 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7223 }
7224
7225 // Set the template specialization kind.
7226 Specialization->setTemplateSpecializationKind(TSK);
7227 return Specialization;
7228 }
7229
7230 // Explicit instantiation of a member class of a class template.
7231 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7232 Sema::ActOnExplicitInstantiation(Scope *S,
7233 SourceLocation ExternLoc,
7234 SourceLocation TemplateLoc,
7235 unsigned TagSpec,
7236 SourceLocation KWLoc,
7237 CXXScopeSpec &SS,
7238 IdentifierInfo *Name,
7239 SourceLocation NameLoc,
7240 AttributeList *Attr) {
7241
7242 bool Owned = false;
7243 bool IsDependent = false;
7244 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7245 KWLoc, SS, Name, NameLoc, Attr, AS_none,
7246 /*ModulePrivateLoc=*/SourceLocation(),
7247 MultiTemplateParamsArg(), Owned, IsDependent,
7248 SourceLocation(), false, TypeResult(),
7249 /*IsTypeSpecifier*/false);
7250 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7251
7252 if (!TagD)
7253 return true;
7254
7255 TagDecl *Tag = cast<TagDecl>(TagD);
7256 assert(!Tag->isEnum() && "shouldn't see enumerations here");
7257
7258 if (Tag->isInvalidDecl())
7259 return true;
7260
7261 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7262 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7263 if (!Pattern) {
7264 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7265 << Context.getTypeDeclType(Record);
7266 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7267 return true;
7268 }
7269
7270 // C++0x [temp.explicit]p2:
7271 // If the explicit instantiation is for a class or member class, the
7272 // elaborated-type-specifier in the declaration shall include a
7273 // simple-template-id.
7274 //
7275 // C++98 has the same restriction, just worded differently.
7276 if (!ScopeSpecifierHasTemplateId(SS))
7277 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7278 << Record << SS.getRange();
7279
7280 // C++0x [temp.explicit]p2:
7281 // There are two forms of explicit instantiation: an explicit instantiation
7282 // definition and an explicit instantiation declaration. An explicit
7283 // instantiation declaration begins with the extern keyword. [...]
7284 TemplateSpecializationKind TSK
7285 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7286 : TSK_ExplicitInstantiationDeclaration;
7287
7288 // C++0x [temp.explicit]p2:
7289 // [...] An explicit instantiation shall appear in an enclosing
7290 // namespace of its template. [...]
7291 //
7292 // This is C++ DR 275.
7293 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7294
7295 // Verify that it is okay to explicitly instantiate here.
7296 CXXRecordDecl *PrevDecl
7297 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7298 if (!PrevDecl && Record->getDefinition())
7299 PrevDecl = Record;
7300 if (PrevDecl) {
7301 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7302 bool HasNoEffect = false;
7303 assert(MSInfo && "No member specialization information?");
7304 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7305 PrevDecl,
7306 MSInfo->getTemplateSpecializationKind(),
7307 MSInfo->getPointOfInstantiation(),
7308 HasNoEffect))
7309 return true;
7310 if (HasNoEffect)
7311 return TagD;
7312 }
7313
7314 CXXRecordDecl *RecordDef
7315 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7316 if (!RecordDef) {
7317 // C++ [temp.explicit]p3:
7318 // A definition of a member class of a class template shall be in scope
7319 // at the point of an explicit instantiation of the member class.
7320 CXXRecordDecl *Def
7321 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7322 if (!Def) {
7323 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7324 << 0 << Record->getDeclName() << Record->getDeclContext();
7325 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7326 << Pattern;
7327 return true;
7328 } else {
7329 if (InstantiateClass(NameLoc, Record, Def,
7330 getTemplateInstantiationArgs(Record),
7331 TSK))
7332 return true;
7333
7334 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7335 if (!RecordDef)
7336 return true;
7337 }
7338 }
7339
7340 // Instantiate all of the members of the class.
7341 InstantiateClassMembers(NameLoc, RecordDef,
7342 getTemplateInstantiationArgs(Record), TSK);
7343
7344 if (TSK == TSK_ExplicitInstantiationDefinition)
7345 MarkVTableUsed(NameLoc, RecordDef, true);
7346
7347 // FIXME: We don't have any representation for explicit instantiations of
7348 // member classes. Such a representation is not needed for compilation, but it
7349 // should be available for clients that want to see all of the declarations in
7350 // the source code.
7351 return TagD;
7352 }
7353
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7354 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7355 SourceLocation ExternLoc,
7356 SourceLocation TemplateLoc,
7357 Declarator &D) {
7358 // Explicit instantiations always require a name.
7359 // TODO: check if/when DNInfo should replace Name.
7360 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7361 DeclarationName Name = NameInfo.getName();
7362 if (!Name) {
7363 if (!D.isInvalidType())
7364 Diag(D.getDeclSpec().getLocStart(),
7365 diag::err_explicit_instantiation_requires_name)
7366 << D.getDeclSpec().getSourceRange()
7367 << D.getSourceRange();
7368
7369 return true;
7370 }
7371
7372 // The scope passed in may not be a decl scope. Zip up the scope tree until
7373 // we find one that is.
7374 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7375 (S->getFlags() & Scope::TemplateParamScope) != 0)
7376 S = S->getParent();
7377
7378 // Determine the type of the declaration.
7379 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7380 QualType R = T->getType();
7381 if (R.isNull())
7382 return true;
7383
7384 // C++ [dcl.stc]p1:
7385 // A storage-class-specifier shall not be specified in [...] an explicit
7386 // instantiation (14.7.2) directive.
7387 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7388 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7389 << Name;
7390 return true;
7391 } else if (D.getDeclSpec().getStorageClassSpec()
7392 != DeclSpec::SCS_unspecified) {
7393 // Complain about then remove the storage class specifier.
7394 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7395 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7396
7397 D.getMutableDeclSpec().ClearStorageClassSpecs();
7398 }
7399
7400 // C++0x [temp.explicit]p1:
7401 // [...] An explicit instantiation of a function template shall not use the
7402 // inline or constexpr specifiers.
7403 // Presumably, this also applies to member functions of class templates as
7404 // well.
7405 if (D.getDeclSpec().isInlineSpecified())
7406 Diag(D.getDeclSpec().getInlineSpecLoc(),
7407 getLangOpts().CPlusPlus11 ?
7408 diag::err_explicit_instantiation_inline :
7409 diag::warn_explicit_instantiation_inline_0x)
7410 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7411 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7412 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7413 // not already specified.
7414 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7415 diag::err_explicit_instantiation_constexpr);
7416
7417 // C++0x [temp.explicit]p2:
7418 // There are two forms of explicit instantiation: an explicit instantiation
7419 // definition and an explicit instantiation declaration. An explicit
7420 // instantiation declaration begins with the extern keyword. [...]
7421 TemplateSpecializationKind TSK
7422 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7423 : TSK_ExplicitInstantiationDeclaration;
7424
7425 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7426 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7427
7428 if (!R->isFunctionType()) {
7429 // C++ [temp.explicit]p1:
7430 // A [...] static data member of a class template can be explicitly
7431 // instantiated from the member definition associated with its class
7432 // template.
7433 // C++1y [temp.explicit]p1:
7434 // A [...] variable [...] template specialization can be explicitly
7435 // instantiated from its template.
7436 if (Previous.isAmbiguous())
7437 return true;
7438
7439 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7440 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7441
7442 if (!PrevTemplate) {
7443 if (!Prev || !Prev->isStaticDataMember()) {
7444 // We expect to see a data data member here.
7445 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7446 << Name;
7447 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7448 P != PEnd; ++P)
7449 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7450 return true;
7451 }
7452
7453 if (!Prev->getInstantiatedFromStaticDataMember()) {
7454 // FIXME: Check for explicit specialization?
7455 Diag(D.getIdentifierLoc(),
7456 diag::err_explicit_instantiation_data_member_not_instantiated)
7457 << Prev;
7458 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7459 // FIXME: Can we provide a note showing where this was declared?
7460 return true;
7461 }
7462 } else {
7463 // Explicitly instantiate a variable template.
7464
7465 // C++1y [dcl.spec.auto]p6:
7466 // ... A program that uses auto or decltype(auto) in a context not
7467 // explicitly allowed in this section is ill-formed.
7468 //
7469 // This includes auto-typed variable template instantiations.
7470 if (R->isUndeducedType()) {
7471 Diag(T->getTypeLoc().getLocStart(),
7472 diag::err_auto_not_allowed_var_inst);
7473 return true;
7474 }
7475
7476 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7477 // C++1y [temp.explicit]p3:
7478 // If the explicit instantiation is for a variable, the unqualified-id
7479 // in the declaration shall be a template-id.
7480 Diag(D.getIdentifierLoc(),
7481 diag::err_explicit_instantiation_without_template_id)
7482 << PrevTemplate;
7483 Diag(PrevTemplate->getLocation(),
7484 diag::note_explicit_instantiation_here);
7485 return true;
7486 }
7487
7488 // Translate the parser's template argument list into our AST format.
7489 TemplateArgumentListInfo TemplateArgs =
7490 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7491
7492 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7493 D.getIdentifierLoc(), TemplateArgs);
7494 if (Res.isInvalid())
7495 return true;
7496
7497 // Ignore access control bits, we don't need them for redeclaration
7498 // checking.
7499 Prev = cast<VarDecl>(Res.get());
7500 }
7501
7502 // C++0x [temp.explicit]p2:
7503 // If the explicit instantiation is for a member function, a member class
7504 // or a static data member of a class template specialization, the name of
7505 // the class template specialization in the qualified-id for the member
7506 // name shall be a simple-template-id.
7507 //
7508 // C++98 has the same restriction, just worded differently.
7509 //
7510 // This does not apply to variable template specializations, where the
7511 // template-id is in the unqualified-id instead.
7512 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7513 Diag(D.getIdentifierLoc(),
7514 diag::ext_explicit_instantiation_without_qualified_id)
7515 << Prev << D.getCXXScopeSpec().getRange();
7516
7517 // Check the scope of this explicit instantiation.
7518 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7519
7520 // Verify that it is okay to explicitly instantiate here.
7521 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7522 SourceLocation POI = Prev->getPointOfInstantiation();
7523 bool HasNoEffect = false;
7524 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7525 PrevTSK, POI, HasNoEffect))
7526 return true;
7527
7528 if (!HasNoEffect) {
7529 // Instantiate static data member or variable template.
7530
7531 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7532 if (PrevTemplate) {
7533 // Merge attributes.
7534 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7535 ProcessDeclAttributeList(S, Prev, Attr);
7536 }
7537 if (TSK == TSK_ExplicitInstantiationDefinition)
7538 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7539 }
7540
7541 // Check the new variable specialization against the parsed input.
7542 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7543 Diag(T->getTypeLoc().getLocStart(),
7544 diag::err_invalid_var_template_spec_type)
7545 << 0 << PrevTemplate << R << Prev->getType();
7546 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7547 << 2 << PrevTemplate->getDeclName();
7548 return true;
7549 }
7550
7551 // FIXME: Create an ExplicitInstantiation node?
7552 return (Decl*) nullptr;
7553 }
7554
7555 // If the declarator is a template-id, translate the parser's template
7556 // argument list into our AST format.
7557 bool HasExplicitTemplateArgs = false;
7558 TemplateArgumentListInfo TemplateArgs;
7559 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7560 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7561 HasExplicitTemplateArgs = true;
7562 }
7563
7564 // C++ [temp.explicit]p1:
7565 // A [...] function [...] can be explicitly instantiated from its template.
7566 // A member function [...] of a class template can be explicitly
7567 // instantiated from the member definition associated with its class
7568 // template.
7569 UnresolvedSet<8> Matches;
7570 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7571 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7572 P != PEnd; ++P) {
7573 NamedDecl *Prev = *P;
7574 if (!HasExplicitTemplateArgs) {
7575 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7576 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7577 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7578 Matches.clear();
7579
7580 Matches.addDecl(Method, P.getAccess());
7581 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7582 break;
7583 }
7584 }
7585 }
7586
7587 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7588 if (!FunTmpl)
7589 continue;
7590
7591 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7592 FunctionDecl *Specialization = nullptr;
7593 if (TemplateDeductionResult TDK
7594 = DeduceTemplateArguments(FunTmpl,
7595 (HasExplicitTemplateArgs ? &TemplateArgs
7596 : nullptr),
7597 R, Specialization, Info)) {
7598 // Keep track of almost-matches.
7599 FailedCandidates.addCandidate()
7600 .set(FunTmpl->getTemplatedDecl(),
7601 MakeDeductionFailureInfo(Context, TDK, Info));
7602 (void)TDK;
7603 continue;
7604 }
7605
7606 Matches.addDecl(Specialization, P.getAccess());
7607 }
7608
7609 // Find the most specialized function template specialization.
7610 UnresolvedSetIterator Result = getMostSpecialized(
7611 Matches.begin(), Matches.end(), FailedCandidates,
7612 D.getIdentifierLoc(),
7613 PDiag(diag::err_explicit_instantiation_not_known) << Name,
7614 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7615 PDiag(diag::note_explicit_instantiation_candidate));
7616
7617 if (Result == Matches.end())
7618 return true;
7619
7620 // Ignore access control bits, we don't need them for redeclaration checking.
7621 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7622
7623 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7624 Diag(D.getIdentifierLoc(),
7625 diag::err_explicit_instantiation_member_function_not_instantiated)
7626 << Specialization
7627 << (Specialization->getTemplateSpecializationKind() ==
7628 TSK_ExplicitSpecialization);
7629 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7630 return true;
7631 }
7632
7633 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7634 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7635 PrevDecl = Specialization;
7636
7637 if (PrevDecl) {
7638 bool HasNoEffect = false;
7639 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7640 PrevDecl,
7641 PrevDecl->getTemplateSpecializationKind(),
7642 PrevDecl->getPointOfInstantiation(),
7643 HasNoEffect))
7644 return true;
7645
7646 // FIXME: We may still want to build some representation of this
7647 // explicit specialization.
7648 if (HasNoEffect)
7649 return (Decl*) nullptr;
7650 }
7651
7652 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7653 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7654 if (Attr)
7655 ProcessDeclAttributeList(S, Specialization, Attr);
7656
7657 if (Specialization->isDefined()) {
7658 // Let the ASTConsumer know that this function has been explicitly
7659 // instantiated now, and its linkage might have changed.
7660 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7661 } else if (TSK == TSK_ExplicitInstantiationDefinition)
7662 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7663
7664 // C++0x [temp.explicit]p2:
7665 // If the explicit instantiation is for a member function, a member class
7666 // or a static data member of a class template specialization, the name of
7667 // the class template specialization in the qualified-id for the member
7668 // name shall be a simple-template-id.
7669 //
7670 // C++98 has the same restriction, just worded differently.
7671 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7672 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7673 D.getCXXScopeSpec().isSet() &&
7674 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7675 Diag(D.getIdentifierLoc(),
7676 diag::ext_explicit_instantiation_without_qualified_id)
7677 << Specialization << D.getCXXScopeSpec().getRange();
7678
7679 CheckExplicitInstantiationScope(*this,
7680 FunTmpl? (NamedDecl *)FunTmpl
7681 : Specialization->getInstantiatedFromMemberFunction(),
7682 D.getIdentifierLoc(),
7683 D.getCXXScopeSpec().isSet());
7684
7685 // FIXME: Create some kind of ExplicitInstantiationDecl here.
7686 return (Decl*) nullptr;
7687 }
7688
7689 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7690 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7691 const CXXScopeSpec &SS, IdentifierInfo *Name,
7692 SourceLocation TagLoc, SourceLocation NameLoc) {
7693 // This has to hold, because SS is expected to be defined.
7694 assert(Name && "Expected a name in a dependent tag");
7695
7696 NestedNameSpecifier *NNS = SS.getScopeRep();
7697 if (!NNS)
7698 return true;
7699
7700 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7701
7702 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7703 Diag(NameLoc, diag::err_dependent_tag_decl)
7704 << (TUK == TUK_Definition) << Kind << SS.getRange();
7705 return true;
7706 }
7707
7708 // Create the resulting type.
7709 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7710 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7711
7712 // Create type-source location information for this type.
7713 TypeLocBuilder TLB;
7714 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7715 TL.setElaboratedKeywordLoc(TagLoc);
7716 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7717 TL.setNameLoc(NameLoc);
7718 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7719 }
7720
7721 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7722 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7723 const CXXScopeSpec &SS, const IdentifierInfo &II,
7724 SourceLocation IdLoc) {
7725 if (SS.isInvalid())
7726 return true;
7727
7728 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7729 Diag(TypenameLoc,
7730 getLangOpts().CPlusPlus11 ?
7731 diag::warn_cxx98_compat_typename_outside_of_template :
7732 diag::ext_typename_outside_of_template)
7733 << FixItHint::CreateRemoval(TypenameLoc);
7734
7735 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7736 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7737 TypenameLoc, QualifierLoc, II, IdLoc);
7738 if (T.isNull())
7739 return true;
7740
7741 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7742 if (isa<DependentNameType>(T)) {
7743 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7744 TL.setElaboratedKeywordLoc(TypenameLoc);
7745 TL.setQualifierLoc(QualifierLoc);
7746 TL.setNameLoc(IdLoc);
7747 } else {
7748 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7749 TL.setElaboratedKeywordLoc(TypenameLoc);
7750 TL.setQualifierLoc(QualifierLoc);
7751 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7752 }
7753
7754 return CreateParsedType(T, TSI);
7755 }
7756
7757 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7758 Sema::ActOnTypenameType(Scope *S,
7759 SourceLocation TypenameLoc,
7760 const CXXScopeSpec &SS,
7761 SourceLocation TemplateKWLoc,
7762 TemplateTy TemplateIn,
7763 SourceLocation TemplateNameLoc,
7764 SourceLocation LAngleLoc,
7765 ASTTemplateArgsPtr TemplateArgsIn,
7766 SourceLocation RAngleLoc) {
7767 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7768 Diag(TypenameLoc,
7769 getLangOpts().CPlusPlus11 ?
7770 diag::warn_cxx98_compat_typename_outside_of_template :
7771 diag::ext_typename_outside_of_template)
7772 << FixItHint::CreateRemoval(TypenameLoc);
7773
7774 // Translate the parser's template argument list in our AST format.
7775 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7776 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7777
7778 TemplateName Template = TemplateIn.get();
7779 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7780 // Construct a dependent template specialization type.
7781 assert(DTN && "dependent template has non-dependent name?");
7782 assert(DTN->getQualifier() == SS.getScopeRep());
7783 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7784 DTN->getQualifier(),
7785 DTN->getIdentifier(),
7786 TemplateArgs);
7787
7788 // Create source-location information for this type.
7789 TypeLocBuilder Builder;
7790 DependentTemplateSpecializationTypeLoc SpecTL
7791 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7792 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7793 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7794 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7795 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7796 SpecTL.setLAngleLoc(LAngleLoc);
7797 SpecTL.setRAngleLoc(RAngleLoc);
7798 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7799 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7800 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7801 }
7802
7803 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7804 if (T.isNull())
7805 return true;
7806
7807 // Provide source-location information for the template specialization type.
7808 TypeLocBuilder Builder;
7809 TemplateSpecializationTypeLoc SpecTL
7810 = Builder.push<TemplateSpecializationTypeLoc>(T);
7811 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7812 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7813 SpecTL.setLAngleLoc(LAngleLoc);
7814 SpecTL.setRAngleLoc(RAngleLoc);
7815 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7816 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7817
7818 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7819 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7820 TL.setElaboratedKeywordLoc(TypenameLoc);
7821 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7822
7823 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7824 return CreateParsedType(T, TSI);
7825 }
7826
7827
7828 /// Determine whether this failed name lookup should be treated as being
7829 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7830 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7831 SourceRange &CondRange) {
7832 // We must be looking for a ::type...
7833 if (!II.isStr("type"))
7834 return false;
7835
7836 // ... within an explicitly-written template specialization...
7837 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7838 return false;
7839 TypeLoc EnableIfTy = NNS.getTypeLoc();
7840 TemplateSpecializationTypeLoc EnableIfTSTLoc =
7841 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7842 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7843 return false;
7844 const TemplateSpecializationType *EnableIfTST =
7845 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7846
7847 // ... which names a complete class template declaration...
7848 const TemplateDecl *EnableIfDecl =
7849 EnableIfTST->getTemplateName().getAsTemplateDecl();
7850 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7851 return false;
7852
7853 // ... called "enable_if".
7854 const IdentifierInfo *EnableIfII =
7855 EnableIfDecl->getDeclName().getAsIdentifierInfo();
7856 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7857 return false;
7858
7859 // Assume the first template argument is the condition.
7860 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7861 return true;
7862 }
7863
7864 /// \brief Build the type that describes a C++ typename specifier,
7865 /// e.g., "typename T::type".
7866 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7867 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7868 SourceLocation KeywordLoc,
7869 NestedNameSpecifierLoc QualifierLoc,
7870 const IdentifierInfo &II,
7871 SourceLocation IILoc) {
7872 CXXScopeSpec SS;
7873 SS.Adopt(QualifierLoc);
7874
7875 DeclContext *Ctx = computeDeclContext(SS);
7876 if (!Ctx) {
7877 // If the nested-name-specifier is dependent and couldn't be
7878 // resolved to a type, build a typename type.
7879 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7880 return Context.getDependentNameType(Keyword,
7881 QualifierLoc.getNestedNameSpecifier(),
7882 &II);
7883 }
7884
7885 // If the nested-name-specifier refers to the current instantiation,
7886 // the "typename" keyword itself is superfluous. In C++03, the
7887 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7888 // allows such extraneous "typename" keywords, and we retroactively
7889 // apply this DR to C++03 code with only a warning. In any case we continue.
7890
7891 if (RequireCompleteDeclContext(SS, Ctx))
7892 return QualType();
7893
7894 DeclarationName Name(&II);
7895 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7896 LookupQualifiedName(Result, Ctx);
7897 unsigned DiagID = 0;
7898 Decl *Referenced = nullptr;
7899 switch (Result.getResultKind()) {
7900 case LookupResult::NotFound: {
7901 // If we're looking up 'type' within a template named 'enable_if', produce
7902 // a more specific diagnostic.
7903 SourceRange CondRange;
7904 if (isEnableIf(QualifierLoc, II, CondRange)) {
7905 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7906 << Ctx << CondRange;
7907 return QualType();
7908 }
7909
7910 DiagID = diag::err_typename_nested_not_found;
7911 break;
7912 }
7913
7914 case LookupResult::FoundUnresolvedValue: {
7915 // We found a using declaration that is a value. Most likely, the using
7916 // declaration itself is meant to have the 'typename' keyword.
7917 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7918 IILoc);
7919 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7920 << Name << Ctx << FullRange;
7921 if (UnresolvedUsingValueDecl *Using
7922 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7923 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7924 Diag(Loc, diag::note_using_value_decl_missing_typename)
7925 << FixItHint::CreateInsertion(Loc, "typename ");
7926 }
7927 }
7928 // Fall through to create a dependent typename type, from which we can recover
7929 // better.
7930
7931 case LookupResult::NotFoundInCurrentInstantiation:
7932 // Okay, it's a member of an unknown instantiation.
7933 return Context.getDependentNameType(Keyword,
7934 QualifierLoc.getNestedNameSpecifier(),
7935 &II);
7936
7937 case LookupResult::Found:
7938 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7939 // We found a type. Build an ElaboratedType, since the
7940 // typename-specifier was just sugar.
7941 return Context.getElaboratedType(ETK_Typename,
7942 QualifierLoc.getNestedNameSpecifier(),
7943 Context.getTypeDeclType(Type));
7944 }
7945
7946 DiagID = diag::err_typename_nested_not_type;
7947 Referenced = Result.getFoundDecl();
7948 break;
7949
7950 case LookupResult::FoundOverloaded:
7951 DiagID = diag::err_typename_nested_not_type;
7952 Referenced = *Result.begin();
7953 break;
7954
7955 case LookupResult::Ambiguous:
7956 return QualType();
7957 }
7958
7959 // If we get here, it's because name lookup did not find a
7960 // type. Emit an appropriate diagnostic and return an error.
7961 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7962 IILoc);
7963 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7964 if (Referenced)
7965 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7966 << Name;
7967 return QualType();
7968 }
7969
7970 namespace {
7971 // See Sema::RebuildTypeInCurrentInstantiation
7972 class CurrentInstantiationRebuilder
7973 : public TreeTransform<CurrentInstantiationRebuilder> {
7974 SourceLocation Loc;
7975 DeclarationName Entity;
7976
7977 public:
7978 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7979
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)7980 CurrentInstantiationRebuilder(Sema &SemaRef,
7981 SourceLocation Loc,
7982 DeclarationName Entity)
7983 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7984 Loc(Loc), Entity(Entity) { }
7985
7986 /// \brief Determine whether the given type \p T has already been
7987 /// transformed.
7988 ///
7989 /// For the purposes of type reconstruction, a type has already been
7990 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7991 bool AlreadyTransformed(QualType T) {
7992 return T.isNull() || !T->isDependentType();
7993 }
7994
7995 /// \brief Returns the location of the entity whose type is being
7996 /// rebuilt.
getBaseLocation()7997 SourceLocation getBaseLocation() { return Loc; }
7998
7999 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8000 DeclarationName getBaseEntity() { return Entity; }
8001
8002 /// \brief Sets the "base" location and entity when that
8003 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8004 void setBase(SourceLocation Loc, DeclarationName Entity) {
8005 this->Loc = Loc;
8006 this->Entity = Entity;
8007 }
8008
TransformLambdaExpr(LambdaExpr * E)8009 ExprResult TransformLambdaExpr(LambdaExpr *E) {
8010 // Lambdas never need to be transformed.
8011 return E;
8012 }
8013 };
8014 }
8015
8016 /// \brief Rebuilds a type within the context of the current instantiation.
8017 ///
8018 /// The type \p T is part of the type of an out-of-line member definition of
8019 /// a class template (or class template partial specialization) that was parsed
8020 /// and constructed before we entered the scope of the class template (or
8021 /// partial specialization thereof). This routine will rebuild that type now
8022 /// that we have entered the declarator's scope, which may produce different
8023 /// canonical types, e.g.,
8024 ///
8025 /// \code
8026 /// template<typename T>
8027 /// struct X {
8028 /// typedef T* pointer;
8029 /// pointer data();
8030 /// };
8031 ///
8032 /// template<typename T>
8033 /// typename X<T>::pointer X<T>::data() { ... }
8034 /// \endcode
8035 ///
8036 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8037 /// since we do not know that we can look into X<T> when we parsed the type.
8038 /// This function will rebuild the type, performing the lookup of "pointer"
8039 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8040 /// as the canonical type of T*, allowing the return types of the out-of-line
8041 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8042 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8043 SourceLocation Loc,
8044 DeclarationName Name) {
8045 if (!T || !T->getType()->isDependentType())
8046 return T;
8047
8048 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8049 return Rebuilder.TransformType(T);
8050 }
8051
RebuildExprInCurrentInstantiation(Expr * E)8052 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8053 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8054 DeclarationName());
8055 return Rebuilder.TransformExpr(E);
8056 }
8057
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8058 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8059 if (SS.isInvalid())
8060 return true;
8061
8062 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8063 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8064 DeclarationName());
8065 NestedNameSpecifierLoc Rebuilt
8066 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8067 if (!Rebuilt)
8068 return true;
8069
8070 SS.Adopt(Rebuilt);
8071 return false;
8072 }
8073
8074 /// \brief Rebuild the template parameters now that we know we're in a current
8075 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8076 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8077 TemplateParameterList *Params) {
8078 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8079 Decl *Param = Params->getParam(I);
8080
8081 // There is nothing to rebuild in a type parameter.
8082 if (isa<TemplateTypeParmDecl>(Param))
8083 continue;
8084
8085 // Rebuild the template parameter list of a template template parameter.
8086 if (TemplateTemplateParmDecl *TTP
8087 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8088 if (RebuildTemplateParamsInCurrentInstantiation(
8089 TTP->getTemplateParameters()))
8090 return true;
8091
8092 continue;
8093 }
8094
8095 // Rebuild the type of a non-type template parameter.
8096 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8097 TypeSourceInfo *NewTSI
8098 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8099 NTTP->getLocation(),
8100 NTTP->getDeclName());
8101 if (!NewTSI)
8102 return true;
8103
8104 if (NewTSI != NTTP->getTypeSourceInfo()) {
8105 NTTP->setTypeSourceInfo(NewTSI);
8106 NTTP->setType(NewTSI->getType());
8107 }
8108 }
8109
8110 return false;
8111 }
8112
8113 /// \brief Produces a formatted string that describes the binding of
8114 /// template parameters to template arguments.
8115 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8116 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8117 const TemplateArgumentList &Args) {
8118 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8119 }
8120
8121 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8122 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8123 const TemplateArgument *Args,
8124 unsigned NumArgs) {
8125 SmallString<128> Str;
8126 llvm::raw_svector_ostream Out(Str);
8127
8128 if (!Params || Params->size() == 0 || NumArgs == 0)
8129 return std::string();
8130
8131 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8132 if (I >= NumArgs)
8133 break;
8134
8135 if (I == 0)
8136 Out << "[with ";
8137 else
8138 Out << ", ";
8139
8140 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8141 Out << Id->getName();
8142 } else {
8143 Out << '$' << I;
8144 }
8145
8146 Out << " = ";
8147 Args[I].print(getPrintingPolicy(), Out);
8148 }
8149
8150 Out << ']';
8151 return Out.str();
8152 }
8153
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8154 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8155 CachedTokens &Toks) {
8156 if (!FD)
8157 return;
8158
8159 LateParsedTemplate *LPT = new LateParsedTemplate;
8160
8161 // Take tokens to avoid allocations
8162 LPT->Toks.swap(Toks);
8163 LPT->D = FnD;
8164 LateParsedTemplateMap[FD] = LPT;
8165
8166 FD->setLateTemplateParsed(true);
8167 }
8168
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8169 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8170 if (!FD)
8171 return;
8172 FD->setLateTemplateParsed(false);
8173 }
8174
IsInsideALocalClassWithinATemplateFunction()8175 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8176 DeclContext *DC = CurContext;
8177
8178 while (DC) {
8179 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8180 const FunctionDecl *FD = RD->isLocalClass();
8181 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8182 } else if (DC->isTranslationUnit() || DC->isNamespace())
8183 return false;
8184
8185 DC = DC->getParent();
8186 }
8187 return false;
8188 }
8189