1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h"
11
12 #include <assert.h>
13
14 #include <algorithm>
15 #include <utility>
16
17 #include "webrtc/modules/video_coding/main/interface/video_coding.h"
18 #include "webrtc/modules/video_coding/main/source/frame_buffer.h"
19 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
20 #include "webrtc/modules/video_coding/main/source/internal_defines.h"
21 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
22 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
23 #include "webrtc/modules/video_coding/main/source/packet.h"
24 #include "webrtc/system_wrappers/interface/clock.h"
25 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
26 #include "webrtc/system_wrappers/interface/event_wrapper.h"
27 #include "webrtc/system_wrappers/interface/logging.h"
28 #include "webrtc/system_wrappers/interface/trace_event.h"
29
30 namespace webrtc {
31
32 // Use this rtt if no value has been reported.
33 static const uint32_t kDefaultRtt = 200;
34
35 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
36
IsKeyFrame(FrameListPair pair)37 bool IsKeyFrame(FrameListPair pair) {
38 return pair.second->FrameType() == kVideoFrameKey;
39 }
40
HasNonEmptyState(FrameListPair pair)41 bool HasNonEmptyState(FrameListPair pair) {
42 return pair.second->GetState() != kStateEmpty;
43 }
44
InsertFrame(VCMFrameBuffer * frame)45 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
46 insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
47 }
48
FindFrame(uint32_t timestamp) const49 VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
50 FrameList::const_iterator it = find(timestamp);
51 if (it == end())
52 return NULL;
53 return it->second;
54 }
55
PopFrame(uint32_t timestamp)56 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
57 FrameList::iterator it = find(timestamp);
58 if (it == end())
59 return NULL;
60 VCMFrameBuffer* frame = it->second;
61 erase(it);
62 return frame;
63 }
64
Front() const65 VCMFrameBuffer* FrameList::Front() const {
66 return begin()->second;
67 }
68
Back() const69 VCMFrameBuffer* FrameList::Back() const {
70 return rbegin()->second;
71 }
72
RecycleFramesUntilKeyFrame(FrameList::iterator * key_frame_it,UnorderedFrameList * free_frames)73 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
74 UnorderedFrameList* free_frames) {
75 int drop_count = 0;
76 FrameList::iterator it = begin();
77 while (!empty()) {
78 // Throw at least one frame.
79 it->second->Reset();
80 free_frames->push_back(it->second);
81 erase(it++);
82 ++drop_count;
83 if (it != end() && it->second->FrameType() == kVideoFrameKey) {
84 *key_frame_it = it;
85 return drop_count;
86 }
87 }
88 *key_frame_it = end();
89 return drop_count;
90 }
91
CleanUpOldOrEmptyFrames(VCMDecodingState * decoding_state,UnorderedFrameList * free_frames)92 int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
93 UnorderedFrameList* free_frames) {
94 int drop_count = 0;
95 while (!empty()) {
96 VCMFrameBuffer* oldest_frame = Front();
97 bool remove_frame = false;
98 if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
99 // This frame is empty, try to update the last decoded state and drop it
100 // if successful.
101 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
102 } else {
103 remove_frame = decoding_state->IsOldFrame(oldest_frame);
104 }
105 if (!remove_frame) {
106 break;
107 }
108 free_frames->push_back(oldest_frame);
109 ++drop_count;
110 TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
111 oldest_frame->TimeStamp());
112 erase(begin());
113 }
114 return drop_count;
115 }
116
Reset(UnorderedFrameList * free_frames)117 void FrameList::Reset(UnorderedFrameList* free_frames) {
118 while (!empty()) {
119 begin()->second->Reset();
120 free_frames->push_back(begin()->second);
121 erase(begin());
122 }
123 }
124
VCMJitterBuffer(Clock * clock,EventFactory * event_factory)125 VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
126 EventFactory* event_factory)
127 : clock_(clock),
128 running_(false),
129 crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
130 frame_event_(event_factory->CreateEvent()),
131 packet_event_(event_factory->CreateEvent()),
132 max_number_of_frames_(kStartNumberOfFrames),
133 frame_buffers_(),
134 free_frames_(),
135 decodable_frames_(),
136 incomplete_frames_(),
137 last_decoded_state_(),
138 first_packet_since_reset_(true),
139 incoming_frame_rate_(0),
140 incoming_frame_count_(0),
141 time_last_incoming_frame_count_(0),
142 incoming_bit_count_(0),
143 incoming_bit_rate_(0),
144 drop_count_(0),
145 num_consecutive_old_frames_(0),
146 num_consecutive_old_packets_(0),
147 num_discarded_packets_(0),
148 jitter_estimate_(),
149 inter_frame_delay_(clock_->TimeInMilliseconds()),
150 rtt_ms_(kDefaultRtt),
151 nack_mode_(kNoNack),
152 low_rtt_nack_threshold_ms_(-1),
153 high_rtt_nack_threshold_ms_(-1),
154 missing_sequence_numbers_(SequenceNumberLessThan()),
155 nack_seq_nums_(),
156 max_nack_list_size_(0),
157 max_packet_age_to_nack_(0),
158 max_incomplete_time_ms_(0),
159 decode_error_mode_(kNoErrors),
160 average_packets_per_frame_(0.0f),
161 frame_counter_(0) {
162 memset(frame_buffers_, 0, sizeof(frame_buffers_));
163
164 for (int i = 0; i < kStartNumberOfFrames; i++) {
165 frame_buffers_[i] = new VCMFrameBuffer();
166 free_frames_.push_back(frame_buffers_[i]);
167 }
168 }
169
~VCMJitterBuffer()170 VCMJitterBuffer::~VCMJitterBuffer() {
171 Stop();
172 for (int i = 0; i < kMaxNumberOfFrames; i++) {
173 if (frame_buffers_[i]) {
174 delete frame_buffers_[i];
175 }
176 }
177 delete crit_sect_;
178 }
179
CopyFrom(const VCMJitterBuffer & rhs)180 void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
181 if (this != &rhs) {
182 crit_sect_->Enter();
183 rhs.crit_sect_->Enter();
184 running_ = rhs.running_;
185 max_number_of_frames_ = rhs.max_number_of_frames_;
186 incoming_frame_rate_ = rhs.incoming_frame_rate_;
187 incoming_frame_count_ = rhs.incoming_frame_count_;
188 time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
189 incoming_bit_count_ = rhs.incoming_bit_count_;
190 incoming_bit_rate_ = rhs.incoming_bit_rate_;
191 drop_count_ = rhs.drop_count_;
192 num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
193 num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
194 num_discarded_packets_ = rhs.num_discarded_packets_;
195 jitter_estimate_ = rhs.jitter_estimate_;
196 inter_frame_delay_ = rhs.inter_frame_delay_;
197 waiting_for_completion_ = rhs.waiting_for_completion_;
198 rtt_ms_ = rhs.rtt_ms_;
199 first_packet_since_reset_ = rhs.first_packet_since_reset_;
200 last_decoded_state_ = rhs.last_decoded_state_;
201 decode_error_mode_ = rhs.decode_error_mode_;
202 assert(max_nack_list_size_ == rhs.max_nack_list_size_);
203 assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_);
204 assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_);
205 receive_statistics_ = rhs.receive_statistics_;
206 nack_seq_nums_.resize(rhs.nack_seq_nums_.size());
207 missing_sequence_numbers_ = rhs.missing_sequence_numbers_;
208 latest_received_sequence_number_ = rhs.latest_received_sequence_number_;
209 average_packets_per_frame_ = rhs.average_packets_per_frame_;
210 for (int i = 0; i < kMaxNumberOfFrames; i++) {
211 if (frame_buffers_[i] != NULL) {
212 delete frame_buffers_[i];
213 frame_buffers_[i] = NULL;
214 }
215 }
216 free_frames_.clear();
217 decodable_frames_.clear();
218 incomplete_frames_.clear();
219 int i = 0;
220 for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin();
221 it != rhs.free_frames_.end(); ++it, ++i) {
222 frame_buffers_[i] = new VCMFrameBuffer;
223 free_frames_.push_back(frame_buffers_[i]);
224 }
225 CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i);
226 CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i);
227 rhs.crit_sect_->Leave();
228 crit_sect_->Leave();
229 }
230 }
231
CopyFrames(FrameList * to_list,const FrameList & from_list,int * index)232 void VCMJitterBuffer::CopyFrames(FrameList* to_list,
233 const FrameList& from_list, int* index) {
234 to_list->clear();
235 for (FrameList::const_iterator it = from_list.begin();
236 it != from_list.end(); ++it, ++*index) {
237 frame_buffers_[*index] = new VCMFrameBuffer(*it->second);
238 to_list->InsertFrame(frame_buffers_[*index]);
239 }
240 }
241
Start()242 void VCMJitterBuffer::Start() {
243 CriticalSectionScoped cs(crit_sect_);
244 running_ = true;
245 incoming_frame_count_ = 0;
246 incoming_frame_rate_ = 0;
247 incoming_bit_count_ = 0;
248 incoming_bit_rate_ = 0;
249 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
250 receive_statistics_.clear();
251
252 num_consecutive_old_frames_ = 0;
253 num_consecutive_old_packets_ = 0;
254 num_discarded_packets_ = 0;
255
256 // Start in a non-signaled state.
257 frame_event_->Reset();
258 packet_event_->Reset();
259 waiting_for_completion_.frame_size = 0;
260 waiting_for_completion_.timestamp = 0;
261 waiting_for_completion_.latest_packet_time = -1;
262 first_packet_since_reset_ = true;
263 rtt_ms_ = kDefaultRtt;
264 last_decoded_state_.Reset();
265 }
266
Stop()267 void VCMJitterBuffer::Stop() {
268 crit_sect_->Enter();
269 running_ = false;
270 last_decoded_state_.Reset();
271 free_frames_.clear();
272 decodable_frames_.clear();
273 incomplete_frames_.clear();
274 // Make sure all frames are reset and free.
275 for (int i = 0; i < kMaxNumberOfFrames; i++) {
276 if (frame_buffers_[i] != NULL) {
277 static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset();
278 free_frames_.push_back(frame_buffers_[i]);
279 }
280 }
281 crit_sect_->Leave();
282 // Make sure we wake up any threads waiting on these events.
283 frame_event_->Set();
284 packet_event_->Set();
285 }
286
Running() const287 bool VCMJitterBuffer::Running() const {
288 CriticalSectionScoped cs(crit_sect_);
289 return running_;
290 }
291
Flush()292 void VCMJitterBuffer::Flush() {
293 CriticalSectionScoped cs(crit_sect_);
294 decodable_frames_.Reset(&free_frames_);
295 incomplete_frames_.Reset(&free_frames_);
296 last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
297 frame_event_->Reset();
298 packet_event_->Reset();
299 num_consecutive_old_frames_ = 0;
300 num_consecutive_old_packets_ = 0;
301 // Also reset the jitter and delay estimates
302 jitter_estimate_.Reset();
303 inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
304 waiting_for_completion_.frame_size = 0;
305 waiting_for_completion_.timestamp = 0;
306 waiting_for_completion_.latest_packet_time = -1;
307 first_packet_since_reset_ = true;
308 missing_sequence_numbers_.clear();
309 }
310
311 // Get received key and delta frames
FrameStatistics() const312 std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const {
313 CriticalSectionScoped cs(crit_sect_);
314 return receive_statistics_;
315 }
316
num_discarded_packets() const317 int VCMJitterBuffer::num_discarded_packets() const {
318 CriticalSectionScoped cs(crit_sect_);
319 return num_discarded_packets_;
320 }
321
322 // Calculate framerate and bitrate.
IncomingRateStatistics(unsigned int * framerate,unsigned int * bitrate)323 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
324 unsigned int* bitrate) {
325 assert(framerate);
326 assert(bitrate);
327 CriticalSectionScoped cs(crit_sect_);
328 const int64_t now = clock_->TimeInMilliseconds();
329 int64_t diff = now - time_last_incoming_frame_count_;
330 if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
331 // Make sure we report something even though less than
332 // 1 second has passed since last update.
333 *framerate = incoming_frame_rate_;
334 *bitrate = incoming_bit_rate_;
335 } else if (incoming_frame_count_ != 0) {
336 // We have received frame(s) since last call to this function
337
338 // Prepare calculations
339 if (diff <= 0) {
340 diff = 1;
341 }
342 // we add 0.5f for rounding
343 float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
344 if (rate < 1.0f) {
345 rate = 1.0f;
346 }
347
348 // Calculate frame rate
349 // Let r be rate.
350 // r(0) = 1000*framecount/delta_time.
351 // (I.e. frames per second since last calculation.)
352 // frame_rate = r(0)/2 + r(-1)/2
353 // (I.e. fr/s average this and the previous calculation.)
354 *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
355 incoming_frame_rate_ = static_cast<unsigned int>(rate);
356
357 // Calculate bit rate
358 if (incoming_bit_count_ == 0) {
359 *bitrate = 0;
360 } else {
361 *bitrate = 10 * ((100 * incoming_bit_count_) /
362 static_cast<unsigned int>(diff));
363 }
364 incoming_bit_rate_ = *bitrate;
365
366 // Reset count
367 incoming_frame_count_ = 0;
368 incoming_bit_count_ = 0;
369 time_last_incoming_frame_count_ = now;
370
371 } else {
372 // No frames since last call
373 time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
374 *framerate = 0;
375 *bitrate = 0;
376 incoming_frame_rate_ = 0;
377 incoming_bit_rate_ = 0;
378 }
379 }
380
381 // Answers the question:
382 // Will the packet sequence be complete if the next frame is grabbed for
383 // decoding right now? That is, have we lost a frame between the last decoded
384 // frame and the next, or is the next
385 // frame missing one or more packets?
CompleteSequenceWithNextFrame()386 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
387 CriticalSectionScoped cs(crit_sect_);
388 // Finding oldest frame ready for decoder, check sequence number and size
389 CleanUpOldOrEmptyFrames();
390 if (!decodable_frames_.empty()) {
391 if (decodable_frames_.Front()->GetState() == kStateComplete) {
392 return true;
393 }
394 } else if (incomplete_frames_.size() <= 1) {
395 // Frame not ready to be decoded.
396 return true;
397 }
398 return false;
399 }
400
401 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
402 // complete frame, |max_wait_time_ms| decided by caller.
NextCompleteTimestamp(uint32_t max_wait_time_ms,uint32_t * timestamp)403 bool VCMJitterBuffer::NextCompleteTimestamp(
404 uint32_t max_wait_time_ms, uint32_t* timestamp) {
405 crit_sect_->Enter();
406 if (!running_) {
407 crit_sect_->Leave();
408 return false;
409 }
410 CleanUpOldOrEmptyFrames();
411
412 if (decodable_frames_.empty() ||
413 decodable_frames_.Front()->GetState() != kStateComplete) {
414 const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
415 max_wait_time_ms;
416 int64_t wait_time_ms = max_wait_time_ms;
417 while (wait_time_ms > 0) {
418 crit_sect_->Leave();
419 const EventTypeWrapper ret =
420 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
421 crit_sect_->Enter();
422 if (ret == kEventSignaled) {
423 // Are we shutting down the jitter buffer?
424 if (!running_) {
425 crit_sect_->Leave();
426 return false;
427 }
428 // Finding oldest frame ready for decoder.
429 CleanUpOldOrEmptyFrames();
430 if (decodable_frames_.empty() ||
431 decodable_frames_.Front()->GetState() != kStateComplete) {
432 wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
433 } else {
434 break;
435 }
436 } else {
437 break;
438 }
439 }
440 // Inside |crit_sect_|.
441 } else {
442 // We already have a frame, reset the event.
443 frame_event_->Reset();
444 }
445 if (decodable_frames_.empty() ||
446 decodable_frames_.Front()->GetState() != kStateComplete) {
447 crit_sect_->Leave();
448 return false;
449 }
450 *timestamp = decodable_frames_.Front()->TimeStamp();
451 crit_sect_->Leave();
452 return true;
453 }
454
NextMaybeIncompleteTimestamp(uint32_t * timestamp)455 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
456 CriticalSectionScoped cs(crit_sect_);
457 if (!running_) {
458 return false;
459 }
460 if (decode_error_mode_ == kNoErrors) {
461 // No point to continue, as we are not decoding with errors.
462 return false;
463 }
464
465 CleanUpOldOrEmptyFrames();
466
467 if (decodable_frames_.empty()) {
468 return false;
469 }
470 VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
471 // If we have exactly one frame in the buffer, release it only if it is
472 // complete. We know decodable_frames_ is not empty due to the previous
473 // check.
474 if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
475 && oldest_frame->GetState() != kStateComplete) {
476 return false;
477 }
478
479 *timestamp = oldest_frame->TimeStamp();
480 return true;
481 }
482
ExtractAndSetDecode(uint32_t timestamp)483 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
484 CriticalSectionScoped cs(crit_sect_);
485
486 if (!running_) {
487 return NULL;
488 }
489 // Extract the frame with the desired timestamp.
490 VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
491 bool continuous = true;
492 if (!frame) {
493 frame = incomplete_frames_.PopFrame(timestamp);
494 if (frame)
495 continuous = last_decoded_state_.ContinuousFrame(frame);
496 else
497 return NULL;
498 }
499 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
500 // Frame pulled out from jitter buffer, update the jitter estimate.
501 const bool retransmitted = (frame->GetNackCount() > 0);
502 if (retransmitted) {
503 jitter_estimate_.FrameNacked();
504 } else if (frame->Length() > 0) {
505 // Ignore retransmitted and empty frames.
506 if (waiting_for_completion_.latest_packet_time >= 0) {
507 UpdateJitterEstimate(waiting_for_completion_, true);
508 }
509 if (frame->GetState() == kStateComplete) {
510 UpdateJitterEstimate(*frame, false);
511 } else {
512 // Wait for this one to get complete.
513 waiting_for_completion_.frame_size = frame->Length();
514 waiting_for_completion_.latest_packet_time =
515 frame->LatestPacketTimeMs();
516 waiting_for_completion_.timestamp = frame->TimeStamp();
517 }
518 }
519
520 // The state must be changed to decoding before cleaning up zero sized
521 // frames to avoid empty frames being cleaned up and then given to the
522 // decoder. Propagates the missing_frame bit.
523 frame->PrepareForDecode(continuous);
524
525 // We have a frame - update the last decoded state and nack list.
526 last_decoded_state_.SetState(frame);
527 DropPacketsFromNackList(last_decoded_state_.sequence_num());
528
529 if ((*frame).IsSessionComplete())
530 UpdateAveragePacketsPerFrame(frame->NumPackets());
531
532 return frame;
533 }
534
535 // Release frame when done with decoding. Should never be used to release
536 // frames from within the jitter buffer.
ReleaseFrame(VCMEncodedFrame * frame)537 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
538 CriticalSectionScoped cs(crit_sect_);
539 VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
540 if (frame_buffer) {
541 free_frames_.push_back(frame_buffer);
542 }
543 }
544
545 // Gets frame to use for this timestamp. If no match, get empty frame.
GetFrame(const VCMPacket & packet,VCMFrameBuffer ** frame)546 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
547 VCMFrameBuffer** frame) {
548 // Does this packet belong to an old frame?
549 if (last_decoded_state_.IsOldPacket(&packet)) {
550 // Account only for media packets.
551 if (packet.sizeBytes > 0) {
552 num_discarded_packets_++;
553 num_consecutive_old_packets_++;
554 }
555 // Update last decoded sequence number if the packet arrived late and
556 // belongs to a frame with a timestamp equal to the last decoded
557 // timestamp.
558 last_decoded_state_.UpdateOldPacket(&packet);
559 DropPacketsFromNackList(last_decoded_state_.sequence_num());
560
561 if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
562 LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
563 "packets received. Flushing the jitter buffer.";
564 Flush();
565 return kFlushIndicator;
566 }
567 return kOldPacket;
568 }
569 num_consecutive_old_packets_ = 0;
570
571 *frame = incomplete_frames_.FindFrame(packet.timestamp);
572 if (*frame)
573 return kNoError;
574 *frame = decodable_frames_.FindFrame(packet.timestamp);
575 if (*frame)
576 return kNoError;
577
578 // No match, return empty frame.
579 *frame = GetEmptyFrame();
580 VCMFrameBufferEnum ret = kNoError;
581 if (!*frame) {
582 // No free frame! Try to reclaim some...
583 LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
584 bool found_key_frame = RecycleFramesUntilKeyFrame();
585 *frame = GetEmptyFrame();
586 assert(*frame);
587 if (!found_key_frame) {
588 ret = kFlushIndicator;
589 }
590 }
591 (*frame)->Reset();
592 return ret;
593 }
594
LastPacketTime(const VCMEncodedFrame * frame,bool * retransmitted) const595 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
596 bool* retransmitted) const {
597 assert(retransmitted);
598 CriticalSectionScoped cs(crit_sect_);
599 const VCMFrameBuffer* frame_buffer =
600 static_cast<const VCMFrameBuffer*>(frame);
601 *retransmitted = (frame_buffer->GetNackCount() > 0);
602 return frame_buffer->LatestPacketTimeMs();
603 }
604
InsertPacket(const VCMPacket & packet,bool * retransmitted)605 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
606 bool* retransmitted) {
607 CriticalSectionScoped cs(crit_sect_);
608
609 VCMFrameBuffer* frame = NULL;
610 const VCMFrameBufferEnum error = GetFrame(packet, &frame);
611 if (error != kNoError && frame == NULL) {
612 return error;
613 }
614
615 int64_t now_ms = clock_->TimeInMilliseconds();
616 // We are keeping track of the first and latest seq numbers, and
617 // the number of wraps to be able to calculate how many packets we expect.
618 if (first_packet_since_reset_) {
619 // Now it's time to start estimating jitter
620 // reset the delay estimate.
621 inter_frame_delay_.Reset(now_ms);
622 }
623 if (last_decoded_state_.IsOldPacket(&packet)) {
624 // This packet belongs to an old, already decoded frame, we want to update
625 // the last decoded sequence number.
626 last_decoded_state_.UpdateOldPacket(&packet);
627 drop_count_++;
628 // Flush if this happens consistently.
629 num_consecutive_old_frames_++;
630 if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
631 LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
632 "frames received. Flushing the jitter buffer.";
633 Flush();
634 return kFlushIndicator;
635 }
636 return kNoError;
637 }
638
639 num_consecutive_old_frames_ = 0;
640
641 // Empty packets may bias the jitter estimate (lacking size component),
642 // therefore don't let empty packet trigger the following updates:
643 if (packet.frameType != kFrameEmpty) {
644 if (waiting_for_completion_.timestamp == packet.timestamp) {
645 // This can get bad if we have a lot of duplicate packets,
646 // we will then count some packet multiple times.
647 waiting_for_completion_.frame_size += packet.sizeBytes;
648 waiting_for_completion_.latest_packet_time = now_ms;
649 } else if (waiting_for_completion_.latest_packet_time >= 0 &&
650 waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
651 // A packet should never be more than two seconds late
652 UpdateJitterEstimate(waiting_for_completion_, true);
653 waiting_for_completion_.latest_packet_time = -1;
654 waiting_for_completion_.frame_size = 0;
655 waiting_for_completion_.timestamp = 0;
656 }
657 }
658
659 VCMFrameBufferStateEnum previous_state = frame->GetState();
660 // Insert packet.
661 // Check for first packet. High sequence number will be -1 if neither an empty
662 // packet nor a media packet has been inserted.
663 bool first = (frame->GetHighSeqNum() == -1);
664 FrameData frame_data;
665 frame_data.rtt_ms = rtt_ms_;
666 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
667 VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet,
668 now_ms,
669 decode_error_mode_,
670 frame_data);
671 if (!frame->GetCountedFrame()) {
672 TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
673 "timestamp", frame->TimeStamp());
674 }
675
676 if (buffer_return > 0) {
677 incoming_bit_count_ += packet.sizeBytes << 3;
678 if (first_packet_since_reset_) {
679 latest_received_sequence_number_ = packet.seqNum;
680 first_packet_since_reset_ = false;
681 } else {
682 if (IsPacketRetransmitted(packet)) {
683 frame->IncrementNackCount();
684 }
685 if (!UpdateNackList(packet.seqNum) &&
686 packet.frameType != kVideoFrameKey) {
687 buffer_return = kFlushIndicator;
688 }
689 latest_received_sequence_number_ = LatestSequenceNumber(
690 latest_received_sequence_number_, packet.seqNum);
691 }
692 }
693
694 // Is the frame already in the decodable list?
695 bool update_decodable_list = (previous_state != kStateDecodable &&
696 previous_state != kStateComplete);
697 bool continuous = IsContinuous(*frame);
698 switch (buffer_return) {
699 case kGeneralError:
700 case kTimeStampError:
701 case kSizeError: {
702 // This frame will be cleaned up later from the frame list.
703 frame->Reset();
704 break;
705 }
706 case kCompleteSession: {
707 if (update_decodable_list) {
708 CountFrame(*frame);
709 frame->SetCountedFrame(true);
710 if (continuous) {
711 // Signal that we have a complete session.
712 frame_event_->Set();
713 }
714 }
715 }
716 // Note: There is no break here - continuing to kDecodableSession.
717 case kDecodableSession: {
718 *retransmitted = (frame->GetNackCount() > 0);
719 // Signal that we have a received packet.
720 packet_event_->Set();
721 if (!update_decodable_list) {
722 break;
723 }
724 if (continuous) {
725 if (!first) {
726 incomplete_frames_.PopFrame(packet.timestamp);
727 }
728 decodable_frames_.InsertFrame(frame);
729 FindAndInsertContinuousFrames(*frame);
730 } else if (first) {
731 incomplete_frames_.InsertFrame(frame);
732 }
733 break;
734 }
735 case kIncomplete: {
736 // No point in storing empty continuous frames.
737 if (frame->GetState() == kStateEmpty &&
738 last_decoded_state_.UpdateEmptyFrame(frame)) {
739 free_frames_.push_back(frame);
740 frame->Reset();
741 frame = NULL;
742 return kNoError;
743 } else if (first) {
744 incomplete_frames_.InsertFrame(frame);
745 }
746 // Signal that we have received a packet.
747 packet_event_->Set();
748 break;
749 }
750 case kNoError:
751 case kOutOfBoundsPacket:
752 case kDuplicatePacket: {
753 break;
754 }
755 case kFlushIndicator:
756 return kFlushIndicator;
757 default: {
758 assert(false && "JitterBuffer::InsertPacket: Undefined value");
759 }
760 }
761 return buffer_return;
762 }
763
IsContinuousInState(const VCMFrameBuffer & frame,const VCMDecodingState & decoding_state) const764 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
765 const VCMDecodingState& decoding_state) const {
766 if (decode_error_mode_ == kWithErrors)
767 return true;
768 // Is this frame (complete or decodable) and continuous?
769 // kStateDecodable will never be set when decode_error_mode_ is false
770 // as SessionInfo determines this state based on the error mode (and frame
771 // completeness).
772 if ((frame.GetState() == kStateComplete ||
773 frame.GetState() == kStateDecodable) &&
774 decoding_state.ContinuousFrame(&frame)) {
775 return true;
776 } else {
777 return false;
778 }
779 }
780
IsContinuous(const VCMFrameBuffer & frame) const781 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
782 if (IsContinuousInState(frame, last_decoded_state_)) {
783 return true;
784 }
785 VCMDecodingState decoding_state;
786 decoding_state.CopyFrom(last_decoded_state_);
787 for (FrameList::const_iterator it = decodable_frames_.begin();
788 it != decodable_frames_.end(); ++it) {
789 VCMFrameBuffer* decodable_frame = it->second;
790 if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
791 break;
792 }
793 decoding_state.SetState(decodable_frame);
794 if (IsContinuousInState(frame, decoding_state)) {
795 return true;
796 }
797 }
798 return false;
799 }
800
FindAndInsertContinuousFrames(const VCMFrameBuffer & new_frame)801 void VCMJitterBuffer::FindAndInsertContinuousFrames(
802 const VCMFrameBuffer& new_frame) {
803 VCMDecodingState decoding_state;
804 decoding_state.CopyFrom(last_decoded_state_);
805 decoding_state.SetState(&new_frame);
806 // When temporal layers are available, we search for a complete or decodable
807 // frame until we hit one of the following:
808 // 1. Continuous base or sync layer.
809 // 2. The end of the list was reached.
810 for (FrameList::iterator it = incomplete_frames_.begin();
811 it != incomplete_frames_.end();) {
812 VCMFrameBuffer* frame = it->second;
813 if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
814 ++it;
815 continue;
816 }
817 if (IsContinuousInState(*frame, decoding_state)) {
818 decodable_frames_.InsertFrame(frame);
819 incomplete_frames_.erase(it++);
820 decoding_state.SetState(frame);
821 } else if (frame->TemporalId() <= 0) {
822 break;
823 } else {
824 ++it;
825 }
826 }
827 }
828
EstimatedJitterMs()829 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
830 CriticalSectionScoped cs(crit_sect_);
831 // Compute RTT multiplier for estimation.
832 // low_rtt_nackThresholdMs_ == -1 means no FEC.
833 double rtt_mult = 1.0f;
834 if (low_rtt_nack_threshold_ms_ >= 0 &&
835 static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) {
836 // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
837 // when waiting for retransmissions.
838 rtt_mult = 0.0f;
839 }
840 return jitter_estimate_.GetJitterEstimate(rtt_mult);
841 }
842
UpdateRtt(uint32_t rtt_ms)843 void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
844 CriticalSectionScoped cs(crit_sect_);
845 rtt_ms_ = rtt_ms;
846 jitter_estimate_.UpdateRtt(rtt_ms);
847 }
848
SetNackMode(VCMNackMode mode,int low_rtt_nack_threshold_ms,int high_rtt_nack_threshold_ms)849 void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
850 int low_rtt_nack_threshold_ms,
851 int high_rtt_nack_threshold_ms) {
852 CriticalSectionScoped cs(crit_sect_);
853 nack_mode_ = mode;
854 if (mode == kNoNack) {
855 missing_sequence_numbers_.clear();
856 }
857 assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
858 assert(high_rtt_nack_threshold_ms == -1 ||
859 low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
860 assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
861 low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
862 high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
863 // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
864 // disable NACK in hybrid mode.
865 if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
866 rtt_ms_ = 0;
867 }
868 if (!WaitForRetransmissions()) {
869 jitter_estimate_.ResetNackCount();
870 }
871 }
872
SetNackSettings(size_t max_nack_list_size,int max_packet_age_to_nack,int max_incomplete_time_ms)873 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
874 int max_packet_age_to_nack,
875 int max_incomplete_time_ms) {
876 CriticalSectionScoped cs(crit_sect_);
877 assert(max_packet_age_to_nack >= 0);
878 assert(max_incomplete_time_ms_ >= 0);
879 max_nack_list_size_ = max_nack_list_size;
880 max_packet_age_to_nack_ = max_packet_age_to_nack;
881 max_incomplete_time_ms_ = max_incomplete_time_ms;
882 nack_seq_nums_.resize(max_nack_list_size_);
883 }
884
nack_mode() const885 VCMNackMode VCMJitterBuffer::nack_mode() const {
886 CriticalSectionScoped cs(crit_sect_);
887 return nack_mode_;
888 }
889
NonContinuousOrIncompleteDuration()890 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
891 if (incomplete_frames_.empty()) {
892 return 0;
893 }
894 uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
895 if (!decodable_frames_.empty()) {
896 start_timestamp = decodable_frames_.Back()->TimeStamp();
897 }
898 return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
899 }
900
EstimatedLowSequenceNumber(const VCMFrameBuffer & frame) const901 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
902 const VCMFrameBuffer& frame) const {
903 assert(frame.GetLowSeqNum() >= 0);
904 if (frame.HaveFirstPacket())
905 return frame.GetLowSeqNum();
906
907 // This estimate is not accurate if more than one packet with lower sequence
908 // number is lost.
909 return frame.GetLowSeqNum() - 1;
910 }
911
GetNackList(uint16_t * nack_list_size,bool * request_key_frame)912 uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
913 bool* request_key_frame) {
914 CriticalSectionScoped cs(crit_sect_);
915 *request_key_frame = false;
916 if (nack_mode_ == kNoNack) {
917 *nack_list_size = 0;
918 return NULL;
919 }
920 if (last_decoded_state_.in_initial_state()) {
921 VCMFrameBuffer* next_frame = NextFrame();
922 const bool first_frame_is_key = next_frame &&
923 next_frame->FrameType() == kVideoFrameKey &&
924 next_frame->HaveFirstPacket();
925 if (!first_frame_is_key) {
926 bool have_non_empty_frame = decodable_frames_.end() != find_if(
927 decodable_frames_.begin(), decodable_frames_.end(),
928 HasNonEmptyState);
929 if (!have_non_empty_frame) {
930 have_non_empty_frame = incomplete_frames_.end() != find_if(
931 incomplete_frames_.begin(), incomplete_frames_.end(),
932 HasNonEmptyState);
933 }
934 bool found_key_frame = RecycleFramesUntilKeyFrame();
935 if (!found_key_frame) {
936 *request_key_frame = have_non_empty_frame;
937 *nack_list_size = 0;
938 return NULL;
939 }
940 }
941 }
942 if (TooLargeNackList()) {
943 *request_key_frame = !HandleTooLargeNackList();
944 }
945 if (max_incomplete_time_ms_ > 0) {
946 int non_continuous_incomplete_duration =
947 NonContinuousOrIncompleteDuration();
948 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
949 LOG_F(LS_WARNING) << "Too long non-decodable duration: "
950 << non_continuous_incomplete_duration << " > "
951 << 90 * max_incomplete_time_ms_;
952 FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
953 incomplete_frames_.rend(), IsKeyFrame);
954 if (rit == incomplete_frames_.rend()) {
955 // Request a key frame if we don't have one already.
956 *request_key_frame = true;
957 *nack_list_size = 0;
958 return NULL;
959 } else {
960 // Skip to the last key frame. If it's incomplete we will start
961 // NACKing it.
962 // Note that the estimated low sequence number is correct for VP8
963 // streams because only the first packet of a key frame is marked.
964 last_decoded_state_.Reset();
965 DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
966 }
967 }
968 }
969 unsigned int i = 0;
970 SequenceNumberSet::iterator it = missing_sequence_numbers_.begin();
971 for (; it != missing_sequence_numbers_.end(); ++it, ++i) {
972 nack_seq_nums_[i] = *it;
973 }
974 *nack_list_size = i;
975 return &nack_seq_nums_[0];
976 }
977
SetDecodeErrorMode(VCMDecodeErrorMode error_mode)978 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
979 CriticalSectionScoped cs(crit_sect_);
980 decode_error_mode_ = error_mode;
981 }
982
NextFrame() const983 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
984 if (!decodable_frames_.empty())
985 return decodable_frames_.Front();
986 if (!incomplete_frames_.empty())
987 return incomplete_frames_.Front();
988 return NULL;
989 }
990
UpdateNackList(uint16_t sequence_number)991 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
992 if (nack_mode_ == kNoNack) {
993 return true;
994 }
995 // Make sure we don't add packets which are already too old to be decoded.
996 if (!last_decoded_state_.in_initial_state()) {
997 latest_received_sequence_number_ = LatestSequenceNumber(
998 latest_received_sequence_number_,
999 last_decoded_state_.sequence_num());
1000 }
1001 if (IsNewerSequenceNumber(sequence_number,
1002 latest_received_sequence_number_)) {
1003 // Push any missing sequence numbers to the NACK list.
1004 for (uint16_t i = latest_received_sequence_number_ + 1;
1005 IsNewerSequenceNumber(sequence_number, i); ++i) {
1006 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
1007 TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i);
1008 }
1009 if (TooLargeNackList() && !HandleTooLargeNackList()) {
1010 LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
1011 return false;
1012 }
1013 if (MissingTooOldPacket(sequence_number) &&
1014 !HandleTooOldPackets(sequence_number)) {
1015 LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
1016 return false;
1017 }
1018 } else {
1019 missing_sequence_numbers_.erase(sequence_number);
1020 TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number);
1021 }
1022 return true;
1023 }
1024
TooLargeNackList() const1025 bool VCMJitterBuffer::TooLargeNackList() const {
1026 return missing_sequence_numbers_.size() > max_nack_list_size_;
1027 }
1028
HandleTooLargeNackList()1029 bool VCMJitterBuffer::HandleTooLargeNackList() {
1030 // Recycle frames until the NACK list is small enough. It is likely cheaper to
1031 // request a key frame than to retransmit this many missing packets.
1032 LOG_F(LS_WARNING) << "NACK list has grown too large: "
1033 << missing_sequence_numbers_.size() << " > "
1034 << max_nack_list_size_;
1035 bool key_frame_found = false;
1036 while (TooLargeNackList()) {
1037 key_frame_found = RecycleFramesUntilKeyFrame();
1038 }
1039 return key_frame_found;
1040 }
1041
MissingTooOldPacket(uint16_t latest_sequence_number) const1042 bool VCMJitterBuffer::MissingTooOldPacket(
1043 uint16_t latest_sequence_number) const {
1044 if (missing_sequence_numbers_.empty()) {
1045 return false;
1046 }
1047 const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1048 *missing_sequence_numbers_.begin();
1049 // Recycle frames if the NACK list contains too old sequence numbers as
1050 // the packets may have already been dropped by the sender.
1051 return age_of_oldest_missing_packet > max_packet_age_to_nack_;
1052 }
1053
HandleTooOldPackets(uint16_t latest_sequence_number)1054 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
1055 bool key_frame_found = false;
1056 const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1057 *missing_sequence_numbers_.begin();
1058 LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
1059 << age_of_oldest_missing_packet << " > "
1060 << max_packet_age_to_nack_;
1061 while (MissingTooOldPacket(latest_sequence_number)) {
1062 key_frame_found = RecycleFramesUntilKeyFrame();
1063 }
1064 return key_frame_found;
1065 }
1066
DropPacketsFromNackList(uint16_t last_decoded_sequence_number)1067 void VCMJitterBuffer::DropPacketsFromNackList(
1068 uint16_t last_decoded_sequence_number) {
1069 // Erase all sequence numbers from the NACK list which we won't need any
1070 // longer.
1071 missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
1072 missing_sequence_numbers_.upper_bound(
1073 last_decoded_sequence_number));
1074 }
1075
LastDecodedTimestamp() const1076 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
1077 CriticalSectionScoped cs(crit_sect_);
1078 return last_decoded_state_.time_stamp();
1079 }
1080
RenderBufferSize(uint32_t * timestamp_start,uint32_t * timestamp_end)1081 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
1082 uint32_t* timestamp_end) {
1083 CriticalSectionScoped cs(crit_sect_);
1084 CleanUpOldOrEmptyFrames();
1085 *timestamp_start = 0;
1086 *timestamp_end = 0;
1087 if (decodable_frames_.empty()) {
1088 return;
1089 }
1090 *timestamp_start = decodable_frames_.Front()->TimeStamp();
1091 *timestamp_end = decodable_frames_.Back()->TimeStamp();
1092 }
1093
GetEmptyFrame()1094 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
1095 if (free_frames_.empty()) {
1096 if (!TryToIncreaseJitterBufferSize()) {
1097 return NULL;
1098 }
1099 }
1100 VCMFrameBuffer* frame = free_frames_.front();
1101 free_frames_.pop_front();
1102 return frame;
1103 }
1104
TryToIncreaseJitterBufferSize()1105 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
1106 if (max_number_of_frames_ >= kMaxNumberOfFrames)
1107 return false;
1108 VCMFrameBuffer* new_frame = new VCMFrameBuffer();
1109 frame_buffers_[max_number_of_frames_] = new_frame;
1110 free_frames_.push_back(new_frame);
1111 ++max_number_of_frames_;
1112 TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
1113 return true;
1114 }
1115
1116 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
1117 // full.
RecycleFramesUntilKeyFrame()1118 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
1119 // First release incomplete frames, and only release decodable frames if there
1120 // are no incomplete ones.
1121 FrameList::iterator key_frame_it;
1122 bool key_frame_found = false;
1123 int dropped_frames = 0;
1124 dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
1125 &key_frame_it, &free_frames_);
1126 key_frame_found = key_frame_it != incomplete_frames_.end();
1127 if (dropped_frames == 0) {
1128 dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
1129 &key_frame_it, &free_frames_);
1130 key_frame_found = key_frame_it != decodable_frames_.end();
1131 }
1132 drop_count_ += dropped_frames;
1133 TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
1134 if (key_frame_found) {
1135 LOG(LS_INFO) << "Found key frame while dropping frames.";
1136 // Reset last decoded state to make sure the next frame decoded is a key
1137 // frame, and start NACKing from here.
1138 last_decoded_state_.Reset();
1139 DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
1140 } else if (decodable_frames_.empty()) {
1141 // All frames dropped. Reset the decoding state and clear missing sequence
1142 // numbers as we're starting fresh.
1143 last_decoded_state_.Reset();
1144 missing_sequence_numbers_.clear();
1145 }
1146 return key_frame_found;
1147 }
1148
1149 // Must be called under the critical section |crit_sect_|.
CountFrame(const VCMFrameBuffer & frame)1150 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
1151 if (!frame.GetCountedFrame()) {
1152 // Ignore ACK frames.
1153 incoming_frame_count_++;
1154 }
1155
1156 if (frame.FrameType() == kVideoFrameKey) {
1157 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1158 frame.TimeStamp(), "KeyComplete");
1159 } else {
1160 TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1161 frame.TimeStamp(), "DeltaComplete");
1162 }
1163
1164 // Update receive statistics. We count all layers, thus when you use layers
1165 // adding all key and delta frames might differ from frame count.
1166 if (frame.IsSessionComplete()) {
1167 ++receive_statistics_[frame.FrameType()];
1168 }
1169 }
1170
UpdateAveragePacketsPerFrame(int current_number_packets)1171 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
1172 if (frame_counter_ > kFastConvergeThreshold) {
1173 average_packets_per_frame_ = average_packets_per_frame_
1174 * (1 - kNormalConvergeMultiplier)
1175 + current_number_packets * kNormalConvergeMultiplier;
1176 } else if (frame_counter_ > 0) {
1177 average_packets_per_frame_ = average_packets_per_frame_
1178 * (1 - kFastConvergeMultiplier)
1179 + current_number_packets * kFastConvergeMultiplier;
1180 frame_counter_++;
1181 } else {
1182 average_packets_per_frame_ = current_number_packets;
1183 frame_counter_++;
1184 }
1185 }
1186
1187 // Must be called under the critical section |crit_sect_|.
CleanUpOldOrEmptyFrames()1188 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
1189 drop_count_ +=
1190 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1191 &free_frames_);
1192 drop_count_ +=
1193 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1194 &free_frames_);
1195 if (!last_decoded_state_.in_initial_state()) {
1196 DropPacketsFromNackList(last_decoded_state_.sequence_num());
1197 }
1198 }
1199
1200 // Must be called from within |crit_sect_|.
IsPacketRetransmitted(const VCMPacket & packet) const1201 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
1202 return missing_sequence_numbers_.find(packet.seqNum) !=
1203 missing_sequence_numbers_.end();
1204 }
1205
1206 // Must be called under the critical section |crit_sect_|. Should never be
1207 // called with retransmitted frames, they must be filtered out before this
1208 // function is called.
UpdateJitterEstimate(const VCMJitterSample & sample,bool incomplete_frame)1209 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
1210 bool incomplete_frame) {
1211 if (sample.latest_packet_time == -1) {
1212 return;
1213 }
1214 UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
1215 sample.frame_size, incomplete_frame);
1216 }
1217
1218 // Must be called under the critical section crit_sect_. Should never be
1219 // called with retransmitted frames, they must be filtered out before this
1220 // function is called.
UpdateJitterEstimate(const VCMFrameBuffer & frame,bool incomplete_frame)1221 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
1222 bool incomplete_frame) {
1223 if (frame.LatestPacketTimeMs() == -1) {
1224 return;
1225 }
1226 // No retransmitted frames should be a part of the jitter
1227 // estimate.
1228 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
1229 frame.Length(), incomplete_frame);
1230 }
1231
1232 // Must be called under the critical section |crit_sect_|. Should never be
1233 // called with retransmitted frames, they must be filtered out before this
1234 // function is called.
UpdateJitterEstimate(int64_t latest_packet_time_ms,uint32_t timestamp,unsigned int frame_size,bool incomplete_frame)1235 void VCMJitterBuffer::UpdateJitterEstimate(
1236 int64_t latest_packet_time_ms,
1237 uint32_t timestamp,
1238 unsigned int frame_size,
1239 bool incomplete_frame) {
1240 if (latest_packet_time_ms == -1) {
1241 return;
1242 }
1243 int64_t frame_delay;
1244 bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
1245 &frame_delay,
1246 latest_packet_time_ms);
1247 // Filter out frames which have been reordered in time by the network
1248 if (not_reordered) {
1249 // Update the jitter estimate with the new samples
1250 jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
1251 }
1252 }
1253
WaitForRetransmissions()1254 bool VCMJitterBuffer::WaitForRetransmissions() {
1255 if (nack_mode_ == kNoNack) {
1256 // NACK disabled -> don't wait for retransmissions.
1257 return false;
1258 }
1259 // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
1260 // that case we don't wait for retransmissions.
1261 if (high_rtt_nack_threshold_ms_ >= 0 &&
1262 rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
1263 return false;
1264 }
1265 return true;
1266 }
1267 } // namespace webrtc
1268