• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_
6 #define SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_
7 
8 #include "sandbox/win/src/policy_engine_params.h"
9 #include "base/basictypes.h"
10 
11 // The low-level policy is implemented using the concept of policy 'opcodes'.
12 // An opcode is a structure that contains enough information to perform one
13 // comparison against one single input parameter. For example, an opcode can
14 // encode just one of the following comparison:
15 //
16 // - Is input parameter 3 not equal to NULL?
17 // - Does input parameter 2 start with L"c:\\"?
18 // - Is input parameter 5, bit 3 is equal 1?
19 //
20 // Each opcode is in fact equivalent to a function invocation where all
21 // the parameters are known by the opcode except one. So say you have a
22 // function of this form:
23 //      bool fn(a, b, c, d)  with 4 arguments
24 //
25 // Then an opcode is:
26 //      op(fn, b, c, d)
27 // Which stores the function to call and its 3 last arguments
28 //
29 // Then and opcode evaluation is:
30 //      op.eval(a)  ------------------------> fn(a,b,c,d)
31 //                        internally calls
32 //
33 // The idea is that complex policy rules can be split into streams of
34 // opcodes which are evaluated in sequence. The evaluation is done in
35 // groups of opcodes that have N comparison opcodes plus 1 action opcode:
36 //
37 // [comparison 1][comparison 2]...[comparison N][action][comparison 1]...
38 //    ----- evaluation order----------->
39 //
40 // Each opcode group encodes one high-level policy rule. The rule applies
41 // only if all the conditions on the group evaluate to true. The action
42 // opcode contains the policy outcome for that particular rule.
43 //
44 // Note that this header contains the main building blocks of low-level policy
45 // but not the low level policy class.
46 namespace sandbox {
47 
48 // These are the possible policy outcomes. Note that some of them might
49 // not apply and can be removed. Also note that The following values only
50 // specify what to do, not how to do it and it is acceptable given specific
51 // cases to ignore the policy outcome.
52 enum EvalResult {
53   // Comparison opcode values:
54   EVAL_TRUE,   // Opcode condition evaluated true.
55   EVAL_FALSE,  // Opcode condition evaluated false.
56   EVAL_ERROR,  // Opcode condition generated an error while evaluating.
57   // Action opcode values:
58   ASK_BROKER,  // The target must generate an IPC to the broker. On the broker
59                // side, this means grant access to the resource.
60   DENY_ACCESS,   // No access granted to the resource.
61   GIVE_READONLY,  // Give readonly access to the resource.
62   GIVE_ALLACCESS,  // Give full access to the resource.
63   GIVE_CACHED,  // IPC is not required. Target can return a cached handle.
64   GIVE_FIRST,  // TODO(cpu)
65   SIGNAL_ALARM,  // Unusual activity. Generate an alarm.
66   FAKE_SUCCESS,  // Do not call original function. Just return 'success'.
67   FAKE_ACCESS_DENIED,  // Do not call original function. Just return 'denied'
68                        // and do not do IPC.
69   TERMINATE_PROCESS,  // Destroy target process. Do IPC as well.
70 };
71 
72 // The following are the implemented opcodes.
73 enum OpcodeID {
74   OP_ALWAYS_FALSE,  // Evaluates to false (EVAL_FALSE).
75   OP_ALWAYS_TRUE,  // Evaluates to true (EVAL_TRUE).
76   OP_NUMBER_MATCH,  // Match a 32-bit integer as n == a.
77   OP_ULONG_MATCH_RANGE,  // Match an ulong integer as a <= n <= b.
78   OP_ULONG_AND_MATCH,  // Match using bitwise AND; as in: n & a != 0.
79   OP_WSTRING_MATCH,  // Match a string for equality.
80   OP_ACTION  // Evaluates to an action opcode.
81 };
82 
83 // Options that apply to every opcode. They are specified when creating
84 // each opcode using OpcodeFactory::MakeOpXXXXX() family of functions
85 // Do nothing special.
86 const uint32 kPolNone = 0;
87 
88 // Convert EVAL_TRUE into EVAL_FALSE and vice-versa. This allows to express
89 // negated conditions such as if ( a && !b).
90 const uint32 kPolNegateEval = 1;
91 
92 // Zero the MatchContext context structure. This happens after the opcode
93 // is evaluated.
94 const uint32 kPolClearContext = 2;
95 
96 // Use OR when evaluating this set of opcodes. The policy evaluator by default
97 // uses AND when evaluating. Very helpful when
98 // used with kPolNegateEval. For example if you have a condition best expressed
99 // as if(! (a && b && c)), the use of this flags allows it to be expressed as
100 // if ((!a) || (!b) || (!c)).
101 const uint32 kPolUseOREval = 4;
102 
103 // Keeps the evaluation state between opcode evaluations. This is used
104 // for string matching where the next opcode needs to continue matching
105 // from the last character position from the current opcode. The match
106 // context is preserved across opcode evaluation unless an opcode specifies
107 // as an option kPolClearContext.
108 struct MatchContext {
109   size_t position;
110   uint32 options;
111 
MatchContextMatchContext112   MatchContext() {
113     Clear();
114   }
115 
ClearMatchContext116   void Clear() {
117     position = 0;
118     options = 0;
119   }
120 };
121 
122 // Models a policy opcode; that is a condition evaluation were all the
123 // arguments but one are stored in objects of this class. Use OpcodeFactory
124 // to create objects of this type.
125 // This class is just an implementation artifact and not exposed to the
126 // API clients or visible in the intercepted service. Internally, an
127 // opcode is just:
128 //  - An integer that identifies the actual opcode.
129 //  - An index to indicate which one is the input argument
130 //  - An array of arguments.
131 // While an OO hierarchy of objects would have been a natural choice, the fact
132 // that 1) this code can execute before the CRT is loaded, presents serious
133 // problems in terms of guarantees about the actual state of the vtables and
134 // 2) because the opcode objects are generated in the broker process, we need to
135 // use plain objects. To preserve some minimal type safety templates are used
136 // when possible.
137 class PolicyOpcode {
138   friend class OpcodeFactory;
139  public:
140   // Evaluates the opcode. For a typical comparison opcode the return value
141   // is EVAL_TRUE or EVAL_FALSE. If there was an error in the evaluation the
142   // the return is EVAL_ERROR. If the opcode is an action opcode then the
143   // return can take other values such as ASK_BROKER.
144   // parameters: An array of all input parameters. This argument is normally
145   // created by the macros POLPARAMS_BEGIN() POLPARAMS_END.
146   // count: The number of parameters passed as first argument.
147   // match: The match context that is persisted across the opcode evaluation
148   // sequence.
149   EvalResult Evaluate(const ParameterSet* parameters, size_t count,
150                       MatchContext* match);
151 
152   // Retrieves a stored argument by index. Valid index values are
153   // from 0 to < kArgumentCount.
154   template <typename T>
GetArgument(size_t index,T * argument)155   void GetArgument(size_t index, T* argument) const {
156     COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size);
157     *argument = *reinterpret_cast<const T*>(&arguments_[index].mem);
158   }
159 
160   // Sets a stored argument by index. Valid index values are
161   // from 0 to < kArgumentCount.
162   template <typename T>
SetArgument(size_t index,const T & argument)163   void SetArgument(size_t index, const T& argument) {
164     COMPILE_ASSERT(sizeof(T) <= sizeof(arguments_[0]), invalid_size);
165     *reinterpret_cast<T*>(&arguments_[index].mem) = argument;
166   }
167 
168   // Retrieves the actual address of an string argument. When using
169   // GetArgument() to retrieve an index that contains a string, the returned
170   // value is just an offset to the actual string.
171   // index: the stored string index. Valid values are from 0
172   // to < kArgumentCount.
GetRelativeString(size_t index)173   const wchar_t* GetRelativeString(size_t index) const {
174     ptrdiff_t str_delta = 0;
175     GetArgument(index, &str_delta);
176     const char* delta = reinterpret_cast<const char*>(this) + str_delta;
177     return reinterpret_cast<const wchar_t*>(delta);
178   }
179 
180   // Returns true if this opcode is an action opcode without actually
181   // evaluating it. Used to do a quick scan forward to the next opcode group.
IsAction()182   bool IsAction() const {
183     return (OP_ACTION == opcode_id_);
184   };
185 
186   // Returns the opcode type.
GetID()187   OpcodeID GetID() const {
188     return opcode_id_;
189   }
190 
191   // Returns the stored options such as kPolNegateEval and others.
GetOptions()192   uint32 GetOptions() const {
193     return options_;
194   }
195 
196   // Sets the stored options such as kPolNegateEval.
SetOptions(int16 options)197   void SetOptions(int16 options) {
198     options_ = options;
199   }
200 
201  private:
202 
203   static const size_t kArgumentCount = 4;  // The number of supported argument.
204 
205   struct OpcodeArgument {
206     UINT_PTR mem;
207   };
208 
209   // Better define placement new in the class instead of relying on the
210   // global definition which seems to be fubared.
new(size_t,void * location)211   void* operator new(size_t, void* location) {
212     return location;
213   }
214 
215   // Helper function to evaluate the opcode. The parameters have the same
216   // meaning that in Evaluate().
217   EvalResult EvaluateHelper(const ParameterSet* parameters,
218                            MatchContext* match);
219   OpcodeID opcode_id_;
220   int16 parameter_;
221   int16 options_;
222   OpcodeArgument arguments_[PolicyOpcode::kArgumentCount];
223 };
224 
225 enum StringMatchOptions {
226   CASE_SENSITIVE = 0,      // Pay or Not attention to the case as defined by
227   CASE_INSENSITIVE = 1,    // RtlCompareUnicodeString windows API.
228   EXACT_LENGHT = 2         // Don't do substring match. Do full string match.
229 };
230 
231 // Opcodes that do string comparisons take a parameter that is the starting
232 // position to perform the comparison so we can do substring matching. There
233 // are two special values:
234 //
235 // Start from the current position and compare strings advancing forward until
236 // a match is found if any. Similar to CRT strstr().
237 const int  kSeekForward = -1;
238 // Perform a match with the end of the string. It only does a single comparison.
239 const int  kSeekToEnd = 0xfffff;
240 
241 
242 // A PolicyBuffer is a variable size structure that contains all the opcodes
243 // that are to be created or evaluated in sequence.
244 struct PolicyBuffer {
245   size_t opcode_count;
246   PolicyOpcode opcodes[1];
247 };
248 
249 // Helper class to create any opcode sequence. This class is normally invoked
250 // only by the high level policy module or when you need to handcraft a special
251 // policy.
252 // The factory works by creating the opcodes using a chunk of memory given
253 // in the constructor. The opcodes themselves are allocated from the beginning
254 // (top) of the memory, while any string that an opcode needs is allocated from
255 // the end (bottom) of the memory.
256 //
257 // In essence:
258 //
259 //   low address ---> [opcode 1]
260 //                    [opcode 2]
261 //                    [opcode 3]
262 //                    |        | <--- memory_top_
263 //                    | free   |
264 //                    |        |
265 //                    |        | <--- memory_bottom_
266 //                    [string 1]
267 //   high address --> [string 2]
268 //
269 // Note that this class does not keep track of the number of opcodes made and
270 // it is designed to be a building block for low-level policy.
271 //
272 // Note that any of the MakeOpXXXXX member functions below can return NULL on
273 // failure. When that happens opcode sequence creation must be aborted.
274 class OpcodeFactory {
275  public:
276   // memory: base pointer to a chunk of memory where the opcodes are created.
277   // memory_size: the size in bytes of the memory chunk.
OpcodeFactory(char * memory,size_t memory_size)278   OpcodeFactory(char* memory, size_t memory_size)
279       : memory_top_(memory) {
280     memory_bottom_ = &memory_top_[memory_size];
281   }
282 
283   // policy: contains the raw memory where the opcodes are created.
284   // memory_size: contains the actual size of the policy argument.
OpcodeFactory(PolicyBuffer * policy,size_t memory_size)285   OpcodeFactory(PolicyBuffer* policy, size_t memory_size) {
286     memory_top_ = reinterpret_cast<char*>(&policy->opcodes[0]);
287     memory_bottom_ = &memory_top_[memory_size];
288   }
289 
290   // Returns the available memory to make opcodes.
memory_size()291   size_t memory_size() const {
292     return memory_bottom_ - memory_top_;
293   }
294 
295   // Creates an OpAlwaysFalse opcode.
296   PolicyOpcode* MakeOpAlwaysFalse(uint32 options);
297 
298   // Creates an OpAlwaysFalse opcode.
299   PolicyOpcode* MakeOpAlwaysTrue(uint32 options);
300 
301   // Creates an OpAction opcode.
302   // action: The action to return when Evaluate() is called.
303   PolicyOpcode* MakeOpAction(EvalResult action, uint32 options);
304 
305   // Creates an OpNumberMatch opcode.
306   // selected_param: index of the input argument. It must be a ulong or the
307   // evaluation result will generate a EVAL_ERROR.
308   // match: the number to compare against the selected_param.
309   PolicyOpcode* MakeOpNumberMatch(int16 selected_param, unsigned long match,
310                                   uint32 options);
311 
312   // Creates an OpNumberMatch opcode (void pointers are cast to numbers).
313   // selected_param: index of the input argument. It must be an void* or the
314   // evaluation result will generate a EVAL_ERROR.
315   // match: the pointer numeric value to compare against selected_param.
316   PolicyOpcode* MakeOpVoidPtrMatch(int16 selected_param, const void* match,
317                                    uint32 options);
318 
319   // Creates an OpUlongMatchRange opcode using the memory passed in the ctor.
320   // selected_param: index of the input argument. It must be a ulong or the
321   // evaluation result will generate a EVAL_ERROR.
322   // lower_bound, upper_bound: the range to compare against selected_param.
323   PolicyOpcode* MakeOpUlongMatchRange(int16 selected_param,
324                                       unsigned long lower_bound,
325                                       unsigned long upper_bound,
326                                       uint32 options);
327 
328   // Creates an OpWStringMatch opcode using the raw memory passed in the ctor.
329   // selected_param: index of the input argument. It must be a wide string
330   // pointer or the evaluation result will generate a EVAL_ERROR.
331   // match_str: string to compare against selected_param.
332   // start_position: when its value is from 0 to < 0x7fff it indicates an
333   // offset from the selected_param string where to perform the comparison. If
334   // the value is SeekForward  then a substring search is performed. If the
335   // value is SeekToEnd the comparison is performed against the last part of
336   // the selected_param string.
337   // Note that the range in the position (0 to 0x7fff) is dictated by the
338   // current implementation.
339   // match_opts: Indicates additional matching flags. Currently CaseInsensitive
340   // is supported.
341   PolicyOpcode* MakeOpWStringMatch(int16 selected_param,
342                                    const wchar_t* match_str,
343                                    int start_position,
344                                    StringMatchOptions match_opts,
345                                    uint32 options);
346 
347   // Creates an OpUlongAndMatch opcode using the raw memory passed in the ctor.
348   // selected_param: index of the input argument. It must be ulong or the
349   // evaluation result will generate a EVAL_ERROR.
350   // match: the value to bitwise AND against selected_param.
351   PolicyOpcode* MakeOpUlongAndMatch(int16 selected_param,
352                                     unsigned long match,
353                                     uint32 options);
354 
355  private:
356   // Constructs the common part of every opcode. selected_param is the index
357   // of the input param to use when evaluating the opcode. Pass -1 in
358   // selected_param to indicate that no input parameter is required.
359   PolicyOpcode* MakeBase(OpcodeID opcode_id, uint32 options,
360                          int16 selected_param);
361 
362   // Allocates (and copies) a string (of size length) inside the buffer and
363   // returns the displacement with respect to start.
364   ptrdiff_t AllocRelative(void* start, const wchar_t* str, size_t lenght);
365 
366   // Points to the lowest currently available address of the memory
367   // used to make the opcodes. This pointer increments as opcodes are made.
368   char* memory_top_;
369 
370   // Points to the highest currently available address of the memory
371   // used to make the opcodes. This pointer decrements as opcode strings are
372   // allocated.
373   char* memory_bottom_;
374 
375   DISALLOW_COPY_AND_ASSIGN(OpcodeFactory);
376 };
377 
378 }  // namespace sandbox
379 
380 #endif  // SANDBOX_WIN_SRC_POLICY_ENGINE_OPCODES_H_
381