1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariables analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using a sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H 30 #define LLVM_CODEGEN_LIVEVARIABLES_H 31 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/IndexedMap.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/SparseBitVector.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 41 namespace llvm { 42 43 class MachineBasicBlock; 44 class MachineRegisterInfo; 45 46 class LiveVariables : public MachineFunctionPass { 47 public: 48 static char ID; // Pass identification, replacement for typeid LiveVariables()49 LiveVariables() : MachineFunctionPass(ID) { 50 initializeLiveVariablesPass(*PassRegistry::getPassRegistry()); 51 } 52 53 /// VarInfo - This represents the regions where a virtual register is live in 54 /// the program. We represent this with three different pieces of 55 /// information: the set of blocks in which the instruction is live 56 /// throughout, the set of blocks in which the instruction is actually used, 57 /// and the set of non-phi instructions that are the last users of the value. 58 /// 59 /// In the common case where a value is defined and killed in the same block, 60 /// There is one killing instruction, and AliveBlocks is empty. 61 /// 62 /// Otherwise, the value is live out of the block. If the value is live 63 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks 64 /// where the liveness range ends are not included in AliveBlocks, instead 65 /// being captured by the Kills set. In these blocks, the value is live into 66 /// the block (unless the value is defined and killed in the same block) and 67 /// lives until the specified instruction. Note that there cannot ever be a 68 /// value whose Kills set contains two instructions from the same basic block. 69 /// 70 /// PHI nodes complicate things a bit. If a PHI node is the last user of a 71 /// value in one of its predecessor blocks, it is not listed in the kills set, 72 /// but does include the predecessor block in the AliveBlocks set (unless that 73 /// block also defines the value). This leads to the (perfectly sensical) 74 /// situation where a value is defined in a block, and the last use is a phi 75 /// node in the successor. In this case, AliveBlocks is empty (the value is 76 /// not live across any blocks) and Kills is empty (phi nodes are not 77 /// included). This is sensical because the value must be live to the end of 78 /// the block, but is not live in any successor blocks. 79 struct VarInfo { 80 /// AliveBlocks - Set of blocks in which this value is alive completely 81 /// through. This is a bit set which uses the basic block number as an 82 /// index. 83 /// 84 SparseBitVector<> AliveBlocks; 85 86 /// Kills - List of MachineInstruction's which are the last use of this 87 /// virtual register (kill it) in their basic block. 88 /// 89 std::vector<MachineInstr*> Kills; 90 91 /// removeKill - Delete a kill corresponding to the specified 92 /// machine instruction. Returns true if there was a kill 93 /// corresponding to this instruction, false otherwise. removeKillVarInfo94 bool removeKill(MachineInstr *MI) { 95 std::vector<MachineInstr*>::iterator 96 I = std::find(Kills.begin(), Kills.end(), MI); 97 if (I == Kills.end()) 98 return false; 99 Kills.erase(I); 100 return true; 101 } 102 103 /// findKill - Find a kill instruction in MBB. Return NULL if none is found. 104 MachineInstr *findKill(const MachineBasicBlock *MBB) const; 105 106 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through 107 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in 108 /// MBB, it is not considered live in. 109 bool isLiveIn(const MachineBasicBlock &MBB, 110 unsigned Reg, 111 MachineRegisterInfo &MRI); 112 113 void dump() const; 114 }; 115 116 private: 117 /// VirtRegInfo - This list is a mapping from virtual register number to 118 /// variable information. 119 /// 120 IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo; 121 122 /// PHIJoins - list of virtual registers that are PHI joins. These registers 123 /// may have multiple definitions, and they require special handling when 124 /// building live intervals. 125 SparseBitVector<> PHIJoins; 126 127 private: // Intermediate data structures 128 MachineFunction *MF; 129 130 MachineRegisterInfo* MRI; 131 132 const TargetRegisterInfo *TRI; 133 134 // PhysRegInfo - Keep track of which instruction was the last def of a 135 // physical register. This is a purely local property, because all physical 136 // register references are presumed dead across basic blocks. 137 MachineInstr **PhysRegDef; 138 139 // PhysRegInfo - Keep track of which instruction was the last use of a 140 // physical register. This is a purely local property, because all physical 141 // register references are presumed dead across basic blocks. 142 MachineInstr **PhysRegUse; 143 144 SmallVector<unsigned, 4> *PHIVarInfo; 145 146 // DistanceMap - Keep track the distance of a MI from the start of the 147 // current basic block. 148 DenseMap<MachineInstr*, unsigned> DistanceMap; 149 150 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the 151 /// uses. Pay special attention to the sub-register uses which may come below 152 /// the last use of the whole register. 153 bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI); 154 155 /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask. 156 void HandleRegMask(const MachineOperand&); 157 158 void HandlePhysRegUse(unsigned Reg, MachineInstr *MI); 159 void HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 160 SmallVectorImpl<unsigned> &Defs); 161 void UpdatePhysRegDefs(MachineInstr *MI, SmallVectorImpl<unsigned> &Defs); 162 163 /// FindLastRefOrPartRef - Return the last reference or partial reference of 164 /// the specified register. 165 MachineInstr *FindLastRefOrPartRef(unsigned Reg); 166 167 /// FindLastPartialDef - Return the last partial def of the specified 168 /// register. Also returns the sub-registers that're defined by the 169 /// instruction. 170 MachineInstr *FindLastPartialDef(unsigned Reg, 171 SmallSet<unsigned,4> &PartDefRegs); 172 173 /// analyzePHINodes - Gather information about the PHI nodes in here. In 174 /// particular, we want to map the variable information of a virtual 175 /// register which is used in a PHI node. We map that to the BB the vreg 176 /// is coming from. 177 void analyzePHINodes(const MachineFunction& Fn); 178 public: 179 180 bool runOnMachineFunction(MachineFunction &MF) override; 181 182 /// RegisterDefIsDead - Return true if the specified instruction defines the 183 /// specified register, but that definition is dead. 184 bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const; 185 186 //===--------------------------------------------------------------------===// 187 // API to update live variable information 188 189 /// replaceKillInstruction - Update register kill info by replacing a kill 190 /// instruction with a new one. 191 void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 192 MachineInstr *NewMI); 193 194 /// addVirtualRegisterKilled - Add information about the fact that the 195 /// specified register is killed after being used by the specified 196 /// instruction. If AddIfNotFound is true, add a implicit operand if it's 197 /// not found. 198 void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI, 199 bool AddIfNotFound = false) { 200 if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound)) 201 getVarInfo(IncomingReg).Kills.push_back(MI); 202 } 203 204 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual 205 /// register from the live variable information. Returns true if the 206 /// variable was marked as killed by the specified instruction, 207 /// false otherwise. removeVirtualRegisterKilled(unsigned reg,MachineInstr * MI)208 bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) { 209 if (!getVarInfo(reg).removeKill(MI)) 210 return false; 211 212 bool Removed = false; 213 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 214 MachineOperand &MO = MI->getOperand(i); 215 if (MO.isReg() && MO.isKill() && MO.getReg() == reg) { 216 MO.setIsKill(false); 217 Removed = true; 218 break; 219 } 220 } 221 222 assert(Removed && "Register is not used by this instruction!"); 223 (void)Removed; 224 return true; 225 } 226 227 /// removeVirtualRegistersKilled - Remove all killed info for the specified 228 /// instruction. 229 void removeVirtualRegistersKilled(MachineInstr *MI); 230 231 /// addVirtualRegisterDead - Add information about the fact that the specified 232 /// register is dead after being used by the specified instruction. If 233 /// AddIfNotFound is true, add a implicit operand if it's not found. 234 void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI, 235 bool AddIfNotFound = false) { 236 if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound)) 237 getVarInfo(IncomingReg).Kills.push_back(MI); 238 } 239 240 /// removeVirtualRegisterDead - Remove the specified kill of the virtual 241 /// register from the live variable information. Returns true if the 242 /// variable was marked dead at the specified instruction, false 243 /// otherwise. removeVirtualRegisterDead(unsigned reg,MachineInstr * MI)244 bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) { 245 if (!getVarInfo(reg).removeKill(MI)) 246 return false; 247 248 bool Removed = false; 249 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 250 MachineOperand &MO = MI->getOperand(i); 251 if (MO.isReg() && MO.isDef() && MO.getReg() == reg) { 252 MO.setIsDead(false); 253 Removed = true; 254 break; 255 } 256 } 257 assert(Removed && "Register is not defined by this instruction!"); 258 (void)Removed; 259 return true; 260 } 261 262 void getAnalysisUsage(AnalysisUsage &AU) const override; 263 releaseMemory()264 void releaseMemory() override { 265 VirtRegInfo.clear(); 266 } 267 268 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL 269 /// register. 270 VarInfo &getVarInfo(unsigned RegIdx); 271 272 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 273 MachineBasicBlock *BB); 274 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock, 275 MachineBasicBlock *BB, 276 std::vector<MachineBasicBlock*> &WorkList); 277 void HandleVirtRegDef(unsigned reg, MachineInstr *MI); 278 void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 279 MachineInstr *MI); 280 isLiveIn(unsigned Reg,const MachineBasicBlock & MBB)281 bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) { 282 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI); 283 } 284 285 /// isLiveOut - Determine if Reg is live out from MBB, when not considering 286 /// PHI nodes. This means that Reg is either killed by a successor block or 287 /// passed through one. 288 bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB); 289 290 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All 291 /// variables that are live out of DomBB and live into SuccBB will be marked 292 /// as passing live through BB. This method assumes that the machine code is 293 /// still in SSA form. 294 void addNewBlock(MachineBasicBlock *BB, 295 MachineBasicBlock *DomBB, 296 MachineBasicBlock *SuccBB); 297 298 /// isPHIJoin - Return true if Reg is a phi join register. isPHIJoin(unsigned Reg)299 bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); } 300 301 /// setPHIJoin - Mark Reg as a phi join register. setPHIJoin(unsigned Reg)302 void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); } 303 }; 304 305 } // End llvm namespace 306 307 #endif 308