• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // C99 6.7: Declarations.
34 //===----------------------------------------------------------------------===//
35 
36 /// ParseTypeName
37 ///       type-name: [C99 6.7.6]
38 ///         specifier-qualifier-list abstract-declarator[opt]
39 ///
40 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)41 TypeResult Parser::ParseTypeName(SourceRange *Range,
42                                  Declarator::TheContext Context,
43                                  AccessSpecifier AS,
44                                  Decl **OwnedType,
45                                  ParsedAttributes *Attrs) {
46   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47   if (DSC == DSC_normal)
48     DSC = DSC_type_specifier;
49 
50   // Parse the common declaration-specifiers piece.
51   DeclSpec DS(AttrFactory);
52   if (Attrs)
53     DS.addAttributes(Attrs->getList());
54   ParseSpecifierQualifierList(DS, AS, DSC);
55   if (OwnedType)
56     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57 
58   // Parse the abstract-declarator, if present.
59   Declarator DeclaratorInfo(DS, Context);
60   ParseDeclarator(DeclaratorInfo);
61   if (Range)
62     *Range = DeclaratorInfo.getSourceRange();
63 
64   if (DeclaratorInfo.isInvalidType())
65     return true;
66 
67   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68 }
69 
70 
71 /// isAttributeLateParsed - Return true if the attribute has arguments that
72 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)73 static bool isAttributeLateParsed(const IdentifierInfo &II) {
74 #define CLANG_ATTR_LATE_PARSED_LIST
75     return llvm::StringSwitch<bool>(II.getName())
76 #include "clang/Parse/AttrParserStringSwitches.inc"
77         .Default(false);
78 #undef CLANG_ATTR_LATE_PARSED_LIST
79 }
80 
81 /// ParseGNUAttributes - Parse a non-empty attributes list.
82 ///
83 /// [GNU] attributes:
84 ///         attribute
85 ///         attributes attribute
86 ///
87 /// [GNU]  attribute:
88 ///          '__attribute__' '(' '(' attribute-list ')' ')'
89 ///
90 /// [GNU]  attribute-list:
91 ///          attrib
92 ///          attribute_list ',' attrib
93 ///
94 /// [GNU]  attrib:
95 ///          empty
96 ///          attrib-name
97 ///          attrib-name '(' identifier ')'
98 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
99 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100 ///
101 /// [GNU]  attrib-name:
102 ///          identifier
103 ///          typespec
104 ///          typequal
105 ///          storageclass
106 ///
107 /// Whether an attribute takes an 'identifier' is determined by the
108 /// attrib-name. GCC's behavior here is not worth imitating:
109 ///
110 ///  * In C mode, if the attribute argument list starts with an identifier
111 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
112 ///    a type, it is parsed as an identifier. If the attribute actually
113 ///    wanted an expression, it's out of luck (but it turns out that no
114 ///    attributes work that way, because C constant expressions are very
115 ///    limited).
116 ///  * In C++ mode, if the attribute argument list starts with an identifier,
117 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
118 ///    At block scope, any additional tokens between the identifier and the
119 ///    ',' or ')' are ignored, otherwise they produce a parse error.
120 ///
121 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123                                 SourceLocation *endLoc,
124                                 LateParsedAttrList *LateAttrs,
125                                 Declarator *D) {
126   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127 
128   while (Tok.is(tok::kw___attribute)) {
129     ConsumeToken();
130     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131                          "attribute")) {
132       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133       return;
134     }
135     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137       return;
138     }
139     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140     while (true) {
141       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142       if (TryConsumeToken(tok::comma))
143         continue;
144 
145       // Expect an identifier or declaration specifier (const, int, etc.)
146       if (Tok.isNot(tok::identifier) && !isDeclarationSpecifier())
147         break;
148 
149       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
150       SourceLocation AttrNameLoc = ConsumeToken();
151 
152       if (Tok.isNot(tok::l_paren)) {
153         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
154                      AttributeList::AS_GNU);
155         continue;
156       }
157 
158       // Handle "parameterized" attributes
159       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
160         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
161                               SourceLocation(), AttributeList::AS_GNU, D);
162         continue;
163       }
164 
165       // Handle attributes with arguments that require late parsing.
166       LateParsedAttribute *LA =
167           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
168       LateAttrs->push_back(LA);
169 
170       // Attributes in a class are parsed at the end of the class, along
171       // with other late-parsed declarations.
172       if (!ClassStack.empty() && !LateAttrs->parseSoon())
173         getCurrentClass().LateParsedDeclarations.push_back(LA);
174 
175       // consume everything up to and including the matching right parens
176       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
177 
178       Token Eof;
179       Eof.startToken();
180       Eof.setLocation(Tok.getLocation());
181       LA->Toks.push_back(Eof);
182     }
183 
184     if (ExpectAndConsume(tok::r_paren))
185       SkipUntil(tok::r_paren, StopAtSemi);
186     SourceLocation Loc = Tok.getLocation();
187     if (ExpectAndConsume(tok::r_paren))
188       SkipUntil(tok::r_paren, StopAtSemi);
189     if (endLoc)
190       *endLoc = Loc;
191   }
192 }
193 
194 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)195 static StringRef normalizeAttrName(StringRef Name) {
196   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
197     Name = Name.drop_front(2).drop_back(2);
198   return Name;
199 }
200 
201 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)202 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
203 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
204   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
205 #include "clang/Parse/AttrParserStringSwitches.inc"
206            .Default(false);
207 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
208 }
209 
210 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)211 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
212 #define CLANG_ATTR_TYPE_ARG_LIST
213   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
214 #include "clang/Parse/AttrParserStringSwitches.inc"
215            .Default(false);
216 #undef CLANG_ATTR_TYPE_ARG_LIST
217 }
218 
219 /// \brief Determine whether the given attribute requires parsing its arguments
220 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)221 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
222 #define CLANG_ATTR_ARG_CONTEXT_LIST
223   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
224 #include "clang/Parse/AttrParserStringSwitches.inc"
225            .Default(false);
226 #undef CLANG_ATTR_ARG_CONTEXT_LIST
227 }
228 
ParseIdentifierLoc()229 IdentifierLoc *Parser::ParseIdentifierLoc() {
230   assert(Tok.is(tok::identifier) && "expected an identifier");
231   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
232                                             Tok.getLocation(),
233                                             Tok.getIdentifierInfo());
234   ConsumeToken();
235   return IL;
236 }
237 
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc)238 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
239                                        SourceLocation AttrNameLoc,
240                                        ParsedAttributes &Attrs,
241                                        SourceLocation *EndLoc) {
242   BalancedDelimiterTracker Parens(*this, tok::l_paren);
243   Parens.consumeOpen();
244 
245   TypeResult T;
246   if (Tok.isNot(tok::r_paren))
247     T = ParseTypeName();
248 
249   if (Parens.consumeClose())
250     return;
251 
252   if (T.isInvalid())
253     return;
254 
255   if (T.isUsable())
256     Attrs.addNewTypeAttr(&AttrName,
257                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
258                          nullptr, AttrNameLoc, T.get(), AttributeList::AS_GNU);
259   else
260     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
261                  nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_GNU);
262 }
263 
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)264 unsigned Parser::ParseAttributeArgsCommon(
265     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
266     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
267     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
268   // Ignore the left paren location for now.
269   ConsumeParen();
270 
271   ArgsVector ArgExprs;
272   if (Tok.is(tok::identifier)) {
273     // If this attribute wants an 'identifier' argument, make it so.
274     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
275     AttributeList::Kind AttrKind =
276         AttributeList::getKind(AttrName, ScopeName, Syntax);
277 
278     // If we don't know how to parse this attribute, but this is the only
279     // token in this argument, assume it's meant to be an identifier.
280     if (AttrKind == AttributeList::UnknownAttribute ||
281         AttrKind == AttributeList::IgnoredAttribute) {
282       const Token &Next = NextToken();
283       IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
284     }
285 
286     if (IsIdentifierArg)
287       ArgExprs.push_back(ParseIdentifierLoc());
288   }
289 
290   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
291     // Eat the comma.
292     if (!ArgExprs.empty())
293       ConsumeToken();
294 
295     // Parse the non-empty comma-separated list of expressions.
296     do {
297       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
298       if (attributeParsedArgsUnevaluated(*AttrName))
299         Unevaluated.reset(
300             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
301 
302       ExprResult ArgExpr(ParseAssignmentExpression());
303       if (ArgExpr.isInvalid()) {
304         SkipUntil(tok::r_paren, StopAtSemi);
305         return 0;
306       }
307       ArgExprs.push_back(ArgExpr.get());
308       // Eat the comma, move to the next argument
309     } while (TryConsumeToken(tok::comma));
310   }
311 
312   SourceLocation RParen = Tok.getLocation();
313   if (!ExpectAndConsume(tok::r_paren)) {
314     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
315     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
316                  ArgExprs.data(), ArgExprs.size(), Syntax);
317   }
318 
319   if (EndLoc)
320     *EndLoc = RParen;
321 
322   return static_cast<unsigned>(ArgExprs.size());
323 }
324 
325 /// Parse the arguments to a parameterized GNU attribute or
326 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)327 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
328                                    SourceLocation AttrNameLoc,
329                                    ParsedAttributes &Attrs,
330                                    SourceLocation *EndLoc,
331                                    IdentifierInfo *ScopeName,
332                                    SourceLocation ScopeLoc,
333                                    AttributeList::Syntax Syntax,
334                                    Declarator *D) {
335 
336   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
337 
338   AttributeList::Kind AttrKind =
339       AttributeList::getKind(AttrName, ScopeName, Syntax);
340 
341   // Availability attributes have their own grammar.
342   // FIXME: All these cases fail to pass in the syntax and scope, and might be
343   // written as C++11 gnu:: attributes.
344   if (AttrKind == AttributeList::AT_Availability) {
345     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
346     return;
347   }
348 
349   if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
350     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
351     return;
352   }
353 
354   // Type safety attributes have their own grammar.
355   if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
357     return;
358   }
359 
360   // Some attributes expect solely a type parameter.
361   if (attributeIsTypeArgAttr(*AttrName)) {
362     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc);
363     return;
364   }
365 
366   // These may refer to the function arguments, but need to be parsed early to
367   // participate in determining whether it's a redeclaration.
368   std::unique_ptr<ParseScope> PrototypeScope;
369   if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
370     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
371     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
372                                         Scope::FunctionDeclarationScope |
373                                         Scope::DeclScope));
374     for (unsigned i = 0; i != FTI.NumParams; ++i) {
375       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
376       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
377     }
378   }
379 
380   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
381                            ScopeLoc, Syntax);
382 }
383 
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)384 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
385                                         SourceLocation AttrNameLoc,
386                                         ParsedAttributes &Attrs) {
387   // If the attribute isn't known, we will not attempt to parse any
388   // arguments.
389   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
390                     getTargetInfo().getTriple(), getLangOpts())) {
391     // Eat the left paren, then skip to the ending right paren.
392     ConsumeParen();
393     SkipUntil(tok::r_paren);
394     return false;
395   }
396 
397   SourceLocation OpenParenLoc = Tok.getLocation();
398 
399   if (AttrName->getName() == "property") {
400     // The property declspec is more complex in that it can take one or two
401     // assignment expressions as a parameter, but the lhs of the assignment
402     // must be named get or put.
403 
404     BalancedDelimiterTracker T(*this, tok::l_paren);
405     T.expectAndConsume(diag::err_expected_lparen_after,
406                        AttrName->getNameStart(), tok::r_paren);
407 
408     enum AccessorKind {
409       AK_Invalid = -1,
410       AK_Put = 0,
411       AK_Get = 1 // indices into AccessorNames
412     };
413     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
414     bool HasInvalidAccessor = false;
415 
416     // Parse the accessor specifications.
417     while (true) {
418       // Stop if this doesn't look like an accessor spec.
419       if (!Tok.is(tok::identifier)) {
420         // If the user wrote a completely empty list, use a special diagnostic.
421         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
422             AccessorNames[AK_Put] == nullptr &&
423             AccessorNames[AK_Get] == nullptr) {
424           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
425           break;
426         }
427 
428         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
429         break;
430       }
431 
432       AccessorKind Kind;
433       SourceLocation KindLoc = Tok.getLocation();
434       StringRef KindStr = Tok.getIdentifierInfo()->getName();
435       if (KindStr == "get") {
436         Kind = AK_Get;
437       } else if (KindStr == "put") {
438         Kind = AK_Put;
439 
440         // Recover from the common mistake of using 'set' instead of 'put'.
441       } else if (KindStr == "set") {
442         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
443             << FixItHint::CreateReplacement(KindLoc, "put");
444         Kind = AK_Put;
445 
446         // Handle the mistake of forgetting the accessor kind by skipping
447         // this accessor.
448       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
449         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
450         ConsumeToken();
451         HasInvalidAccessor = true;
452         goto next_property_accessor;
453 
454         // Otherwise, complain about the unknown accessor kind.
455       } else {
456         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
457         HasInvalidAccessor = true;
458         Kind = AK_Invalid;
459 
460         // Try to keep parsing unless it doesn't look like an accessor spec.
461         if (!NextToken().is(tok::equal))
462           break;
463       }
464 
465       // Consume the identifier.
466       ConsumeToken();
467 
468       // Consume the '='.
469       if (!TryConsumeToken(tok::equal)) {
470         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
471             << KindStr;
472         break;
473       }
474 
475       // Expect the method name.
476       if (!Tok.is(tok::identifier)) {
477         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
478         break;
479       }
480 
481       if (Kind == AK_Invalid) {
482         // Just drop invalid accessors.
483       } else if (AccessorNames[Kind] != nullptr) {
484         // Complain about the repeated accessor, ignore it, and keep parsing.
485         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
486       } else {
487         AccessorNames[Kind] = Tok.getIdentifierInfo();
488       }
489       ConsumeToken();
490 
491     next_property_accessor:
492       // Keep processing accessors until we run out.
493       if (TryConsumeToken(tok::comma))
494         continue;
495 
496       // If we run into the ')', stop without consuming it.
497       if (Tok.is(tok::r_paren))
498         break;
499 
500       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
501       break;
502     }
503 
504     // Only add the property attribute if it was well-formed.
505     if (!HasInvalidAccessor)
506       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
507                                AccessorNames[AK_Get], AccessorNames[AK_Put],
508                                AttributeList::AS_Declspec);
509     T.skipToEnd();
510     return !HasInvalidAccessor;
511   }
512 
513   unsigned NumArgs =
514       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
515                                SourceLocation(), AttributeList::AS_Declspec);
516 
517   // If this attribute's args were parsed, and it was expected to have
518   // arguments but none were provided, emit a diagnostic.
519   const AttributeList *Attr = Attrs.getList();
520   if (Attr && Attr->getMaxArgs() && !NumArgs) {
521     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
522     return false;
523   }
524   return true;
525 }
526 
527 /// [MS] decl-specifier:
528 ///             __declspec ( extended-decl-modifier-seq )
529 ///
530 /// [MS] extended-decl-modifier-seq:
531 ///             extended-decl-modifier[opt]
532 ///             extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpec(ParsedAttributes & Attrs)533 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
534   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
535 
536   ConsumeToken();
537   BalancedDelimiterTracker T(*this, tok::l_paren);
538   if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
539                          tok::r_paren))
540     return;
541 
542   // An empty declspec is perfectly legal and should not warn.  Additionally,
543   // you can specify multiple attributes per declspec.
544   while (Tok.isNot(tok::r_paren)) {
545     // Attribute not present.
546     if (TryConsumeToken(tok::comma))
547       continue;
548 
549     // We expect either a well-known identifier or a generic string.  Anything
550     // else is a malformed declspec.
551     bool IsString = Tok.getKind() == tok::string_literal ? true : false;
552     if (!IsString && Tok.getKind() != tok::identifier &&
553         Tok.getKind() != tok::kw_restrict) {
554       Diag(Tok, diag::err_ms_declspec_type);
555       T.skipToEnd();
556       return;
557     }
558 
559     IdentifierInfo *AttrName;
560     SourceLocation AttrNameLoc;
561     if (IsString) {
562       SmallString<8> StrBuffer;
563       bool Invalid = false;
564       StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
565       if (Invalid) {
566         T.skipToEnd();
567         return;
568       }
569       AttrName = PP.getIdentifierInfo(Str);
570       AttrNameLoc = ConsumeStringToken();
571     } else {
572       AttrName = Tok.getIdentifierInfo();
573       AttrNameLoc = ConsumeToken();
574     }
575 
576     bool AttrHandled = false;
577 
578     // Parse attribute arguments.
579     if (Tok.is(tok::l_paren))
580       AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
581     else if (AttrName->getName() == "property")
582       // The property attribute must have an argument list.
583       Diag(Tok.getLocation(), diag::err_expected_lparen_after)
584           << AttrName->getName();
585 
586     if (!AttrHandled)
587       Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
588                    AttributeList::AS_Declspec);
589   }
590   T.consumeClose();
591 }
592 
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)593 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
594   // Treat these like attributes
595   while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
596          Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
597          Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
598          Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned) ||
599          Tok.is(tok::kw___sptr) || Tok.is(tok::kw___uptr)) {
600     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
601     SourceLocation AttrNameLoc = ConsumeToken();
602     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
603                  AttributeList::AS_Keyword);
604   }
605 }
606 
ParseBorlandTypeAttributes(ParsedAttributes & attrs)607 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
608   // Treat these like attributes
609   while (Tok.is(tok::kw___pascal)) {
610     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
611     SourceLocation AttrNameLoc = ConsumeToken();
612     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
613                  AttributeList::AS_Keyword);
614   }
615 }
616 
ParseOpenCLAttributes(ParsedAttributes & attrs)617 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
618   // Treat these like attributes
619   while (Tok.is(tok::kw___kernel)) {
620     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
621     SourceLocation AttrNameLoc = ConsumeToken();
622     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
623                  AttributeList::AS_Keyword);
624   }
625 }
626 
ParseOpenCLQualifiers(ParsedAttributes & Attrs)627 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
628   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
629   SourceLocation AttrNameLoc = Tok.getLocation();
630   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
631                AttributeList::AS_Keyword);
632 }
633 
634 /// \brief Parse a version number.
635 ///
636 /// version:
637 ///   simple-integer
638 ///   simple-integer ',' simple-integer
639 ///   simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)640 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
641   Range = Tok.getLocation();
642 
643   if (!Tok.is(tok::numeric_constant)) {
644     Diag(Tok, diag::err_expected_version);
645     SkipUntil(tok::comma, tok::r_paren,
646               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
647     return VersionTuple();
648   }
649 
650   // Parse the major (and possibly minor and subminor) versions, which
651   // are stored in the numeric constant. We utilize a quirk of the
652   // lexer, which is that it handles something like 1.2.3 as a single
653   // numeric constant, rather than two separate tokens.
654   SmallString<512> Buffer;
655   Buffer.resize(Tok.getLength()+1);
656   const char *ThisTokBegin = &Buffer[0];
657 
658   // Get the spelling of the token, which eliminates trigraphs, etc.
659   bool Invalid = false;
660   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
661   if (Invalid)
662     return VersionTuple();
663 
664   // Parse the major version.
665   unsigned AfterMajor = 0;
666   unsigned Major = 0;
667   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
668     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
669     ++AfterMajor;
670   }
671 
672   if (AfterMajor == 0) {
673     Diag(Tok, diag::err_expected_version);
674     SkipUntil(tok::comma, tok::r_paren,
675               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
676     return VersionTuple();
677   }
678 
679   if (AfterMajor == ActualLength) {
680     ConsumeToken();
681 
682     // We only had a single version component.
683     if (Major == 0) {
684       Diag(Tok, diag::err_zero_version);
685       return VersionTuple();
686     }
687 
688     return VersionTuple(Major);
689   }
690 
691   if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
692     Diag(Tok, diag::err_expected_version);
693     SkipUntil(tok::comma, tok::r_paren,
694               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
695     return VersionTuple();
696   }
697 
698   // Parse the minor version.
699   unsigned AfterMinor = AfterMajor + 1;
700   unsigned Minor = 0;
701   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
702     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
703     ++AfterMinor;
704   }
705 
706   if (AfterMinor == ActualLength) {
707     ConsumeToken();
708 
709     // We had major.minor.
710     if (Major == 0 && Minor == 0) {
711       Diag(Tok, diag::err_zero_version);
712       return VersionTuple();
713     }
714 
715     return VersionTuple(Major, Minor);
716   }
717 
718   // If what follows is not a '.', we have a problem.
719   if (ThisTokBegin[AfterMinor] != '.') {
720     Diag(Tok, diag::err_expected_version);
721     SkipUntil(tok::comma, tok::r_paren,
722               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
723     return VersionTuple();
724   }
725 
726   // Parse the subminor version.
727   unsigned AfterSubminor = AfterMinor + 1;
728   unsigned Subminor = 0;
729   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
730     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
731     ++AfterSubminor;
732   }
733 
734   if (AfterSubminor != ActualLength) {
735     Diag(Tok, diag::err_expected_version);
736     SkipUntil(tok::comma, tok::r_paren,
737               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
738     return VersionTuple();
739   }
740   ConsumeToken();
741   return VersionTuple(Major, Minor, Subminor);
742 }
743 
744 /// \brief Parse the contents of the "availability" attribute.
745 ///
746 /// availability-attribute:
747 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
748 ///
749 /// platform:
750 ///   identifier
751 ///
752 /// version-arg-list:
753 ///   version-arg
754 ///   version-arg ',' version-arg-list
755 ///
756 /// version-arg:
757 ///   'introduced' '=' version
758 ///   'deprecated' '=' version
759 ///   'obsoleted' = version
760 ///   'unavailable'
761 /// opt-message:
762 ///   'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc)763 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
764                                         SourceLocation AvailabilityLoc,
765                                         ParsedAttributes &attrs,
766                                         SourceLocation *endLoc) {
767   enum { Introduced, Deprecated, Obsoleted, Unknown };
768   AvailabilityChange Changes[Unknown];
769   ExprResult MessageExpr;
770 
771   // Opening '('.
772   BalancedDelimiterTracker T(*this, tok::l_paren);
773   if (T.consumeOpen()) {
774     Diag(Tok, diag::err_expected) << tok::l_paren;
775     return;
776   }
777 
778   // Parse the platform name,
779   if (Tok.isNot(tok::identifier)) {
780     Diag(Tok, diag::err_availability_expected_platform);
781     SkipUntil(tok::r_paren, StopAtSemi);
782     return;
783   }
784   IdentifierLoc *Platform = ParseIdentifierLoc();
785 
786   // Parse the ',' following the platform name.
787   if (ExpectAndConsume(tok::comma)) {
788     SkipUntil(tok::r_paren, StopAtSemi);
789     return;
790   }
791 
792   // If we haven't grabbed the pointers for the identifiers
793   // "introduced", "deprecated", and "obsoleted", do so now.
794   if (!Ident_introduced) {
795     Ident_introduced = PP.getIdentifierInfo("introduced");
796     Ident_deprecated = PP.getIdentifierInfo("deprecated");
797     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
798     Ident_unavailable = PP.getIdentifierInfo("unavailable");
799     Ident_message = PP.getIdentifierInfo("message");
800   }
801 
802   // Parse the set of introductions/deprecations/removals.
803   SourceLocation UnavailableLoc;
804   do {
805     if (Tok.isNot(tok::identifier)) {
806       Diag(Tok, diag::err_availability_expected_change);
807       SkipUntil(tok::r_paren, StopAtSemi);
808       return;
809     }
810     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
811     SourceLocation KeywordLoc = ConsumeToken();
812 
813     if (Keyword == Ident_unavailable) {
814       if (UnavailableLoc.isValid()) {
815         Diag(KeywordLoc, diag::err_availability_redundant)
816           << Keyword << SourceRange(UnavailableLoc);
817       }
818       UnavailableLoc = KeywordLoc;
819       continue;
820     }
821 
822     if (Tok.isNot(tok::equal)) {
823       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
824       SkipUntil(tok::r_paren, StopAtSemi);
825       return;
826     }
827     ConsumeToken();
828     if (Keyword == Ident_message) {
829       if (Tok.isNot(tok::string_literal)) { // Also reject wide string literals.
830         Diag(Tok, diag::err_expected_string_literal)
831           << /*Source='availability attribute'*/2;
832         SkipUntil(tok::r_paren, StopAtSemi);
833         return;
834       }
835       MessageExpr = ParseStringLiteralExpression();
836       break;
837     }
838 
839     SourceRange VersionRange;
840     VersionTuple Version = ParseVersionTuple(VersionRange);
841 
842     if (Version.empty()) {
843       SkipUntil(tok::r_paren, StopAtSemi);
844       return;
845     }
846 
847     unsigned Index;
848     if (Keyword == Ident_introduced)
849       Index = Introduced;
850     else if (Keyword == Ident_deprecated)
851       Index = Deprecated;
852     else if (Keyword == Ident_obsoleted)
853       Index = Obsoleted;
854     else
855       Index = Unknown;
856 
857     if (Index < Unknown) {
858       if (!Changes[Index].KeywordLoc.isInvalid()) {
859         Diag(KeywordLoc, diag::err_availability_redundant)
860           << Keyword
861           << SourceRange(Changes[Index].KeywordLoc,
862                          Changes[Index].VersionRange.getEnd());
863       }
864 
865       Changes[Index].KeywordLoc = KeywordLoc;
866       Changes[Index].Version = Version;
867       Changes[Index].VersionRange = VersionRange;
868     } else {
869       Diag(KeywordLoc, diag::err_availability_unknown_change)
870         << Keyword << VersionRange;
871     }
872 
873   } while (TryConsumeToken(tok::comma));
874 
875   // Closing ')'.
876   if (T.consumeClose())
877     return;
878 
879   if (endLoc)
880     *endLoc = T.getCloseLocation();
881 
882   // The 'unavailable' availability cannot be combined with any other
883   // availability changes. Make sure that hasn't happened.
884   if (UnavailableLoc.isValid()) {
885     bool Complained = false;
886     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
887       if (Changes[Index].KeywordLoc.isValid()) {
888         if (!Complained) {
889           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
890             << SourceRange(Changes[Index].KeywordLoc,
891                            Changes[Index].VersionRange.getEnd());
892           Complained = true;
893         }
894 
895         // Clear out the availability.
896         Changes[Index] = AvailabilityChange();
897       }
898     }
899   }
900 
901   // Record this attribute
902   attrs.addNew(&Availability,
903                SourceRange(AvailabilityLoc, T.getCloseLocation()),
904                nullptr, AvailabilityLoc,
905                Platform,
906                Changes[Introduced],
907                Changes[Deprecated],
908                Changes[Obsoleted],
909                UnavailableLoc, MessageExpr.get(),
910                AttributeList::AS_GNU);
911 }
912 
913 /// \brief Parse the contents of the "objc_bridge_related" attribute.
914 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
915 /// related_class:
916 ///     Identifier
917 ///
918 /// opt-class_method:
919 ///     Identifier: | <empty>
920 ///
921 /// opt-instance_method:
922 ///     Identifier | <empty>
923 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc)924 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
925                                 SourceLocation ObjCBridgeRelatedLoc,
926                                 ParsedAttributes &attrs,
927                                 SourceLocation *endLoc) {
928   // Opening '('.
929   BalancedDelimiterTracker T(*this, tok::l_paren);
930   if (T.consumeOpen()) {
931     Diag(Tok, diag::err_expected) << tok::l_paren;
932     return;
933   }
934 
935   // Parse the related class name.
936   if (Tok.isNot(tok::identifier)) {
937     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
938     SkipUntil(tok::r_paren, StopAtSemi);
939     return;
940   }
941   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
942   if (ExpectAndConsume(tok::comma)) {
943     SkipUntil(tok::r_paren, StopAtSemi);
944     return;
945   }
946 
947   // Parse optional class method name.
948   IdentifierLoc *ClassMethod = nullptr;
949   if (Tok.is(tok::identifier)) {
950     ClassMethod = ParseIdentifierLoc();
951     if (!TryConsumeToken(tok::colon)) {
952       Diag(Tok, diag::err_objcbridge_related_selector_name);
953       SkipUntil(tok::r_paren, StopAtSemi);
954       return;
955     }
956   }
957   if (!TryConsumeToken(tok::comma)) {
958     if (Tok.is(tok::colon))
959       Diag(Tok, diag::err_objcbridge_related_selector_name);
960     else
961       Diag(Tok, diag::err_expected) << tok::comma;
962     SkipUntil(tok::r_paren, StopAtSemi);
963     return;
964   }
965 
966   // Parse optional instance method name.
967   IdentifierLoc *InstanceMethod = nullptr;
968   if (Tok.is(tok::identifier))
969     InstanceMethod = ParseIdentifierLoc();
970   else if (Tok.isNot(tok::r_paren)) {
971     Diag(Tok, diag::err_expected) << tok::r_paren;
972     SkipUntil(tok::r_paren, StopAtSemi);
973     return;
974   }
975 
976   // Closing ')'.
977   if (T.consumeClose())
978     return;
979 
980   if (endLoc)
981     *endLoc = T.getCloseLocation();
982 
983   // Record this attribute
984   attrs.addNew(&ObjCBridgeRelated,
985                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
986                nullptr, ObjCBridgeRelatedLoc,
987                RelatedClass,
988                ClassMethod,
989                InstanceMethod,
990                AttributeList::AS_GNU);
991 }
992 
993 // Late Parsed Attributes:
994 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
995 
ParseLexedAttributes()996 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
997 
ParseLexedAttributes()998 void Parser::LateParsedClass::ParseLexedAttributes() {
999   Self->ParseLexedAttributes(*Class);
1000 }
1001 
ParseLexedAttributes()1002 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1003   Self->ParseLexedAttribute(*this, true, false);
1004 }
1005 
1006 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1007 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1008 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1009   // Deal with templates
1010   // FIXME: Test cases to make sure this does the right thing for templates.
1011   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1012   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1013                                 HasTemplateScope);
1014   if (HasTemplateScope)
1015     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1016 
1017   // Set or update the scope flags.
1018   bool AlreadyHasClassScope = Class.TopLevelClass;
1019   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1020   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1021   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1022 
1023   // Enter the scope of nested classes
1024   if (!AlreadyHasClassScope)
1025     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1026                                                 Class.TagOrTemplate);
1027   if (!Class.LateParsedDeclarations.empty()) {
1028     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1029       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1030     }
1031   }
1032 
1033   if (!AlreadyHasClassScope)
1034     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1035                                                  Class.TagOrTemplate);
1036 }
1037 
1038 
1039 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1040 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1041                                      bool EnterScope, bool OnDefinition) {
1042   assert(LAs.parseSoon() &&
1043          "Attribute list should be marked for immediate parsing.");
1044   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1045     if (D)
1046       LAs[i]->addDecl(D);
1047     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1048     delete LAs[i];
1049   }
1050   LAs.clear();
1051 }
1052 
1053 
1054 /// \brief Finish parsing an attribute for which parsing was delayed.
1055 /// This will be called at the end of parsing a class declaration
1056 /// for each LateParsedAttribute. We consume the saved tokens and
1057 /// create an attribute with the arguments filled in. We add this
1058 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1059 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1060                                  bool EnterScope, bool OnDefinition) {
1061   // Save the current token position.
1062   SourceLocation OrigLoc = Tok.getLocation();
1063 
1064   // Append the current token at the end of the new token stream so that it
1065   // doesn't get lost.
1066   LA.Toks.push_back(Tok);
1067   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1068   // Consume the previously pushed token.
1069   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1070 
1071   ParsedAttributes Attrs(AttrFactory);
1072   SourceLocation endLoc;
1073 
1074   if (LA.Decls.size() > 0) {
1075     Decl *D = LA.Decls[0];
1076     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1077     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1078 
1079     // Allow 'this' within late-parsed attributes.
1080     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1081                                      ND && ND->isCXXInstanceMember());
1082 
1083     if (LA.Decls.size() == 1) {
1084       // If the Decl is templatized, add template parameters to scope.
1085       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1086       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1087       if (HasTemplateScope)
1088         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1089 
1090       // If the Decl is on a function, add function parameters to the scope.
1091       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1092       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1093       if (HasFunScope)
1094         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1095 
1096       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1097                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1098                             nullptr);
1099 
1100       if (HasFunScope) {
1101         Actions.ActOnExitFunctionContext();
1102         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1103       }
1104       if (HasTemplateScope) {
1105         TempScope.Exit();
1106       }
1107     } else {
1108       // If there are multiple decls, then the decl cannot be within the
1109       // function scope.
1110       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1111                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1112                             nullptr);
1113     }
1114   } else {
1115     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1116   }
1117 
1118   const AttributeList *AL = Attrs.getList();
1119   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1120       AL->isKnownToGCC())
1121     Diag(Tok, diag::warn_attribute_on_function_definition)
1122       << &LA.AttrName;
1123 
1124   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1125     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1126 
1127   if (Tok.getLocation() != OrigLoc) {
1128     // Due to a parsing error, we either went over the cached tokens or
1129     // there are still cached tokens left, so we skip the leftover tokens.
1130     // Since this is an uncommon situation that should be avoided, use the
1131     // expensive isBeforeInTranslationUnit call.
1132     if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
1133                                                         OrigLoc))
1134     while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
1135       ConsumeAnyToken();
1136   }
1137 }
1138 
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc)1139 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1140                                               SourceLocation AttrNameLoc,
1141                                               ParsedAttributes &Attrs,
1142                                               SourceLocation *EndLoc) {
1143   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1144 
1145   BalancedDelimiterTracker T(*this, tok::l_paren);
1146   T.consumeOpen();
1147 
1148   if (Tok.isNot(tok::identifier)) {
1149     Diag(Tok, diag::err_expected) << tok::identifier;
1150     T.skipToEnd();
1151     return;
1152   }
1153   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1154 
1155   if (ExpectAndConsume(tok::comma)) {
1156     T.skipToEnd();
1157     return;
1158   }
1159 
1160   SourceRange MatchingCTypeRange;
1161   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1162   if (MatchingCType.isInvalid()) {
1163     T.skipToEnd();
1164     return;
1165   }
1166 
1167   bool LayoutCompatible = false;
1168   bool MustBeNull = false;
1169   while (TryConsumeToken(tok::comma)) {
1170     if (Tok.isNot(tok::identifier)) {
1171       Diag(Tok, diag::err_expected) << tok::identifier;
1172       T.skipToEnd();
1173       return;
1174     }
1175     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1176     if (Flag->isStr("layout_compatible"))
1177       LayoutCompatible = true;
1178     else if (Flag->isStr("must_be_null"))
1179       MustBeNull = true;
1180     else {
1181       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1182       T.skipToEnd();
1183       return;
1184     }
1185     ConsumeToken(); // consume flag
1186   }
1187 
1188   if (!T.consumeClose()) {
1189     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, nullptr, AttrNameLoc,
1190                                    ArgumentKind, MatchingCType.get(),
1191                                    LayoutCompatible, MustBeNull,
1192                                    AttributeList::AS_GNU);
1193   }
1194 
1195   if (EndLoc)
1196     *EndLoc = T.getCloseLocation();
1197 }
1198 
1199 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1200 /// of a C++11 attribute-specifier in a location where an attribute is not
1201 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1202 /// situation.
1203 ///
1204 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1205 /// this doesn't appear to actually be an attribute-specifier, and the caller
1206 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1207 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1208   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1209 
1210   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1211   case CAK_NotAttributeSpecifier:
1212     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1213     return false;
1214 
1215   case CAK_InvalidAttributeSpecifier:
1216     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1217     return false;
1218 
1219   case CAK_AttributeSpecifier:
1220     // Parse and discard the attributes.
1221     SourceLocation BeginLoc = ConsumeBracket();
1222     ConsumeBracket();
1223     SkipUntil(tok::r_square);
1224     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1225     SourceLocation EndLoc = ConsumeBracket();
1226     Diag(BeginLoc, diag::err_attributes_not_allowed)
1227       << SourceRange(BeginLoc, EndLoc);
1228     return true;
1229   }
1230   llvm_unreachable("All cases handled above.");
1231 }
1232 
1233 /// \brief We have found the opening square brackets of a C++11
1234 /// attribute-specifier in a location where an attribute is not permitted, but
1235 /// we know where the attributes ought to be written. Parse them anyway, and
1236 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1237 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1238                                              SourceLocation CorrectLocation) {
1239   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1240          Tok.is(tok::kw_alignas));
1241 
1242   // Consume the attributes.
1243   SourceLocation Loc = Tok.getLocation();
1244   ParseCXX11Attributes(Attrs);
1245   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1246 
1247   Diag(Loc, diag::err_attributes_not_allowed)
1248     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1249     << FixItHint::CreateRemoval(AttrRange);
1250 }
1251 
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1252 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1253   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1254     << attrs.Range;
1255 }
1256 
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1257 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1258   AttributeList *AttrList = attrs.getList();
1259   while (AttrList) {
1260     if (AttrList->isCXX11Attribute()) {
1261       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1262         << AttrList->getName();
1263       AttrList->setInvalid();
1264     }
1265     AttrList = AttrList->getNext();
1266   }
1267 }
1268 
1269 /// ParseDeclaration - Parse a full 'declaration', which consists of
1270 /// declaration-specifiers, some number of declarators, and a semicolon.
1271 /// 'Context' should be a Declarator::TheContext value.  This returns the
1272 /// location of the semicolon in DeclEnd.
1273 ///
1274 ///       declaration: [C99 6.7]
1275 ///         block-declaration ->
1276 ///           simple-declaration
1277 ///           others                   [FIXME]
1278 /// [C++]   template-declaration
1279 /// [C++]   namespace-definition
1280 /// [C++]   using-directive
1281 /// [C++]   using-declaration
1282 /// [C++11/C11] static_assert-declaration
1283 ///         others... [FIXME]
1284 ///
ParseDeclaration(StmtVector & Stmts,unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1285 Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
1286                                                 unsigned Context,
1287                                                 SourceLocation &DeclEnd,
1288                                           ParsedAttributesWithRange &attrs) {
1289   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1290   // Must temporarily exit the objective-c container scope for
1291   // parsing c none objective-c decls.
1292   ObjCDeclContextSwitch ObjCDC(*this);
1293 
1294   Decl *SingleDecl = nullptr;
1295   Decl *OwnedType = nullptr;
1296   switch (Tok.getKind()) {
1297   case tok::kw_template:
1298   case tok::kw_export:
1299     ProhibitAttributes(attrs);
1300     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1301     break;
1302   case tok::kw_inline:
1303     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1304     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1305       ProhibitAttributes(attrs);
1306       SourceLocation InlineLoc = ConsumeToken();
1307       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1308       break;
1309     }
1310     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
1311                                   true);
1312   case tok::kw_namespace:
1313     ProhibitAttributes(attrs);
1314     SingleDecl = ParseNamespace(Context, DeclEnd);
1315     break;
1316   case tok::kw_using:
1317     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1318                                                   DeclEnd, attrs, &OwnedType);
1319     break;
1320   case tok::kw_static_assert:
1321   case tok::kw__Static_assert:
1322     ProhibitAttributes(attrs);
1323     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1324     break;
1325   default:
1326     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
1327   }
1328 
1329   // This routine returns a DeclGroup, if the thing we parsed only contains a
1330   // single decl, convert it now. Alias declarations can also declare a type;
1331   // include that too if it is present.
1332   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1333 }
1334 
1335 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1336 ///         declaration-specifiers init-declarator-list[opt] ';'
1337 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1338 ///             init-declarator-list ';'
1339 ///[C90/C++]init-declarator-list ';'                             [TODO]
1340 /// [OMP]   threadprivate-directive                              [TODO]
1341 ///
1342 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1343 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1344 ///
1345 /// If RequireSemi is false, this does not check for a ';' at the end of the
1346 /// declaration.  If it is true, it checks for and eats it.
1347 ///
1348 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1349 /// of a simple-declaration. If we find that we are, we also parse the
1350 /// for-range-initializer, and place it here.
1351 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(StmtVector & Stmts,unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1352 Parser::ParseSimpleDeclaration(StmtVector &Stmts, unsigned Context,
1353                                SourceLocation &DeclEnd,
1354                                ParsedAttributesWithRange &Attrs,
1355                                bool RequireSemi, ForRangeInit *FRI) {
1356   // Parse the common declaration-specifiers piece.
1357   ParsingDeclSpec DS(*this);
1358 
1359   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1360   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1361 
1362   // If we had a free-standing type definition with a missing semicolon, we
1363   // may get this far before the problem becomes obvious.
1364   if (DS.hasTagDefinition() &&
1365       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1366     return DeclGroupPtrTy();
1367 
1368   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1369   // declaration-specifiers init-declarator-list[opt] ';'
1370   if (Tok.is(tok::semi)) {
1371     ProhibitAttributes(Attrs);
1372     DeclEnd = Tok.getLocation();
1373     if (RequireSemi) ConsumeToken();
1374     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1375                                                        DS);
1376     DS.complete(TheDecl);
1377     return Actions.ConvertDeclToDeclGroup(TheDecl);
1378   }
1379 
1380   DS.takeAttributesFrom(Attrs);
1381   return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1382 }
1383 
1384 /// Returns true if this might be the start of a declarator, or a common typo
1385 /// for a declarator.
MightBeDeclarator(unsigned Context)1386 bool Parser::MightBeDeclarator(unsigned Context) {
1387   switch (Tok.getKind()) {
1388   case tok::annot_cxxscope:
1389   case tok::annot_template_id:
1390   case tok::caret:
1391   case tok::code_completion:
1392   case tok::coloncolon:
1393   case tok::ellipsis:
1394   case tok::kw___attribute:
1395   case tok::kw_operator:
1396   case tok::l_paren:
1397   case tok::star:
1398     return true;
1399 
1400   case tok::amp:
1401   case tok::ampamp:
1402     return getLangOpts().CPlusPlus;
1403 
1404   case tok::l_square: // Might be an attribute on an unnamed bit-field.
1405     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1406            NextToken().is(tok::l_square);
1407 
1408   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1409     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1410 
1411   case tok::identifier:
1412     switch (NextToken().getKind()) {
1413     case tok::code_completion:
1414     case tok::coloncolon:
1415     case tok::comma:
1416     case tok::equal:
1417     case tok::equalequal: // Might be a typo for '='.
1418     case tok::kw_alignas:
1419     case tok::kw_asm:
1420     case tok::kw___attribute:
1421     case tok::l_brace:
1422     case tok::l_paren:
1423     case tok::l_square:
1424     case tok::less:
1425     case tok::r_brace:
1426     case tok::r_paren:
1427     case tok::r_square:
1428     case tok::semi:
1429       return true;
1430 
1431     case tok::colon:
1432       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1433       // and in block scope it's probably a label. Inside a class definition,
1434       // this is a bit-field.
1435       return Context == Declarator::MemberContext ||
1436              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1437 
1438     case tok::identifier: // Possible virt-specifier.
1439       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1440 
1441     default:
1442       return false;
1443     }
1444 
1445   default:
1446     return false;
1447   }
1448 }
1449 
1450 /// Skip until we reach something which seems like a sensible place to pick
1451 /// up parsing after a malformed declaration. This will sometimes stop sooner
1452 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1453 void Parser::SkipMalformedDecl() {
1454   while (true) {
1455     switch (Tok.getKind()) {
1456     case tok::l_brace:
1457       // Skip until matching }, then stop. We've probably skipped over
1458       // a malformed class or function definition or similar.
1459       ConsumeBrace();
1460       SkipUntil(tok::r_brace);
1461       if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1462         // This declaration isn't over yet. Keep skipping.
1463         continue;
1464       }
1465       TryConsumeToken(tok::semi);
1466       return;
1467 
1468     case tok::l_square:
1469       ConsumeBracket();
1470       SkipUntil(tok::r_square);
1471       continue;
1472 
1473     case tok::l_paren:
1474       ConsumeParen();
1475       SkipUntil(tok::r_paren);
1476       continue;
1477 
1478     case tok::r_brace:
1479       return;
1480 
1481     case tok::semi:
1482       ConsumeToken();
1483       return;
1484 
1485     case tok::kw_inline:
1486       // 'inline namespace' at the start of a line is almost certainly
1487       // a good place to pick back up parsing, except in an Objective-C
1488       // @interface context.
1489       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1490           (!ParsingInObjCContainer || CurParsedObjCImpl))
1491         return;
1492       break;
1493 
1494     case tok::kw_namespace:
1495       // 'namespace' at the start of a line is almost certainly a good
1496       // place to pick back up parsing, except in an Objective-C
1497       // @interface context.
1498       if (Tok.isAtStartOfLine() &&
1499           (!ParsingInObjCContainer || CurParsedObjCImpl))
1500         return;
1501       break;
1502 
1503     case tok::at:
1504       // @end is very much like } in Objective-C contexts.
1505       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1506           ParsingInObjCContainer)
1507         return;
1508       break;
1509 
1510     case tok::minus:
1511     case tok::plus:
1512       // - and + probably start new method declarations in Objective-C contexts.
1513       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1514         return;
1515       break;
1516 
1517     case tok::eof:
1518     case tok::annot_module_begin:
1519     case tok::annot_module_end:
1520     case tok::annot_module_include:
1521       return;
1522 
1523     default:
1524       break;
1525     }
1526 
1527     ConsumeAnyToken();
1528   }
1529 }
1530 
1531 /// ParseDeclGroup - Having concluded that this is either a function
1532 /// definition or a group of object declarations, actually parse the
1533 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,bool AllowFunctionDefinitions,SourceLocation * DeclEnd,ForRangeInit * FRI)1534 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1535                                               unsigned Context,
1536                                               bool AllowFunctionDefinitions,
1537                                               SourceLocation *DeclEnd,
1538                                               ForRangeInit *FRI) {
1539   // Parse the first declarator.
1540   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1541   ParseDeclarator(D);
1542 
1543   // Bail out if the first declarator didn't seem well-formed.
1544   if (!D.hasName() && !D.mayOmitIdentifier()) {
1545     SkipMalformedDecl();
1546     return DeclGroupPtrTy();
1547   }
1548 
1549   // Save late-parsed attributes for now; they need to be parsed in the
1550   // appropriate function scope after the function Decl has been constructed.
1551   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1552   LateParsedAttrList LateParsedAttrs(true);
1553   if (D.isFunctionDeclarator())
1554     MaybeParseGNUAttributes(D, &LateParsedAttrs);
1555 
1556   // Check to see if we have a function *definition* which must have a body.
1557   if (D.isFunctionDeclarator() &&
1558       // Look at the next token to make sure that this isn't a function
1559       // declaration.  We have to check this because __attribute__ might be the
1560       // start of a function definition in GCC-extended K&R C.
1561       !isDeclarationAfterDeclarator()) {
1562 
1563     if (AllowFunctionDefinitions) {
1564       if (isStartOfFunctionDefinition(D)) {
1565         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1566           Diag(Tok, diag::err_function_declared_typedef);
1567 
1568           // Recover by treating the 'typedef' as spurious.
1569           DS.ClearStorageClassSpecs();
1570         }
1571 
1572         Decl *TheDecl =
1573           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1574         return Actions.ConvertDeclToDeclGroup(TheDecl);
1575       }
1576 
1577       if (isDeclarationSpecifier()) {
1578         // If there is an invalid declaration specifier right after the function
1579         // prototype, then we must be in a missing semicolon case where this isn't
1580         // actually a body.  Just fall through into the code that handles it as a
1581         // prototype, and let the top-level code handle the erroneous declspec
1582         // where it would otherwise expect a comma or semicolon.
1583       } else {
1584         Diag(Tok, diag::err_expected_fn_body);
1585         SkipUntil(tok::semi);
1586         return DeclGroupPtrTy();
1587       }
1588     } else {
1589       if (Tok.is(tok::l_brace)) {
1590         Diag(Tok, diag::err_function_definition_not_allowed);
1591         SkipMalformedDecl();
1592         return DeclGroupPtrTy();
1593       }
1594     }
1595   }
1596 
1597   if (ParseAsmAttributesAfterDeclarator(D))
1598     return DeclGroupPtrTy();
1599 
1600   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1601   // must parse and analyze the for-range-initializer before the declaration is
1602   // analyzed.
1603   //
1604   // Handle the Objective-C for-in loop variable similarly, although we
1605   // don't need to parse the container in advance.
1606   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1607     bool IsForRangeLoop = false;
1608     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1609       IsForRangeLoop = true;
1610       if (Tok.is(tok::l_brace))
1611         FRI->RangeExpr = ParseBraceInitializer();
1612       else
1613         FRI->RangeExpr = ParseExpression();
1614     }
1615 
1616     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1617     if (IsForRangeLoop)
1618       Actions.ActOnCXXForRangeDecl(ThisDecl);
1619     Actions.FinalizeDeclaration(ThisDecl);
1620     D.complete(ThisDecl);
1621     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1622   }
1623 
1624   SmallVector<Decl *, 8> DeclsInGroup;
1625   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1626       D, ParsedTemplateInfo(), FRI);
1627   if (LateParsedAttrs.size() > 0)
1628     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1629   D.complete(FirstDecl);
1630   if (FirstDecl)
1631     DeclsInGroup.push_back(FirstDecl);
1632 
1633   bool ExpectSemi = Context != Declarator::ForContext;
1634 
1635   // If we don't have a comma, it is either the end of the list (a ';') or an
1636   // error, bail out.
1637   SourceLocation CommaLoc;
1638   while (TryConsumeToken(tok::comma, CommaLoc)) {
1639     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1640       // This comma was followed by a line-break and something which can't be
1641       // the start of a declarator. The comma was probably a typo for a
1642       // semicolon.
1643       Diag(CommaLoc, diag::err_expected_semi_declaration)
1644         << FixItHint::CreateReplacement(CommaLoc, ";");
1645       ExpectSemi = false;
1646       break;
1647     }
1648 
1649     // Parse the next declarator.
1650     D.clear();
1651     D.setCommaLoc(CommaLoc);
1652 
1653     // Accept attributes in an init-declarator.  In the first declarator in a
1654     // declaration, these would be part of the declspec.  In subsequent
1655     // declarators, they become part of the declarator itself, so that they
1656     // don't apply to declarators after *this* one.  Examples:
1657     //    short __attribute__((common)) var;    -> declspec
1658     //    short var __attribute__((common));    -> declarator
1659     //    short x, __attribute__((common)) var;    -> declarator
1660     MaybeParseGNUAttributes(D);
1661 
1662     ParseDeclarator(D);
1663     if (!D.isInvalidType()) {
1664       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1665       D.complete(ThisDecl);
1666       if (ThisDecl)
1667         DeclsInGroup.push_back(ThisDecl);
1668     }
1669   }
1670 
1671   if (DeclEnd)
1672     *DeclEnd = Tok.getLocation();
1673 
1674   if (ExpectSemi &&
1675       ExpectAndConsumeSemi(Context == Declarator::FileContext
1676                            ? diag::err_invalid_token_after_toplevel_declarator
1677                            : diag::err_expected_semi_declaration)) {
1678     // Okay, there was no semicolon and one was expected.  If we see a
1679     // declaration specifier, just assume it was missing and continue parsing.
1680     // Otherwise things are very confused and we skip to recover.
1681     if (!isDeclarationSpecifier()) {
1682       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1683       TryConsumeToken(tok::semi);
1684     }
1685   }
1686 
1687   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1688 }
1689 
1690 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1691 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1692 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1693   // If a simple-asm-expr is present, parse it.
1694   if (Tok.is(tok::kw_asm)) {
1695     SourceLocation Loc;
1696     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1697     if (AsmLabel.isInvalid()) {
1698       SkipUntil(tok::semi, StopBeforeMatch);
1699       return true;
1700     }
1701 
1702     D.setAsmLabel(AsmLabel.get());
1703     D.SetRangeEnd(Loc);
1704   }
1705 
1706   MaybeParseGNUAttributes(D);
1707   return false;
1708 }
1709 
1710 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1711 /// declarator'. This method parses the remainder of the declaration
1712 /// (including any attributes or initializer, among other things) and
1713 /// finalizes the declaration.
1714 ///
1715 ///       init-declarator: [C99 6.7]
1716 ///         declarator
1717 ///         declarator '=' initializer
1718 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1719 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1720 /// [C++]   declarator initializer[opt]
1721 ///
1722 /// [C++] initializer:
1723 /// [C++]   '=' initializer-clause
1724 /// [C++]   '(' expression-list ')'
1725 /// [C++0x] '=' 'default'                                                [TODO]
1726 /// [C++0x] '=' 'delete'
1727 /// [C++0x] braced-init-list
1728 ///
1729 /// According to the standard grammar, =default and =delete are function
1730 /// definitions, but that definitely doesn't fit with the parser here.
1731 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1732 Decl *Parser::ParseDeclarationAfterDeclarator(
1733     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1734   if (ParseAsmAttributesAfterDeclarator(D))
1735     return nullptr;
1736 
1737   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1738 }
1739 
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1740 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1741     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1742   // Inform the current actions module that we just parsed this declarator.
1743   Decl *ThisDecl = nullptr;
1744   switch (TemplateInfo.Kind) {
1745   case ParsedTemplateInfo::NonTemplate:
1746     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1747     break;
1748 
1749   case ParsedTemplateInfo::Template:
1750   case ParsedTemplateInfo::ExplicitSpecialization: {
1751     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1752                                                *TemplateInfo.TemplateParams,
1753                                                D);
1754     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1755       // Re-direct this decl to refer to the templated decl so that we can
1756       // initialize it.
1757       ThisDecl = VT->getTemplatedDecl();
1758     break;
1759   }
1760   case ParsedTemplateInfo::ExplicitInstantiation: {
1761     if (Tok.is(tok::semi)) {
1762       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1763           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1764       if (ThisRes.isInvalid()) {
1765         SkipUntil(tok::semi, StopBeforeMatch);
1766         return nullptr;
1767       }
1768       ThisDecl = ThisRes.get();
1769     } else {
1770       // FIXME: This check should be for a variable template instantiation only.
1771 
1772       // Check that this is a valid instantiation
1773       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1774         // If the declarator-id is not a template-id, issue a diagnostic and
1775         // recover by ignoring the 'template' keyword.
1776         Diag(Tok, diag::err_template_defn_explicit_instantiation)
1777             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1778         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1779       } else {
1780         SourceLocation LAngleLoc =
1781             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1782         Diag(D.getIdentifierLoc(),
1783              diag::err_explicit_instantiation_with_definition)
1784             << SourceRange(TemplateInfo.TemplateLoc)
1785             << FixItHint::CreateInsertion(LAngleLoc, "<>");
1786 
1787         // Recover as if it were an explicit specialization.
1788         TemplateParameterLists FakedParamLists;
1789         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1790             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1791             0, LAngleLoc));
1792 
1793         ThisDecl =
1794             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1795       }
1796     }
1797     break;
1798     }
1799   }
1800 
1801   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1802 
1803   // Parse declarator '=' initializer.
1804   // If a '==' or '+=' is found, suggest a fixit to '='.
1805   if (isTokenEqualOrEqualTypo()) {
1806     SourceLocation EqualLoc = ConsumeToken();
1807 
1808     if (Tok.is(tok::kw_delete)) {
1809       if (D.isFunctionDeclarator())
1810         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1811           << 1 /* delete */;
1812       else
1813         Diag(ConsumeToken(), diag::err_deleted_non_function);
1814     } else if (Tok.is(tok::kw_default)) {
1815       if (D.isFunctionDeclarator())
1816         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1817           << 0 /* default */;
1818       else
1819         Diag(ConsumeToken(), diag::err_default_special_members);
1820     } else {
1821       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1822         EnterScope(0);
1823         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1824       }
1825 
1826       if (Tok.is(tok::code_completion)) {
1827         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1828         Actions.FinalizeDeclaration(ThisDecl);
1829         cutOffParsing();
1830         return nullptr;
1831       }
1832 
1833       ExprResult Init(ParseInitializer());
1834 
1835       // If this is the only decl in (possibly) range based for statement,
1836       // our best guess is that the user meant ':' instead of '='.
1837       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1838         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1839             << FixItHint::CreateReplacement(EqualLoc, ":");
1840         // We are trying to stop parser from looking for ';' in this for
1841         // statement, therefore preventing spurious errors to be issued.
1842         FRI->ColonLoc = EqualLoc;
1843         Init = ExprError();
1844         FRI->RangeExpr = Init;
1845       }
1846 
1847       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1848         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1849         ExitScope();
1850       }
1851 
1852       if (Init.isInvalid()) {
1853         SmallVector<tok::TokenKind, 2> StopTokens;
1854         StopTokens.push_back(tok::comma);
1855         if (D.getContext() == Declarator::ForContext)
1856           StopTokens.push_back(tok::r_paren);
1857         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1858         Actions.ActOnInitializerError(ThisDecl);
1859       } else
1860         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1861                                      /*DirectInit=*/false, TypeContainsAuto);
1862     }
1863   } else if (Tok.is(tok::l_paren)) {
1864     // Parse C++ direct initializer: '(' expression-list ')'
1865     BalancedDelimiterTracker T(*this, tok::l_paren);
1866     T.consumeOpen();
1867 
1868     ExprVector Exprs;
1869     CommaLocsTy CommaLocs;
1870 
1871     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1872       EnterScope(0);
1873       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1874     }
1875 
1876     if (ParseExpressionList(Exprs, CommaLocs)) {
1877       Actions.ActOnInitializerError(ThisDecl);
1878       SkipUntil(tok::r_paren, StopAtSemi);
1879 
1880       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1881         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1882         ExitScope();
1883       }
1884     } else {
1885       // Match the ')'.
1886       T.consumeClose();
1887 
1888       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1889              "Unexpected number of commas!");
1890 
1891       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1892         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1893         ExitScope();
1894       }
1895 
1896       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1897                                                           T.getCloseLocation(),
1898                                                           Exprs);
1899       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
1900                                    /*DirectInit=*/true, TypeContainsAuto);
1901     }
1902   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
1903              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
1904     // Parse C++0x braced-init-list.
1905     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1906 
1907     if (D.getCXXScopeSpec().isSet()) {
1908       EnterScope(0);
1909       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1910     }
1911 
1912     ExprResult Init(ParseBraceInitializer());
1913 
1914     if (D.getCXXScopeSpec().isSet()) {
1915       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1916       ExitScope();
1917     }
1918 
1919     if (Init.isInvalid()) {
1920       Actions.ActOnInitializerError(ThisDecl);
1921     } else
1922       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1923                                    /*DirectInit=*/true, TypeContainsAuto);
1924 
1925   } else {
1926     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1927   }
1928 
1929   Actions.FinalizeDeclaration(ThisDecl);
1930 
1931   return ThisDecl;
1932 }
1933 
1934 /// ParseSpecifierQualifierList
1935 ///        specifier-qualifier-list:
1936 ///          type-specifier specifier-qualifier-list[opt]
1937 ///          type-qualifier specifier-qualifier-list[opt]
1938 /// [GNU]    attributes     specifier-qualifier-list[opt]
1939 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)1940 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1941                                          DeclSpecContext DSC) {
1942   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1943   /// parse declaration-specifiers and complain about extra stuff.
1944   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1945   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1946 
1947   // Validate declspec for type-name.
1948   unsigned Specs = DS.getParsedSpecifiers();
1949   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
1950     Diag(Tok, diag::err_expected_type);
1951     DS.SetTypeSpecError();
1952   } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1953              !DS.hasAttributes()) {
1954     Diag(Tok, diag::err_typename_requires_specqual);
1955     if (!DS.hasTypeSpecifier())
1956       DS.SetTypeSpecError();
1957   }
1958 
1959   // Issue diagnostic and remove storage class if present.
1960   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1961     if (DS.getStorageClassSpecLoc().isValid())
1962       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1963     else
1964       Diag(DS.getThreadStorageClassSpecLoc(),
1965            diag::err_typename_invalid_storageclass);
1966     DS.ClearStorageClassSpecs();
1967   }
1968 
1969   // Issue diagnostic and remove function specfier if present.
1970   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1971     if (DS.isInlineSpecified())
1972       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1973     if (DS.isVirtualSpecified())
1974       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1975     if (DS.isExplicitSpecified())
1976       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1977     DS.ClearFunctionSpecs();
1978   }
1979 
1980   // Issue diagnostic and remove constexpr specfier if present.
1981   if (DS.isConstexprSpecified()) {
1982     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1983     DS.ClearConstexprSpec();
1984   }
1985 }
1986 
1987 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1988 /// specified token is valid after the identifier in a declarator which
1989 /// immediately follows the declspec.  For example, these things are valid:
1990 ///
1991 ///      int x   [             4];         // direct-declarator
1992 ///      int x   (             int y);     // direct-declarator
1993 ///  int(int x   )                         // direct-declarator
1994 ///      int x   ;                         // simple-declaration
1995 ///      int x   =             17;         // init-declarator-list
1996 ///      int x   ,             y;          // init-declarator-list
1997 ///      int x   __asm__       ("foo");    // init-declarator-list
1998 ///      int x   :             4;          // struct-declarator
1999 ///      int x   {             5};         // C++'0x unified initializers
2000 ///
2001 /// This is not, because 'x' does not immediately follow the declspec (though
2002 /// ')' happens to be valid anyway).
2003 ///    int (x)
2004 ///
isValidAfterIdentifierInDeclarator(const Token & T)2005 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2006   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2007          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2008          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2009 }
2010 
2011 
2012 /// ParseImplicitInt - This method is called when we have an non-typename
2013 /// identifier in a declspec (which normally terminates the decl spec) when
2014 /// the declspec has no type specifier.  In this case, the declspec is either
2015 /// malformed or is "implicit int" (in K&R and C89).
2016 ///
2017 /// This method handles diagnosing this prettily and returns false if the
2018 /// declspec is done being processed.  If it recovers and thinks there may be
2019 /// other pieces of declspec after it, it returns true.
2020 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2021 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2022                               const ParsedTemplateInfo &TemplateInfo,
2023                               AccessSpecifier AS, DeclSpecContext DSC,
2024                               ParsedAttributesWithRange &Attrs) {
2025   assert(Tok.is(tok::identifier) && "should have identifier");
2026 
2027   SourceLocation Loc = Tok.getLocation();
2028   // If we see an identifier that is not a type name, we normally would
2029   // parse it as the identifer being declared.  However, when a typename
2030   // is typo'd or the definition is not included, this will incorrectly
2031   // parse the typename as the identifier name and fall over misparsing
2032   // later parts of the diagnostic.
2033   //
2034   // As such, we try to do some look-ahead in cases where this would
2035   // otherwise be an "implicit-int" case to see if this is invalid.  For
2036   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2037   // an identifier with implicit int, we'd get a parse error because the
2038   // next token is obviously invalid for a type.  Parse these as a case
2039   // with an invalid type specifier.
2040   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2041 
2042   // Since we know that this either implicit int (which is rare) or an
2043   // error, do lookahead to try to do better recovery. This never applies
2044   // within a type specifier. Outside of C++, we allow this even if the
2045   // language doesn't "officially" support implicit int -- we support
2046   // implicit int as an extension in C99 and C11.
2047   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2048       isValidAfterIdentifierInDeclarator(NextToken())) {
2049     // If this token is valid for implicit int, e.g. "static x = 4", then
2050     // we just avoid eating the identifier, so it will be parsed as the
2051     // identifier in the declarator.
2052     return false;
2053   }
2054 
2055   if (getLangOpts().CPlusPlus &&
2056       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2057     // Don't require a type specifier if we have the 'auto' storage class
2058     // specifier in C++98 -- we'll promote it to a type specifier.
2059     if (SS)
2060       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2061     return false;
2062   }
2063 
2064   // Otherwise, if we don't consume this token, we are going to emit an
2065   // error anyway.  Try to recover from various common problems.  Check
2066   // to see if this was a reference to a tag name without a tag specified.
2067   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2068   //
2069   // C++ doesn't need this, and isTagName doesn't take SS.
2070   if (SS == nullptr) {
2071     const char *TagName = nullptr, *FixitTagName = nullptr;
2072     tok::TokenKind TagKind = tok::unknown;
2073 
2074     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2075       default: break;
2076       case DeclSpec::TST_enum:
2077         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2078       case DeclSpec::TST_union:
2079         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2080       case DeclSpec::TST_struct:
2081         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2082       case DeclSpec::TST_interface:
2083         TagName="__interface"; FixitTagName = "__interface ";
2084         TagKind=tok::kw___interface;break;
2085       case DeclSpec::TST_class:
2086         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2087     }
2088 
2089     if (TagName) {
2090       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2091       LookupResult R(Actions, TokenName, SourceLocation(),
2092                      Sema::LookupOrdinaryName);
2093 
2094       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2095         << TokenName << TagName << getLangOpts().CPlusPlus
2096         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2097 
2098       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2099         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2100              I != IEnd; ++I)
2101           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2102             << TokenName << TagName;
2103       }
2104 
2105       // Parse this as a tag as if the missing tag were present.
2106       if (TagKind == tok::kw_enum)
2107         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2108       else
2109         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2110                             /*EnteringContext*/ false, DSC_normal, Attrs);
2111       return true;
2112     }
2113   }
2114 
2115   // Determine whether this identifier could plausibly be the name of something
2116   // being declared (with a missing type).
2117   if (!isTypeSpecifier(DSC) &&
2118       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2119     // Look ahead to the next token to try to figure out what this declaration
2120     // was supposed to be.
2121     switch (NextToken().getKind()) {
2122     case tok::l_paren: {
2123       // static x(4); // 'x' is not a type
2124       // x(int n);    // 'x' is not a type
2125       // x (*p)[];    // 'x' is a type
2126       //
2127       // Since we're in an error case, we can afford to perform a tentative
2128       // parse to determine which case we're in.
2129       TentativeParsingAction PA(*this);
2130       ConsumeToken();
2131       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2132       PA.Revert();
2133 
2134       if (TPR != TPResult::False) {
2135         // The identifier is followed by a parenthesized declarator.
2136         // It's supposed to be a type.
2137         break;
2138       }
2139 
2140       // If we're in a context where we could be declaring a constructor,
2141       // check whether this is a constructor declaration with a bogus name.
2142       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2143         IdentifierInfo *II = Tok.getIdentifierInfo();
2144         if (Actions.isCurrentClassNameTypo(II, SS)) {
2145           Diag(Loc, diag::err_constructor_bad_name)
2146             << Tok.getIdentifierInfo() << II
2147             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2148           Tok.setIdentifierInfo(II);
2149         }
2150       }
2151       // Fall through.
2152     }
2153     case tok::comma:
2154     case tok::equal:
2155     case tok::kw_asm:
2156     case tok::l_brace:
2157     case tok::l_square:
2158     case tok::semi:
2159       // This looks like a variable or function declaration. The type is
2160       // probably missing. We're done parsing decl-specifiers.
2161       if (SS)
2162         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2163       return false;
2164 
2165     default:
2166       // This is probably supposed to be a type. This includes cases like:
2167       //   int f(itn);
2168       //   struct S { unsinged : 4; };
2169       break;
2170     }
2171   }
2172 
2173   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2174   // and attempt to recover.
2175   ParsedType T;
2176   IdentifierInfo *II = Tok.getIdentifierInfo();
2177   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2178                                   getLangOpts().CPlusPlus &&
2179                                       NextToken().is(tok::less));
2180   if (T) {
2181     // The action has suggested that the type T could be used. Set that as
2182     // the type in the declaration specifiers, consume the would-be type
2183     // name token, and we're done.
2184     const char *PrevSpec;
2185     unsigned DiagID;
2186     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2187                        Actions.getASTContext().getPrintingPolicy());
2188     DS.SetRangeEnd(Tok.getLocation());
2189     ConsumeToken();
2190     // There may be other declaration specifiers after this.
2191     return true;
2192   } else if (II != Tok.getIdentifierInfo()) {
2193     // If no type was suggested, the correction is to a keyword
2194     Tok.setKind(II->getTokenID());
2195     // There may be other declaration specifiers after this.
2196     return true;
2197   }
2198 
2199   // Otherwise, the action had no suggestion for us.  Mark this as an error.
2200   DS.SetTypeSpecError();
2201   DS.SetRangeEnd(Tok.getLocation());
2202   ConsumeToken();
2203 
2204   // TODO: Could inject an invalid typedef decl in an enclosing scope to
2205   // avoid rippling error messages on subsequent uses of the same type,
2206   // could be useful if #include was forgotten.
2207   return false;
2208 }
2209 
2210 /// \brief Determine the declaration specifier context from the declarator
2211 /// context.
2212 ///
2213 /// \param Context the declarator context, which is one of the
2214 /// Declarator::TheContext enumerator values.
2215 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2216 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2217   if (Context == Declarator::MemberContext)
2218     return DSC_class;
2219   if (Context == Declarator::FileContext)
2220     return DSC_top_level;
2221   if (Context == Declarator::TemplateTypeArgContext)
2222     return DSC_template_type_arg;
2223   if (Context == Declarator::TrailingReturnContext)
2224     return DSC_trailing;
2225   if (Context == Declarator::AliasDeclContext ||
2226       Context == Declarator::AliasTemplateContext)
2227     return DSC_alias_declaration;
2228   return DSC_normal;
2229 }
2230 
2231 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2232 ///
2233 /// FIXME: Simply returns an alignof() expression if the argument is a
2234 /// type. Ideally, the type should be propagated directly into Sema.
2235 ///
2236 /// [C11]   type-id
2237 /// [C11]   constant-expression
2238 /// [C++0x] type-id ...[opt]
2239 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2240 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2241                                       SourceLocation &EllipsisLoc) {
2242   ExprResult ER;
2243   if (isTypeIdInParens()) {
2244     SourceLocation TypeLoc = Tok.getLocation();
2245     ParsedType Ty = ParseTypeName().get();
2246     SourceRange TypeRange(Start, Tok.getLocation());
2247     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2248                                                Ty.getAsOpaquePtr(), TypeRange);
2249   } else
2250     ER = ParseConstantExpression();
2251 
2252   if (getLangOpts().CPlusPlus11)
2253     TryConsumeToken(tok::ellipsis, EllipsisLoc);
2254 
2255   return ER;
2256 }
2257 
2258 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2259 /// attribute to Attrs.
2260 ///
2261 /// alignment-specifier:
2262 /// [C11]   '_Alignas' '(' type-id ')'
2263 /// [C11]   '_Alignas' '(' constant-expression ')'
2264 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2265 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2266 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2267                                      SourceLocation *EndLoc) {
2268   assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2269          "Not an alignment-specifier!");
2270 
2271   IdentifierInfo *KWName = Tok.getIdentifierInfo();
2272   SourceLocation KWLoc = ConsumeToken();
2273 
2274   BalancedDelimiterTracker T(*this, tok::l_paren);
2275   if (T.expectAndConsume())
2276     return;
2277 
2278   SourceLocation EllipsisLoc;
2279   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2280   if (ArgExpr.isInvalid()) {
2281     T.skipToEnd();
2282     return;
2283   }
2284 
2285   T.consumeClose();
2286   if (EndLoc)
2287     *EndLoc = T.getCloseLocation();
2288 
2289   ArgsVector ArgExprs;
2290   ArgExprs.push_back(ArgExpr.get());
2291   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2292                AttributeList::AS_Keyword, EllipsisLoc);
2293 }
2294 
2295 /// Determine whether we're looking at something that might be a declarator
2296 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2297 /// diagnose a missing semicolon after a prior tag definition in the decl
2298 /// specifier.
2299 ///
2300 /// \return \c true if an error occurred and this can't be any kind of
2301 /// declaration.
2302 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2303 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2304                                               DeclSpecContext DSContext,
2305                                               LateParsedAttrList *LateAttrs) {
2306   assert(DS.hasTagDefinition() && "shouldn't call this");
2307 
2308   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2309 
2310   if (getLangOpts().CPlusPlus &&
2311       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2312        Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2313       TryAnnotateCXXScopeToken(EnteringContext)) {
2314     SkipMalformedDecl();
2315     return true;
2316   }
2317 
2318   bool HasScope = Tok.is(tok::annot_cxxscope);
2319   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2320   Token AfterScope = HasScope ? NextToken() : Tok;
2321 
2322   // Determine whether the following tokens could possibly be a
2323   // declarator.
2324   bool MightBeDeclarator = true;
2325   if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2326     // A declarator-id can't start with 'typename'.
2327     MightBeDeclarator = false;
2328   } else if (AfterScope.is(tok::annot_template_id)) {
2329     // If we have a type expressed as a template-id, this cannot be a
2330     // declarator-id (such a type cannot be redeclared in a simple-declaration).
2331     TemplateIdAnnotation *Annot =
2332         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2333     if (Annot->Kind == TNK_Type_template)
2334       MightBeDeclarator = false;
2335   } else if (AfterScope.is(tok::identifier)) {
2336     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2337 
2338     // These tokens cannot come after the declarator-id in a
2339     // simple-declaration, and are likely to come after a type-specifier.
2340     if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2341         Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2342         Next.is(tok::coloncolon)) {
2343       // Missing a semicolon.
2344       MightBeDeclarator = false;
2345     } else if (HasScope) {
2346       // If the declarator-id has a scope specifier, it must redeclare a
2347       // previously-declared entity. If that's a type (and this is not a
2348       // typedef), that's an error.
2349       CXXScopeSpec SS;
2350       Actions.RestoreNestedNameSpecifierAnnotation(
2351           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2352       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2353       Sema::NameClassification Classification = Actions.ClassifyName(
2354           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2355           /*IsAddressOfOperand*/false);
2356       switch (Classification.getKind()) {
2357       case Sema::NC_Error:
2358         SkipMalformedDecl();
2359         return true;
2360 
2361       case Sema::NC_Keyword:
2362       case Sema::NC_NestedNameSpecifier:
2363         llvm_unreachable("typo correction and nested name specifiers not "
2364                          "possible here");
2365 
2366       case Sema::NC_Type:
2367       case Sema::NC_TypeTemplate:
2368         // Not a previously-declared non-type entity.
2369         MightBeDeclarator = false;
2370         break;
2371 
2372       case Sema::NC_Unknown:
2373       case Sema::NC_Expression:
2374       case Sema::NC_VarTemplate:
2375       case Sema::NC_FunctionTemplate:
2376         // Might be a redeclaration of a prior entity.
2377         break;
2378       }
2379     }
2380   }
2381 
2382   if (MightBeDeclarator)
2383     return false;
2384 
2385   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2386   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2387        diag::err_expected_after)
2388       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2389 
2390   // Try to recover from the typo, by dropping the tag definition and parsing
2391   // the problematic tokens as a type.
2392   //
2393   // FIXME: Split the DeclSpec into pieces for the standalone
2394   // declaration and pieces for the following declaration, instead
2395   // of assuming that all the other pieces attach to new declaration,
2396   // and call ParsedFreeStandingDeclSpec as appropriate.
2397   DS.ClearTypeSpecType();
2398   ParsedTemplateInfo NotATemplate;
2399   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2400   return false;
2401 }
2402 
2403 /// ParseDeclarationSpecifiers
2404 ///       declaration-specifiers: [C99 6.7]
2405 ///         storage-class-specifier declaration-specifiers[opt]
2406 ///         type-specifier declaration-specifiers[opt]
2407 /// [C99]   function-specifier declaration-specifiers[opt]
2408 /// [C11]   alignment-specifier declaration-specifiers[opt]
2409 /// [GNU]   attributes declaration-specifiers[opt]
2410 /// [Clang] '__module_private__' declaration-specifiers[opt]
2411 ///
2412 ///       storage-class-specifier: [C99 6.7.1]
2413 ///         'typedef'
2414 ///         'extern'
2415 ///         'static'
2416 ///         'auto'
2417 ///         'register'
2418 /// [C++]   'mutable'
2419 /// [C++11] 'thread_local'
2420 /// [C11]   '_Thread_local'
2421 /// [GNU]   '__thread'
2422 ///       function-specifier: [C99 6.7.4]
2423 /// [C99]   'inline'
2424 /// [C++]   'virtual'
2425 /// [C++]   'explicit'
2426 /// [OpenCL] '__kernel'
2427 ///       'friend': [C++ dcl.friend]
2428 ///       'constexpr': [C++0x dcl.constexpr]
2429 
2430 ///
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2431 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2432                                         const ParsedTemplateInfo &TemplateInfo,
2433                                         AccessSpecifier AS,
2434                                         DeclSpecContext DSContext,
2435                                         LateParsedAttrList *LateAttrs) {
2436   if (DS.getSourceRange().isInvalid()) {
2437     DS.SetRangeStart(Tok.getLocation());
2438     DS.SetRangeEnd(Tok.getLocation());
2439   }
2440 
2441   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2442   bool AttrsLastTime = false;
2443   ParsedAttributesWithRange attrs(AttrFactory);
2444   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
2445   while (1) {
2446     bool isInvalid = false;
2447     const char *PrevSpec = nullptr;
2448     unsigned DiagID = 0;
2449 
2450     SourceLocation Loc = Tok.getLocation();
2451 
2452     switch (Tok.getKind()) {
2453     default:
2454     DoneWithDeclSpec:
2455       if (!AttrsLastTime)
2456         ProhibitAttributes(attrs);
2457       else {
2458         // Reject C++11 attributes that appertain to decl specifiers as
2459         // we don't support any C++11 attributes that appertain to decl
2460         // specifiers. This also conforms to what g++ 4.8 is doing.
2461         ProhibitCXX11Attributes(attrs);
2462 
2463         DS.takeAttributesFrom(attrs);
2464       }
2465 
2466       // If this is not a declaration specifier token, we're done reading decl
2467       // specifiers.  First verify that DeclSpec's are consistent.
2468       DS.Finish(Diags, PP, Policy);
2469       return;
2470 
2471     case tok::l_square:
2472     case tok::kw_alignas:
2473       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2474         goto DoneWithDeclSpec;
2475 
2476       ProhibitAttributes(attrs);
2477       // FIXME: It would be good to recover by accepting the attributes,
2478       //        but attempting to do that now would cause serious
2479       //        madness in terms of diagnostics.
2480       attrs.clear();
2481       attrs.Range = SourceRange();
2482 
2483       ParseCXX11Attributes(attrs);
2484       AttrsLastTime = true;
2485       continue;
2486 
2487     case tok::code_completion: {
2488       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2489       if (DS.hasTypeSpecifier()) {
2490         bool AllowNonIdentifiers
2491           = (getCurScope()->getFlags() & (Scope::ControlScope |
2492                                           Scope::BlockScope |
2493                                           Scope::TemplateParamScope |
2494                                           Scope::FunctionPrototypeScope |
2495                                           Scope::AtCatchScope)) == 0;
2496         bool AllowNestedNameSpecifiers
2497           = DSContext == DSC_top_level ||
2498             (DSContext == DSC_class && DS.isFriendSpecified());
2499 
2500         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2501                                      AllowNonIdentifiers,
2502                                      AllowNestedNameSpecifiers);
2503         return cutOffParsing();
2504       }
2505 
2506       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2507         CCC = Sema::PCC_LocalDeclarationSpecifiers;
2508       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2509         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2510                                     : Sema::PCC_Template;
2511       else if (DSContext == DSC_class)
2512         CCC = Sema::PCC_Class;
2513       else if (CurParsedObjCImpl)
2514         CCC = Sema::PCC_ObjCImplementation;
2515 
2516       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2517       return cutOffParsing();
2518     }
2519 
2520     case tok::coloncolon: // ::foo::bar
2521       // C++ scope specifier.  Annotate and loop, or bail out on error.
2522       if (TryAnnotateCXXScopeToken(EnteringContext)) {
2523         if (!DS.hasTypeSpecifier())
2524           DS.SetTypeSpecError();
2525         goto DoneWithDeclSpec;
2526       }
2527       if (Tok.is(tok::coloncolon)) // ::new or ::delete
2528         goto DoneWithDeclSpec;
2529       continue;
2530 
2531     case tok::annot_cxxscope: {
2532       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2533         goto DoneWithDeclSpec;
2534 
2535       CXXScopeSpec SS;
2536       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2537                                                    Tok.getAnnotationRange(),
2538                                                    SS);
2539 
2540       // We are looking for a qualified typename.
2541       Token Next = NextToken();
2542       if (Next.is(tok::annot_template_id) &&
2543           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2544             ->Kind == TNK_Type_template) {
2545         // We have a qualified template-id, e.g., N::A<int>
2546 
2547         // C++ [class.qual]p2:
2548         //   In a lookup in which the constructor is an acceptable lookup
2549         //   result and the nested-name-specifier nominates a class C:
2550         //
2551         //     - if the name specified after the
2552         //       nested-name-specifier, when looked up in C, is the
2553         //       injected-class-name of C (Clause 9), or
2554         //
2555         //     - if the name specified after the nested-name-specifier
2556         //       is the same as the identifier or the
2557         //       simple-template-id's template-name in the last
2558         //       component of the nested-name-specifier,
2559         //
2560         //   the name is instead considered to name the constructor of
2561         //   class C.
2562         //
2563         // Thus, if the template-name is actually the constructor
2564         // name, then the code is ill-formed; this interpretation is
2565         // reinforced by the NAD status of core issue 635.
2566         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2567         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2568             TemplateId->Name &&
2569             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2570           if (isConstructorDeclarator(/*Unqualified*/false)) {
2571             // The user meant this to be an out-of-line constructor
2572             // definition, but template arguments are not allowed
2573             // there.  Just allow this as a constructor; we'll
2574             // complain about it later.
2575             goto DoneWithDeclSpec;
2576           }
2577 
2578           // The user meant this to name a type, but it actually names
2579           // a constructor with some extraneous template
2580           // arguments. Complain, then parse it as a type as the user
2581           // intended.
2582           Diag(TemplateId->TemplateNameLoc,
2583                diag::err_out_of_line_template_id_names_constructor)
2584             << TemplateId->Name;
2585         }
2586 
2587         DS.getTypeSpecScope() = SS;
2588         ConsumeToken(); // The C++ scope.
2589         assert(Tok.is(tok::annot_template_id) &&
2590                "ParseOptionalCXXScopeSpecifier not working");
2591         AnnotateTemplateIdTokenAsType();
2592         continue;
2593       }
2594 
2595       if (Next.is(tok::annot_typename)) {
2596         DS.getTypeSpecScope() = SS;
2597         ConsumeToken(); // The C++ scope.
2598         if (Tok.getAnnotationValue()) {
2599           ParsedType T = getTypeAnnotation(Tok);
2600           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2601                                          Tok.getAnnotationEndLoc(),
2602                                          PrevSpec, DiagID, T, Policy);
2603           if (isInvalid)
2604             break;
2605         }
2606         else
2607           DS.SetTypeSpecError();
2608         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2609         ConsumeToken(); // The typename
2610       }
2611 
2612       if (Next.isNot(tok::identifier))
2613         goto DoneWithDeclSpec;
2614 
2615       // If we're in a context where the identifier could be a class name,
2616       // check whether this is a constructor declaration.
2617       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2618           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2619                                      &SS)) {
2620         if (isConstructorDeclarator(/*Unqualified*/false))
2621           goto DoneWithDeclSpec;
2622 
2623         // As noted in C++ [class.qual]p2 (cited above), when the name
2624         // of the class is qualified in a context where it could name
2625         // a constructor, its a constructor name. However, we've
2626         // looked at the declarator, and the user probably meant this
2627         // to be a type. Complain that it isn't supposed to be treated
2628         // as a type, then proceed to parse it as a type.
2629         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2630           << Next.getIdentifierInfo();
2631       }
2632 
2633       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2634                                                Next.getLocation(),
2635                                                getCurScope(), &SS,
2636                                                false, false, ParsedType(),
2637                                                /*IsCtorOrDtorName=*/false,
2638                                                /*NonTrivialSourceInfo=*/true);
2639 
2640       // If the referenced identifier is not a type, then this declspec is
2641       // erroneous: We already checked about that it has no type specifier, and
2642       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2643       // typename.
2644       if (!TypeRep) {
2645         ConsumeToken();   // Eat the scope spec so the identifier is current.
2646         ParsedAttributesWithRange Attrs(AttrFactory);
2647         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2648           if (!Attrs.empty()) {
2649             AttrsLastTime = true;
2650             attrs.takeAllFrom(Attrs);
2651           }
2652           continue;
2653         }
2654         goto DoneWithDeclSpec;
2655       }
2656 
2657       DS.getTypeSpecScope() = SS;
2658       ConsumeToken(); // The C++ scope.
2659 
2660       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2661                                      DiagID, TypeRep, Policy);
2662       if (isInvalid)
2663         break;
2664 
2665       DS.SetRangeEnd(Tok.getLocation());
2666       ConsumeToken(); // The typename.
2667 
2668       continue;
2669     }
2670 
2671     case tok::annot_typename: {
2672       // If we've previously seen a tag definition, we were almost surely
2673       // missing a semicolon after it.
2674       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2675         goto DoneWithDeclSpec;
2676 
2677       if (Tok.getAnnotationValue()) {
2678         ParsedType T = getTypeAnnotation(Tok);
2679         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2680                                        DiagID, T, Policy);
2681       } else
2682         DS.SetTypeSpecError();
2683 
2684       if (isInvalid)
2685         break;
2686 
2687       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2688       ConsumeToken(); // The typename
2689 
2690       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2691       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2692       // Objective-C interface.
2693       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2694         ParseObjCProtocolQualifiers(DS);
2695 
2696       continue;
2697     }
2698 
2699     case tok::kw___is_signed:
2700       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2701       // typically treats it as a trait. If we see __is_signed as it appears
2702       // in libstdc++, e.g.,
2703       //
2704       //   static const bool __is_signed;
2705       //
2706       // then treat __is_signed as an identifier rather than as a keyword.
2707       if (DS.getTypeSpecType() == TST_bool &&
2708           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2709           DS.getStorageClassSpec() == DeclSpec::SCS_static)
2710         TryKeywordIdentFallback(true);
2711 
2712       // We're done with the declaration-specifiers.
2713       goto DoneWithDeclSpec;
2714 
2715       // typedef-name
2716     case tok::kw_decltype:
2717     case tok::identifier: {
2718       // In C++, check to see if this is a scope specifier like foo::bar::, if
2719       // so handle it as such.  This is important for ctor parsing.
2720       if (getLangOpts().CPlusPlus) {
2721         if (TryAnnotateCXXScopeToken(EnteringContext)) {
2722           if (!DS.hasTypeSpecifier())
2723             DS.SetTypeSpecError();
2724           goto DoneWithDeclSpec;
2725         }
2726         if (!Tok.is(tok::identifier))
2727           continue;
2728       }
2729 
2730       // This identifier can only be a typedef name if we haven't already seen
2731       // a type-specifier.  Without this check we misparse:
2732       //  typedef int X; struct Y { short X; };  as 'short int'.
2733       if (DS.hasTypeSpecifier())
2734         goto DoneWithDeclSpec;
2735 
2736       // Check for need to substitute AltiVec keyword tokens.
2737       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2738         break;
2739 
2740       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2741       //                allow the use of a typedef name as a type specifier.
2742       if (DS.isTypeAltiVecVector())
2743         goto DoneWithDeclSpec;
2744 
2745       ParsedType TypeRep =
2746         Actions.getTypeName(*Tok.getIdentifierInfo(),
2747                             Tok.getLocation(), getCurScope());
2748 
2749       // MSVC: If we weren't able to parse a default template argument, and it's
2750       // just a simple identifier, create a DependentNameType.  This will allow us
2751       // to defer the name lookup to template instantiation time, as long we forge a
2752       // NestedNameSpecifier for the current context.
2753       if (!TypeRep && DSContext == DSC_template_type_arg &&
2754           getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2755         TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2756             *Tok.getIdentifierInfo(), Tok.getLocation());
2757       }
2758 
2759       // If this is not a typedef name, don't parse it as part of the declspec,
2760       // it must be an implicit int or an error.
2761       if (!TypeRep) {
2762         ParsedAttributesWithRange Attrs(AttrFactory);
2763         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2764           if (!Attrs.empty()) {
2765             AttrsLastTime = true;
2766             attrs.takeAllFrom(Attrs);
2767           }
2768           continue;
2769         }
2770         goto DoneWithDeclSpec;
2771       }
2772 
2773       // If we're in a context where the identifier could be a class name,
2774       // check whether this is a constructor declaration.
2775       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2776           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2777           isConstructorDeclarator(/*Unqualified*/true))
2778         goto DoneWithDeclSpec;
2779 
2780       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2781                                      DiagID, TypeRep, Policy);
2782       if (isInvalid)
2783         break;
2784 
2785       DS.SetRangeEnd(Tok.getLocation());
2786       ConsumeToken(); // The identifier
2787 
2788       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2789       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2790       // Objective-C interface.
2791       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2792         ParseObjCProtocolQualifiers(DS);
2793 
2794       // Need to support trailing type qualifiers (e.g. "id<p> const").
2795       // If a type specifier follows, it will be diagnosed elsewhere.
2796       continue;
2797     }
2798 
2799       // type-name
2800     case tok::annot_template_id: {
2801       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2802       if (TemplateId->Kind != TNK_Type_template) {
2803         // This template-id does not refer to a type name, so we're
2804         // done with the type-specifiers.
2805         goto DoneWithDeclSpec;
2806       }
2807 
2808       // If we're in a context where the template-id could be a
2809       // constructor name or specialization, check whether this is a
2810       // constructor declaration.
2811       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2812           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2813           isConstructorDeclarator(TemplateId->SS.isEmpty()))
2814         goto DoneWithDeclSpec;
2815 
2816       // Turn the template-id annotation token into a type annotation
2817       // token, then try again to parse it as a type-specifier.
2818       AnnotateTemplateIdTokenAsType();
2819       continue;
2820     }
2821 
2822     // GNU attributes support.
2823     case tok::kw___attribute:
2824       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2825       continue;
2826 
2827     // Microsoft declspec support.
2828     case tok::kw___declspec:
2829       ParseMicrosoftDeclSpec(DS.getAttributes());
2830       continue;
2831 
2832     // Microsoft single token adornments.
2833     case tok::kw___forceinline: {
2834       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2835       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2836       SourceLocation AttrNameLoc = Tok.getLocation();
2837       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2838                                 nullptr, 0, AttributeList::AS_Keyword);
2839       break;
2840     }
2841 
2842     case tok::kw___sptr:
2843     case tok::kw___uptr:
2844     case tok::kw___ptr64:
2845     case tok::kw___ptr32:
2846     case tok::kw___w64:
2847     case tok::kw___cdecl:
2848     case tok::kw___stdcall:
2849     case tok::kw___fastcall:
2850     case tok::kw___thiscall:
2851     case tok::kw___unaligned:
2852       ParseMicrosoftTypeAttributes(DS.getAttributes());
2853       continue;
2854 
2855     // Borland single token adornments.
2856     case tok::kw___pascal:
2857       ParseBorlandTypeAttributes(DS.getAttributes());
2858       continue;
2859 
2860     // OpenCL single token adornments.
2861     case tok::kw___kernel:
2862       ParseOpenCLAttributes(DS.getAttributes());
2863       continue;
2864 
2865     // storage-class-specifier
2866     case tok::kw_typedef:
2867       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2868                                          PrevSpec, DiagID, Policy);
2869       break;
2870     case tok::kw_extern:
2871       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2872         Diag(Tok, diag::ext_thread_before) << "extern";
2873       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2874                                          PrevSpec, DiagID, Policy);
2875       break;
2876     case tok::kw___private_extern__:
2877       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2878                                          Loc, PrevSpec, DiagID, Policy);
2879       break;
2880     case tok::kw_static:
2881       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2882         Diag(Tok, diag::ext_thread_before) << "static";
2883       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2884                                          PrevSpec, DiagID, Policy);
2885       break;
2886     case tok::kw_auto:
2887       if (getLangOpts().CPlusPlus11) {
2888         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2889           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2890                                              PrevSpec, DiagID, Policy);
2891           if (!isInvalid)
2892             Diag(Tok, diag::ext_auto_storage_class)
2893               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2894         } else
2895           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2896                                          DiagID, Policy);
2897       } else
2898         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2899                                            PrevSpec, DiagID, Policy);
2900       break;
2901     case tok::kw_register:
2902       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2903                                          PrevSpec, DiagID, Policy);
2904       break;
2905     case tok::kw_mutable:
2906       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2907                                          PrevSpec, DiagID, Policy);
2908       break;
2909     case tok::kw___thread:
2910       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
2911                                                PrevSpec, DiagID);
2912       break;
2913     case tok::kw_thread_local:
2914       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
2915                                                PrevSpec, DiagID);
2916       break;
2917     case tok::kw__Thread_local:
2918       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
2919                                                Loc, PrevSpec, DiagID);
2920       break;
2921 
2922     // function-specifier
2923     case tok::kw_inline:
2924       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
2925       break;
2926     case tok::kw_virtual:
2927       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2928       break;
2929     case tok::kw_explicit:
2930       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2931       break;
2932     case tok::kw__Noreturn:
2933       if (!getLangOpts().C11)
2934         Diag(Loc, diag::ext_c11_noreturn);
2935       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2936       break;
2937 
2938     // alignment-specifier
2939     case tok::kw__Alignas:
2940       if (!getLangOpts().C11)
2941         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
2942       ParseAlignmentSpecifier(DS.getAttributes());
2943       continue;
2944 
2945     // friend
2946     case tok::kw_friend:
2947       if (DSContext == DSC_class)
2948         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2949       else {
2950         PrevSpec = ""; // not actually used by the diagnostic
2951         DiagID = diag::err_friend_invalid_in_context;
2952         isInvalid = true;
2953       }
2954       break;
2955 
2956     // Modules
2957     case tok::kw___module_private__:
2958       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2959       break;
2960 
2961     // constexpr
2962     case tok::kw_constexpr:
2963       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2964       break;
2965 
2966     // type-specifier
2967     case tok::kw_short:
2968       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2969                                       DiagID, Policy);
2970       break;
2971     case tok::kw_long:
2972       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2973         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2974                                         DiagID, Policy);
2975       else
2976         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2977                                         DiagID, Policy);
2978       break;
2979     case tok::kw___int64:
2980         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2981                                         DiagID, Policy);
2982       break;
2983     case tok::kw_signed:
2984       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2985                                      DiagID);
2986       break;
2987     case tok::kw_unsigned:
2988       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2989                                      DiagID);
2990       break;
2991     case tok::kw__Complex:
2992       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2993                                         DiagID);
2994       break;
2995     case tok::kw__Imaginary:
2996       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2997                                         DiagID);
2998       break;
2999     case tok::kw_void:
3000       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3001                                      DiagID, Policy);
3002       break;
3003     case tok::kw_char:
3004       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3005                                      DiagID, Policy);
3006       break;
3007     case tok::kw_int:
3008       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3009                                      DiagID, Policy);
3010       break;
3011     case tok::kw___int128:
3012       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3013                                      DiagID, Policy);
3014       break;
3015     case tok::kw_half:
3016       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3017                                      DiagID, Policy);
3018       break;
3019     case tok::kw_float:
3020       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3021                                      DiagID, Policy);
3022       break;
3023     case tok::kw_double:
3024       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3025                                      DiagID, Policy);
3026       break;
3027     case tok::kw_wchar_t:
3028       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3029                                      DiagID, Policy);
3030       break;
3031     case tok::kw_char16_t:
3032       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3033                                      DiagID, Policy);
3034       break;
3035     case tok::kw_char32_t:
3036       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3037                                      DiagID, Policy);
3038       break;
3039     case tok::kw_bool:
3040     case tok::kw__Bool:
3041       if (Tok.is(tok::kw_bool) &&
3042           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3043           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3044         PrevSpec = ""; // Not used by the diagnostic.
3045         DiagID = diag::err_bool_redeclaration;
3046         // For better error recovery.
3047         Tok.setKind(tok::identifier);
3048         isInvalid = true;
3049       } else {
3050         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3051                                        DiagID, Policy);
3052       }
3053       break;
3054     case tok::kw__Decimal32:
3055       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3056                                      DiagID, Policy);
3057       break;
3058     case tok::kw__Decimal64:
3059       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3060                                      DiagID, Policy);
3061       break;
3062     case tok::kw__Decimal128:
3063       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3064                                      DiagID, Policy);
3065       break;
3066     case tok::kw___vector:
3067       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3068       break;
3069     case tok::kw___pixel:
3070       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3071       break;
3072     case tok::kw___unknown_anytype:
3073       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3074                                      PrevSpec, DiagID, Policy);
3075       break;
3076 
3077     // class-specifier:
3078     case tok::kw_class:
3079     case tok::kw_struct:
3080     case tok::kw___interface:
3081     case tok::kw_union: {
3082       tok::TokenKind Kind = Tok.getKind();
3083       ConsumeToken();
3084 
3085       // These are attributes following class specifiers.
3086       // To produce better diagnostic, we parse them when
3087       // parsing class specifier.
3088       ParsedAttributesWithRange Attributes(AttrFactory);
3089       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3090                           EnteringContext, DSContext, Attributes);
3091 
3092       // If there are attributes following class specifier,
3093       // take them over and handle them here.
3094       if (!Attributes.empty()) {
3095         AttrsLastTime = true;
3096         attrs.takeAllFrom(Attributes);
3097       }
3098       continue;
3099     }
3100 
3101     // enum-specifier:
3102     case tok::kw_enum:
3103       ConsumeToken();
3104       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3105       continue;
3106 
3107     // cv-qualifier:
3108     case tok::kw_const:
3109       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3110                                  getLangOpts());
3111       break;
3112     case tok::kw_volatile:
3113       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3114                                  getLangOpts());
3115       break;
3116     case tok::kw_restrict:
3117       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3118                                  getLangOpts());
3119       break;
3120 
3121     // C++ typename-specifier:
3122     case tok::kw_typename:
3123       if (TryAnnotateTypeOrScopeToken()) {
3124         DS.SetTypeSpecError();
3125         goto DoneWithDeclSpec;
3126       }
3127       if (!Tok.is(tok::kw_typename))
3128         continue;
3129       break;
3130 
3131     // GNU typeof support.
3132     case tok::kw_typeof:
3133       ParseTypeofSpecifier(DS);
3134       continue;
3135 
3136     case tok::annot_decltype:
3137       ParseDecltypeSpecifier(DS);
3138       continue;
3139 
3140     case tok::kw___underlying_type:
3141       ParseUnderlyingTypeSpecifier(DS);
3142       continue;
3143 
3144     case tok::kw__Atomic:
3145       // C11 6.7.2.4/4:
3146       //   If the _Atomic keyword is immediately followed by a left parenthesis,
3147       //   it is interpreted as a type specifier (with a type name), not as a
3148       //   type qualifier.
3149       if (NextToken().is(tok::l_paren)) {
3150         ParseAtomicSpecifier(DS);
3151         continue;
3152       }
3153       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3154                                  getLangOpts());
3155       break;
3156 
3157     // OpenCL qualifiers:
3158     case tok::kw___private:
3159     case tok::kw___global:
3160     case tok::kw___local:
3161     case tok::kw___constant:
3162     case tok::kw___read_only:
3163     case tok::kw___write_only:
3164     case tok::kw___read_write:
3165       ParseOpenCLQualifiers(DS.getAttributes());
3166       break;
3167 
3168     case tok::less:
3169       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3170       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3171       // but we support it.
3172       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3173         goto DoneWithDeclSpec;
3174 
3175       if (!ParseObjCProtocolQualifiers(DS))
3176         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3177           << FixItHint::CreateInsertion(Loc, "id")
3178           << SourceRange(Loc, DS.getSourceRange().getEnd());
3179 
3180       // Need to support trailing type qualifiers (e.g. "id<p> const").
3181       // If a type specifier follows, it will be diagnosed elsewhere.
3182       continue;
3183     }
3184     // If the specifier wasn't legal, issue a diagnostic.
3185     if (isInvalid) {
3186       assert(PrevSpec && "Method did not return previous specifier!");
3187       assert(DiagID);
3188 
3189       if (DiagID == diag::ext_duplicate_declspec)
3190         Diag(Tok, DiagID)
3191           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3192       else
3193         Diag(Tok, DiagID) << PrevSpec;
3194     }
3195 
3196     DS.SetRangeEnd(Tok.getLocation());
3197     if (DiagID != diag::err_bool_redeclaration)
3198       ConsumeToken();
3199 
3200     AttrsLastTime = false;
3201   }
3202 }
3203 
3204 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3205 /// semicolon.
3206 ///
3207 ///       struct-declaration:
3208 ///         specifier-qualifier-list struct-declarator-list
3209 /// [GNU]   __extension__ struct-declaration
3210 /// [GNU]   specifier-qualifier-list
3211 ///       struct-declarator-list:
3212 ///         struct-declarator
3213 ///         struct-declarator-list ',' struct-declarator
3214 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3215 ///       struct-declarator:
3216 ///         declarator
3217 /// [GNU]   declarator attributes[opt]
3218 ///         declarator[opt] ':' constant-expression
3219 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3220 ///
3221 void Parser::
ParseStructDeclaration(ParsingDeclSpec & DS,FieldCallback & Fields)3222 ParseStructDeclaration(ParsingDeclSpec &DS, FieldCallback &Fields) {
3223 
3224   if (Tok.is(tok::kw___extension__)) {
3225     // __extension__ silences extension warnings in the subexpression.
3226     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
3227     ConsumeToken();
3228     return ParseStructDeclaration(DS, Fields);
3229   }
3230 
3231   // Parse the common specifier-qualifiers-list piece.
3232   ParseSpecifierQualifierList(DS);
3233 
3234   // If there are no declarators, this is a free-standing declaration
3235   // specifier. Let the actions module cope with it.
3236   if (Tok.is(tok::semi)) {
3237     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3238                                                        DS);
3239     DS.complete(TheDecl);
3240     return;
3241   }
3242 
3243   // Read struct-declarators until we find the semicolon.
3244   bool FirstDeclarator = true;
3245   SourceLocation CommaLoc;
3246   while (1) {
3247     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3248     DeclaratorInfo.D.setCommaLoc(CommaLoc);
3249 
3250     // Attributes are only allowed here on successive declarators.
3251     if (!FirstDeclarator)
3252       MaybeParseGNUAttributes(DeclaratorInfo.D);
3253 
3254     /// struct-declarator: declarator
3255     /// struct-declarator: declarator[opt] ':' constant-expression
3256     if (Tok.isNot(tok::colon)) {
3257       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3258       ColonProtectionRAIIObject X(*this);
3259       ParseDeclarator(DeclaratorInfo.D);
3260     }
3261 
3262     if (TryConsumeToken(tok::colon)) {
3263       ExprResult Res(ParseConstantExpression());
3264       if (Res.isInvalid())
3265         SkipUntil(tok::semi, StopBeforeMatch);
3266       else
3267         DeclaratorInfo.BitfieldSize = Res.get();
3268     }
3269 
3270     // If attributes exist after the declarator, parse them.
3271     MaybeParseGNUAttributes(DeclaratorInfo.D);
3272 
3273     // We're done with this declarator;  invoke the callback.
3274     Fields.invoke(DeclaratorInfo);
3275 
3276     // If we don't have a comma, it is either the end of the list (a ';')
3277     // or an error, bail out.
3278     if (!TryConsumeToken(tok::comma, CommaLoc))
3279       return;
3280 
3281     FirstDeclarator = false;
3282   }
3283 }
3284 
3285 /// ParseStructUnionBody
3286 ///       struct-contents:
3287 ///         struct-declaration-list
3288 /// [EXT]   empty
3289 /// [GNU]   "struct-declaration-list" without terminatoring ';'
3290 ///       struct-declaration-list:
3291 ///         struct-declaration
3292 ///         struct-declaration-list struct-declaration
3293 /// [OBC]   '@' 'defs' '(' class-name ')'
3294 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3295 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3296                                   unsigned TagType, Decl *TagDecl) {
3297   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3298                                       "parsing struct/union body");
3299   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3300 
3301   BalancedDelimiterTracker T(*this, tok::l_brace);
3302   if (T.consumeOpen())
3303     return;
3304 
3305   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3306   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3307 
3308   SmallVector<Decl *, 32> FieldDecls;
3309 
3310   // While we still have something to read, read the declarations in the struct.
3311   while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3312     // Each iteration of this loop reads one struct-declaration.
3313 
3314     // Check for extraneous top-level semicolon.
3315     if (Tok.is(tok::semi)) {
3316       ConsumeExtraSemi(InsideStruct, TagType);
3317       continue;
3318     }
3319 
3320     // Parse _Static_assert declaration.
3321     if (Tok.is(tok::kw__Static_assert)) {
3322       SourceLocation DeclEnd;
3323       ParseStaticAssertDeclaration(DeclEnd);
3324       continue;
3325     }
3326 
3327     if (Tok.is(tok::annot_pragma_pack)) {
3328       HandlePragmaPack();
3329       continue;
3330     }
3331 
3332     if (Tok.is(tok::annot_pragma_align)) {
3333       HandlePragmaAlign();
3334       continue;
3335     }
3336 
3337     if (!Tok.is(tok::at)) {
3338       struct CFieldCallback : FieldCallback {
3339         Parser &P;
3340         Decl *TagDecl;
3341         SmallVectorImpl<Decl *> &FieldDecls;
3342 
3343         CFieldCallback(Parser &P, Decl *TagDecl,
3344                        SmallVectorImpl<Decl *> &FieldDecls) :
3345           P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
3346 
3347         void invoke(ParsingFieldDeclarator &FD) override {
3348           // Install the declarator into the current TagDecl.
3349           Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
3350                               FD.D.getDeclSpec().getSourceRange().getBegin(),
3351                                                  FD.D, FD.BitfieldSize);
3352           FieldDecls.push_back(Field);
3353           FD.complete(Field);
3354         }
3355       } Callback(*this, TagDecl, FieldDecls);
3356 
3357       // Parse all the comma separated declarators.
3358       ParsingDeclSpec DS(*this);
3359       ParseStructDeclaration(DS, Callback);
3360     } else { // Handle @defs
3361       ConsumeToken();
3362       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3363         Diag(Tok, diag::err_unexpected_at);
3364         SkipUntil(tok::semi);
3365         continue;
3366       }
3367       ConsumeToken();
3368       ExpectAndConsume(tok::l_paren);
3369       if (!Tok.is(tok::identifier)) {
3370         Diag(Tok, diag::err_expected) << tok::identifier;
3371         SkipUntil(tok::semi);
3372         continue;
3373       }
3374       SmallVector<Decl *, 16> Fields;
3375       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3376                         Tok.getIdentifierInfo(), Fields);
3377       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3378       ConsumeToken();
3379       ExpectAndConsume(tok::r_paren);
3380     }
3381 
3382     if (TryConsumeToken(tok::semi))
3383       continue;
3384 
3385     if (Tok.is(tok::r_brace)) {
3386       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3387       break;
3388     }
3389 
3390     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3391     // Skip to end of block or statement to avoid ext-warning on extra ';'.
3392     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3393     // If we stopped at a ';', eat it.
3394     TryConsumeToken(tok::semi);
3395   }
3396 
3397   T.consumeClose();
3398 
3399   ParsedAttributes attrs(AttrFactory);
3400   // If attributes exist after struct contents, parse them.
3401   MaybeParseGNUAttributes(attrs);
3402 
3403   Actions.ActOnFields(getCurScope(),
3404                       RecordLoc, TagDecl, FieldDecls,
3405                       T.getOpenLocation(), T.getCloseLocation(),
3406                       attrs.getList());
3407   StructScope.Exit();
3408   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3409                                    T.getCloseLocation());
3410 }
3411 
3412 /// ParseEnumSpecifier
3413 ///       enum-specifier: [C99 6.7.2.2]
3414 ///         'enum' identifier[opt] '{' enumerator-list '}'
3415 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3416 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3417 ///                                                 '}' attributes[opt]
3418 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3419 ///                                                 '}'
3420 ///         'enum' identifier
3421 /// [GNU]   'enum' attributes[opt] identifier
3422 ///
3423 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3424 /// [C++11] enum-head '{' enumerator-list ','  '}'
3425 ///
3426 ///       enum-head: [C++11]
3427 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3428 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
3429 ///             identifier enum-base[opt]
3430 ///
3431 ///       enum-key: [C++11]
3432 ///         'enum'
3433 ///         'enum' 'class'
3434 ///         'enum' 'struct'
3435 ///
3436 ///       enum-base: [C++11]
3437 ///         ':' type-specifier-seq
3438 ///
3439 /// [C++] elaborated-type-specifier:
3440 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
3441 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3442 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3443                                 const ParsedTemplateInfo &TemplateInfo,
3444                                 AccessSpecifier AS, DeclSpecContext DSC) {
3445   // Parse the tag portion of this.
3446   if (Tok.is(tok::code_completion)) {
3447     // Code completion for an enum name.
3448     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3449     return cutOffParsing();
3450   }
3451 
3452   // If attributes exist after tag, parse them.
3453   ParsedAttributesWithRange attrs(AttrFactory);
3454   MaybeParseGNUAttributes(attrs);
3455   MaybeParseCXX11Attributes(attrs);
3456 
3457   // If declspecs exist after tag, parse them.
3458   while (Tok.is(tok::kw___declspec))
3459     ParseMicrosoftDeclSpec(attrs);
3460 
3461   SourceLocation ScopedEnumKWLoc;
3462   bool IsScopedUsingClassTag = false;
3463 
3464   // In C++11, recognize 'enum class' and 'enum struct'.
3465   if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3466     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3467                                         : diag::ext_scoped_enum);
3468     IsScopedUsingClassTag = Tok.is(tok::kw_class);
3469     ScopedEnumKWLoc = ConsumeToken();
3470 
3471     // Attributes are not allowed between these keywords.  Diagnose,
3472     // but then just treat them like they appeared in the right place.
3473     ProhibitAttributes(attrs);
3474 
3475     // They are allowed afterwards, though.
3476     MaybeParseGNUAttributes(attrs);
3477     MaybeParseCXX11Attributes(attrs);
3478     while (Tok.is(tok::kw___declspec))
3479       ParseMicrosoftDeclSpec(attrs);
3480   }
3481 
3482   // C++11 [temp.explicit]p12:
3483   //   The usual access controls do not apply to names used to specify
3484   //   explicit instantiations.
3485   // We extend this to also cover explicit specializations.  Note that
3486   // we don't suppress if this turns out to be an elaborated type
3487   // specifier.
3488   bool shouldDelayDiagsInTag =
3489     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3490      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3491   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3492 
3493   // Enum definitions should not be parsed in a trailing-return-type.
3494   bool AllowDeclaration = DSC != DSC_trailing;
3495 
3496   bool AllowFixedUnderlyingType = AllowDeclaration &&
3497     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3498      getLangOpts().ObjC2);
3499 
3500   CXXScopeSpec &SS = DS.getTypeSpecScope();
3501   if (getLangOpts().CPlusPlus) {
3502     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3503     // if a fixed underlying type is allowed.
3504     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3505 
3506     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3507                                        /*EnteringContext=*/true))
3508       return;
3509 
3510     if (SS.isSet() && Tok.isNot(tok::identifier)) {
3511       Diag(Tok, diag::err_expected) << tok::identifier;
3512       if (Tok.isNot(tok::l_brace)) {
3513         // Has no name and is not a definition.
3514         // Skip the rest of this declarator, up until the comma or semicolon.
3515         SkipUntil(tok::comma, StopAtSemi);
3516         return;
3517       }
3518     }
3519   }
3520 
3521   // Must have either 'enum name' or 'enum {...}'.
3522   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3523       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3524     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3525 
3526     // Skip the rest of this declarator, up until the comma or semicolon.
3527     SkipUntil(tok::comma, StopAtSemi);
3528     return;
3529   }
3530 
3531   // If an identifier is present, consume and remember it.
3532   IdentifierInfo *Name = nullptr;
3533   SourceLocation NameLoc;
3534   if (Tok.is(tok::identifier)) {
3535     Name = Tok.getIdentifierInfo();
3536     NameLoc = ConsumeToken();
3537   }
3538 
3539   if (!Name && ScopedEnumKWLoc.isValid()) {
3540     // C++0x 7.2p2: The optional identifier shall not be omitted in the
3541     // declaration of a scoped enumeration.
3542     Diag(Tok, diag::err_scoped_enum_missing_identifier);
3543     ScopedEnumKWLoc = SourceLocation();
3544     IsScopedUsingClassTag = false;
3545   }
3546 
3547   // Okay, end the suppression area.  We'll decide whether to emit the
3548   // diagnostics in a second.
3549   if (shouldDelayDiagsInTag)
3550     diagsFromTag.done();
3551 
3552   TypeResult BaseType;
3553 
3554   // Parse the fixed underlying type.
3555   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3556   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3557     bool PossibleBitfield = false;
3558     if (CanBeBitfield) {
3559       // If we're in class scope, this can either be an enum declaration with
3560       // an underlying type, or a declaration of a bitfield member. We try to
3561       // use a simple disambiguation scheme first to catch the common cases
3562       // (integer literal, sizeof); if it's still ambiguous, we then consider
3563       // anything that's a simple-type-specifier followed by '(' as an
3564       // expression. This suffices because function types are not valid
3565       // underlying types anyway.
3566       EnterExpressionEvaluationContext Unevaluated(Actions,
3567                                                    Sema::ConstantEvaluated);
3568       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3569       // If the next token starts an expression, we know we're parsing a
3570       // bit-field. This is the common case.
3571       if (TPR == TPResult::True)
3572         PossibleBitfield = true;
3573       // If the next token starts a type-specifier-seq, it may be either a
3574       // a fixed underlying type or the start of a function-style cast in C++;
3575       // lookahead one more token to see if it's obvious that we have a
3576       // fixed underlying type.
3577       else if (TPR == TPResult::False &&
3578                GetLookAheadToken(2).getKind() == tok::semi) {
3579         // Consume the ':'.
3580         ConsumeToken();
3581       } else {
3582         // We have the start of a type-specifier-seq, so we have to perform
3583         // tentative parsing to determine whether we have an expression or a
3584         // type.
3585         TentativeParsingAction TPA(*this);
3586 
3587         // Consume the ':'.
3588         ConsumeToken();
3589 
3590         // If we see a type specifier followed by an open-brace, we have an
3591         // ambiguity between an underlying type and a C++11 braced
3592         // function-style cast. Resolve this by always treating it as an
3593         // underlying type.
3594         // FIXME: The standard is not entirely clear on how to disambiguate in
3595         // this case.
3596         if ((getLangOpts().CPlusPlus &&
3597              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3598             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3599           // We'll parse this as a bitfield later.
3600           PossibleBitfield = true;
3601           TPA.Revert();
3602         } else {
3603           // We have a type-specifier-seq.
3604           TPA.Commit();
3605         }
3606       }
3607     } else {
3608       // Consume the ':'.
3609       ConsumeToken();
3610     }
3611 
3612     if (!PossibleBitfield) {
3613       SourceRange Range;
3614       BaseType = ParseTypeName(&Range);
3615 
3616       if (getLangOpts().CPlusPlus11) {
3617         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3618       } else if (!getLangOpts().ObjC2) {
3619         if (getLangOpts().CPlusPlus)
3620           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3621         else
3622           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3623       }
3624     }
3625   }
3626 
3627   // There are four options here.  If we have 'friend enum foo;' then this is a
3628   // friend declaration, and cannot have an accompanying definition. If we have
3629   // 'enum foo;', then this is a forward declaration.  If we have
3630   // 'enum foo {...' then this is a definition. Otherwise we have something
3631   // like 'enum foo xyz', a reference.
3632   //
3633   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3634   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
3635   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
3636   //
3637   Sema::TagUseKind TUK;
3638   if (!AllowDeclaration) {
3639     TUK = Sema::TUK_Reference;
3640   } else if (Tok.is(tok::l_brace)) {
3641     if (DS.isFriendSpecified()) {
3642       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3643         << SourceRange(DS.getFriendSpecLoc());
3644       ConsumeBrace();
3645       SkipUntil(tok::r_brace, StopAtSemi);
3646       TUK = Sema::TUK_Friend;
3647     } else {
3648       TUK = Sema::TUK_Definition;
3649     }
3650   } else if (!isTypeSpecifier(DSC) &&
3651              (Tok.is(tok::semi) ||
3652               (Tok.isAtStartOfLine() &&
3653                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3654     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3655     if (Tok.isNot(tok::semi)) {
3656       // A semicolon was missing after this declaration. Diagnose and recover.
3657       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3658       PP.EnterToken(Tok);
3659       Tok.setKind(tok::semi);
3660     }
3661   } else {
3662     TUK = Sema::TUK_Reference;
3663   }
3664 
3665   // If this is an elaborated type specifier, and we delayed
3666   // diagnostics before, just merge them into the current pool.
3667   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3668     diagsFromTag.redelay();
3669   }
3670 
3671   MultiTemplateParamsArg TParams;
3672   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3673       TUK != Sema::TUK_Reference) {
3674     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3675       // Skip the rest of this declarator, up until the comma or semicolon.
3676       Diag(Tok, diag::err_enum_template);
3677       SkipUntil(tok::comma, StopAtSemi);
3678       return;
3679     }
3680 
3681     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3682       // Enumerations can't be explicitly instantiated.
3683       DS.SetTypeSpecError();
3684       Diag(StartLoc, diag::err_explicit_instantiation_enum);
3685       return;
3686     }
3687 
3688     assert(TemplateInfo.TemplateParams && "no template parameters");
3689     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3690                                      TemplateInfo.TemplateParams->size());
3691   }
3692 
3693   if (TUK == Sema::TUK_Reference)
3694     ProhibitAttributes(attrs);
3695 
3696   if (!Name && TUK != Sema::TUK_Definition) {
3697     Diag(Tok, diag::err_enumerator_unnamed_no_def);
3698 
3699     // Skip the rest of this declarator, up until the comma or semicolon.
3700     SkipUntil(tok::comma, StopAtSemi);
3701     return;
3702   }
3703 
3704   bool Owned = false;
3705   bool IsDependent = false;
3706   const char *PrevSpec = nullptr;
3707   unsigned DiagID;
3708   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3709                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
3710                                    AS, DS.getModulePrivateSpecLoc(), TParams,
3711                                    Owned, IsDependent, ScopedEnumKWLoc,
3712                                    IsScopedUsingClassTag, BaseType,
3713                                    DSC == DSC_type_specifier);
3714 
3715   if (IsDependent) {
3716     // This enum has a dependent nested-name-specifier. Handle it as a
3717     // dependent tag.
3718     if (!Name) {
3719       DS.SetTypeSpecError();
3720       Diag(Tok, diag::err_expected_type_name_after_typename);
3721       return;
3722     }
3723 
3724     TypeResult Type = Actions.ActOnDependentTag(
3725         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3726     if (Type.isInvalid()) {
3727       DS.SetTypeSpecError();
3728       return;
3729     }
3730 
3731     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3732                            NameLoc.isValid() ? NameLoc : StartLoc,
3733                            PrevSpec, DiagID, Type.get(),
3734                            Actions.getASTContext().getPrintingPolicy()))
3735       Diag(StartLoc, DiagID) << PrevSpec;
3736 
3737     return;
3738   }
3739 
3740   if (!TagDecl) {
3741     // The action failed to produce an enumeration tag. If this is a
3742     // definition, consume the entire definition.
3743     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3744       ConsumeBrace();
3745       SkipUntil(tok::r_brace, StopAtSemi);
3746     }
3747 
3748     DS.SetTypeSpecError();
3749     return;
3750   }
3751 
3752   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3753     ParseEnumBody(StartLoc, TagDecl);
3754 
3755   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3756                          NameLoc.isValid() ? NameLoc : StartLoc,
3757                          PrevSpec, DiagID, TagDecl, Owned,
3758                          Actions.getASTContext().getPrintingPolicy()))
3759     Diag(StartLoc, DiagID) << PrevSpec;
3760 }
3761 
3762 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
3763 ///       enumerator-list:
3764 ///         enumerator
3765 ///         enumerator-list ',' enumerator
3766 ///       enumerator:
3767 ///         enumeration-constant
3768 ///         enumeration-constant '=' constant-expression
3769 ///       enumeration-constant:
3770 ///         identifier
3771 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)3772 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3773   // Enter the scope of the enum body and start the definition.
3774   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3775   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3776 
3777   BalancedDelimiterTracker T(*this, tok::l_brace);
3778   T.consumeOpen();
3779 
3780   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3781   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3782     Diag(Tok, diag::error_empty_enum);
3783 
3784   SmallVector<Decl *, 32> EnumConstantDecls;
3785 
3786   Decl *LastEnumConstDecl = nullptr;
3787 
3788   // Parse the enumerator-list.
3789   while (Tok.isNot(tok::r_brace)) {
3790     // Parse enumerator. If failed, try skipping till the start of the next
3791     // enumerator definition.
3792     if (Tok.isNot(tok::identifier)) {
3793       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3794       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3795           TryConsumeToken(tok::comma))
3796         continue;
3797       break;
3798     }
3799     IdentifierInfo *Ident = Tok.getIdentifierInfo();
3800     SourceLocation IdentLoc = ConsumeToken();
3801 
3802     // If attributes exist after the enumerator, parse them.
3803     ParsedAttributesWithRange attrs(AttrFactory);
3804     MaybeParseGNUAttributes(attrs);
3805     MaybeParseCXX11Attributes(attrs);
3806     ProhibitAttributes(attrs);
3807 
3808     SourceLocation EqualLoc;
3809     ExprResult AssignedVal;
3810     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3811 
3812     if (TryConsumeToken(tok::equal, EqualLoc)) {
3813       AssignedVal = ParseConstantExpression();
3814       if (AssignedVal.isInvalid())
3815         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3816     }
3817 
3818     // Install the enumerator constant into EnumDecl.
3819     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3820                                                     LastEnumConstDecl,
3821                                                     IdentLoc, Ident,
3822                                                     attrs.getList(), EqualLoc,
3823                                                     AssignedVal.get());
3824     PD.complete(EnumConstDecl);
3825 
3826     EnumConstantDecls.push_back(EnumConstDecl);
3827     LastEnumConstDecl = EnumConstDecl;
3828 
3829     if (Tok.is(tok::identifier)) {
3830       // We're missing a comma between enumerators.
3831       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3832       Diag(Loc, diag::err_enumerator_list_missing_comma)
3833         << FixItHint::CreateInsertion(Loc, ", ");
3834       continue;
3835     }
3836 
3837     // Emumerator definition must be finished, only comma or r_brace are
3838     // allowed here.
3839     SourceLocation CommaLoc;
3840     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3841       if (EqualLoc.isValid())
3842         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3843                                                            << tok::comma;
3844       else
3845         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
3846       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
3847         if (TryConsumeToken(tok::comma, CommaLoc))
3848           continue;
3849       } else {
3850         break;
3851       }
3852     }
3853 
3854     // If comma is followed by r_brace, emit appropriate warning.
3855     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
3856       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
3857         Diag(CommaLoc, getLangOpts().CPlusPlus ?
3858                diag::ext_enumerator_list_comma_cxx :
3859                diag::ext_enumerator_list_comma_c)
3860           << FixItHint::CreateRemoval(CommaLoc);
3861       else if (getLangOpts().CPlusPlus11)
3862         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3863           << FixItHint::CreateRemoval(CommaLoc);
3864       break;
3865     }
3866   }
3867 
3868   // Eat the }.
3869   T.consumeClose();
3870 
3871   // If attributes exist after the identifier list, parse them.
3872   ParsedAttributes attrs(AttrFactory);
3873   MaybeParseGNUAttributes(attrs);
3874 
3875   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3876                         EnumDecl, EnumConstantDecls,
3877                         getCurScope(),
3878                         attrs.getList());
3879 
3880   EnumScope.Exit();
3881   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3882                                    T.getCloseLocation());
3883 
3884   // The next token must be valid after an enum definition. If not, a ';'
3885   // was probably forgotten.
3886   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3887   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
3888     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3889     // Push this token back into the preprocessor and change our current token
3890     // to ';' so that the rest of the code recovers as though there were an
3891     // ';' after the definition.
3892     PP.EnterToken(Tok);
3893     Tok.setKind(tok::semi);
3894   }
3895 }
3896 
3897 /// isTypeSpecifierQualifier - Return true if the current token could be the
3898 /// start of a type-qualifier-list.
isTypeQualifier() const3899 bool Parser::isTypeQualifier() const {
3900   switch (Tok.getKind()) {
3901   default: return false;
3902   // type-qualifier
3903   case tok::kw_const:
3904   case tok::kw_volatile:
3905   case tok::kw_restrict:
3906   case tok::kw___private:
3907   case tok::kw___local:
3908   case tok::kw___global:
3909   case tok::kw___constant:
3910   case tok::kw___read_only:
3911   case tok::kw___read_write:
3912   case tok::kw___write_only:
3913     return true;
3914   }
3915 }
3916 
3917 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3918 /// is definitely a type-specifier.  Return false if it isn't part of a type
3919 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const3920 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3921   switch (Tok.getKind()) {
3922   default: return false;
3923     // type-specifiers
3924   case tok::kw_short:
3925   case tok::kw_long:
3926   case tok::kw___int64:
3927   case tok::kw___int128:
3928   case tok::kw_signed:
3929   case tok::kw_unsigned:
3930   case tok::kw__Complex:
3931   case tok::kw__Imaginary:
3932   case tok::kw_void:
3933   case tok::kw_char:
3934   case tok::kw_wchar_t:
3935   case tok::kw_char16_t:
3936   case tok::kw_char32_t:
3937   case tok::kw_int:
3938   case tok::kw_half:
3939   case tok::kw_float:
3940   case tok::kw_double:
3941   case tok::kw_bool:
3942   case tok::kw__Bool:
3943   case tok::kw__Decimal32:
3944   case tok::kw__Decimal64:
3945   case tok::kw__Decimal128:
3946   case tok::kw___vector:
3947 
3948     // struct-or-union-specifier (C99) or class-specifier (C++)
3949   case tok::kw_class:
3950   case tok::kw_struct:
3951   case tok::kw___interface:
3952   case tok::kw_union:
3953     // enum-specifier
3954   case tok::kw_enum:
3955 
3956     // typedef-name
3957   case tok::annot_typename:
3958     return true;
3959   }
3960 }
3961 
3962 /// isTypeSpecifierQualifier - Return true if the current token could be the
3963 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()3964 bool Parser::isTypeSpecifierQualifier() {
3965   switch (Tok.getKind()) {
3966   default: return false;
3967 
3968   case tok::identifier:   // foo::bar
3969     if (TryAltiVecVectorToken())
3970       return true;
3971     // Fall through.
3972   case tok::kw_typename:  // typename T::type
3973     // Annotate typenames and C++ scope specifiers.  If we get one, just
3974     // recurse to handle whatever we get.
3975     if (TryAnnotateTypeOrScopeToken())
3976       return true;
3977     if (Tok.is(tok::identifier))
3978       return false;
3979     return isTypeSpecifierQualifier();
3980 
3981   case tok::coloncolon:   // ::foo::bar
3982     if (NextToken().is(tok::kw_new) ||    // ::new
3983         NextToken().is(tok::kw_delete))   // ::delete
3984       return false;
3985 
3986     if (TryAnnotateTypeOrScopeToken())
3987       return true;
3988     return isTypeSpecifierQualifier();
3989 
3990     // GNU attributes support.
3991   case tok::kw___attribute:
3992     // GNU typeof support.
3993   case tok::kw_typeof:
3994 
3995     // type-specifiers
3996   case tok::kw_short:
3997   case tok::kw_long:
3998   case tok::kw___int64:
3999   case tok::kw___int128:
4000   case tok::kw_signed:
4001   case tok::kw_unsigned:
4002   case tok::kw__Complex:
4003   case tok::kw__Imaginary:
4004   case tok::kw_void:
4005   case tok::kw_char:
4006   case tok::kw_wchar_t:
4007   case tok::kw_char16_t:
4008   case tok::kw_char32_t:
4009   case tok::kw_int:
4010   case tok::kw_half:
4011   case tok::kw_float:
4012   case tok::kw_double:
4013   case tok::kw_bool:
4014   case tok::kw__Bool:
4015   case tok::kw__Decimal32:
4016   case tok::kw__Decimal64:
4017   case tok::kw__Decimal128:
4018   case tok::kw___vector:
4019 
4020     // struct-or-union-specifier (C99) or class-specifier (C++)
4021   case tok::kw_class:
4022   case tok::kw_struct:
4023   case tok::kw___interface:
4024   case tok::kw_union:
4025     // enum-specifier
4026   case tok::kw_enum:
4027 
4028     // type-qualifier
4029   case tok::kw_const:
4030   case tok::kw_volatile:
4031   case tok::kw_restrict:
4032 
4033     // Debugger support.
4034   case tok::kw___unknown_anytype:
4035 
4036     // typedef-name
4037   case tok::annot_typename:
4038     return true;
4039 
4040     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4041   case tok::less:
4042     return getLangOpts().ObjC1;
4043 
4044   case tok::kw___cdecl:
4045   case tok::kw___stdcall:
4046   case tok::kw___fastcall:
4047   case tok::kw___thiscall:
4048   case tok::kw___w64:
4049   case tok::kw___ptr64:
4050   case tok::kw___ptr32:
4051   case tok::kw___pascal:
4052   case tok::kw___unaligned:
4053 
4054   case tok::kw___private:
4055   case tok::kw___local:
4056   case tok::kw___global:
4057   case tok::kw___constant:
4058   case tok::kw___read_only:
4059   case tok::kw___read_write:
4060   case tok::kw___write_only:
4061 
4062     return true;
4063 
4064   // C11 _Atomic
4065   case tok::kw__Atomic:
4066     return true;
4067   }
4068 }
4069 
4070 /// isDeclarationSpecifier() - Return true if the current token is part of a
4071 /// declaration specifier.
4072 ///
4073 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4074 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4075 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4076   switch (Tok.getKind()) {
4077   default: return false;
4078 
4079   case tok::identifier:   // foo::bar
4080     // Unfortunate hack to support "Class.factoryMethod" notation.
4081     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4082       return false;
4083     if (TryAltiVecVectorToken())
4084       return true;
4085     // Fall through.
4086   case tok::kw_decltype: // decltype(T())::type
4087   case tok::kw_typename: // typename T::type
4088     // Annotate typenames and C++ scope specifiers.  If we get one, just
4089     // recurse to handle whatever we get.
4090     if (TryAnnotateTypeOrScopeToken())
4091       return true;
4092     if (Tok.is(tok::identifier))
4093       return false;
4094 
4095     // If we're in Objective-C and we have an Objective-C class type followed
4096     // by an identifier and then either ':' or ']', in a place where an
4097     // expression is permitted, then this is probably a class message send
4098     // missing the initial '['. In this case, we won't consider this to be
4099     // the start of a declaration.
4100     if (DisambiguatingWithExpression &&
4101         isStartOfObjCClassMessageMissingOpenBracket())
4102       return false;
4103 
4104     return isDeclarationSpecifier();
4105 
4106   case tok::coloncolon:   // ::foo::bar
4107     if (NextToken().is(tok::kw_new) ||    // ::new
4108         NextToken().is(tok::kw_delete))   // ::delete
4109       return false;
4110 
4111     // Annotate typenames and C++ scope specifiers.  If we get one, just
4112     // recurse to handle whatever we get.
4113     if (TryAnnotateTypeOrScopeToken())
4114       return true;
4115     return isDeclarationSpecifier();
4116 
4117     // storage-class-specifier
4118   case tok::kw_typedef:
4119   case tok::kw_extern:
4120   case tok::kw___private_extern__:
4121   case tok::kw_static:
4122   case tok::kw_auto:
4123   case tok::kw_register:
4124   case tok::kw___thread:
4125   case tok::kw_thread_local:
4126   case tok::kw__Thread_local:
4127 
4128     // Modules
4129   case tok::kw___module_private__:
4130 
4131     // Debugger support
4132   case tok::kw___unknown_anytype:
4133 
4134     // type-specifiers
4135   case tok::kw_short:
4136   case tok::kw_long:
4137   case tok::kw___int64:
4138   case tok::kw___int128:
4139   case tok::kw_signed:
4140   case tok::kw_unsigned:
4141   case tok::kw__Complex:
4142   case tok::kw__Imaginary:
4143   case tok::kw_void:
4144   case tok::kw_char:
4145   case tok::kw_wchar_t:
4146   case tok::kw_char16_t:
4147   case tok::kw_char32_t:
4148 
4149   case tok::kw_int:
4150   case tok::kw_half:
4151   case tok::kw_float:
4152   case tok::kw_double:
4153   case tok::kw_bool:
4154   case tok::kw__Bool:
4155   case tok::kw__Decimal32:
4156   case tok::kw__Decimal64:
4157   case tok::kw__Decimal128:
4158   case tok::kw___vector:
4159 
4160     // struct-or-union-specifier (C99) or class-specifier (C++)
4161   case tok::kw_class:
4162   case tok::kw_struct:
4163   case tok::kw_union:
4164   case tok::kw___interface:
4165     // enum-specifier
4166   case tok::kw_enum:
4167 
4168     // type-qualifier
4169   case tok::kw_const:
4170   case tok::kw_volatile:
4171   case tok::kw_restrict:
4172 
4173     // function-specifier
4174   case tok::kw_inline:
4175   case tok::kw_virtual:
4176   case tok::kw_explicit:
4177   case tok::kw__Noreturn:
4178 
4179     // alignment-specifier
4180   case tok::kw__Alignas:
4181 
4182     // friend keyword.
4183   case tok::kw_friend:
4184 
4185     // static_assert-declaration
4186   case tok::kw__Static_assert:
4187 
4188     // GNU typeof support.
4189   case tok::kw_typeof:
4190 
4191     // GNU attributes.
4192   case tok::kw___attribute:
4193 
4194     // C++11 decltype and constexpr.
4195   case tok::annot_decltype:
4196   case tok::kw_constexpr:
4197 
4198     // C11 _Atomic
4199   case tok::kw__Atomic:
4200     return true;
4201 
4202     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4203   case tok::less:
4204     return getLangOpts().ObjC1;
4205 
4206     // typedef-name
4207   case tok::annot_typename:
4208     return !DisambiguatingWithExpression ||
4209            !isStartOfObjCClassMessageMissingOpenBracket();
4210 
4211   case tok::kw___declspec:
4212   case tok::kw___cdecl:
4213   case tok::kw___stdcall:
4214   case tok::kw___fastcall:
4215   case tok::kw___thiscall:
4216   case tok::kw___w64:
4217   case tok::kw___sptr:
4218   case tok::kw___uptr:
4219   case tok::kw___ptr64:
4220   case tok::kw___ptr32:
4221   case tok::kw___forceinline:
4222   case tok::kw___pascal:
4223   case tok::kw___unaligned:
4224 
4225   case tok::kw___private:
4226   case tok::kw___local:
4227   case tok::kw___global:
4228   case tok::kw___constant:
4229   case tok::kw___read_only:
4230   case tok::kw___read_write:
4231   case tok::kw___write_only:
4232 
4233     return true;
4234   }
4235 }
4236 
isConstructorDeclarator(bool IsUnqualified)4237 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4238   TentativeParsingAction TPA(*this);
4239 
4240   // Parse the C++ scope specifier.
4241   CXXScopeSpec SS;
4242   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4243                                      /*EnteringContext=*/true)) {
4244     TPA.Revert();
4245     return false;
4246   }
4247 
4248   // Parse the constructor name.
4249   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4250     // We already know that we have a constructor name; just consume
4251     // the token.
4252     ConsumeToken();
4253   } else {
4254     TPA.Revert();
4255     return false;
4256   }
4257 
4258   // Current class name must be followed by a left parenthesis.
4259   if (Tok.isNot(tok::l_paren)) {
4260     TPA.Revert();
4261     return false;
4262   }
4263   ConsumeParen();
4264 
4265   // A right parenthesis, or ellipsis followed by a right parenthesis signals
4266   // that we have a constructor.
4267   if (Tok.is(tok::r_paren) ||
4268       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4269     TPA.Revert();
4270     return true;
4271   }
4272 
4273   // A C++11 attribute here signals that we have a constructor, and is an
4274   // attribute on the first constructor parameter.
4275   if (getLangOpts().CPlusPlus11 &&
4276       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4277                                 /*OuterMightBeMessageSend*/ true)) {
4278     TPA.Revert();
4279     return true;
4280   }
4281 
4282   // If we need to, enter the specified scope.
4283   DeclaratorScopeObj DeclScopeObj(*this, SS);
4284   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4285     DeclScopeObj.EnterDeclaratorScope();
4286 
4287   // Optionally skip Microsoft attributes.
4288   ParsedAttributes Attrs(AttrFactory);
4289   MaybeParseMicrosoftAttributes(Attrs);
4290 
4291   // Check whether the next token(s) are part of a declaration
4292   // specifier, in which case we have the start of a parameter and,
4293   // therefore, we know that this is a constructor.
4294   bool IsConstructor = false;
4295   if (isDeclarationSpecifier())
4296     IsConstructor = true;
4297   else if (Tok.is(tok::identifier) ||
4298            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4299     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4300     // This might be a parenthesized member name, but is more likely to
4301     // be a constructor declaration with an invalid argument type. Keep
4302     // looking.
4303     if (Tok.is(tok::annot_cxxscope))
4304       ConsumeToken();
4305     ConsumeToken();
4306 
4307     // If this is not a constructor, we must be parsing a declarator,
4308     // which must have one of the following syntactic forms (see the
4309     // grammar extract at the start of ParseDirectDeclarator):
4310     switch (Tok.getKind()) {
4311     case tok::l_paren:
4312       // C(X   (   int));
4313     case tok::l_square:
4314       // C(X   [   5]);
4315       // C(X   [   [attribute]]);
4316     case tok::coloncolon:
4317       // C(X   ::   Y);
4318       // C(X   ::   *p);
4319       // Assume this isn't a constructor, rather than assuming it's a
4320       // constructor with an unnamed parameter of an ill-formed type.
4321       break;
4322 
4323     case tok::r_paren:
4324       // C(X   )
4325       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4326         // Assume these were meant to be constructors:
4327         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
4328         //   C(X)   try  (this is otherwise ill-formed).
4329         IsConstructor = true;
4330       }
4331       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4332         // If we have a constructor name within the class definition,
4333         // assume these were meant to be constructors:
4334         //   C(X)   {
4335         //   C(X)   ;
4336         // ... because otherwise we would be declaring a non-static data
4337         // member that is ill-formed because it's of the same type as its
4338         // surrounding class.
4339         //
4340         // FIXME: We can actually do this whether or not the name is qualified,
4341         // because if it is qualified in this context it must be being used as
4342         // a constructor name. However, we do not implement that rule correctly
4343         // currently, so we're somewhat conservative here.
4344         IsConstructor = IsUnqualified;
4345       }
4346       break;
4347 
4348     default:
4349       IsConstructor = true;
4350       break;
4351     }
4352   }
4353 
4354   TPA.Revert();
4355   return IsConstructor;
4356 }
4357 
4358 /// ParseTypeQualifierListOpt
4359 ///          type-qualifier-list: [C99 6.7.5]
4360 ///            type-qualifier
4361 /// [vendor]   attributes
4362 ///              [ only if VendorAttributesAllowed=true ]
4363 ///            type-qualifier-list type-qualifier
4364 /// [vendor]   type-qualifier-list attributes
4365 ///              [ only if VendorAttributesAllowed=true ]
4366 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
4367 ///              [ only if CXX11AttributesAllowed=true ]
4368 /// Note: vendor can be GNU, MS, etc.
4369 ///
ParseTypeQualifierListOpt(DeclSpec & DS,bool VendorAttributesAllowed,bool CXX11AttributesAllowed,bool AtomicAllowed,bool IdentifierRequired)4370 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
4371                                        bool VendorAttributesAllowed,
4372                                        bool CXX11AttributesAllowed,
4373                                        bool AtomicAllowed,
4374                                        bool IdentifierRequired) {
4375   if (getLangOpts().CPlusPlus11 && CXX11AttributesAllowed &&
4376       isCXX11AttributeSpecifier()) {
4377     ParsedAttributesWithRange attrs(AttrFactory);
4378     ParseCXX11Attributes(attrs);
4379     DS.takeAttributesFrom(attrs);
4380   }
4381 
4382   SourceLocation EndLoc;
4383 
4384   while (1) {
4385     bool isInvalid = false;
4386     const char *PrevSpec = nullptr;
4387     unsigned DiagID = 0;
4388     SourceLocation Loc = Tok.getLocation();
4389 
4390     switch (Tok.getKind()) {
4391     case tok::code_completion:
4392       Actions.CodeCompleteTypeQualifiers(DS);
4393       return cutOffParsing();
4394 
4395     case tok::kw_const:
4396       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
4397                                  getLangOpts());
4398       break;
4399     case tok::kw_volatile:
4400       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4401                                  getLangOpts());
4402       break;
4403     case tok::kw_restrict:
4404       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4405                                  getLangOpts());
4406       break;
4407     case tok::kw__Atomic:
4408       if (!AtomicAllowed)
4409         goto DoneWithTypeQuals;
4410       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4411                                  getLangOpts());
4412       break;
4413 
4414     // OpenCL qualifiers:
4415     case tok::kw___private:
4416     case tok::kw___global:
4417     case tok::kw___local:
4418     case tok::kw___constant:
4419     case tok::kw___read_only:
4420     case tok::kw___write_only:
4421     case tok::kw___read_write:
4422       ParseOpenCLQualifiers(DS.getAttributes());
4423       break;
4424 
4425     case tok::kw___uptr:
4426       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4427       // with the MS modifier keyword.
4428       if (VendorAttributesAllowed && !getLangOpts().CPlusPlus &&
4429           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4430         if (TryKeywordIdentFallback(false))
4431           continue;
4432       }
4433     case tok::kw___sptr:
4434     case tok::kw___w64:
4435     case tok::kw___ptr64:
4436     case tok::kw___ptr32:
4437     case tok::kw___cdecl:
4438     case tok::kw___stdcall:
4439     case tok::kw___fastcall:
4440     case tok::kw___thiscall:
4441     case tok::kw___unaligned:
4442       if (VendorAttributesAllowed) {
4443         ParseMicrosoftTypeAttributes(DS.getAttributes());
4444         continue;
4445       }
4446       goto DoneWithTypeQuals;
4447     case tok::kw___pascal:
4448       if (VendorAttributesAllowed) {
4449         ParseBorlandTypeAttributes(DS.getAttributes());
4450         continue;
4451       }
4452       goto DoneWithTypeQuals;
4453     case tok::kw___attribute:
4454       if (VendorAttributesAllowed) {
4455         ParseGNUAttributes(DS.getAttributes());
4456         continue; // do *not* consume the next token!
4457       }
4458       // otherwise, FALL THROUGH!
4459     default:
4460       DoneWithTypeQuals:
4461       // If this is not a type-qualifier token, we're done reading type
4462       // qualifiers.  First verify that DeclSpec's are consistent.
4463       DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4464       if (EndLoc.isValid())
4465         DS.SetRangeEnd(EndLoc);
4466       return;
4467     }
4468 
4469     // If the specifier combination wasn't legal, issue a diagnostic.
4470     if (isInvalid) {
4471       assert(PrevSpec && "Method did not return previous specifier!");
4472       Diag(Tok, DiagID) << PrevSpec;
4473     }
4474     EndLoc = ConsumeToken();
4475   }
4476 }
4477 
4478 
4479 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4480 ///
ParseDeclarator(Declarator & D)4481 void Parser::ParseDeclarator(Declarator &D) {
4482   /// This implements the 'declarator' production in the C grammar, then checks
4483   /// for well-formedness and issues diagnostics.
4484   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4485 }
4486 
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang)4487 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
4488   if (Kind == tok::star || Kind == tok::caret)
4489     return true;
4490 
4491   // We parse rvalue refs in C++03, because otherwise the errors are scary.
4492   if (!Lang.CPlusPlus)
4493     return false;
4494 
4495   return Kind == tok::amp || Kind == tok::ampamp;
4496 }
4497 
4498 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4499 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4500 /// isn't parsed at all, making this function effectively parse the C++
4501 /// ptr-operator production.
4502 ///
4503 /// If the grammar of this construct is extended, matching changes must also be
4504 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4505 /// isConstructorDeclarator.
4506 ///
4507 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4508 /// [C]     pointer[opt] direct-declarator
4509 /// [C++]   direct-declarator
4510 /// [C++]   ptr-operator declarator
4511 ///
4512 ///       pointer: [C99 6.7.5]
4513 ///         '*' type-qualifier-list[opt]
4514 ///         '*' type-qualifier-list[opt] pointer
4515 ///
4516 ///       ptr-operator:
4517 ///         '*' cv-qualifier-seq[opt]
4518 ///         '&'
4519 /// [C++0x] '&&'
4520 /// [GNU]   '&' restrict[opt] attributes[opt]
4521 /// [GNU?]  '&&' restrict[opt] attributes[opt]
4522 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4523 void Parser::ParseDeclaratorInternal(Declarator &D,
4524                                      DirectDeclParseFunction DirectDeclParser) {
4525   if (Diags.hasAllExtensionsSilenced())
4526     D.setExtension();
4527 
4528   // C++ member pointers start with a '::' or a nested-name.
4529   // Member pointers get special handling, since there's no place for the
4530   // scope spec in the generic path below.
4531   if (getLangOpts().CPlusPlus &&
4532       (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
4533        Tok.is(tok::annot_cxxscope))) {
4534     bool EnteringContext = D.getContext() == Declarator::FileContext ||
4535                            D.getContext() == Declarator::MemberContext;
4536     CXXScopeSpec SS;
4537     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4538 
4539     if (SS.isNotEmpty()) {
4540       if (Tok.isNot(tok::star)) {
4541         // The scope spec really belongs to the direct-declarator.
4542         if (D.mayHaveIdentifier())
4543           D.getCXXScopeSpec() = SS;
4544         else
4545           AnnotateScopeToken(SS, true);
4546 
4547         if (DirectDeclParser)
4548           (this->*DirectDeclParser)(D);
4549         return;
4550       }
4551 
4552       SourceLocation Loc = ConsumeToken();
4553       D.SetRangeEnd(Loc);
4554       DeclSpec DS(AttrFactory);
4555       ParseTypeQualifierListOpt(DS);
4556       D.ExtendWithDeclSpec(DS);
4557 
4558       // Recurse to parse whatever is left.
4559       ParseDeclaratorInternal(D, DirectDeclParser);
4560 
4561       // Sema will have to catch (syntactically invalid) pointers into global
4562       // scope. It has to catch pointers into namespace scope anyway.
4563       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4564                                                       Loc),
4565                     DS.getAttributes(),
4566                     /* Don't replace range end. */SourceLocation());
4567       return;
4568     }
4569   }
4570 
4571   tok::TokenKind Kind = Tok.getKind();
4572   // Not a pointer, C++ reference, or block.
4573   if (!isPtrOperatorToken(Kind, getLangOpts())) {
4574     if (DirectDeclParser)
4575       (this->*DirectDeclParser)(D);
4576     return;
4577   }
4578 
4579   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4580   // '&&' -> rvalue reference
4581   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
4582   D.SetRangeEnd(Loc);
4583 
4584   if (Kind == tok::star || Kind == tok::caret) {
4585     // Is a pointer.
4586     DeclSpec DS(AttrFactory);
4587 
4588     // FIXME: GNU attributes are not allowed here in a new-type-id.
4589     ParseTypeQualifierListOpt(DS, true, true, true, !D.mayOmitIdentifier());
4590     D.ExtendWithDeclSpec(DS);
4591 
4592     // Recursively parse the declarator.
4593     ParseDeclaratorInternal(D, DirectDeclParser);
4594     if (Kind == tok::star)
4595       // Remember that we parsed a pointer type, and remember the type-quals.
4596       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4597                                                 DS.getConstSpecLoc(),
4598                                                 DS.getVolatileSpecLoc(),
4599                                                 DS.getRestrictSpecLoc()),
4600                     DS.getAttributes(),
4601                     SourceLocation());
4602     else
4603       // Remember that we parsed a Block type, and remember the type-quals.
4604       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4605                                                      Loc),
4606                     DS.getAttributes(),
4607                     SourceLocation());
4608   } else {
4609     // Is a reference
4610     DeclSpec DS(AttrFactory);
4611 
4612     // Complain about rvalue references in C++03, but then go on and build
4613     // the declarator.
4614     if (Kind == tok::ampamp)
4615       Diag(Loc, getLangOpts().CPlusPlus11 ?
4616            diag::warn_cxx98_compat_rvalue_reference :
4617            diag::ext_rvalue_reference);
4618 
4619     // GNU-style and C++11 attributes are allowed here, as is restrict.
4620     ParseTypeQualifierListOpt(DS);
4621     D.ExtendWithDeclSpec(DS);
4622 
4623     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4624     // cv-qualifiers are introduced through the use of a typedef or of a
4625     // template type argument, in which case the cv-qualifiers are ignored.
4626     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4627       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4628         Diag(DS.getConstSpecLoc(),
4629              diag::err_invalid_reference_qualifier_application) << "const";
4630       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4631         Diag(DS.getVolatileSpecLoc(),
4632              diag::err_invalid_reference_qualifier_application) << "volatile";
4633       // 'restrict' is permitted as an extension.
4634       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4635         Diag(DS.getAtomicSpecLoc(),
4636              diag::err_invalid_reference_qualifier_application) << "_Atomic";
4637     }
4638 
4639     // Recursively parse the declarator.
4640     ParseDeclaratorInternal(D, DirectDeclParser);
4641 
4642     if (D.getNumTypeObjects() > 0) {
4643       // C++ [dcl.ref]p4: There shall be no references to references.
4644       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4645       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4646         if (const IdentifierInfo *II = D.getIdentifier())
4647           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4648            << II;
4649         else
4650           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4651             << "type name";
4652 
4653         // Once we've complained about the reference-to-reference, we
4654         // can go ahead and build the (technically ill-formed)
4655         // declarator: reference collapsing will take care of it.
4656       }
4657     }
4658 
4659     // Remember that we parsed a reference type.
4660     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4661                                                 Kind == tok::amp),
4662                   DS.getAttributes(),
4663                   SourceLocation());
4664   }
4665 }
4666 
4667 // When correcting from misplaced brackets before the identifier, the location
4668 // is saved inside the declarator so that other diagnostic messages can use
4669 // them.  This extracts and returns that location, or returns the provided
4670 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)4671 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4672                                                 SourceLocation Loc) {
4673   if (D.getName().StartLocation.isInvalid() &&
4674       D.getName().EndLocation.isValid())
4675     return D.getName().EndLocation;
4676 
4677   return Loc;
4678 }
4679 
4680 /// ParseDirectDeclarator
4681 ///       direct-declarator: [C99 6.7.5]
4682 /// [C99]   identifier
4683 ///         '(' declarator ')'
4684 /// [GNU]   '(' attributes declarator ')'
4685 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
4686 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4687 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4688 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4689 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4690 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
4691 ///                    attribute-specifier-seq[opt]
4692 ///         direct-declarator '(' parameter-type-list ')'
4693 ///         direct-declarator '(' identifier-list[opt] ')'
4694 /// [GNU]   direct-declarator '(' parameter-forward-declarations
4695 ///                    parameter-type-list[opt] ')'
4696 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
4697 ///                    cv-qualifier-seq[opt] exception-specification[opt]
4698 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4699 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4700 ///                    ref-qualifier[opt] exception-specification[opt]
4701 /// [C++]   declarator-id
4702 /// [C++11] declarator-id attribute-specifier-seq[opt]
4703 ///
4704 ///       declarator-id: [C++ 8]
4705 ///         '...'[opt] id-expression
4706 ///         '::'[opt] nested-name-specifier[opt] type-name
4707 ///
4708 ///       id-expression: [C++ 5.1]
4709 ///         unqualified-id
4710 ///         qualified-id
4711 ///
4712 ///       unqualified-id: [C++ 5.1]
4713 ///         identifier
4714 ///         operator-function-id
4715 ///         conversion-function-id
4716 ///          '~' class-name
4717 ///         template-id
4718 ///
4719 /// Note, any additional constructs added here may need corresponding changes
4720 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)4721 void Parser::ParseDirectDeclarator(Declarator &D) {
4722   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4723 
4724   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4725     // ParseDeclaratorInternal might already have parsed the scope.
4726     if (D.getCXXScopeSpec().isEmpty()) {
4727       bool EnteringContext = D.getContext() == Declarator::FileContext ||
4728                              D.getContext() == Declarator::MemberContext;
4729       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4730                                      EnteringContext);
4731     }
4732 
4733     if (D.getCXXScopeSpec().isValid()) {
4734       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4735         // Change the declaration context for name lookup, until this function
4736         // is exited (and the declarator has been parsed).
4737         DeclScopeObj.EnterDeclaratorScope();
4738     }
4739 
4740     // C++0x [dcl.fct]p14:
4741     //   There is a syntactic ambiguity when an ellipsis occurs at the end
4742     //   of a parameter-declaration-clause without a preceding comma. In
4743     //   this case, the ellipsis is parsed as part of the
4744     //   abstract-declarator if the type of the parameter names a template
4745     //   parameter pack that has not been expanded; otherwise, it is parsed
4746     //   as part of the parameter-declaration-clause.
4747     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4748         !((D.getContext() == Declarator::PrototypeContext ||
4749            D.getContext() == Declarator::LambdaExprParameterContext ||
4750            D.getContext() == Declarator::BlockLiteralContext) &&
4751           NextToken().is(tok::r_paren) &&
4752           !D.hasGroupingParens() &&
4753           !Actions.containsUnexpandedParameterPacks(D))) {
4754       SourceLocation EllipsisLoc = ConsumeToken();
4755       if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
4756         // The ellipsis was put in the wrong place. Recover, and explain to
4757         // the user what they should have done.
4758         ParseDeclarator(D);
4759         if (EllipsisLoc.isValid())
4760           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4761         return;
4762       } else
4763         D.setEllipsisLoc(EllipsisLoc);
4764 
4765       // The ellipsis can't be followed by a parenthesized declarator. We
4766       // check for that in ParseParenDeclarator, after we have disambiguated
4767       // the l_paren token.
4768     }
4769 
4770     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4771         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4772       // We found something that indicates the start of an unqualified-id.
4773       // Parse that unqualified-id.
4774       bool AllowConstructorName;
4775       if (D.getDeclSpec().hasTypeSpecifier())
4776         AllowConstructorName = false;
4777       else if (D.getCXXScopeSpec().isSet())
4778         AllowConstructorName =
4779           (D.getContext() == Declarator::FileContext ||
4780            D.getContext() == Declarator::MemberContext);
4781       else
4782         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4783 
4784       SourceLocation TemplateKWLoc;
4785       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4786                              /*EnteringContext=*/true,
4787                              /*AllowDestructorName=*/true,
4788                              AllowConstructorName,
4789                              ParsedType(),
4790                              TemplateKWLoc,
4791                              D.getName()) ||
4792           // Once we're past the identifier, if the scope was bad, mark the
4793           // whole declarator bad.
4794           D.getCXXScopeSpec().isInvalid()) {
4795         D.SetIdentifier(nullptr, Tok.getLocation());
4796         D.setInvalidType(true);
4797       } else {
4798         // Parsed the unqualified-id; update range information and move along.
4799         if (D.getSourceRange().getBegin().isInvalid())
4800           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
4801         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
4802       }
4803       goto PastIdentifier;
4804     }
4805   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
4806     assert(!getLangOpts().CPlusPlus &&
4807            "There's a C++-specific check for tok::identifier above");
4808     assert(Tok.getIdentifierInfo() && "Not an identifier?");
4809     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
4810     D.SetRangeEnd(Tok.getLocation());
4811     ConsumeToken();
4812     goto PastIdentifier;
4813   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
4814     // A virt-specifier isn't treated as an identifier if it appears after a
4815     // trailing-return-type.
4816     if (D.getContext() != Declarator::TrailingReturnContext ||
4817         !isCXX11VirtSpecifier(Tok)) {
4818       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
4819         << FixItHint::CreateRemoval(Tok.getLocation());
4820       D.SetIdentifier(nullptr, Tok.getLocation());
4821       ConsumeToken();
4822       goto PastIdentifier;
4823     }
4824   }
4825 
4826   if (Tok.is(tok::l_paren)) {
4827     // direct-declarator: '(' declarator ')'
4828     // direct-declarator: '(' attributes declarator ')'
4829     // Example: 'char (*X)'   or 'int (*XX)(void)'
4830     ParseParenDeclarator(D);
4831 
4832     // If the declarator was parenthesized, we entered the declarator
4833     // scope when parsing the parenthesized declarator, then exited
4834     // the scope already. Re-enter the scope, if we need to.
4835     if (D.getCXXScopeSpec().isSet()) {
4836       // If there was an error parsing parenthesized declarator, declarator
4837       // scope may have been entered before. Don't do it again.
4838       if (!D.isInvalidType() &&
4839           Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4840         // Change the declaration context for name lookup, until this function
4841         // is exited (and the declarator has been parsed).
4842         DeclScopeObj.EnterDeclaratorScope();
4843     }
4844   } else if (D.mayOmitIdentifier()) {
4845     // This could be something simple like "int" (in which case the declarator
4846     // portion is empty), if an abstract-declarator is allowed.
4847     D.SetIdentifier(nullptr, Tok.getLocation());
4848 
4849     // The grammar for abstract-pack-declarator does not allow grouping parens.
4850     // FIXME: Revisit this once core issue 1488 is resolved.
4851     if (D.hasEllipsis() && D.hasGroupingParens())
4852       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
4853            diag::ext_abstract_pack_declarator_parens);
4854   } else {
4855     if (Tok.getKind() == tok::annot_pragma_parser_crash)
4856       LLVM_BUILTIN_TRAP;
4857     if (Tok.is(tok::l_square))
4858       return ParseMisplacedBracketDeclarator(D);
4859     if (D.getContext() == Declarator::MemberContext) {
4860       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4861            diag::err_expected_member_name_or_semi)
4862           << (D.getDeclSpec().isEmpty() ? SourceRange()
4863                                         : D.getDeclSpec().getSourceRange());
4864     } else if (getLangOpts().CPlusPlus) {
4865       if (Tok.is(tok::period) || Tok.is(tok::arrow))
4866         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
4867       else {
4868         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
4869         if (Tok.isAtStartOfLine() && Loc.isValid())
4870           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
4871               << getLangOpts().CPlusPlus;
4872         else
4873           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4874                diag::err_expected_unqualified_id)
4875               << getLangOpts().CPlusPlus;
4876       }
4877     } else {
4878       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4879            diag::err_expected_either)
4880           << tok::identifier << tok::l_paren;
4881     }
4882     D.SetIdentifier(nullptr, Tok.getLocation());
4883     D.setInvalidType(true);
4884   }
4885 
4886  PastIdentifier:
4887   assert(D.isPastIdentifier() &&
4888          "Haven't past the location of the identifier yet?");
4889 
4890   // Don't parse attributes unless we have parsed an unparenthesized name.
4891   if (D.hasName() && !D.getNumTypeObjects())
4892     MaybeParseCXX11Attributes(D);
4893 
4894   while (1) {
4895     if (Tok.is(tok::l_paren)) {
4896       // Enter function-declaration scope, limiting any declarators to the
4897       // function prototype scope, including parameter declarators.
4898       ParseScope PrototypeScope(this,
4899                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
4900                                 (D.isFunctionDeclaratorAFunctionDeclaration()
4901                                    ? Scope::FunctionDeclarationScope : 0));
4902 
4903       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
4904       // In such a case, check if we actually have a function declarator; if it
4905       // is not, the declarator has been fully parsed.
4906       bool IsAmbiguous = false;
4907       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4908         // The name of the declarator, if any, is tentatively declared within
4909         // a possible direct initializer.
4910         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
4911         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
4912         TentativelyDeclaredIdentifiers.pop_back();
4913         if (!IsFunctionDecl)
4914           break;
4915       }
4916       ParsedAttributes attrs(AttrFactory);
4917       BalancedDelimiterTracker T(*this, tok::l_paren);
4918       T.consumeOpen();
4919       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
4920       PrototypeScope.Exit();
4921     } else if (Tok.is(tok::l_square)) {
4922       ParseBracketDeclarator(D);
4923     } else {
4924       break;
4925     }
4926   }
4927 }
4928 
4929 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
4930 /// only called before the identifier, so these are most likely just grouping
4931 /// parens for precedence.  If we find that these are actually function
4932 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4933 ///
4934 ///       direct-declarator:
4935 ///         '(' declarator ')'
4936 /// [GNU]   '(' attributes declarator ')'
4937 ///         direct-declarator '(' parameter-type-list ')'
4938 ///         direct-declarator '(' identifier-list[opt] ')'
4939 /// [GNU]   direct-declarator '(' parameter-forward-declarations
4940 ///                    parameter-type-list[opt] ')'
4941 ///
ParseParenDeclarator(Declarator & D)4942 void Parser::ParseParenDeclarator(Declarator &D) {
4943   BalancedDelimiterTracker T(*this, tok::l_paren);
4944   T.consumeOpen();
4945 
4946   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4947 
4948   // Eat any attributes before we look at whether this is a grouping or function
4949   // declarator paren.  If this is a grouping paren, the attribute applies to
4950   // the type being built up, for example:
4951   //     int (__attribute__(()) *x)(long y)
4952   // If this ends up not being a grouping paren, the attribute applies to the
4953   // first argument, for example:
4954   //     int (__attribute__(()) int x)
4955   // In either case, we need to eat any attributes to be able to determine what
4956   // sort of paren this is.
4957   //
4958   ParsedAttributes attrs(AttrFactory);
4959   bool RequiresArg = false;
4960   if (Tok.is(tok::kw___attribute)) {
4961     ParseGNUAttributes(attrs);
4962 
4963     // We require that the argument list (if this is a non-grouping paren) be
4964     // present even if the attribute list was empty.
4965     RequiresArg = true;
4966   }
4967 
4968   // Eat any Microsoft extensions.
4969   ParseMicrosoftTypeAttributes(attrs);
4970 
4971   // Eat any Borland extensions.
4972   if  (Tok.is(tok::kw___pascal))
4973     ParseBorlandTypeAttributes(attrs);
4974 
4975   // If we haven't past the identifier yet (or where the identifier would be
4976   // stored, if this is an abstract declarator), then this is probably just
4977   // grouping parens. However, if this could be an abstract-declarator, then
4978   // this could also be the start of function arguments (consider 'void()').
4979   bool isGrouping;
4980 
4981   if (!D.mayOmitIdentifier()) {
4982     // If this can't be an abstract-declarator, this *must* be a grouping
4983     // paren, because we haven't seen the identifier yet.
4984     isGrouping = true;
4985   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4986              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
4987               NextToken().is(tok::r_paren)) || // C++ int(...)
4988              isDeclarationSpecifier() ||       // 'int(int)' is a function.
4989              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
4990     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4991     // considered to be a type, not a K&R identifier-list.
4992     isGrouping = false;
4993   } else {
4994     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4995     isGrouping = true;
4996   }
4997 
4998   // If this is a grouping paren, handle:
4999   // direct-declarator: '(' declarator ')'
5000   // direct-declarator: '(' attributes declarator ')'
5001   if (isGrouping) {
5002     SourceLocation EllipsisLoc = D.getEllipsisLoc();
5003     D.setEllipsisLoc(SourceLocation());
5004 
5005     bool hadGroupingParens = D.hasGroupingParens();
5006     D.setGroupingParens(true);
5007     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5008     // Match the ')'.
5009     T.consumeClose();
5010     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5011                                             T.getCloseLocation()),
5012                   attrs, T.getCloseLocation());
5013 
5014     D.setGroupingParens(hadGroupingParens);
5015 
5016     // An ellipsis cannot be placed outside parentheses.
5017     if (EllipsisLoc.isValid())
5018       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5019 
5020     return;
5021   }
5022 
5023   // Okay, if this wasn't a grouping paren, it must be the start of a function
5024   // argument list.  Recognize that this declarator will never have an
5025   // identifier (and remember where it would have been), then call into
5026   // ParseFunctionDeclarator to handle of argument list.
5027   D.SetIdentifier(nullptr, Tok.getLocation());
5028 
5029   // Enter function-declaration scope, limiting any declarators to the
5030   // function prototype scope, including parameter declarators.
5031   ParseScope PrototypeScope(this,
5032                             Scope::FunctionPrototypeScope | Scope::DeclScope |
5033                             (D.isFunctionDeclaratorAFunctionDeclaration()
5034                                ? Scope::FunctionDeclarationScope : 0));
5035   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5036   PrototypeScope.Exit();
5037 }
5038 
5039 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5040 /// declarator D up to a paren, which indicates that we are parsing function
5041 /// arguments.
5042 ///
5043 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5044 /// immediately after the open paren - they should be considered to be the
5045 /// first argument of a parameter.
5046 ///
5047 /// If RequiresArg is true, then the first argument of the function is required
5048 /// to be present and required to not be an identifier list.
5049 ///
5050 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5051 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5052 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5053 ///
5054 /// [C++11] exception-specification:
5055 ///           dynamic-exception-specification
5056 ///           noexcept-specification
5057 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5058 void Parser::ParseFunctionDeclarator(Declarator &D,
5059                                      ParsedAttributes &FirstArgAttrs,
5060                                      BalancedDelimiterTracker &Tracker,
5061                                      bool IsAmbiguous,
5062                                      bool RequiresArg) {
5063   assert(getCurScope()->isFunctionPrototypeScope() &&
5064          "Should call from a Function scope");
5065   // lparen is already consumed!
5066   assert(D.isPastIdentifier() && "Should not call before identifier!");
5067 
5068   // This should be true when the function has typed arguments.
5069   // Otherwise, it is treated as a K&R-style function.
5070   bool HasProto = false;
5071   // Build up an array of information about the parsed arguments.
5072   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5073   // Remember where we see an ellipsis, if any.
5074   SourceLocation EllipsisLoc;
5075 
5076   DeclSpec DS(AttrFactory);
5077   bool RefQualifierIsLValueRef = true;
5078   SourceLocation RefQualifierLoc;
5079   SourceLocation ConstQualifierLoc;
5080   SourceLocation VolatileQualifierLoc;
5081   ExceptionSpecificationType ESpecType = EST_None;
5082   SourceRange ESpecRange;
5083   SmallVector<ParsedType, 2> DynamicExceptions;
5084   SmallVector<SourceRange, 2> DynamicExceptionRanges;
5085   ExprResult NoexceptExpr;
5086   ParsedAttributes FnAttrs(AttrFactory);
5087   TypeResult TrailingReturnType;
5088 
5089   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5090      EndLoc is the end location for the function declarator.
5091      They differ for trailing return types. */
5092   SourceLocation StartLoc, LocalEndLoc, EndLoc;
5093   SourceLocation LParenLoc, RParenLoc;
5094   LParenLoc = Tracker.getOpenLocation();
5095   StartLoc = LParenLoc;
5096 
5097   if (isFunctionDeclaratorIdentifierList()) {
5098     if (RequiresArg)
5099       Diag(Tok, diag::err_argument_required_after_attribute);
5100 
5101     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5102 
5103     Tracker.consumeClose();
5104     RParenLoc = Tracker.getCloseLocation();
5105     LocalEndLoc = RParenLoc;
5106     EndLoc = RParenLoc;
5107   } else {
5108     if (Tok.isNot(tok::r_paren))
5109       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5110                                       EllipsisLoc);
5111     else if (RequiresArg)
5112       Diag(Tok, diag::err_argument_required_after_attribute);
5113 
5114     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5115 
5116     // If we have the closing ')', eat it.
5117     Tracker.consumeClose();
5118     RParenLoc = Tracker.getCloseLocation();
5119     LocalEndLoc = RParenLoc;
5120     EndLoc = RParenLoc;
5121 
5122     if (getLangOpts().CPlusPlus) {
5123       // FIXME: Accept these components in any order, and produce fixits to
5124       // correct the order if the user gets it wrong. Ideally we should deal
5125       // with the virt-specifier-seq and pure-specifier in the same way.
5126 
5127       // Parse cv-qualifier-seq[opt].
5128       ParseTypeQualifierListOpt(DS, /*VendorAttributesAllowed*/ false,
5129                                 /*CXX11AttributesAllowed*/ false,
5130                                 /*AtomicAllowed*/ false);
5131       if (!DS.getSourceRange().getEnd().isInvalid()) {
5132         EndLoc = DS.getSourceRange().getEnd();
5133         ConstQualifierLoc = DS.getConstSpecLoc();
5134         VolatileQualifierLoc = DS.getVolatileSpecLoc();
5135       }
5136 
5137       // Parse ref-qualifier[opt].
5138       if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5139         Diag(Tok, getLangOpts().CPlusPlus11 ?
5140              diag::warn_cxx98_compat_ref_qualifier :
5141              diag::ext_ref_qualifier);
5142 
5143         RefQualifierIsLValueRef = Tok.is(tok::amp);
5144         RefQualifierLoc = ConsumeToken();
5145         EndLoc = RefQualifierLoc;
5146       }
5147 
5148       // C++11 [expr.prim.general]p3:
5149       //   If a declaration declares a member function or member function
5150       //   template of a class X, the expression this is a prvalue of type
5151       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5152       //   and the end of the function-definition, member-declarator, or
5153       //   declarator.
5154       // FIXME: currently, "static" case isn't handled correctly.
5155       bool IsCXX11MemberFunction =
5156         getLangOpts().CPlusPlus11 &&
5157         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5158         (D.getContext() == Declarator::MemberContext
5159          ? !D.getDeclSpec().isFriendSpecified()
5160          : D.getContext() == Declarator::FileContext &&
5161            D.getCXXScopeSpec().isValid() &&
5162            Actions.CurContext->isRecord());
5163       Sema::CXXThisScopeRAII ThisScope(Actions,
5164                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
5165                                DS.getTypeQualifiers() |
5166                                (D.getDeclSpec().isConstexprSpecified() &&
5167                                 !getLangOpts().CPlusPlus1y
5168                                   ? Qualifiers::Const : 0),
5169                                IsCXX11MemberFunction);
5170 
5171       // Parse exception-specification[opt].
5172       ESpecType = tryParseExceptionSpecification(ESpecRange,
5173                                                  DynamicExceptions,
5174                                                  DynamicExceptionRanges,
5175                                                  NoexceptExpr);
5176       if (ESpecType != EST_None)
5177         EndLoc = ESpecRange.getEnd();
5178 
5179       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5180       // after the exception-specification.
5181       MaybeParseCXX11Attributes(FnAttrs);
5182 
5183       // Parse trailing-return-type[opt].
5184       LocalEndLoc = EndLoc;
5185       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5186         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5187         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5188           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5189         LocalEndLoc = Tok.getLocation();
5190         SourceRange Range;
5191         TrailingReturnType = ParseTrailingReturnType(Range);
5192         EndLoc = Range.getEnd();
5193       }
5194     }
5195   }
5196 
5197   // Remember that we parsed a function type, and remember the attributes.
5198   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5199                                              IsAmbiguous,
5200                                              LParenLoc,
5201                                              ParamInfo.data(), ParamInfo.size(),
5202                                              EllipsisLoc, RParenLoc,
5203                                              DS.getTypeQualifiers(),
5204                                              RefQualifierIsLValueRef,
5205                                              RefQualifierLoc, ConstQualifierLoc,
5206                                              VolatileQualifierLoc,
5207                                              /*MutableLoc=*/SourceLocation(),
5208                                              ESpecType, ESpecRange.getBegin(),
5209                                              DynamicExceptions.data(),
5210                                              DynamicExceptionRanges.data(),
5211                                              DynamicExceptions.size(),
5212                                              NoexceptExpr.isUsable() ?
5213                                                NoexceptExpr.get() : nullptr,
5214                                              StartLoc, LocalEndLoc, D,
5215                                              TrailingReturnType),
5216                 FnAttrs, EndLoc);
5217 }
5218 
5219 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5220 /// identifier list form for a K&R-style function:  void foo(a,b,c)
5221 ///
5222 /// Note that identifier-lists are only allowed for normal declarators, not for
5223 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5224 bool Parser::isFunctionDeclaratorIdentifierList() {
5225   return !getLangOpts().CPlusPlus
5226          && Tok.is(tok::identifier)
5227          && !TryAltiVecVectorToken()
5228          // K&R identifier lists can't have typedefs as identifiers, per C99
5229          // 6.7.5.3p11.
5230          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5231          // Identifier lists follow a really simple grammar: the identifiers can
5232          // be followed *only* by a ", identifier" or ")".  However, K&R
5233          // identifier lists are really rare in the brave new modern world, and
5234          // it is very common for someone to typo a type in a non-K&R style
5235          // list.  If we are presented with something like: "void foo(intptr x,
5236          // float y)", we don't want to start parsing the function declarator as
5237          // though it is a K&R style declarator just because intptr is an
5238          // invalid type.
5239          //
5240          // To handle this, we check to see if the token after the first
5241          // identifier is a "," or ")".  Only then do we parse it as an
5242          // identifier list.
5243          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5244 }
5245 
5246 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5247 /// we found a K&R-style identifier list instead of a typed parameter list.
5248 ///
5249 /// After returning, ParamInfo will hold the parsed parameters.
5250 ///
5251 ///       identifier-list: [C99 6.7.5]
5252 ///         identifier
5253 ///         identifier-list ',' identifier
5254 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5255 void Parser::ParseFunctionDeclaratorIdentifierList(
5256        Declarator &D,
5257        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5258   // If there was no identifier specified for the declarator, either we are in
5259   // an abstract-declarator, or we are in a parameter declarator which was found
5260   // to be abstract.  In abstract-declarators, identifier lists are not valid:
5261   // diagnose this.
5262   if (!D.getIdentifier())
5263     Diag(Tok, diag::ext_ident_list_in_param);
5264 
5265   // Maintain an efficient lookup of params we have seen so far.
5266   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5267 
5268   do {
5269     // If this isn't an identifier, report the error and skip until ')'.
5270     if (Tok.isNot(tok::identifier)) {
5271       Diag(Tok, diag::err_expected) << tok::identifier;
5272       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5273       // Forget we parsed anything.
5274       ParamInfo.clear();
5275       return;
5276     }
5277 
5278     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5279 
5280     // Reject 'typedef int y; int test(x, y)', but continue parsing.
5281     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5282       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5283 
5284     // Verify that the argument identifier has not already been mentioned.
5285     if (!ParamsSoFar.insert(ParmII)) {
5286       Diag(Tok, diag::err_param_redefinition) << ParmII;
5287     } else {
5288       // Remember this identifier in ParamInfo.
5289       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5290                                                      Tok.getLocation(),
5291                                                      nullptr));
5292     }
5293 
5294     // Eat the identifier.
5295     ConsumeToken();
5296     // The list continues if we see a comma.
5297   } while (TryConsumeToken(tok::comma));
5298 }
5299 
5300 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5301 /// after the opening parenthesis. This function will not parse a K&R-style
5302 /// identifier list.
5303 ///
5304 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
5305 /// caller parsed those arguments immediately after the open paren - they should
5306 /// be considered to be part of the first parameter.
5307 ///
5308 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5309 /// be the location of the ellipsis, if any was parsed.
5310 ///
5311 ///       parameter-type-list: [C99 6.7.5]
5312 ///         parameter-list
5313 ///         parameter-list ',' '...'
5314 /// [C++]   parameter-list '...'
5315 ///
5316 ///       parameter-list: [C99 6.7.5]
5317 ///         parameter-declaration
5318 ///         parameter-list ',' parameter-declaration
5319 ///
5320 ///       parameter-declaration: [C99 6.7.5]
5321 ///         declaration-specifiers declarator
5322 /// [C++]   declaration-specifiers declarator '=' assignment-expression
5323 /// [C++11]                                       initializer-clause
5324 /// [GNU]   declaration-specifiers declarator attributes
5325 ///         declaration-specifiers abstract-declarator[opt]
5326 /// [C++]   declaration-specifiers abstract-declarator[opt]
5327 ///           '=' assignment-expression
5328 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
5329 /// [C++11] attribute-specifier-seq parameter-declaration
5330 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5331 void Parser::ParseParameterDeclarationClause(
5332        Declarator &D,
5333        ParsedAttributes &FirstArgAttrs,
5334        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5335        SourceLocation &EllipsisLoc) {
5336   do {
5337     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5338     // before deciding this was a parameter-declaration-clause.
5339     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5340       break;
5341 
5342     // Parse the declaration-specifiers.
5343     // Just use the ParsingDeclaration "scope" of the declarator.
5344     DeclSpec DS(AttrFactory);
5345 
5346     // Parse any C++11 attributes.
5347     MaybeParseCXX11Attributes(DS.getAttributes());
5348 
5349     // Skip any Microsoft attributes before a param.
5350     MaybeParseMicrosoftAttributes(DS.getAttributes());
5351 
5352     SourceLocation DSStart = Tok.getLocation();
5353 
5354     // If the caller parsed attributes for the first argument, add them now.
5355     // Take them so that we only apply the attributes to the first parameter.
5356     // FIXME: If we can leave the attributes in the token stream somehow, we can
5357     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5358     // too much hassle.
5359     DS.takeAttributesFrom(FirstArgAttrs);
5360 
5361     ParseDeclarationSpecifiers(DS);
5362 
5363 
5364     // Parse the declarator.  This is "PrototypeContext" or
5365     // "LambdaExprParameterContext", because we must accept either
5366     // 'declarator' or 'abstract-declarator' here.
5367     Declarator ParmDeclarator(DS,
5368               D.getContext() == Declarator::LambdaExprContext ?
5369                                   Declarator::LambdaExprParameterContext :
5370                                                 Declarator::PrototypeContext);
5371     ParseDeclarator(ParmDeclarator);
5372 
5373     // Parse GNU attributes, if present.
5374     MaybeParseGNUAttributes(ParmDeclarator);
5375 
5376     // Remember this parsed parameter in ParamInfo.
5377     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5378 
5379     // DefArgToks is used when the parsing of default arguments needs
5380     // to be delayed.
5381     CachedTokens *DefArgToks = nullptr;
5382 
5383     // If no parameter was specified, verify that *something* was specified,
5384     // otherwise we have a missing type and identifier.
5385     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5386         ParmDeclarator.getNumTypeObjects() == 0) {
5387       // Completely missing, emit error.
5388       Diag(DSStart, diag::err_missing_param);
5389     } else {
5390       // Otherwise, we have something.  Add it and let semantic analysis try
5391       // to grok it and add the result to the ParamInfo we are building.
5392 
5393       // Inform the actions module about the parameter declarator, so it gets
5394       // added to the current scope.
5395       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(),
5396                                                        ParmDeclarator);
5397       // Parse the default argument, if any. We parse the default
5398       // arguments in all dialects; the semantic analysis in
5399       // ActOnParamDefaultArgument will reject the default argument in
5400       // C.
5401       if (Tok.is(tok::equal)) {
5402         SourceLocation EqualLoc = Tok.getLocation();
5403 
5404         // Parse the default argument
5405         if (D.getContext() == Declarator::MemberContext) {
5406           // If we're inside a class definition, cache the tokens
5407           // corresponding to the default argument. We'll actually parse
5408           // them when we see the end of the class definition.
5409           // FIXME: Can we use a smart pointer for Toks?
5410           DefArgToks = new CachedTokens;
5411 
5412           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5413             delete DefArgToks;
5414             DefArgToks = nullptr;
5415             Actions.ActOnParamDefaultArgumentError(Param);
5416           } else {
5417             // Mark the end of the default argument so that we know when to
5418             // stop when we parse it later on.
5419             Token DefArgEnd;
5420             DefArgEnd.startToken();
5421             DefArgEnd.setKind(tok::cxx_defaultarg_end);
5422             DefArgEnd.setLocation(Tok.getLocation());
5423             DefArgToks->push_back(DefArgEnd);
5424             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5425                                                 (*DefArgToks)[1].getLocation());
5426           }
5427         } else {
5428           // Consume the '='.
5429           ConsumeToken();
5430 
5431           // The argument isn't actually potentially evaluated unless it is
5432           // used.
5433           EnterExpressionEvaluationContext Eval(Actions,
5434                                               Sema::PotentiallyEvaluatedIfUsed,
5435                                                 Param);
5436 
5437           ExprResult DefArgResult;
5438           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5439             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5440             DefArgResult = ParseBraceInitializer();
5441           } else
5442             DefArgResult = ParseAssignmentExpression();
5443           if (DefArgResult.isInvalid()) {
5444             Actions.ActOnParamDefaultArgumentError(Param);
5445             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5446           } else {
5447             // Inform the actions module about the default argument
5448             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5449                                               DefArgResult.get());
5450           }
5451         }
5452       }
5453 
5454       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5455                                           ParmDeclarator.getIdentifierLoc(),
5456                                           Param, DefArgToks));
5457     }
5458 
5459     if (TryConsumeToken(tok::ellipsis, EllipsisLoc) &&
5460         !getLangOpts().CPlusPlus) {
5461       // We have ellipsis without a preceding ',', which is ill-formed
5462       // in C. Complain and provide the fix.
5463       Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5464           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5465       break;
5466     }
5467 
5468     // If the next token is a comma, consume it and keep reading arguments.
5469   } while (TryConsumeToken(tok::comma));
5470 }
5471 
5472 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
5473 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5474 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5475 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5476 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5477 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5478 ///                           attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5479 void Parser::ParseBracketDeclarator(Declarator &D) {
5480   if (CheckProhibitedCXX11Attribute())
5481     return;
5482 
5483   BalancedDelimiterTracker T(*this, tok::l_square);
5484   T.consumeOpen();
5485 
5486   // C array syntax has many features, but by-far the most common is [] and [4].
5487   // This code does a fast path to handle some of the most obvious cases.
5488   if (Tok.getKind() == tok::r_square) {
5489     T.consumeClose();
5490     ParsedAttributes attrs(AttrFactory);
5491     MaybeParseCXX11Attributes(attrs);
5492 
5493     // Remember that we parsed the empty array type.
5494     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5495                                             T.getOpenLocation(),
5496                                             T.getCloseLocation()),
5497                   attrs, T.getCloseLocation());
5498     return;
5499   } else if (Tok.getKind() == tok::numeric_constant &&
5500              GetLookAheadToken(1).is(tok::r_square)) {
5501     // [4] is very common.  Parse the numeric constant expression.
5502     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5503     ConsumeToken();
5504 
5505     T.consumeClose();
5506     ParsedAttributes attrs(AttrFactory);
5507     MaybeParseCXX11Attributes(attrs);
5508 
5509     // Remember that we parsed a array type, and remember its features.
5510     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5511                                             ExprRes.get(),
5512                                             T.getOpenLocation(),
5513                                             T.getCloseLocation()),
5514                   attrs, T.getCloseLocation());
5515     return;
5516   }
5517 
5518   // If valid, this location is the position where we read the 'static' keyword.
5519   SourceLocation StaticLoc;
5520   TryConsumeToken(tok::kw_static, StaticLoc);
5521 
5522   // If there is a type-qualifier-list, read it now.
5523   // Type qualifiers in an array subscript are a C99 feature.
5524   DeclSpec DS(AttrFactory);
5525   ParseTypeQualifierListOpt(DS, false /*no attributes*/);
5526 
5527   // If we haven't already read 'static', check to see if there is one after the
5528   // type-qualifier-list.
5529   if (!StaticLoc.isValid())
5530     TryConsumeToken(tok::kw_static, StaticLoc);
5531 
5532   // Handle "direct-declarator [ type-qual-list[opt] * ]".
5533   bool isStar = false;
5534   ExprResult NumElements;
5535 
5536   // Handle the case where we have '[*]' as the array size.  However, a leading
5537   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
5538   // the token after the star is a ']'.  Since stars in arrays are
5539   // infrequent, use of lookahead is not costly here.
5540   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5541     ConsumeToken();  // Eat the '*'.
5542 
5543     if (StaticLoc.isValid()) {
5544       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5545       StaticLoc = SourceLocation();  // Drop the static.
5546     }
5547     isStar = true;
5548   } else if (Tok.isNot(tok::r_square)) {
5549     // Note, in C89, this production uses the constant-expr production instead
5550     // of assignment-expr.  The only difference is that assignment-expr allows
5551     // things like '=' and '*='.  Sema rejects these in C89 mode because they
5552     // are not i-c-e's, so we don't need to distinguish between the two here.
5553 
5554     // Parse the constant-expression or assignment-expression now (depending
5555     // on dialect).
5556     if (getLangOpts().CPlusPlus) {
5557       NumElements = ParseConstantExpression();
5558     } else {
5559       EnterExpressionEvaluationContext Unevaluated(Actions,
5560                                                    Sema::ConstantEvaluated);
5561       NumElements = ParseAssignmentExpression();
5562     }
5563   }
5564 
5565   // If there was an error parsing the assignment-expression, recover.
5566   if (NumElements.isInvalid()) {
5567     D.setInvalidType(true);
5568     // If the expression was invalid, skip it.
5569     SkipUntil(tok::r_square, StopAtSemi);
5570     return;
5571   }
5572 
5573   T.consumeClose();
5574 
5575   ParsedAttributes attrs(AttrFactory);
5576   MaybeParseCXX11Attributes(attrs);
5577 
5578   // Remember that we parsed a array type, and remember its features.
5579   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5580                                           StaticLoc.isValid(), isStar,
5581                                           NumElements.get(),
5582                                           T.getOpenLocation(),
5583                                           T.getCloseLocation()),
5584                 attrs, T.getCloseLocation());
5585 }
5586 
5587 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)5588 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5589   assert(Tok.is(tok::l_square) && "Missing opening bracket");
5590   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5591 
5592   SourceLocation StartBracketLoc = Tok.getLocation();
5593   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5594 
5595   while (Tok.is(tok::l_square)) {
5596     ParseBracketDeclarator(TempDeclarator);
5597   }
5598 
5599   // Stuff the location of the start of the brackets into the Declarator.
5600   // The diagnostics from ParseDirectDeclarator will make more sense if
5601   // they use this location instead.
5602   if (Tok.is(tok::semi))
5603     D.getName().EndLocation = StartBracketLoc;
5604 
5605   SourceLocation SuggestParenLoc = Tok.getLocation();
5606 
5607   // Now that the brackets are removed, try parsing the declarator again.
5608   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5609 
5610   // Something went wrong parsing the brackets, in which case,
5611   // ParseBracketDeclarator has emitted an error, and we don't need to emit
5612   // one here.
5613   if (TempDeclarator.getNumTypeObjects() == 0)
5614     return;
5615 
5616   // Determine if parens will need to be suggested in the diagnostic.
5617   bool NeedParens = false;
5618   if (D.getNumTypeObjects() != 0) {
5619     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5620     case DeclaratorChunk::Pointer:
5621     case DeclaratorChunk::Reference:
5622     case DeclaratorChunk::BlockPointer:
5623     case DeclaratorChunk::MemberPointer:
5624       NeedParens = true;
5625       break;
5626     case DeclaratorChunk::Array:
5627     case DeclaratorChunk::Function:
5628     case DeclaratorChunk::Paren:
5629       break;
5630     }
5631   }
5632 
5633   if (NeedParens) {
5634     // Create a DeclaratorChunk for the inserted parens.
5635     ParsedAttributes attrs(AttrFactory);
5636     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5637     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5638                   SourceLocation());
5639   }
5640 
5641   // Adding back the bracket info to the end of the Declarator.
5642   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5643     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5644     ParsedAttributes attrs(AttrFactory);
5645     attrs.set(Chunk.Common.AttrList);
5646     D.AddTypeInfo(Chunk, attrs, SourceLocation());
5647   }
5648 
5649   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5650   // If parentheses are required, always suggest them.
5651   if (!D.getIdentifier() && !NeedParens)
5652     return;
5653 
5654   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5655 
5656   // Generate the move bracket error message.
5657   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5658   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5659 
5660   if (NeedParens) {
5661     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5662         << getLangOpts().CPlusPlus
5663         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5664         << FixItHint::CreateInsertion(EndLoc, ")")
5665         << FixItHint::CreateInsertionFromRange(
5666                EndLoc, CharSourceRange(BracketRange, true))
5667         << FixItHint::CreateRemoval(BracketRange);
5668   } else {
5669     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5670         << getLangOpts().CPlusPlus
5671         << FixItHint::CreateInsertionFromRange(
5672                EndLoc, CharSourceRange(BracketRange, true))
5673         << FixItHint::CreateRemoval(BracketRange);
5674   }
5675 }
5676 
5677 /// [GNU]   typeof-specifier:
5678 ///           typeof ( expressions )
5679 ///           typeof ( type-name )
5680 /// [GNU/C++] typeof unary-expression
5681 ///
ParseTypeofSpecifier(DeclSpec & DS)5682 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5683   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5684   Token OpTok = Tok;
5685   SourceLocation StartLoc = ConsumeToken();
5686 
5687   const bool hasParens = Tok.is(tok::l_paren);
5688 
5689   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5690                                                Sema::ReuseLambdaContextDecl);
5691 
5692   bool isCastExpr;
5693   ParsedType CastTy;
5694   SourceRange CastRange;
5695   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
5696                                                           CastTy, CastRange);
5697   if (hasParens)
5698     DS.setTypeofParensRange(CastRange);
5699 
5700   if (CastRange.getEnd().isInvalid())
5701     // FIXME: Not accurate, the range gets one token more than it should.
5702     DS.SetRangeEnd(Tok.getLocation());
5703   else
5704     DS.SetRangeEnd(CastRange.getEnd());
5705 
5706   if (isCastExpr) {
5707     if (!CastTy) {
5708       DS.SetTypeSpecError();
5709       return;
5710     }
5711 
5712     const char *PrevSpec = nullptr;
5713     unsigned DiagID;
5714     // Check for duplicate type specifiers (e.g. "int typeof(int)").
5715     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5716                            DiagID, CastTy,
5717                            Actions.getASTContext().getPrintingPolicy()))
5718       Diag(StartLoc, DiagID) << PrevSpec;
5719     return;
5720   }
5721 
5722   // If we get here, the operand to the typeof was an expresion.
5723   if (Operand.isInvalid()) {
5724     DS.SetTypeSpecError();
5725     return;
5726   }
5727 
5728   // We might need to transform the operand if it is potentially evaluated.
5729   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
5730   if (Operand.isInvalid()) {
5731     DS.SetTypeSpecError();
5732     return;
5733   }
5734 
5735   const char *PrevSpec = nullptr;
5736   unsigned DiagID;
5737   // Check for duplicate type specifiers (e.g. "int typeof(int)").
5738   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
5739                          DiagID, Operand.get(),
5740                          Actions.getASTContext().getPrintingPolicy()))
5741     Diag(StartLoc, DiagID) << PrevSpec;
5742 }
5743 
5744 /// [C11]   atomic-specifier:
5745 ///           _Atomic ( type-name )
5746 ///
ParseAtomicSpecifier(DeclSpec & DS)5747 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
5748   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
5749          "Not an atomic specifier");
5750 
5751   SourceLocation StartLoc = ConsumeToken();
5752   BalancedDelimiterTracker T(*this, tok::l_paren);
5753   if (T.consumeOpen())
5754     return;
5755 
5756   TypeResult Result = ParseTypeName();
5757   if (Result.isInvalid()) {
5758     SkipUntil(tok::r_paren, StopAtSemi);
5759     return;
5760   }
5761 
5762   // Match the ')'
5763   T.consumeClose();
5764 
5765   if (T.getCloseLocation().isInvalid())
5766     return;
5767 
5768   DS.setTypeofParensRange(T.getRange());
5769   DS.SetRangeEnd(T.getCloseLocation());
5770 
5771   const char *PrevSpec = nullptr;
5772   unsigned DiagID;
5773   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
5774                          DiagID, Result.get(),
5775                          Actions.getASTContext().getPrintingPolicy()))
5776     Diag(StartLoc, DiagID) << PrevSpec;
5777 }
5778 
5779 
5780 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
5781 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()5782 bool Parser::TryAltiVecVectorTokenOutOfLine() {
5783   Token Next = NextToken();
5784   switch (Next.getKind()) {
5785   default: return false;
5786   case tok::kw_short:
5787   case tok::kw_long:
5788   case tok::kw_signed:
5789   case tok::kw_unsigned:
5790   case tok::kw_void:
5791   case tok::kw_char:
5792   case tok::kw_int:
5793   case tok::kw_float:
5794   case tok::kw_double:
5795   case tok::kw_bool:
5796   case tok::kw___pixel:
5797     Tok.setKind(tok::kw___vector);
5798     return true;
5799   case tok::identifier:
5800     if (Next.getIdentifierInfo() == Ident_pixel) {
5801       Tok.setKind(tok::kw___vector);
5802       return true;
5803     }
5804     if (Next.getIdentifierInfo() == Ident_bool) {
5805       Tok.setKind(tok::kw___vector);
5806       return true;
5807     }
5808     return false;
5809   }
5810 }
5811 
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)5812 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
5813                                       const char *&PrevSpec, unsigned &DiagID,
5814                                       bool &isInvalid) {
5815   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
5816   if (Tok.getIdentifierInfo() == Ident_vector) {
5817     Token Next = NextToken();
5818     switch (Next.getKind()) {
5819     case tok::kw_short:
5820     case tok::kw_long:
5821     case tok::kw_signed:
5822     case tok::kw_unsigned:
5823     case tok::kw_void:
5824     case tok::kw_char:
5825     case tok::kw_int:
5826     case tok::kw_float:
5827     case tok::kw_double:
5828     case tok::kw_bool:
5829     case tok::kw___pixel:
5830       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
5831       return true;
5832     case tok::identifier:
5833       if (Next.getIdentifierInfo() == Ident_pixel) {
5834         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
5835         return true;
5836       }
5837       if (Next.getIdentifierInfo() == Ident_bool) {
5838         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
5839         return true;
5840       }
5841       break;
5842     default:
5843       break;
5844     }
5845   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
5846              DS.isTypeAltiVecVector()) {
5847     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
5848     return true;
5849   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
5850              DS.isTypeAltiVecVector()) {
5851     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
5852     return true;
5853   }
5854   return false;
5855 }
5856