1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30 using namespace clang;
31
32 //===----------------------------------------------------------------------===//
33 // C99 6.7: Declarations.
34 //===----------------------------------------------------------------------===//
35
36 /// ParseTypeName
37 /// type-name: [C99 6.7.6]
38 /// specifier-qualifier-list abstract-declarator[opt]
39 ///
40 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)41 TypeResult Parser::ParseTypeName(SourceRange *Range,
42 Declarator::TheContext Context,
43 AccessSpecifier AS,
44 Decl **OwnedType,
45 ParsedAttributes *Attrs) {
46 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47 if (DSC == DSC_normal)
48 DSC = DSC_type_specifier;
49
50 // Parse the common declaration-specifiers piece.
51 DeclSpec DS(AttrFactory);
52 if (Attrs)
53 DS.addAttributes(Attrs->getList());
54 ParseSpecifierQualifierList(DS, AS, DSC);
55 if (OwnedType)
56 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57
58 // Parse the abstract-declarator, if present.
59 Declarator DeclaratorInfo(DS, Context);
60 ParseDeclarator(DeclaratorInfo);
61 if (Range)
62 *Range = DeclaratorInfo.getSourceRange();
63
64 if (DeclaratorInfo.isInvalidType())
65 return true;
66
67 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68 }
69
70
71 /// isAttributeLateParsed - Return true if the attribute has arguments that
72 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)73 static bool isAttributeLateParsed(const IdentifierInfo &II) {
74 #define CLANG_ATTR_LATE_PARSED_LIST
75 return llvm::StringSwitch<bool>(II.getName())
76 #include "clang/Parse/AttrParserStringSwitches.inc"
77 .Default(false);
78 #undef CLANG_ATTR_LATE_PARSED_LIST
79 }
80
81 /// ParseGNUAttributes - Parse a non-empty attributes list.
82 ///
83 /// [GNU] attributes:
84 /// attribute
85 /// attributes attribute
86 ///
87 /// [GNU] attribute:
88 /// '__attribute__' '(' '(' attribute-list ')' ')'
89 ///
90 /// [GNU] attribute-list:
91 /// attrib
92 /// attribute_list ',' attrib
93 ///
94 /// [GNU] attrib:
95 /// empty
96 /// attrib-name
97 /// attrib-name '(' identifier ')'
98 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
99 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100 ///
101 /// [GNU] attrib-name:
102 /// identifier
103 /// typespec
104 /// typequal
105 /// storageclass
106 ///
107 /// Whether an attribute takes an 'identifier' is determined by the
108 /// attrib-name. GCC's behavior here is not worth imitating:
109 ///
110 /// * In C mode, if the attribute argument list starts with an identifier
111 /// followed by a ',' or an ')', and the identifier doesn't resolve to
112 /// a type, it is parsed as an identifier. If the attribute actually
113 /// wanted an expression, it's out of luck (but it turns out that no
114 /// attributes work that way, because C constant expressions are very
115 /// limited).
116 /// * In C++ mode, if the attribute argument list starts with an identifier,
117 /// and the attribute *wants* an identifier, it is parsed as an identifier.
118 /// At block scope, any additional tokens between the identifier and the
119 /// ',' or ')' are ignored, otherwise they produce a parse error.
120 ///
121 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123 SourceLocation *endLoc,
124 LateParsedAttrList *LateAttrs,
125 Declarator *D) {
126 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127
128 while (Tok.is(tok::kw___attribute)) {
129 ConsumeToken();
130 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131 "attribute")) {
132 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133 return;
134 }
135 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137 return;
138 }
139 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140 while (true) {
141 // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142 if (TryConsumeToken(tok::comma))
143 continue;
144
145 // Expect an identifier or declaration specifier (const, int, etc.)
146 if (Tok.isNot(tok::identifier) && !isDeclarationSpecifier())
147 break;
148
149 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
150 SourceLocation AttrNameLoc = ConsumeToken();
151
152 if (Tok.isNot(tok::l_paren)) {
153 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
154 AttributeList::AS_GNU);
155 continue;
156 }
157
158 // Handle "parameterized" attributes
159 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
160 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
161 SourceLocation(), AttributeList::AS_GNU, D);
162 continue;
163 }
164
165 // Handle attributes with arguments that require late parsing.
166 LateParsedAttribute *LA =
167 new LateParsedAttribute(this, *AttrName, AttrNameLoc);
168 LateAttrs->push_back(LA);
169
170 // Attributes in a class are parsed at the end of the class, along
171 // with other late-parsed declarations.
172 if (!ClassStack.empty() && !LateAttrs->parseSoon())
173 getCurrentClass().LateParsedDeclarations.push_back(LA);
174
175 // consume everything up to and including the matching right parens
176 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
177
178 Token Eof;
179 Eof.startToken();
180 Eof.setLocation(Tok.getLocation());
181 LA->Toks.push_back(Eof);
182 }
183
184 if (ExpectAndConsume(tok::r_paren))
185 SkipUntil(tok::r_paren, StopAtSemi);
186 SourceLocation Loc = Tok.getLocation();
187 if (ExpectAndConsume(tok::r_paren))
188 SkipUntil(tok::r_paren, StopAtSemi);
189 if (endLoc)
190 *endLoc = Loc;
191 }
192 }
193
194 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)195 static StringRef normalizeAttrName(StringRef Name) {
196 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
197 Name = Name.drop_front(2).drop_back(2);
198 return Name;
199 }
200
201 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)202 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
203 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
204 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
205 #include "clang/Parse/AttrParserStringSwitches.inc"
206 .Default(false);
207 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
208 }
209
210 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)211 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
212 #define CLANG_ATTR_TYPE_ARG_LIST
213 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
214 #include "clang/Parse/AttrParserStringSwitches.inc"
215 .Default(false);
216 #undef CLANG_ATTR_TYPE_ARG_LIST
217 }
218
219 /// \brief Determine whether the given attribute requires parsing its arguments
220 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)221 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
222 #define CLANG_ATTR_ARG_CONTEXT_LIST
223 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
224 #include "clang/Parse/AttrParserStringSwitches.inc"
225 .Default(false);
226 #undef CLANG_ATTR_ARG_CONTEXT_LIST
227 }
228
ParseIdentifierLoc()229 IdentifierLoc *Parser::ParseIdentifierLoc() {
230 assert(Tok.is(tok::identifier) && "expected an identifier");
231 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
232 Tok.getLocation(),
233 Tok.getIdentifierInfo());
234 ConsumeToken();
235 return IL;
236 }
237
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc)238 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
239 SourceLocation AttrNameLoc,
240 ParsedAttributes &Attrs,
241 SourceLocation *EndLoc) {
242 BalancedDelimiterTracker Parens(*this, tok::l_paren);
243 Parens.consumeOpen();
244
245 TypeResult T;
246 if (Tok.isNot(tok::r_paren))
247 T = ParseTypeName();
248
249 if (Parens.consumeClose())
250 return;
251
252 if (T.isInvalid())
253 return;
254
255 if (T.isUsable())
256 Attrs.addNewTypeAttr(&AttrName,
257 SourceRange(AttrNameLoc, Parens.getCloseLocation()),
258 nullptr, AttrNameLoc, T.get(), AttributeList::AS_GNU);
259 else
260 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
261 nullptr, AttrNameLoc, nullptr, 0, AttributeList::AS_GNU);
262 }
263
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)264 unsigned Parser::ParseAttributeArgsCommon(
265 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
266 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
267 SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
268 // Ignore the left paren location for now.
269 ConsumeParen();
270
271 ArgsVector ArgExprs;
272 if (Tok.is(tok::identifier)) {
273 // If this attribute wants an 'identifier' argument, make it so.
274 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
275 AttributeList::Kind AttrKind =
276 AttributeList::getKind(AttrName, ScopeName, Syntax);
277
278 // If we don't know how to parse this attribute, but this is the only
279 // token in this argument, assume it's meant to be an identifier.
280 if (AttrKind == AttributeList::UnknownAttribute ||
281 AttrKind == AttributeList::IgnoredAttribute) {
282 const Token &Next = NextToken();
283 IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
284 }
285
286 if (IsIdentifierArg)
287 ArgExprs.push_back(ParseIdentifierLoc());
288 }
289
290 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
291 // Eat the comma.
292 if (!ArgExprs.empty())
293 ConsumeToken();
294
295 // Parse the non-empty comma-separated list of expressions.
296 do {
297 std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
298 if (attributeParsedArgsUnevaluated(*AttrName))
299 Unevaluated.reset(
300 new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
301
302 ExprResult ArgExpr(ParseAssignmentExpression());
303 if (ArgExpr.isInvalid()) {
304 SkipUntil(tok::r_paren, StopAtSemi);
305 return 0;
306 }
307 ArgExprs.push_back(ArgExpr.get());
308 // Eat the comma, move to the next argument
309 } while (TryConsumeToken(tok::comma));
310 }
311
312 SourceLocation RParen = Tok.getLocation();
313 if (!ExpectAndConsume(tok::r_paren)) {
314 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
315 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
316 ArgExprs.data(), ArgExprs.size(), Syntax);
317 }
318
319 if (EndLoc)
320 *EndLoc = RParen;
321
322 return static_cast<unsigned>(ArgExprs.size());
323 }
324
325 /// Parse the arguments to a parameterized GNU attribute or
326 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)327 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
328 SourceLocation AttrNameLoc,
329 ParsedAttributes &Attrs,
330 SourceLocation *EndLoc,
331 IdentifierInfo *ScopeName,
332 SourceLocation ScopeLoc,
333 AttributeList::Syntax Syntax,
334 Declarator *D) {
335
336 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
337
338 AttributeList::Kind AttrKind =
339 AttributeList::getKind(AttrName, ScopeName, Syntax);
340
341 // Availability attributes have their own grammar.
342 // FIXME: All these cases fail to pass in the syntax and scope, and might be
343 // written as C++11 gnu:: attributes.
344 if (AttrKind == AttributeList::AT_Availability) {
345 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
346 return;
347 }
348
349 if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
350 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
351 return;
352 }
353
354 // Type safety attributes have their own grammar.
355 if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
357 return;
358 }
359
360 // Some attributes expect solely a type parameter.
361 if (attributeIsTypeArgAttr(*AttrName)) {
362 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc);
363 return;
364 }
365
366 // These may refer to the function arguments, but need to be parsed early to
367 // participate in determining whether it's a redeclaration.
368 std::unique_ptr<ParseScope> PrototypeScope;
369 if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
370 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
371 PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
372 Scope::FunctionDeclarationScope |
373 Scope::DeclScope));
374 for (unsigned i = 0; i != FTI.NumParams; ++i) {
375 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
376 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
377 }
378 }
379
380 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
381 ScopeLoc, Syntax);
382 }
383
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)384 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
385 SourceLocation AttrNameLoc,
386 ParsedAttributes &Attrs) {
387 // If the attribute isn't known, we will not attempt to parse any
388 // arguments.
389 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
390 getTargetInfo().getTriple(), getLangOpts())) {
391 // Eat the left paren, then skip to the ending right paren.
392 ConsumeParen();
393 SkipUntil(tok::r_paren);
394 return false;
395 }
396
397 SourceLocation OpenParenLoc = Tok.getLocation();
398
399 if (AttrName->getName() == "property") {
400 // The property declspec is more complex in that it can take one or two
401 // assignment expressions as a parameter, but the lhs of the assignment
402 // must be named get or put.
403
404 BalancedDelimiterTracker T(*this, tok::l_paren);
405 T.expectAndConsume(diag::err_expected_lparen_after,
406 AttrName->getNameStart(), tok::r_paren);
407
408 enum AccessorKind {
409 AK_Invalid = -1,
410 AK_Put = 0,
411 AK_Get = 1 // indices into AccessorNames
412 };
413 IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
414 bool HasInvalidAccessor = false;
415
416 // Parse the accessor specifications.
417 while (true) {
418 // Stop if this doesn't look like an accessor spec.
419 if (!Tok.is(tok::identifier)) {
420 // If the user wrote a completely empty list, use a special diagnostic.
421 if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
422 AccessorNames[AK_Put] == nullptr &&
423 AccessorNames[AK_Get] == nullptr) {
424 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
425 break;
426 }
427
428 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
429 break;
430 }
431
432 AccessorKind Kind;
433 SourceLocation KindLoc = Tok.getLocation();
434 StringRef KindStr = Tok.getIdentifierInfo()->getName();
435 if (KindStr == "get") {
436 Kind = AK_Get;
437 } else if (KindStr == "put") {
438 Kind = AK_Put;
439
440 // Recover from the common mistake of using 'set' instead of 'put'.
441 } else if (KindStr == "set") {
442 Diag(KindLoc, diag::err_ms_property_has_set_accessor)
443 << FixItHint::CreateReplacement(KindLoc, "put");
444 Kind = AK_Put;
445
446 // Handle the mistake of forgetting the accessor kind by skipping
447 // this accessor.
448 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
449 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
450 ConsumeToken();
451 HasInvalidAccessor = true;
452 goto next_property_accessor;
453
454 // Otherwise, complain about the unknown accessor kind.
455 } else {
456 Diag(KindLoc, diag::err_ms_property_unknown_accessor);
457 HasInvalidAccessor = true;
458 Kind = AK_Invalid;
459
460 // Try to keep parsing unless it doesn't look like an accessor spec.
461 if (!NextToken().is(tok::equal))
462 break;
463 }
464
465 // Consume the identifier.
466 ConsumeToken();
467
468 // Consume the '='.
469 if (!TryConsumeToken(tok::equal)) {
470 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
471 << KindStr;
472 break;
473 }
474
475 // Expect the method name.
476 if (!Tok.is(tok::identifier)) {
477 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
478 break;
479 }
480
481 if (Kind == AK_Invalid) {
482 // Just drop invalid accessors.
483 } else if (AccessorNames[Kind] != nullptr) {
484 // Complain about the repeated accessor, ignore it, and keep parsing.
485 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
486 } else {
487 AccessorNames[Kind] = Tok.getIdentifierInfo();
488 }
489 ConsumeToken();
490
491 next_property_accessor:
492 // Keep processing accessors until we run out.
493 if (TryConsumeToken(tok::comma))
494 continue;
495
496 // If we run into the ')', stop without consuming it.
497 if (Tok.is(tok::r_paren))
498 break;
499
500 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
501 break;
502 }
503
504 // Only add the property attribute if it was well-formed.
505 if (!HasInvalidAccessor)
506 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
507 AccessorNames[AK_Get], AccessorNames[AK_Put],
508 AttributeList::AS_Declspec);
509 T.skipToEnd();
510 return !HasInvalidAccessor;
511 }
512
513 unsigned NumArgs =
514 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
515 SourceLocation(), AttributeList::AS_Declspec);
516
517 // If this attribute's args were parsed, and it was expected to have
518 // arguments but none were provided, emit a diagnostic.
519 const AttributeList *Attr = Attrs.getList();
520 if (Attr && Attr->getMaxArgs() && !NumArgs) {
521 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
522 return false;
523 }
524 return true;
525 }
526
527 /// [MS] decl-specifier:
528 /// __declspec ( extended-decl-modifier-seq )
529 ///
530 /// [MS] extended-decl-modifier-seq:
531 /// extended-decl-modifier[opt]
532 /// extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpec(ParsedAttributes & Attrs)533 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
534 assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
535
536 ConsumeToken();
537 BalancedDelimiterTracker T(*this, tok::l_paren);
538 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
539 tok::r_paren))
540 return;
541
542 // An empty declspec is perfectly legal and should not warn. Additionally,
543 // you can specify multiple attributes per declspec.
544 while (Tok.isNot(tok::r_paren)) {
545 // Attribute not present.
546 if (TryConsumeToken(tok::comma))
547 continue;
548
549 // We expect either a well-known identifier or a generic string. Anything
550 // else is a malformed declspec.
551 bool IsString = Tok.getKind() == tok::string_literal ? true : false;
552 if (!IsString && Tok.getKind() != tok::identifier &&
553 Tok.getKind() != tok::kw_restrict) {
554 Diag(Tok, diag::err_ms_declspec_type);
555 T.skipToEnd();
556 return;
557 }
558
559 IdentifierInfo *AttrName;
560 SourceLocation AttrNameLoc;
561 if (IsString) {
562 SmallString<8> StrBuffer;
563 bool Invalid = false;
564 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
565 if (Invalid) {
566 T.skipToEnd();
567 return;
568 }
569 AttrName = PP.getIdentifierInfo(Str);
570 AttrNameLoc = ConsumeStringToken();
571 } else {
572 AttrName = Tok.getIdentifierInfo();
573 AttrNameLoc = ConsumeToken();
574 }
575
576 bool AttrHandled = false;
577
578 // Parse attribute arguments.
579 if (Tok.is(tok::l_paren))
580 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
581 else if (AttrName->getName() == "property")
582 // The property attribute must have an argument list.
583 Diag(Tok.getLocation(), diag::err_expected_lparen_after)
584 << AttrName->getName();
585
586 if (!AttrHandled)
587 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
588 AttributeList::AS_Declspec);
589 }
590 T.consumeClose();
591 }
592
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)593 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
594 // Treat these like attributes
595 while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
596 Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl) ||
597 Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
598 Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned) ||
599 Tok.is(tok::kw___sptr) || Tok.is(tok::kw___uptr)) {
600 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
601 SourceLocation AttrNameLoc = ConsumeToken();
602 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
603 AttributeList::AS_Keyword);
604 }
605 }
606
ParseBorlandTypeAttributes(ParsedAttributes & attrs)607 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
608 // Treat these like attributes
609 while (Tok.is(tok::kw___pascal)) {
610 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
611 SourceLocation AttrNameLoc = ConsumeToken();
612 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
613 AttributeList::AS_Keyword);
614 }
615 }
616
ParseOpenCLAttributes(ParsedAttributes & attrs)617 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
618 // Treat these like attributes
619 while (Tok.is(tok::kw___kernel)) {
620 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
621 SourceLocation AttrNameLoc = ConsumeToken();
622 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
623 AttributeList::AS_Keyword);
624 }
625 }
626
ParseOpenCLQualifiers(ParsedAttributes & Attrs)627 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
628 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
629 SourceLocation AttrNameLoc = Tok.getLocation();
630 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
631 AttributeList::AS_Keyword);
632 }
633
634 /// \brief Parse a version number.
635 ///
636 /// version:
637 /// simple-integer
638 /// simple-integer ',' simple-integer
639 /// simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)640 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
641 Range = Tok.getLocation();
642
643 if (!Tok.is(tok::numeric_constant)) {
644 Diag(Tok, diag::err_expected_version);
645 SkipUntil(tok::comma, tok::r_paren,
646 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
647 return VersionTuple();
648 }
649
650 // Parse the major (and possibly minor and subminor) versions, which
651 // are stored in the numeric constant. We utilize a quirk of the
652 // lexer, which is that it handles something like 1.2.3 as a single
653 // numeric constant, rather than two separate tokens.
654 SmallString<512> Buffer;
655 Buffer.resize(Tok.getLength()+1);
656 const char *ThisTokBegin = &Buffer[0];
657
658 // Get the spelling of the token, which eliminates trigraphs, etc.
659 bool Invalid = false;
660 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
661 if (Invalid)
662 return VersionTuple();
663
664 // Parse the major version.
665 unsigned AfterMajor = 0;
666 unsigned Major = 0;
667 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
668 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
669 ++AfterMajor;
670 }
671
672 if (AfterMajor == 0) {
673 Diag(Tok, diag::err_expected_version);
674 SkipUntil(tok::comma, tok::r_paren,
675 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
676 return VersionTuple();
677 }
678
679 if (AfterMajor == ActualLength) {
680 ConsumeToken();
681
682 // We only had a single version component.
683 if (Major == 0) {
684 Diag(Tok, diag::err_zero_version);
685 return VersionTuple();
686 }
687
688 return VersionTuple(Major);
689 }
690
691 if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
692 Diag(Tok, diag::err_expected_version);
693 SkipUntil(tok::comma, tok::r_paren,
694 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
695 return VersionTuple();
696 }
697
698 // Parse the minor version.
699 unsigned AfterMinor = AfterMajor + 1;
700 unsigned Minor = 0;
701 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
702 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
703 ++AfterMinor;
704 }
705
706 if (AfterMinor == ActualLength) {
707 ConsumeToken();
708
709 // We had major.minor.
710 if (Major == 0 && Minor == 0) {
711 Diag(Tok, diag::err_zero_version);
712 return VersionTuple();
713 }
714
715 return VersionTuple(Major, Minor);
716 }
717
718 // If what follows is not a '.', we have a problem.
719 if (ThisTokBegin[AfterMinor] != '.') {
720 Diag(Tok, diag::err_expected_version);
721 SkipUntil(tok::comma, tok::r_paren,
722 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
723 return VersionTuple();
724 }
725
726 // Parse the subminor version.
727 unsigned AfterSubminor = AfterMinor + 1;
728 unsigned Subminor = 0;
729 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
730 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
731 ++AfterSubminor;
732 }
733
734 if (AfterSubminor != ActualLength) {
735 Diag(Tok, diag::err_expected_version);
736 SkipUntil(tok::comma, tok::r_paren,
737 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
738 return VersionTuple();
739 }
740 ConsumeToken();
741 return VersionTuple(Major, Minor, Subminor);
742 }
743
744 /// \brief Parse the contents of the "availability" attribute.
745 ///
746 /// availability-attribute:
747 /// 'availability' '(' platform ',' version-arg-list, opt-message')'
748 ///
749 /// platform:
750 /// identifier
751 ///
752 /// version-arg-list:
753 /// version-arg
754 /// version-arg ',' version-arg-list
755 ///
756 /// version-arg:
757 /// 'introduced' '=' version
758 /// 'deprecated' '=' version
759 /// 'obsoleted' = version
760 /// 'unavailable'
761 /// opt-message:
762 /// 'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc)763 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
764 SourceLocation AvailabilityLoc,
765 ParsedAttributes &attrs,
766 SourceLocation *endLoc) {
767 enum { Introduced, Deprecated, Obsoleted, Unknown };
768 AvailabilityChange Changes[Unknown];
769 ExprResult MessageExpr;
770
771 // Opening '('.
772 BalancedDelimiterTracker T(*this, tok::l_paren);
773 if (T.consumeOpen()) {
774 Diag(Tok, diag::err_expected) << tok::l_paren;
775 return;
776 }
777
778 // Parse the platform name,
779 if (Tok.isNot(tok::identifier)) {
780 Diag(Tok, diag::err_availability_expected_platform);
781 SkipUntil(tok::r_paren, StopAtSemi);
782 return;
783 }
784 IdentifierLoc *Platform = ParseIdentifierLoc();
785
786 // Parse the ',' following the platform name.
787 if (ExpectAndConsume(tok::comma)) {
788 SkipUntil(tok::r_paren, StopAtSemi);
789 return;
790 }
791
792 // If we haven't grabbed the pointers for the identifiers
793 // "introduced", "deprecated", and "obsoleted", do so now.
794 if (!Ident_introduced) {
795 Ident_introduced = PP.getIdentifierInfo("introduced");
796 Ident_deprecated = PP.getIdentifierInfo("deprecated");
797 Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
798 Ident_unavailable = PP.getIdentifierInfo("unavailable");
799 Ident_message = PP.getIdentifierInfo("message");
800 }
801
802 // Parse the set of introductions/deprecations/removals.
803 SourceLocation UnavailableLoc;
804 do {
805 if (Tok.isNot(tok::identifier)) {
806 Diag(Tok, diag::err_availability_expected_change);
807 SkipUntil(tok::r_paren, StopAtSemi);
808 return;
809 }
810 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
811 SourceLocation KeywordLoc = ConsumeToken();
812
813 if (Keyword == Ident_unavailable) {
814 if (UnavailableLoc.isValid()) {
815 Diag(KeywordLoc, diag::err_availability_redundant)
816 << Keyword << SourceRange(UnavailableLoc);
817 }
818 UnavailableLoc = KeywordLoc;
819 continue;
820 }
821
822 if (Tok.isNot(tok::equal)) {
823 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
824 SkipUntil(tok::r_paren, StopAtSemi);
825 return;
826 }
827 ConsumeToken();
828 if (Keyword == Ident_message) {
829 if (Tok.isNot(tok::string_literal)) { // Also reject wide string literals.
830 Diag(Tok, diag::err_expected_string_literal)
831 << /*Source='availability attribute'*/2;
832 SkipUntil(tok::r_paren, StopAtSemi);
833 return;
834 }
835 MessageExpr = ParseStringLiteralExpression();
836 break;
837 }
838
839 SourceRange VersionRange;
840 VersionTuple Version = ParseVersionTuple(VersionRange);
841
842 if (Version.empty()) {
843 SkipUntil(tok::r_paren, StopAtSemi);
844 return;
845 }
846
847 unsigned Index;
848 if (Keyword == Ident_introduced)
849 Index = Introduced;
850 else if (Keyword == Ident_deprecated)
851 Index = Deprecated;
852 else if (Keyword == Ident_obsoleted)
853 Index = Obsoleted;
854 else
855 Index = Unknown;
856
857 if (Index < Unknown) {
858 if (!Changes[Index].KeywordLoc.isInvalid()) {
859 Diag(KeywordLoc, diag::err_availability_redundant)
860 << Keyword
861 << SourceRange(Changes[Index].KeywordLoc,
862 Changes[Index].VersionRange.getEnd());
863 }
864
865 Changes[Index].KeywordLoc = KeywordLoc;
866 Changes[Index].Version = Version;
867 Changes[Index].VersionRange = VersionRange;
868 } else {
869 Diag(KeywordLoc, diag::err_availability_unknown_change)
870 << Keyword << VersionRange;
871 }
872
873 } while (TryConsumeToken(tok::comma));
874
875 // Closing ')'.
876 if (T.consumeClose())
877 return;
878
879 if (endLoc)
880 *endLoc = T.getCloseLocation();
881
882 // The 'unavailable' availability cannot be combined with any other
883 // availability changes. Make sure that hasn't happened.
884 if (UnavailableLoc.isValid()) {
885 bool Complained = false;
886 for (unsigned Index = Introduced; Index != Unknown; ++Index) {
887 if (Changes[Index].KeywordLoc.isValid()) {
888 if (!Complained) {
889 Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
890 << SourceRange(Changes[Index].KeywordLoc,
891 Changes[Index].VersionRange.getEnd());
892 Complained = true;
893 }
894
895 // Clear out the availability.
896 Changes[Index] = AvailabilityChange();
897 }
898 }
899 }
900
901 // Record this attribute
902 attrs.addNew(&Availability,
903 SourceRange(AvailabilityLoc, T.getCloseLocation()),
904 nullptr, AvailabilityLoc,
905 Platform,
906 Changes[Introduced],
907 Changes[Deprecated],
908 Changes[Obsoleted],
909 UnavailableLoc, MessageExpr.get(),
910 AttributeList::AS_GNU);
911 }
912
913 /// \brief Parse the contents of the "objc_bridge_related" attribute.
914 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
915 /// related_class:
916 /// Identifier
917 ///
918 /// opt-class_method:
919 /// Identifier: | <empty>
920 ///
921 /// opt-instance_method:
922 /// Identifier | <empty>
923 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc)924 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
925 SourceLocation ObjCBridgeRelatedLoc,
926 ParsedAttributes &attrs,
927 SourceLocation *endLoc) {
928 // Opening '('.
929 BalancedDelimiterTracker T(*this, tok::l_paren);
930 if (T.consumeOpen()) {
931 Diag(Tok, diag::err_expected) << tok::l_paren;
932 return;
933 }
934
935 // Parse the related class name.
936 if (Tok.isNot(tok::identifier)) {
937 Diag(Tok, diag::err_objcbridge_related_expected_related_class);
938 SkipUntil(tok::r_paren, StopAtSemi);
939 return;
940 }
941 IdentifierLoc *RelatedClass = ParseIdentifierLoc();
942 if (ExpectAndConsume(tok::comma)) {
943 SkipUntil(tok::r_paren, StopAtSemi);
944 return;
945 }
946
947 // Parse optional class method name.
948 IdentifierLoc *ClassMethod = nullptr;
949 if (Tok.is(tok::identifier)) {
950 ClassMethod = ParseIdentifierLoc();
951 if (!TryConsumeToken(tok::colon)) {
952 Diag(Tok, diag::err_objcbridge_related_selector_name);
953 SkipUntil(tok::r_paren, StopAtSemi);
954 return;
955 }
956 }
957 if (!TryConsumeToken(tok::comma)) {
958 if (Tok.is(tok::colon))
959 Diag(Tok, diag::err_objcbridge_related_selector_name);
960 else
961 Diag(Tok, diag::err_expected) << tok::comma;
962 SkipUntil(tok::r_paren, StopAtSemi);
963 return;
964 }
965
966 // Parse optional instance method name.
967 IdentifierLoc *InstanceMethod = nullptr;
968 if (Tok.is(tok::identifier))
969 InstanceMethod = ParseIdentifierLoc();
970 else if (Tok.isNot(tok::r_paren)) {
971 Diag(Tok, diag::err_expected) << tok::r_paren;
972 SkipUntil(tok::r_paren, StopAtSemi);
973 return;
974 }
975
976 // Closing ')'.
977 if (T.consumeClose())
978 return;
979
980 if (endLoc)
981 *endLoc = T.getCloseLocation();
982
983 // Record this attribute
984 attrs.addNew(&ObjCBridgeRelated,
985 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
986 nullptr, ObjCBridgeRelatedLoc,
987 RelatedClass,
988 ClassMethod,
989 InstanceMethod,
990 AttributeList::AS_GNU);
991 }
992
993 // Late Parsed Attributes:
994 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
995
ParseLexedAttributes()996 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
997
ParseLexedAttributes()998 void Parser::LateParsedClass::ParseLexedAttributes() {
999 Self->ParseLexedAttributes(*Class);
1000 }
1001
ParseLexedAttributes()1002 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1003 Self->ParseLexedAttribute(*this, true, false);
1004 }
1005
1006 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1007 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1008 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1009 // Deal with templates
1010 // FIXME: Test cases to make sure this does the right thing for templates.
1011 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1012 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1013 HasTemplateScope);
1014 if (HasTemplateScope)
1015 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1016
1017 // Set or update the scope flags.
1018 bool AlreadyHasClassScope = Class.TopLevelClass;
1019 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1020 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1021 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1022
1023 // Enter the scope of nested classes
1024 if (!AlreadyHasClassScope)
1025 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1026 Class.TagOrTemplate);
1027 if (!Class.LateParsedDeclarations.empty()) {
1028 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1029 Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1030 }
1031 }
1032
1033 if (!AlreadyHasClassScope)
1034 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1035 Class.TagOrTemplate);
1036 }
1037
1038
1039 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1040 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1041 bool EnterScope, bool OnDefinition) {
1042 assert(LAs.parseSoon() &&
1043 "Attribute list should be marked for immediate parsing.");
1044 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1045 if (D)
1046 LAs[i]->addDecl(D);
1047 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1048 delete LAs[i];
1049 }
1050 LAs.clear();
1051 }
1052
1053
1054 /// \brief Finish parsing an attribute for which parsing was delayed.
1055 /// This will be called at the end of parsing a class declaration
1056 /// for each LateParsedAttribute. We consume the saved tokens and
1057 /// create an attribute with the arguments filled in. We add this
1058 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1059 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1060 bool EnterScope, bool OnDefinition) {
1061 // Save the current token position.
1062 SourceLocation OrigLoc = Tok.getLocation();
1063
1064 // Append the current token at the end of the new token stream so that it
1065 // doesn't get lost.
1066 LA.Toks.push_back(Tok);
1067 PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1068 // Consume the previously pushed token.
1069 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1070
1071 ParsedAttributes Attrs(AttrFactory);
1072 SourceLocation endLoc;
1073
1074 if (LA.Decls.size() > 0) {
1075 Decl *D = LA.Decls[0];
1076 NamedDecl *ND = dyn_cast<NamedDecl>(D);
1077 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1078
1079 // Allow 'this' within late-parsed attributes.
1080 Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1081 ND && ND->isCXXInstanceMember());
1082
1083 if (LA.Decls.size() == 1) {
1084 // If the Decl is templatized, add template parameters to scope.
1085 bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1086 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1087 if (HasTemplateScope)
1088 Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1089
1090 // If the Decl is on a function, add function parameters to the scope.
1091 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1092 ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1093 if (HasFunScope)
1094 Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1095
1096 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1097 nullptr, SourceLocation(), AttributeList::AS_GNU,
1098 nullptr);
1099
1100 if (HasFunScope) {
1101 Actions.ActOnExitFunctionContext();
1102 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1103 }
1104 if (HasTemplateScope) {
1105 TempScope.Exit();
1106 }
1107 } else {
1108 // If there are multiple decls, then the decl cannot be within the
1109 // function scope.
1110 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1111 nullptr, SourceLocation(), AttributeList::AS_GNU,
1112 nullptr);
1113 }
1114 } else {
1115 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1116 }
1117
1118 const AttributeList *AL = Attrs.getList();
1119 if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1120 AL->isKnownToGCC())
1121 Diag(Tok, diag::warn_attribute_on_function_definition)
1122 << &LA.AttrName;
1123
1124 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1125 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1126
1127 if (Tok.getLocation() != OrigLoc) {
1128 // Due to a parsing error, we either went over the cached tokens or
1129 // there are still cached tokens left, so we skip the leftover tokens.
1130 // Since this is an uncommon situation that should be avoided, use the
1131 // expensive isBeforeInTranslationUnit call.
1132 if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
1133 OrigLoc))
1134 while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
1135 ConsumeAnyToken();
1136 }
1137 }
1138
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc)1139 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1140 SourceLocation AttrNameLoc,
1141 ParsedAttributes &Attrs,
1142 SourceLocation *EndLoc) {
1143 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1144
1145 BalancedDelimiterTracker T(*this, tok::l_paren);
1146 T.consumeOpen();
1147
1148 if (Tok.isNot(tok::identifier)) {
1149 Diag(Tok, diag::err_expected) << tok::identifier;
1150 T.skipToEnd();
1151 return;
1152 }
1153 IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1154
1155 if (ExpectAndConsume(tok::comma)) {
1156 T.skipToEnd();
1157 return;
1158 }
1159
1160 SourceRange MatchingCTypeRange;
1161 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1162 if (MatchingCType.isInvalid()) {
1163 T.skipToEnd();
1164 return;
1165 }
1166
1167 bool LayoutCompatible = false;
1168 bool MustBeNull = false;
1169 while (TryConsumeToken(tok::comma)) {
1170 if (Tok.isNot(tok::identifier)) {
1171 Diag(Tok, diag::err_expected) << tok::identifier;
1172 T.skipToEnd();
1173 return;
1174 }
1175 IdentifierInfo *Flag = Tok.getIdentifierInfo();
1176 if (Flag->isStr("layout_compatible"))
1177 LayoutCompatible = true;
1178 else if (Flag->isStr("must_be_null"))
1179 MustBeNull = true;
1180 else {
1181 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1182 T.skipToEnd();
1183 return;
1184 }
1185 ConsumeToken(); // consume flag
1186 }
1187
1188 if (!T.consumeClose()) {
1189 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, nullptr, AttrNameLoc,
1190 ArgumentKind, MatchingCType.get(),
1191 LayoutCompatible, MustBeNull,
1192 AttributeList::AS_GNU);
1193 }
1194
1195 if (EndLoc)
1196 *EndLoc = T.getCloseLocation();
1197 }
1198
1199 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1200 /// of a C++11 attribute-specifier in a location where an attribute is not
1201 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1202 /// situation.
1203 ///
1204 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1205 /// this doesn't appear to actually be an attribute-specifier, and the caller
1206 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1207 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1208 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1209
1210 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1211 case CAK_NotAttributeSpecifier:
1212 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1213 return false;
1214
1215 case CAK_InvalidAttributeSpecifier:
1216 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1217 return false;
1218
1219 case CAK_AttributeSpecifier:
1220 // Parse and discard the attributes.
1221 SourceLocation BeginLoc = ConsumeBracket();
1222 ConsumeBracket();
1223 SkipUntil(tok::r_square);
1224 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1225 SourceLocation EndLoc = ConsumeBracket();
1226 Diag(BeginLoc, diag::err_attributes_not_allowed)
1227 << SourceRange(BeginLoc, EndLoc);
1228 return true;
1229 }
1230 llvm_unreachable("All cases handled above.");
1231 }
1232
1233 /// \brief We have found the opening square brackets of a C++11
1234 /// attribute-specifier in a location where an attribute is not permitted, but
1235 /// we know where the attributes ought to be written. Parse them anyway, and
1236 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1237 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1238 SourceLocation CorrectLocation) {
1239 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1240 Tok.is(tok::kw_alignas));
1241
1242 // Consume the attributes.
1243 SourceLocation Loc = Tok.getLocation();
1244 ParseCXX11Attributes(Attrs);
1245 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1246
1247 Diag(Loc, diag::err_attributes_not_allowed)
1248 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1249 << FixItHint::CreateRemoval(AttrRange);
1250 }
1251
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1252 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1253 Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1254 << attrs.Range;
1255 }
1256
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1257 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1258 AttributeList *AttrList = attrs.getList();
1259 while (AttrList) {
1260 if (AttrList->isCXX11Attribute()) {
1261 Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1262 << AttrList->getName();
1263 AttrList->setInvalid();
1264 }
1265 AttrList = AttrList->getNext();
1266 }
1267 }
1268
1269 /// ParseDeclaration - Parse a full 'declaration', which consists of
1270 /// declaration-specifiers, some number of declarators, and a semicolon.
1271 /// 'Context' should be a Declarator::TheContext value. This returns the
1272 /// location of the semicolon in DeclEnd.
1273 ///
1274 /// declaration: [C99 6.7]
1275 /// block-declaration ->
1276 /// simple-declaration
1277 /// others [FIXME]
1278 /// [C++] template-declaration
1279 /// [C++] namespace-definition
1280 /// [C++] using-directive
1281 /// [C++] using-declaration
1282 /// [C++11/C11] static_assert-declaration
1283 /// others... [FIXME]
1284 ///
ParseDeclaration(StmtVector & Stmts,unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1285 Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
1286 unsigned Context,
1287 SourceLocation &DeclEnd,
1288 ParsedAttributesWithRange &attrs) {
1289 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1290 // Must temporarily exit the objective-c container scope for
1291 // parsing c none objective-c decls.
1292 ObjCDeclContextSwitch ObjCDC(*this);
1293
1294 Decl *SingleDecl = nullptr;
1295 Decl *OwnedType = nullptr;
1296 switch (Tok.getKind()) {
1297 case tok::kw_template:
1298 case tok::kw_export:
1299 ProhibitAttributes(attrs);
1300 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1301 break;
1302 case tok::kw_inline:
1303 // Could be the start of an inline namespace. Allowed as an ext in C++03.
1304 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1305 ProhibitAttributes(attrs);
1306 SourceLocation InlineLoc = ConsumeToken();
1307 SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1308 break;
1309 }
1310 return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
1311 true);
1312 case tok::kw_namespace:
1313 ProhibitAttributes(attrs);
1314 SingleDecl = ParseNamespace(Context, DeclEnd);
1315 break;
1316 case tok::kw_using:
1317 SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1318 DeclEnd, attrs, &OwnedType);
1319 break;
1320 case tok::kw_static_assert:
1321 case tok::kw__Static_assert:
1322 ProhibitAttributes(attrs);
1323 SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1324 break;
1325 default:
1326 return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
1327 }
1328
1329 // This routine returns a DeclGroup, if the thing we parsed only contains a
1330 // single decl, convert it now. Alias declarations can also declare a type;
1331 // include that too if it is present.
1332 return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1333 }
1334
1335 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1336 /// declaration-specifiers init-declarator-list[opt] ';'
1337 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1338 /// init-declarator-list ';'
1339 ///[C90/C++]init-declarator-list ';' [TODO]
1340 /// [OMP] threadprivate-directive [TODO]
1341 ///
1342 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1343 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1344 ///
1345 /// If RequireSemi is false, this does not check for a ';' at the end of the
1346 /// declaration. If it is true, it checks for and eats it.
1347 ///
1348 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1349 /// of a simple-declaration. If we find that we are, we also parse the
1350 /// for-range-initializer, and place it here.
1351 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(StmtVector & Stmts,unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1352 Parser::ParseSimpleDeclaration(StmtVector &Stmts, unsigned Context,
1353 SourceLocation &DeclEnd,
1354 ParsedAttributesWithRange &Attrs,
1355 bool RequireSemi, ForRangeInit *FRI) {
1356 // Parse the common declaration-specifiers piece.
1357 ParsingDeclSpec DS(*this);
1358
1359 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1360 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1361
1362 // If we had a free-standing type definition with a missing semicolon, we
1363 // may get this far before the problem becomes obvious.
1364 if (DS.hasTagDefinition() &&
1365 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1366 return DeclGroupPtrTy();
1367
1368 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1369 // declaration-specifiers init-declarator-list[opt] ';'
1370 if (Tok.is(tok::semi)) {
1371 ProhibitAttributes(Attrs);
1372 DeclEnd = Tok.getLocation();
1373 if (RequireSemi) ConsumeToken();
1374 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1375 DS);
1376 DS.complete(TheDecl);
1377 return Actions.ConvertDeclToDeclGroup(TheDecl);
1378 }
1379
1380 DS.takeAttributesFrom(Attrs);
1381 return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1382 }
1383
1384 /// Returns true if this might be the start of a declarator, or a common typo
1385 /// for a declarator.
MightBeDeclarator(unsigned Context)1386 bool Parser::MightBeDeclarator(unsigned Context) {
1387 switch (Tok.getKind()) {
1388 case tok::annot_cxxscope:
1389 case tok::annot_template_id:
1390 case tok::caret:
1391 case tok::code_completion:
1392 case tok::coloncolon:
1393 case tok::ellipsis:
1394 case tok::kw___attribute:
1395 case tok::kw_operator:
1396 case tok::l_paren:
1397 case tok::star:
1398 return true;
1399
1400 case tok::amp:
1401 case tok::ampamp:
1402 return getLangOpts().CPlusPlus;
1403
1404 case tok::l_square: // Might be an attribute on an unnamed bit-field.
1405 return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1406 NextToken().is(tok::l_square);
1407
1408 case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1409 return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1410
1411 case tok::identifier:
1412 switch (NextToken().getKind()) {
1413 case tok::code_completion:
1414 case tok::coloncolon:
1415 case tok::comma:
1416 case tok::equal:
1417 case tok::equalequal: // Might be a typo for '='.
1418 case tok::kw_alignas:
1419 case tok::kw_asm:
1420 case tok::kw___attribute:
1421 case tok::l_brace:
1422 case tok::l_paren:
1423 case tok::l_square:
1424 case tok::less:
1425 case tok::r_brace:
1426 case tok::r_paren:
1427 case tok::r_square:
1428 case tok::semi:
1429 return true;
1430
1431 case tok::colon:
1432 // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1433 // and in block scope it's probably a label. Inside a class definition,
1434 // this is a bit-field.
1435 return Context == Declarator::MemberContext ||
1436 (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1437
1438 case tok::identifier: // Possible virt-specifier.
1439 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1440
1441 default:
1442 return false;
1443 }
1444
1445 default:
1446 return false;
1447 }
1448 }
1449
1450 /// Skip until we reach something which seems like a sensible place to pick
1451 /// up parsing after a malformed declaration. This will sometimes stop sooner
1452 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1453 void Parser::SkipMalformedDecl() {
1454 while (true) {
1455 switch (Tok.getKind()) {
1456 case tok::l_brace:
1457 // Skip until matching }, then stop. We've probably skipped over
1458 // a malformed class or function definition or similar.
1459 ConsumeBrace();
1460 SkipUntil(tok::r_brace);
1461 if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1462 // This declaration isn't over yet. Keep skipping.
1463 continue;
1464 }
1465 TryConsumeToken(tok::semi);
1466 return;
1467
1468 case tok::l_square:
1469 ConsumeBracket();
1470 SkipUntil(tok::r_square);
1471 continue;
1472
1473 case tok::l_paren:
1474 ConsumeParen();
1475 SkipUntil(tok::r_paren);
1476 continue;
1477
1478 case tok::r_brace:
1479 return;
1480
1481 case tok::semi:
1482 ConsumeToken();
1483 return;
1484
1485 case tok::kw_inline:
1486 // 'inline namespace' at the start of a line is almost certainly
1487 // a good place to pick back up parsing, except in an Objective-C
1488 // @interface context.
1489 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1490 (!ParsingInObjCContainer || CurParsedObjCImpl))
1491 return;
1492 break;
1493
1494 case tok::kw_namespace:
1495 // 'namespace' at the start of a line is almost certainly a good
1496 // place to pick back up parsing, except in an Objective-C
1497 // @interface context.
1498 if (Tok.isAtStartOfLine() &&
1499 (!ParsingInObjCContainer || CurParsedObjCImpl))
1500 return;
1501 break;
1502
1503 case tok::at:
1504 // @end is very much like } in Objective-C contexts.
1505 if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1506 ParsingInObjCContainer)
1507 return;
1508 break;
1509
1510 case tok::minus:
1511 case tok::plus:
1512 // - and + probably start new method declarations in Objective-C contexts.
1513 if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1514 return;
1515 break;
1516
1517 case tok::eof:
1518 case tok::annot_module_begin:
1519 case tok::annot_module_end:
1520 case tok::annot_module_include:
1521 return;
1522
1523 default:
1524 break;
1525 }
1526
1527 ConsumeAnyToken();
1528 }
1529 }
1530
1531 /// ParseDeclGroup - Having concluded that this is either a function
1532 /// definition or a group of object declarations, actually parse the
1533 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,bool AllowFunctionDefinitions,SourceLocation * DeclEnd,ForRangeInit * FRI)1534 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1535 unsigned Context,
1536 bool AllowFunctionDefinitions,
1537 SourceLocation *DeclEnd,
1538 ForRangeInit *FRI) {
1539 // Parse the first declarator.
1540 ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1541 ParseDeclarator(D);
1542
1543 // Bail out if the first declarator didn't seem well-formed.
1544 if (!D.hasName() && !D.mayOmitIdentifier()) {
1545 SkipMalformedDecl();
1546 return DeclGroupPtrTy();
1547 }
1548
1549 // Save late-parsed attributes for now; they need to be parsed in the
1550 // appropriate function scope after the function Decl has been constructed.
1551 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1552 LateParsedAttrList LateParsedAttrs(true);
1553 if (D.isFunctionDeclarator())
1554 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1555
1556 // Check to see if we have a function *definition* which must have a body.
1557 if (D.isFunctionDeclarator() &&
1558 // Look at the next token to make sure that this isn't a function
1559 // declaration. We have to check this because __attribute__ might be the
1560 // start of a function definition in GCC-extended K&R C.
1561 !isDeclarationAfterDeclarator()) {
1562
1563 if (AllowFunctionDefinitions) {
1564 if (isStartOfFunctionDefinition(D)) {
1565 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1566 Diag(Tok, diag::err_function_declared_typedef);
1567
1568 // Recover by treating the 'typedef' as spurious.
1569 DS.ClearStorageClassSpecs();
1570 }
1571
1572 Decl *TheDecl =
1573 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1574 return Actions.ConvertDeclToDeclGroup(TheDecl);
1575 }
1576
1577 if (isDeclarationSpecifier()) {
1578 // If there is an invalid declaration specifier right after the function
1579 // prototype, then we must be in a missing semicolon case where this isn't
1580 // actually a body. Just fall through into the code that handles it as a
1581 // prototype, and let the top-level code handle the erroneous declspec
1582 // where it would otherwise expect a comma or semicolon.
1583 } else {
1584 Diag(Tok, diag::err_expected_fn_body);
1585 SkipUntil(tok::semi);
1586 return DeclGroupPtrTy();
1587 }
1588 } else {
1589 if (Tok.is(tok::l_brace)) {
1590 Diag(Tok, diag::err_function_definition_not_allowed);
1591 SkipMalformedDecl();
1592 return DeclGroupPtrTy();
1593 }
1594 }
1595 }
1596
1597 if (ParseAsmAttributesAfterDeclarator(D))
1598 return DeclGroupPtrTy();
1599
1600 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1601 // must parse and analyze the for-range-initializer before the declaration is
1602 // analyzed.
1603 //
1604 // Handle the Objective-C for-in loop variable similarly, although we
1605 // don't need to parse the container in advance.
1606 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1607 bool IsForRangeLoop = false;
1608 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1609 IsForRangeLoop = true;
1610 if (Tok.is(tok::l_brace))
1611 FRI->RangeExpr = ParseBraceInitializer();
1612 else
1613 FRI->RangeExpr = ParseExpression();
1614 }
1615
1616 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1617 if (IsForRangeLoop)
1618 Actions.ActOnCXXForRangeDecl(ThisDecl);
1619 Actions.FinalizeDeclaration(ThisDecl);
1620 D.complete(ThisDecl);
1621 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1622 }
1623
1624 SmallVector<Decl *, 8> DeclsInGroup;
1625 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1626 D, ParsedTemplateInfo(), FRI);
1627 if (LateParsedAttrs.size() > 0)
1628 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1629 D.complete(FirstDecl);
1630 if (FirstDecl)
1631 DeclsInGroup.push_back(FirstDecl);
1632
1633 bool ExpectSemi = Context != Declarator::ForContext;
1634
1635 // If we don't have a comma, it is either the end of the list (a ';') or an
1636 // error, bail out.
1637 SourceLocation CommaLoc;
1638 while (TryConsumeToken(tok::comma, CommaLoc)) {
1639 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1640 // This comma was followed by a line-break and something which can't be
1641 // the start of a declarator. The comma was probably a typo for a
1642 // semicolon.
1643 Diag(CommaLoc, diag::err_expected_semi_declaration)
1644 << FixItHint::CreateReplacement(CommaLoc, ";");
1645 ExpectSemi = false;
1646 break;
1647 }
1648
1649 // Parse the next declarator.
1650 D.clear();
1651 D.setCommaLoc(CommaLoc);
1652
1653 // Accept attributes in an init-declarator. In the first declarator in a
1654 // declaration, these would be part of the declspec. In subsequent
1655 // declarators, they become part of the declarator itself, so that they
1656 // don't apply to declarators after *this* one. Examples:
1657 // short __attribute__((common)) var; -> declspec
1658 // short var __attribute__((common)); -> declarator
1659 // short x, __attribute__((common)) var; -> declarator
1660 MaybeParseGNUAttributes(D);
1661
1662 ParseDeclarator(D);
1663 if (!D.isInvalidType()) {
1664 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1665 D.complete(ThisDecl);
1666 if (ThisDecl)
1667 DeclsInGroup.push_back(ThisDecl);
1668 }
1669 }
1670
1671 if (DeclEnd)
1672 *DeclEnd = Tok.getLocation();
1673
1674 if (ExpectSemi &&
1675 ExpectAndConsumeSemi(Context == Declarator::FileContext
1676 ? diag::err_invalid_token_after_toplevel_declarator
1677 : diag::err_expected_semi_declaration)) {
1678 // Okay, there was no semicolon and one was expected. If we see a
1679 // declaration specifier, just assume it was missing and continue parsing.
1680 // Otherwise things are very confused and we skip to recover.
1681 if (!isDeclarationSpecifier()) {
1682 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1683 TryConsumeToken(tok::semi);
1684 }
1685 }
1686
1687 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1688 }
1689
1690 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1691 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1692 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1693 // If a simple-asm-expr is present, parse it.
1694 if (Tok.is(tok::kw_asm)) {
1695 SourceLocation Loc;
1696 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1697 if (AsmLabel.isInvalid()) {
1698 SkipUntil(tok::semi, StopBeforeMatch);
1699 return true;
1700 }
1701
1702 D.setAsmLabel(AsmLabel.get());
1703 D.SetRangeEnd(Loc);
1704 }
1705
1706 MaybeParseGNUAttributes(D);
1707 return false;
1708 }
1709
1710 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1711 /// declarator'. This method parses the remainder of the declaration
1712 /// (including any attributes or initializer, among other things) and
1713 /// finalizes the declaration.
1714 ///
1715 /// init-declarator: [C99 6.7]
1716 /// declarator
1717 /// declarator '=' initializer
1718 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
1719 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1720 /// [C++] declarator initializer[opt]
1721 ///
1722 /// [C++] initializer:
1723 /// [C++] '=' initializer-clause
1724 /// [C++] '(' expression-list ')'
1725 /// [C++0x] '=' 'default' [TODO]
1726 /// [C++0x] '=' 'delete'
1727 /// [C++0x] braced-init-list
1728 ///
1729 /// According to the standard grammar, =default and =delete are function
1730 /// definitions, but that definitely doesn't fit with the parser here.
1731 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1732 Decl *Parser::ParseDeclarationAfterDeclarator(
1733 Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1734 if (ParseAsmAttributesAfterDeclarator(D))
1735 return nullptr;
1736
1737 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1738 }
1739
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1740 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1741 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1742 // Inform the current actions module that we just parsed this declarator.
1743 Decl *ThisDecl = nullptr;
1744 switch (TemplateInfo.Kind) {
1745 case ParsedTemplateInfo::NonTemplate:
1746 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1747 break;
1748
1749 case ParsedTemplateInfo::Template:
1750 case ParsedTemplateInfo::ExplicitSpecialization: {
1751 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1752 *TemplateInfo.TemplateParams,
1753 D);
1754 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1755 // Re-direct this decl to refer to the templated decl so that we can
1756 // initialize it.
1757 ThisDecl = VT->getTemplatedDecl();
1758 break;
1759 }
1760 case ParsedTemplateInfo::ExplicitInstantiation: {
1761 if (Tok.is(tok::semi)) {
1762 DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1763 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1764 if (ThisRes.isInvalid()) {
1765 SkipUntil(tok::semi, StopBeforeMatch);
1766 return nullptr;
1767 }
1768 ThisDecl = ThisRes.get();
1769 } else {
1770 // FIXME: This check should be for a variable template instantiation only.
1771
1772 // Check that this is a valid instantiation
1773 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1774 // If the declarator-id is not a template-id, issue a diagnostic and
1775 // recover by ignoring the 'template' keyword.
1776 Diag(Tok, diag::err_template_defn_explicit_instantiation)
1777 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1778 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1779 } else {
1780 SourceLocation LAngleLoc =
1781 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1782 Diag(D.getIdentifierLoc(),
1783 diag::err_explicit_instantiation_with_definition)
1784 << SourceRange(TemplateInfo.TemplateLoc)
1785 << FixItHint::CreateInsertion(LAngleLoc, "<>");
1786
1787 // Recover as if it were an explicit specialization.
1788 TemplateParameterLists FakedParamLists;
1789 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1790 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1791 0, LAngleLoc));
1792
1793 ThisDecl =
1794 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1795 }
1796 }
1797 break;
1798 }
1799 }
1800
1801 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1802
1803 // Parse declarator '=' initializer.
1804 // If a '==' or '+=' is found, suggest a fixit to '='.
1805 if (isTokenEqualOrEqualTypo()) {
1806 SourceLocation EqualLoc = ConsumeToken();
1807
1808 if (Tok.is(tok::kw_delete)) {
1809 if (D.isFunctionDeclarator())
1810 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1811 << 1 /* delete */;
1812 else
1813 Diag(ConsumeToken(), diag::err_deleted_non_function);
1814 } else if (Tok.is(tok::kw_default)) {
1815 if (D.isFunctionDeclarator())
1816 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1817 << 0 /* default */;
1818 else
1819 Diag(ConsumeToken(), diag::err_default_special_members);
1820 } else {
1821 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1822 EnterScope(0);
1823 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1824 }
1825
1826 if (Tok.is(tok::code_completion)) {
1827 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1828 Actions.FinalizeDeclaration(ThisDecl);
1829 cutOffParsing();
1830 return nullptr;
1831 }
1832
1833 ExprResult Init(ParseInitializer());
1834
1835 // If this is the only decl in (possibly) range based for statement,
1836 // our best guess is that the user meant ':' instead of '='.
1837 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1838 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1839 << FixItHint::CreateReplacement(EqualLoc, ":");
1840 // We are trying to stop parser from looking for ';' in this for
1841 // statement, therefore preventing spurious errors to be issued.
1842 FRI->ColonLoc = EqualLoc;
1843 Init = ExprError();
1844 FRI->RangeExpr = Init;
1845 }
1846
1847 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1848 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1849 ExitScope();
1850 }
1851
1852 if (Init.isInvalid()) {
1853 SmallVector<tok::TokenKind, 2> StopTokens;
1854 StopTokens.push_back(tok::comma);
1855 if (D.getContext() == Declarator::ForContext)
1856 StopTokens.push_back(tok::r_paren);
1857 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1858 Actions.ActOnInitializerError(ThisDecl);
1859 } else
1860 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1861 /*DirectInit=*/false, TypeContainsAuto);
1862 }
1863 } else if (Tok.is(tok::l_paren)) {
1864 // Parse C++ direct initializer: '(' expression-list ')'
1865 BalancedDelimiterTracker T(*this, tok::l_paren);
1866 T.consumeOpen();
1867
1868 ExprVector Exprs;
1869 CommaLocsTy CommaLocs;
1870
1871 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1872 EnterScope(0);
1873 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1874 }
1875
1876 if (ParseExpressionList(Exprs, CommaLocs)) {
1877 Actions.ActOnInitializerError(ThisDecl);
1878 SkipUntil(tok::r_paren, StopAtSemi);
1879
1880 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1881 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1882 ExitScope();
1883 }
1884 } else {
1885 // Match the ')'.
1886 T.consumeClose();
1887
1888 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1889 "Unexpected number of commas!");
1890
1891 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1892 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1893 ExitScope();
1894 }
1895
1896 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1897 T.getCloseLocation(),
1898 Exprs);
1899 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
1900 /*DirectInit=*/true, TypeContainsAuto);
1901 }
1902 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
1903 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
1904 // Parse C++0x braced-init-list.
1905 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1906
1907 if (D.getCXXScopeSpec().isSet()) {
1908 EnterScope(0);
1909 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1910 }
1911
1912 ExprResult Init(ParseBraceInitializer());
1913
1914 if (D.getCXXScopeSpec().isSet()) {
1915 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1916 ExitScope();
1917 }
1918
1919 if (Init.isInvalid()) {
1920 Actions.ActOnInitializerError(ThisDecl);
1921 } else
1922 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1923 /*DirectInit=*/true, TypeContainsAuto);
1924
1925 } else {
1926 Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1927 }
1928
1929 Actions.FinalizeDeclaration(ThisDecl);
1930
1931 return ThisDecl;
1932 }
1933
1934 /// ParseSpecifierQualifierList
1935 /// specifier-qualifier-list:
1936 /// type-specifier specifier-qualifier-list[opt]
1937 /// type-qualifier specifier-qualifier-list[opt]
1938 /// [GNU] attributes specifier-qualifier-list[opt]
1939 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)1940 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1941 DeclSpecContext DSC) {
1942 /// specifier-qualifier-list is a subset of declaration-specifiers. Just
1943 /// parse declaration-specifiers and complain about extra stuff.
1944 /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1945 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1946
1947 // Validate declspec for type-name.
1948 unsigned Specs = DS.getParsedSpecifiers();
1949 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
1950 Diag(Tok, diag::err_expected_type);
1951 DS.SetTypeSpecError();
1952 } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1953 !DS.hasAttributes()) {
1954 Diag(Tok, diag::err_typename_requires_specqual);
1955 if (!DS.hasTypeSpecifier())
1956 DS.SetTypeSpecError();
1957 }
1958
1959 // Issue diagnostic and remove storage class if present.
1960 if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1961 if (DS.getStorageClassSpecLoc().isValid())
1962 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1963 else
1964 Diag(DS.getThreadStorageClassSpecLoc(),
1965 diag::err_typename_invalid_storageclass);
1966 DS.ClearStorageClassSpecs();
1967 }
1968
1969 // Issue diagnostic and remove function specfier if present.
1970 if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1971 if (DS.isInlineSpecified())
1972 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1973 if (DS.isVirtualSpecified())
1974 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1975 if (DS.isExplicitSpecified())
1976 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1977 DS.ClearFunctionSpecs();
1978 }
1979
1980 // Issue diagnostic and remove constexpr specfier if present.
1981 if (DS.isConstexprSpecified()) {
1982 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1983 DS.ClearConstexprSpec();
1984 }
1985 }
1986
1987 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1988 /// specified token is valid after the identifier in a declarator which
1989 /// immediately follows the declspec. For example, these things are valid:
1990 ///
1991 /// int x [ 4]; // direct-declarator
1992 /// int x ( int y); // direct-declarator
1993 /// int(int x ) // direct-declarator
1994 /// int x ; // simple-declaration
1995 /// int x = 17; // init-declarator-list
1996 /// int x , y; // init-declarator-list
1997 /// int x __asm__ ("foo"); // init-declarator-list
1998 /// int x : 4; // struct-declarator
1999 /// int x { 5}; // C++'0x unified initializers
2000 ///
2001 /// This is not, because 'x' does not immediately follow the declspec (though
2002 /// ')' happens to be valid anyway).
2003 /// int (x)
2004 ///
isValidAfterIdentifierInDeclarator(const Token & T)2005 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2006 return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2007 T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2008 T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2009 }
2010
2011
2012 /// ParseImplicitInt - This method is called when we have an non-typename
2013 /// identifier in a declspec (which normally terminates the decl spec) when
2014 /// the declspec has no type specifier. In this case, the declspec is either
2015 /// malformed or is "implicit int" (in K&R and C89).
2016 ///
2017 /// This method handles diagnosing this prettily and returns false if the
2018 /// declspec is done being processed. If it recovers and thinks there may be
2019 /// other pieces of declspec after it, it returns true.
2020 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2021 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2022 const ParsedTemplateInfo &TemplateInfo,
2023 AccessSpecifier AS, DeclSpecContext DSC,
2024 ParsedAttributesWithRange &Attrs) {
2025 assert(Tok.is(tok::identifier) && "should have identifier");
2026
2027 SourceLocation Loc = Tok.getLocation();
2028 // If we see an identifier that is not a type name, we normally would
2029 // parse it as the identifer being declared. However, when a typename
2030 // is typo'd or the definition is not included, this will incorrectly
2031 // parse the typename as the identifier name and fall over misparsing
2032 // later parts of the diagnostic.
2033 //
2034 // As such, we try to do some look-ahead in cases where this would
2035 // otherwise be an "implicit-int" case to see if this is invalid. For
2036 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2037 // an identifier with implicit int, we'd get a parse error because the
2038 // next token is obviously invalid for a type. Parse these as a case
2039 // with an invalid type specifier.
2040 assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2041
2042 // Since we know that this either implicit int (which is rare) or an
2043 // error, do lookahead to try to do better recovery. This never applies
2044 // within a type specifier. Outside of C++, we allow this even if the
2045 // language doesn't "officially" support implicit int -- we support
2046 // implicit int as an extension in C99 and C11.
2047 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2048 isValidAfterIdentifierInDeclarator(NextToken())) {
2049 // If this token is valid for implicit int, e.g. "static x = 4", then
2050 // we just avoid eating the identifier, so it will be parsed as the
2051 // identifier in the declarator.
2052 return false;
2053 }
2054
2055 if (getLangOpts().CPlusPlus &&
2056 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2057 // Don't require a type specifier if we have the 'auto' storage class
2058 // specifier in C++98 -- we'll promote it to a type specifier.
2059 if (SS)
2060 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2061 return false;
2062 }
2063
2064 // Otherwise, if we don't consume this token, we are going to emit an
2065 // error anyway. Try to recover from various common problems. Check
2066 // to see if this was a reference to a tag name without a tag specified.
2067 // This is a common problem in C (saying 'foo' instead of 'struct foo').
2068 //
2069 // C++ doesn't need this, and isTagName doesn't take SS.
2070 if (SS == nullptr) {
2071 const char *TagName = nullptr, *FixitTagName = nullptr;
2072 tok::TokenKind TagKind = tok::unknown;
2073
2074 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2075 default: break;
2076 case DeclSpec::TST_enum:
2077 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2078 case DeclSpec::TST_union:
2079 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2080 case DeclSpec::TST_struct:
2081 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2082 case DeclSpec::TST_interface:
2083 TagName="__interface"; FixitTagName = "__interface ";
2084 TagKind=tok::kw___interface;break;
2085 case DeclSpec::TST_class:
2086 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2087 }
2088
2089 if (TagName) {
2090 IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2091 LookupResult R(Actions, TokenName, SourceLocation(),
2092 Sema::LookupOrdinaryName);
2093
2094 Diag(Loc, diag::err_use_of_tag_name_without_tag)
2095 << TokenName << TagName << getLangOpts().CPlusPlus
2096 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2097
2098 if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2099 for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2100 I != IEnd; ++I)
2101 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2102 << TokenName << TagName;
2103 }
2104
2105 // Parse this as a tag as if the missing tag were present.
2106 if (TagKind == tok::kw_enum)
2107 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2108 else
2109 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2110 /*EnteringContext*/ false, DSC_normal, Attrs);
2111 return true;
2112 }
2113 }
2114
2115 // Determine whether this identifier could plausibly be the name of something
2116 // being declared (with a missing type).
2117 if (!isTypeSpecifier(DSC) &&
2118 (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2119 // Look ahead to the next token to try to figure out what this declaration
2120 // was supposed to be.
2121 switch (NextToken().getKind()) {
2122 case tok::l_paren: {
2123 // static x(4); // 'x' is not a type
2124 // x(int n); // 'x' is not a type
2125 // x (*p)[]; // 'x' is a type
2126 //
2127 // Since we're in an error case, we can afford to perform a tentative
2128 // parse to determine which case we're in.
2129 TentativeParsingAction PA(*this);
2130 ConsumeToken();
2131 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2132 PA.Revert();
2133
2134 if (TPR != TPResult::False) {
2135 // The identifier is followed by a parenthesized declarator.
2136 // It's supposed to be a type.
2137 break;
2138 }
2139
2140 // If we're in a context where we could be declaring a constructor,
2141 // check whether this is a constructor declaration with a bogus name.
2142 if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2143 IdentifierInfo *II = Tok.getIdentifierInfo();
2144 if (Actions.isCurrentClassNameTypo(II, SS)) {
2145 Diag(Loc, diag::err_constructor_bad_name)
2146 << Tok.getIdentifierInfo() << II
2147 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2148 Tok.setIdentifierInfo(II);
2149 }
2150 }
2151 // Fall through.
2152 }
2153 case tok::comma:
2154 case tok::equal:
2155 case tok::kw_asm:
2156 case tok::l_brace:
2157 case tok::l_square:
2158 case tok::semi:
2159 // This looks like a variable or function declaration. The type is
2160 // probably missing. We're done parsing decl-specifiers.
2161 if (SS)
2162 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2163 return false;
2164
2165 default:
2166 // This is probably supposed to be a type. This includes cases like:
2167 // int f(itn);
2168 // struct S { unsinged : 4; };
2169 break;
2170 }
2171 }
2172
2173 // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2174 // and attempt to recover.
2175 ParsedType T;
2176 IdentifierInfo *II = Tok.getIdentifierInfo();
2177 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2178 getLangOpts().CPlusPlus &&
2179 NextToken().is(tok::less));
2180 if (T) {
2181 // The action has suggested that the type T could be used. Set that as
2182 // the type in the declaration specifiers, consume the would-be type
2183 // name token, and we're done.
2184 const char *PrevSpec;
2185 unsigned DiagID;
2186 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2187 Actions.getASTContext().getPrintingPolicy());
2188 DS.SetRangeEnd(Tok.getLocation());
2189 ConsumeToken();
2190 // There may be other declaration specifiers after this.
2191 return true;
2192 } else if (II != Tok.getIdentifierInfo()) {
2193 // If no type was suggested, the correction is to a keyword
2194 Tok.setKind(II->getTokenID());
2195 // There may be other declaration specifiers after this.
2196 return true;
2197 }
2198
2199 // Otherwise, the action had no suggestion for us. Mark this as an error.
2200 DS.SetTypeSpecError();
2201 DS.SetRangeEnd(Tok.getLocation());
2202 ConsumeToken();
2203
2204 // TODO: Could inject an invalid typedef decl in an enclosing scope to
2205 // avoid rippling error messages on subsequent uses of the same type,
2206 // could be useful if #include was forgotten.
2207 return false;
2208 }
2209
2210 /// \brief Determine the declaration specifier context from the declarator
2211 /// context.
2212 ///
2213 /// \param Context the declarator context, which is one of the
2214 /// Declarator::TheContext enumerator values.
2215 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2216 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2217 if (Context == Declarator::MemberContext)
2218 return DSC_class;
2219 if (Context == Declarator::FileContext)
2220 return DSC_top_level;
2221 if (Context == Declarator::TemplateTypeArgContext)
2222 return DSC_template_type_arg;
2223 if (Context == Declarator::TrailingReturnContext)
2224 return DSC_trailing;
2225 if (Context == Declarator::AliasDeclContext ||
2226 Context == Declarator::AliasTemplateContext)
2227 return DSC_alias_declaration;
2228 return DSC_normal;
2229 }
2230
2231 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2232 ///
2233 /// FIXME: Simply returns an alignof() expression if the argument is a
2234 /// type. Ideally, the type should be propagated directly into Sema.
2235 ///
2236 /// [C11] type-id
2237 /// [C11] constant-expression
2238 /// [C++0x] type-id ...[opt]
2239 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2240 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2241 SourceLocation &EllipsisLoc) {
2242 ExprResult ER;
2243 if (isTypeIdInParens()) {
2244 SourceLocation TypeLoc = Tok.getLocation();
2245 ParsedType Ty = ParseTypeName().get();
2246 SourceRange TypeRange(Start, Tok.getLocation());
2247 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2248 Ty.getAsOpaquePtr(), TypeRange);
2249 } else
2250 ER = ParseConstantExpression();
2251
2252 if (getLangOpts().CPlusPlus11)
2253 TryConsumeToken(tok::ellipsis, EllipsisLoc);
2254
2255 return ER;
2256 }
2257
2258 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2259 /// attribute to Attrs.
2260 ///
2261 /// alignment-specifier:
2262 /// [C11] '_Alignas' '(' type-id ')'
2263 /// [C11] '_Alignas' '(' constant-expression ')'
2264 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2265 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2266 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2267 SourceLocation *EndLoc) {
2268 assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2269 "Not an alignment-specifier!");
2270
2271 IdentifierInfo *KWName = Tok.getIdentifierInfo();
2272 SourceLocation KWLoc = ConsumeToken();
2273
2274 BalancedDelimiterTracker T(*this, tok::l_paren);
2275 if (T.expectAndConsume())
2276 return;
2277
2278 SourceLocation EllipsisLoc;
2279 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2280 if (ArgExpr.isInvalid()) {
2281 T.skipToEnd();
2282 return;
2283 }
2284
2285 T.consumeClose();
2286 if (EndLoc)
2287 *EndLoc = T.getCloseLocation();
2288
2289 ArgsVector ArgExprs;
2290 ArgExprs.push_back(ArgExpr.get());
2291 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2292 AttributeList::AS_Keyword, EllipsisLoc);
2293 }
2294
2295 /// Determine whether we're looking at something that might be a declarator
2296 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2297 /// diagnose a missing semicolon after a prior tag definition in the decl
2298 /// specifier.
2299 ///
2300 /// \return \c true if an error occurred and this can't be any kind of
2301 /// declaration.
2302 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2303 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2304 DeclSpecContext DSContext,
2305 LateParsedAttrList *LateAttrs) {
2306 assert(DS.hasTagDefinition() && "shouldn't call this");
2307
2308 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2309
2310 if (getLangOpts().CPlusPlus &&
2311 (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2312 Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2313 TryAnnotateCXXScopeToken(EnteringContext)) {
2314 SkipMalformedDecl();
2315 return true;
2316 }
2317
2318 bool HasScope = Tok.is(tok::annot_cxxscope);
2319 // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2320 Token AfterScope = HasScope ? NextToken() : Tok;
2321
2322 // Determine whether the following tokens could possibly be a
2323 // declarator.
2324 bool MightBeDeclarator = true;
2325 if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2326 // A declarator-id can't start with 'typename'.
2327 MightBeDeclarator = false;
2328 } else if (AfterScope.is(tok::annot_template_id)) {
2329 // If we have a type expressed as a template-id, this cannot be a
2330 // declarator-id (such a type cannot be redeclared in a simple-declaration).
2331 TemplateIdAnnotation *Annot =
2332 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2333 if (Annot->Kind == TNK_Type_template)
2334 MightBeDeclarator = false;
2335 } else if (AfterScope.is(tok::identifier)) {
2336 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2337
2338 // These tokens cannot come after the declarator-id in a
2339 // simple-declaration, and are likely to come after a type-specifier.
2340 if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2341 Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2342 Next.is(tok::coloncolon)) {
2343 // Missing a semicolon.
2344 MightBeDeclarator = false;
2345 } else if (HasScope) {
2346 // If the declarator-id has a scope specifier, it must redeclare a
2347 // previously-declared entity. If that's a type (and this is not a
2348 // typedef), that's an error.
2349 CXXScopeSpec SS;
2350 Actions.RestoreNestedNameSpecifierAnnotation(
2351 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2352 IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2353 Sema::NameClassification Classification = Actions.ClassifyName(
2354 getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2355 /*IsAddressOfOperand*/false);
2356 switch (Classification.getKind()) {
2357 case Sema::NC_Error:
2358 SkipMalformedDecl();
2359 return true;
2360
2361 case Sema::NC_Keyword:
2362 case Sema::NC_NestedNameSpecifier:
2363 llvm_unreachable("typo correction and nested name specifiers not "
2364 "possible here");
2365
2366 case Sema::NC_Type:
2367 case Sema::NC_TypeTemplate:
2368 // Not a previously-declared non-type entity.
2369 MightBeDeclarator = false;
2370 break;
2371
2372 case Sema::NC_Unknown:
2373 case Sema::NC_Expression:
2374 case Sema::NC_VarTemplate:
2375 case Sema::NC_FunctionTemplate:
2376 // Might be a redeclaration of a prior entity.
2377 break;
2378 }
2379 }
2380 }
2381
2382 if (MightBeDeclarator)
2383 return false;
2384
2385 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2386 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2387 diag::err_expected_after)
2388 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2389
2390 // Try to recover from the typo, by dropping the tag definition and parsing
2391 // the problematic tokens as a type.
2392 //
2393 // FIXME: Split the DeclSpec into pieces for the standalone
2394 // declaration and pieces for the following declaration, instead
2395 // of assuming that all the other pieces attach to new declaration,
2396 // and call ParsedFreeStandingDeclSpec as appropriate.
2397 DS.ClearTypeSpecType();
2398 ParsedTemplateInfo NotATemplate;
2399 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2400 return false;
2401 }
2402
2403 /// ParseDeclarationSpecifiers
2404 /// declaration-specifiers: [C99 6.7]
2405 /// storage-class-specifier declaration-specifiers[opt]
2406 /// type-specifier declaration-specifiers[opt]
2407 /// [C99] function-specifier declaration-specifiers[opt]
2408 /// [C11] alignment-specifier declaration-specifiers[opt]
2409 /// [GNU] attributes declaration-specifiers[opt]
2410 /// [Clang] '__module_private__' declaration-specifiers[opt]
2411 ///
2412 /// storage-class-specifier: [C99 6.7.1]
2413 /// 'typedef'
2414 /// 'extern'
2415 /// 'static'
2416 /// 'auto'
2417 /// 'register'
2418 /// [C++] 'mutable'
2419 /// [C++11] 'thread_local'
2420 /// [C11] '_Thread_local'
2421 /// [GNU] '__thread'
2422 /// function-specifier: [C99 6.7.4]
2423 /// [C99] 'inline'
2424 /// [C++] 'virtual'
2425 /// [C++] 'explicit'
2426 /// [OpenCL] '__kernel'
2427 /// 'friend': [C++ dcl.friend]
2428 /// 'constexpr': [C++0x dcl.constexpr]
2429
2430 ///
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2431 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2432 const ParsedTemplateInfo &TemplateInfo,
2433 AccessSpecifier AS,
2434 DeclSpecContext DSContext,
2435 LateParsedAttrList *LateAttrs) {
2436 if (DS.getSourceRange().isInvalid()) {
2437 DS.SetRangeStart(Tok.getLocation());
2438 DS.SetRangeEnd(Tok.getLocation());
2439 }
2440
2441 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2442 bool AttrsLastTime = false;
2443 ParsedAttributesWithRange attrs(AttrFactory);
2444 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
2445 while (1) {
2446 bool isInvalid = false;
2447 const char *PrevSpec = nullptr;
2448 unsigned DiagID = 0;
2449
2450 SourceLocation Loc = Tok.getLocation();
2451
2452 switch (Tok.getKind()) {
2453 default:
2454 DoneWithDeclSpec:
2455 if (!AttrsLastTime)
2456 ProhibitAttributes(attrs);
2457 else {
2458 // Reject C++11 attributes that appertain to decl specifiers as
2459 // we don't support any C++11 attributes that appertain to decl
2460 // specifiers. This also conforms to what g++ 4.8 is doing.
2461 ProhibitCXX11Attributes(attrs);
2462
2463 DS.takeAttributesFrom(attrs);
2464 }
2465
2466 // If this is not a declaration specifier token, we're done reading decl
2467 // specifiers. First verify that DeclSpec's are consistent.
2468 DS.Finish(Diags, PP, Policy);
2469 return;
2470
2471 case tok::l_square:
2472 case tok::kw_alignas:
2473 if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2474 goto DoneWithDeclSpec;
2475
2476 ProhibitAttributes(attrs);
2477 // FIXME: It would be good to recover by accepting the attributes,
2478 // but attempting to do that now would cause serious
2479 // madness in terms of diagnostics.
2480 attrs.clear();
2481 attrs.Range = SourceRange();
2482
2483 ParseCXX11Attributes(attrs);
2484 AttrsLastTime = true;
2485 continue;
2486
2487 case tok::code_completion: {
2488 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2489 if (DS.hasTypeSpecifier()) {
2490 bool AllowNonIdentifiers
2491 = (getCurScope()->getFlags() & (Scope::ControlScope |
2492 Scope::BlockScope |
2493 Scope::TemplateParamScope |
2494 Scope::FunctionPrototypeScope |
2495 Scope::AtCatchScope)) == 0;
2496 bool AllowNestedNameSpecifiers
2497 = DSContext == DSC_top_level ||
2498 (DSContext == DSC_class && DS.isFriendSpecified());
2499
2500 Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2501 AllowNonIdentifiers,
2502 AllowNestedNameSpecifiers);
2503 return cutOffParsing();
2504 }
2505
2506 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2507 CCC = Sema::PCC_LocalDeclarationSpecifiers;
2508 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2509 CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2510 : Sema::PCC_Template;
2511 else if (DSContext == DSC_class)
2512 CCC = Sema::PCC_Class;
2513 else if (CurParsedObjCImpl)
2514 CCC = Sema::PCC_ObjCImplementation;
2515
2516 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2517 return cutOffParsing();
2518 }
2519
2520 case tok::coloncolon: // ::foo::bar
2521 // C++ scope specifier. Annotate and loop, or bail out on error.
2522 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2523 if (!DS.hasTypeSpecifier())
2524 DS.SetTypeSpecError();
2525 goto DoneWithDeclSpec;
2526 }
2527 if (Tok.is(tok::coloncolon)) // ::new or ::delete
2528 goto DoneWithDeclSpec;
2529 continue;
2530
2531 case tok::annot_cxxscope: {
2532 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2533 goto DoneWithDeclSpec;
2534
2535 CXXScopeSpec SS;
2536 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2537 Tok.getAnnotationRange(),
2538 SS);
2539
2540 // We are looking for a qualified typename.
2541 Token Next = NextToken();
2542 if (Next.is(tok::annot_template_id) &&
2543 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2544 ->Kind == TNK_Type_template) {
2545 // We have a qualified template-id, e.g., N::A<int>
2546
2547 // C++ [class.qual]p2:
2548 // In a lookup in which the constructor is an acceptable lookup
2549 // result and the nested-name-specifier nominates a class C:
2550 //
2551 // - if the name specified after the
2552 // nested-name-specifier, when looked up in C, is the
2553 // injected-class-name of C (Clause 9), or
2554 //
2555 // - if the name specified after the nested-name-specifier
2556 // is the same as the identifier or the
2557 // simple-template-id's template-name in the last
2558 // component of the nested-name-specifier,
2559 //
2560 // the name is instead considered to name the constructor of
2561 // class C.
2562 //
2563 // Thus, if the template-name is actually the constructor
2564 // name, then the code is ill-formed; this interpretation is
2565 // reinforced by the NAD status of core issue 635.
2566 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2567 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2568 TemplateId->Name &&
2569 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2570 if (isConstructorDeclarator(/*Unqualified*/false)) {
2571 // The user meant this to be an out-of-line constructor
2572 // definition, but template arguments are not allowed
2573 // there. Just allow this as a constructor; we'll
2574 // complain about it later.
2575 goto DoneWithDeclSpec;
2576 }
2577
2578 // The user meant this to name a type, but it actually names
2579 // a constructor with some extraneous template
2580 // arguments. Complain, then parse it as a type as the user
2581 // intended.
2582 Diag(TemplateId->TemplateNameLoc,
2583 diag::err_out_of_line_template_id_names_constructor)
2584 << TemplateId->Name;
2585 }
2586
2587 DS.getTypeSpecScope() = SS;
2588 ConsumeToken(); // The C++ scope.
2589 assert(Tok.is(tok::annot_template_id) &&
2590 "ParseOptionalCXXScopeSpecifier not working");
2591 AnnotateTemplateIdTokenAsType();
2592 continue;
2593 }
2594
2595 if (Next.is(tok::annot_typename)) {
2596 DS.getTypeSpecScope() = SS;
2597 ConsumeToken(); // The C++ scope.
2598 if (Tok.getAnnotationValue()) {
2599 ParsedType T = getTypeAnnotation(Tok);
2600 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2601 Tok.getAnnotationEndLoc(),
2602 PrevSpec, DiagID, T, Policy);
2603 if (isInvalid)
2604 break;
2605 }
2606 else
2607 DS.SetTypeSpecError();
2608 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2609 ConsumeToken(); // The typename
2610 }
2611
2612 if (Next.isNot(tok::identifier))
2613 goto DoneWithDeclSpec;
2614
2615 // If we're in a context where the identifier could be a class name,
2616 // check whether this is a constructor declaration.
2617 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2618 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2619 &SS)) {
2620 if (isConstructorDeclarator(/*Unqualified*/false))
2621 goto DoneWithDeclSpec;
2622
2623 // As noted in C++ [class.qual]p2 (cited above), when the name
2624 // of the class is qualified in a context where it could name
2625 // a constructor, its a constructor name. However, we've
2626 // looked at the declarator, and the user probably meant this
2627 // to be a type. Complain that it isn't supposed to be treated
2628 // as a type, then proceed to parse it as a type.
2629 Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2630 << Next.getIdentifierInfo();
2631 }
2632
2633 ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2634 Next.getLocation(),
2635 getCurScope(), &SS,
2636 false, false, ParsedType(),
2637 /*IsCtorOrDtorName=*/false,
2638 /*NonTrivialSourceInfo=*/true);
2639
2640 // If the referenced identifier is not a type, then this declspec is
2641 // erroneous: We already checked about that it has no type specifier, and
2642 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
2643 // typename.
2644 if (!TypeRep) {
2645 ConsumeToken(); // Eat the scope spec so the identifier is current.
2646 ParsedAttributesWithRange Attrs(AttrFactory);
2647 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2648 if (!Attrs.empty()) {
2649 AttrsLastTime = true;
2650 attrs.takeAllFrom(Attrs);
2651 }
2652 continue;
2653 }
2654 goto DoneWithDeclSpec;
2655 }
2656
2657 DS.getTypeSpecScope() = SS;
2658 ConsumeToken(); // The C++ scope.
2659
2660 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2661 DiagID, TypeRep, Policy);
2662 if (isInvalid)
2663 break;
2664
2665 DS.SetRangeEnd(Tok.getLocation());
2666 ConsumeToken(); // The typename.
2667
2668 continue;
2669 }
2670
2671 case tok::annot_typename: {
2672 // If we've previously seen a tag definition, we were almost surely
2673 // missing a semicolon after it.
2674 if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2675 goto DoneWithDeclSpec;
2676
2677 if (Tok.getAnnotationValue()) {
2678 ParsedType T = getTypeAnnotation(Tok);
2679 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2680 DiagID, T, Policy);
2681 } else
2682 DS.SetTypeSpecError();
2683
2684 if (isInvalid)
2685 break;
2686
2687 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2688 ConsumeToken(); // The typename
2689
2690 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2691 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2692 // Objective-C interface.
2693 if (Tok.is(tok::less) && getLangOpts().ObjC1)
2694 ParseObjCProtocolQualifiers(DS);
2695
2696 continue;
2697 }
2698
2699 case tok::kw___is_signed:
2700 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2701 // typically treats it as a trait. If we see __is_signed as it appears
2702 // in libstdc++, e.g.,
2703 //
2704 // static const bool __is_signed;
2705 //
2706 // then treat __is_signed as an identifier rather than as a keyword.
2707 if (DS.getTypeSpecType() == TST_bool &&
2708 DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2709 DS.getStorageClassSpec() == DeclSpec::SCS_static)
2710 TryKeywordIdentFallback(true);
2711
2712 // We're done with the declaration-specifiers.
2713 goto DoneWithDeclSpec;
2714
2715 // typedef-name
2716 case tok::kw_decltype:
2717 case tok::identifier: {
2718 // In C++, check to see if this is a scope specifier like foo::bar::, if
2719 // so handle it as such. This is important for ctor parsing.
2720 if (getLangOpts().CPlusPlus) {
2721 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2722 if (!DS.hasTypeSpecifier())
2723 DS.SetTypeSpecError();
2724 goto DoneWithDeclSpec;
2725 }
2726 if (!Tok.is(tok::identifier))
2727 continue;
2728 }
2729
2730 // This identifier can only be a typedef name if we haven't already seen
2731 // a type-specifier. Without this check we misparse:
2732 // typedef int X; struct Y { short X; }; as 'short int'.
2733 if (DS.hasTypeSpecifier())
2734 goto DoneWithDeclSpec;
2735
2736 // Check for need to substitute AltiVec keyword tokens.
2737 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2738 break;
2739
2740 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2741 // allow the use of a typedef name as a type specifier.
2742 if (DS.isTypeAltiVecVector())
2743 goto DoneWithDeclSpec;
2744
2745 ParsedType TypeRep =
2746 Actions.getTypeName(*Tok.getIdentifierInfo(),
2747 Tok.getLocation(), getCurScope());
2748
2749 // MSVC: If we weren't able to parse a default template argument, and it's
2750 // just a simple identifier, create a DependentNameType. This will allow us
2751 // to defer the name lookup to template instantiation time, as long we forge a
2752 // NestedNameSpecifier for the current context.
2753 if (!TypeRep && DSContext == DSC_template_type_arg &&
2754 getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2755 TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2756 *Tok.getIdentifierInfo(), Tok.getLocation());
2757 }
2758
2759 // If this is not a typedef name, don't parse it as part of the declspec,
2760 // it must be an implicit int or an error.
2761 if (!TypeRep) {
2762 ParsedAttributesWithRange Attrs(AttrFactory);
2763 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2764 if (!Attrs.empty()) {
2765 AttrsLastTime = true;
2766 attrs.takeAllFrom(Attrs);
2767 }
2768 continue;
2769 }
2770 goto DoneWithDeclSpec;
2771 }
2772
2773 // If we're in a context where the identifier could be a class name,
2774 // check whether this is a constructor declaration.
2775 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2776 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2777 isConstructorDeclarator(/*Unqualified*/true))
2778 goto DoneWithDeclSpec;
2779
2780 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2781 DiagID, TypeRep, Policy);
2782 if (isInvalid)
2783 break;
2784
2785 DS.SetRangeEnd(Tok.getLocation());
2786 ConsumeToken(); // The identifier
2787
2788 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2789 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2790 // Objective-C interface.
2791 if (Tok.is(tok::less) && getLangOpts().ObjC1)
2792 ParseObjCProtocolQualifiers(DS);
2793
2794 // Need to support trailing type qualifiers (e.g. "id<p> const").
2795 // If a type specifier follows, it will be diagnosed elsewhere.
2796 continue;
2797 }
2798
2799 // type-name
2800 case tok::annot_template_id: {
2801 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2802 if (TemplateId->Kind != TNK_Type_template) {
2803 // This template-id does not refer to a type name, so we're
2804 // done with the type-specifiers.
2805 goto DoneWithDeclSpec;
2806 }
2807
2808 // If we're in a context where the template-id could be a
2809 // constructor name or specialization, check whether this is a
2810 // constructor declaration.
2811 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2812 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2813 isConstructorDeclarator(TemplateId->SS.isEmpty()))
2814 goto DoneWithDeclSpec;
2815
2816 // Turn the template-id annotation token into a type annotation
2817 // token, then try again to parse it as a type-specifier.
2818 AnnotateTemplateIdTokenAsType();
2819 continue;
2820 }
2821
2822 // GNU attributes support.
2823 case tok::kw___attribute:
2824 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2825 continue;
2826
2827 // Microsoft declspec support.
2828 case tok::kw___declspec:
2829 ParseMicrosoftDeclSpec(DS.getAttributes());
2830 continue;
2831
2832 // Microsoft single token adornments.
2833 case tok::kw___forceinline: {
2834 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2835 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2836 SourceLocation AttrNameLoc = Tok.getLocation();
2837 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2838 nullptr, 0, AttributeList::AS_Keyword);
2839 break;
2840 }
2841
2842 case tok::kw___sptr:
2843 case tok::kw___uptr:
2844 case tok::kw___ptr64:
2845 case tok::kw___ptr32:
2846 case tok::kw___w64:
2847 case tok::kw___cdecl:
2848 case tok::kw___stdcall:
2849 case tok::kw___fastcall:
2850 case tok::kw___thiscall:
2851 case tok::kw___unaligned:
2852 ParseMicrosoftTypeAttributes(DS.getAttributes());
2853 continue;
2854
2855 // Borland single token adornments.
2856 case tok::kw___pascal:
2857 ParseBorlandTypeAttributes(DS.getAttributes());
2858 continue;
2859
2860 // OpenCL single token adornments.
2861 case tok::kw___kernel:
2862 ParseOpenCLAttributes(DS.getAttributes());
2863 continue;
2864
2865 // storage-class-specifier
2866 case tok::kw_typedef:
2867 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2868 PrevSpec, DiagID, Policy);
2869 break;
2870 case tok::kw_extern:
2871 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2872 Diag(Tok, diag::ext_thread_before) << "extern";
2873 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2874 PrevSpec, DiagID, Policy);
2875 break;
2876 case tok::kw___private_extern__:
2877 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2878 Loc, PrevSpec, DiagID, Policy);
2879 break;
2880 case tok::kw_static:
2881 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2882 Diag(Tok, diag::ext_thread_before) << "static";
2883 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2884 PrevSpec, DiagID, Policy);
2885 break;
2886 case tok::kw_auto:
2887 if (getLangOpts().CPlusPlus11) {
2888 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2889 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2890 PrevSpec, DiagID, Policy);
2891 if (!isInvalid)
2892 Diag(Tok, diag::ext_auto_storage_class)
2893 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2894 } else
2895 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2896 DiagID, Policy);
2897 } else
2898 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2899 PrevSpec, DiagID, Policy);
2900 break;
2901 case tok::kw_register:
2902 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2903 PrevSpec, DiagID, Policy);
2904 break;
2905 case tok::kw_mutable:
2906 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2907 PrevSpec, DiagID, Policy);
2908 break;
2909 case tok::kw___thread:
2910 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
2911 PrevSpec, DiagID);
2912 break;
2913 case tok::kw_thread_local:
2914 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
2915 PrevSpec, DiagID);
2916 break;
2917 case tok::kw__Thread_local:
2918 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
2919 Loc, PrevSpec, DiagID);
2920 break;
2921
2922 // function-specifier
2923 case tok::kw_inline:
2924 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
2925 break;
2926 case tok::kw_virtual:
2927 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2928 break;
2929 case tok::kw_explicit:
2930 isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2931 break;
2932 case tok::kw__Noreturn:
2933 if (!getLangOpts().C11)
2934 Diag(Loc, diag::ext_c11_noreturn);
2935 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2936 break;
2937
2938 // alignment-specifier
2939 case tok::kw__Alignas:
2940 if (!getLangOpts().C11)
2941 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
2942 ParseAlignmentSpecifier(DS.getAttributes());
2943 continue;
2944
2945 // friend
2946 case tok::kw_friend:
2947 if (DSContext == DSC_class)
2948 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2949 else {
2950 PrevSpec = ""; // not actually used by the diagnostic
2951 DiagID = diag::err_friend_invalid_in_context;
2952 isInvalid = true;
2953 }
2954 break;
2955
2956 // Modules
2957 case tok::kw___module_private__:
2958 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2959 break;
2960
2961 // constexpr
2962 case tok::kw_constexpr:
2963 isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2964 break;
2965
2966 // type-specifier
2967 case tok::kw_short:
2968 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2969 DiagID, Policy);
2970 break;
2971 case tok::kw_long:
2972 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2973 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2974 DiagID, Policy);
2975 else
2976 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2977 DiagID, Policy);
2978 break;
2979 case tok::kw___int64:
2980 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2981 DiagID, Policy);
2982 break;
2983 case tok::kw_signed:
2984 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2985 DiagID);
2986 break;
2987 case tok::kw_unsigned:
2988 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2989 DiagID);
2990 break;
2991 case tok::kw__Complex:
2992 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2993 DiagID);
2994 break;
2995 case tok::kw__Imaginary:
2996 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2997 DiagID);
2998 break;
2999 case tok::kw_void:
3000 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3001 DiagID, Policy);
3002 break;
3003 case tok::kw_char:
3004 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3005 DiagID, Policy);
3006 break;
3007 case tok::kw_int:
3008 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3009 DiagID, Policy);
3010 break;
3011 case tok::kw___int128:
3012 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3013 DiagID, Policy);
3014 break;
3015 case tok::kw_half:
3016 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3017 DiagID, Policy);
3018 break;
3019 case tok::kw_float:
3020 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3021 DiagID, Policy);
3022 break;
3023 case tok::kw_double:
3024 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3025 DiagID, Policy);
3026 break;
3027 case tok::kw_wchar_t:
3028 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3029 DiagID, Policy);
3030 break;
3031 case tok::kw_char16_t:
3032 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3033 DiagID, Policy);
3034 break;
3035 case tok::kw_char32_t:
3036 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3037 DiagID, Policy);
3038 break;
3039 case tok::kw_bool:
3040 case tok::kw__Bool:
3041 if (Tok.is(tok::kw_bool) &&
3042 DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3043 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3044 PrevSpec = ""; // Not used by the diagnostic.
3045 DiagID = diag::err_bool_redeclaration;
3046 // For better error recovery.
3047 Tok.setKind(tok::identifier);
3048 isInvalid = true;
3049 } else {
3050 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3051 DiagID, Policy);
3052 }
3053 break;
3054 case tok::kw__Decimal32:
3055 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3056 DiagID, Policy);
3057 break;
3058 case tok::kw__Decimal64:
3059 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3060 DiagID, Policy);
3061 break;
3062 case tok::kw__Decimal128:
3063 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3064 DiagID, Policy);
3065 break;
3066 case tok::kw___vector:
3067 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3068 break;
3069 case tok::kw___pixel:
3070 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3071 break;
3072 case tok::kw___unknown_anytype:
3073 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3074 PrevSpec, DiagID, Policy);
3075 break;
3076
3077 // class-specifier:
3078 case tok::kw_class:
3079 case tok::kw_struct:
3080 case tok::kw___interface:
3081 case tok::kw_union: {
3082 tok::TokenKind Kind = Tok.getKind();
3083 ConsumeToken();
3084
3085 // These are attributes following class specifiers.
3086 // To produce better diagnostic, we parse them when
3087 // parsing class specifier.
3088 ParsedAttributesWithRange Attributes(AttrFactory);
3089 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3090 EnteringContext, DSContext, Attributes);
3091
3092 // If there are attributes following class specifier,
3093 // take them over and handle them here.
3094 if (!Attributes.empty()) {
3095 AttrsLastTime = true;
3096 attrs.takeAllFrom(Attributes);
3097 }
3098 continue;
3099 }
3100
3101 // enum-specifier:
3102 case tok::kw_enum:
3103 ConsumeToken();
3104 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3105 continue;
3106
3107 // cv-qualifier:
3108 case tok::kw_const:
3109 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3110 getLangOpts());
3111 break;
3112 case tok::kw_volatile:
3113 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3114 getLangOpts());
3115 break;
3116 case tok::kw_restrict:
3117 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3118 getLangOpts());
3119 break;
3120
3121 // C++ typename-specifier:
3122 case tok::kw_typename:
3123 if (TryAnnotateTypeOrScopeToken()) {
3124 DS.SetTypeSpecError();
3125 goto DoneWithDeclSpec;
3126 }
3127 if (!Tok.is(tok::kw_typename))
3128 continue;
3129 break;
3130
3131 // GNU typeof support.
3132 case tok::kw_typeof:
3133 ParseTypeofSpecifier(DS);
3134 continue;
3135
3136 case tok::annot_decltype:
3137 ParseDecltypeSpecifier(DS);
3138 continue;
3139
3140 case tok::kw___underlying_type:
3141 ParseUnderlyingTypeSpecifier(DS);
3142 continue;
3143
3144 case tok::kw__Atomic:
3145 // C11 6.7.2.4/4:
3146 // If the _Atomic keyword is immediately followed by a left parenthesis,
3147 // it is interpreted as a type specifier (with a type name), not as a
3148 // type qualifier.
3149 if (NextToken().is(tok::l_paren)) {
3150 ParseAtomicSpecifier(DS);
3151 continue;
3152 }
3153 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3154 getLangOpts());
3155 break;
3156
3157 // OpenCL qualifiers:
3158 case tok::kw___private:
3159 case tok::kw___global:
3160 case tok::kw___local:
3161 case tok::kw___constant:
3162 case tok::kw___read_only:
3163 case tok::kw___write_only:
3164 case tok::kw___read_write:
3165 ParseOpenCLQualifiers(DS.getAttributes());
3166 break;
3167
3168 case tok::less:
3169 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3170 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3171 // but we support it.
3172 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3173 goto DoneWithDeclSpec;
3174
3175 if (!ParseObjCProtocolQualifiers(DS))
3176 Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3177 << FixItHint::CreateInsertion(Loc, "id")
3178 << SourceRange(Loc, DS.getSourceRange().getEnd());
3179
3180 // Need to support trailing type qualifiers (e.g. "id<p> const").
3181 // If a type specifier follows, it will be diagnosed elsewhere.
3182 continue;
3183 }
3184 // If the specifier wasn't legal, issue a diagnostic.
3185 if (isInvalid) {
3186 assert(PrevSpec && "Method did not return previous specifier!");
3187 assert(DiagID);
3188
3189 if (DiagID == diag::ext_duplicate_declspec)
3190 Diag(Tok, DiagID)
3191 << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3192 else
3193 Diag(Tok, DiagID) << PrevSpec;
3194 }
3195
3196 DS.SetRangeEnd(Tok.getLocation());
3197 if (DiagID != diag::err_bool_redeclaration)
3198 ConsumeToken();
3199
3200 AttrsLastTime = false;
3201 }
3202 }
3203
3204 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3205 /// semicolon.
3206 ///
3207 /// struct-declaration:
3208 /// specifier-qualifier-list struct-declarator-list
3209 /// [GNU] __extension__ struct-declaration
3210 /// [GNU] specifier-qualifier-list
3211 /// struct-declarator-list:
3212 /// struct-declarator
3213 /// struct-declarator-list ',' struct-declarator
3214 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3215 /// struct-declarator:
3216 /// declarator
3217 /// [GNU] declarator attributes[opt]
3218 /// declarator[opt] ':' constant-expression
3219 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3220 ///
3221 void Parser::
ParseStructDeclaration(ParsingDeclSpec & DS,FieldCallback & Fields)3222 ParseStructDeclaration(ParsingDeclSpec &DS, FieldCallback &Fields) {
3223
3224 if (Tok.is(tok::kw___extension__)) {
3225 // __extension__ silences extension warnings in the subexpression.
3226 ExtensionRAIIObject O(Diags); // Use RAII to do this.
3227 ConsumeToken();
3228 return ParseStructDeclaration(DS, Fields);
3229 }
3230
3231 // Parse the common specifier-qualifiers-list piece.
3232 ParseSpecifierQualifierList(DS);
3233
3234 // If there are no declarators, this is a free-standing declaration
3235 // specifier. Let the actions module cope with it.
3236 if (Tok.is(tok::semi)) {
3237 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3238 DS);
3239 DS.complete(TheDecl);
3240 return;
3241 }
3242
3243 // Read struct-declarators until we find the semicolon.
3244 bool FirstDeclarator = true;
3245 SourceLocation CommaLoc;
3246 while (1) {
3247 ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3248 DeclaratorInfo.D.setCommaLoc(CommaLoc);
3249
3250 // Attributes are only allowed here on successive declarators.
3251 if (!FirstDeclarator)
3252 MaybeParseGNUAttributes(DeclaratorInfo.D);
3253
3254 /// struct-declarator: declarator
3255 /// struct-declarator: declarator[opt] ':' constant-expression
3256 if (Tok.isNot(tok::colon)) {
3257 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3258 ColonProtectionRAIIObject X(*this);
3259 ParseDeclarator(DeclaratorInfo.D);
3260 }
3261
3262 if (TryConsumeToken(tok::colon)) {
3263 ExprResult Res(ParseConstantExpression());
3264 if (Res.isInvalid())
3265 SkipUntil(tok::semi, StopBeforeMatch);
3266 else
3267 DeclaratorInfo.BitfieldSize = Res.get();
3268 }
3269
3270 // If attributes exist after the declarator, parse them.
3271 MaybeParseGNUAttributes(DeclaratorInfo.D);
3272
3273 // We're done with this declarator; invoke the callback.
3274 Fields.invoke(DeclaratorInfo);
3275
3276 // If we don't have a comma, it is either the end of the list (a ';')
3277 // or an error, bail out.
3278 if (!TryConsumeToken(tok::comma, CommaLoc))
3279 return;
3280
3281 FirstDeclarator = false;
3282 }
3283 }
3284
3285 /// ParseStructUnionBody
3286 /// struct-contents:
3287 /// struct-declaration-list
3288 /// [EXT] empty
3289 /// [GNU] "struct-declaration-list" without terminatoring ';'
3290 /// struct-declaration-list:
3291 /// struct-declaration
3292 /// struct-declaration-list struct-declaration
3293 /// [OBC] '@' 'defs' '(' class-name ')'
3294 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3295 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3296 unsigned TagType, Decl *TagDecl) {
3297 PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3298 "parsing struct/union body");
3299 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3300
3301 BalancedDelimiterTracker T(*this, tok::l_brace);
3302 if (T.consumeOpen())
3303 return;
3304
3305 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3306 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3307
3308 SmallVector<Decl *, 32> FieldDecls;
3309
3310 // While we still have something to read, read the declarations in the struct.
3311 while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3312 // Each iteration of this loop reads one struct-declaration.
3313
3314 // Check for extraneous top-level semicolon.
3315 if (Tok.is(tok::semi)) {
3316 ConsumeExtraSemi(InsideStruct, TagType);
3317 continue;
3318 }
3319
3320 // Parse _Static_assert declaration.
3321 if (Tok.is(tok::kw__Static_assert)) {
3322 SourceLocation DeclEnd;
3323 ParseStaticAssertDeclaration(DeclEnd);
3324 continue;
3325 }
3326
3327 if (Tok.is(tok::annot_pragma_pack)) {
3328 HandlePragmaPack();
3329 continue;
3330 }
3331
3332 if (Tok.is(tok::annot_pragma_align)) {
3333 HandlePragmaAlign();
3334 continue;
3335 }
3336
3337 if (!Tok.is(tok::at)) {
3338 struct CFieldCallback : FieldCallback {
3339 Parser &P;
3340 Decl *TagDecl;
3341 SmallVectorImpl<Decl *> &FieldDecls;
3342
3343 CFieldCallback(Parser &P, Decl *TagDecl,
3344 SmallVectorImpl<Decl *> &FieldDecls) :
3345 P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
3346
3347 void invoke(ParsingFieldDeclarator &FD) override {
3348 // Install the declarator into the current TagDecl.
3349 Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
3350 FD.D.getDeclSpec().getSourceRange().getBegin(),
3351 FD.D, FD.BitfieldSize);
3352 FieldDecls.push_back(Field);
3353 FD.complete(Field);
3354 }
3355 } Callback(*this, TagDecl, FieldDecls);
3356
3357 // Parse all the comma separated declarators.
3358 ParsingDeclSpec DS(*this);
3359 ParseStructDeclaration(DS, Callback);
3360 } else { // Handle @defs
3361 ConsumeToken();
3362 if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3363 Diag(Tok, diag::err_unexpected_at);
3364 SkipUntil(tok::semi);
3365 continue;
3366 }
3367 ConsumeToken();
3368 ExpectAndConsume(tok::l_paren);
3369 if (!Tok.is(tok::identifier)) {
3370 Diag(Tok, diag::err_expected) << tok::identifier;
3371 SkipUntil(tok::semi);
3372 continue;
3373 }
3374 SmallVector<Decl *, 16> Fields;
3375 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3376 Tok.getIdentifierInfo(), Fields);
3377 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3378 ConsumeToken();
3379 ExpectAndConsume(tok::r_paren);
3380 }
3381
3382 if (TryConsumeToken(tok::semi))
3383 continue;
3384
3385 if (Tok.is(tok::r_brace)) {
3386 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3387 break;
3388 }
3389
3390 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3391 // Skip to end of block or statement to avoid ext-warning on extra ';'.
3392 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3393 // If we stopped at a ';', eat it.
3394 TryConsumeToken(tok::semi);
3395 }
3396
3397 T.consumeClose();
3398
3399 ParsedAttributes attrs(AttrFactory);
3400 // If attributes exist after struct contents, parse them.
3401 MaybeParseGNUAttributes(attrs);
3402
3403 Actions.ActOnFields(getCurScope(),
3404 RecordLoc, TagDecl, FieldDecls,
3405 T.getOpenLocation(), T.getCloseLocation(),
3406 attrs.getList());
3407 StructScope.Exit();
3408 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3409 T.getCloseLocation());
3410 }
3411
3412 /// ParseEnumSpecifier
3413 /// enum-specifier: [C99 6.7.2.2]
3414 /// 'enum' identifier[opt] '{' enumerator-list '}'
3415 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3416 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3417 /// '}' attributes[opt]
3418 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3419 /// '}'
3420 /// 'enum' identifier
3421 /// [GNU] 'enum' attributes[opt] identifier
3422 ///
3423 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3424 /// [C++11] enum-head '{' enumerator-list ',' '}'
3425 ///
3426 /// enum-head: [C++11]
3427 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3428 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
3429 /// identifier enum-base[opt]
3430 ///
3431 /// enum-key: [C++11]
3432 /// 'enum'
3433 /// 'enum' 'class'
3434 /// 'enum' 'struct'
3435 ///
3436 /// enum-base: [C++11]
3437 /// ':' type-specifier-seq
3438 ///
3439 /// [C++] elaborated-type-specifier:
3440 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
3441 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3442 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3443 const ParsedTemplateInfo &TemplateInfo,
3444 AccessSpecifier AS, DeclSpecContext DSC) {
3445 // Parse the tag portion of this.
3446 if (Tok.is(tok::code_completion)) {
3447 // Code completion for an enum name.
3448 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3449 return cutOffParsing();
3450 }
3451
3452 // If attributes exist after tag, parse them.
3453 ParsedAttributesWithRange attrs(AttrFactory);
3454 MaybeParseGNUAttributes(attrs);
3455 MaybeParseCXX11Attributes(attrs);
3456
3457 // If declspecs exist after tag, parse them.
3458 while (Tok.is(tok::kw___declspec))
3459 ParseMicrosoftDeclSpec(attrs);
3460
3461 SourceLocation ScopedEnumKWLoc;
3462 bool IsScopedUsingClassTag = false;
3463
3464 // In C++11, recognize 'enum class' and 'enum struct'.
3465 if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3466 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3467 : diag::ext_scoped_enum);
3468 IsScopedUsingClassTag = Tok.is(tok::kw_class);
3469 ScopedEnumKWLoc = ConsumeToken();
3470
3471 // Attributes are not allowed between these keywords. Diagnose,
3472 // but then just treat them like they appeared in the right place.
3473 ProhibitAttributes(attrs);
3474
3475 // They are allowed afterwards, though.
3476 MaybeParseGNUAttributes(attrs);
3477 MaybeParseCXX11Attributes(attrs);
3478 while (Tok.is(tok::kw___declspec))
3479 ParseMicrosoftDeclSpec(attrs);
3480 }
3481
3482 // C++11 [temp.explicit]p12:
3483 // The usual access controls do not apply to names used to specify
3484 // explicit instantiations.
3485 // We extend this to also cover explicit specializations. Note that
3486 // we don't suppress if this turns out to be an elaborated type
3487 // specifier.
3488 bool shouldDelayDiagsInTag =
3489 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3490 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3491 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3492
3493 // Enum definitions should not be parsed in a trailing-return-type.
3494 bool AllowDeclaration = DSC != DSC_trailing;
3495
3496 bool AllowFixedUnderlyingType = AllowDeclaration &&
3497 (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3498 getLangOpts().ObjC2);
3499
3500 CXXScopeSpec &SS = DS.getTypeSpecScope();
3501 if (getLangOpts().CPlusPlus) {
3502 // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3503 // if a fixed underlying type is allowed.
3504 ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3505
3506 if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3507 /*EnteringContext=*/true))
3508 return;
3509
3510 if (SS.isSet() && Tok.isNot(tok::identifier)) {
3511 Diag(Tok, diag::err_expected) << tok::identifier;
3512 if (Tok.isNot(tok::l_brace)) {
3513 // Has no name and is not a definition.
3514 // Skip the rest of this declarator, up until the comma or semicolon.
3515 SkipUntil(tok::comma, StopAtSemi);
3516 return;
3517 }
3518 }
3519 }
3520
3521 // Must have either 'enum name' or 'enum {...}'.
3522 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3523 !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3524 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3525
3526 // Skip the rest of this declarator, up until the comma or semicolon.
3527 SkipUntil(tok::comma, StopAtSemi);
3528 return;
3529 }
3530
3531 // If an identifier is present, consume and remember it.
3532 IdentifierInfo *Name = nullptr;
3533 SourceLocation NameLoc;
3534 if (Tok.is(tok::identifier)) {
3535 Name = Tok.getIdentifierInfo();
3536 NameLoc = ConsumeToken();
3537 }
3538
3539 if (!Name && ScopedEnumKWLoc.isValid()) {
3540 // C++0x 7.2p2: The optional identifier shall not be omitted in the
3541 // declaration of a scoped enumeration.
3542 Diag(Tok, diag::err_scoped_enum_missing_identifier);
3543 ScopedEnumKWLoc = SourceLocation();
3544 IsScopedUsingClassTag = false;
3545 }
3546
3547 // Okay, end the suppression area. We'll decide whether to emit the
3548 // diagnostics in a second.
3549 if (shouldDelayDiagsInTag)
3550 diagsFromTag.done();
3551
3552 TypeResult BaseType;
3553
3554 // Parse the fixed underlying type.
3555 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3556 if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3557 bool PossibleBitfield = false;
3558 if (CanBeBitfield) {
3559 // If we're in class scope, this can either be an enum declaration with
3560 // an underlying type, or a declaration of a bitfield member. We try to
3561 // use a simple disambiguation scheme first to catch the common cases
3562 // (integer literal, sizeof); if it's still ambiguous, we then consider
3563 // anything that's a simple-type-specifier followed by '(' as an
3564 // expression. This suffices because function types are not valid
3565 // underlying types anyway.
3566 EnterExpressionEvaluationContext Unevaluated(Actions,
3567 Sema::ConstantEvaluated);
3568 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3569 // If the next token starts an expression, we know we're parsing a
3570 // bit-field. This is the common case.
3571 if (TPR == TPResult::True)
3572 PossibleBitfield = true;
3573 // If the next token starts a type-specifier-seq, it may be either a
3574 // a fixed underlying type or the start of a function-style cast in C++;
3575 // lookahead one more token to see if it's obvious that we have a
3576 // fixed underlying type.
3577 else if (TPR == TPResult::False &&
3578 GetLookAheadToken(2).getKind() == tok::semi) {
3579 // Consume the ':'.
3580 ConsumeToken();
3581 } else {
3582 // We have the start of a type-specifier-seq, so we have to perform
3583 // tentative parsing to determine whether we have an expression or a
3584 // type.
3585 TentativeParsingAction TPA(*this);
3586
3587 // Consume the ':'.
3588 ConsumeToken();
3589
3590 // If we see a type specifier followed by an open-brace, we have an
3591 // ambiguity between an underlying type and a C++11 braced
3592 // function-style cast. Resolve this by always treating it as an
3593 // underlying type.
3594 // FIXME: The standard is not entirely clear on how to disambiguate in
3595 // this case.
3596 if ((getLangOpts().CPlusPlus &&
3597 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3598 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3599 // We'll parse this as a bitfield later.
3600 PossibleBitfield = true;
3601 TPA.Revert();
3602 } else {
3603 // We have a type-specifier-seq.
3604 TPA.Commit();
3605 }
3606 }
3607 } else {
3608 // Consume the ':'.
3609 ConsumeToken();
3610 }
3611
3612 if (!PossibleBitfield) {
3613 SourceRange Range;
3614 BaseType = ParseTypeName(&Range);
3615
3616 if (getLangOpts().CPlusPlus11) {
3617 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3618 } else if (!getLangOpts().ObjC2) {
3619 if (getLangOpts().CPlusPlus)
3620 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3621 else
3622 Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3623 }
3624 }
3625 }
3626
3627 // There are four options here. If we have 'friend enum foo;' then this is a
3628 // friend declaration, and cannot have an accompanying definition. If we have
3629 // 'enum foo;', then this is a forward declaration. If we have
3630 // 'enum foo {...' then this is a definition. Otherwise we have something
3631 // like 'enum foo xyz', a reference.
3632 //
3633 // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3634 // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
3635 // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
3636 //
3637 Sema::TagUseKind TUK;
3638 if (!AllowDeclaration) {
3639 TUK = Sema::TUK_Reference;
3640 } else if (Tok.is(tok::l_brace)) {
3641 if (DS.isFriendSpecified()) {
3642 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3643 << SourceRange(DS.getFriendSpecLoc());
3644 ConsumeBrace();
3645 SkipUntil(tok::r_brace, StopAtSemi);
3646 TUK = Sema::TUK_Friend;
3647 } else {
3648 TUK = Sema::TUK_Definition;
3649 }
3650 } else if (!isTypeSpecifier(DSC) &&
3651 (Tok.is(tok::semi) ||
3652 (Tok.isAtStartOfLine() &&
3653 !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3654 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3655 if (Tok.isNot(tok::semi)) {
3656 // A semicolon was missing after this declaration. Diagnose and recover.
3657 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3658 PP.EnterToken(Tok);
3659 Tok.setKind(tok::semi);
3660 }
3661 } else {
3662 TUK = Sema::TUK_Reference;
3663 }
3664
3665 // If this is an elaborated type specifier, and we delayed
3666 // diagnostics before, just merge them into the current pool.
3667 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3668 diagsFromTag.redelay();
3669 }
3670
3671 MultiTemplateParamsArg TParams;
3672 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3673 TUK != Sema::TUK_Reference) {
3674 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3675 // Skip the rest of this declarator, up until the comma or semicolon.
3676 Diag(Tok, diag::err_enum_template);
3677 SkipUntil(tok::comma, StopAtSemi);
3678 return;
3679 }
3680
3681 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3682 // Enumerations can't be explicitly instantiated.
3683 DS.SetTypeSpecError();
3684 Diag(StartLoc, diag::err_explicit_instantiation_enum);
3685 return;
3686 }
3687
3688 assert(TemplateInfo.TemplateParams && "no template parameters");
3689 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3690 TemplateInfo.TemplateParams->size());
3691 }
3692
3693 if (TUK == Sema::TUK_Reference)
3694 ProhibitAttributes(attrs);
3695
3696 if (!Name && TUK != Sema::TUK_Definition) {
3697 Diag(Tok, diag::err_enumerator_unnamed_no_def);
3698
3699 // Skip the rest of this declarator, up until the comma or semicolon.
3700 SkipUntil(tok::comma, StopAtSemi);
3701 return;
3702 }
3703
3704 bool Owned = false;
3705 bool IsDependent = false;
3706 const char *PrevSpec = nullptr;
3707 unsigned DiagID;
3708 Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3709 StartLoc, SS, Name, NameLoc, attrs.getList(),
3710 AS, DS.getModulePrivateSpecLoc(), TParams,
3711 Owned, IsDependent, ScopedEnumKWLoc,
3712 IsScopedUsingClassTag, BaseType,
3713 DSC == DSC_type_specifier);
3714
3715 if (IsDependent) {
3716 // This enum has a dependent nested-name-specifier. Handle it as a
3717 // dependent tag.
3718 if (!Name) {
3719 DS.SetTypeSpecError();
3720 Diag(Tok, diag::err_expected_type_name_after_typename);
3721 return;
3722 }
3723
3724 TypeResult Type = Actions.ActOnDependentTag(
3725 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3726 if (Type.isInvalid()) {
3727 DS.SetTypeSpecError();
3728 return;
3729 }
3730
3731 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3732 NameLoc.isValid() ? NameLoc : StartLoc,
3733 PrevSpec, DiagID, Type.get(),
3734 Actions.getASTContext().getPrintingPolicy()))
3735 Diag(StartLoc, DiagID) << PrevSpec;
3736
3737 return;
3738 }
3739
3740 if (!TagDecl) {
3741 // The action failed to produce an enumeration tag. If this is a
3742 // definition, consume the entire definition.
3743 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3744 ConsumeBrace();
3745 SkipUntil(tok::r_brace, StopAtSemi);
3746 }
3747
3748 DS.SetTypeSpecError();
3749 return;
3750 }
3751
3752 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3753 ParseEnumBody(StartLoc, TagDecl);
3754
3755 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3756 NameLoc.isValid() ? NameLoc : StartLoc,
3757 PrevSpec, DiagID, TagDecl, Owned,
3758 Actions.getASTContext().getPrintingPolicy()))
3759 Diag(StartLoc, DiagID) << PrevSpec;
3760 }
3761
3762 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
3763 /// enumerator-list:
3764 /// enumerator
3765 /// enumerator-list ',' enumerator
3766 /// enumerator:
3767 /// enumeration-constant
3768 /// enumeration-constant '=' constant-expression
3769 /// enumeration-constant:
3770 /// identifier
3771 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)3772 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3773 // Enter the scope of the enum body and start the definition.
3774 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3775 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3776
3777 BalancedDelimiterTracker T(*this, tok::l_brace);
3778 T.consumeOpen();
3779
3780 // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3781 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3782 Diag(Tok, diag::error_empty_enum);
3783
3784 SmallVector<Decl *, 32> EnumConstantDecls;
3785
3786 Decl *LastEnumConstDecl = nullptr;
3787
3788 // Parse the enumerator-list.
3789 while (Tok.isNot(tok::r_brace)) {
3790 // Parse enumerator. If failed, try skipping till the start of the next
3791 // enumerator definition.
3792 if (Tok.isNot(tok::identifier)) {
3793 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3794 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3795 TryConsumeToken(tok::comma))
3796 continue;
3797 break;
3798 }
3799 IdentifierInfo *Ident = Tok.getIdentifierInfo();
3800 SourceLocation IdentLoc = ConsumeToken();
3801
3802 // If attributes exist after the enumerator, parse them.
3803 ParsedAttributesWithRange attrs(AttrFactory);
3804 MaybeParseGNUAttributes(attrs);
3805 MaybeParseCXX11Attributes(attrs);
3806 ProhibitAttributes(attrs);
3807
3808 SourceLocation EqualLoc;
3809 ExprResult AssignedVal;
3810 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3811
3812 if (TryConsumeToken(tok::equal, EqualLoc)) {
3813 AssignedVal = ParseConstantExpression();
3814 if (AssignedVal.isInvalid())
3815 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3816 }
3817
3818 // Install the enumerator constant into EnumDecl.
3819 Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3820 LastEnumConstDecl,
3821 IdentLoc, Ident,
3822 attrs.getList(), EqualLoc,
3823 AssignedVal.get());
3824 PD.complete(EnumConstDecl);
3825
3826 EnumConstantDecls.push_back(EnumConstDecl);
3827 LastEnumConstDecl = EnumConstDecl;
3828
3829 if (Tok.is(tok::identifier)) {
3830 // We're missing a comma between enumerators.
3831 SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3832 Diag(Loc, diag::err_enumerator_list_missing_comma)
3833 << FixItHint::CreateInsertion(Loc, ", ");
3834 continue;
3835 }
3836
3837 // Emumerator definition must be finished, only comma or r_brace are
3838 // allowed here.
3839 SourceLocation CommaLoc;
3840 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3841 if (EqualLoc.isValid())
3842 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3843 << tok::comma;
3844 else
3845 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
3846 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
3847 if (TryConsumeToken(tok::comma, CommaLoc))
3848 continue;
3849 } else {
3850 break;
3851 }
3852 }
3853
3854 // If comma is followed by r_brace, emit appropriate warning.
3855 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
3856 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
3857 Diag(CommaLoc, getLangOpts().CPlusPlus ?
3858 diag::ext_enumerator_list_comma_cxx :
3859 diag::ext_enumerator_list_comma_c)
3860 << FixItHint::CreateRemoval(CommaLoc);
3861 else if (getLangOpts().CPlusPlus11)
3862 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3863 << FixItHint::CreateRemoval(CommaLoc);
3864 break;
3865 }
3866 }
3867
3868 // Eat the }.
3869 T.consumeClose();
3870
3871 // If attributes exist after the identifier list, parse them.
3872 ParsedAttributes attrs(AttrFactory);
3873 MaybeParseGNUAttributes(attrs);
3874
3875 Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3876 EnumDecl, EnumConstantDecls,
3877 getCurScope(),
3878 attrs.getList());
3879
3880 EnumScope.Exit();
3881 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3882 T.getCloseLocation());
3883
3884 // The next token must be valid after an enum definition. If not, a ';'
3885 // was probably forgotten.
3886 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3887 if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
3888 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3889 // Push this token back into the preprocessor and change our current token
3890 // to ';' so that the rest of the code recovers as though there were an
3891 // ';' after the definition.
3892 PP.EnterToken(Tok);
3893 Tok.setKind(tok::semi);
3894 }
3895 }
3896
3897 /// isTypeSpecifierQualifier - Return true if the current token could be the
3898 /// start of a type-qualifier-list.
isTypeQualifier() const3899 bool Parser::isTypeQualifier() const {
3900 switch (Tok.getKind()) {
3901 default: return false;
3902 // type-qualifier
3903 case tok::kw_const:
3904 case tok::kw_volatile:
3905 case tok::kw_restrict:
3906 case tok::kw___private:
3907 case tok::kw___local:
3908 case tok::kw___global:
3909 case tok::kw___constant:
3910 case tok::kw___read_only:
3911 case tok::kw___read_write:
3912 case tok::kw___write_only:
3913 return true;
3914 }
3915 }
3916
3917 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3918 /// is definitely a type-specifier. Return false if it isn't part of a type
3919 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const3920 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3921 switch (Tok.getKind()) {
3922 default: return false;
3923 // type-specifiers
3924 case tok::kw_short:
3925 case tok::kw_long:
3926 case tok::kw___int64:
3927 case tok::kw___int128:
3928 case tok::kw_signed:
3929 case tok::kw_unsigned:
3930 case tok::kw__Complex:
3931 case tok::kw__Imaginary:
3932 case tok::kw_void:
3933 case tok::kw_char:
3934 case tok::kw_wchar_t:
3935 case tok::kw_char16_t:
3936 case tok::kw_char32_t:
3937 case tok::kw_int:
3938 case tok::kw_half:
3939 case tok::kw_float:
3940 case tok::kw_double:
3941 case tok::kw_bool:
3942 case tok::kw__Bool:
3943 case tok::kw__Decimal32:
3944 case tok::kw__Decimal64:
3945 case tok::kw__Decimal128:
3946 case tok::kw___vector:
3947
3948 // struct-or-union-specifier (C99) or class-specifier (C++)
3949 case tok::kw_class:
3950 case tok::kw_struct:
3951 case tok::kw___interface:
3952 case tok::kw_union:
3953 // enum-specifier
3954 case tok::kw_enum:
3955
3956 // typedef-name
3957 case tok::annot_typename:
3958 return true;
3959 }
3960 }
3961
3962 /// isTypeSpecifierQualifier - Return true if the current token could be the
3963 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()3964 bool Parser::isTypeSpecifierQualifier() {
3965 switch (Tok.getKind()) {
3966 default: return false;
3967
3968 case tok::identifier: // foo::bar
3969 if (TryAltiVecVectorToken())
3970 return true;
3971 // Fall through.
3972 case tok::kw_typename: // typename T::type
3973 // Annotate typenames and C++ scope specifiers. If we get one, just
3974 // recurse to handle whatever we get.
3975 if (TryAnnotateTypeOrScopeToken())
3976 return true;
3977 if (Tok.is(tok::identifier))
3978 return false;
3979 return isTypeSpecifierQualifier();
3980
3981 case tok::coloncolon: // ::foo::bar
3982 if (NextToken().is(tok::kw_new) || // ::new
3983 NextToken().is(tok::kw_delete)) // ::delete
3984 return false;
3985
3986 if (TryAnnotateTypeOrScopeToken())
3987 return true;
3988 return isTypeSpecifierQualifier();
3989
3990 // GNU attributes support.
3991 case tok::kw___attribute:
3992 // GNU typeof support.
3993 case tok::kw_typeof:
3994
3995 // type-specifiers
3996 case tok::kw_short:
3997 case tok::kw_long:
3998 case tok::kw___int64:
3999 case tok::kw___int128:
4000 case tok::kw_signed:
4001 case tok::kw_unsigned:
4002 case tok::kw__Complex:
4003 case tok::kw__Imaginary:
4004 case tok::kw_void:
4005 case tok::kw_char:
4006 case tok::kw_wchar_t:
4007 case tok::kw_char16_t:
4008 case tok::kw_char32_t:
4009 case tok::kw_int:
4010 case tok::kw_half:
4011 case tok::kw_float:
4012 case tok::kw_double:
4013 case tok::kw_bool:
4014 case tok::kw__Bool:
4015 case tok::kw__Decimal32:
4016 case tok::kw__Decimal64:
4017 case tok::kw__Decimal128:
4018 case tok::kw___vector:
4019
4020 // struct-or-union-specifier (C99) or class-specifier (C++)
4021 case tok::kw_class:
4022 case tok::kw_struct:
4023 case tok::kw___interface:
4024 case tok::kw_union:
4025 // enum-specifier
4026 case tok::kw_enum:
4027
4028 // type-qualifier
4029 case tok::kw_const:
4030 case tok::kw_volatile:
4031 case tok::kw_restrict:
4032
4033 // Debugger support.
4034 case tok::kw___unknown_anytype:
4035
4036 // typedef-name
4037 case tok::annot_typename:
4038 return true;
4039
4040 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4041 case tok::less:
4042 return getLangOpts().ObjC1;
4043
4044 case tok::kw___cdecl:
4045 case tok::kw___stdcall:
4046 case tok::kw___fastcall:
4047 case tok::kw___thiscall:
4048 case tok::kw___w64:
4049 case tok::kw___ptr64:
4050 case tok::kw___ptr32:
4051 case tok::kw___pascal:
4052 case tok::kw___unaligned:
4053
4054 case tok::kw___private:
4055 case tok::kw___local:
4056 case tok::kw___global:
4057 case tok::kw___constant:
4058 case tok::kw___read_only:
4059 case tok::kw___read_write:
4060 case tok::kw___write_only:
4061
4062 return true;
4063
4064 // C11 _Atomic
4065 case tok::kw__Atomic:
4066 return true;
4067 }
4068 }
4069
4070 /// isDeclarationSpecifier() - Return true if the current token is part of a
4071 /// declaration specifier.
4072 ///
4073 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4074 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4075 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4076 switch (Tok.getKind()) {
4077 default: return false;
4078
4079 case tok::identifier: // foo::bar
4080 // Unfortunate hack to support "Class.factoryMethod" notation.
4081 if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4082 return false;
4083 if (TryAltiVecVectorToken())
4084 return true;
4085 // Fall through.
4086 case tok::kw_decltype: // decltype(T())::type
4087 case tok::kw_typename: // typename T::type
4088 // Annotate typenames and C++ scope specifiers. If we get one, just
4089 // recurse to handle whatever we get.
4090 if (TryAnnotateTypeOrScopeToken())
4091 return true;
4092 if (Tok.is(tok::identifier))
4093 return false;
4094
4095 // If we're in Objective-C and we have an Objective-C class type followed
4096 // by an identifier and then either ':' or ']', in a place where an
4097 // expression is permitted, then this is probably a class message send
4098 // missing the initial '['. In this case, we won't consider this to be
4099 // the start of a declaration.
4100 if (DisambiguatingWithExpression &&
4101 isStartOfObjCClassMessageMissingOpenBracket())
4102 return false;
4103
4104 return isDeclarationSpecifier();
4105
4106 case tok::coloncolon: // ::foo::bar
4107 if (NextToken().is(tok::kw_new) || // ::new
4108 NextToken().is(tok::kw_delete)) // ::delete
4109 return false;
4110
4111 // Annotate typenames and C++ scope specifiers. If we get one, just
4112 // recurse to handle whatever we get.
4113 if (TryAnnotateTypeOrScopeToken())
4114 return true;
4115 return isDeclarationSpecifier();
4116
4117 // storage-class-specifier
4118 case tok::kw_typedef:
4119 case tok::kw_extern:
4120 case tok::kw___private_extern__:
4121 case tok::kw_static:
4122 case tok::kw_auto:
4123 case tok::kw_register:
4124 case tok::kw___thread:
4125 case tok::kw_thread_local:
4126 case tok::kw__Thread_local:
4127
4128 // Modules
4129 case tok::kw___module_private__:
4130
4131 // Debugger support
4132 case tok::kw___unknown_anytype:
4133
4134 // type-specifiers
4135 case tok::kw_short:
4136 case tok::kw_long:
4137 case tok::kw___int64:
4138 case tok::kw___int128:
4139 case tok::kw_signed:
4140 case tok::kw_unsigned:
4141 case tok::kw__Complex:
4142 case tok::kw__Imaginary:
4143 case tok::kw_void:
4144 case tok::kw_char:
4145 case tok::kw_wchar_t:
4146 case tok::kw_char16_t:
4147 case tok::kw_char32_t:
4148
4149 case tok::kw_int:
4150 case tok::kw_half:
4151 case tok::kw_float:
4152 case tok::kw_double:
4153 case tok::kw_bool:
4154 case tok::kw__Bool:
4155 case tok::kw__Decimal32:
4156 case tok::kw__Decimal64:
4157 case tok::kw__Decimal128:
4158 case tok::kw___vector:
4159
4160 // struct-or-union-specifier (C99) or class-specifier (C++)
4161 case tok::kw_class:
4162 case tok::kw_struct:
4163 case tok::kw_union:
4164 case tok::kw___interface:
4165 // enum-specifier
4166 case tok::kw_enum:
4167
4168 // type-qualifier
4169 case tok::kw_const:
4170 case tok::kw_volatile:
4171 case tok::kw_restrict:
4172
4173 // function-specifier
4174 case tok::kw_inline:
4175 case tok::kw_virtual:
4176 case tok::kw_explicit:
4177 case tok::kw__Noreturn:
4178
4179 // alignment-specifier
4180 case tok::kw__Alignas:
4181
4182 // friend keyword.
4183 case tok::kw_friend:
4184
4185 // static_assert-declaration
4186 case tok::kw__Static_assert:
4187
4188 // GNU typeof support.
4189 case tok::kw_typeof:
4190
4191 // GNU attributes.
4192 case tok::kw___attribute:
4193
4194 // C++11 decltype and constexpr.
4195 case tok::annot_decltype:
4196 case tok::kw_constexpr:
4197
4198 // C11 _Atomic
4199 case tok::kw__Atomic:
4200 return true;
4201
4202 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4203 case tok::less:
4204 return getLangOpts().ObjC1;
4205
4206 // typedef-name
4207 case tok::annot_typename:
4208 return !DisambiguatingWithExpression ||
4209 !isStartOfObjCClassMessageMissingOpenBracket();
4210
4211 case tok::kw___declspec:
4212 case tok::kw___cdecl:
4213 case tok::kw___stdcall:
4214 case tok::kw___fastcall:
4215 case tok::kw___thiscall:
4216 case tok::kw___w64:
4217 case tok::kw___sptr:
4218 case tok::kw___uptr:
4219 case tok::kw___ptr64:
4220 case tok::kw___ptr32:
4221 case tok::kw___forceinline:
4222 case tok::kw___pascal:
4223 case tok::kw___unaligned:
4224
4225 case tok::kw___private:
4226 case tok::kw___local:
4227 case tok::kw___global:
4228 case tok::kw___constant:
4229 case tok::kw___read_only:
4230 case tok::kw___read_write:
4231 case tok::kw___write_only:
4232
4233 return true;
4234 }
4235 }
4236
isConstructorDeclarator(bool IsUnqualified)4237 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4238 TentativeParsingAction TPA(*this);
4239
4240 // Parse the C++ scope specifier.
4241 CXXScopeSpec SS;
4242 if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4243 /*EnteringContext=*/true)) {
4244 TPA.Revert();
4245 return false;
4246 }
4247
4248 // Parse the constructor name.
4249 if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4250 // We already know that we have a constructor name; just consume
4251 // the token.
4252 ConsumeToken();
4253 } else {
4254 TPA.Revert();
4255 return false;
4256 }
4257
4258 // Current class name must be followed by a left parenthesis.
4259 if (Tok.isNot(tok::l_paren)) {
4260 TPA.Revert();
4261 return false;
4262 }
4263 ConsumeParen();
4264
4265 // A right parenthesis, or ellipsis followed by a right parenthesis signals
4266 // that we have a constructor.
4267 if (Tok.is(tok::r_paren) ||
4268 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4269 TPA.Revert();
4270 return true;
4271 }
4272
4273 // A C++11 attribute here signals that we have a constructor, and is an
4274 // attribute on the first constructor parameter.
4275 if (getLangOpts().CPlusPlus11 &&
4276 isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4277 /*OuterMightBeMessageSend*/ true)) {
4278 TPA.Revert();
4279 return true;
4280 }
4281
4282 // If we need to, enter the specified scope.
4283 DeclaratorScopeObj DeclScopeObj(*this, SS);
4284 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4285 DeclScopeObj.EnterDeclaratorScope();
4286
4287 // Optionally skip Microsoft attributes.
4288 ParsedAttributes Attrs(AttrFactory);
4289 MaybeParseMicrosoftAttributes(Attrs);
4290
4291 // Check whether the next token(s) are part of a declaration
4292 // specifier, in which case we have the start of a parameter and,
4293 // therefore, we know that this is a constructor.
4294 bool IsConstructor = false;
4295 if (isDeclarationSpecifier())
4296 IsConstructor = true;
4297 else if (Tok.is(tok::identifier) ||
4298 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4299 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4300 // This might be a parenthesized member name, but is more likely to
4301 // be a constructor declaration with an invalid argument type. Keep
4302 // looking.
4303 if (Tok.is(tok::annot_cxxscope))
4304 ConsumeToken();
4305 ConsumeToken();
4306
4307 // If this is not a constructor, we must be parsing a declarator,
4308 // which must have one of the following syntactic forms (see the
4309 // grammar extract at the start of ParseDirectDeclarator):
4310 switch (Tok.getKind()) {
4311 case tok::l_paren:
4312 // C(X ( int));
4313 case tok::l_square:
4314 // C(X [ 5]);
4315 // C(X [ [attribute]]);
4316 case tok::coloncolon:
4317 // C(X :: Y);
4318 // C(X :: *p);
4319 // Assume this isn't a constructor, rather than assuming it's a
4320 // constructor with an unnamed parameter of an ill-formed type.
4321 break;
4322
4323 case tok::r_paren:
4324 // C(X )
4325 if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4326 // Assume these were meant to be constructors:
4327 // C(X) : (the name of a bit-field cannot be parenthesized).
4328 // C(X) try (this is otherwise ill-formed).
4329 IsConstructor = true;
4330 }
4331 if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4332 // If we have a constructor name within the class definition,
4333 // assume these were meant to be constructors:
4334 // C(X) {
4335 // C(X) ;
4336 // ... because otherwise we would be declaring a non-static data
4337 // member that is ill-formed because it's of the same type as its
4338 // surrounding class.
4339 //
4340 // FIXME: We can actually do this whether or not the name is qualified,
4341 // because if it is qualified in this context it must be being used as
4342 // a constructor name. However, we do not implement that rule correctly
4343 // currently, so we're somewhat conservative here.
4344 IsConstructor = IsUnqualified;
4345 }
4346 break;
4347
4348 default:
4349 IsConstructor = true;
4350 break;
4351 }
4352 }
4353
4354 TPA.Revert();
4355 return IsConstructor;
4356 }
4357
4358 /// ParseTypeQualifierListOpt
4359 /// type-qualifier-list: [C99 6.7.5]
4360 /// type-qualifier
4361 /// [vendor] attributes
4362 /// [ only if VendorAttributesAllowed=true ]
4363 /// type-qualifier-list type-qualifier
4364 /// [vendor] type-qualifier-list attributes
4365 /// [ only if VendorAttributesAllowed=true ]
4366 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
4367 /// [ only if CXX11AttributesAllowed=true ]
4368 /// Note: vendor can be GNU, MS, etc.
4369 ///
ParseTypeQualifierListOpt(DeclSpec & DS,bool VendorAttributesAllowed,bool CXX11AttributesAllowed,bool AtomicAllowed,bool IdentifierRequired)4370 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
4371 bool VendorAttributesAllowed,
4372 bool CXX11AttributesAllowed,
4373 bool AtomicAllowed,
4374 bool IdentifierRequired) {
4375 if (getLangOpts().CPlusPlus11 && CXX11AttributesAllowed &&
4376 isCXX11AttributeSpecifier()) {
4377 ParsedAttributesWithRange attrs(AttrFactory);
4378 ParseCXX11Attributes(attrs);
4379 DS.takeAttributesFrom(attrs);
4380 }
4381
4382 SourceLocation EndLoc;
4383
4384 while (1) {
4385 bool isInvalid = false;
4386 const char *PrevSpec = nullptr;
4387 unsigned DiagID = 0;
4388 SourceLocation Loc = Tok.getLocation();
4389
4390 switch (Tok.getKind()) {
4391 case tok::code_completion:
4392 Actions.CodeCompleteTypeQualifiers(DS);
4393 return cutOffParsing();
4394
4395 case tok::kw_const:
4396 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
4397 getLangOpts());
4398 break;
4399 case tok::kw_volatile:
4400 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4401 getLangOpts());
4402 break;
4403 case tok::kw_restrict:
4404 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4405 getLangOpts());
4406 break;
4407 case tok::kw__Atomic:
4408 if (!AtomicAllowed)
4409 goto DoneWithTypeQuals;
4410 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4411 getLangOpts());
4412 break;
4413
4414 // OpenCL qualifiers:
4415 case tok::kw___private:
4416 case tok::kw___global:
4417 case tok::kw___local:
4418 case tok::kw___constant:
4419 case tok::kw___read_only:
4420 case tok::kw___write_only:
4421 case tok::kw___read_write:
4422 ParseOpenCLQualifiers(DS.getAttributes());
4423 break;
4424
4425 case tok::kw___uptr:
4426 // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4427 // with the MS modifier keyword.
4428 if (VendorAttributesAllowed && !getLangOpts().CPlusPlus &&
4429 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4430 if (TryKeywordIdentFallback(false))
4431 continue;
4432 }
4433 case tok::kw___sptr:
4434 case tok::kw___w64:
4435 case tok::kw___ptr64:
4436 case tok::kw___ptr32:
4437 case tok::kw___cdecl:
4438 case tok::kw___stdcall:
4439 case tok::kw___fastcall:
4440 case tok::kw___thiscall:
4441 case tok::kw___unaligned:
4442 if (VendorAttributesAllowed) {
4443 ParseMicrosoftTypeAttributes(DS.getAttributes());
4444 continue;
4445 }
4446 goto DoneWithTypeQuals;
4447 case tok::kw___pascal:
4448 if (VendorAttributesAllowed) {
4449 ParseBorlandTypeAttributes(DS.getAttributes());
4450 continue;
4451 }
4452 goto DoneWithTypeQuals;
4453 case tok::kw___attribute:
4454 if (VendorAttributesAllowed) {
4455 ParseGNUAttributes(DS.getAttributes());
4456 continue; // do *not* consume the next token!
4457 }
4458 // otherwise, FALL THROUGH!
4459 default:
4460 DoneWithTypeQuals:
4461 // If this is not a type-qualifier token, we're done reading type
4462 // qualifiers. First verify that DeclSpec's are consistent.
4463 DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4464 if (EndLoc.isValid())
4465 DS.SetRangeEnd(EndLoc);
4466 return;
4467 }
4468
4469 // If the specifier combination wasn't legal, issue a diagnostic.
4470 if (isInvalid) {
4471 assert(PrevSpec && "Method did not return previous specifier!");
4472 Diag(Tok, DiagID) << PrevSpec;
4473 }
4474 EndLoc = ConsumeToken();
4475 }
4476 }
4477
4478
4479 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4480 ///
ParseDeclarator(Declarator & D)4481 void Parser::ParseDeclarator(Declarator &D) {
4482 /// This implements the 'declarator' production in the C grammar, then checks
4483 /// for well-formedness and issues diagnostics.
4484 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4485 }
4486
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang)4487 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
4488 if (Kind == tok::star || Kind == tok::caret)
4489 return true;
4490
4491 // We parse rvalue refs in C++03, because otherwise the errors are scary.
4492 if (!Lang.CPlusPlus)
4493 return false;
4494
4495 return Kind == tok::amp || Kind == tok::ampamp;
4496 }
4497
4498 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4499 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4500 /// isn't parsed at all, making this function effectively parse the C++
4501 /// ptr-operator production.
4502 ///
4503 /// If the grammar of this construct is extended, matching changes must also be
4504 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4505 /// isConstructorDeclarator.
4506 ///
4507 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4508 /// [C] pointer[opt] direct-declarator
4509 /// [C++] direct-declarator
4510 /// [C++] ptr-operator declarator
4511 ///
4512 /// pointer: [C99 6.7.5]
4513 /// '*' type-qualifier-list[opt]
4514 /// '*' type-qualifier-list[opt] pointer
4515 ///
4516 /// ptr-operator:
4517 /// '*' cv-qualifier-seq[opt]
4518 /// '&'
4519 /// [C++0x] '&&'
4520 /// [GNU] '&' restrict[opt] attributes[opt]
4521 /// [GNU?] '&&' restrict[opt] attributes[opt]
4522 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4523 void Parser::ParseDeclaratorInternal(Declarator &D,
4524 DirectDeclParseFunction DirectDeclParser) {
4525 if (Diags.hasAllExtensionsSilenced())
4526 D.setExtension();
4527
4528 // C++ member pointers start with a '::' or a nested-name.
4529 // Member pointers get special handling, since there's no place for the
4530 // scope spec in the generic path below.
4531 if (getLangOpts().CPlusPlus &&
4532 (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
4533 Tok.is(tok::annot_cxxscope))) {
4534 bool EnteringContext = D.getContext() == Declarator::FileContext ||
4535 D.getContext() == Declarator::MemberContext;
4536 CXXScopeSpec SS;
4537 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4538
4539 if (SS.isNotEmpty()) {
4540 if (Tok.isNot(tok::star)) {
4541 // The scope spec really belongs to the direct-declarator.
4542 if (D.mayHaveIdentifier())
4543 D.getCXXScopeSpec() = SS;
4544 else
4545 AnnotateScopeToken(SS, true);
4546
4547 if (DirectDeclParser)
4548 (this->*DirectDeclParser)(D);
4549 return;
4550 }
4551
4552 SourceLocation Loc = ConsumeToken();
4553 D.SetRangeEnd(Loc);
4554 DeclSpec DS(AttrFactory);
4555 ParseTypeQualifierListOpt(DS);
4556 D.ExtendWithDeclSpec(DS);
4557
4558 // Recurse to parse whatever is left.
4559 ParseDeclaratorInternal(D, DirectDeclParser);
4560
4561 // Sema will have to catch (syntactically invalid) pointers into global
4562 // scope. It has to catch pointers into namespace scope anyway.
4563 D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4564 Loc),
4565 DS.getAttributes(),
4566 /* Don't replace range end. */SourceLocation());
4567 return;
4568 }
4569 }
4570
4571 tok::TokenKind Kind = Tok.getKind();
4572 // Not a pointer, C++ reference, or block.
4573 if (!isPtrOperatorToken(Kind, getLangOpts())) {
4574 if (DirectDeclParser)
4575 (this->*DirectDeclParser)(D);
4576 return;
4577 }
4578
4579 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4580 // '&&' -> rvalue reference
4581 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
4582 D.SetRangeEnd(Loc);
4583
4584 if (Kind == tok::star || Kind == tok::caret) {
4585 // Is a pointer.
4586 DeclSpec DS(AttrFactory);
4587
4588 // FIXME: GNU attributes are not allowed here in a new-type-id.
4589 ParseTypeQualifierListOpt(DS, true, true, true, !D.mayOmitIdentifier());
4590 D.ExtendWithDeclSpec(DS);
4591
4592 // Recursively parse the declarator.
4593 ParseDeclaratorInternal(D, DirectDeclParser);
4594 if (Kind == tok::star)
4595 // Remember that we parsed a pointer type, and remember the type-quals.
4596 D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4597 DS.getConstSpecLoc(),
4598 DS.getVolatileSpecLoc(),
4599 DS.getRestrictSpecLoc()),
4600 DS.getAttributes(),
4601 SourceLocation());
4602 else
4603 // Remember that we parsed a Block type, and remember the type-quals.
4604 D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4605 Loc),
4606 DS.getAttributes(),
4607 SourceLocation());
4608 } else {
4609 // Is a reference
4610 DeclSpec DS(AttrFactory);
4611
4612 // Complain about rvalue references in C++03, but then go on and build
4613 // the declarator.
4614 if (Kind == tok::ampamp)
4615 Diag(Loc, getLangOpts().CPlusPlus11 ?
4616 diag::warn_cxx98_compat_rvalue_reference :
4617 diag::ext_rvalue_reference);
4618
4619 // GNU-style and C++11 attributes are allowed here, as is restrict.
4620 ParseTypeQualifierListOpt(DS);
4621 D.ExtendWithDeclSpec(DS);
4622
4623 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4624 // cv-qualifiers are introduced through the use of a typedef or of a
4625 // template type argument, in which case the cv-qualifiers are ignored.
4626 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4627 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4628 Diag(DS.getConstSpecLoc(),
4629 diag::err_invalid_reference_qualifier_application) << "const";
4630 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4631 Diag(DS.getVolatileSpecLoc(),
4632 diag::err_invalid_reference_qualifier_application) << "volatile";
4633 // 'restrict' is permitted as an extension.
4634 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4635 Diag(DS.getAtomicSpecLoc(),
4636 diag::err_invalid_reference_qualifier_application) << "_Atomic";
4637 }
4638
4639 // Recursively parse the declarator.
4640 ParseDeclaratorInternal(D, DirectDeclParser);
4641
4642 if (D.getNumTypeObjects() > 0) {
4643 // C++ [dcl.ref]p4: There shall be no references to references.
4644 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4645 if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4646 if (const IdentifierInfo *II = D.getIdentifier())
4647 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4648 << II;
4649 else
4650 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4651 << "type name";
4652
4653 // Once we've complained about the reference-to-reference, we
4654 // can go ahead and build the (technically ill-formed)
4655 // declarator: reference collapsing will take care of it.
4656 }
4657 }
4658
4659 // Remember that we parsed a reference type.
4660 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4661 Kind == tok::amp),
4662 DS.getAttributes(),
4663 SourceLocation());
4664 }
4665 }
4666
4667 // When correcting from misplaced brackets before the identifier, the location
4668 // is saved inside the declarator so that other diagnostic messages can use
4669 // them. This extracts and returns that location, or returns the provided
4670 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)4671 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4672 SourceLocation Loc) {
4673 if (D.getName().StartLocation.isInvalid() &&
4674 D.getName().EndLocation.isValid())
4675 return D.getName().EndLocation;
4676
4677 return Loc;
4678 }
4679
4680 /// ParseDirectDeclarator
4681 /// direct-declarator: [C99 6.7.5]
4682 /// [C99] identifier
4683 /// '(' declarator ')'
4684 /// [GNU] '(' attributes declarator ')'
4685 /// [C90] direct-declarator '[' constant-expression[opt] ']'
4686 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4687 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4688 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4689 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
4690 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
4691 /// attribute-specifier-seq[opt]
4692 /// direct-declarator '(' parameter-type-list ')'
4693 /// direct-declarator '(' identifier-list[opt] ')'
4694 /// [GNU] direct-declarator '(' parameter-forward-declarations
4695 /// parameter-type-list[opt] ')'
4696 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
4697 /// cv-qualifier-seq[opt] exception-specification[opt]
4698 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4699 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4700 /// ref-qualifier[opt] exception-specification[opt]
4701 /// [C++] declarator-id
4702 /// [C++11] declarator-id attribute-specifier-seq[opt]
4703 ///
4704 /// declarator-id: [C++ 8]
4705 /// '...'[opt] id-expression
4706 /// '::'[opt] nested-name-specifier[opt] type-name
4707 ///
4708 /// id-expression: [C++ 5.1]
4709 /// unqualified-id
4710 /// qualified-id
4711 ///
4712 /// unqualified-id: [C++ 5.1]
4713 /// identifier
4714 /// operator-function-id
4715 /// conversion-function-id
4716 /// '~' class-name
4717 /// template-id
4718 ///
4719 /// Note, any additional constructs added here may need corresponding changes
4720 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)4721 void Parser::ParseDirectDeclarator(Declarator &D) {
4722 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4723
4724 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4725 // ParseDeclaratorInternal might already have parsed the scope.
4726 if (D.getCXXScopeSpec().isEmpty()) {
4727 bool EnteringContext = D.getContext() == Declarator::FileContext ||
4728 D.getContext() == Declarator::MemberContext;
4729 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4730 EnteringContext);
4731 }
4732
4733 if (D.getCXXScopeSpec().isValid()) {
4734 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4735 // Change the declaration context for name lookup, until this function
4736 // is exited (and the declarator has been parsed).
4737 DeclScopeObj.EnterDeclaratorScope();
4738 }
4739
4740 // C++0x [dcl.fct]p14:
4741 // There is a syntactic ambiguity when an ellipsis occurs at the end
4742 // of a parameter-declaration-clause without a preceding comma. In
4743 // this case, the ellipsis is parsed as part of the
4744 // abstract-declarator if the type of the parameter names a template
4745 // parameter pack that has not been expanded; otherwise, it is parsed
4746 // as part of the parameter-declaration-clause.
4747 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4748 !((D.getContext() == Declarator::PrototypeContext ||
4749 D.getContext() == Declarator::LambdaExprParameterContext ||
4750 D.getContext() == Declarator::BlockLiteralContext) &&
4751 NextToken().is(tok::r_paren) &&
4752 !D.hasGroupingParens() &&
4753 !Actions.containsUnexpandedParameterPacks(D))) {
4754 SourceLocation EllipsisLoc = ConsumeToken();
4755 if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
4756 // The ellipsis was put in the wrong place. Recover, and explain to
4757 // the user what they should have done.
4758 ParseDeclarator(D);
4759 if (EllipsisLoc.isValid())
4760 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4761 return;
4762 } else
4763 D.setEllipsisLoc(EllipsisLoc);
4764
4765 // The ellipsis can't be followed by a parenthesized declarator. We
4766 // check for that in ParseParenDeclarator, after we have disambiguated
4767 // the l_paren token.
4768 }
4769
4770 if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4771 Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4772 // We found something that indicates the start of an unqualified-id.
4773 // Parse that unqualified-id.
4774 bool AllowConstructorName;
4775 if (D.getDeclSpec().hasTypeSpecifier())
4776 AllowConstructorName = false;
4777 else if (D.getCXXScopeSpec().isSet())
4778 AllowConstructorName =
4779 (D.getContext() == Declarator::FileContext ||
4780 D.getContext() == Declarator::MemberContext);
4781 else
4782 AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4783
4784 SourceLocation TemplateKWLoc;
4785 if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4786 /*EnteringContext=*/true,
4787 /*AllowDestructorName=*/true,
4788 AllowConstructorName,
4789 ParsedType(),
4790 TemplateKWLoc,
4791 D.getName()) ||
4792 // Once we're past the identifier, if the scope was bad, mark the
4793 // whole declarator bad.
4794 D.getCXXScopeSpec().isInvalid()) {
4795 D.SetIdentifier(nullptr, Tok.getLocation());
4796 D.setInvalidType(true);
4797 } else {
4798 // Parsed the unqualified-id; update range information and move along.
4799 if (D.getSourceRange().getBegin().isInvalid())
4800 D.SetRangeBegin(D.getName().getSourceRange().getBegin());
4801 D.SetRangeEnd(D.getName().getSourceRange().getEnd());
4802 }
4803 goto PastIdentifier;
4804 }
4805 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
4806 assert(!getLangOpts().CPlusPlus &&
4807 "There's a C++-specific check for tok::identifier above");
4808 assert(Tok.getIdentifierInfo() && "Not an identifier?");
4809 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
4810 D.SetRangeEnd(Tok.getLocation());
4811 ConsumeToken();
4812 goto PastIdentifier;
4813 } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
4814 // A virt-specifier isn't treated as an identifier if it appears after a
4815 // trailing-return-type.
4816 if (D.getContext() != Declarator::TrailingReturnContext ||
4817 !isCXX11VirtSpecifier(Tok)) {
4818 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
4819 << FixItHint::CreateRemoval(Tok.getLocation());
4820 D.SetIdentifier(nullptr, Tok.getLocation());
4821 ConsumeToken();
4822 goto PastIdentifier;
4823 }
4824 }
4825
4826 if (Tok.is(tok::l_paren)) {
4827 // direct-declarator: '(' declarator ')'
4828 // direct-declarator: '(' attributes declarator ')'
4829 // Example: 'char (*X)' or 'int (*XX)(void)'
4830 ParseParenDeclarator(D);
4831
4832 // If the declarator was parenthesized, we entered the declarator
4833 // scope when parsing the parenthesized declarator, then exited
4834 // the scope already. Re-enter the scope, if we need to.
4835 if (D.getCXXScopeSpec().isSet()) {
4836 // If there was an error parsing parenthesized declarator, declarator
4837 // scope may have been entered before. Don't do it again.
4838 if (!D.isInvalidType() &&
4839 Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4840 // Change the declaration context for name lookup, until this function
4841 // is exited (and the declarator has been parsed).
4842 DeclScopeObj.EnterDeclaratorScope();
4843 }
4844 } else if (D.mayOmitIdentifier()) {
4845 // This could be something simple like "int" (in which case the declarator
4846 // portion is empty), if an abstract-declarator is allowed.
4847 D.SetIdentifier(nullptr, Tok.getLocation());
4848
4849 // The grammar for abstract-pack-declarator does not allow grouping parens.
4850 // FIXME: Revisit this once core issue 1488 is resolved.
4851 if (D.hasEllipsis() && D.hasGroupingParens())
4852 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
4853 diag::ext_abstract_pack_declarator_parens);
4854 } else {
4855 if (Tok.getKind() == tok::annot_pragma_parser_crash)
4856 LLVM_BUILTIN_TRAP;
4857 if (Tok.is(tok::l_square))
4858 return ParseMisplacedBracketDeclarator(D);
4859 if (D.getContext() == Declarator::MemberContext) {
4860 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4861 diag::err_expected_member_name_or_semi)
4862 << (D.getDeclSpec().isEmpty() ? SourceRange()
4863 : D.getDeclSpec().getSourceRange());
4864 } else if (getLangOpts().CPlusPlus) {
4865 if (Tok.is(tok::period) || Tok.is(tok::arrow))
4866 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
4867 else {
4868 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
4869 if (Tok.isAtStartOfLine() && Loc.isValid())
4870 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
4871 << getLangOpts().CPlusPlus;
4872 else
4873 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4874 diag::err_expected_unqualified_id)
4875 << getLangOpts().CPlusPlus;
4876 }
4877 } else {
4878 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
4879 diag::err_expected_either)
4880 << tok::identifier << tok::l_paren;
4881 }
4882 D.SetIdentifier(nullptr, Tok.getLocation());
4883 D.setInvalidType(true);
4884 }
4885
4886 PastIdentifier:
4887 assert(D.isPastIdentifier() &&
4888 "Haven't past the location of the identifier yet?");
4889
4890 // Don't parse attributes unless we have parsed an unparenthesized name.
4891 if (D.hasName() && !D.getNumTypeObjects())
4892 MaybeParseCXX11Attributes(D);
4893
4894 while (1) {
4895 if (Tok.is(tok::l_paren)) {
4896 // Enter function-declaration scope, limiting any declarators to the
4897 // function prototype scope, including parameter declarators.
4898 ParseScope PrototypeScope(this,
4899 Scope::FunctionPrototypeScope|Scope::DeclScope|
4900 (D.isFunctionDeclaratorAFunctionDeclaration()
4901 ? Scope::FunctionDeclarationScope : 0));
4902
4903 // The paren may be part of a C++ direct initializer, eg. "int x(1);".
4904 // In such a case, check if we actually have a function declarator; if it
4905 // is not, the declarator has been fully parsed.
4906 bool IsAmbiguous = false;
4907 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4908 // The name of the declarator, if any, is tentatively declared within
4909 // a possible direct initializer.
4910 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
4911 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
4912 TentativelyDeclaredIdentifiers.pop_back();
4913 if (!IsFunctionDecl)
4914 break;
4915 }
4916 ParsedAttributes attrs(AttrFactory);
4917 BalancedDelimiterTracker T(*this, tok::l_paren);
4918 T.consumeOpen();
4919 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
4920 PrototypeScope.Exit();
4921 } else if (Tok.is(tok::l_square)) {
4922 ParseBracketDeclarator(D);
4923 } else {
4924 break;
4925 }
4926 }
4927 }
4928
4929 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
4930 /// only called before the identifier, so these are most likely just grouping
4931 /// parens for precedence. If we find that these are actually function
4932 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4933 ///
4934 /// direct-declarator:
4935 /// '(' declarator ')'
4936 /// [GNU] '(' attributes declarator ')'
4937 /// direct-declarator '(' parameter-type-list ')'
4938 /// direct-declarator '(' identifier-list[opt] ')'
4939 /// [GNU] direct-declarator '(' parameter-forward-declarations
4940 /// parameter-type-list[opt] ')'
4941 ///
ParseParenDeclarator(Declarator & D)4942 void Parser::ParseParenDeclarator(Declarator &D) {
4943 BalancedDelimiterTracker T(*this, tok::l_paren);
4944 T.consumeOpen();
4945
4946 assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4947
4948 // Eat any attributes before we look at whether this is a grouping or function
4949 // declarator paren. If this is a grouping paren, the attribute applies to
4950 // the type being built up, for example:
4951 // int (__attribute__(()) *x)(long y)
4952 // If this ends up not being a grouping paren, the attribute applies to the
4953 // first argument, for example:
4954 // int (__attribute__(()) int x)
4955 // In either case, we need to eat any attributes to be able to determine what
4956 // sort of paren this is.
4957 //
4958 ParsedAttributes attrs(AttrFactory);
4959 bool RequiresArg = false;
4960 if (Tok.is(tok::kw___attribute)) {
4961 ParseGNUAttributes(attrs);
4962
4963 // We require that the argument list (if this is a non-grouping paren) be
4964 // present even if the attribute list was empty.
4965 RequiresArg = true;
4966 }
4967
4968 // Eat any Microsoft extensions.
4969 ParseMicrosoftTypeAttributes(attrs);
4970
4971 // Eat any Borland extensions.
4972 if (Tok.is(tok::kw___pascal))
4973 ParseBorlandTypeAttributes(attrs);
4974
4975 // If we haven't past the identifier yet (or where the identifier would be
4976 // stored, if this is an abstract declarator), then this is probably just
4977 // grouping parens. However, if this could be an abstract-declarator, then
4978 // this could also be the start of function arguments (consider 'void()').
4979 bool isGrouping;
4980
4981 if (!D.mayOmitIdentifier()) {
4982 // If this can't be an abstract-declarator, this *must* be a grouping
4983 // paren, because we haven't seen the identifier yet.
4984 isGrouping = true;
4985 } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
4986 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
4987 NextToken().is(tok::r_paren)) || // C++ int(...)
4988 isDeclarationSpecifier() || // 'int(int)' is a function.
4989 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
4990 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4991 // considered to be a type, not a K&R identifier-list.
4992 isGrouping = false;
4993 } else {
4994 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4995 isGrouping = true;
4996 }
4997
4998 // If this is a grouping paren, handle:
4999 // direct-declarator: '(' declarator ')'
5000 // direct-declarator: '(' attributes declarator ')'
5001 if (isGrouping) {
5002 SourceLocation EllipsisLoc = D.getEllipsisLoc();
5003 D.setEllipsisLoc(SourceLocation());
5004
5005 bool hadGroupingParens = D.hasGroupingParens();
5006 D.setGroupingParens(true);
5007 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5008 // Match the ')'.
5009 T.consumeClose();
5010 D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5011 T.getCloseLocation()),
5012 attrs, T.getCloseLocation());
5013
5014 D.setGroupingParens(hadGroupingParens);
5015
5016 // An ellipsis cannot be placed outside parentheses.
5017 if (EllipsisLoc.isValid())
5018 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5019
5020 return;
5021 }
5022
5023 // Okay, if this wasn't a grouping paren, it must be the start of a function
5024 // argument list. Recognize that this declarator will never have an
5025 // identifier (and remember where it would have been), then call into
5026 // ParseFunctionDeclarator to handle of argument list.
5027 D.SetIdentifier(nullptr, Tok.getLocation());
5028
5029 // Enter function-declaration scope, limiting any declarators to the
5030 // function prototype scope, including parameter declarators.
5031 ParseScope PrototypeScope(this,
5032 Scope::FunctionPrototypeScope | Scope::DeclScope |
5033 (D.isFunctionDeclaratorAFunctionDeclaration()
5034 ? Scope::FunctionDeclarationScope : 0));
5035 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5036 PrototypeScope.Exit();
5037 }
5038
5039 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5040 /// declarator D up to a paren, which indicates that we are parsing function
5041 /// arguments.
5042 ///
5043 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5044 /// immediately after the open paren - they should be considered to be the
5045 /// first argument of a parameter.
5046 ///
5047 /// If RequiresArg is true, then the first argument of the function is required
5048 /// to be present and required to not be an identifier list.
5049 ///
5050 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5051 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5052 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5053 ///
5054 /// [C++11] exception-specification:
5055 /// dynamic-exception-specification
5056 /// noexcept-specification
5057 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5058 void Parser::ParseFunctionDeclarator(Declarator &D,
5059 ParsedAttributes &FirstArgAttrs,
5060 BalancedDelimiterTracker &Tracker,
5061 bool IsAmbiguous,
5062 bool RequiresArg) {
5063 assert(getCurScope()->isFunctionPrototypeScope() &&
5064 "Should call from a Function scope");
5065 // lparen is already consumed!
5066 assert(D.isPastIdentifier() && "Should not call before identifier!");
5067
5068 // This should be true when the function has typed arguments.
5069 // Otherwise, it is treated as a K&R-style function.
5070 bool HasProto = false;
5071 // Build up an array of information about the parsed arguments.
5072 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5073 // Remember where we see an ellipsis, if any.
5074 SourceLocation EllipsisLoc;
5075
5076 DeclSpec DS(AttrFactory);
5077 bool RefQualifierIsLValueRef = true;
5078 SourceLocation RefQualifierLoc;
5079 SourceLocation ConstQualifierLoc;
5080 SourceLocation VolatileQualifierLoc;
5081 ExceptionSpecificationType ESpecType = EST_None;
5082 SourceRange ESpecRange;
5083 SmallVector<ParsedType, 2> DynamicExceptions;
5084 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5085 ExprResult NoexceptExpr;
5086 ParsedAttributes FnAttrs(AttrFactory);
5087 TypeResult TrailingReturnType;
5088
5089 /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5090 EndLoc is the end location for the function declarator.
5091 They differ for trailing return types. */
5092 SourceLocation StartLoc, LocalEndLoc, EndLoc;
5093 SourceLocation LParenLoc, RParenLoc;
5094 LParenLoc = Tracker.getOpenLocation();
5095 StartLoc = LParenLoc;
5096
5097 if (isFunctionDeclaratorIdentifierList()) {
5098 if (RequiresArg)
5099 Diag(Tok, diag::err_argument_required_after_attribute);
5100
5101 ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5102
5103 Tracker.consumeClose();
5104 RParenLoc = Tracker.getCloseLocation();
5105 LocalEndLoc = RParenLoc;
5106 EndLoc = RParenLoc;
5107 } else {
5108 if (Tok.isNot(tok::r_paren))
5109 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5110 EllipsisLoc);
5111 else if (RequiresArg)
5112 Diag(Tok, diag::err_argument_required_after_attribute);
5113
5114 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5115
5116 // If we have the closing ')', eat it.
5117 Tracker.consumeClose();
5118 RParenLoc = Tracker.getCloseLocation();
5119 LocalEndLoc = RParenLoc;
5120 EndLoc = RParenLoc;
5121
5122 if (getLangOpts().CPlusPlus) {
5123 // FIXME: Accept these components in any order, and produce fixits to
5124 // correct the order if the user gets it wrong. Ideally we should deal
5125 // with the virt-specifier-seq and pure-specifier in the same way.
5126
5127 // Parse cv-qualifier-seq[opt].
5128 ParseTypeQualifierListOpt(DS, /*VendorAttributesAllowed*/ false,
5129 /*CXX11AttributesAllowed*/ false,
5130 /*AtomicAllowed*/ false);
5131 if (!DS.getSourceRange().getEnd().isInvalid()) {
5132 EndLoc = DS.getSourceRange().getEnd();
5133 ConstQualifierLoc = DS.getConstSpecLoc();
5134 VolatileQualifierLoc = DS.getVolatileSpecLoc();
5135 }
5136
5137 // Parse ref-qualifier[opt].
5138 if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5139 Diag(Tok, getLangOpts().CPlusPlus11 ?
5140 diag::warn_cxx98_compat_ref_qualifier :
5141 diag::ext_ref_qualifier);
5142
5143 RefQualifierIsLValueRef = Tok.is(tok::amp);
5144 RefQualifierLoc = ConsumeToken();
5145 EndLoc = RefQualifierLoc;
5146 }
5147
5148 // C++11 [expr.prim.general]p3:
5149 // If a declaration declares a member function or member function
5150 // template of a class X, the expression this is a prvalue of type
5151 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5152 // and the end of the function-definition, member-declarator, or
5153 // declarator.
5154 // FIXME: currently, "static" case isn't handled correctly.
5155 bool IsCXX11MemberFunction =
5156 getLangOpts().CPlusPlus11 &&
5157 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5158 (D.getContext() == Declarator::MemberContext
5159 ? !D.getDeclSpec().isFriendSpecified()
5160 : D.getContext() == Declarator::FileContext &&
5161 D.getCXXScopeSpec().isValid() &&
5162 Actions.CurContext->isRecord());
5163 Sema::CXXThisScopeRAII ThisScope(Actions,
5164 dyn_cast<CXXRecordDecl>(Actions.CurContext),
5165 DS.getTypeQualifiers() |
5166 (D.getDeclSpec().isConstexprSpecified() &&
5167 !getLangOpts().CPlusPlus1y
5168 ? Qualifiers::Const : 0),
5169 IsCXX11MemberFunction);
5170
5171 // Parse exception-specification[opt].
5172 ESpecType = tryParseExceptionSpecification(ESpecRange,
5173 DynamicExceptions,
5174 DynamicExceptionRanges,
5175 NoexceptExpr);
5176 if (ESpecType != EST_None)
5177 EndLoc = ESpecRange.getEnd();
5178
5179 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5180 // after the exception-specification.
5181 MaybeParseCXX11Attributes(FnAttrs);
5182
5183 // Parse trailing-return-type[opt].
5184 LocalEndLoc = EndLoc;
5185 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5186 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5187 if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5188 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5189 LocalEndLoc = Tok.getLocation();
5190 SourceRange Range;
5191 TrailingReturnType = ParseTrailingReturnType(Range);
5192 EndLoc = Range.getEnd();
5193 }
5194 }
5195 }
5196
5197 // Remember that we parsed a function type, and remember the attributes.
5198 D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5199 IsAmbiguous,
5200 LParenLoc,
5201 ParamInfo.data(), ParamInfo.size(),
5202 EllipsisLoc, RParenLoc,
5203 DS.getTypeQualifiers(),
5204 RefQualifierIsLValueRef,
5205 RefQualifierLoc, ConstQualifierLoc,
5206 VolatileQualifierLoc,
5207 /*MutableLoc=*/SourceLocation(),
5208 ESpecType, ESpecRange.getBegin(),
5209 DynamicExceptions.data(),
5210 DynamicExceptionRanges.data(),
5211 DynamicExceptions.size(),
5212 NoexceptExpr.isUsable() ?
5213 NoexceptExpr.get() : nullptr,
5214 StartLoc, LocalEndLoc, D,
5215 TrailingReturnType),
5216 FnAttrs, EndLoc);
5217 }
5218
5219 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5220 /// identifier list form for a K&R-style function: void foo(a,b,c)
5221 ///
5222 /// Note that identifier-lists are only allowed for normal declarators, not for
5223 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5224 bool Parser::isFunctionDeclaratorIdentifierList() {
5225 return !getLangOpts().CPlusPlus
5226 && Tok.is(tok::identifier)
5227 && !TryAltiVecVectorToken()
5228 // K&R identifier lists can't have typedefs as identifiers, per C99
5229 // 6.7.5.3p11.
5230 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5231 // Identifier lists follow a really simple grammar: the identifiers can
5232 // be followed *only* by a ", identifier" or ")". However, K&R
5233 // identifier lists are really rare in the brave new modern world, and
5234 // it is very common for someone to typo a type in a non-K&R style
5235 // list. If we are presented with something like: "void foo(intptr x,
5236 // float y)", we don't want to start parsing the function declarator as
5237 // though it is a K&R style declarator just because intptr is an
5238 // invalid type.
5239 //
5240 // To handle this, we check to see if the token after the first
5241 // identifier is a "," or ")". Only then do we parse it as an
5242 // identifier list.
5243 && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5244 }
5245
5246 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5247 /// we found a K&R-style identifier list instead of a typed parameter list.
5248 ///
5249 /// After returning, ParamInfo will hold the parsed parameters.
5250 ///
5251 /// identifier-list: [C99 6.7.5]
5252 /// identifier
5253 /// identifier-list ',' identifier
5254 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5255 void Parser::ParseFunctionDeclaratorIdentifierList(
5256 Declarator &D,
5257 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5258 // If there was no identifier specified for the declarator, either we are in
5259 // an abstract-declarator, or we are in a parameter declarator which was found
5260 // to be abstract. In abstract-declarators, identifier lists are not valid:
5261 // diagnose this.
5262 if (!D.getIdentifier())
5263 Diag(Tok, diag::ext_ident_list_in_param);
5264
5265 // Maintain an efficient lookup of params we have seen so far.
5266 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5267
5268 do {
5269 // If this isn't an identifier, report the error and skip until ')'.
5270 if (Tok.isNot(tok::identifier)) {
5271 Diag(Tok, diag::err_expected) << tok::identifier;
5272 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5273 // Forget we parsed anything.
5274 ParamInfo.clear();
5275 return;
5276 }
5277
5278 IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5279
5280 // Reject 'typedef int y; int test(x, y)', but continue parsing.
5281 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5282 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5283
5284 // Verify that the argument identifier has not already been mentioned.
5285 if (!ParamsSoFar.insert(ParmII)) {
5286 Diag(Tok, diag::err_param_redefinition) << ParmII;
5287 } else {
5288 // Remember this identifier in ParamInfo.
5289 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5290 Tok.getLocation(),
5291 nullptr));
5292 }
5293
5294 // Eat the identifier.
5295 ConsumeToken();
5296 // The list continues if we see a comma.
5297 } while (TryConsumeToken(tok::comma));
5298 }
5299
5300 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5301 /// after the opening parenthesis. This function will not parse a K&R-style
5302 /// identifier list.
5303 ///
5304 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
5305 /// caller parsed those arguments immediately after the open paren - they should
5306 /// be considered to be part of the first parameter.
5307 ///
5308 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5309 /// be the location of the ellipsis, if any was parsed.
5310 ///
5311 /// parameter-type-list: [C99 6.7.5]
5312 /// parameter-list
5313 /// parameter-list ',' '...'
5314 /// [C++] parameter-list '...'
5315 ///
5316 /// parameter-list: [C99 6.7.5]
5317 /// parameter-declaration
5318 /// parameter-list ',' parameter-declaration
5319 ///
5320 /// parameter-declaration: [C99 6.7.5]
5321 /// declaration-specifiers declarator
5322 /// [C++] declaration-specifiers declarator '=' assignment-expression
5323 /// [C++11] initializer-clause
5324 /// [GNU] declaration-specifiers declarator attributes
5325 /// declaration-specifiers abstract-declarator[opt]
5326 /// [C++] declaration-specifiers abstract-declarator[opt]
5327 /// '=' assignment-expression
5328 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes
5329 /// [C++11] attribute-specifier-seq parameter-declaration
5330 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5331 void Parser::ParseParameterDeclarationClause(
5332 Declarator &D,
5333 ParsedAttributes &FirstArgAttrs,
5334 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5335 SourceLocation &EllipsisLoc) {
5336 do {
5337 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5338 // before deciding this was a parameter-declaration-clause.
5339 if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5340 break;
5341
5342 // Parse the declaration-specifiers.
5343 // Just use the ParsingDeclaration "scope" of the declarator.
5344 DeclSpec DS(AttrFactory);
5345
5346 // Parse any C++11 attributes.
5347 MaybeParseCXX11Attributes(DS.getAttributes());
5348
5349 // Skip any Microsoft attributes before a param.
5350 MaybeParseMicrosoftAttributes(DS.getAttributes());
5351
5352 SourceLocation DSStart = Tok.getLocation();
5353
5354 // If the caller parsed attributes for the first argument, add them now.
5355 // Take them so that we only apply the attributes to the first parameter.
5356 // FIXME: If we can leave the attributes in the token stream somehow, we can
5357 // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5358 // too much hassle.
5359 DS.takeAttributesFrom(FirstArgAttrs);
5360
5361 ParseDeclarationSpecifiers(DS);
5362
5363
5364 // Parse the declarator. This is "PrototypeContext" or
5365 // "LambdaExprParameterContext", because we must accept either
5366 // 'declarator' or 'abstract-declarator' here.
5367 Declarator ParmDeclarator(DS,
5368 D.getContext() == Declarator::LambdaExprContext ?
5369 Declarator::LambdaExprParameterContext :
5370 Declarator::PrototypeContext);
5371 ParseDeclarator(ParmDeclarator);
5372
5373 // Parse GNU attributes, if present.
5374 MaybeParseGNUAttributes(ParmDeclarator);
5375
5376 // Remember this parsed parameter in ParamInfo.
5377 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5378
5379 // DefArgToks is used when the parsing of default arguments needs
5380 // to be delayed.
5381 CachedTokens *DefArgToks = nullptr;
5382
5383 // If no parameter was specified, verify that *something* was specified,
5384 // otherwise we have a missing type and identifier.
5385 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5386 ParmDeclarator.getNumTypeObjects() == 0) {
5387 // Completely missing, emit error.
5388 Diag(DSStart, diag::err_missing_param);
5389 } else {
5390 // Otherwise, we have something. Add it and let semantic analysis try
5391 // to grok it and add the result to the ParamInfo we are building.
5392
5393 // Inform the actions module about the parameter declarator, so it gets
5394 // added to the current scope.
5395 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(),
5396 ParmDeclarator);
5397 // Parse the default argument, if any. We parse the default
5398 // arguments in all dialects; the semantic analysis in
5399 // ActOnParamDefaultArgument will reject the default argument in
5400 // C.
5401 if (Tok.is(tok::equal)) {
5402 SourceLocation EqualLoc = Tok.getLocation();
5403
5404 // Parse the default argument
5405 if (D.getContext() == Declarator::MemberContext) {
5406 // If we're inside a class definition, cache the tokens
5407 // corresponding to the default argument. We'll actually parse
5408 // them when we see the end of the class definition.
5409 // FIXME: Can we use a smart pointer for Toks?
5410 DefArgToks = new CachedTokens;
5411
5412 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5413 delete DefArgToks;
5414 DefArgToks = nullptr;
5415 Actions.ActOnParamDefaultArgumentError(Param);
5416 } else {
5417 // Mark the end of the default argument so that we know when to
5418 // stop when we parse it later on.
5419 Token DefArgEnd;
5420 DefArgEnd.startToken();
5421 DefArgEnd.setKind(tok::cxx_defaultarg_end);
5422 DefArgEnd.setLocation(Tok.getLocation());
5423 DefArgToks->push_back(DefArgEnd);
5424 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5425 (*DefArgToks)[1].getLocation());
5426 }
5427 } else {
5428 // Consume the '='.
5429 ConsumeToken();
5430
5431 // The argument isn't actually potentially evaluated unless it is
5432 // used.
5433 EnterExpressionEvaluationContext Eval(Actions,
5434 Sema::PotentiallyEvaluatedIfUsed,
5435 Param);
5436
5437 ExprResult DefArgResult;
5438 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5439 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5440 DefArgResult = ParseBraceInitializer();
5441 } else
5442 DefArgResult = ParseAssignmentExpression();
5443 if (DefArgResult.isInvalid()) {
5444 Actions.ActOnParamDefaultArgumentError(Param);
5445 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5446 } else {
5447 // Inform the actions module about the default argument
5448 Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5449 DefArgResult.get());
5450 }
5451 }
5452 }
5453
5454 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5455 ParmDeclarator.getIdentifierLoc(),
5456 Param, DefArgToks));
5457 }
5458
5459 if (TryConsumeToken(tok::ellipsis, EllipsisLoc) &&
5460 !getLangOpts().CPlusPlus) {
5461 // We have ellipsis without a preceding ',', which is ill-formed
5462 // in C. Complain and provide the fix.
5463 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5464 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5465 break;
5466 }
5467
5468 // If the next token is a comma, consume it and keep reading arguments.
5469 } while (TryConsumeToken(tok::comma));
5470 }
5471
5472 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5473 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5474 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5475 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5476 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5477 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5478 /// attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5479 void Parser::ParseBracketDeclarator(Declarator &D) {
5480 if (CheckProhibitedCXX11Attribute())
5481 return;
5482
5483 BalancedDelimiterTracker T(*this, tok::l_square);
5484 T.consumeOpen();
5485
5486 // C array syntax has many features, but by-far the most common is [] and [4].
5487 // This code does a fast path to handle some of the most obvious cases.
5488 if (Tok.getKind() == tok::r_square) {
5489 T.consumeClose();
5490 ParsedAttributes attrs(AttrFactory);
5491 MaybeParseCXX11Attributes(attrs);
5492
5493 // Remember that we parsed the empty array type.
5494 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5495 T.getOpenLocation(),
5496 T.getCloseLocation()),
5497 attrs, T.getCloseLocation());
5498 return;
5499 } else if (Tok.getKind() == tok::numeric_constant &&
5500 GetLookAheadToken(1).is(tok::r_square)) {
5501 // [4] is very common. Parse the numeric constant expression.
5502 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5503 ConsumeToken();
5504
5505 T.consumeClose();
5506 ParsedAttributes attrs(AttrFactory);
5507 MaybeParseCXX11Attributes(attrs);
5508
5509 // Remember that we parsed a array type, and remember its features.
5510 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5511 ExprRes.get(),
5512 T.getOpenLocation(),
5513 T.getCloseLocation()),
5514 attrs, T.getCloseLocation());
5515 return;
5516 }
5517
5518 // If valid, this location is the position where we read the 'static' keyword.
5519 SourceLocation StaticLoc;
5520 TryConsumeToken(tok::kw_static, StaticLoc);
5521
5522 // If there is a type-qualifier-list, read it now.
5523 // Type qualifiers in an array subscript are a C99 feature.
5524 DeclSpec DS(AttrFactory);
5525 ParseTypeQualifierListOpt(DS, false /*no attributes*/);
5526
5527 // If we haven't already read 'static', check to see if there is one after the
5528 // type-qualifier-list.
5529 if (!StaticLoc.isValid())
5530 TryConsumeToken(tok::kw_static, StaticLoc);
5531
5532 // Handle "direct-declarator [ type-qual-list[opt] * ]".
5533 bool isStar = false;
5534 ExprResult NumElements;
5535
5536 // Handle the case where we have '[*]' as the array size. However, a leading
5537 // star could be the start of an expression, for example 'X[*p + 4]'. Verify
5538 // the token after the star is a ']'. Since stars in arrays are
5539 // infrequent, use of lookahead is not costly here.
5540 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5541 ConsumeToken(); // Eat the '*'.
5542
5543 if (StaticLoc.isValid()) {
5544 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5545 StaticLoc = SourceLocation(); // Drop the static.
5546 }
5547 isStar = true;
5548 } else if (Tok.isNot(tok::r_square)) {
5549 // Note, in C89, this production uses the constant-expr production instead
5550 // of assignment-expr. The only difference is that assignment-expr allows
5551 // things like '=' and '*='. Sema rejects these in C89 mode because they
5552 // are not i-c-e's, so we don't need to distinguish between the two here.
5553
5554 // Parse the constant-expression or assignment-expression now (depending
5555 // on dialect).
5556 if (getLangOpts().CPlusPlus) {
5557 NumElements = ParseConstantExpression();
5558 } else {
5559 EnterExpressionEvaluationContext Unevaluated(Actions,
5560 Sema::ConstantEvaluated);
5561 NumElements = ParseAssignmentExpression();
5562 }
5563 }
5564
5565 // If there was an error parsing the assignment-expression, recover.
5566 if (NumElements.isInvalid()) {
5567 D.setInvalidType(true);
5568 // If the expression was invalid, skip it.
5569 SkipUntil(tok::r_square, StopAtSemi);
5570 return;
5571 }
5572
5573 T.consumeClose();
5574
5575 ParsedAttributes attrs(AttrFactory);
5576 MaybeParseCXX11Attributes(attrs);
5577
5578 // Remember that we parsed a array type, and remember its features.
5579 D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5580 StaticLoc.isValid(), isStar,
5581 NumElements.get(),
5582 T.getOpenLocation(),
5583 T.getCloseLocation()),
5584 attrs, T.getCloseLocation());
5585 }
5586
5587 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)5588 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5589 assert(Tok.is(tok::l_square) && "Missing opening bracket");
5590 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5591
5592 SourceLocation StartBracketLoc = Tok.getLocation();
5593 Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5594
5595 while (Tok.is(tok::l_square)) {
5596 ParseBracketDeclarator(TempDeclarator);
5597 }
5598
5599 // Stuff the location of the start of the brackets into the Declarator.
5600 // The diagnostics from ParseDirectDeclarator will make more sense if
5601 // they use this location instead.
5602 if (Tok.is(tok::semi))
5603 D.getName().EndLocation = StartBracketLoc;
5604
5605 SourceLocation SuggestParenLoc = Tok.getLocation();
5606
5607 // Now that the brackets are removed, try parsing the declarator again.
5608 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5609
5610 // Something went wrong parsing the brackets, in which case,
5611 // ParseBracketDeclarator has emitted an error, and we don't need to emit
5612 // one here.
5613 if (TempDeclarator.getNumTypeObjects() == 0)
5614 return;
5615
5616 // Determine if parens will need to be suggested in the diagnostic.
5617 bool NeedParens = false;
5618 if (D.getNumTypeObjects() != 0) {
5619 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5620 case DeclaratorChunk::Pointer:
5621 case DeclaratorChunk::Reference:
5622 case DeclaratorChunk::BlockPointer:
5623 case DeclaratorChunk::MemberPointer:
5624 NeedParens = true;
5625 break;
5626 case DeclaratorChunk::Array:
5627 case DeclaratorChunk::Function:
5628 case DeclaratorChunk::Paren:
5629 break;
5630 }
5631 }
5632
5633 if (NeedParens) {
5634 // Create a DeclaratorChunk for the inserted parens.
5635 ParsedAttributes attrs(AttrFactory);
5636 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5637 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5638 SourceLocation());
5639 }
5640
5641 // Adding back the bracket info to the end of the Declarator.
5642 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5643 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5644 ParsedAttributes attrs(AttrFactory);
5645 attrs.set(Chunk.Common.AttrList);
5646 D.AddTypeInfo(Chunk, attrs, SourceLocation());
5647 }
5648
5649 // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5650 // If parentheses are required, always suggest them.
5651 if (!D.getIdentifier() && !NeedParens)
5652 return;
5653
5654 SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5655
5656 // Generate the move bracket error message.
5657 SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5658 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5659
5660 if (NeedParens) {
5661 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5662 << getLangOpts().CPlusPlus
5663 << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5664 << FixItHint::CreateInsertion(EndLoc, ")")
5665 << FixItHint::CreateInsertionFromRange(
5666 EndLoc, CharSourceRange(BracketRange, true))
5667 << FixItHint::CreateRemoval(BracketRange);
5668 } else {
5669 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5670 << getLangOpts().CPlusPlus
5671 << FixItHint::CreateInsertionFromRange(
5672 EndLoc, CharSourceRange(BracketRange, true))
5673 << FixItHint::CreateRemoval(BracketRange);
5674 }
5675 }
5676
5677 /// [GNU] typeof-specifier:
5678 /// typeof ( expressions )
5679 /// typeof ( type-name )
5680 /// [GNU/C++] typeof unary-expression
5681 ///
ParseTypeofSpecifier(DeclSpec & DS)5682 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5683 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5684 Token OpTok = Tok;
5685 SourceLocation StartLoc = ConsumeToken();
5686
5687 const bool hasParens = Tok.is(tok::l_paren);
5688
5689 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5690 Sema::ReuseLambdaContextDecl);
5691
5692 bool isCastExpr;
5693 ParsedType CastTy;
5694 SourceRange CastRange;
5695 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
5696 CastTy, CastRange);
5697 if (hasParens)
5698 DS.setTypeofParensRange(CastRange);
5699
5700 if (CastRange.getEnd().isInvalid())
5701 // FIXME: Not accurate, the range gets one token more than it should.
5702 DS.SetRangeEnd(Tok.getLocation());
5703 else
5704 DS.SetRangeEnd(CastRange.getEnd());
5705
5706 if (isCastExpr) {
5707 if (!CastTy) {
5708 DS.SetTypeSpecError();
5709 return;
5710 }
5711
5712 const char *PrevSpec = nullptr;
5713 unsigned DiagID;
5714 // Check for duplicate type specifiers (e.g. "int typeof(int)").
5715 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5716 DiagID, CastTy,
5717 Actions.getASTContext().getPrintingPolicy()))
5718 Diag(StartLoc, DiagID) << PrevSpec;
5719 return;
5720 }
5721
5722 // If we get here, the operand to the typeof was an expresion.
5723 if (Operand.isInvalid()) {
5724 DS.SetTypeSpecError();
5725 return;
5726 }
5727
5728 // We might need to transform the operand if it is potentially evaluated.
5729 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
5730 if (Operand.isInvalid()) {
5731 DS.SetTypeSpecError();
5732 return;
5733 }
5734
5735 const char *PrevSpec = nullptr;
5736 unsigned DiagID;
5737 // Check for duplicate type specifiers (e.g. "int typeof(int)").
5738 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
5739 DiagID, Operand.get(),
5740 Actions.getASTContext().getPrintingPolicy()))
5741 Diag(StartLoc, DiagID) << PrevSpec;
5742 }
5743
5744 /// [C11] atomic-specifier:
5745 /// _Atomic ( type-name )
5746 ///
ParseAtomicSpecifier(DeclSpec & DS)5747 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
5748 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
5749 "Not an atomic specifier");
5750
5751 SourceLocation StartLoc = ConsumeToken();
5752 BalancedDelimiterTracker T(*this, tok::l_paren);
5753 if (T.consumeOpen())
5754 return;
5755
5756 TypeResult Result = ParseTypeName();
5757 if (Result.isInvalid()) {
5758 SkipUntil(tok::r_paren, StopAtSemi);
5759 return;
5760 }
5761
5762 // Match the ')'
5763 T.consumeClose();
5764
5765 if (T.getCloseLocation().isInvalid())
5766 return;
5767
5768 DS.setTypeofParensRange(T.getRange());
5769 DS.SetRangeEnd(T.getCloseLocation());
5770
5771 const char *PrevSpec = nullptr;
5772 unsigned DiagID;
5773 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
5774 DiagID, Result.get(),
5775 Actions.getASTContext().getPrintingPolicy()))
5776 Diag(StartLoc, DiagID) << PrevSpec;
5777 }
5778
5779
5780 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
5781 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()5782 bool Parser::TryAltiVecVectorTokenOutOfLine() {
5783 Token Next = NextToken();
5784 switch (Next.getKind()) {
5785 default: return false;
5786 case tok::kw_short:
5787 case tok::kw_long:
5788 case tok::kw_signed:
5789 case tok::kw_unsigned:
5790 case tok::kw_void:
5791 case tok::kw_char:
5792 case tok::kw_int:
5793 case tok::kw_float:
5794 case tok::kw_double:
5795 case tok::kw_bool:
5796 case tok::kw___pixel:
5797 Tok.setKind(tok::kw___vector);
5798 return true;
5799 case tok::identifier:
5800 if (Next.getIdentifierInfo() == Ident_pixel) {
5801 Tok.setKind(tok::kw___vector);
5802 return true;
5803 }
5804 if (Next.getIdentifierInfo() == Ident_bool) {
5805 Tok.setKind(tok::kw___vector);
5806 return true;
5807 }
5808 return false;
5809 }
5810 }
5811
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)5812 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
5813 const char *&PrevSpec, unsigned &DiagID,
5814 bool &isInvalid) {
5815 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
5816 if (Tok.getIdentifierInfo() == Ident_vector) {
5817 Token Next = NextToken();
5818 switch (Next.getKind()) {
5819 case tok::kw_short:
5820 case tok::kw_long:
5821 case tok::kw_signed:
5822 case tok::kw_unsigned:
5823 case tok::kw_void:
5824 case tok::kw_char:
5825 case tok::kw_int:
5826 case tok::kw_float:
5827 case tok::kw_double:
5828 case tok::kw_bool:
5829 case tok::kw___pixel:
5830 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
5831 return true;
5832 case tok::identifier:
5833 if (Next.getIdentifierInfo() == Ident_pixel) {
5834 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
5835 return true;
5836 }
5837 if (Next.getIdentifierInfo() == Ident_bool) {
5838 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
5839 return true;
5840 }
5841 break;
5842 default:
5843 break;
5844 }
5845 } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
5846 DS.isTypeAltiVecVector()) {
5847 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
5848 return true;
5849 } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
5850 DS.isTypeAltiVecVector()) {
5851 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
5852 return true;
5853 }
5854 return false;
5855 }
5856