1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mark_sweep.h"
18
19 #include <functional>
20 #include <numeric>
21 #include <climits>
22 #include <vector>
23
24 #include "base/bounded_fifo.h"
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/mutex-inl.h"
28 #include "base/timing_logger.h"
29 #include "gc/accounting/card_table-inl.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table.h"
32 #include "gc/accounting/space_bitmap-inl.h"
33 #include "gc/heap.h"
34 #include "gc/reference_processor.h"
35 #include "gc/space/image_space.h"
36 #include "gc/space/large_object_space.h"
37 #include "gc/space/space-inl.h"
38 #include "mark_sweep-inl.h"
39 #include "mirror/art_field-inl.h"
40 #include "mirror/object-inl.h"
41 #include "runtime.h"
42 #include "scoped_thread_state_change.h"
43 #include "thread-inl.h"
44 #include "thread_list.h"
45
46 using ::art::mirror::Object;
47
48 namespace art {
49 namespace gc {
50 namespace collector {
51
52 // Performance options.
53 static constexpr bool kUseRecursiveMark = false;
54 static constexpr bool kUseMarkStackPrefetch = true;
55 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
56 static constexpr bool kPreCleanCards = true;
57
58 // Parallelism options.
59 static constexpr bool kParallelCardScan = true;
60 static constexpr bool kParallelRecursiveMark = true;
61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
63 // having this can add overhead in ProcessReferences since we may end up doing many calls of
64 // ProcessMarkStack with very small mark stacks.
65 static constexpr size_t kMinimumParallelMarkStackSize = 128;
66 static constexpr bool kParallelProcessMarkStack = true;
67
68 // Profiling and information flags.
69 static constexpr bool kProfileLargeObjects = false;
70 static constexpr bool kMeasureOverhead = false;
71 static constexpr bool kCountTasks = false;
72 static constexpr bool kCountJavaLangRefs = false;
73 static constexpr bool kCountMarkedObjects = false;
74
75 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
76 static constexpr bool kCheckLocks = kDebugLocking;
77 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
78
79 // If true, revoke the rosalloc thread-local buffers at the
80 // checkpoint, as opposed to during the pause.
81 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
82
BindBitmaps()83 void MarkSweep::BindBitmaps() {
84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
86 // Mark all of the spaces we never collect as immune.
87 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
90 }
91 }
92 }
93
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)94 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
95 : GarbageCollector(heap,
96 name_prefix +
97 (is_concurrent ? "concurrent mark sweep": "mark sweep")),
98 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
99 gc_barrier_(new Barrier(0)),
100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
102 std::string error_msg;
103 MemMap* mem_map = MemMap::MapAnonymous(
104 "mark sweep sweep array free buffer", nullptr,
105 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
106 PROT_READ | PROT_WRITE, false, &error_msg);
107 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
108 sweep_array_free_buffer_mem_map_.reset(mem_map);
109 }
110
InitializePhase()111 void MarkSweep::InitializePhase() {
112 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
113 mark_stack_ = heap_->GetMarkStack();
114 DCHECK(mark_stack_ != nullptr);
115 immune_region_.Reset();
116 class_count_.StoreRelaxed(0);
117 array_count_.StoreRelaxed(0);
118 other_count_.StoreRelaxed(0);
119 large_object_test_.StoreRelaxed(0);
120 large_object_mark_.StoreRelaxed(0);
121 overhead_time_ .StoreRelaxed(0);
122 work_chunks_created_.StoreRelaxed(0);
123 work_chunks_deleted_.StoreRelaxed(0);
124 reference_count_.StoreRelaxed(0);
125 mark_null_count_.StoreRelaxed(0);
126 mark_immune_count_.StoreRelaxed(0);
127 mark_fastpath_count_.StoreRelaxed(0);
128 mark_slowpath_count_.StoreRelaxed(0);
129 {
130 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
131 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
132 mark_bitmap_ = heap_->GetMarkBitmap();
133 }
134 if (!GetCurrentIteration()->GetClearSoftReferences()) {
135 // Always clear soft references if a non-sticky collection.
136 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
137 }
138 }
139
RunPhases()140 void MarkSweep::RunPhases() {
141 Thread* self = Thread::Current();
142 InitializePhase();
143 Locks::mutator_lock_->AssertNotHeld(self);
144 if (IsConcurrent()) {
145 GetHeap()->PreGcVerification(this);
146 {
147 ReaderMutexLock mu(self, *Locks::mutator_lock_);
148 MarkingPhase();
149 }
150 ScopedPause pause(this);
151 GetHeap()->PrePauseRosAllocVerification(this);
152 PausePhase();
153 RevokeAllThreadLocalBuffers();
154 } else {
155 ScopedPause pause(this);
156 GetHeap()->PreGcVerificationPaused(this);
157 MarkingPhase();
158 GetHeap()->PrePauseRosAllocVerification(this);
159 PausePhase();
160 RevokeAllThreadLocalBuffers();
161 }
162 {
163 // Sweeping always done concurrently, even for non concurrent mark sweep.
164 ReaderMutexLock mu(self, *Locks::mutator_lock_);
165 ReclaimPhase();
166 }
167 GetHeap()->PostGcVerification(this);
168 FinishPhase();
169 }
170
ProcessReferences(Thread * self)171 void MarkSweep::ProcessReferences(Thread* self) {
172 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
173 GetHeap()->GetReferenceProcessor()->ProcessReferences(
174 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
175 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
176 }
177
PausePhase()178 void MarkSweep::PausePhase() {
179 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
180 Thread* self = Thread::Current();
181 Locks::mutator_lock_->AssertExclusiveHeld(self);
182 if (IsConcurrent()) {
183 // Handle the dirty objects if we are a concurrent GC.
184 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
185 // Re-mark root set.
186 ReMarkRoots();
187 // Scan dirty objects, this is only required if we are not doing concurrent GC.
188 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
189 }
190 {
191 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
192 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
193 heap_->SwapStacks(self);
194 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
195 // Need to revoke all the thread local allocation stacks since we just swapped the allocation
196 // stacks and don't want anybody to allocate into the live stack.
197 RevokeAllThreadLocalAllocationStacks(self);
198 }
199 heap_->PreSweepingGcVerification(this);
200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system
201 // weak before we sweep them. Since this new system weak may not be marked, the GC may
202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
203 // reference to a string that is about to be swept.
204 Runtime::Current()->DisallowNewSystemWeaks();
205 // Enable the reference processing slow path, needs to be done with mutators paused since there
206 // is no lock in the GetReferent fast path.
207 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
208 }
209
PreCleanCards()210 void MarkSweep::PreCleanCards() {
211 // Don't do this for non concurrent GCs since they don't have any dirty cards.
212 if (kPreCleanCards && IsConcurrent()) {
213 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
214 Thread* self = Thread::Current();
215 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216 // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217 heap_->ProcessCards(GetTimings(), false);
218 // The checkpoint root marking is required to avoid a race condition which occurs if the
219 // following happens during a reference write:
220 // 1. mutator dirties the card (write barrier)
221 // 2. GC ages the card (the above ProcessCards call)
222 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223 // 4. mutator writes the value (corresponding to the write barrier in 1.)
224 // This causes the GC to age the card but not necessarily mark the reference which the mutator
225 // wrote into the object stored in the card.
226 // Having the checkpoint fixes this issue since it ensures that the card mark and the
227 // reference write are visible to the GC before the card is scanned (this is due to locks being
228 // acquired / released in the checkpoint code).
229 // The other roots are also marked to help reduce the pause.
230 MarkRootsCheckpoint(self, false);
231 MarkNonThreadRoots();
232 MarkConcurrentRoots(
233 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
234 // Process the newly aged cards.
235 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
236 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
237 // in the next GC.
238 }
239 }
240
RevokeAllThreadLocalAllocationStacks(Thread * self)241 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
242 if (kUseThreadLocalAllocationStack) {
243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
244 Locks::mutator_lock_->AssertExclusiveHeld(self);
245 heap_->RevokeAllThreadLocalAllocationStacks(self);
246 }
247 }
248
MarkingPhase()249 void MarkSweep::MarkingPhase() {
250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
251 Thread* self = Thread::Current();
252 BindBitmaps();
253 FindDefaultSpaceBitmap();
254 // Process dirty cards and add dirty cards to mod union tables.
255 heap_->ProcessCards(GetTimings(), false);
256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
257 MarkRoots(self);
258 MarkReachableObjects();
259 // Pre-clean dirtied cards to reduce pauses.
260 PreCleanCards();
261 }
262
UpdateAndMarkModUnion()263 void MarkSweep::UpdateAndMarkModUnion() {
264 for (const auto& space : heap_->GetContinuousSpaces()) {
265 if (immune_region_.ContainsSpace(space)) {
266 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
267 "UpdateAndMarkImageModUnionTable";
268 TimingLogger::ScopedTiming t(name, GetTimings());
269 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
270 CHECK(mod_union_table != nullptr);
271 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
272 }
273 }
274 }
275
MarkReachableObjects()276 void MarkSweep::MarkReachableObjects() {
277 UpdateAndMarkModUnion();
278 // Recursively mark all the non-image bits set in the mark bitmap.
279 RecursiveMark();
280 }
281
ReclaimPhase()282 void MarkSweep::ReclaimPhase() {
283 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
284 Thread* self = Thread::Current();
285 // Process the references concurrently.
286 ProcessReferences(self);
287 SweepSystemWeaks(self);
288 Runtime::Current()->AllowNewSystemWeaks();
289 {
290 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
291 // Reclaim unmarked objects.
292 Sweep(false);
293 // Swap the live and mark bitmaps for each space which we modified space. This is an
294 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
295 // bitmaps.
296 SwapBitmaps();
297 // Unbind the live and mark bitmaps.
298 GetHeap()->UnBindBitmaps();
299 }
300 }
301
FindDefaultSpaceBitmap()302 void MarkSweep::FindDefaultSpaceBitmap() {
303 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
304 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
305 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
306 // We want to have the main space instead of non moving if possible.
307 if (bitmap != nullptr &&
308 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
309 current_space_bitmap_ = bitmap;
310 // If we are not the non moving space exit the loop early since this will be good enough.
311 if (space != heap_->GetNonMovingSpace()) {
312 break;
313 }
314 }
315 }
316 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
317 << heap_->DumpSpaces();
318 }
319
ExpandMarkStack()320 void MarkSweep::ExpandMarkStack() {
321 ResizeMarkStack(mark_stack_->Capacity() * 2);
322 }
323
ResizeMarkStack(size_t new_size)324 void MarkSweep::ResizeMarkStack(size_t new_size) {
325 // Rare case, no need to have Thread::Current be a parameter.
326 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
327 // Someone else acquired the lock and expanded the mark stack before us.
328 return;
329 }
330 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
331 CHECK_LE(mark_stack_->Size(), new_size);
332 mark_stack_->Resize(new_size);
333 for (const auto& obj : temp) {
334 mark_stack_->PushBack(obj);
335 }
336 }
337
MarkObjectNonNullParallel(Object * obj)338 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
339 DCHECK(obj != nullptr);
340 if (MarkObjectParallel(obj)) {
341 MutexLock mu(Thread::Current(), mark_stack_lock_);
342 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
343 ExpandMarkStack();
344 }
345 // The object must be pushed on to the mark stack.
346 mark_stack_->PushBack(obj);
347 }
348 }
349
MarkObjectCallback(mirror::Object * obj,void * arg)350 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
351 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
352 mark_sweep->MarkObject(obj);
353 return obj;
354 }
355
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)356 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
357 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
358 }
359
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)360 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
361 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
362 }
363
364 class MarkSweepMarkObjectSlowPath {
365 public:
MarkSweepMarkObjectSlowPath(MarkSweep * mark_sweep)366 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
367 }
368
operator ()(const Object * obj) const369 void operator()(const Object* obj) const ALWAYS_INLINE {
370 if (kProfileLargeObjects) {
371 // TODO: Differentiate between marking and testing somehow.
372 ++mark_sweep_->large_object_test_;
373 ++mark_sweep_->large_object_mark_;
374 }
375 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
376 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
377 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
378 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
379 LOG(ERROR) << "Attempting see if it's a bad root";
380 mark_sweep_->VerifyRoots();
381 LOG(FATAL) << "Can't mark invalid object";
382 }
383 }
384
385 private:
386 MarkSweep* const mark_sweep_;
387 };
388
MarkObjectNonNull(Object * obj)389 inline void MarkSweep::MarkObjectNonNull(Object* obj) {
390 DCHECK(obj != nullptr);
391 if (kUseBakerOrBrooksReadBarrier) {
392 // Verify all the objects have the correct pointer installed.
393 obj->AssertReadBarrierPointer();
394 }
395 if (immune_region_.ContainsObject(obj)) {
396 if (kCountMarkedObjects) {
397 ++mark_immune_count_;
398 }
399 DCHECK(mark_bitmap_->Test(obj));
400 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
401 if (kCountMarkedObjects) {
402 ++mark_fastpath_count_;
403 }
404 if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
405 PushOnMarkStack(obj); // This object was not previously marked.
406 }
407 } else {
408 if (kCountMarkedObjects) {
409 ++mark_slowpath_count_;
410 }
411 MarkSweepMarkObjectSlowPath visitor(this);
412 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
413 // will check again.
414 if (!mark_bitmap_->Set(obj, visitor)) {
415 PushOnMarkStack(obj); // Was not already marked, push.
416 }
417 }
418 }
419
PushOnMarkStack(Object * obj)420 inline void MarkSweep::PushOnMarkStack(Object* obj) {
421 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
422 // Lock is not needed but is here anyways to please annotalysis.
423 MutexLock mu(Thread::Current(), mark_stack_lock_);
424 ExpandMarkStack();
425 }
426 // The object must be pushed on to the mark stack.
427 mark_stack_->PushBack(obj);
428 }
429
MarkObjectParallel(const Object * obj)430 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
431 DCHECK(obj != nullptr);
432 if (kUseBakerOrBrooksReadBarrier) {
433 // Verify all the objects have the correct pointer installed.
434 obj->AssertReadBarrierPointer();
435 }
436 if (immune_region_.ContainsObject(obj)) {
437 DCHECK(IsMarked(obj));
438 return false;
439 }
440 // Try to take advantage of locality of references within a space, failing this find the space
441 // the hard way.
442 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
443 if (LIKELY(object_bitmap->HasAddress(obj))) {
444 return !object_bitmap->AtomicTestAndSet(obj);
445 }
446 MarkSweepMarkObjectSlowPath visitor(this);
447 return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
448 }
449
450 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(Object * obj)451 inline void MarkSweep::MarkObject(Object* obj) {
452 if (obj != nullptr) {
453 MarkObjectNonNull(obj);
454 } else if (kCountMarkedObjects) {
455 ++mark_null_count_;
456 }
457 }
458
MarkRootParallelCallback(Object ** root,void * arg,uint32_t,RootType)459 void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
460 RootType /*root_type*/) {
461 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
462 }
463
VerifyRootMarked(Object ** root,void * arg,uint32_t,RootType)464 void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
465 RootType /*root_type*/) {
466 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
467 }
468
MarkRootCallback(Object ** root,void * arg,uint32_t,RootType)469 void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
470 RootType /*root_type*/) {
471 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
472 }
473
VerifyRootCallback(const Object * root,void * arg,size_t vreg,const StackVisitor * visitor,RootType root_type)474 void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
475 const StackVisitor* visitor, RootType root_type) {
476 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type);
477 }
478
VerifyRoot(const Object * root,size_t vreg,const StackVisitor * visitor,RootType root_type)479 void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor,
480 RootType root_type) {
481 // See if the root is on any space bitmap.
482 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
483 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
484 if (!large_object_space->Contains(root)) {
485 LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type;
486 if (visitor != NULL) {
487 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
488 }
489 }
490 }
491 }
492
VerifyRoots()493 void MarkSweep::VerifyRoots() {
494 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
495 }
496
MarkRoots(Thread * self)497 void MarkSweep::MarkRoots(Thread* self) {
498 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
499 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
500 // If we exclusively hold the mutator lock, all threads must be suspended.
501 Runtime::Current()->VisitRoots(MarkRootCallback, this);
502 RevokeAllThreadLocalAllocationStacks(self);
503 } else {
504 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
505 // At this point the live stack should no longer have any mutators which push into it.
506 MarkNonThreadRoots();
507 MarkConcurrentRoots(
508 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
509 }
510 }
511
MarkNonThreadRoots()512 void MarkSweep::MarkNonThreadRoots() {
513 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
514 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
515 }
516
MarkConcurrentRoots(VisitRootFlags flags)517 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
518 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
519 // Visit all runtime roots and clear dirty flags.
520 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
521 }
522
523 class ScanObjectVisitor {
524 public:
ScanObjectVisitor(MarkSweep * const mark_sweep)525 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
526 : mark_sweep_(mark_sweep) {}
527
operator ()(Object * obj) const528 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
529 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
530 if (kCheckLocks) {
531 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
532 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
533 }
534 mark_sweep_->ScanObject(obj);
535 }
536
537 private:
538 MarkSweep* const mark_sweep_;
539 };
540
541 class DelayReferenceReferentVisitor {
542 public:
DelayReferenceReferentVisitor(MarkSweep * collector)543 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
544 }
545
operator ()(mirror::Class * klass,mirror::Reference * ref) const546 void operator()(mirror::Class* klass, mirror::Reference* ref) const
547 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
548 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
549 collector_->DelayReferenceReferent(klass, ref);
550 }
551
552 private:
553 MarkSweep* const collector_;
554 };
555
556 template <bool kUseFinger = false>
557 class MarkStackTask : public Task {
558 public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,Object ** mark_stack)559 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
560 Object** mark_stack)
561 : mark_sweep_(mark_sweep),
562 thread_pool_(thread_pool),
563 mark_stack_pos_(mark_stack_size) {
564 // We may have to copy part of an existing mark stack when another mark stack overflows.
565 if (mark_stack_size != 0) {
566 DCHECK(mark_stack != NULL);
567 // TODO: Check performance?
568 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
569 }
570 if (kCountTasks) {
571 ++mark_sweep_->work_chunks_created_;
572 }
573 }
574
575 static const size_t kMaxSize = 1 * KB;
576
577 protected:
578 class MarkObjectParallelVisitor {
579 public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)580 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
581 MarkSweep* mark_sweep) ALWAYS_INLINE
582 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
583
operator ()(Object * obj,MemberOffset offset,bool) const584 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
585 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
586 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
587 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
588 if (kUseFinger) {
589 android_memory_barrier();
590 if (reinterpret_cast<uintptr_t>(ref) >=
591 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
592 return;
593 }
594 }
595 chunk_task_->MarkStackPush(ref);
596 }
597 }
598
599 private:
600 MarkStackTask<kUseFinger>* const chunk_task_;
601 MarkSweep* const mark_sweep_;
602 };
603
604 class ScanObjectParallelVisitor {
605 public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)606 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
607 : chunk_task_(chunk_task) {}
608
609 // No thread safety analysis since multiple threads will use this visitor.
operator ()(Object * obj) const610 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
611 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
612 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
613 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
614 DelayReferenceReferentVisitor ref_visitor(mark_sweep);
615 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
616 }
617
618 private:
619 MarkStackTask<kUseFinger>* const chunk_task_;
620 };
621
~MarkStackTask()622 virtual ~MarkStackTask() {
623 // Make sure that we have cleared our mark stack.
624 DCHECK_EQ(mark_stack_pos_, 0U);
625 if (kCountTasks) {
626 ++mark_sweep_->work_chunks_deleted_;
627 }
628 }
629
630 MarkSweep* const mark_sweep_;
631 ThreadPool* const thread_pool_;
632 // Thread local mark stack for this task.
633 Object* mark_stack_[kMaxSize];
634 // Mark stack position.
635 size_t mark_stack_pos_;
636
MarkStackPush(Object * obj)637 void MarkStackPush(Object* obj) ALWAYS_INLINE {
638 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
639 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
640 mark_stack_pos_ /= 2;
641 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
642 mark_stack_ + mark_stack_pos_);
643 thread_pool_->AddTask(Thread::Current(), task);
644 }
645 DCHECK(obj != nullptr);
646 DCHECK_LT(mark_stack_pos_, kMaxSize);
647 mark_stack_[mark_stack_pos_++] = obj;
648 }
649
Finalize()650 virtual void Finalize() {
651 delete this;
652 }
653
654 // Scans all of the objects
Run(Thread * self)655 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
656 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
657 ScanObjectParallelVisitor visitor(this);
658 // TODO: Tune this.
659 static const size_t kFifoSize = 4;
660 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
661 for (;;) {
662 Object* obj = nullptr;
663 if (kUseMarkStackPrefetch) {
664 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
665 Object* obj = mark_stack_[--mark_stack_pos_];
666 DCHECK(obj != nullptr);
667 __builtin_prefetch(obj);
668 prefetch_fifo.push_back(obj);
669 }
670 if (UNLIKELY(prefetch_fifo.empty())) {
671 break;
672 }
673 obj = prefetch_fifo.front();
674 prefetch_fifo.pop_front();
675 } else {
676 if (UNLIKELY(mark_stack_pos_ == 0)) {
677 break;
678 }
679 obj = mark_stack_[--mark_stack_pos_];
680 }
681 DCHECK(obj != nullptr);
682 visitor(obj);
683 }
684 }
685 };
686
687 class CardScanTask : public MarkStackTask<false> {
688 public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,byte * begin,byte * end,byte minimum_age,size_t mark_stack_size,Object ** mark_stack_obj)689 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
690 accounting::ContinuousSpaceBitmap* bitmap,
691 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
692 Object** mark_stack_obj)
693 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
694 bitmap_(bitmap),
695 begin_(begin),
696 end_(end),
697 minimum_age_(minimum_age) {
698 }
699
700 protected:
701 accounting::ContinuousSpaceBitmap* const bitmap_;
702 byte* const begin_;
703 byte* const end_;
704 const byte minimum_age_;
705
Finalize()706 virtual void Finalize() {
707 delete this;
708 }
709
Run(Thread * self)710 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
711 ScanObjectParallelVisitor visitor(this);
712 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
713 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
714 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
715 << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
716 // Finish by emptying our local mark stack.
717 MarkStackTask::Run(self);
718 }
719 };
720
GetThreadCount(bool paused) const721 size_t MarkSweep::GetThreadCount(bool paused) const {
722 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
723 return 1;
724 }
725 if (paused) {
726 return heap_->GetParallelGCThreadCount() + 1;
727 } else {
728 return heap_->GetConcGCThreadCount() + 1;
729 }
730 }
731
ScanGrayObjects(bool paused,byte minimum_age)732 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
733 accounting::CardTable* card_table = GetHeap()->GetCardTable();
734 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
735 size_t thread_count = GetThreadCount(paused);
736 // The parallel version with only one thread is faster for card scanning, TODO: fix.
737 if (kParallelCardScan && thread_count > 1) {
738 Thread* self = Thread::Current();
739 // Can't have a different split for each space since multiple spaces can have their cards being
740 // scanned at the same time.
741 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
742 GetTimings());
743 // Try to take some of the mark stack since we can pass this off to the worker tasks.
744 Object** mark_stack_begin = mark_stack_->Begin();
745 Object** mark_stack_end = mark_stack_->End();
746 const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
747 // Estimated number of work tasks we will create.
748 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
749 DCHECK_NE(mark_stack_tasks, 0U);
750 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
751 mark_stack_size / mark_stack_tasks + 1);
752 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
753 if (space->GetMarkBitmap() == nullptr) {
754 continue;
755 }
756 byte* card_begin = space->Begin();
757 byte* card_end = space->End();
758 // Align up the end address. For example, the image space's end
759 // may not be card-size-aligned.
760 card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
761 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
762 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
763 // Calculate how many bytes of heap we will scan,
764 const size_t address_range = card_end - card_begin;
765 // Calculate how much address range each task gets.
766 const size_t card_delta = RoundUp(address_range / thread_count + 1,
767 accounting::CardTable::kCardSize);
768 // Create the worker tasks for this space.
769 while (card_begin != card_end) {
770 // Add a range of cards.
771 size_t addr_remaining = card_end - card_begin;
772 size_t card_increment = std::min(card_delta, addr_remaining);
773 // Take from the back of the mark stack.
774 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
775 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
776 mark_stack_end -= mark_stack_increment;
777 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
778 DCHECK_EQ(mark_stack_end, mark_stack_->End());
779 // Add the new task to the thread pool.
780 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
781 card_begin + card_increment, minimum_age,
782 mark_stack_increment, mark_stack_end);
783 thread_pool->AddTask(self, task);
784 card_begin += card_increment;
785 }
786 }
787
788 // Note: the card scan below may dirty new cards (and scan them)
789 // as a side effect when a Reference object is encountered and
790 // queued during the marking. See b/11465268.
791 thread_pool->SetMaxActiveWorkers(thread_count - 1);
792 thread_pool->StartWorkers(self);
793 thread_pool->Wait(self, true, true);
794 thread_pool->StopWorkers(self);
795 } else {
796 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
797 if (space->GetMarkBitmap() != nullptr) {
798 // Image spaces are handled properly since live == marked for them.
799 const char* name = nullptr;
800 switch (space->GetGcRetentionPolicy()) {
801 case space::kGcRetentionPolicyNeverCollect:
802 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
803 break;
804 case space::kGcRetentionPolicyFullCollect:
805 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
806 break;
807 case space::kGcRetentionPolicyAlwaysCollect:
808 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
809 break;
810 default:
811 LOG(FATAL) << "Unreachable";
812 }
813 TimingLogger::ScopedTiming t(name, GetTimings());
814 ScanObjectVisitor visitor(this);
815 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
816 minimum_age);
817 }
818 }
819 }
820 }
821
822 class RecursiveMarkTask : public MarkStackTask<false> {
823 public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)824 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
825 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
826 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin),
827 end_(end) {
828 }
829
830 protected:
831 accounting::ContinuousSpaceBitmap* const bitmap_;
832 const uintptr_t begin_;
833 const uintptr_t end_;
834
Finalize()835 virtual void Finalize() {
836 delete this;
837 }
838
839 // Scans all of the objects
Run(Thread * self)840 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
841 ScanObjectParallelVisitor visitor(this);
842 bitmap_->VisitMarkedRange(begin_, end_, visitor);
843 // Finish by emptying our local mark stack.
844 MarkStackTask::Run(self);
845 }
846 };
847
848 // Populates the mark stack based on the set of marked objects and
849 // recursively marks until the mark stack is emptied.
RecursiveMark()850 void MarkSweep::RecursiveMark() {
851 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
852 // RecursiveMark will build the lists of known instances of the Reference classes. See
853 // DelayReferenceReferent for details.
854 if (kUseRecursiveMark) {
855 const bool partial = GetGcType() == kGcTypePartial;
856 ScanObjectVisitor scan_visitor(this);
857 auto* self = Thread::Current();
858 ThreadPool* thread_pool = heap_->GetThreadPool();
859 size_t thread_count = GetThreadCount(false);
860 const bool parallel = kParallelRecursiveMark && thread_count > 1;
861 mark_stack_->Reset();
862 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
863 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
864 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
865 current_space_bitmap_ = space->GetMarkBitmap();
866 if (current_space_bitmap_ == nullptr) {
867 continue;
868 }
869 if (parallel) {
870 // We will use the mark stack the future.
871 // CHECK(mark_stack_->IsEmpty());
872 // This function does not handle heap end increasing, so we must use the space end.
873 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
874 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
875 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
876
877 // Create a few worker tasks.
878 const size_t n = thread_count * 2;
879 while (begin != end) {
880 uintptr_t start = begin;
881 uintptr_t delta = (end - begin) / n;
882 delta = RoundUp(delta, KB);
883 if (delta < 16 * KB) delta = end - begin;
884 begin += delta;
885 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
886 begin);
887 thread_pool->AddTask(self, task);
888 }
889 thread_pool->SetMaxActiveWorkers(thread_count - 1);
890 thread_pool->StartWorkers(self);
891 thread_pool->Wait(self, true, true);
892 thread_pool->StopWorkers(self);
893 } else {
894 // This function does not handle heap end increasing, so we must use the space end.
895 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
896 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
897 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
898 }
899 }
900 }
901 }
902 ProcessMarkStack(false);
903 }
904
IsMarkedCallback(mirror::Object * object,void * arg)905 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
906 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
907 return object;
908 }
909 return nullptr;
910 }
911
RecursiveMarkDirtyObjects(bool paused,byte minimum_age)912 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
913 ScanGrayObjects(paused, minimum_age);
914 ProcessMarkStack(paused);
915 }
916
ReMarkRoots()917 void MarkSweep::ReMarkRoots() {
918 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
919 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
920 Runtime::Current()->VisitRoots(
921 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
922 kVisitRootFlagStopLoggingNewRoots |
923 kVisitRootFlagClearRootLog));
924 if (kVerifyRootsMarked) {
925 TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings());
926 Runtime::Current()->VisitRoots(VerifyRootMarked, this);
927 }
928 }
929
SweepSystemWeaks(Thread * self)930 void MarkSweep::SweepSystemWeaks(Thread* self) {
931 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
932 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
933 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
934 }
935
VerifySystemWeakIsLiveCallback(Object * obj,void * arg)936 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
937 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
938 // We don't actually want to sweep the object, so lets return "marked"
939 return obj;
940 }
941
VerifyIsLive(const Object * obj)942 void MarkSweep::VerifyIsLive(const Object* obj) {
943 if (!heap_->GetLiveBitmap()->Test(obj)) {
944 accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get();
945 CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) !=
946 allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
947 }
948 }
949
VerifySystemWeaks()950 void MarkSweep::VerifySystemWeaks() {
951 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
952 // Verify system weaks, uses a special object visitor which returns the input object.
953 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
954 }
955
956 class CheckpointMarkThreadRoots : public Closure {
957 public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)958 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
959 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
960 : mark_sweep_(mark_sweep),
961 revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
962 revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
963 }
964
Run(Thread * thread)965 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
966 ATRACE_BEGIN("Marking thread roots");
967 // Note: self is not necessarily equal to thread since thread may be suspended.
968 Thread* self = Thread::Current();
969 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
970 << thread->GetState() << " thread " << thread << " self " << self;
971 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
972 ATRACE_END();
973 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
974 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
975 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
976 ATRACE_END();
977 }
978 mark_sweep_->GetBarrier().Pass(self);
979 }
980
981 private:
982 MarkSweep* const mark_sweep_;
983 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
984 };
985
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)986 void MarkSweep::MarkRootsCheckpoint(Thread* self,
987 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
988 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
989 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
990 ThreadList* thread_list = Runtime::Current()->GetThreadList();
991 // Request the check point is run on all threads returning a count of the threads that must
992 // run through the barrier including self.
993 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
994 // Release locks then wait for all mutator threads to pass the barrier.
995 // TODO: optimize to not release locks when there are no threads to wait for.
996 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
997 Locks::mutator_lock_->SharedUnlock(self);
998 {
999 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1000 gc_barrier_->Increment(self, barrier_count);
1001 }
1002 Locks::mutator_lock_->SharedLock(self);
1003 Locks::heap_bitmap_lock_->ExclusiveLock(self);
1004 }
1005
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1006 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1007 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1008 Thread* self = Thread::Current();
1009 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1010 sweep_array_free_buffer_mem_map_->BaseBegin());
1011 size_t chunk_free_pos = 0;
1012 ObjectBytePair freed;
1013 ObjectBytePair freed_los;
1014 // How many objects are left in the array, modified after each space is swept.
1015 Object** objects = allocations->Begin();
1016 size_t count = allocations->Size();
1017 // Change the order to ensure that the non-moving space last swept as an optimization.
1018 std::vector<space::ContinuousSpace*> sweep_spaces;
1019 space::ContinuousSpace* non_moving_space = nullptr;
1020 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1021 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1022 space->GetLiveBitmap() != nullptr) {
1023 if (space == heap_->GetNonMovingSpace()) {
1024 non_moving_space = space;
1025 } else {
1026 sweep_spaces.push_back(space);
1027 }
1028 }
1029 }
1030 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1031 // the other alloc spaces as an optimization.
1032 if (non_moving_space != nullptr) {
1033 sweep_spaces.push_back(non_moving_space);
1034 }
1035 // Start by sweeping the continuous spaces.
1036 for (space::ContinuousSpace* space : sweep_spaces) {
1037 space::AllocSpace* alloc_space = space->AsAllocSpace();
1038 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1039 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1040 if (swap_bitmaps) {
1041 std::swap(live_bitmap, mark_bitmap);
1042 }
1043 Object** out = objects;
1044 for (size_t i = 0; i < count; ++i) {
1045 Object* obj = objects[i];
1046 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1047 continue;
1048 }
1049 if (space->HasAddress(obj)) {
1050 // This object is in the space, remove it from the array and add it to the sweep buffer
1051 // if needed.
1052 if (!mark_bitmap->Test(obj)) {
1053 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1054 TimingLogger::ScopedTiming t("FreeList", GetTimings());
1055 freed.objects += chunk_free_pos;
1056 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1057 chunk_free_pos = 0;
1058 }
1059 chunk_free_buffer[chunk_free_pos++] = obj;
1060 }
1061 } else {
1062 *(out++) = obj;
1063 }
1064 }
1065 if (chunk_free_pos > 0) {
1066 TimingLogger::ScopedTiming t("FreeList", GetTimings());
1067 freed.objects += chunk_free_pos;
1068 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1069 chunk_free_pos = 0;
1070 }
1071 // All of the references which space contained are no longer in the allocation stack, update
1072 // the count.
1073 count = out - objects;
1074 }
1075 // Handle the large object space.
1076 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1077 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1078 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1079 if (swap_bitmaps) {
1080 std::swap(large_live_objects, large_mark_objects);
1081 }
1082 for (size_t i = 0; i < count; ++i) {
1083 Object* obj = objects[i];
1084 // Handle large objects.
1085 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1086 continue;
1087 }
1088 if (!large_mark_objects->Test(obj)) {
1089 ++freed_los.objects;
1090 freed_los.bytes += large_object_space->Free(self, obj);
1091 }
1092 }
1093 {
1094 TimingLogger::ScopedTiming t("RecordFree", GetTimings());
1095 RecordFree(freed);
1096 RecordFreeLOS(freed_los);
1097 t.NewTiming("ResetStack");
1098 allocations->Reset();
1099 }
1100 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1101 }
1102
Sweep(bool swap_bitmaps)1103 void MarkSweep::Sweep(bool swap_bitmaps) {
1104 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1105 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1106 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1107 {
1108 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1109 // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1110 // knowing that new allocations won't be marked as live.
1111 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1112 heap_->MarkAllocStackAsLive(live_stack);
1113 live_stack->Reset();
1114 DCHECK(mark_stack_->IsEmpty());
1115 }
1116 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1117 if (space->IsContinuousMemMapAllocSpace()) {
1118 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1119 TimingLogger::ScopedTiming split(
1120 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1121 RecordFree(alloc_space->Sweep(swap_bitmaps));
1122 }
1123 }
1124 SweepLargeObjects(swap_bitmaps);
1125 }
1126
SweepLargeObjects(bool swap_bitmaps)1127 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1128 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1129 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1130 }
1131
1132 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
1133 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1134 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1135 if (kCountJavaLangRefs) {
1136 ++reference_count_;
1137 }
1138 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
1139 this);
1140 }
1141
1142 class MarkObjectVisitor {
1143 public:
MarkObjectVisitor(MarkSweep * const mark_sweep)1144 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1145 }
1146
operator ()(Object * obj,MemberOffset offset,bool) const1147 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1148 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1149 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1150 if (kCheckLocks) {
1151 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1152 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1153 }
1154 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1155 }
1156
1157 private:
1158 MarkSweep* const mark_sweep_;
1159 };
1160
1161 // Scans an object reference. Determines the type of the reference
1162 // and dispatches to a specialized scanning routine.
ScanObject(Object * obj)1163 void MarkSweep::ScanObject(Object* obj) {
1164 MarkObjectVisitor mark_visitor(this);
1165 DelayReferenceReferentVisitor ref_visitor(this);
1166 ScanObjectVisit(obj, mark_visitor, ref_visitor);
1167 }
1168
ProcessMarkStackCallback(void * arg)1169 void MarkSweep::ProcessMarkStackCallback(void* arg) {
1170 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1171 }
1172
ProcessMarkStackParallel(size_t thread_count)1173 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1174 Thread* self = Thread::Current();
1175 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1176 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1177 static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1178 CHECK_GT(chunk_size, 0U);
1179 // Split the current mark stack up into work tasks.
1180 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1181 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1182 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1183 it += delta;
1184 }
1185 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1186 thread_pool->StartWorkers(self);
1187 thread_pool->Wait(self, true, true);
1188 thread_pool->StopWorkers(self);
1189 mark_stack_->Reset();
1190 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1191 work_chunks_deleted_.LoadSequentiallyConsistent())
1192 << " some of the work chunks were leaked";
1193 }
1194
1195 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1196 void MarkSweep::ProcessMarkStack(bool paused) {
1197 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1198 size_t thread_count = GetThreadCount(paused);
1199 if (kParallelProcessMarkStack && thread_count > 1 &&
1200 mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1201 ProcessMarkStackParallel(thread_count);
1202 } else {
1203 // TODO: Tune this.
1204 static const size_t kFifoSize = 4;
1205 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1206 for (;;) {
1207 Object* obj = NULL;
1208 if (kUseMarkStackPrefetch) {
1209 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1210 Object* obj = mark_stack_->PopBack();
1211 DCHECK(obj != NULL);
1212 __builtin_prefetch(obj);
1213 prefetch_fifo.push_back(obj);
1214 }
1215 if (prefetch_fifo.empty()) {
1216 break;
1217 }
1218 obj = prefetch_fifo.front();
1219 prefetch_fifo.pop_front();
1220 } else {
1221 if (mark_stack_->IsEmpty()) {
1222 break;
1223 }
1224 obj = mark_stack_->PopBack();
1225 }
1226 DCHECK(obj != nullptr);
1227 ScanObject(obj);
1228 }
1229 }
1230 }
1231
IsMarked(const Object * object) const1232 inline bool MarkSweep::IsMarked(const Object* object) const {
1233 if (immune_region_.ContainsObject(object)) {
1234 return true;
1235 }
1236 if (current_space_bitmap_->HasAddress(object)) {
1237 return current_space_bitmap_->Test(object);
1238 }
1239 return mark_bitmap_->Test(object);
1240 }
1241
FinishPhase()1242 void MarkSweep::FinishPhase() {
1243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1244 if (kCountScannedTypes) {
1245 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1246 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1247 }
1248 if (kCountTasks) {
1249 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1250 }
1251 if (kMeasureOverhead) {
1252 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1253 }
1254 if (kProfileLargeObjects) {
1255 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1256 << " marked " << large_object_mark_.LoadRelaxed();
1257 }
1258 if (kCountJavaLangRefs) {
1259 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1260 }
1261 if (kCountMarkedObjects) {
1262 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1263 << " immune=" << mark_immune_count_.LoadRelaxed()
1264 << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1265 << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1266 }
1267 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty.
1268 mark_stack_->Reset();
1269 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1270 heap_->ClearMarkedObjects();
1271 }
1272
RevokeAllThreadLocalBuffers()1273 void MarkSweep::RevokeAllThreadLocalBuffers() {
1274 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1275 // If concurrent, rosalloc thread-local buffers are revoked at the
1276 // thread checkpoint. Bump pointer space thread-local buffers must
1277 // not be in use.
1278 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1279 } else {
1280 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1281 GetHeap()->RevokeAllThreadLocalBuffers();
1282 }
1283 }
1284
1285 } // namespace collector
1286 } // namespace gc
1287 } // namespace art
1288