• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines layout properties related to datatype size/offset/alignment
11 // information.  It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&.  None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_DATALAYOUT_H
21 #define LLVM_IR_DATALAYOUT_H
22 
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/DataTypes.h"
29 
30 // this needs to be outside of the namespace, to avoid conflict with llvm-c decl
31 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
32 
33 namespace llvm {
34 
35 class Value;
36 class Type;
37 class IntegerType;
38 class StructType;
39 class StructLayout;
40 class Triple;
41 class GlobalVariable;
42 class LLVMContext;
43 template<typename T>
44 class ArrayRef;
45 
46 /// Enum used to categorize the alignment types stored by LayoutAlignElem
47 enum AlignTypeEnum {
48   INVALID_ALIGN = 0,                 ///< An invalid alignment
49   INTEGER_ALIGN = 'i',               ///< Integer type alignment
50   VECTOR_ALIGN = 'v',                ///< Vector type alignment
51   FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
52   AGGREGATE_ALIGN = 'a'              ///< Aggregate alignment
53 };
54 
55 /// Layout alignment element.
56 ///
57 /// Stores the alignment data associated with a given alignment type (integer,
58 /// vector, float) and type bit width.
59 ///
60 /// @note The unusual order of elements in the structure attempts to reduce
61 /// padding and make the structure slightly more cache friendly.
62 struct LayoutAlignElem {
63   unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
64   unsigned TypeBitWidth : 24; ///< Type bit width
65   unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
66   unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
67 
68   /// Initializer
69   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
70                              unsigned pref_align, uint32_t bit_width);
71   /// Equality predicate
72   bool operator==(const LayoutAlignElem &rhs) const;
73 };
74 
75 /// Layout pointer alignment element.
76 ///
77 /// Stores the alignment data associated with a given pointer and address space.
78 ///
79 /// @note The unusual order of elements in the structure attempts to reduce
80 /// padding and make the structure slightly more cache friendly.
81 struct PointerAlignElem {
82   unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
83   unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
84   uint32_t            TypeByteWidth;  ///< Type byte width
85   uint32_t            AddressSpace;   ///< Address space for the pointer type
86 
87   /// Initializer
88   static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
89                              unsigned PrefAlign, uint32_t TypeByteWidth);
90   /// Equality predicate
91   bool operator==(const PointerAlignElem &rhs) const;
92 };
93 
94 /// This class holds a parsed version of the target data layout string in a
95 /// module and provides methods for querying it. The target data layout string
96 /// is specified *by the target* - a frontend generating LLVM IR is required to
97 /// generate the right target data for the target being codegen'd to.
98 class DataLayout {
99 private:
100   bool          LittleEndian;          ///< Defaults to false
101   unsigned      StackNaturalAlign;     ///< Stack natural alignment
102 
103   enum ManglingModeT {
104     MM_None,
105     MM_ELF,
106     MM_MachO,
107     MM_WINCOFF,
108     MM_Mips
109   };
110   ManglingModeT ManglingMode;
111 
112   SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
113 
114   /// Alignments - Where the primitive type alignment data is stored.
115   ///
116   /// @sa reset().
117   /// @note Could support multiple size pointer alignments, e.g., 32-bit
118   /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
119   /// we don't.
120   SmallVector<LayoutAlignElem, 16> Alignments;
121   typedef SmallVector<PointerAlignElem, 8> PointersTy;
122   PointersTy Pointers;
123 
124   PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)125   findPointerLowerBound(uint32_t AddressSpace) const {
126     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
127   }
128 
129   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
130 
131   /// InvalidAlignmentElem - This member is a signal that a requested alignment
132   /// type and bit width were not found in the SmallVector.
133   static const LayoutAlignElem InvalidAlignmentElem;
134 
135   /// InvalidPointerElem - This member is a signal that a requested pointer
136   /// type and bit width were not found in the DenseSet.
137   static const PointerAlignElem InvalidPointerElem;
138 
139   // The StructType -> StructLayout map.
140   mutable void *LayoutMap;
141 
142   //! Set/initialize target alignments
143   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
144                     unsigned pref_align, uint32_t bit_width);
145   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
146                             bool ABIAlign, Type *Ty) const;
147 
148   //! Set/initialize pointer alignments
149   void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
150                            unsigned PrefAlign, uint32_t TypeByteWidth);
151 
152   //! Internal helper method that returns requested alignment for type.
153   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
154 
155   /// Valid alignment predicate.
156   ///
157   /// Predicate that tests a LayoutAlignElem reference returned by get() against
158   /// InvalidAlignmentElem.
validAlignment(const LayoutAlignElem & align)159   bool validAlignment(const LayoutAlignElem &align) const {
160     return &align != &InvalidAlignmentElem;
161   }
162 
163   /// Valid pointer predicate.
164   ///
165   /// Predicate that tests a PointerAlignElem reference returned by get() against
166   /// InvalidPointerElem.
validPointer(const PointerAlignElem & align)167   bool validPointer(const PointerAlignElem &align) const {
168     return &align != &InvalidPointerElem;
169   }
170 
171   /// Parses a target data specification string. Assert if the string is
172   /// malformed.
173   void parseSpecifier(StringRef LayoutDescription);
174 
175   // Free all internal data structures.
176   void clear();
177 
178 public:
179   /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)180   explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
181     reset(LayoutDescription);
182   }
183 
184   /// Initialize target data from properties stored in the module.
185   explicit DataLayout(const Module *M);
186 
DataLayout(const DataLayout & DL)187   DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
188 
189   DataLayout &operator=(const DataLayout &DL) {
190     clear();
191     LittleEndian = DL.isLittleEndian();
192     StackNaturalAlign = DL.StackNaturalAlign;
193     ManglingMode = DL.ManglingMode;
194     LegalIntWidths = DL.LegalIntWidths;
195     Alignments = DL.Alignments;
196     Pointers = DL.Pointers;
197     return *this;
198   }
199 
200   bool operator==(const DataLayout &Other) const;
201   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
202 
203   ~DataLayout();  // Not virtual, do not subclass this class
204 
205   /// Parse a data layout string (with fallback to default values).
206   void reset(StringRef LayoutDescription);
207 
208   /// Layout endianness...
isLittleEndian()209   bool isLittleEndian() const { return LittleEndian; }
isBigEndian()210   bool isBigEndian() const { return !LittleEndian; }
211 
212   /// getStringRepresentation - Return the string representation of the
213   /// DataLayout.  This representation is in the same format accepted by the
214   /// string constructor above.
215   std::string getStringRepresentation() const;
216 
217   /// isLegalInteger - This function returns true if the specified type is
218   /// known to be a native integer type supported by the CPU.  For example,
219   /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
220   /// one.  This returns false if the integer width is not legal.
221   ///
222   /// The width is specified in bits.
223   ///
isLegalInteger(unsigned Width)224   bool isLegalInteger(unsigned Width) const {
225     for (unsigned LegalIntWidth : LegalIntWidths)
226       if (LegalIntWidth == Width)
227         return true;
228     return false;
229   }
230 
isIllegalInteger(unsigned Width)231   bool isIllegalInteger(unsigned Width) const {
232     return !isLegalInteger(Width);
233   }
234 
235   /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(unsigned Align)236   bool exceedsNaturalStackAlignment(unsigned Align) const {
237     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
238   }
239 
hasMicrosoftFastStdCallMangling()240   bool hasMicrosoftFastStdCallMangling() const {
241     return ManglingMode == MM_WINCOFF;
242   }
243 
hasLinkerPrivateGlobalPrefix()244   bool hasLinkerPrivateGlobalPrefix() const {
245     return ManglingMode == MM_MachO;
246   }
247 
getLinkerPrivateGlobalPrefix()248   const char *getLinkerPrivateGlobalPrefix() const {
249     if (ManglingMode == MM_MachO)
250       return "l";
251     return getPrivateGlobalPrefix();
252   }
253 
getGlobalPrefix()254   char getGlobalPrefix() const {
255     switch (ManglingMode) {
256     case MM_None:
257     case MM_ELF:
258     case MM_Mips:
259       return '\0';
260     case MM_MachO:
261     case MM_WINCOFF:
262       return '_';
263     }
264     llvm_unreachable("invalid mangling mode");
265   }
266 
getPrivateGlobalPrefix()267   const char *getPrivateGlobalPrefix() const {
268     switch (ManglingMode) {
269     case MM_None:
270       return "";
271     case MM_ELF:
272       return ".L";
273     case MM_Mips:
274       return "$";
275     case MM_MachO:
276     case MM_WINCOFF:
277       return "L";
278     }
279     llvm_unreachable("invalid mangling mode");
280   }
281 
282   static const char *getManglingComponent(const Triple &T);
283 
284   /// fitsInLegalInteger - This function returns true if the specified type fits
285   /// in a native integer type supported by the CPU.  For example, if the CPU
286   /// only supports i32 as a native integer type, then i27 fits in a legal
287   /// integer type but i45 does not.
fitsInLegalInteger(unsigned Width)288   bool fitsInLegalInteger(unsigned Width) const {
289     for (unsigned LegalIntWidth : LegalIntWidths)
290       if (Width <= LegalIntWidth)
291         return true;
292     return false;
293   }
294 
295   /// Layout pointer alignment
296   /// FIXME: The defaults need to be removed once all of
297   /// the backends/clients are updated.
298   unsigned getPointerABIAlignment(unsigned AS = 0) const;
299 
300   /// Return target's alignment for stack-based pointers
301   /// FIXME: The defaults need to be removed once all of
302   /// the backends/clients are updated.
303   unsigned getPointerPrefAlignment(unsigned AS = 0) const;
304 
305   /// Layout pointer size
306   /// FIXME: The defaults need to be removed once all of
307   /// the backends/clients are updated.
308   unsigned getPointerSize(unsigned AS = 0) const;
309 
310   /// Layout pointer size, in bits
311   /// FIXME: The defaults need to be removed once all of
312   /// the backends/clients are updated.
313   unsigned getPointerSizeInBits(unsigned AS = 0) const {
314     return getPointerSize(AS) * 8;
315   }
316 
317   /// Layout pointer size, in bits, based on the type.  If this function is
318   /// called with a pointer type, then the type size of the pointer is returned.
319   /// If this function is called with a vector of pointers, then the type size
320   /// of the pointer is returned.  This should only be called with a pointer or
321   /// vector of pointers.
322   unsigned getPointerTypeSizeInBits(Type *) const;
323 
getPointerTypeSize(Type * Ty)324   unsigned getPointerTypeSize(Type *Ty) const {
325     return getPointerTypeSizeInBits(Ty) / 8;
326   }
327 
328   /// Size examples:
329   ///
330   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
331   /// ----        ----------  ---------------  ---------------
332   ///  i1            1           8                8
333   ///  i8            8           8                8
334   ///  i19          19          24               32
335   ///  i32          32          32               32
336   ///  i100        100         104              128
337   ///  i128        128         128              128
338   ///  Float        32          32               32
339   ///  Double       64          64               64
340   ///  X86_FP80     80          80               96
341   ///
342   /// [*] The alloc size depends on the alignment, and thus on the target.
343   ///     These values are for x86-32 linux.
344 
345   /// getTypeSizeInBits - Return the number of bits necessary to hold the
346   /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
347   /// The type passed must have a size (Type::isSized() must return true).
348   uint64_t getTypeSizeInBits(Type *Ty) const;
349 
350   /// getTypeStoreSize - Return the maximum number of bytes that may be
351   /// overwritten by storing the specified type.  For example, returns 5
352   /// for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)353   uint64_t getTypeStoreSize(Type *Ty) const {
354     return (getTypeSizeInBits(Ty)+7)/8;
355   }
356 
357   /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
358   /// overwritten by storing the specified type; always a multiple of 8.  For
359   /// example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)360   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
361     return 8*getTypeStoreSize(Ty);
362   }
363 
364   /// getTypeAllocSize - Return the offset in bytes between successive objects
365   /// of the specified type, including alignment padding.  This is the amount
366   /// that alloca reserves for this type.  For example, returns 12 or 16 for
367   /// x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)368   uint64_t getTypeAllocSize(Type *Ty) const {
369     // Round up to the next alignment boundary.
370     return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
371   }
372 
373   /// getTypeAllocSizeInBits - Return the offset in bits between successive
374   /// objects of the specified type, including alignment padding; always a
375   /// multiple of 8.  This is the amount that alloca reserves for this type.
376   /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)377   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
378     return 8*getTypeAllocSize(Ty);
379   }
380 
381   /// getABITypeAlignment - Return the minimum ABI-required alignment for the
382   /// specified type.
383   unsigned getABITypeAlignment(Type *Ty) const;
384 
385   /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
386   /// an integer type of the specified bitwidth.
387   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
388 
389   /// getPrefTypeAlignment - Return the preferred stack/global alignment for
390   /// the specified type.  This is always at least as good as the ABI alignment.
391   unsigned getPrefTypeAlignment(Type *Ty) const;
392 
393   /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
394   /// specified type, returned as log2 of the value (a shift amount).
395   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
396 
397   /// getIntPtrType - Return an integer type with size at least as big as that
398   /// of a pointer in the given address space.
399   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
400 
401   /// getIntPtrType - Return an integer (vector of integer) type with size at
402   /// least as big as that of a pointer of the given pointer (vector of pointer)
403   /// type.
404   Type *getIntPtrType(Type *) const;
405 
406   /// getSmallestLegalIntType - Return the smallest integer type with size at
407   /// least as big as Width bits.
408   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
409 
410   /// getLargestLegalIntType - Return the largest legal integer type, or null if
411   /// none are set.
getLargestLegalIntType(LLVMContext & C)412   Type *getLargestLegalIntType(LLVMContext &C) const {
413     unsigned LargestSize = getLargestLegalIntTypeSize();
414     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
415   }
416 
417   /// getLargestLegalIntTypeSize - Return the size of largest legal integer
418   /// type size, or 0 if none are set.
419   unsigned getLargestLegalIntTypeSize() const;
420 
421   /// getIndexedOffset - return the offset from the beginning of the type for
422   /// the specified indices.  This is used to implement getelementptr.
423   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
424 
425   /// getStructLayout - Return a StructLayout object, indicating the alignment
426   /// of the struct, its size, and the offsets of its fields.  Note that this
427   /// information is lazily cached.
428   const StructLayout *getStructLayout(StructType *Ty) const;
429 
430   /// getPreferredAlignment - Return the preferred alignment of the specified
431   /// global.  This includes an explicitly requested alignment (if the global
432   /// has one).
433   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
434 
435   /// getPreferredAlignmentLog - Return the preferred alignment of the
436   /// specified global, returned in log form.  This includes an explicitly
437   /// requested alignment (if the global has one).
438   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
439 
440   /// RoundUpAlignment - Round the specified value up to the next alignment
441   /// boundary specified by Alignment.  For example, 7 rounded up to an
442   /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
443   /// is 8 because it is already aligned.
444   template <typename UIntTy>
RoundUpAlignment(UIntTy Val,unsigned Alignment)445   static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
446     assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
447     return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
448   }
449 };
450 
unwrap(LLVMTargetDataRef P)451 inline DataLayout *unwrap(LLVMTargetDataRef P) {
452    return reinterpret_cast<DataLayout*>(P);
453 }
454 
wrap(const DataLayout * P)455 inline LLVMTargetDataRef wrap(const DataLayout *P) {
456    return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
457 }
458 
459 class DataLayoutPass : public ImmutablePass {
460   DataLayout DL;
461 
462 public:
463   /// This has to exist, because this is a pass, but it should never be used.
464   DataLayoutPass();
465   ~DataLayoutPass();
466 
getDataLayout()467   const DataLayout &getDataLayout() const { return DL; }
468 
469   // For use with the C API. C++ code should always use the constructor that
470   // takes a module.
471   explicit DataLayoutPass(const DataLayout &DL);
472 
473   explicit DataLayoutPass(const Module *M);
474 
475   static char ID; // Pass identification, replacement for typeid
476 };
477 
478 /// StructLayout - used to lazily calculate structure layout information for a
479 /// target machine, based on the DataLayout structure.
480 ///
481 class StructLayout {
482   uint64_t StructSize;
483   unsigned StructAlignment;
484   unsigned NumElements;
485   uint64_t MemberOffsets[1];  // variable sized array!
486 public:
487 
getSizeInBytes()488   uint64_t getSizeInBytes() const {
489     return StructSize;
490   }
491 
getSizeInBits()492   uint64_t getSizeInBits() const {
493     return 8*StructSize;
494   }
495 
getAlignment()496   unsigned getAlignment() const {
497     return StructAlignment;
498   }
499 
500   /// getElementContainingOffset - Given a valid byte offset into the structure,
501   /// return the structure index that contains it.
502   ///
503   unsigned getElementContainingOffset(uint64_t Offset) const;
504 
getElementOffset(unsigned Idx)505   uint64_t getElementOffset(unsigned Idx) const {
506     assert(Idx < NumElements && "Invalid element idx!");
507     return MemberOffsets[Idx];
508   }
509 
getElementOffsetInBits(unsigned Idx)510   uint64_t getElementOffsetInBits(unsigned Idx) const {
511     return getElementOffset(Idx)*8;
512   }
513 
514 private:
515   friend class DataLayout;   // Only DataLayout can create this class
516   StructLayout(StructType *ST, const DataLayout &DL);
517 };
518 
519 
520 // The implementation of this method is provided inline as it is particularly
521 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)522 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
523   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
524   switch (Ty->getTypeID()) {
525   case Type::LabelTyID:
526     return getPointerSizeInBits(0);
527   case Type::PointerTyID:
528     return getPointerSizeInBits(Ty->getPointerAddressSpace());
529   case Type::ArrayTyID: {
530     ArrayType *ATy = cast<ArrayType>(Ty);
531     return ATy->getNumElements() *
532            getTypeAllocSizeInBits(ATy->getElementType());
533   }
534   case Type::StructTyID:
535     // Get the layout annotation... which is lazily created on demand.
536     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
537   case Type::IntegerTyID:
538     return Ty->getIntegerBitWidth();
539   case Type::HalfTyID:
540     return 16;
541   case Type::FloatTyID:
542     return 32;
543   case Type::DoubleTyID:
544   case Type::X86_MMXTyID:
545     return 64;
546   case Type::PPC_FP128TyID:
547   case Type::FP128TyID:
548     return 128;
549     // In memory objects this is always aligned to a higher boundary, but
550   // only 80 bits contain information.
551   case Type::X86_FP80TyID:
552     return 80;
553   case Type::VectorTyID: {
554     VectorType *VTy = cast<VectorType>(Ty);
555     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
556   }
557   default:
558     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
559   }
560 }
561 
562 } // End llvm namespace
563 
564 #endif
565