1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/codegen.h"
8 #include "src/compiler.h"
9 #include "src/debug.h"
10 #include "src/full-codegen.h"
11 #include "src/liveedit.h"
12 #include "src/macro-assembler.h"
13 #include "src/prettyprinter.h"
14 #include "src/scopes.h"
15 #include "src/scopeinfo.h"
16 #include "src/snapshot.h"
17 #include "src/stub-cache.h"
18
19 namespace v8 {
20 namespace internal {
21
Check(Statement * stmt)22 void BreakableStatementChecker::Check(Statement* stmt) {
23 Visit(stmt);
24 }
25
26
Check(Expression * expr)27 void BreakableStatementChecker::Check(Expression* expr) {
28 Visit(expr);
29 }
30
31
VisitVariableDeclaration(VariableDeclaration * decl)32 void BreakableStatementChecker::VisitVariableDeclaration(
33 VariableDeclaration* decl) {
34 }
35
VisitFunctionDeclaration(FunctionDeclaration * decl)36 void BreakableStatementChecker::VisitFunctionDeclaration(
37 FunctionDeclaration* decl) {
38 }
39
VisitModuleDeclaration(ModuleDeclaration * decl)40 void BreakableStatementChecker::VisitModuleDeclaration(
41 ModuleDeclaration* decl) {
42 }
43
VisitImportDeclaration(ImportDeclaration * decl)44 void BreakableStatementChecker::VisitImportDeclaration(
45 ImportDeclaration* decl) {
46 }
47
VisitExportDeclaration(ExportDeclaration * decl)48 void BreakableStatementChecker::VisitExportDeclaration(
49 ExportDeclaration* decl) {
50 }
51
52
VisitModuleLiteral(ModuleLiteral * module)53 void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
54 }
55
56
VisitModuleVariable(ModuleVariable * module)57 void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
58 }
59
60
VisitModulePath(ModulePath * module)61 void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
62 }
63
64
VisitModuleUrl(ModuleUrl * module)65 void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
66 }
67
68
VisitModuleStatement(ModuleStatement * stmt)69 void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
70 }
71
72
VisitBlock(Block * stmt)73 void BreakableStatementChecker::VisitBlock(Block* stmt) {
74 }
75
76
VisitExpressionStatement(ExpressionStatement * stmt)77 void BreakableStatementChecker::VisitExpressionStatement(
78 ExpressionStatement* stmt) {
79 // Check if expression is breakable.
80 Visit(stmt->expression());
81 }
82
83
VisitEmptyStatement(EmptyStatement * stmt)84 void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
85 }
86
87
VisitIfStatement(IfStatement * stmt)88 void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
89 // If the condition is breakable the if statement is breakable.
90 Visit(stmt->condition());
91 }
92
93
VisitContinueStatement(ContinueStatement * stmt)94 void BreakableStatementChecker::VisitContinueStatement(
95 ContinueStatement* stmt) {
96 }
97
98
VisitBreakStatement(BreakStatement * stmt)99 void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
100 }
101
102
VisitReturnStatement(ReturnStatement * stmt)103 void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
104 // Return is breakable if the expression is.
105 Visit(stmt->expression());
106 }
107
108
VisitWithStatement(WithStatement * stmt)109 void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
110 Visit(stmt->expression());
111 }
112
113
VisitSwitchStatement(SwitchStatement * stmt)114 void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
115 // Switch statements breakable if the tag expression is.
116 Visit(stmt->tag());
117 }
118
119
VisitDoWhileStatement(DoWhileStatement * stmt)120 void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
121 // Mark do while as breakable to avoid adding a break slot in front of it.
122 is_breakable_ = true;
123 }
124
125
VisitWhileStatement(WhileStatement * stmt)126 void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
127 // Mark while statements breakable if the condition expression is.
128 Visit(stmt->cond());
129 }
130
131
VisitForStatement(ForStatement * stmt)132 void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
133 // Mark for statements breakable if the condition expression is.
134 if (stmt->cond() != NULL) {
135 Visit(stmt->cond());
136 }
137 }
138
139
VisitForInStatement(ForInStatement * stmt)140 void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
141 // Mark for in statements breakable if the enumerable expression is.
142 Visit(stmt->enumerable());
143 }
144
145
VisitForOfStatement(ForOfStatement * stmt)146 void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
147 // For-of is breakable because of the next() call.
148 is_breakable_ = true;
149 }
150
151
VisitTryCatchStatement(TryCatchStatement * stmt)152 void BreakableStatementChecker::VisitTryCatchStatement(
153 TryCatchStatement* stmt) {
154 // Mark try catch as breakable to avoid adding a break slot in front of it.
155 is_breakable_ = true;
156 }
157
158
VisitTryFinallyStatement(TryFinallyStatement * stmt)159 void BreakableStatementChecker::VisitTryFinallyStatement(
160 TryFinallyStatement* stmt) {
161 // Mark try finally as breakable to avoid adding a break slot in front of it.
162 is_breakable_ = true;
163 }
164
165
VisitDebuggerStatement(DebuggerStatement * stmt)166 void BreakableStatementChecker::VisitDebuggerStatement(
167 DebuggerStatement* stmt) {
168 // The debugger statement is breakable.
169 is_breakable_ = true;
170 }
171
172
VisitCaseClause(CaseClause * clause)173 void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
174 }
175
176
VisitFunctionLiteral(FunctionLiteral * expr)177 void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
178 }
179
180
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)181 void BreakableStatementChecker::VisitNativeFunctionLiteral(
182 NativeFunctionLiteral* expr) {
183 }
184
185
VisitConditional(Conditional * expr)186 void BreakableStatementChecker::VisitConditional(Conditional* expr) {
187 }
188
189
VisitVariableProxy(VariableProxy * expr)190 void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
191 }
192
193
VisitLiteral(Literal * expr)194 void BreakableStatementChecker::VisitLiteral(Literal* expr) {
195 }
196
197
VisitRegExpLiteral(RegExpLiteral * expr)198 void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
199 }
200
201
VisitObjectLiteral(ObjectLiteral * expr)202 void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
203 }
204
205
VisitArrayLiteral(ArrayLiteral * expr)206 void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
207 }
208
209
VisitAssignment(Assignment * expr)210 void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
211 // If assigning to a property (including a global property) the assignment is
212 // breakable.
213 VariableProxy* proxy = expr->target()->AsVariableProxy();
214 Property* prop = expr->target()->AsProperty();
215 if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
216 is_breakable_ = true;
217 return;
218 }
219
220 // Otherwise the assignment is breakable if the assigned value is.
221 Visit(expr->value());
222 }
223
224
VisitYield(Yield * expr)225 void BreakableStatementChecker::VisitYield(Yield* expr) {
226 // Yield is breakable if the expression is.
227 Visit(expr->expression());
228 }
229
230
VisitThrow(Throw * expr)231 void BreakableStatementChecker::VisitThrow(Throw* expr) {
232 // Throw is breakable if the expression is.
233 Visit(expr->exception());
234 }
235
236
VisitProperty(Property * expr)237 void BreakableStatementChecker::VisitProperty(Property* expr) {
238 // Property load is breakable.
239 is_breakable_ = true;
240 }
241
242
VisitCall(Call * expr)243 void BreakableStatementChecker::VisitCall(Call* expr) {
244 // Function calls both through IC and call stub are breakable.
245 is_breakable_ = true;
246 }
247
248
VisitCallNew(CallNew * expr)249 void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
250 // Function calls through new are breakable.
251 is_breakable_ = true;
252 }
253
254
VisitCallRuntime(CallRuntime * expr)255 void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
256 }
257
258
VisitUnaryOperation(UnaryOperation * expr)259 void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
260 Visit(expr->expression());
261 }
262
263
VisitCountOperation(CountOperation * expr)264 void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
265 Visit(expr->expression());
266 }
267
268
VisitBinaryOperation(BinaryOperation * expr)269 void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
270 Visit(expr->left());
271 if (expr->op() != Token::AND &&
272 expr->op() != Token::OR) {
273 Visit(expr->right());
274 }
275 }
276
277
VisitCompareOperation(CompareOperation * expr)278 void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
279 Visit(expr->left());
280 Visit(expr->right());
281 }
282
283
VisitThisFunction(ThisFunction * expr)284 void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
285 }
286
287
288 #define __ ACCESS_MASM(masm())
289
MakeCode(CompilationInfo * info)290 bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
291 Isolate* isolate = info->isolate();
292
293 Logger::TimerEventScope timer(
294 isolate, Logger::TimerEventScope::v8_compile_full_code);
295
296 Handle<Script> script = info->script();
297 if (!script->IsUndefined() && !script->source()->IsUndefined()) {
298 int len = String::cast(script->source())->length();
299 isolate->counters()->total_full_codegen_source_size()->Increment(len);
300 }
301 CodeGenerator::MakeCodePrologue(info, "full");
302 const int kInitialBufferSize = 4 * KB;
303 MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
304 #ifdef ENABLE_GDB_JIT_INTERFACE
305 masm.positions_recorder()->StartGDBJITLineInfoRecording();
306 #endif
307 LOG_CODE_EVENT(isolate,
308 CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
309
310 FullCodeGenerator cgen(&masm, info);
311 cgen.Generate();
312 if (cgen.HasStackOverflow()) {
313 ASSERT(!isolate->has_pending_exception());
314 return false;
315 }
316 unsigned table_offset = cgen.EmitBackEdgeTable();
317
318 Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
319 Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
320 code->set_optimizable(info->IsOptimizable() &&
321 !info->function()->dont_optimize() &&
322 info->function()->scope()->AllowsLazyCompilation());
323 cgen.PopulateDeoptimizationData(code);
324 cgen.PopulateTypeFeedbackInfo(code);
325 code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
326 code->set_handler_table(*cgen.handler_table());
327 code->set_compiled_optimizable(info->IsOptimizable());
328 code->set_allow_osr_at_loop_nesting_level(0);
329 code->set_profiler_ticks(0);
330 code->set_back_edge_table_offset(table_offset);
331 code->set_back_edges_patched_for_osr(false);
332 CodeGenerator::PrintCode(code, info);
333 info->SetCode(code);
334 #ifdef ENABLE_GDB_JIT_INTERFACE
335 if (FLAG_gdbjit) {
336 GDBJITLineInfo* lineinfo =
337 masm.positions_recorder()->DetachGDBJITLineInfo();
338 GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
339 }
340 #endif
341 void* line_info = masm.positions_recorder()->DetachJITHandlerData();
342 LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
343 return true;
344 }
345
346
EmitBackEdgeTable()347 unsigned FullCodeGenerator::EmitBackEdgeTable() {
348 // The back edge table consists of a length (in number of entries)
349 // field, and then a sequence of entries. Each entry is a pair of AST id
350 // and code-relative pc offset.
351 masm()->Align(kIntSize);
352 unsigned offset = masm()->pc_offset();
353 unsigned length = back_edges_.length();
354 __ dd(length);
355 for (unsigned i = 0; i < length; ++i) {
356 __ dd(back_edges_[i].id.ToInt());
357 __ dd(back_edges_[i].pc);
358 __ dd(back_edges_[i].loop_depth);
359 }
360 return offset;
361 }
362
363
EnsureSlotContainsAllocationSite(int slot)364 void FullCodeGenerator::EnsureSlotContainsAllocationSite(int slot) {
365 Handle<FixedArray> vector = FeedbackVector();
366 if (!vector->get(slot)->IsAllocationSite()) {
367 Handle<AllocationSite> allocation_site =
368 isolate()->factory()->NewAllocationSite();
369 vector->set(slot, *allocation_site);
370 }
371 }
372
373
PopulateDeoptimizationData(Handle<Code> code)374 void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
375 // Fill in the deoptimization information.
376 ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
377 if (!info_->HasDeoptimizationSupport()) return;
378 int length = bailout_entries_.length();
379 Handle<DeoptimizationOutputData> data =
380 DeoptimizationOutputData::New(isolate(), length, TENURED);
381 for (int i = 0; i < length; i++) {
382 data->SetAstId(i, bailout_entries_[i].id);
383 data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
384 }
385 code->set_deoptimization_data(*data);
386 }
387
388
PopulateTypeFeedbackInfo(Handle<Code> code)389 void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
390 Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
391 info->set_ic_total_count(ic_total_count_);
392 ASSERT(!isolate()->heap()->InNewSpace(*info));
393 code->set_type_feedback_info(*info);
394 }
395
396
Initialize()397 void FullCodeGenerator::Initialize() {
398 InitializeAstVisitor(info_->zone());
399 // The generation of debug code must match between the snapshot code and the
400 // code that is generated later. This is assumed by the debugger when it is
401 // calculating PC offsets after generating a debug version of code. Therefore
402 // we disable the production of debug code in the full compiler if we are
403 // either generating a snapshot or we booted from a snapshot.
404 generate_debug_code_ = FLAG_debug_code &&
405 !masm_->serializer_enabled() &&
406 !Snapshot::HaveASnapshotToStartFrom();
407 masm_->set_emit_debug_code(generate_debug_code_);
408 masm_->set_predictable_code_size(true);
409 }
410
411
PrepareForBailout(Expression * node,State state)412 void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
413 PrepareForBailoutForId(node->id(), state);
414 }
415
416
CallLoadIC(ContextualMode contextual_mode,TypeFeedbackId id)417 void FullCodeGenerator::CallLoadIC(ContextualMode contextual_mode,
418 TypeFeedbackId id) {
419 ExtraICState extra_state = LoadIC::ComputeExtraICState(contextual_mode);
420 Handle<Code> ic = LoadIC::initialize_stub(isolate(), extra_state);
421 CallIC(ic, id);
422 }
423
424
CallStoreIC(TypeFeedbackId id)425 void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) {
426 Handle<Code> ic = StoreIC::initialize_stub(isolate(), strict_mode());
427 CallIC(ic, id);
428 }
429
430
RecordJSReturnSite(Call * call)431 void FullCodeGenerator::RecordJSReturnSite(Call* call) {
432 // We record the offset of the function return so we can rebuild the frame
433 // if the function was inlined, i.e., this is the return address in the
434 // inlined function's frame.
435 //
436 // The state is ignored. We defensively set it to TOS_REG, which is the
437 // real state of the unoptimized code at the return site.
438 PrepareForBailoutForId(call->ReturnId(), TOS_REG);
439 #ifdef DEBUG
440 // In debug builds, mark the return so we can verify that this function
441 // was called.
442 ASSERT(!call->return_is_recorded_);
443 call->return_is_recorded_ = true;
444 #endif
445 }
446
447
PrepareForBailoutForId(BailoutId id,State state)448 void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
449 // There's no need to prepare this code for bailouts from already optimized
450 // code or code that can't be optimized.
451 if (!info_->HasDeoptimizationSupport()) return;
452 unsigned pc_and_state =
453 StateField::encode(state) | PcField::encode(masm_->pc_offset());
454 ASSERT(Smi::IsValid(pc_and_state));
455 #ifdef DEBUG
456 for (int i = 0; i < bailout_entries_.length(); ++i) {
457 ASSERT(bailout_entries_[i].id != id);
458 }
459 #endif
460 BailoutEntry entry = { id, pc_and_state };
461 bailout_entries_.Add(entry, zone());
462 }
463
464
RecordBackEdge(BailoutId ast_id)465 void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
466 // The pc offset does not need to be encoded and packed together with a state.
467 ASSERT(masm_->pc_offset() > 0);
468 ASSERT(loop_depth() > 0);
469 uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
470 BackEdgeEntry entry =
471 { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
472 back_edges_.Add(entry, zone());
473 }
474
475
ShouldInlineSmiCase(Token::Value op)476 bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
477 // Inline smi case inside loops, but not division and modulo which
478 // are too complicated and take up too much space.
479 if (op == Token::DIV ||op == Token::MOD) return false;
480 if (FLAG_always_inline_smi_code) return true;
481 return loop_depth_ > 0;
482 }
483
484
Plug(Register reg) const485 void FullCodeGenerator::EffectContext::Plug(Register reg) const {
486 }
487
488
Plug(Register reg) const489 void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
490 __ Move(result_register(), reg);
491 }
492
493
Plug(Register reg) const494 void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
495 __ Push(reg);
496 }
497
498
Plug(Register reg) const499 void FullCodeGenerator::TestContext::Plug(Register reg) const {
500 // For simplicity we always test the accumulator register.
501 __ Move(result_register(), reg);
502 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
503 codegen()->DoTest(this);
504 }
505
506
PlugTOS() const507 void FullCodeGenerator::EffectContext::PlugTOS() const {
508 __ Drop(1);
509 }
510
511
PlugTOS() const512 void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
513 __ Pop(result_register());
514 }
515
516
PlugTOS() const517 void FullCodeGenerator::StackValueContext::PlugTOS() const {
518 }
519
520
PlugTOS() const521 void FullCodeGenerator::TestContext::PlugTOS() const {
522 // For simplicity we always test the accumulator register.
523 __ Pop(result_register());
524 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
525 codegen()->DoTest(this);
526 }
527
528
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const529 void FullCodeGenerator::EffectContext::PrepareTest(
530 Label* materialize_true,
531 Label* materialize_false,
532 Label** if_true,
533 Label** if_false,
534 Label** fall_through) const {
535 // In an effect context, the true and the false case branch to the
536 // same label.
537 *if_true = *if_false = *fall_through = materialize_true;
538 }
539
540
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const541 void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
542 Label* materialize_true,
543 Label* materialize_false,
544 Label** if_true,
545 Label** if_false,
546 Label** fall_through) const {
547 *if_true = *fall_through = materialize_true;
548 *if_false = materialize_false;
549 }
550
551
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const552 void FullCodeGenerator::StackValueContext::PrepareTest(
553 Label* materialize_true,
554 Label* materialize_false,
555 Label** if_true,
556 Label** if_false,
557 Label** fall_through) const {
558 *if_true = *fall_through = materialize_true;
559 *if_false = materialize_false;
560 }
561
562
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const563 void FullCodeGenerator::TestContext::PrepareTest(
564 Label* materialize_true,
565 Label* materialize_false,
566 Label** if_true,
567 Label** if_false,
568 Label** fall_through) const {
569 *if_true = true_label_;
570 *if_false = false_label_;
571 *fall_through = fall_through_;
572 }
573
574
DoTest(const TestContext * context)575 void FullCodeGenerator::DoTest(const TestContext* context) {
576 DoTest(context->condition(),
577 context->true_label(),
578 context->false_label(),
579 context->fall_through());
580 }
581
582
AllocateModules(ZoneList<Declaration * > * declarations)583 void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
584 ASSERT(scope_->is_global_scope());
585
586 for (int i = 0; i < declarations->length(); i++) {
587 ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
588 if (declaration != NULL) {
589 ModuleLiteral* module = declaration->module()->AsModuleLiteral();
590 if (module != NULL) {
591 Comment cmnt(masm_, "[ Link nested modules");
592 Scope* scope = module->body()->scope();
593 Interface* interface = scope->interface();
594 ASSERT(interface->IsModule() && interface->IsFrozen());
595
596 interface->Allocate(scope->module_var()->index());
597
598 // Set up module context.
599 ASSERT(scope->interface()->Index() >= 0);
600 __ Push(Smi::FromInt(scope->interface()->Index()));
601 __ Push(scope->GetScopeInfo());
602 __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
603 StoreToFrameField(StandardFrameConstants::kContextOffset,
604 context_register());
605
606 AllocateModules(scope->declarations());
607
608 // Pop module context.
609 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
610 // Update local stack frame context field.
611 StoreToFrameField(StandardFrameConstants::kContextOffset,
612 context_register());
613 }
614 }
615 }
616 }
617
618
619 // Modules have their own local scope, represented by their own context.
620 // Module instance objects have an accessor for every export that forwards
621 // access to the respective slot from the module's context. (Exports that are
622 // modules themselves, however, are simple data properties.)
623 //
624 // All modules have a _hosting_ scope/context, which (currently) is the
625 // (innermost) enclosing global scope. To deal with recursion, nested modules
626 // are hosted by the same scope as global ones.
627 //
628 // For every (global or nested) module literal, the hosting context has an
629 // internal slot that points directly to the respective module context. This
630 // enables quick access to (statically resolved) module members by 2-dimensional
631 // access through the hosting context. For example,
632 //
633 // module A {
634 // let x;
635 // module B { let y; }
636 // }
637 // module C { let z; }
638 //
639 // allocates contexts as follows:
640 //
641 // [header| .A | .B | .C | A | C ] (global)
642 // | | |
643 // | | +-- [header| z ] (module)
644 // | |
645 // | +------- [header| y ] (module)
646 // |
647 // +------------ [header| x | B ] (module)
648 //
649 // Here, .A, .B, .C are the internal slots pointing to the hosted module
650 // contexts, whereas A, B, C hold the actual instance objects (note that every
651 // module context also points to the respective instance object through its
652 // extension slot in the header).
653 //
654 // To deal with arbitrary recursion and aliases between modules,
655 // they are created and initialized in several stages. Each stage applies to
656 // all modules in the hosting global scope, including nested ones.
657 //
658 // 1. Allocate: for each module _literal_, allocate the module contexts and
659 // respective instance object and wire them up. This happens in the
660 // PushModuleContext runtime function, as generated by AllocateModules
661 // (invoked by VisitDeclarations in the hosting scope).
662 //
663 // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
664 // assign the respective instance object to respective local variables. This
665 // happens in VisitModuleDeclaration, and uses the instance objects created
666 // in the previous stage.
667 // For each module _literal_, this phase also constructs a module descriptor
668 // for the next stage. This happens in VisitModuleLiteral.
669 //
670 // 3. Populate: invoke the DeclareModules runtime function to populate each
671 // _instance_ object with accessors for it exports. This is generated by
672 // DeclareModules (invoked by VisitDeclarations in the hosting scope again),
673 // and uses the descriptors generated in the previous stage.
674 //
675 // 4. Initialize: execute the module bodies (and other code) in sequence. This
676 // happens by the separate statements generated for module bodies. To reenter
677 // the module scopes properly, the parser inserted ModuleStatements.
678
VisitDeclarations(ZoneList<Declaration * > * declarations)679 void FullCodeGenerator::VisitDeclarations(
680 ZoneList<Declaration*>* declarations) {
681 Handle<FixedArray> saved_modules = modules_;
682 int saved_module_index = module_index_;
683 ZoneList<Handle<Object> >* saved_globals = globals_;
684 ZoneList<Handle<Object> > inner_globals(10, zone());
685 globals_ = &inner_globals;
686
687 if (scope_->num_modules() != 0) {
688 // This is a scope hosting modules. Allocate a descriptor array to pass
689 // to the runtime for initialization.
690 Comment cmnt(masm_, "[ Allocate modules");
691 ASSERT(scope_->is_global_scope());
692 modules_ =
693 isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
694 module_index_ = 0;
695
696 // Generate code for allocating all modules, including nested ones.
697 // The allocated contexts are stored in internal variables in this scope.
698 AllocateModules(declarations);
699 }
700
701 AstVisitor::VisitDeclarations(declarations);
702
703 if (scope_->num_modules() != 0) {
704 // Initialize modules from descriptor array.
705 ASSERT(module_index_ == modules_->length());
706 DeclareModules(modules_);
707 modules_ = saved_modules;
708 module_index_ = saved_module_index;
709 }
710
711 if (!globals_->is_empty()) {
712 // Invoke the platform-dependent code generator to do the actual
713 // declaration of the global functions and variables.
714 Handle<FixedArray> array =
715 isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
716 for (int i = 0; i < globals_->length(); ++i)
717 array->set(i, *globals_->at(i));
718 DeclareGlobals(array);
719 }
720
721 globals_ = saved_globals;
722 }
723
724
VisitModuleLiteral(ModuleLiteral * module)725 void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
726 Block* block = module->body();
727 Scope* saved_scope = scope();
728 scope_ = block->scope();
729 Interface* interface = scope_->interface();
730
731 Comment cmnt(masm_, "[ ModuleLiteral");
732 SetStatementPosition(block);
733
734 ASSERT(!modules_.is_null());
735 ASSERT(module_index_ < modules_->length());
736 int index = module_index_++;
737
738 // Set up module context.
739 ASSERT(interface->Index() >= 0);
740 __ Push(Smi::FromInt(interface->Index()));
741 __ Push(Smi::FromInt(0));
742 __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
743 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
744
745 {
746 Comment cmnt(masm_, "[ Declarations");
747 VisitDeclarations(scope_->declarations());
748 }
749
750 // Populate the module description.
751 Handle<ModuleInfo> description =
752 ModuleInfo::Create(isolate(), interface, scope_);
753 modules_->set(index, *description);
754
755 scope_ = saved_scope;
756 // Pop module context.
757 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
758 // Update local stack frame context field.
759 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
760 }
761
762
VisitModuleVariable(ModuleVariable * module)763 void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
764 // Nothing to do.
765 // The instance object is resolved statically through the module's interface.
766 }
767
768
VisitModulePath(ModulePath * module)769 void FullCodeGenerator::VisitModulePath(ModulePath* module) {
770 // Nothing to do.
771 // The instance object is resolved statically through the module's interface.
772 }
773
774
VisitModuleUrl(ModuleUrl * module)775 void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
776 // TODO(rossberg): dummy allocation for now.
777 Scope* scope = module->body()->scope();
778 Interface* interface = scope_->interface();
779
780 ASSERT(interface->IsModule() && interface->IsFrozen());
781 ASSERT(!modules_.is_null());
782 ASSERT(module_index_ < modules_->length());
783 interface->Allocate(scope->module_var()->index());
784 int index = module_index_++;
785
786 Handle<ModuleInfo> description =
787 ModuleInfo::Create(isolate(), interface, scope_);
788 modules_->set(index, *description);
789 }
790
791
DeclareGlobalsFlags()792 int FullCodeGenerator::DeclareGlobalsFlags() {
793 ASSERT(DeclareGlobalsStrictMode::is_valid(strict_mode()));
794 return DeclareGlobalsEvalFlag::encode(is_eval()) |
795 DeclareGlobalsNativeFlag::encode(is_native()) |
796 DeclareGlobalsStrictMode::encode(strict_mode());
797 }
798
799
SetFunctionPosition(FunctionLiteral * fun)800 void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
801 CodeGenerator::RecordPositions(masm_, fun->start_position());
802 }
803
804
SetReturnPosition(FunctionLiteral * fun)805 void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
806 CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
807 }
808
809
SetStatementPosition(Statement * stmt)810 void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
811 if (!info_->is_debug()) {
812 CodeGenerator::RecordPositions(masm_, stmt->position());
813 } else {
814 // Check if the statement will be breakable without adding a debug break
815 // slot.
816 BreakableStatementChecker checker(zone());
817 checker.Check(stmt);
818 // Record the statement position right here if the statement is not
819 // breakable. For breakable statements the actual recording of the
820 // position will be postponed to the breakable code (typically an IC).
821 bool position_recorded = CodeGenerator::RecordPositions(
822 masm_, stmt->position(), !checker.is_breakable());
823 // If the position recording did record a new position generate a debug
824 // break slot to make the statement breakable.
825 if (position_recorded) {
826 DebugCodegen::GenerateSlot(masm_);
827 }
828 }
829 }
830
831
SetExpressionPosition(Expression * expr)832 void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
833 if (!info_->is_debug()) {
834 CodeGenerator::RecordPositions(masm_, expr->position());
835 } else {
836 // Check if the expression will be breakable without adding a debug break
837 // slot.
838 BreakableStatementChecker checker(zone());
839 checker.Check(expr);
840 // Record a statement position right here if the expression is not
841 // breakable. For breakable expressions the actual recording of the
842 // position will be postponed to the breakable code (typically an IC).
843 // NOTE this will record a statement position for something which might
844 // not be a statement. As stepping in the debugger will only stop at
845 // statement positions this is used for e.g. the condition expression of
846 // a do while loop.
847 bool position_recorded = CodeGenerator::RecordPositions(
848 masm_, expr->position(), !checker.is_breakable());
849 // If the position recording did record a new position generate a debug
850 // break slot to make the statement breakable.
851 if (position_recorded) {
852 DebugCodegen::GenerateSlot(masm_);
853 }
854 }
855 }
856
857
SetStatementPosition(int pos)858 void FullCodeGenerator::SetStatementPosition(int pos) {
859 CodeGenerator::RecordPositions(masm_, pos);
860 }
861
862
SetSourcePosition(int pos)863 void FullCodeGenerator::SetSourcePosition(int pos) {
864 if (pos != RelocInfo::kNoPosition) {
865 masm_->positions_recorder()->RecordPosition(pos);
866 }
867 }
868
869
870 // Lookup table for code generators for special runtime calls which are
871 // generated inline.
872 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
873 &FullCodeGenerator::Emit##Name,
874
875 const FullCodeGenerator::InlineFunctionGenerator
876 FullCodeGenerator::kInlineFunctionGenerators[] = {
877 INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
878 };
879 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
880
881
882 FullCodeGenerator::InlineFunctionGenerator
FindInlineFunctionGenerator(Runtime::FunctionId id)883 FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
884 int lookup_index =
885 static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
886 ASSERT(lookup_index >= 0);
887 ASSERT(static_cast<size_t>(lookup_index) <
888 ARRAY_SIZE(kInlineFunctionGenerators));
889 return kInlineFunctionGenerators[lookup_index];
890 }
891
892
EmitInlineRuntimeCall(CallRuntime * expr)893 void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
894 const Runtime::Function* function = expr->function();
895 ASSERT(function != NULL);
896 ASSERT(function->intrinsic_type == Runtime::INLINE);
897 InlineFunctionGenerator generator =
898 FindInlineFunctionGenerator(function->function_id);
899 ((*this).*(generator))(expr);
900 }
901
902
EmitGeneratorNext(CallRuntime * expr)903 void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
904 ZoneList<Expression*>* args = expr->arguments();
905 ASSERT(args->length() == 2);
906 EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
907 }
908
909
EmitGeneratorThrow(CallRuntime * expr)910 void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
911 ZoneList<Expression*>* args = expr->arguments();
912 ASSERT(args->length() == 2);
913 EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
914 }
915
916
EmitDebugBreakInOptimizedCode(CallRuntime * expr)917 void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
918 context()->Plug(handle(Smi::FromInt(0), isolate()));
919 }
920
921
VisitBinaryOperation(BinaryOperation * expr)922 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
923 switch (expr->op()) {
924 case Token::COMMA:
925 return VisitComma(expr);
926 case Token::OR:
927 case Token::AND:
928 return VisitLogicalExpression(expr);
929 default:
930 return VisitArithmeticExpression(expr);
931 }
932 }
933
934
VisitInDuplicateContext(Expression * expr)935 void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
936 if (context()->IsEffect()) {
937 VisitForEffect(expr);
938 } else if (context()->IsAccumulatorValue()) {
939 VisitForAccumulatorValue(expr);
940 } else if (context()->IsStackValue()) {
941 VisitForStackValue(expr);
942 } else if (context()->IsTest()) {
943 const TestContext* test = TestContext::cast(context());
944 VisitForControl(expr, test->true_label(), test->false_label(),
945 test->fall_through());
946 }
947 }
948
949
VisitComma(BinaryOperation * expr)950 void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
951 Comment cmnt(masm_, "[ Comma");
952 VisitForEffect(expr->left());
953 VisitInDuplicateContext(expr->right());
954 }
955
956
VisitLogicalExpression(BinaryOperation * expr)957 void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
958 bool is_logical_and = expr->op() == Token::AND;
959 Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR");
960 Expression* left = expr->left();
961 Expression* right = expr->right();
962 BailoutId right_id = expr->RightId();
963 Label done;
964
965 if (context()->IsTest()) {
966 Label eval_right;
967 const TestContext* test = TestContext::cast(context());
968 if (is_logical_and) {
969 VisitForControl(left, &eval_right, test->false_label(), &eval_right);
970 } else {
971 VisitForControl(left, test->true_label(), &eval_right, &eval_right);
972 }
973 PrepareForBailoutForId(right_id, NO_REGISTERS);
974 __ bind(&eval_right);
975
976 } else if (context()->IsAccumulatorValue()) {
977 VisitForAccumulatorValue(left);
978 // We want the value in the accumulator for the test, and on the stack in
979 // case we need it.
980 __ Push(result_register());
981 Label discard, restore;
982 if (is_logical_and) {
983 DoTest(left, &discard, &restore, &restore);
984 } else {
985 DoTest(left, &restore, &discard, &restore);
986 }
987 __ bind(&restore);
988 __ Pop(result_register());
989 __ jmp(&done);
990 __ bind(&discard);
991 __ Drop(1);
992 PrepareForBailoutForId(right_id, NO_REGISTERS);
993
994 } else if (context()->IsStackValue()) {
995 VisitForAccumulatorValue(left);
996 // We want the value in the accumulator for the test, and on the stack in
997 // case we need it.
998 __ Push(result_register());
999 Label discard;
1000 if (is_logical_and) {
1001 DoTest(left, &discard, &done, &discard);
1002 } else {
1003 DoTest(left, &done, &discard, &discard);
1004 }
1005 __ bind(&discard);
1006 __ Drop(1);
1007 PrepareForBailoutForId(right_id, NO_REGISTERS);
1008
1009 } else {
1010 ASSERT(context()->IsEffect());
1011 Label eval_right;
1012 if (is_logical_and) {
1013 VisitForControl(left, &eval_right, &done, &eval_right);
1014 } else {
1015 VisitForControl(left, &done, &eval_right, &eval_right);
1016 }
1017 PrepareForBailoutForId(right_id, NO_REGISTERS);
1018 __ bind(&eval_right);
1019 }
1020
1021 VisitInDuplicateContext(right);
1022 __ bind(&done);
1023 }
1024
1025
VisitArithmeticExpression(BinaryOperation * expr)1026 void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
1027 Token::Value op = expr->op();
1028 Comment cmnt(masm_, "[ ArithmeticExpression");
1029 Expression* left = expr->left();
1030 Expression* right = expr->right();
1031 OverwriteMode mode =
1032 left->ResultOverwriteAllowed()
1033 ? OVERWRITE_LEFT
1034 : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
1035
1036 VisitForStackValue(left);
1037 VisitForAccumulatorValue(right);
1038
1039 SetSourcePosition(expr->position());
1040 if (ShouldInlineSmiCase(op)) {
1041 EmitInlineSmiBinaryOp(expr, op, mode, left, right);
1042 } else {
1043 EmitBinaryOp(expr, op, mode);
1044 }
1045 }
1046
1047
VisitBlock(Block * stmt)1048 void FullCodeGenerator::VisitBlock(Block* stmt) {
1049 Comment cmnt(masm_, "[ Block");
1050 NestedBlock nested_block(this, stmt);
1051 SetStatementPosition(stmt);
1052
1053 Scope* saved_scope = scope();
1054 // Push a block context when entering a block with block scoped variables.
1055 if (stmt->scope() == NULL) {
1056 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1057 } else {
1058 scope_ = stmt->scope();
1059 ASSERT(!scope_->is_module_scope());
1060 { Comment cmnt(masm_, "[ Extend block context");
1061 __ Push(scope_->GetScopeInfo());
1062 PushFunctionArgumentForContextAllocation();
1063 __ CallRuntime(Runtime::kHiddenPushBlockContext, 2);
1064
1065 // Replace the context stored in the frame.
1066 StoreToFrameField(StandardFrameConstants::kContextOffset,
1067 context_register());
1068 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1069 }
1070 { Comment cmnt(masm_, "[ Declarations");
1071 VisitDeclarations(scope_->declarations());
1072 PrepareForBailoutForId(stmt->DeclsId(), NO_REGISTERS);
1073 }
1074 }
1075
1076 VisitStatements(stmt->statements());
1077 scope_ = saved_scope;
1078 __ bind(nested_block.break_label());
1079
1080 // Pop block context if necessary.
1081 if (stmt->scope() != NULL) {
1082 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1083 // Update local stack frame context field.
1084 StoreToFrameField(StandardFrameConstants::kContextOffset,
1085 context_register());
1086 }
1087 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1088 }
1089
1090
VisitModuleStatement(ModuleStatement * stmt)1091 void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
1092 Comment cmnt(masm_, "[ Module context");
1093
1094 __ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
1095 __ Push(Smi::FromInt(0));
1096 __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
1097 StoreToFrameField(
1098 StandardFrameConstants::kContextOffset, context_register());
1099
1100 Scope* saved_scope = scope_;
1101 scope_ = stmt->body()->scope();
1102 VisitStatements(stmt->body()->statements());
1103 scope_ = saved_scope;
1104 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1105 // Update local stack frame context field.
1106 StoreToFrameField(StandardFrameConstants::kContextOffset,
1107 context_register());
1108 }
1109
1110
VisitExpressionStatement(ExpressionStatement * stmt)1111 void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
1112 Comment cmnt(masm_, "[ ExpressionStatement");
1113 SetStatementPosition(stmt);
1114 VisitForEffect(stmt->expression());
1115 }
1116
1117
VisitEmptyStatement(EmptyStatement * stmt)1118 void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
1119 Comment cmnt(masm_, "[ EmptyStatement");
1120 SetStatementPosition(stmt);
1121 }
1122
1123
VisitIfStatement(IfStatement * stmt)1124 void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
1125 Comment cmnt(masm_, "[ IfStatement");
1126 SetStatementPosition(stmt);
1127 Label then_part, else_part, done;
1128
1129 if (stmt->HasElseStatement()) {
1130 VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
1131 PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1132 __ bind(&then_part);
1133 Visit(stmt->then_statement());
1134 __ jmp(&done);
1135
1136 PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1137 __ bind(&else_part);
1138 Visit(stmt->else_statement());
1139 } else {
1140 VisitForControl(stmt->condition(), &then_part, &done, &then_part);
1141 PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1142 __ bind(&then_part);
1143 Visit(stmt->then_statement());
1144
1145 PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1146 }
1147 __ bind(&done);
1148 PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
1149 }
1150
1151
VisitContinueStatement(ContinueStatement * stmt)1152 void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
1153 Comment cmnt(masm_, "[ ContinueStatement");
1154 SetStatementPosition(stmt);
1155 NestedStatement* current = nesting_stack_;
1156 int stack_depth = 0;
1157 int context_length = 0;
1158 // When continuing, we clobber the unpredictable value in the accumulator
1159 // with one that's safe for GC. If we hit an exit from the try block of
1160 // try...finally on our way out, we will unconditionally preserve the
1161 // accumulator on the stack.
1162 ClearAccumulator();
1163 while (!current->IsContinueTarget(stmt->target())) {
1164 current = current->Exit(&stack_depth, &context_length);
1165 }
1166 __ Drop(stack_depth);
1167 if (context_length > 0) {
1168 while (context_length > 0) {
1169 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1170 --context_length;
1171 }
1172 StoreToFrameField(StandardFrameConstants::kContextOffset,
1173 context_register());
1174 }
1175
1176 __ jmp(current->AsIteration()->continue_label());
1177 }
1178
1179
VisitBreakStatement(BreakStatement * stmt)1180 void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
1181 Comment cmnt(masm_, "[ BreakStatement");
1182 SetStatementPosition(stmt);
1183 NestedStatement* current = nesting_stack_;
1184 int stack_depth = 0;
1185 int context_length = 0;
1186 // When breaking, we clobber the unpredictable value in the accumulator
1187 // with one that's safe for GC. If we hit an exit from the try block of
1188 // try...finally on our way out, we will unconditionally preserve the
1189 // accumulator on the stack.
1190 ClearAccumulator();
1191 while (!current->IsBreakTarget(stmt->target())) {
1192 current = current->Exit(&stack_depth, &context_length);
1193 }
1194 __ Drop(stack_depth);
1195 if (context_length > 0) {
1196 while (context_length > 0) {
1197 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1198 --context_length;
1199 }
1200 StoreToFrameField(StandardFrameConstants::kContextOffset,
1201 context_register());
1202 }
1203
1204 __ jmp(current->AsBreakable()->break_label());
1205 }
1206
1207
EmitUnwindBeforeReturn()1208 void FullCodeGenerator::EmitUnwindBeforeReturn() {
1209 NestedStatement* current = nesting_stack_;
1210 int stack_depth = 0;
1211 int context_length = 0;
1212 while (current != NULL) {
1213 current = current->Exit(&stack_depth, &context_length);
1214 }
1215 __ Drop(stack_depth);
1216 }
1217
1218
VisitReturnStatement(ReturnStatement * stmt)1219 void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
1220 Comment cmnt(masm_, "[ ReturnStatement");
1221 SetStatementPosition(stmt);
1222 Expression* expr = stmt->expression();
1223 VisitForAccumulatorValue(expr);
1224 EmitUnwindBeforeReturn();
1225 EmitReturnSequence();
1226 }
1227
1228
VisitWithStatement(WithStatement * stmt)1229 void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
1230 Comment cmnt(masm_, "[ WithStatement");
1231 SetStatementPosition(stmt);
1232
1233 VisitForStackValue(stmt->expression());
1234 PushFunctionArgumentForContextAllocation();
1235 __ CallRuntime(Runtime::kHiddenPushWithContext, 2);
1236 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1237
1238 Scope* saved_scope = scope();
1239 scope_ = stmt->scope();
1240 { WithOrCatch body(this);
1241 Visit(stmt->statement());
1242 }
1243 scope_ = saved_scope;
1244
1245 // Pop context.
1246 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1247 // Update local stack frame context field.
1248 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1249 }
1250
1251
VisitDoWhileStatement(DoWhileStatement * stmt)1252 void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
1253 Comment cmnt(masm_, "[ DoWhileStatement");
1254 SetStatementPosition(stmt);
1255 Label body, book_keeping;
1256
1257 Iteration loop_statement(this, stmt);
1258 increment_loop_depth();
1259
1260 __ bind(&body);
1261 Visit(stmt->body());
1262
1263 // Record the position of the do while condition and make sure it is
1264 // possible to break on the condition.
1265 __ bind(loop_statement.continue_label());
1266 PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1267 SetExpressionPosition(stmt->cond());
1268 VisitForControl(stmt->cond(),
1269 &book_keeping,
1270 loop_statement.break_label(),
1271 &book_keeping);
1272
1273 // Check stack before looping.
1274 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1275 __ bind(&book_keeping);
1276 EmitBackEdgeBookkeeping(stmt, &body);
1277 __ jmp(&body);
1278
1279 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1280 __ bind(loop_statement.break_label());
1281 decrement_loop_depth();
1282 }
1283
1284
VisitWhileStatement(WhileStatement * stmt)1285 void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
1286 Comment cmnt(masm_, "[ WhileStatement");
1287 Label test, body;
1288
1289 Iteration loop_statement(this, stmt);
1290 increment_loop_depth();
1291
1292 // Emit the test at the bottom of the loop.
1293 __ jmp(&test);
1294
1295 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1296 __ bind(&body);
1297 Visit(stmt->body());
1298
1299 // Emit the statement position here as this is where the while
1300 // statement code starts.
1301 __ bind(loop_statement.continue_label());
1302 SetStatementPosition(stmt);
1303
1304 // Check stack before looping.
1305 EmitBackEdgeBookkeeping(stmt, &body);
1306
1307 __ bind(&test);
1308 VisitForControl(stmt->cond(),
1309 &body,
1310 loop_statement.break_label(),
1311 loop_statement.break_label());
1312
1313 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1314 __ bind(loop_statement.break_label());
1315 decrement_loop_depth();
1316 }
1317
1318
VisitForStatement(ForStatement * stmt)1319 void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
1320 Comment cmnt(masm_, "[ ForStatement");
1321 Label test, body;
1322
1323 Iteration loop_statement(this, stmt);
1324
1325 // Set statement position for a break slot before entering the for-body.
1326 SetStatementPosition(stmt);
1327
1328 if (stmt->init() != NULL) {
1329 Visit(stmt->init());
1330 }
1331
1332 increment_loop_depth();
1333 // Emit the test at the bottom of the loop (even if empty).
1334 __ jmp(&test);
1335
1336 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1337 __ bind(&body);
1338 Visit(stmt->body());
1339
1340 PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1341 __ bind(loop_statement.continue_label());
1342 if (stmt->next() != NULL) {
1343 Visit(stmt->next());
1344 }
1345
1346 // Emit the statement position here as this is where the for
1347 // statement code starts.
1348 SetStatementPosition(stmt);
1349
1350 // Check stack before looping.
1351 EmitBackEdgeBookkeeping(stmt, &body);
1352
1353 __ bind(&test);
1354 if (stmt->cond() != NULL) {
1355 VisitForControl(stmt->cond(),
1356 &body,
1357 loop_statement.break_label(),
1358 loop_statement.break_label());
1359 } else {
1360 __ jmp(&body);
1361 }
1362
1363 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1364 __ bind(loop_statement.break_label());
1365 decrement_loop_depth();
1366 }
1367
1368
VisitTryCatchStatement(TryCatchStatement * stmt)1369 void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
1370 Comment cmnt(masm_, "[ TryCatchStatement");
1371 SetStatementPosition(stmt);
1372 // The try block adds a handler to the exception handler chain before
1373 // entering, and removes it again when exiting normally. If an exception
1374 // is thrown during execution of the try block, the handler is consumed
1375 // and control is passed to the catch block with the exception in the
1376 // result register.
1377
1378 Label try_entry, handler_entry, exit;
1379 __ jmp(&try_entry);
1380 __ bind(&handler_entry);
1381 handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1382 // Exception handler code, the exception is in the result register.
1383 // Extend the context before executing the catch block.
1384 { Comment cmnt(masm_, "[ Extend catch context");
1385 __ Push(stmt->variable()->name());
1386 __ Push(result_register());
1387 PushFunctionArgumentForContextAllocation();
1388 __ CallRuntime(Runtime::kHiddenPushCatchContext, 3);
1389 StoreToFrameField(StandardFrameConstants::kContextOffset,
1390 context_register());
1391 }
1392
1393 Scope* saved_scope = scope();
1394 scope_ = stmt->scope();
1395 ASSERT(scope_->declarations()->is_empty());
1396 { WithOrCatch catch_body(this);
1397 Visit(stmt->catch_block());
1398 }
1399 // Restore the context.
1400 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1401 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1402 scope_ = saved_scope;
1403 __ jmp(&exit);
1404
1405 // Try block code. Sets up the exception handler chain.
1406 __ bind(&try_entry);
1407 __ PushTryHandler(StackHandler::CATCH, stmt->index());
1408 { TryCatch try_body(this);
1409 Visit(stmt->try_block());
1410 }
1411 __ PopTryHandler();
1412 __ bind(&exit);
1413 }
1414
1415
VisitTryFinallyStatement(TryFinallyStatement * stmt)1416 void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
1417 Comment cmnt(masm_, "[ TryFinallyStatement");
1418 SetStatementPosition(stmt);
1419 // Try finally is compiled by setting up a try-handler on the stack while
1420 // executing the try body, and removing it again afterwards.
1421 //
1422 // The try-finally construct can enter the finally block in three ways:
1423 // 1. By exiting the try-block normally. This removes the try-handler and
1424 // calls the finally block code before continuing.
1425 // 2. By exiting the try-block with a function-local control flow transfer
1426 // (break/continue/return). The site of the, e.g., break removes the
1427 // try handler and calls the finally block code before continuing
1428 // its outward control transfer.
1429 // 3. By exiting the try-block with a thrown exception.
1430 // This can happen in nested function calls. It traverses the try-handler
1431 // chain and consumes the try-handler entry before jumping to the
1432 // handler code. The handler code then calls the finally-block before
1433 // rethrowing the exception.
1434 //
1435 // The finally block must assume a return address on top of the stack
1436 // (or in the link register on ARM chips) and a value (return value or
1437 // exception) in the result register (rax/eax/r0), both of which must
1438 // be preserved. The return address isn't GC-safe, so it should be
1439 // cooked before GC.
1440 Label try_entry, handler_entry, finally_entry;
1441
1442 // Jump to try-handler setup and try-block code.
1443 __ jmp(&try_entry);
1444 __ bind(&handler_entry);
1445 handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1446 // Exception handler code. This code is only executed when an exception
1447 // is thrown. The exception is in the result register, and must be
1448 // preserved by the finally block. Call the finally block and then
1449 // rethrow the exception if it returns.
1450 __ Call(&finally_entry);
1451 __ Push(result_register());
1452 __ CallRuntime(Runtime::kHiddenReThrow, 1);
1453
1454 // Finally block implementation.
1455 __ bind(&finally_entry);
1456 EnterFinallyBlock();
1457 { Finally finally_body(this);
1458 Visit(stmt->finally_block());
1459 }
1460 ExitFinallyBlock(); // Return to the calling code.
1461
1462 // Set up try handler.
1463 __ bind(&try_entry);
1464 __ PushTryHandler(StackHandler::FINALLY, stmt->index());
1465 { TryFinally try_body(this, &finally_entry);
1466 Visit(stmt->try_block());
1467 }
1468 __ PopTryHandler();
1469 // Execute the finally block on the way out. Clobber the unpredictable
1470 // value in the result register with one that's safe for GC because the
1471 // finally block will unconditionally preserve the result register on the
1472 // stack.
1473 ClearAccumulator();
1474 __ Call(&finally_entry);
1475 }
1476
1477
VisitDebuggerStatement(DebuggerStatement * stmt)1478 void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
1479 Comment cmnt(masm_, "[ DebuggerStatement");
1480 SetStatementPosition(stmt);
1481
1482 __ DebugBreak();
1483 // Ignore the return value.
1484 }
1485
1486
VisitCaseClause(CaseClause * clause)1487 void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
1488 UNREACHABLE();
1489 }
1490
1491
VisitConditional(Conditional * expr)1492 void FullCodeGenerator::VisitConditional(Conditional* expr) {
1493 Comment cmnt(masm_, "[ Conditional");
1494 Label true_case, false_case, done;
1495 VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
1496
1497 PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
1498 __ bind(&true_case);
1499 SetExpressionPosition(expr->then_expression());
1500 if (context()->IsTest()) {
1501 const TestContext* for_test = TestContext::cast(context());
1502 VisitForControl(expr->then_expression(),
1503 for_test->true_label(),
1504 for_test->false_label(),
1505 NULL);
1506 } else {
1507 VisitInDuplicateContext(expr->then_expression());
1508 __ jmp(&done);
1509 }
1510
1511 PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
1512 __ bind(&false_case);
1513 SetExpressionPosition(expr->else_expression());
1514 VisitInDuplicateContext(expr->else_expression());
1515 // If control flow falls through Visit, merge it with true case here.
1516 if (!context()->IsTest()) {
1517 __ bind(&done);
1518 }
1519 }
1520
1521
VisitLiteral(Literal * expr)1522 void FullCodeGenerator::VisitLiteral(Literal* expr) {
1523 Comment cmnt(masm_, "[ Literal");
1524 context()->Plug(expr->value());
1525 }
1526
1527
VisitFunctionLiteral(FunctionLiteral * expr)1528 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
1529 Comment cmnt(masm_, "[ FunctionLiteral");
1530
1531 // Build the function boilerplate and instantiate it.
1532 Handle<SharedFunctionInfo> function_info =
1533 Compiler::BuildFunctionInfo(expr, script());
1534 if (function_info.is_null()) {
1535 SetStackOverflow();
1536 return;
1537 }
1538 EmitNewClosure(function_info, expr->pretenure());
1539 }
1540
1541
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)1542 void FullCodeGenerator::VisitNativeFunctionLiteral(
1543 NativeFunctionLiteral* expr) {
1544 Comment cmnt(masm_, "[ NativeFunctionLiteral");
1545
1546 // Compute the function template for the native function.
1547 Handle<String> name = expr->name();
1548 v8::Handle<v8::FunctionTemplate> fun_template =
1549 expr->extension()->GetNativeFunctionTemplate(
1550 reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
1551 ASSERT(!fun_template.IsEmpty());
1552
1553 // Instantiate the function and create a shared function info from it.
1554 Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
1555 const int literals = fun->NumberOfLiterals();
1556 Handle<Code> code = Handle<Code>(fun->shared()->code());
1557 Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
1558 bool is_generator = false;
1559 Handle<SharedFunctionInfo> shared =
1560 isolate()->factory()->NewSharedFunctionInfo(
1561 name, literals, is_generator,
1562 code, Handle<ScopeInfo>(fun->shared()->scope_info()),
1563 Handle<FixedArray>(fun->shared()->feedback_vector()));
1564 shared->set_construct_stub(*construct_stub);
1565
1566 // Copy the function data to the shared function info.
1567 shared->set_function_data(fun->shared()->function_data());
1568 int parameters = fun->shared()->formal_parameter_count();
1569 shared->set_formal_parameter_count(parameters);
1570
1571 EmitNewClosure(shared, false);
1572 }
1573
1574
VisitThrow(Throw * expr)1575 void FullCodeGenerator::VisitThrow(Throw* expr) {
1576 Comment cmnt(masm_, "[ Throw");
1577 VisitForStackValue(expr->exception());
1578 __ CallRuntime(Runtime::kHiddenThrow, 1);
1579 // Never returns here.
1580 }
1581
1582
Exit(int * stack_depth,int * context_length)1583 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
1584 int* stack_depth,
1585 int* context_length) {
1586 // The macros used here must preserve the result register.
1587 __ Drop(*stack_depth);
1588 __ PopTryHandler();
1589 *stack_depth = 0;
1590 return previous_;
1591 }
1592
1593
TryLiteralCompare(CompareOperation * expr)1594 bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
1595 Expression* sub_expr;
1596 Handle<String> check;
1597 if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
1598 EmitLiteralCompareTypeof(expr, sub_expr, check);
1599 return true;
1600 }
1601
1602 if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
1603 EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
1604 return true;
1605 }
1606
1607 if (expr->IsLiteralCompareNull(&sub_expr)) {
1608 EmitLiteralCompareNil(expr, sub_expr, kNullValue);
1609 return true;
1610 }
1611
1612 return false;
1613 }
1614
1615
Patch(Isolate * isolate,Code * unoptimized)1616 void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) {
1617 DisallowHeapAllocation no_gc;
1618 Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1619
1620 // Iterate over the back edge table and patch every interrupt
1621 // call to an unconditional call to the replacement code.
1622 int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1623
1624 BackEdgeTable back_edges(unoptimized, &no_gc);
1625 for (uint32_t i = 0; i < back_edges.length(); i++) {
1626 if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
1627 ASSERT_EQ(INTERRUPT, GetBackEdgeState(isolate,
1628 unoptimized,
1629 back_edges.pc(i)));
1630 PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
1631 }
1632 }
1633
1634 unoptimized->set_back_edges_patched_for_osr(true);
1635 ASSERT(Verify(isolate, unoptimized, loop_nesting_level));
1636 }
1637
1638
Revert(Isolate * isolate,Code * unoptimized)1639 void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) {
1640 DisallowHeapAllocation no_gc;
1641 Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
1642
1643 // Iterate over the back edge table and revert the patched interrupt calls.
1644 ASSERT(unoptimized->back_edges_patched_for_osr());
1645 int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1646
1647 BackEdgeTable back_edges(unoptimized, &no_gc);
1648 for (uint32_t i = 0; i < back_edges.length(); i++) {
1649 if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
1650 ASSERT_NE(INTERRUPT, GetBackEdgeState(isolate,
1651 unoptimized,
1652 back_edges.pc(i)));
1653 PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
1654 }
1655 }
1656
1657 unoptimized->set_back_edges_patched_for_osr(false);
1658 unoptimized->set_allow_osr_at_loop_nesting_level(0);
1659 // Assert that none of the back edges are patched anymore.
1660 ASSERT(Verify(isolate, unoptimized, -1));
1661 }
1662
1663
AddStackCheck(Handle<Code> code,uint32_t pc_offset)1664 void BackEdgeTable::AddStackCheck(Handle<Code> code, uint32_t pc_offset) {
1665 DisallowHeapAllocation no_gc;
1666 Isolate* isolate = code->GetIsolate();
1667 Address pc = code->instruction_start() + pc_offset;
1668 Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
1669 PatchAt(*code, pc, OSR_AFTER_STACK_CHECK, patch);
1670 }
1671
1672
RemoveStackCheck(Handle<Code> code,uint32_t pc_offset)1673 void BackEdgeTable::RemoveStackCheck(Handle<Code> code, uint32_t pc_offset) {
1674 DisallowHeapAllocation no_gc;
1675 Isolate* isolate = code->GetIsolate();
1676 Address pc = code->instruction_start() + pc_offset;
1677
1678 if (OSR_AFTER_STACK_CHECK == GetBackEdgeState(isolate, *code, pc)) {
1679 Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1680 PatchAt(*code, pc, ON_STACK_REPLACEMENT, patch);
1681 }
1682 }
1683
1684
1685 #ifdef DEBUG
Verify(Isolate * isolate,Code * unoptimized,int loop_nesting_level)1686 bool BackEdgeTable::Verify(Isolate* isolate,
1687 Code* unoptimized,
1688 int loop_nesting_level) {
1689 DisallowHeapAllocation no_gc;
1690 BackEdgeTable back_edges(unoptimized, &no_gc);
1691 for (uint32_t i = 0; i < back_edges.length(); i++) {
1692 uint32_t loop_depth = back_edges.loop_depth(i);
1693 CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
1694 // Assert that all back edges for shallower loops (and only those)
1695 // have already been patched.
1696 CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
1697 GetBackEdgeState(isolate,
1698 unoptimized,
1699 back_edges.pc(i)) != INTERRUPT);
1700 }
1701 return true;
1702 }
1703 #endif // DEBUG
1704
1705
1706 #undef __
1707
1708
1709 } } // namespace v8::internal
1710