• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #include "src/codegen.h"
8 #include "src/compiler.h"
9 #include "src/debug.h"
10 #include "src/full-codegen.h"
11 #include "src/liveedit.h"
12 #include "src/macro-assembler.h"
13 #include "src/prettyprinter.h"
14 #include "src/scopes.h"
15 #include "src/scopeinfo.h"
16 #include "src/snapshot.h"
17 #include "src/stub-cache.h"
18 
19 namespace v8 {
20 namespace internal {
21 
Check(Statement * stmt)22 void BreakableStatementChecker::Check(Statement* stmt) {
23   Visit(stmt);
24 }
25 
26 
Check(Expression * expr)27 void BreakableStatementChecker::Check(Expression* expr) {
28   Visit(expr);
29 }
30 
31 
VisitVariableDeclaration(VariableDeclaration * decl)32 void BreakableStatementChecker::VisitVariableDeclaration(
33     VariableDeclaration* decl) {
34 }
35 
VisitFunctionDeclaration(FunctionDeclaration * decl)36 void BreakableStatementChecker::VisitFunctionDeclaration(
37     FunctionDeclaration* decl) {
38 }
39 
VisitModuleDeclaration(ModuleDeclaration * decl)40 void BreakableStatementChecker::VisitModuleDeclaration(
41     ModuleDeclaration* decl) {
42 }
43 
VisitImportDeclaration(ImportDeclaration * decl)44 void BreakableStatementChecker::VisitImportDeclaration(
45     ImportDeclaration* decl) {
46 }
47 
VisitExportDeclaration(ExportDeclaration * decl)48 void BreakableStatementChecker::VisitExportDeclaration(
49     ExportDeclaration* decl) {
50 }
51 
52 
VisitModuleLiteral(ModuleLiteral * module)53 void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
54 }
55 
56 
VisitModuleVariable(ModuleVariable * module)57 void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
58 }
59 
60 
VisitModulePath(ModulePath * module)61 void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
62 }
63 
64 
VisitModuleUrl(ModuleUrl * module)65 void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
66 }
67 
68 
VisitModuleStatement(ModuleStatement * stmt)69 void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
70 }
71 
72 
VisitBlock(Block * stmt)73 void BreakableStatementChecker::VisitBlock(Block* stmt) {
74 }
75 
76 
VisitExpressionStatement(ExpressionStatement * stmt)77 void BreakableStatementChecker::VisitExpressionStatement(
78     ExpressionStatement* stmt) {
79   // Check if expression is breakable.
80   Visit(stmt->expression());
81 }
82 
83 
VisitEmptyStatement(EmptyStatement * stmt)84 void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
85 }
86 
87 
VisitIfStatement(IfStatement * stmt)88 void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
89   // If the condition is breakable the if statement is breakable.
90   Visit(stmt->condition());
91 }
92 
93 
VisitContinueStatement(ContinueStatement * stmt)94 void BreakableStatementChecker::VisitContinueStatement(
95     ContinueStatement* stmt) {
96 }
97 
98 
VisitBreakStatement(BreakStatement * stmt)99 void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
100 }
101 
102 
VisitReturnStatement(ReturnStatement * stmt)103 void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
104   // Return is breakable if the expression is.
105   Visit(stmt->expression());
106 }
107 
108 
VisitWithStatement(WithStatement * stmt)109 void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
110   Visit(stmt->expression());
111 }
112 
113 
VisitSwitchStatement(SwitchStatement * stmt)114 void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
115   // Switch statements breakable if the tag expression is.
116   Visit(stmt->tag());
117 }
118 
119 
VisitDoWhileStatement(DoWhileStatement * stmt)120 void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
121   // Mark do while as breakable to avoid adding a break slot in front of it.
122   is_breakable_ = true;
123 }
124 
125 
VisitWhileStatement(WhileStatement * stmt)126 void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
127   // Mark while statements breakable if the condition expression is.
128   Visit(stmt->cond());
129 }
130 
131 
VisitForStatement(ForStatement * stmt)132 void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
133   // Mark for statements breakable if the condition expression is.
134   if (stmt->cond() != NULL) {
135     Visit(stmt->cond());
136   }
137 }
138 
139 
VisitForInStatement(ForInStatement * stmt)140 void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
141   // Mark for in statements breakable if the enumerable expression is.
142   Visit(stmt->enumerable());
143 }
144 
145 
VisitForOfStatement(ForOfStatement * stmt)146 void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
147   // For-of is breakable because of the next() call.
148   is_breakable_ = true;
149 }
150 
151 
VisitTryCatchStatement(TryCatchStatement * stmt)152 void BreakableStatementChecker::VisitTryCatchStatement(
153     TryCatchStatement* stmt) {
154   // Mark try catch as breakable to avoid adding a break slot in front of it.
155   is_breakable_ = true;
156 }
157 
158 
VisitTryFinallyStatement(TryFinallyStatement * stmt)159 void BreakableStatementChecker::VisitTryFinallyStatement(
160     TryFinallyStatement* stmt) {
161   // Mark try finally as breakable to avoid adding a break slot in front of it.
162   is_breakable_ = true;
163 }
164 
165 
VisitDebuggerStatement(DebuggerStatement * stmt)166 void BreakableStatementChecker::VisitDebuggerStatement(
167     DebuggerStatement* stmt) {
168   // The debugger statement is breakable.
169   is_breakable_ = true;
170 }
171 
172 
VisitCaseClause(CaseClause * clause)173 void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
174 }
175 
176 
VisitFunctionLiteral(FunctionLiteral * expr)177 void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
178 }
179 
180 
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)181 void BreakableStatementChecker::VisitNativeFunctionLiteral(
182     NativeFunctionLiteral* expr) {
183 }
184 
185 
VisitConditional(Conditional * expr)186 void BreakableStatementChecker::VisitConditional(Conditional* expr) {
187 }
188 
189 
VisitVariableProxy(VariableProxy * expr)190 void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
191 }
192 
193 
VisitLiteral(Literal * expr)194 void BreakableStatementChecker::VisitLiteral(Literal* expr) {
195 }
196 
197 
VisitRegExpLiteral(RegExpLiteral * expr)198 void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
199 }
200 
201 
VisitObjectLiteral(ObjectLiteral * expr)202 void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
203 }
204 
205 
VisitArrayLiteral(ArrayLiteral * expr)206 void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
207 }
208 
209 
VisitAssignment(Assignment * expr)210 void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
211   // If assigning to a property (including a global property) the assignment is
212   // breakable.
213   VariableProxy* proxy = expr->target()->AsVariableProxy();
214   Property* prop = expr->target()->AsProperty();
215   if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
216     is_breakable_ = true;
217     return;
218   }
219 
220   // Otherwise the assignment is breakable if the assigned value is.
221   Visit(expr->value());
222 }
223 
224 
VisitYield(Yield * expr)225 void BreakableStatementChecker::VisitYield(Yield* expr) {
226   // Yield is breakable if the expression is.
227   Visit(expr->expression());
228 }
229 
230 
VisitThrow(Throw * expr)231 void BreakableStatementChecker::VisitThrow(Throw* expr) {
232   // Throw is breakable if the expression is.
233   Visit(expr->exception());
234 }
235 
236 
VisitProperty(Property * expr)237 void BreakableStatementChecker::VisitProperty(Property* expr) {
238   // Property load is breakable.
239   is_breakable_ = true;
240 }
241 
242 
VisitCall(Call * expr)243 void BreakableStatementChecker::VisitCall(Call* expr) {
244   // Function calls both through IC and call stub are breakable.
245   is_breakable_ = true;
246 }
247 
248 
VisitCallNew(CallNew * expr)249 void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
250   // Function calls through new are breakable.
251   is_breakable_ = true;
252 }
253 
254 
VisitCallRuntime(CallRuntime * expr)255 void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
256 }
257 
258 
VisitUnaryOperation(UnaryOperation * expr)259 void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
260   Visit(expr->expression());
261 }
262 
263 
VisitCountOperation(CountOperation * expr)264 void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
265   Visit(expr->expression());
266 }
267 
268 
VisitBinaryOperation(BinaryOperation * expr)269 void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
270   Visit(expr->left());
271   if (expr->op() != Token::AND &&
272       expr->op() != Token::OR) {
273     Visit(expr->right());
274   }
275 }
276 
277 
VisitCompareOperation(CompareOperation * expr)278 void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
279   Visit(expr->left());
280   Visit(expr->right());
281 }
282 
283 
VisitThisFunction(ThisFunction * expr)284 void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
285 }
286 
287 
288 #define __ ACCESS_MASM(masm())
289 
MakeCode(CompilationInfo * info)290 bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
291   Isolate* isolate = info->isolate();
292 
293   Logger::TimerEventScope timer(
294       isolate, Logger::TimerEventScope::v8_compile_full_code);
295 
296   Handle<Script> script = info->script();
297   if (!script->IsUndefined() && !script->source()->IsUndefined()) {
298     int len = String::cast(script->source())->length();
299     isolate->counters()->total_full_codegen_source_size()->Increment(len);
300   }
301   CodeGenerator::MakeCodePrologue(info, "full");
302   const int kInitialBufferSize = 4 * KB;
303   MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
304 #ifdef ENABLE_GDB_JIT_INTERFACE
305   masm.positions_recorder()->StartGDBJITLineInfoRecording();
306 #endif
307   LOG_CODE_EVENT(isolate,
308                  CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
309 
310   FullCodeGenerator cgen(&masm, info);
311   cgen.Generate();
312   if (cgen.HasStackOverflow()) {
313     ASSERT(!isolate->has_pending_exception());
314     return false;
315   }
316   unsigned table_offset = cgen.EmitBackEdgeTable();
317 
318   Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
319   Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
320   code->set_optimizable(info->IsOptimizable() &&
321                         !info->function()->dont_optimize() &&
322                         info->function()->scope()->AllowsLazyCompilation());
323   cgen.PopulateDeoptimizationData(code);
324   cgen.PopulateTypeFeedbackInfo(code);
325   code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
326   code->set_handler_table(*cgen.handler_table());
327   code->set_compiled_optimizable(info->IsOptimizable());
328   code->set_allow_osr_at_loop_nesting_level(0);
329   code->set_profiler_ticks(0);
330   code->set_back_edge_table_offset(table_offset);
331   code->set_back_edges_patched_for_osr(false);
332   CodeGenerator::PrintCode(code, info);
333   info->SetCode(code);
334 #ifdef ENABLE_GDB_JIT_INTERFACE
335   if (FLAG_gdbjit) {
336     GDBJITLineInfo* lineinfo =
337         masm.positions_recorder()->DetachGDBJITLineInfo();
338     GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
339   }
340 #endif
341   void* line_info = masm.positions_recorder()->DetachJITHandlerData();
342   LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
343   return true;
344 }
345 
346 
EmitBackEdgeTable()347 unsigned FullCodeGenerator::EmitBackEdgeTable() {
348   // The back edge table consists of a length (in number of entries)
349   // field, and then a sequence of entries.  Each entry is a pair of AST id
350   // and code-relative pc offset.
351   masm()->Align(kIntSize);
352   unsigned offset = masm()->pc_offset();
353   unsigned length = back_edges_.length();
354   __ dd(length);
355   for (unsigned i = 0; i < length; ++i) {
356     __ dd(back_edges_[i].id.ToInt());
357     __ dd(back_edges_[i].pc);
358     __ dd(back_edges_[i].loop_depth);
359   }
360   return offset;
361 }
362 
363 
EnsureSlotContainsAllocationSite(int slot)364 void FullCodeGenerator::EnsureSlotContainsAllocationSite(int slot) {
365   Handle<FixedArray> vector = FeedbackVector();
366   if (!vector->get(slot)->IsAllocationSite()) {
367     Handle<AllocationSite> allocation_site =
368         isolate()->factory()->NewAllocationSite();
369     vector->set(slot, *allocation_site);
370   }
371 }
372 
373 
PopulateDeoptimizationData(Handle<Code> code)374 void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
375   // Fill in the deoptimization information.
376   ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
377   if (!info_->HasDeoptimizationSupport()) return;
378   int length = bailout_entries_.length();
379   Handle<DeoptimizationOutputData> data =
380       DeoptimizationOutputData::New(isolate(), length, TENURED);
381   for (int i = 0; i < length; i++) {
382     data->SetAstId(i, bailout_entries_[i].id);
383     data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
384   }
385   code->set_deoptimization_data(*data);
386 }
387 
388 
PopulateTypeFeedbackInfo(Handle<Code> code)389 void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
390   Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
391   info->set_ic_total_count(ic_total_count_);
392   ASSERT(!isolate()->heap()->InNewSpace(*info));
393   code->set_type_feedback_info(*info);
394 }
395 
396 
Initialize()397 void FullCodeGenerator::Initialize() {
398   InitializeAstVisitor(info_->zone());
399   // The generation of debug code must match between the snapshot code and the
400   // code that is generated later.  This is assumed by the debugger when it is
401   // calculating PC offsets after generating a debug version of code.  Therefore
402   // we disable the production of debug code in the full compiler if we are
403   // either generating a snapshot or we booted from a snapshot.
404   generate_debug_code_ = FLAG_debug_code &&
405                          !masm_->serializer_enabled() &&
406                          !Snapshot::HaveASnapshotToStartFrom();
407   masm_->set_emit_debug_code(generate_debug_code_);
408   masm_->set_predictable_code_size(true);
409 }
410 
411 
PrepareForBailout(Expression * node,State state)412 void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
413   PrepareForBailoutForId(node->id(), state);
414 }
415 
416 
CallLoadIC(ContextualMode contextual_mode,TypeFeedbackId id)417 void FullCodeGenerator::CallLoadIC(ContextualMode contextual_mode,
418                                    TypeFeedbackId id) {
419   ExtraICState extra_state = LoadIC::ComputeExtraICState(contextual_mode);
420   Handle<Code> ic = LoadIC::initialize_stub(isolate(), extra_state);
421   CallIC(ic, id);
422 }
423 
424 
CallStoreIC(TypeFeedbackId id)425 void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) {
426   Handle<Code> ic = StoreIC::initialize_stub(isolate(), strict_mode());
427   CallIC(ic, id);
428 }
429 
430 
RecordJSReturnSite(Call * call)431 void FullCodeGenerator::RecordJSReturnSite(Call* call) {
432   // We record the offset of the function return so we can rebuild the frame
433   // if the function was inlined, i.e., this is the return address in the
434   // inlined function's frame.
435   //
436   // The state is ignored.  We defensively set it to TOS_REG, which is the
437   // real state of the unoptimized code at the return site.
438   PrepareForBailoutForId(call->ReturnId(), TOS_REG);
439 #ifdef DEBUG
440   // In debug builds, mark the return so we can verify that this function
441   // was called.
442   ASSERT(!call->return_is_recorded_);
443   call->return_is_recorded_ = true;
444 #endif
445 }
446 
447 
PrepareForBailoutForId(BailoutId id,State state)448 void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
449   // There's no need to prepare this code for bailouts from already optimized
450   // code or code that can't be optimized.
451   if (!info_->HasDeoptimizationSupport()) return;
452   unsigned pc_and_state =
453       StateField::encode(state) | PcField::encode(masm_->pc_offset());
454   ASSERT(Smi::IsValid(pc_and_state));
455 #ifdef DEBUG
456   for (int i = 0; i < bailout_entries_.length(); ++i) {
457     ASSERT(bailout_entries_[i].id != id);
458   }
459 #endif
460   BailoutEntry entry = { id, pc_and_state };
461   bailout_entries_.Add(entry, zone());
462 }
463 
464 
RecordBackEdge(BailoutId ast_id)465 void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
466   // The pc offset does not need to be encoded and packed together with a state.
467   ASSERT(masm_->pc_offset() > 0);
468   ASSERT(loop_depth() > 0);
469   uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
470   BackEdgeEntry entry =
471       { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
472   back_edges_.Add(entry, zone());
473 }
474 
475 
ShouldInlineSmiCase(Token::Value op)476 bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
477   // Inline smi case inside loops, but not division and modulo which
478   // are too complicated and take up too much space.
479   if (op == Token::DIV ||op == Token::MOD) return false;
480   if (FLAG_always_inline_smi_code) return true;
481   return loop_depth_ > 0;
482 }
483 
484 
Plug(Register reg) const485 void FullCodeGenerator::EffectContext::Plug(Register reg) const {
486 }
487 
488 
Plug(Register reg) const489 void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
490   __ Move(result_register(), reg);
491 }
492 
493 
Plug(Register reg) const494 void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
495   __ Push(reg);
496 }
497 
498 
Plug(Register reg) const499 void FullCodeGenerator::TestContext::Plug(Register reg) const {
500   // For simplicity we always test the accumulator register.
501   __ Move(result_register(), reg);
502   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
503   codegen()->DoTest(this);
504 }
505 
506 
PlugTOS() const507 void FullCodeGenerator::EffectContext::PlugTOS() const {
508   __ Drop(1);
509 }
510 
511 
PlugTOS() const512 void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
513   __ Pop(result_register());
514 }
515 
516 
PlugTOS() const517 void FullCodeGenerator::StackValueContext::PlugTOS() const {
518 }
519 
520 
PlugTOS() const521 void FullCodeGenerator::TestContext::PlugTOS() const {
522   // For simplicity we always test the accumulator register.
523   __ Pop(result_register());
524   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
525   codegen()->DoTest(this);
526 }
527 
528 
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const529 void FullCodeGenerator::EffectContext::PrepareTest(
530     Label* materialize_true,
531     Label* materialize_false,
532     Label** if_true,
533     Label** if_false,
534     Label** fall_through) const {
535   // In an effect context, the true and the false case branch to the
536   // same label.
537   *if_true = *if_false = *fall_through = materialize_true;
538 }
539 
540 
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const541 void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
542     Label* materialize_true,
543     Label* materialize_false,
544     Label** if_true,
545     Label** if_false,
546     Label** fall_through) const {
547   *if_true = *fall_through = materialize_true;
548   *if_false = materialize_false;
549 }
550 
551 
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const552 void FullCodeGenerator::StackValueContext::PrepareTest(
553     Label* materialize_true,
554     Label* materialize_false,
555     Label** if_true,
556     Label** if_false,
557     Label** fall_through) const {
558   *if_true = *fall_through = materialize_true;
559   *if_false = materialize_false;
560 }
561 
562 
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const563 void FullCodeGenerator::TestContext::PrepareTest(
564     Label* materialize_true,
565     Label* materialize_false,
566     Label** if_true,
567     Label** if_false,
568     Label** fall_through) const {
569   *if_true = true_label_;
570   *if_false = false_label_;
571   *fall_through = fall_through_;
572 }
573 
574 
DoTest(const TestContext * context)575 void FullCodeGenerator::DoTest(const TestContext* context) {
576   DoTest(context->condition(),
577          context->true_label(),
578          context->false_label(),
579          context->fall_through());
580 }
581 
582 
AllocateModules(ZoneList<Declaration * > * declarations)583 void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
584   ASSERT(scope_->is_global_scope());
585 
586   for (int i = 0; i < declarations->length(); i++) {
587     ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
588     if (declaration != NULL) {
589       ModuleLiteral* module = declaration->module()->AsModuleLiteral();
590       if (module != NULL) {
591         Comment cmnt(masm_, "[ Link nested modules");
592         Scope* scope = module->body()->scope();
593         Interface* interface = scope->interface();
594         ASSERT(interface->IsModule() && interface->IsFrozen());
595 
596         interface->Allocate(scope->module_var()->index());
597 
598         // Set up module context.
599         ASSERT(scope->interface()->Index() >= 0);
600         __ Push(Smi::FromInt(scope->interface()->Index()));
601         __ Push(scope->GetScopeInfo());
602         __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
603         StoreToFrameField(StandardFrameConstants::kContextOffset,
604                           context_register());
605 
606         AllocateModules(scope->declarations());
607 
608         // Pop module context.
609         LoadContextField(context_register(), Context::PREVIOUS_INDEX);
610         // Update local stack frame context field.
611         StoreToFrameField(StandardFrameConstants::kContextOffset,
612                           context_register());
613       }
614     }
615   }
616 }
617 
618 
619 // Modules have their own local scope, represented by their own context.
620 // Module instance objects have an accessor for every export that forwards
621 // access to the respective slot from the module's context. (Exports that are
622 // modules themselves, however, are simple data properties.)
623 //
624 // All modules have a _hosting_ scope/context, which (currently) is the
625 // (innermost) enclosing global scope. To deal with recursion, nested modules
626 // are hosted by the same scope as global ones.
627 //
628 // For every (global or nested) module literal, the hosting context has an
629 // internal slot that points directly to the respective module context. This
630 // enables quick access to (statically resolved) module members by 2-dimensional
631 // access through the hosting context. For example,
632 //
633 //   module A {
634 //     let x;
635 //     module B { let y; }
636 //   }
637 //   module C { let z; }
638 //
639 // allocates contexts as follows:
640 //
641 // [header| .A | .B | .C | A | C ]  (global)
642 //           |    |    |
643 //           |    |    +-- [header| z ]  (module)
644 //           |    |
645 //           |    +------- [header| y ]  (module)
646 //           |
647 //           +------------ [header| x | B ]  (module)
648 //
649 // Here, .A, .B, .C are the internal slots pointing to the hosted module
650 // contexts, whereas A, B, C hold the actual instance objects (note that every
651 // module context also points to the respective instance object through its
652 // extension slot in the header).
653 //
654 // To deal with arbitrary recursion and aliases between modules,
655 // they are created and initialized in several stages. Each stage applies to
656 // all modules in the hosting global scope, including nested ones.
657 //
658 // 1. Allocate: for each module _literal_, allocate the module contexts and
659 //    respective instance object and wire them up. This happens in the
660 //    PushModuleContext runtime function, as generated by AllocateModules
661 //    (invoked by VisitDeclarations in the hosting scope).
662 //
663 // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
664 //    assign the respective instance object to respective local variables. This
665 //    happens in VisitModuleDeclaration, and uses the instance objects created
666 //    in the previous stage.
667 //    For each module _literal_, this phase also constructs a module descriptor
668 //    for the next stage. This happens in VisitModuleLiteral.
669 //
670 // 3. Populate: invoke the DeclareModules runtime function to populate each
671 //    _instance_ object with accessors for it exports. This is generated by
672 //    DeclareModules (invoked by VisitDeclarations in the hosting scope again),
673 //    and uses the descriptors generated in the previous stage.
674 //
675 // 4. Initialize: execute the module bodies (and other code) in sequence. This
676 //    happens by the separate statements generated for module bodies. To reenter
677 //    the module scopes properly, the parser inserted ModuleStatements.
678 
VisitDeclarations(ZoneList<Declaration * > * declarations)679 void FullCodeGenerator::VisitDeclarations(
680     ZoneList<Declaration*>* declarations) {
681   Handle<FixedArray> saved_modules = modules_;
682   int saved_module_index = module_index_;
683   ZoneList<Handle<Object> >* saved_globals = globals_;
684   ZoneList<Handle<Object> > inner_globals(10, zone());
685   globals_ = &inner_globals;
686 
687   if (scope_->num_modules() != 0) {
688     // This is a scope hosting modules. Allocate a descriptor array to pass
689     // to the runtime for initialization.
690     Comment cmnt(masm_, "[ Allocate modules");
691     ASSERT(scope_->is_global_scope());
692     modules_ =
693         isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
694     module_index_ = 0;
695 
696     // Generate code for allocating all modules, including nested ones.
697     // The allocated contexts are stored in internal variables in this scope.
698     AllocateModules(declarations);
699   }
700 
701   AstVisitor::VisitDeclarations(declarations);
702 
703   if (scope_->num_modules() != 0) {
704     // Initialize modules from descriptor array.
705     ASSERT(module_index_ == modules_->length());
706     DeclareModules(modules_);
707     modules_ = saved_modules;
708     module_index_ = saved_module_index;
709   }
710 
711   if (!globals_->is_empty()) {
712     // Invoke the platform-dependent code generator to do the actual
713     // declaration of the global functions and variables.
714     Handle<FixedArray> array =
715        isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
716     for (int i = 0; i < globals_->length(); ++i)
717       array->set(i, *globals_->at(i));
718     DeclareGlobals(array);
719   }
720 
721   globals_ = saved_globals;
722 }
723 
724 
VisitModuleLiteral(ModuleLiteral * module)725 void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
726   Block* block = module->body();
727   Scope* saved_scope = scope();
728   scope_ = block->scope();
729   Interface* interface = scope_->interface();
730 
731   Comment cmnt(masm_, "[ ModuleLiteral");
732   SetStatementPosition(block);
733 
734   ASSERT(!modules_.is_null());
735   ASSERT(module_index_ < modules_->length());
736   int index = module_index_++;
737 
738   // Set up module context.
739   ASSERT(interface->Index() >= 0);
740   __ Push(Smi::FromInt(interface->Index()));
741   __ Push(Smi::FromInt(0));
742   __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
743   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
744 
745   {
746     Comment cmnt(masm_, "[ Declarations");
747     VisitDeclarations(scope_->declarations());
748   }
749 
750   // Populate the module description.
751   Handle<ModuleInfo> description =
752       ModuleInfo::Create(isolate(), interface, scope_);
753   modules_->set(index, *description);
754 
755   scope_ = saved_scope;
756   // Pop module context.
757   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
758   // Update local stack frame context field.
759   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
760 }
761 
762 
VisitModuleVariable(ModuleVariable * module)763 void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
764   // Nothing to do.
765   // The instance object is resolved statically through the module's interface.
766 }
767 
768 
VisitModulePath(ModulePath * module)769 void FullCodeGenerator::VisitModulePath(ModulePath* module) {
770   // Nothing to do.
771   // The instance object is resolved statically through the module's interface.
772 }
773 
774 
VisitModuleUrl(ModuleUrl * module)775 void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
776   // TODO(rossberg): dummy allocation for now.
777   Scope* scope = module->body()->scope();
778   Interface* interface = scope_->interface();
779 
780   ASSERT(interface->IsModule() && interface->IsFrozen());
781   ASSERT(!modules_.is_null());
782   ASSERT(module_index_ < modules_->length());
783   interface->Allocate(scope->module_var()->index());
784   int index = module_index_++;
785 
786   Handle<ModuleInfo> description =
787       ModuleInfo::Create(isolate(), interface, scope_);
788   modules_->set(index, *description);
789 }
790 
791 
DeclareGlobalsFlags()792 int FullCodeGenerator::DeclareGlobalsFlags() {
793   ASSERT(DeclareGlobalsStrictMode::is_valid(strict_mode()));
794   return DeclareGlobalsEvalFlag::encode(is_eval()) |
795       DeclareGlobalsNativeFlag::encode(is_native()) |
796       DeclareGlobalsStrictMode::encode(strict_mode());
797 }
798 
799 
SetFunctionPosition(FunctionLiteral * fun)800 void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
801   CodeGenerator::RecordPositions(masm_, fun->start_position());
802 }
803 
804 
SetReturnPosition(FunctionLiteral * fun)805 void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
806   CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
807 }
808 
809 
SetStatementPosition(Statement * stmt)810 void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
811   if (!info_->is_debug()) {
812     CodeGenerator::RecordPositions(masm_, stmt->position());
813   } else {
814     // Check if the statement will be breakable without adding a debug break
815     // slot.
816     BreakableStatementChecker checker(zone());
817     checker.Check(stmt);
818     // Record the statement position right here if the statement is not
819     // breakable. For breakable statements the actual recording of the
820     // position will be postponed to the breakable code (typically an IC).
821     bool position_recorded = CodeGenerator::RecordPositions(
822         masm_, stmt->position(), !checker.is_breakable());
823     // If the position recording did record a new position generate a debug
824     // break slot to make the statement breakable.
825     if (position_recorded) {
826       DebugCodegen::GenerateSlot(masm_);
827     }
828   }
829 }
830 
831 
SetExpressionPosition(Expression * expr)832 void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
833   if (!info_->is_debug()) {
834     CodeGenerator::RecordPositions(masm_, expr->position());
835   } else {
836     // Check if the expression will be breakable without adding a debug break
837     // slot.
838     BreakableStatementChecker checker(zone());
839     checker.Check(expr);
840     // Record a statement position right here if the expression is not
841     // breakable. For breakable expressions the actual recording of the
842     // position will be postponed to the breakable code (typically an IC).
843     // NOTE this will record a statement position for something which might
844     // not be a statement. As stepping in the debugger will only stop at
845     // statement positions this is used for e.g. the condition expression of
846     // a do while loop.
847     bool position_recorded = CodeGenerator::RecordPositions(
848         masm_, expr->position(), !checker.is_breakable());
849     // If the position recording did record a new position generate a debug
850     // break slot to make the statement breakable.
851     if (position_recorded) {
852       DebugCodegen::GenerateSlot(masm_);
853     }
854   }
855 }
856 
857 
SetStatementPosition(int pos)858 void FullCodeGenerator::SetStatementPosition(int pos) {
859   CodeGenerator::RecordPositions(masm_, pos);
860 }
861 
862 
SetSourcePosition(int pos)863 void FullCodeGenerator::SetSourcePosition(int pos) {
864   if (pos != RelocInfo::kNoPosition) {
865     masm_->positions_recorder()->RecordPosition(pos);
866   }
867 }
868 
869 
870 // Lookup table for code generators for  special runtime calls which are
871 // generated inline.
872 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)          \
873     &FullCodeGenerator::Emit##Name,
874 
875 const FullCodeGenerator::InlineFunctionGenerator
876   FullCodeGenerator::kInlineFunctionGenerators[] = {
877     INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
878   };
879 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
880 
881 
882 FullCodeGenerator::InlineFunctionGenerator
FindInlineFunctionGenerator(Runtime::FunctionId id)883   FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
884     int lookup_index =
885         static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
886     ASSERT(lookup_index >= 0);
887     ASSERT(static_cast<size_t>(lookup_index) <
888            ARRAY_SIZE(kInlineFunctionGenerators));
889     return kInlineFunctionGenerators[lookup_index];
890 }
891 
892 
EmitInlineRuntimeCall(CallRuntime * expr)893 void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
894   const Runtime::Function* function = expr->function();
895   ASSERT(function != NULL);
896   ASSERT(function->intrinsic_type == Runtime::INLINE);
897   InlineFunctionGenerator generator =
898       FindInlineFunctionGenerator(function->function_id);
899   ((*this).*(generator))(expr);
900 }
901 
902 
EmitGeneratorNext(CallRuntime * expr)903 void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
904   ZoneList<Expression*>* args = expr->arguments();
905   ASSERT(args->length() == 2);
906   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
907 }
908 
909 
EmitGeneratorThrow(CallRuntime * expr)910 void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
911   ZoneList<Expression*>* args = expr->arguments();
912   ASSERT(args->length() == 2);
913   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
914 }
915 
916 
EmitDebugBreakInOptimizedCode(CallRuntime * expr)917 void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
918   context()->Plug(handle(Smi::FromInt(0), isolate()));
919 }
920 
921 
VisitBinaryOperation(BinaryOperation * expr)922 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
923   switch (expr->op()) {
924     case Token::COMMA:
925       return VisitComma(expr);
926     case Token::OR:
927     case Token::AND:
928       return VisitLogicalExpression(expr);
929     default:
930       return VisitArithmeticExpression(expr);
931   }
932 }
933 
934 
VisitInDuplicateContext(Expression * expr)935 void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
936   if (context()->IsEffect()) {
937     VisitForEffect(expr);
938   } else if (context()->IsAccumulatorValue()) {
939     VisitForAccumulatorValue(expr);
940   } else if (context()->IsStackValue()) {
941     VisitForStackValue(expr);
942   } else if (context()->IsTest()) {
943     const TestContext* test = TestContext::cast(context());
944     VisitForControl(expr, test->true_label(), test->false_label(),
945                     test->fall_through());
946   }
947 }
948 
949 
VisitComma(BinaryOperation * expr)950 void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
951   Comment cmnt(masm_, "[ Comma");
952   VisitForEffect(expr->left());
953   VisitInDuplicateContext(expr->right());
954 }
955 
956 
VisitLogicalExpression(BinaryOperation * expr)957 void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
958   bool is_logical_and = expr->op() == Token::AND;
959   Comment cmnt(masm_, is_logical_and ? "[ Logical AND" :  "[ Logical OR");
960   Expression* left = expr->left();
961   Expression* right = expr->right();
962   BailoutId right_id = expr->RightId();
963   Label done;
964 
965   if (context()->IsTest()) {
966     Label eval_right;
967     const TestContext* test = TestContext::cast(context());
968     if (is_logical_and) {
969       VisitForControl(left, &eval_right, test->false_label(), &eval_right);
970     } else {
971       VisitForControl(left, test->true_label(), &eval_right, &eval_right);
972     }
973     PrepareForBailoutForId(right_id, NO_REGISTERS);
974     __ bind(&eval_right);
975 
976   } else if (context()->IsAccumulatorValue()) {
977     VisitForAccumulatorValue(left);
978     // We want the value in the accumulator for the test, and on the stack in
979     // case we need it.
980     __ Push(result_register());
981     Label discard, restore;
982     if (is_logical_and) {
983       DoTest(left, &discard, &restore, &restore);
984     } else {
985       DoTest(left, &restore, &discard, &restore);
986     }
987     __ bind(&restore);
988     __ Pop(result_register());
989     __ jmp(&done);
990     __ bind(&discard);
991     __ Drop(1);
992     PrepareForBailoutForId(right_id, NO_REGISTERS);
993 
994   } else if (context()->IsStackValue()) {
995     VisitForAccumulatorValue(left);
996     // We want the value in the accumulator for the test, and on the stack in
997     // case we need it.
998     __ Push(result_register());
999     Label discard;
1000     if (is_logical_and) {
1001       DoTest(left, &discard, &done, &discard);
1002     } else {
1003       DoTest(left, &done, &discard, &discard);
1004     }
1005     __ bind(&discard);
1006     __ Drop(1);
1007     PrepareForBailoutForId(right_id, NO_REGISTERS);
1008 
1009   } else {
1010     ASSERT(context()->IsEffect());
1011     Label eval_right;
1012     if (is_logical_and) {
1013       VisitForControl(left, &eval_right, &done, &eval_right);
1014     } else {
1015       VisitForControl(left, &done, &eval_right, &eval_right);
1016     }
1017     PrepareForBailoutForId(right_id, NO_REGISTERS);
1018     __ bind(&eval_right);
1019   }
1020 
1021   VisitInDuplicateContext(right);
1022   __ bind(&done);
1023 }
1024 
1025 
VisitArithmeticExpression(BinaryOperation * expr)1026 void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
1027   Token::Value op = expr->op();
1028   Comment cmnt(masm_, "[ ArithmeticExpression");
1029   Expression* left = expr->left();
1030   Expression* right = expr->right();
1031   OverwriteMode mode =
1032       left->ResultOverwriteAllowed()
1033       ? OVERWRITE_LEFT
1034       : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
1035 
1036   VisitForStackValue(left);
1037   VisitForAccumulatorValue(right);
1038 
1039   SetSourcePosition(expr->position());
1040   if (ShouldInlineSmiCase(op)) {
1041     EmitInlineSmiBinaryOp(expr, op, mode, left, right);
1042   } else {
1043     EmitBinaryOp(expr, op, mode);
1044   }
1045 }
1046 
1047 
VisitBlock(Block * stmt)1048 void FullCodeGenerator::VisitBlock(Block* stmt) {
1049   Comment cmnt(masm_, "[ Block");
1050   NestedBlock nested_block(this, stmt);
1051   SetStatementPosition(stmt);
1052 
1053   Scope* saved_scope = scope();
1054   // Push a block context when entering a block with block scoped variables.
1055   if (stmt->scope() == NULL) {
1056     PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1057   } else {
1058     scope_ = stmt->scope();
1059     ASSERT(!scope_->is_module_scope());
1060     { Comment cmnt(masm_, "[ Extend block context");
1061       __ Push(scope_->GetScopeInfo());
1062       PushFunctionArgumentForContextAllocation();
1063       __ CallRuntime(Runtime::kHiddenPushBlockContext, 2);
1064 
1065       // Replace the context stored in the frame.
1066       StoreToFrameField(StandardFrameConstants::kContextOffset,
1067                         context_register());
1068       PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1069     }
1070     { Comment cmnt(masm_, "[ Declarations");
1071       VisitDeclarations(scope_->declarations());
1072       PrepareForBailoutForId(stmt->DeclsId(), NO_REGISTERS);
1073     }
1074   }
1075 
1076   VisitStatements(stmt->statements());
1077   scope_ = saved_scope;
1078   __ bind(nested_block.break_label());
1079 
1080   // Pop block context if necessary.
1081   if (stmt->scope() != NULL) {
1082     LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1083     // Update local stack frame context field.
1084     StoreToFrameField(StandardFrameConstants::kContextOffset,
1085                       context_register());
1086   }
1087   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1088 }
1089 
1090 
VisitModuleStatement(ModuleStatement * stmt)1091 void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
1092   Comment cmnt(masm_, "[ Module context");
1093 
1094   __ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
1095   __ Push(Smi::FromInt(0));
1096   __ CallRuntime(Runtime::kHiddenPushModuleContext, 2);
1097   StoreToFrameField(
1098       StandardFrameConstants::kContextOffset, context_register());
1099 
1100   Scope* saved_scope = scope_;
1101   scope_ = stmt->body()->scope();
1102   VisitStatements(stmt->body()->statements());
1103   scope_ = saved_scope;
1104   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1105   // Update local stack frame context field.
1106   StoreToFrameField(StandardFrameConstants::kContextOffset,
1107                     context_register());
1108 }
1109 
1110 
VisitExpressionStatement(ExpressionStatement * stmt)1111 void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
1112   Comment cmnt(masm_, "[ ExpressionStatement");
1113   SetStatementPosition(stmt);
1114   VisitForEffect(stmt->expression());
1115 }
1116 
1117 
VisitEmptyStatement(EmptyStatement * stmt)1118 void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
1119   Comment cmnt(masm_, "[ EmptyStatement");
1120   SetStatementPosition(stmt);
1121 }
1122 
1123 
VisitIfStatement(IfStatement * stmt)1124 void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
1125   Comment cmnt(masm_, "[ IfStatement");
1126   SetStatementPosition(stmt);
1127   Label then_part, else_part, done;
1128 
1129   if (stmt->HasElseStatement()) {
1130     VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
1131     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1132     __ bind(&then_part);
1133     Visit(stmt->then_statement());
1134     __ jmp(&done);
1135 
1136     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1137     __ bind(&else_part);
1138     Visit(stmt->else_statement());
1139   } else {
1140     VisitForControl(stmt->condition(), &then_part, &done, &then_part);
1141     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1142     __ bind(&then_part);
1143     Visit(stmt->then_statement());
1144 
1145     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1146   }
1147   __ bind(&done);
1148   PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
1149 }
1150 
1151 
VisitContinueStatement(ContinueStatement * stmt)1152 void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
1153   Comment cmnt(masm_,  "[ ContinueStatement");
1154   SetStatementPosition(stmt);
1155   NestedStatement* current = nesting_stack_;
1156   int stack_depth = 0;
1157   int context_length = 0;
1158   // When continuing, we clobber the unpredictable value in the accumulator
1159   // with one that's safe for GC.  If we hit an exit from the try block of
1160   // try...finally on our way out, we will unconditionally preserve the
1161   // accumulator on the stack.
1162   ClearAccumulator();
1163   while (!current->IsContinueTarget(stmt->target())) {
1164     current = current->Exit(&stack_depth, &context_length);
1165   }
1166   __ Drop(stack_depth);
1167   if (context_length > 0) {
1168     while (context_length > 0) {
1169       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1170       --context_length;
1171     }
1172     StoreToFrameField(StandardFrameConstants::kContextOffset,
1173                       context_register());
1174   }
1175 
1176   __ jmp(current->AsIteration()->continue_label());
1177 }
1178 
1179 
VisitBreakStatement(BreakStatement * stmt)1180 void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
1181   Comment cmnt(masm_,  "[ BreakStatement");
1182   SetStatementPosition(stmt);
1183   NestedStatement* current = nesting_stack_;
1184   int stack_depth = 0;
1185   int context_length = 0;
1186   // When breaking, we clobber the unpredictable value in the accumulator
1187   // with one that's safe for GC.  If we hit an exit from the try block of
1188   // try...finally on our way out, we will unconditionally preserve the
1189   // accumulator on the stack.
1190   ClearAccumulator();
1191   while (!current->IsBreakTarget(stmt->target())) {
1192     current = current->Exit(&stack_depth, &context_length);
1193   }
1194   __ Drop(stack_depth);
1195   if (context_length > 0) {
1196     while (context_length > 0) {
1197       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1198       --context_length;
1199     }
1200     StoreToFrameField(StandardFrameConstants::kContextOffset,
1201                       context_register());
1202   }
1203 
1204   __ jmp(current->AsBreakable()->break_label());
1205 }
1206 
1207 
EmitUnwindBeforeReturn()1208 void FullCodeGenerator::EmitUnwindBeforeReturn() {
1209   NestedStatement* current = nesting_stack_;
1210   int stack_depth = 0;
1211   int context_length = 0;
1212   while (current != NULL) {
1213     current = current->Exit(&stack_depth, &context_length);
1214   }
1215   __ Drop(stack_depth);
1216 }
1217 
1218 
VisitReturnStatement(ReturnStatement * stmt)1219 void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
1220   Comment cmnt(masm_, "[ ReturnStatement");
1221   SetStatementPosition(stmt);
1222   Expression* expr = stmt->expression();
1223   VisitForAccumulatorValue(expr);
1224   EmitUnwindBeforeReturn();
1225   EmitReturnSequence();
1226 }
1227 
1228 
VisitWithStatement(WithStatement * stmt)1229 void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
1230   Comment cmnt(masm_, "[ WithStatement");
1231   SetStatementPosition(stmt);
1232 
1233   VisitForStackValue(stmt->expression());
1234   PushFunctionArgumentForContextAllocation();
1235   __ CallRuntime(Runtime::kHiddenPushWithContext, 2);
1236   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1237 
1238   Scope* saved_scope = scope();
1239   scope_ = stmt->scope();
1240   { WithOrCatch body(this);
1241     Visit(stmt->statement());
1242   }
1243   scope_ = saved_scope;
1244 
1245   // Pop context.
1246   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1247   // Update local stack frame context field.
1248   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1249 }
1250 
1251 
VisitDoWhileStatement(DoWhileStatement * stmt)1252 void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
1253   Comment cmnt(masm_, "[ DoWhileStatement");
1254   SetStatementPosition(stmt);
1255   Label body, book_keeping;
1256 
1257   Iteration loop_statement(this, stmt);
1258   increment_loop_depth();
1259 
1260   __ bind(&body);
1261   Visit(stmt->body());
1262 
1263   // Record the position of the do while condition and make sure it is
1264   // possible to break on the condition.
1265   __ bind(loop_statement.continue_label());
1266   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1267   SetExpressionPosition(stmt->cond());
1268   VisitForControl(stmt->cond(),
1269                   &book_keeping,
1270                   loop_statement.break_label(),
1271                   &book_keeping);
1272 
1273   // Check stack before looping.
1274   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1275   __ bind(&book_keeping);
1276   EmitBackEdgeBookkeeping(stmt, &body);
1277   __ jmp(&body);
1278 
1279   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1280   __ bind(loop_statement.break_label());
1281   decrement_loop_depth();
1282 }
1283 
1284 
VisitWhileStatement(WhileStatement * stmt)1285 void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
1286   Comment cmnt(masm_, "[ WhileStatement");
1287   Label test, body;
1288 
1289   Iteration loop_statement(this, stmt);
1290   increment_loop_depth();
1291 
1292   // Emit the test at the bottom of the loop.
1293   __ jmp(&test);
1294 
1295   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1296   __ bind(&body);
1297   Visit(stmt->body());
1298 
1299   // Emit the statement position here as this is where the while
1300   // statement code starts.
1301   __ bind(loop_statement.continue_label());
1302   SetStatementPosition(stmt);
1303 
1304   // Check stack before looping.
1305   EmitBackEdgeBookkeeping(stmt, &body);
1306 
1307   __ bind(&test);
1308   VisitForControl(stmt->cond(),
1309                   &body,
1310                   loop_statement.break_label(),
1311                   loop_statement.break_label());
1312 
1313   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1314   __ bind(loop_statement.break_label());
1315   decrement_loop_depth();
1316 }
1317 
1318 
VisitForStatement(ForStatement * stmt)1319 void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
1320   Comment cmnt(masm_, "[ ForStatement");
1321   Label test, body;
1322 
1323   Iteration loop_statement(this, stmt);
1324 
1325   // Set statement position for a break slot before entering the for-body.
1326   SetStatementPosition(stmt);
1327 
1328   if (stmt->init() != NULL) {
1329     Visit(stmt->init());
1330   }
1331 
1332   increment_loop_depth();
1333   // Emit the test at the bottom of the loop (even if empty).
1334   __ jmp(&test);
1335 
1336   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1337   __ bind(&body);
1338   Visit(stmt->body());
1339 
1340   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1341   __ bind(loop_statement.continue_label());
1342   if (stmt->next() != NULL) {
1343     Visit(stmt->next());
1344   }
1345 
1346   // Emit the statement position here as this is where the for
1347   // statement code starts.
1348   SetStatementPosition(stmt);
1349 
1350   // Check stack before looping.
1351   EmitBackEdgeBookkeeping(stmt, &body);
1352 
1353   __ bind(&test);
1354   if (stmt->cond() != NULL) {
1355     VisitForControl(stmt->cond(),
1356                     &body,
1357                     loop_statement.break_label(),
1358                     loop_statement.break_label());
1359   } else {
1360     __ jmp(&body);
1361   }
1362 
1363   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1364   __ bind(loop_statement.break_label());
1365   decrement_loop_depth();
1366 }
1367 
1368 
VisitTryCatchStatement(TryCatchStatement * stmt)1369 void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
1370   Comment cmnt(masm_, "[ TryCatchStatement");
1371   SetStatementPosition(stmt);
1372   // The try block adds a handler to the exception handler chain before
1373   // entering, and removes it again when exiting normally.  If an exception
1374   // is thrown during execution of the try block, the handler is consumed
1375   // and control is passed to the catch block with the exception in the
1376   // result register.
1377 
1378   Label try_entry, handler_entry, exit;
1379   __ jmp(&try_entry);
1380   __ bind(&handler_entry);
1381   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1382   // Exception handler code, the exception is in the result register.
1383   // Extend the context before executing the catch block.
1384   { Comment cmnt(masm_, "[ Extend catch context");
1385     __ Push(stmt->variable()->name());
1386     __ Push(result_register());
1387     PushFunctionArgumentForContextAllocation();
1388     __ CallRuntime(Runtime::kHiddenPushCatchContext, 3);
1389     StoreToFrameField(StandardFrameConstants::kContextOffset,
1390                       context_register());
1391   }
1392 
1393   Scope* saved_scope = scope();
1394   scope_ = stmt->scope();
1395   ASSERT(scope_->declarations()->is_empty());
1396   { WithOrCatch catch_body(this);
1397     Visit(stmt->catch_block());
1398   }
1399   // Restore the context.
1400   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1401   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1402   scope_ = saved_scope;
1403   __ jmp(&exit);
1404 
1405   // Try block code. Sets up the exception handler chain.
1406   __ bind(&try_entry);
1407   __ PushTryHandler(StackHandler::CATCH, stmt->index());
1408   { TryCatch try_body(this);
1409     Visit(stmt->try_block());
1410   }
1411   __ PopTryHandler();
1412   __ bind(&exit);
1413 }
1414 
1415 
VisitTryFinallyStatement(TryFinallyStatement * stmt)1416 void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
1417   Comment cmnt(masm_, "[ TryFinallyStatement");
1418   SetStatementPosition(stmt);
1419   // Try finally is compiled by setting up a try-handler on the stack while
1420   // executing the try body, and removing it again afterwards.
1421   //
1422   // The try-finally construct can enter the finally block in three ways:
1423   // 1. By exiting the try-block normally. This removes the try-handler and
1424   //    calls the finally block code before continuing.
1425   // 2. By exiting the try-block with a function-local control flow transfer
1426   //    (break/continue/return). The site of the, e.g., break removes the
1427   //    try handler and calls the finally block code before continuing
1428   //    its outward control transfer.
1429   // 3. By exiting the try-block with a thrown exception.
1430   //    This can happen in nested function calls. It traverses the try-handler
1431   //    chain and consumes the try-handler entry before jumping to the
1432   //    handler code. The handler code then calls the finally-block before
1433   //    rethrowing the exception.
1434   //
1435   // The finally block must assume a return address on top of the stack
1436   // (or in the link register on ARM chips) and a value (return value or
1437   // exception) in the result register (rax/eax/r0), both of which must
1438   // be preserved. The return address isn't GC-safe, so it should be
1439   // cooked before GC.
1440   Label try_entry, handler_entry, finally_entry;
1441 
1442   // Jump to try-handler setup and try-block code.
1443   __ jmp(&try_entry);
1444   __ bind(&handler_entry);
1445   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1446   // Exception handler code.  This code is only executed when an exception
1447   // is thrown.  The exception is in the result register, and must be
1448   // preserved by the finally block.  Call the finally block and then
1449   // rethrow the exception if it returns.
1450   __ Call(&finally_entry);
1451   __ Push(result_register());
1452   __ CallRuntime(Runtime::kHiddenReThrow, 1);
1453 
1454   // Finally block implementation.
1455   __ bind(&finally_entry);
1456   EnterFinallyBlock();
1457   { Finally finally_body(this);
1458     Visit(stmt->finally_block());
1459   }
1460   ExitFinallyBlock();  // Return to the calling code.
1461 
1462   // Set up try handler.
1463   __ bind(&try_entry);
1464   __ PushTryHandler(StackHandler::FINALLY, stmt->index());
1465   { TryFinally try_body(this, &finally_entry);
1466     Visit(stmt->try_block());
1467   }
1468   __ PopTryHandler();
1469   // Execute the finally block on the way out.  Clobber the unpredictable
1470   // value in the result register with one that's safe for GC because the
1471   // finally block will unconditionally preserve the result register on the
1472   // stack.
1473   ClearAccumulator();
1474   __ Call(&finally_entry);
1475 }
1476 
1477 
VisitDebuggerStatement(DebuggerStatement * stmt)1478 void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
1479   Comment cmnt(masm_, "[ DebuggerStatement");
1480   SetStatementPosition(stmt);
1481 
1482   __ DebugBreak();
1483   // Ignore the return value.
1484 }
1485 
1486 
VisitCaseClause(CaseClause * clause)1487 void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
1488   UNREACHABLE();
1489 }
1490 
1491 
VisitConditional(Conditional * expr)1492 void FullCodeGenerator::VisitConditional(Conditional* expr) {
1493   Comment cmnt(masm_, "[ Conditional");
1494   Label true_case, false_case, done;
1495   VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
1496 
1497   PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
1498   __ bind(&true_case);
1499   SetExpressionPosition(expr->then_expression());
1500   if (context()->IsTest()) {
1501     const TestContext* for_test = TestContext::cast(context());
1502     VisitForControl(expr->then_expression(),
1503                     for_test->true_label(),
1504                     for_test->false_label(),
1505                     NULL);
1506   } else {
1507     VisitInDuplicateContext(expr->then_expression());
1508     __ jmp(&done);
1509   }
1510 
1511   PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
1512   __ bind(&false_case);
1513   SetExpressionPosition(expr->else_expression());
1514   VisitInDuplicateContext(expr->else_expression());
1515   // If control flow falls through Visit, merge it with true case here.
1516   if (!context()->IsTest()) {
1517     __ bind(&done);
1518   }
1519 }
1520 
1521 
VisitLiteral(Literal * expr)1522 void FullCodeGenerator::VisitLiteral(Literal* expr) {
1523   Comment cmnt(masm_, "[ Literal");
1524   context()->Plug(expr->value());
1525 }
1526 
1527 
VisitFunctionLiteral(FunctionLiteral * expr)1528 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
1529   Comment cmnt(masm_, "[ FunctionLiteral");
1530 
1531   // Build the function boilerplate and instantiate it.
1532   Handle<SharedFunctionInfo> function_info =
1533       Compiler::BuildFunctionInfo(expr, script());
1534   if (function_info.is_null()) {
1535     SetStackOverflow();
1536     return;
1537   }
1538   EmitNewClosure(function_info, expr->pretenure());
1539 }
1540 
1541 
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)1542 void FullCodeGenerator::VisitNativeFunctionLiteral(
1543     NativeFunctionLiteral* expr) {
1544   Comment cmnt(masm_, "[ NativeFunctionLiteral");
1545 
1546   // Compute the function template for the native function.
1547   Handle<String> name = expr->name();
1548   v8::Handle<v8::FunctionTemplate> fun_template =
1549       expr->extension()->GetNativeFunctionTemplate(
1550           reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
1551   ASSERT(!fun_template.IsEmpty());
1552 
1553   // Instantiate the function and create a shared function info from it.
1554   Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
1555   const int literals = fun->NumberOfLiterals();
1556   Handle<Code> code = Handle<Code>(fun->shared()->code());
1557   Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
1558   bool is_generator = false;
1559   Handle<SharedFunctionInfo> shared =
1560       isolate()->factory()->NewSharedFunctionInfo(
1561           name, literals, is_generator,
1562           code, Handle<ScopeInfo>(fun->shared()->scope_info()),
1563           Handle<FixedArray>(fun->shared()->feedback_vector()));
1564   shared->set_construct_stub(*construct_stub);
1565 
1566   // Copy the function data to the shared function info.
1567   shared->set_function_data(fun->shared()->function_data());
1568   int parameters = fun->shared()->formal_parameter_count();
1569   shared->set_formal_parameter_count(parameters);
1570 
1571   EmitNewClosure(shared, false);
1572 }
1573 
1574 
VisitThrow(Throw * expr)1575 void FullCodeGenerator::VisitThrow(Throw* expr) {
1576   Comment cmnt(masm_, "[ Throw");
1577   VisitForStackValue(expr->exception());
1578   __ CallRuntime(Runtime::kHiddenThrow, 1);
1579   // Never returns here.
1580 }
1581 
1582 
Exit(int * stack_depth,int * context_length)1583 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
1584     int* stack_depth,
1585     int* context_length) {
1586   // The macros used here must preserve the result register.
1587   __ Drop(*stack_depth);
1588   __ PopTryHandler();
1589   *stack_depth = 0;
1590   return previous_;
1591 }
1592 
1593 
TryLiteralCompare(CompareOperation * expr)1594 bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
1595   Expression* sub_expr;
1596   Handle<String> check;
1597   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
1598     EmitLiteralCompareTypeof(expr, sub_expr, check);
1599     return true;
1600   }
1601 
1602   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
1603     EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
1604     return true;
1605   }
1606 
1607   if (expr->IsLiteralCompareNull(&sub_expr)) {
1608     EmitLiteralCompareNil(expr, sub_expr, kNullValue);
1609     return true;
1610   }
1611 
1612   return false;
1613 }
1614 
1615 
Patch(Isolate * isolate,Code * unoptimized)1616 void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) {
1617   DisallowHeapAllocation no_gc;
1618   Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1619 
1620   // Iterate over the back edge table and patch every interrupt
1621   // call to an unconditional call to the replacement code.
1622   int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1623 
1624   BackEdgeTable back_edges(unoptimized, &no_gc);
1625   for (uint32_t i = 0; i < back_edges.length(); i++) {
1626     if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
1627       ASSERT_EQ(INTERRUPT, GetBackEdgeState(isolate,
1628                                             unoptimized,
1629                                             back_edges.pc(i)));
1630       PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
1631     }
1632   }
1633 
1634   unoptimized->set_back_edges_patched_for_osr(true);
1635   ASSERT(Verify(isolate, unoptimized, loop_nesting_level));
1636 }
1637 
1638 
Revert(Isolate * isolate,Code * unoptimized)1639 void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) {
1640   DisallowHeapAllocation no_gc;
1641   Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
1642 
1643   // Iterate over the back edge table and revert the patched interrupt calls.
1644   ASSERT(unoptimized->back_edges_patched_for_osr());
1645   int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1646 
1647   BackEdgeTable back_edges(unoptimized, &no_gc);
1648   for (uint32_t i = 0; i < back_edges.length(); i++) {
1649     if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
1650       ASSERT_NE(INTERRUPT, GetBackEdgeState(isolate,
1651                                             unoptimized,
1652                                             back_edges.pc(i)));
1653       PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
1654     }
1655   }
1656 
1657   unoptimized->set_back_edges_patched_for_osr(false);
1658   unoptimized->set_allow_osr_at_loop_nesting_level(0);
1659   // Assert that none of the back edges are patched anymore.
1660   ASSERT(Verify(isolate, unoptimized, -1));
1661 }
1662 
1663 
AddStackCheck(Handle<Code> code,uint32_t pc_offset)1664 void BackEdgeTable::AddStackCheck(Handle<Code> code, uint32_t pc_offset) {
1665   DisallowHeapAllocation no_gc;
1666   Isolate* isolate = code->GetIsolate();
1667   Address pc = code->instruction_start() + pc_offset;
1668   Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
1669   PatchAt(*code, pc, OSR_AFTER_STACK_CHECK, patch);
1670 }
1671 
1672 
RemoveStackCheck(Handle<Code> code,uint32_t pc_offset)1673 void BackEdgeTable::RemoveStackCheck(Handle<Code> code, uint32_t pc_offset) {
1674   DisallowHeapAllocation no_gc;
1675   Isolate* isolate = code->GetIsolate();
1676   Address pc = code->instruction_start() + pc_offset;
1677 
1678   if (OSR_AFTER_STACK_CHECK == GetBackEdgeState(isolate, *code, pc)) {
1679     Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1680     PatchAt(*code, pc, ON_STACK_REPLACEMENT, patch);
1681   }
1682 }
1683 
1684 
1685 #ifdef DEBUG
Verify(Isolate * isolate,Code * unoptimized,int loop_nesting_level)1686 bool BackEdgeTable::Verify(Isolate* isolate,
1687                            Code* unoptimized,
1688                            int loop_nesting_level) {
1689   DisallowHeapAllocation no_gc;
1690   BackEdgeTable back_edges(unoptimized, &no_gc);
1691   for (uint32_t i = 0; i < back_edges.length(); i++) {
1692     uint32_t loop_depth = back_edges.loop_depth(i);
1693     CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
1694     // Assert that all back edges for shallower loops (and only those)
1695     // have already been patched.
1696     CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
1697              GetBackEdgeState(isolate,
1698                               unoptimized,
1699                               back_edges.pc(i)) != INTERRUPT);
1700   }
1701   return true;
1702 }
1703 #endif  // DEBUG
1704 
1705 
1706 #undef __
1707 
1708 
1709 } }  // namespace v8::internal
1710