1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/base/math_util.h"
6
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
18
19 namespace cc {
20
21 const double MathUtil::kPiDouble = 3.14159265358979323846;
22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
23
ProjectHomogeneousPoint(const gfx::Transform & transform,const gfx::PointF & p)24 static HomogeneousCoordinate ProjectHomogeneousPoint(
25 const gfx::Transform& transform,
26 const gfx::PointF& p) {
27 // In this case, the layer we are trying to project onto is perpendicular to
28 // ray (point p and z-axis direction) that we are trying to project. This
29 // happens when the layer is rotated so that it is infinitesimally thin, or
30 // when it is co-planar with the camera origin -- i.e. when the layer is
31 // invisible anyway.
32 if (!transform.matrix().get(2, 2))
33 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
34
35 SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
36 transform.matrix().get(2, 1) * p.y() +
37 transform.matrix().get(2, 3)) /
38 transform.matrix().get(2, 2);
39 HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
40 transform.matrix().mapMScalars(result.vec, result.vec);
41 return result;
42 }
43
ProjectHomogeneousPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)44 static HomogeneousCoordinate ProjectHomogeneousPoint(
45 const gfx::Transform& transform,
46 const gfx::PointF& p,
47 bool* clipped) {
48 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
49 *clipped = h.w() <= 0;
50 return h;
51 }
52
MapHomogeneousPoint(const gfx::Transform & transform,const gfx::Point3F & p)53 static HomogeneousCoordinate MapHomogeneousPoint(
54 const gfx::Transform& transform,
55 const gfx::Point3F& p) {
56 HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
57 transform.matrix().mapMScalars(result.vec, result.vec);
58 return result;
59 }
60
ComputeClippedPointForEdge(const HomogeneousCoordinate & h1,const HomogeneousCoordinate & h2)61 static HomogeneousCoordinate ComputeClippedPointForEdge(
62 const HomogeneousCoordinate& h1,
63 const HomogeneousCoordinate& h2) {
64 // Points h1 and h2 form a line in 4d, and any point on that line can be
65 // represented as an interpolation between h1 and h2:
66 // p = (1-t) h1 + (t) h2
67 //
68 // We want to compute point p such that p.w == epsilon, where epsilon is a
69 // small non-zero number. (but the smaller the number is, the higher the risk
70 // of overflow)
71 // To do this, we solve for t in the following equation:
72 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
73 //
74 // Once paramter t is known, the rest of p can be computed via
75 // p = (1-t) h1 + (t) h2.
76
77 // Technically this is a special case of the following assertion, but its a
78 // good idea to keep it an explicit sanity check here.
79 DCHECK_NE(h2.w(), h1.w());
80 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
81 // w plane when this is called.
82 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
83
84 // ...or any positive non-zero small epsilon
85 SkMScalar w = 0.00001f;
86 SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
87
88 SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
89 SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
90 SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
91
92 return HomogeneousCoordinate(x, y, z, w);
93 }
94
ExpandBoundsToIncludePoint(float * xmin,float * xmax,float * ymin,float * ymax,const gfx::PointF & p)95 static inline void ExpandBoundsToIncludePoint(float* xmin,
96 float* xmax,
97 float* ymin,
98 float* ymax,
99 const gfx::PointF& p) {
100 *xmin = std::min(p.x(), *xmin);
101 *xmax = std::max(p.x(), *xmax);
102 *ymin = std::min(p.y(), *ymin);
103 *ymax = std::max(p.y(), *ymax);
104 }
105
AddVertexToClippedQuad(const gfx::PointF & new_vertex,gfx::PointF clipped_quad[8],int * num_vertices_in_clipped_quad)106 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
107 gfx::PointF clipped_quad[8],
108 int* num_vertices_in_clipped_quad) {
109 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
110 (*num_vertices_in_clipped_quad)++;
111 }
112
MapEnclosingClippedRect(const gfx::Transform & transform,const gfx::Rect & src_rect)113 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
114 const gfx::Rect& src_rect) {
115 if (transform.IsIdentityOrIntegerTranslation()) {
116 return src_rect +
117 gfx::Vector2d(
118 static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
119 static_cast<int>(
120 SkMScalarToFloat(transform.matrix().get(1, 3))));
121 }
122 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
123 }
124
MapClippedRect(const gfx::Transform & transform,const gfx::RectF & src_rect)125 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
126 const gfx::RectF& src_rect) {
127 if (transform.IsIdentityOrTranslation()) {
128 return src_rect +
129 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
130 SkMScalarToFloat(transform.matrix().get(1, 3)));
131 }
132
133 // Apply the transform, but retain the result in homogeneous coordinates.
134
135 SkMScalar quad[4 * 2]; // input: 4 x 2D points
136 quad[0] = src_rect.x();
137 quad[1] = src_rect.y();
138 quad[2] = src_rect.right();
139 quad[3] = src_rect.y();
140 quad[4] = src_rect.right();
141 quad[5] = src_rect.bottom();
142 quad[6] = src_rect.x();
143 quad[7] = src_rect.bottom();
144
145 SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
146 transform.matrix().map2(quad, 4, result);
147
148 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
149 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
150 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
151 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
152 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
153 }
154
ProjectEnclosingClippedRect(const gfx::Transform & transform,const gfx::Rect & src_rect)155 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
156 const gfx::Rect& src_rect) {
157 if (transform.IsIdentityOrIntegerTranslation()) {
158 return src_rect +
159 gfx::Vector2d(
160 static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
161 static_cast<int>(
162 SkMScalarToFloat(transform.matrix().get(1, 3))));
163 }
164 return gfx::ToEnclosingRect(
165 ProjectClippedRect(transform, gfx::RectF(src_rect)));
166 }
167
ProjectClippedRect(const gfx::Transform & transform,const gfx::RectF & src_rect)168 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
169 const gfx::RectF& src_rect) {
170 if (transform.IsIdentityOrTranslation()) {
171 return src_rect +
172 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
173 SkMScalarToFloat(transform.matrix().get(1, 3)));
174 }
175
176 // Perform the projection, but retain the result in homogeneous coordinates.
177 gfx::QuadF q = gfx::QuadF(src_rect);
178 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
179 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
180 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
181 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
182
183 return ComputeEnclosingClippedRect(h1, h2, h3, h4);
184 }
185
MapClippedQuad(const gfx::Transform & transform,const gfx::QuadF & src_quad,gfx::PointF clipped_quad[8],int * num_vertices_in_clipped_quad)186 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
187 const gfx::QuadF& src_quad,
188 gfx::PointF clipped_quad[8],
189 int* num_vertices_in_clipped_quad) {
190 HomogeneousCoordinate h1 =
191 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
192 HomogeneousCoordinate h2 =
193 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
194 HomogeneousCoordinate h3 =
195 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
196 HomogeneousCoordinate h4 =
197 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
198
199 // The order of adding the vertices to the array is chosen so that
200 // clockwise / counter-clockwise orientation is retained.
201
202 *num_vertices_in_clipped_quad = 0;
203
204 if (!h1.ShouldBeClipped()) {
205 AddVertexToClippedQuad(
206 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
207 }
208
209 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
210 AddVertexToClippedQuad(
211 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
212 clipped_quad,
213 num_vertices_in_clipped_quad);
214 }
215
216 if (!h2.ShouldBeClipped()) {
217 AddVertexToClippedQuad(
218 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
219 }
220
221 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
222 AddVertexToClippedQuad(
223 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
224 clipped_quad,
225 num_vertices_in_clipped_quad);
226 }
227
228 if (!h3.ShouldBeClipped()) {
229 AddVertexToClippedQuad(
230 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
231 }
232
233 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
234 AddVertexToClippedQuad(
235 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
236 clipped_quad,
237 num_vertices_in_clipped_quad);
238 }
239
240 if (!h4.ShouldBeClipped()) {
241 AddVertexToClippedQuad(
242 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
243 }
244
245 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
246 AddVertexToClippedQuad(
247 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
248 clipped_quad,
249 num_vertices_in_clipped_quad);
250 }
251
252 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
253 }
254
ComputeEnclosingRectOfVertices(const gfx::PointF vertices[],int num_vertices)255 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
256 const gfx::PointF vertices[],
257 int num_vertices) {
258 if (num_vertices < 2)
259 return gfx::RectF();
260
261 float xmin = std::numeric_limits<float>::max();
262 float xmax = -std::numeric_limits<float>::max();
263 float ymin = std::numeric_limits<float>::max();
264 float ymax = -std::numeric_limits<float>::max();
265
266 for (int i = 0; i < num_vertices; ++i)
267 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
268
269 return gfx::RectF(gfx::PointF(xmin, ymin),
270 gfx::SizeF(xmax - xmin, ymax - ymin));
271 }
272
ComputeEnclosingClippedRect(const HomogeneousCoordinate & h1,const HomogeneousCoordinate & h2,const HomogeneousCoordinate & h3,const HomogeneousCoordinate & h4)273 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
274 const HomogeneousCoordinate& h1,
275 const HomogeneousCoordinate& h2,
276 const HomogeneousCoordinate& h3,
277 const HomogeneousCoordinate& h4) {
278 // This function performs clipping as necessary and computes the enclosing 2d
279 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
280 // to avoid the overhead of storing an unknown number of clipped vertices.
281
282 // If no vertices on the quad are clipped, then we can simply return the
283 // enclosing rect directly.
284 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
285 h3.ShouldBeClipped() || h4.ShouldBeClipped();
286 if (!something_clipped) {
287 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
288 h2.CartesianPoint2d(),
289 h3.CartesianPoint2d(),
290 h4.CartesianPoint2d());
291 return mapped_quad.BoundingBox();
292 }
293
294 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
295 h3.ShouldBeClipped() && h4.ShouldBeClipped();
296 if (everything_clipped)
297 return gfx::RectF();
298
299 float xmin = std::numeric_limits<float>::max();
300 float xmax = -std::numeric_limits<float>::max();
301 float ymin = std::numeric_limits<float>::max();
302 float ymax = -std::numeric_limits<float>::max();
303
304 if (!h1.ShouldBeClipped())
305 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
306 h1.CartesianPoint2d());
307
308 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
309 ExpandBoundsToIncludePoint(&xmin,
310 &xmax,
311 &ymin,
312 &ymax,
313 ComputeClippedPointForEdge(h1, h2)
314 .CartesianPoint2d());
315
316 if (!h2.ShouldBeClipped())
317 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
318 h2.CartesianPoint2d());
319
320 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
321 ExpandBoundsToIncludePoint(&xmin,
322 &xmax,
323 &ymin,
324 &ymax,
325 ComputeClippedPointForEdge(h2, h3)
326 .CartesianPoint2d());
327
328 if (!h3.ShouldBeClipped())
329 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
330 h3.CartesianPoint2d());
331
332 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
333 ExpandBoundsToIncludePoint(&xmin,
334 &xmax,
335 &ymin,
336 &ymax,
337 ComputeClippedPointForEdge(h3, h4)
338 .CartesianPoint2d());
339
340 if (!h4.ShouldBeClipped())
341 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
342 h4.CartesianPoint2d());
343
344 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
345 ExpandBoundsToIncludePoint(&xmin,
346 &xmax,
347 &ymin,
348 &ymax,
349 ComputeClippedPointForEdge(h4, h1)
350 .CartesianPoint2d());
351
352 return gfx::RectF(gfx::PointF(xmin, ymin),
353 gfx::SizeF(xmax - xmin, ymax - ymin));
354 }
355
MapQuad(const gfx::Transform & transform,const gfx::QuadF & q,bool * clipped)356 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
357 const gfx::QuadF& q,
358 bool* clipped) {
359 if (transform.IsIdentityOrTranslation()) {
360 gfx::QuadF mapped_quad(q);
361 mapped_quad +=
362 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
363 SkMScalarToFloat(transform.matrix().get(1, 3)));
364 *clipped = false;
365 return mapped_quad;
366 }
367
368 HomogeneousCoordinate h1 =
369 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
370 HomogeneousCoordinate h2 =
371 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
372 HomogeneousCoordinate h3 =
373 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
374 HomogeneousCoordinate h4 =
375 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
376
377 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
378 h3.ShouldBeClipped() || h4.ShouldBeClipped();
379
380 // Result will be invalid if clipped == true. But, compute it anyway just in
381 // case, to emulate existing behavior.
382 return gfx::QuadF(h1.CartesianPoint2d(),
383 h2.CartesianPoint2d(),
384 h3.CartesianPoint2d(),
385 h4.CartesianPoint2d());
386 }
387
MapPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)388 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
389 const gfx::PointF& p,
390 bool* clipped) {
391 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
392
393 if (h.w() > 0) {
394 *clipped = false;
395 return h.CartesianPoint2d();
396 }
397
398 // The cartesian coordinates will be invalid after dividing by w.
399 *clipped = true;
400
401 // Avoid dividing by w if w == 0.
402 if (!h.w())
403 return gfx::PointF();
404
405 // This return value will be invalid because clipped == true, but (1) users of
406 // this code should be ignoring the return value when clipped == true anyway,
407 // and (2) this behavior is more consistent with existing behavior of WebKit
408 // transforms if the user really does not ignore the return value.
409 return h.CartesianPoint2d();
410 }
411
MapPoint(const gfx::Transform & transform,const gfx::Point3F & p,bool * clipped)412 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
413 const gfx::Point3F& p,
414 bool* clipped) {
415 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
416
417 if (h.w() > 0) {
418 *clipped = false;
419 return h.CartesianPoint3d();
420 }
421
422 // The cartesian coordinates will be invalid after dividing by w.
423 *clipped = true;
424
425 // Avoid dividing by w if w == 0.
426 if (!h.w())
427 return gfx::Point3F();
428
429 // This return value will be invalid because clipped == true, but (1) users of
430 // this code should be ignoring the return value when clipped == true anyway,
431 // and (2) this behavior is more consistent with existing behavior of WebKit
432 // transforms if the user really does not ignore the return value.
433 return h.CartesianPoint3d();
434 }
435
ProjectQuad(const gfx::Transform & transform,const gfx::QuadF & q,bool * clipped)436 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
437 const gfx::QuadF& q,
438 bool* clipped) {
439 gfx::QuadF projected_quad;
440 bool clipped_point;
441 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
442 *clipped = clipped_point;
443 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
444 *clipped |= clipped_point;
445 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
446 *clipped |= clipped_point;
447 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
448 *clipped |= clipped_point;
449
450 return projected_quad;
451 }
452
ProjectPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)453 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
454 const gfx::PointF& p,
455 bool* clipped) {
456 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
457 // Avoid dividing by w if w == 0.
458 if (!h.w())
459 return gfx::PointF();
460
461 // This return value will be invalid if clipped == true, but (1) users of
462 // this code should be ignoring the return value when clipped == true anyway,
463 // and (2) this behavior is more consistent with existing behavior of WebKit
464 // transforms if the user really does not ignore the return value.
465 return h.CartesianPoint2d();
466 }
467
ProjectPoint3D(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)468 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
469 const gfx::PointF& p,
470 bool* clipped) {
471 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
472 if (!h.w())
473 return gfx::Point3F();
474 return h.CartesianPoint3d();
475 }
476
ScaleRectProportional(const gfx::RectF & input_outer_rect,const gfx::RectF & scale_outer_rect,const gfx::RectF & scale_inner_rect)477 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
478 const gfx::RectF& scale_outer_rect,
479 const gfx::RectF& scale_inner_rect) {
480 gfx::RectF output_inner_rect = input_outer_rect;
481 float scale_rect_to_input_scale_x =
482 scale_outer_rect.width() / input_outer_rect.width();
483 float scale_rect_to_input_scale_y =
484 scale_outer_rect.height() / input_outer_rect.height();
485
486 gfx::Vector2dF top_left_diff =
487 scale_inner_rect.origin() - scale_outer_rect.origin();
488 gfx::Vector2dF bottom_right_diff =
489 scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
490 output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
491 top_left_diff.y() / scale_rect_to_input_scale_y,
492 -bottom_right_diff.x() / scale_rect_to_input_scale_x,
493 -bottom_right_diff.y() / scale_rect_to_input_scale_y);
494 return output_inner_rect;
495 }
496
NearlyZero(double value)497 static inline bool NearlyZero(double value) {
498 return std::abs(value) < std::numeric_limits<double>::epsilon();
499 }
500
ScaleOnAxis(double a,double b,double c)501 static inline float ScaleOnAxis(double a, double b, double c) {
502 if (NearlyZero(b) && NearlyZero(c))
503 return std::abs(a);
504 if (NearlyZero(a) && NearlyZero(c))
505 return std::abs(b);
506 if (NearlyZero(a) && NearlyZero(b))
507 return std::abs(c);
508
509 // Do the sqrt as a double to not lose precision.
510 return static_cast<float>(std::sqrt(a * a + b * b + c * c));
511 }
512
ComputeTransform2dScaleComponents(const gfx::Transform & transform,float fallback_value)513 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
514 const gfx::Transform& transform,
515 float fallback_value) {
516 if (transform.HasPerspective())
517 return gfx::Vector2dF(fallback_value, fallback_value);
518 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
519 transform.matrix().getDouble(1, 0),
520 transform.matrix().getDouble(2, 0));
521 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
522 transform.matrix().getDouble(1, 1),
523 transform.matrix().getDouble(2, 1));
524 return gfx::Vector2dF(x_scale, y_scale);
525 }
526
SmallestAngleBetweenVectors(const gfx::Vector2dF & v1,const gfx::Vector2dF & v2)527 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
528 const gfx::Vector2dF& v2) {
529 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
530 // Clamp to compensate for rounding errors.
531 dot_product = std::max(-1.0, std::min(1.0, dot_product));
532 return static_cast<float>(Rad2Deg(std::acos(dot_product)));
533 }
534
ProjectVector(const gfx::Vector2dF & source,const gfx::Vector2dF & destination)535 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
536 const gfx::Vector2dF& destination) {
537 float projected_length =
538 gfx::DotProduct(source, destination) / destination.LengthSquared();
539 return gfx::Vector2dF(projected_length * destination.x(),
540 projected_length * destination.y());
541 }
542
AsValue(const gfx::Size & s)543 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
544 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
545 res->SetDouble("width", s.width());
546 res->SetDouble("height", s.height());
547 return res.PassAs<base::Value>();
548 }
549
AsValue(const gfx::SizeF & s)550 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
551 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
552 res->SetDouble("width", s.width());
553 res->SetDouble("height", s.height());
554 return res.PassAs<base::Value>();
555 }
556
AsValue(const gfx::Rect & r)557 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
558 scoped_ptr<base::ListValue> res(new base::ListValue());
559 res->AppendInteger(r.x());
560 res->AppendInteger(r.y());
561 res->AppendInteger(r.width());
562 res->AppendInteger(r.height());
563 return res.PassAs<base::Value>();
564 }
565
FromValue(const base::Value * raw_value,gfx::Rect * out_rect)566 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
567 const base::ListValue* value = NULL;
568 if (!raw_value->GetAsList(&value))
569 return false;
570
571 if (value->GetSize() != 4)
572 return false;
573
574 int x, y, w, h;
575 bool ok = true;
576 ok &= value->GetInteger(0, &x);
577 ok &= value->GetInteger(1, &y);
578 ok &= value->GetInteger(2, &w);
579 ok &= value->GetInteger(3, &h);
580 if (!ok)
581 return false;
582
583 *out_rect = gfx::Rect(x, y, w, h);
584 return true;
585 }
586
AsValue(const gfx::PointF & pt)587 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
588 scoped_ptr<base::ListValue> res(new base::ListValue());
589 res->AppendDouble(pt.x());
590 res->AppendDouble(pt.y());
591 return res.PassAs<base::Value>();
592 }
593
AsValue(const gfx::Point3F & pt)594 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Point3F& pt) {
595 scoped_ptr<base::ListValue> res(new base::ListValue());
596 res->AppendDouble(pt.x());
597 res->AppendDouble(pt.y());
598 res->AppendDouble(pt.z());
599 return res.PassAs<base::Value>();
600 }
601
AsValue(const gfx::Vector2d & v)602 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Vector2d& v) {
603 scoped_ptr<base::ListValue> res(new base::ListValue());
604 res->AppendInteger(v.x());
605 res->AppendInteger(v.y());
606 return res.PassAs<base::Value>();
607 }
608
AsValue(const gfx::QuadF & q)609 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
610 scoped_ptr<base::ListValue> res(new base::ListValue());
611 res->AppendDouble(q.p1().x());
612 res->AppendDouble(q.p1().y());
613 res->AppendDouble(q.p2().x());
614 res->AppendDouble(q.p2().y());
615 res->AppendDouble(q.p3().x());
616 res->AppendDouble(q.p3().y());
617 res->AppendDouble(q.p4().x());
618 res->AppendDouble(q.p4().y());
619 return res.PassAs<base::Value>();
620 }
621
AsValue(const gfx::RectF & rect)622 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
623 scoped_ptr<base::ListValue> res(new base::ListValue());
624 res->AppendDouble(rect.x());
625 res->AppendDouble(rect.y());
626 res->AppendDouble(rect.width());
627 res->AppendDouble(rect.height());
628 return res.PassAs<base::Value>();
629 }
630
AsValue(const gfx::Transform & transform)631 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
632 scoped_ptr<base::ListValue> res(new base::ListValue());
633 const SkMatrix44& m = transform.matrix();
634 for (int row = 0; row < 4; ++row) {
635 for (int col = 0; col < 4; ++col)
636 res->AppendDouble(m.getDouble(row, col));
637 }
638 return res.PassAs<base::Value>();
639 }
640
AsValue(const gfx::BoxF & box)641 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
642 scoped_ptr<base::ListValue> res(new base::ListValue());
643 res->AppendInteger(box.x());
644 res->AppendInteger(box.y());
645 res->AppendInteger(box.z());
646 res->AppendInteger(box.width());
647 res->AppendInteger(box.height());
648 res->AppendInteger(box.depth());
649 return res.PassAs<base::Value>();
650 }
651
AsValueSafely(double value)652 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
653 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
654 std::min(value, std::numeric_limits<double>::max())));
655 }
656
AsValueSafely(float value)657 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
658 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
659 std::min(value, std::numeric_limits<float>::max())));
660 }
661
662 } // namespace cc
663