• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "cc/base/math_util.h"
6 
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10 
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
18 
19 namespace cc {
20 
21 const double MathUtil::kPiDouble = 3.14159265358979323846;
22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
23 
ProjectHomogeneousPoint(const gfx::Transform & transform,const gfx::PointF & p)24 static HomogeneousCoordinate ProjectHomogeneousPoint(
25     const gfx::Transform& transform,
26     const gfx::PointF& p) {
27   // In this case, the layer we are trying to project onto is perpendicular to
28   // ray (point p and z-axis direction) that we are trying to project. This
29   // happens when the layer is rotated so that it is infinitesimally thin, or
30   // when it is co-planar with the camera origin -- i.e. when the layer is
31   // invisible anyway.
32   if (!transform.matrix().get(2, 2))
33     return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
34 
35   SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
36              transform.matrix().get(2, 1) * p.y() +
37              transform.matrix().get(2, 3)) /
38              transform.matrix().get(2, 2);
39   HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
40   transform.matrix().mapMScalars(result.vec, result.vec);
41   return result;
42 }
43 
ProjectHomogeneousPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)44 static HomogeneousCoordinate ProjectHomogeneousPoint(
45     const gfx::Transform& transform,
46     const gfx::PointF& p,
47     bool* clipped) {
48   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
49   *clipped = h.w() <= 0;
50   return h;
51 }
52 
MapHomogeneousPoint(const gfx::Transform & transform,const gfx::Point3F & p)53 static HomogeneousCoordinate MapHomogeneousPoint(
54     const gfx::Transform& transform,
55     const gfx::Point3F& p) {
56   HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
57   transform.matrix().mapMScalars(result.vec, result.vec);
58   return result;
59 }
60 
ComputeClippedPointForEdge(const HomogeneousCoordinate & h1,const HomogeneousCoordinate & h2)61 static HomogeneousCoordinate ComputeClippedPointForEdge(
62     const HomogeneousCoordinate& h1,
63     const HomogeneousCoordinate& h2) {
64   // Points h1 and h2 form a line in 4d, and any point on that line can be
65   // represented as an interpolation between h1 and h2:
66   //    p = (1-t) h1 + (t) h2
67   //
68   // We want to compute point p such that p.w == epsilon, where epsilon is a
69   // small non-zero number. (but the smaller the number is, the higher the risk
70   // of overflow)
71   // To do this, we solve for t in the following equation:
72   //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
73   //
74   // Once paramter t is known, the rest of p can be computed via
75   //    p = (1-t) h1 + (t) h2.
76 
77   // Technically this is a special case of the following assertion, but its a
78   // good idea to keep it an explicit sanity check here.
79   DCHECK_NE(h2.w(), h1.w());
80   // Exactly one of h1 or h2 (but not both) must be on the negative side of the
81   // w plane when this is called.
82   DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
83 
84   // ...or any positive non-zero small epsilon
85   SkMScalar w = 0.00001f;
86   SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
87 
88   SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
89   SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
90   SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
91 
92   return HomogeneousCoordinate(x, y, z, w);
93 }
94 
ExpandBoundsToIncludePoint(float * xmin,float * xmax,float * ymin,float * ymax,const gfx::PointF & p)95 static inline void ExpandBoundsToIncludePoint(float* xmin,
96                                               float* xmax,
97                                               float* ymin,
98                                               float* ymax,
99                                               const gfx::PointF& p) {
100   *xmin = std::min(p.x(), *xmin);
101   *xmax = std::max(p.x(), *xmax);
102   *ymin = std::min(p.y(), *ymin);
103   *ymax = std::max(p.y(), *ymax);
104 }
105 
AddVertexToClippedQuad(const gfx::PointF & new_vertex,gfx::PointF clipped_quad[8],int * num_vertices_in_clipped_quad)106 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
107                                           gfx::PointF clipped_quad[8],
108                                           int* num_vertices_in_clipped_quad) {
109   clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
110   (*num_vertices_in_clipped_quad)++;
111 }
112 
MapEnclosingClippedRect(const gfx::Transform & transform,const gfx::Rect & src_rect)113 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
114                                             const gfx::Rect& src_rect) {
115   if (transform.IsIdentityOrIntegerTranslation()) {
116     return src_rect +
117            gfx::Vector2d(
118                static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
119                static_cast<int>(
120                    SkMScalarToFloat(transform.matrix().get(1, 3))));
121   }
122   return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
123 }
124 
MapClippedRect(const gfx::Transform & transform,const gfx::RectF & src_rect)125 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
126                                     const gfx::RectF& src_rect) {
127   if (transform.IsIdentityOrTranslation()) {
128     return src_rect +
129            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
130                           SkMScalarToFloat(transform.matrix().get(1, 3)));
131   }
132 
133   // Apply the transform, but retain the result in homogeneous coordinates.
134 
135   SkMScalar quad[4 * 2];  // input: 4 x 2D points
136   quad[0] = src_rect.x();
137   quad[1] = src_rect.y();
138   quad[2] = src_rect.right();
139   quad[3] = src_rect.y();
140   quad[4] = src_rect.right();
141   quad[5] = src_rect.bottom();
142   quad[6] = src_rect.x();
143   quad[7] = src_rect.bottom();
144 
145   SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
146   transform.matrix().map2(quad, 4, result);
147 
148   HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
149   HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
150   HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
151   HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
152   return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
153 }
154 
ProjectEnclosingClippedRect(const gfx::Transform & transform,const gfx::Rect & src_rect)155 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
156                                                 const gfx::Rect& src_rect) {
157   if (transform.IsIdentityOrIntegerTranslation()) {
158     return src_rect +
159            gfx::Vector2d(
160                static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
161                static_cast<int>(
162                    SkMScalarToFloat(transform.matrix().get(1, 3))));
163   }
164   return gfx::ToEnclosingRect(
165       ProjectClippedRect(transform, gfx::RectF(src_rect)));
166 }
167 
ProjectClippedRect(const gfx::Transform & transform,const gfx::RectF & src_rect)168 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
169                                         const gfx::RectF& src_rect) {
170   if (transform.IsIdentityOrTranslation()) {
171     return src_rect +
172            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
173                           SkMScalarToFloat(transform.matrix().get(1, 3)));
174   }
175 
176   // Perform the projection, but retain the result in homogeneous coordinates.
177   gfx::QuadF q = gfx::QuadF(src_rect);
178   HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
179   HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
180   HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
181   HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
182 
183   return ComputeEnclosingClippedRect(h1, h2, h3, h4);
184 }
185 
MapClippedQuad(const gfx::Transform & transform,const gfx::QuadF & src_quad,gfx::PointF clipped_quad[8],int * num_vertices_in_clipped_quad)186 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
187                               const gfx::QuadF& src_quad,
188                               gfx::PointF clipped_quad[8],
189                               int* num_vertices_in_clipped_quad) {
190   HomogeneousCoordinate h1 =
191       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
192   HomogeneousCoordinate h2 =
193       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
194   HomogeneousCoordinate h3 =
195       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
196   HomogeneousCoordinate h4 =
197       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
198 
199   // The order of adding the vertices to the array is chosen so that
200   // clockwise / counter-clockwise orientation is retained.
201 
202   *num_vertices_in_clipped_quad = 0;
203 
204   if (!h1.ShouldBeClipped()) {
205     AddVertexToClippedQuad(
206         h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
207   }
208 
209   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
210     AddVertexToClippedQuad(
211         ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
212         clipped_quad,
213         num_vertices_in_clipped_quad);
214   }
215 
216   if (!h2.ShouldBeClipped()) {
217     AddVertexToClippedQuad(
218         h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
219   }
220 
221   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
222     AddVertexToClippedQuad(
223         ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
224         clipped_quad,
225         num_vertices_in_clipped_quad);
226   }
227 
228   if (!h3.ShouldBeClipped()) {
229     AddVertexToClippedQuad(
230         h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
231   }
232 
233   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
234     AddVertexToClippedQuad(
235         ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
236         clipped_quad,
237         num_vertices_in_clipped_quad);
238   }
239 
240   if (!h4.ShouldBeClipped()) {
241     AddVertexToClippedQuad(
242         h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
243   }
244 
245   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
246     AddVertexToClippedQuad(
247         ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
248         clipped_quad,
249         num_vertices_in_clipped_quad);
250   }
251 
252   DCHECK_LE(*num_vertices_in_clipped_quad, 8);
253 }
254 
ComputeEnclosingRectOfVertices(const gfx::PointF vertices[],int num_vertices)255 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
256     const gfx::PointF vertices[],
257     int num_vertices) {
258   if (num_vertices < 2)
259     return gfx::RectF();
260 
261   float xmin = std::numeric_limits<float>::max();
262   float xmax = -std::numeric_limits<float>::max();
263   float ymin = std::numeric_limits<float>::max();
264   float ymax = -std::numeric_limits<float>::max();
265 
266   for (int i = 0; i < num_vertices; ++i)
267     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
268 
269   return gfx::RectF(gfx::PointF(xmin, ymin),
270                     gfx::SizeF(xmax - xmin, ymax - ymin));
271 }
272 
ComputeEnclosingClippedRect(const HomogeneousCoordinate & h1,const HomogeneousCoordinate & h2,const HomogeneousCoordinate & h3,const HomogeneousCoordinate & h4)273 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
274     const HomogeneousCoordinate& h1,
275     const HomogeneousCoordinate& h2,
276     const HomogeneousCoordinate& h3,
277     const HomogeneousCoordinate& h4) {
278   // This function performs clipping as necessary and computes the enclosing 2d
279   // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
280   // to avoid the overhead of storing an unknown number of clipped vertices.
281 
282   // If no vertices on the quad are clipped, then we can simply return the
283   // enclosing rect directly.
284   bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
285                            h3.ShouldBeClipped() || h4.ShouldBeClipped();
286   if (!something_clipped) {
287     gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
288                                         h2.CartesianPoint2d(),
289                                         h3.CartesianPoint2d(),
290                                         h4.CartesianPoint2d());
291     return mapped_quad.BoundingBox();
292   }
293 
294   bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
295                             h3.ShouldBeClipped() && h4.ShouldBeClipped();
296   if (everything_clipped)
297     return gfx::RectF();
298 
299   float xmin = std::numeric_limits<float>::max();
300   float xmax = -std::numeric_limits<float>::max();
301   float ymin = std::numeric_limits<float>::max();
302   float ymax = -std::numeric_limits<float>::max();
303 
304   if (!h1.ShouldBeClipped())
305     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
306                                h1.CartesianPoint2d());
307 
308   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
309     ExpandBoundsToIncludePoint(&xmin,
310                                &xmax,
311                                &ymin,
312                                &ymax,
313                                ComputeClippedPointForEdge(h1, h2)
314                                    .CartesianPoint2d());
315 
316   if (!h2.ShouldBeClipped())
317     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
318                                h2.CartesianPoint2d());
319 
320   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
321     ExpandBoundsToIncludePoint(&xmin,
322                                &xmax,
323                                &ymin,
324                                &ymax,
325                                ComputeClippedPointForEdge(h2, h3)
326                                    .CartesianPoint2d());
327 
328   if (!h3.ShouldBeClipped())
329     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
330                                h3.CartesianPoint2d());
331 
332   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
333     ExpandBoundsToIncludePoint(&xmin,
334                                &xmax,
335                                &ymin,
336                                &ymax,
337                                ComputeClippedPointForEdge(h3, h4)
338                                    .CartesianPoint2d());
339 
340   if (!h4.ShouldBeClipped())
341     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
342                                h4.CartesianPoint2d());
343 
344   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
345     ExpandBoundsToIncludePoint(&xmin,
346                                &xmax,
347                                &ymin,
348                                &ymax,
349                                ComputeClippedPointForEdge(h4, h1)
350                                    .CartesianPoint2d());
351 
352   return gfx::RectF(gfx::PointF(xmin, ymin),
353                     gfx::SizeF(xmax - xmin, ymax - ymin));
354 }
355 
MapQuad(const gfx::Transform & transform,const gfx::QuadF & q,bool * clipped)356 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
357                              const gfx::QuadF& q,
358                              bool* clipped) {
359   if (transform.IsIdentityOrTranslation()) {
360     gfx::QuadF mapped_quad(q);
361     mapped_quad +=
362         gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
363                        SkMScalarToFloat(transform.matrix().get(1, 3)));
364     *clipped = false;
365     return mapped_quad;
366   }
367 
368   HomogeneousCoordinate h1 =
369       MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
370   HomogeneousCoordinate h2 =
371       MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
372   HomogeneousCoordinate h3 =
373       MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
374   HomogeneousCoordinate h4 =
375       MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
376 
377   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
378             h3.ShouldBeClipped() || h4.ShouldBeClipped();
379 
380   // Result will be invalid if clipped == true. But, compute it anyway just in
381   // case, to emulate existing behavior.
382   return gfx::QuadF(h1.CartesianPoint2d(),
383                     h2.CartesianPoint2d(),
384                     h3.CartesianPoint2d(),
385                     h4.CartesianPoint2d());
386 }
387 
MapPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)388 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
389                                const gfx::PointF& p,
390                                bool* clipped) {
391   HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
392 
393   if (h.w() > 0) {
394     *clipped = false;
395     return h.CartesianPoint2d();
396   }
397 
398   // The cartesian coordinates will be invalid after dividing by w.
399   *clipped = true;
400 
401   // Avoid dividing by w if w == 0.
402   if (!h.w())
403     return gfx::PointF();
404 
405   // This return value will be invalid because clipped == true, but (1) users of
406   // this code should be ignoring the return value when clipped == true anyway,
407   // and (2) this behavior is more consistent with existing behavior of WebKit
408   // transforms if the user really does not ignore the return value.
409   return h.CartesianPoint2d();
410 }
411 
MapPoint(const gfx::Transform & transform,const gfx::Point3F & p,bool * clipped)412 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
413                                 const gfx::Point3F& p,
414                                 bool* clipped) {
415   HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
416 
417   if (h.w() > 0) {
418     *clipped = false;
419     return h.CartesianPoint3d();
420   }
421 
422   // The cartesian coordinates will be invalid after dividing by w.
423   *clipped = true;
424 
425   // Avoid dividing by w if w == 0.
426   if (!h.w())
427     return gfx::Point3F();
428 
429   // This return value will be invalid because clipped == true, but (1) users of
430   // this code should be ignoring the return value when clipped == true anyway,
431   // and (2) this behavior is more consistent with existing behavior of WebKit
432   // transforms if the user really does not ignore the return value.
433   return h.CartesianPoint3d();
434 }
435 
ProjectQuad(const gfx::Transform & transform,const gfx::QuadF & q,bool * clipped)436 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
437                                  const gfx::QuadF& q,
438                                  bool* clipped) {
439   gfx::QuadF projected_quad;
440   bool clipped_point;
441   projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
442   *clipped = clipped_point;
443   projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
444   *clipped |= clipped_point;
445   projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
446   *clipped |= clipped_point;
447   projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
448   *clipped |= clipped_point;
449 
450   return projected_quad;
451 }
452 
ProjectPoint(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)453 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
454                                    const gfx::PointF& p,
455                                    bool* clipped) {
456   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
457   // Avoid dividing by w if w == 0.
458   if (!h.w())
459     return gfx::PointF();
460 
461   // This return value will be invalid if clipped == true, but (1) users of
462   // this code should be ignoring the return value when clipped == true anyway,
463   // and (2) this behavior is more consistent with existing behavior of WebKit
464   // transforms if the user really does not ignore the return value.
465   return h.CartesianPoint2d();
466 }
467 
ProjectPoint3D(const gfx::Transform & transform,const gfx::PointF & p,bool * clipped)468 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
469                                       const gfx::PointF& p,
470                                       bool* clipped) {
471   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
472   if (!h.w())
473     return gfx::Point3F();
474   return h.CartesianPoint3d();
475 }
476 
ScaleRectProportional(const gfx::RectF & input_outer_rect,const gfx::RectF & scale_outer_rect,const gfx::RectF & scale_inner_rect)477 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
478                                            const gfx::RectF& scale_outer_rect,
479                                            const gfx::RectF& scale_inner_rect) {
480   gfx::RectF output_inner_rect = input_outer_rect;
481   float scale_rect_to_input_scale_x =
482       scale_outer_rect.width() / input_outer_rect.width();
483   float scale_rect_to_input_scale_y =
484       scale_outer_rect.height() / input_outer_rect.height();
485 
486   gfx::Vector2dF top_left_diff =
487       scale_inner_rect.origin() - scale_outer_rect.origin();
488   gfx::Vector2dF bottom_right_diff =
489       scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
490   output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
491                           top_left_diff.y() / scale_rect_to_input_scale_y,
492                           -bottom_right_diff.x() / scale_rect_to_input_scale_x,
493                           -bottom_right_diff.y() / scale_rect_to_input_scale_y);
494   return output_inner_rect;
495 }
496 
NearlyZero(double value)497 static inline bool NearlyZero(double value) {
498   return std::abs(value) < std::numeric_limits<double>::epsilon();
499 }
500 
ScaleOnAxis(double a,double b,double c)501 static inline float ScaleOnAxis(double a, double b, double c) {
502   if (NearlyZero(b) && NearlyZero(c))
503     return std::abs(a);
504   if (NearlyZero(a) && NearlyZero(c))
505     return std::abs(b);
506   if (NearlyZero(a) && NearlyZero(b))
507     return std::abs(c);
508 
509   // Do the sqrt as a double to not lose precision.
510   return static_cast<float>(std::sqrt(a * a + b * b + c * c));
511 }
512 
ComputeTransform2dScaleComponents(const gfx::Transform & transform,float fallback_value)513 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
514     const gfx::Transform& transform,
515     float fallback_value) {
516   if (transform.HasPerspective())
517     return gfx::Vector2dF(fallback_value, fallback_value);
518   float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
519                               transform.matrix().getDouble(1, 0),
520                               transform.matrix().getDouble(2, 0));
521   float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
522                               transform.matrix().getDouble(1, 1),
523                               transform.matrix().getDouble(2, 1));
524   return gfx::Vector2dF(x_scale, y_scale);
525 }
526 
SmallestAngleBetweenVectors(const gfx::Vector2dF & v1,const gfx::Vector2dF & v2)527 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
528                                             const gfx::Vector2dF& v2) {
529   double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
530   // Clamp to compensate for rounding errors.
531   dot_product = std::max(-1.0, std::min(1.0, dot_product));
532   return static_cast<float>(Rad2Deg(std::acos(dot_product)));
533 }
534 
ProjectVector(const gfx::Vector2dF & source,const gfx::Vector2dF & destination)535 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
536                                        const gfx::Vector2dF& destination) {
537   float projected_length =
538       gfx::DotProduct(source, destination) / destination.LengthSquared();
539   return gfx::Vector2dF(projected_length * destination.x(),
540                         projected_length * destination.y());
541 }
542 
AsValue(const gfx::Size & s)543 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
544   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
545   res->SetDouble("width", s.width());
546   res->SetDouble("height", s.height());
547   return res.PassAs<base::Value>();
548 }
549 
AsValue(const gfx::SizeF & s)550 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
551   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
552   res->SetDouble("width", s.width());
553   res->SetDouble("height", s.height());
554   return res.PassAs<base::Value>();
555 }
556 
AsValue(const gfx::Rect & r)557 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
558   scoped_ptr<base::ListValue> res(new base::ListValue());
559   res->AppendInteger(r.x());
560   res->AppendInteger(r.y());
561   res->AppendInteger(r.width());
562   res->AppendInteger(r.height());
563   return res.PassAs<base::Value>();
564 }
565 
FromValue(const base::Value * raw_value,gfx::Rect * out_rect)566 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
567   const base::ListValue* value = NULL;
568   if (!raw_value->GetAsList(&value))
569     return false;
570 
571   if (value->GetSize() != 4)
572     return false;
573 
574   int x, y, w, h;
575   bool ok = true;
576   ok &= value->GetInteger(0, &x);
577   ok &= value->GetInteger(1, &y);
578   ok &= value->GetInteger(2, &w);
579   ok &= value->GetInteger(3, &h);
580   if (!ok)
581     return false;
582 
583   *out_rect = gfx::Rect(x, y, w, h);
584   return true;
585 }
586 
AsValue(const gfx::PointF & pt)587 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
588   scoped_ptr<base::ListValue> res(new base::ListValue());
589   res->AppendDouble(pt.x());
590   res->AppendDouble(pt.y());
591   return res.PassAs<base::Value>();
592 }
593 
AsValue(const gfx::Point3F & pt)594 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Point3F& pt) {
595   scoped_ptr<base::ListValue> res(new base::ListValue());
596   res->AppendDouble(pt.x());
597   res->AppendDouble(pt.y());
598   res->AppendDouble(pt.z());
599   return res.PassAs<base::Value>();
600 }
601 
AsValue(const gfx::Vector2d & v)602 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Vector2d& v) {
603   scoped_ptr<base::ListValue> res(new base::ListValue());
604   res->AppendInteger(v.x());
605   res->AppendInteger(v.y());
606   return res.PassAs<base::Value>();
607 }
608 
AsValue(const gfx::QuadF & q)609 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
610   scoped_ptr<base::ListValue> res(new base::ListValue());
611   res->AppendDouble(q.p1().x());
612   res->AppendDouble(q.p1().y());
613   res->AppendDouble(q.p2().x());
614   res->AppendDouble(q.p2().y());
615   res->AppendDouble(q.p3().x());
616   res->AppendDouble(q.p3().y());
617   res->AppendDouble(q.p4().x());
618   res->AppendDouble(q.p4().y());
619   return res.PassAs<base::Value>();
620 }
621 
AsValue(const gfx::RectF & rect)622 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
623   scoped_ptr<base::ListValue> res(new base::ListValue());
624   res->AppendDouble(rect.x());
625   res->AppendDouble(rect.y());
626   res->AppendDouble(rect.width());
627   res->AppendDouble(rect.height());
628   return res.PassAs<base::Value>();
629 }
630 
AsValue(const gfx::Transform & transform)631 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
632   scoped_ptr<base::ListValue> res(new base::ListValue());
633   const SkMatrix44& m = transform.matrix();
634   for (int row = 0; row < 4; ++row) {
635     for (int col = 0; col < 4; ++col)
636       res->AppendDouble(m.getDouble(row, col));
637   }
638   return res.PassAs<base::Value>();
639 }
640 
AsValue(const gfx::BoxF & box)641 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
642   scoped_ptr<base::ListValue> res(new base::ListValue());
643   res->AppendInteger(box.x());
644   res->AppendInteger(box.y());
645   res->AppendInteger(box.z());
646   res->AppendInteger(box.width());
647   res->AppendInteger(box.height());
648   res->AppendInteger(box.depth());
649   return res.PassAs<base::Value>();
650 }
651 
AsValueSafely(double value)652 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
653   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
654       std::min(value, std::numeric_limits<double>::max())));
655 }
656 
AsValueSafely(float value)657 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
658   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
659       std::min(value, std::numeric_limits<float>::max())));
660 }
661 
662 }  // namespace cc
663