• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "ui/gfx/geometry/r_tree_base.h"
6 
7 #include <algorithm>
8 
9 #include "base/logging.h"
10 
11 
12 // Helpers --------------------------------------------------------------------
13 
14 namespace {
15 
16 // Returns a Vector2d to allow us to do arithmetic on the result such as
17 // computing distances between centers.
CenterOfRect(const gfx::Rect & rect)18 gfx::Vector2d CenterOfRect(const gfx::Rect& rect) {
19   return rect.OffsetFromOrigin() +
20       gfx::Vector2d(rect.width() / 2, rect.height() / 2);
21 }
22 
23 }
24 
25 namespace gfx {
26 
27 
28 // RTreeBase::NodeBase --------------------------------------------------------
29 
~NodeBase()30 RTreeBase::NodeBase::~NodeBase() {
31 }
32 
RecomputeBoundsUpToRoot()33 void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() {
34   RecomputeLocalBounds();
35   if (parent_)
36     parent_->RecomputeBoundsUpToRoot();
37 }
38 
NodeBase(const Rect & rect,NodeBase * parent)39 RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent)
40     : rect_(rect),
41       parent_(parent) {
42 }
43 
RecomputeLocalBounds()44 void RTreeBase::NodeBase::RecomputeLocalBounds() {
45 }
46 
47 // RTreeBase::RecordBase ------------------------------------------------------
48 
RecordBase(const Rect & rect)49 RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {
50 }
51 
~RecordBase()52 RTreeBase::RecordBase::~RecordBase() {
53 }
54 
AppendIntersectingRecords(const Rect & query_rect,Records * matches_out) const55 void RTreeBase::RecordBase::AppendIntersectingRecords(
56     const Rect& query_rect, Records* matches_out) const {
57   if (rect().Intersects(query_rect))
58     matches_out->push_back(this);
59 }
60 
AppendAllRecords(Records * matches_out) const61 void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const {
62   matches_out->push_back(this);
63 }
64 
65 scoped_ptr<RTreeBase::NodeBase>
RemoveAndReturnLastChild()66 RTreeBase::RecordBase::RemoveAndReturnLastChild() {
67   return scoped_ptr<NodeBase>();
68 }
69 
Level() const70 int RTreeBase::RecordBase::Level() const {
71   return -1;
72 }
73 
74 
75 // RTreeBase::Node ------------------------------------------------------------
76 
Node()77 RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {
78 }
79 
~Node()80 RTreeBase::Node::~Node() {
81 }
82 
ConstructParent()83 scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() {
84   DCHECK(!parent());
85   scoped_ptr<Node> new_parent(new Node(level_ + 1));
86   new_parent->AddChild(scoped_ptr<NodeBase>(this));
87   return new_parent.Pass();
88 }
89 
AppendIntersectingRecords(const Rect & query_rect,Records * matches_out) const90 void RTreeBase::Node::AppendIntersectingRecords(
91     const Rect& query_rect, Records* matches_out) const {
92   // Check own bounding box for intersection, can cull all children if no
93   // intersection.
94   if (!rect().Intersects(query_rect))
95     return;
96 
97   // Conversely if we are completely contained within the query rect we can
98   // confidently skip all bounds checks for ourselves and all our children.
99   if (query_rect.Contains(rect())) {
100     AppendAllRecords(matches_out);
101     return;
102   }
103 
104   // We intersect the query rect but we are not are not contained within it.
105   // We must query each of our children in turn.
106   for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
107     (*i)->AppendIntersectingRecords(query_rect, matches_out);
108 }
109 
AppendAllRecords(Records * matches_out) const110 void RTreeBase::Node::AppendAllRecords(Records* matches_out) const {
111   for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
112     (*i)->AppendAllRecords(matches_out);
113 }
114 
RemoveNodesForReinsert(size_t number_to_remove,Nodes * nodes)115 void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove,
116                                              Nodes* nodes) {
117   DCHECK_LE(number_to_remove, children_.size());
118 
119   std::partial_sort(children_.begin(),
120                     children_.begin() + number_to_remove,
121                     children_.end(),
122                     &RTreeBase::Node::CompareCenterDistanceFromParent);
123 
124   // Move the lowest-distance nodes to the returned vector.
125   nodes->insert(
126       nodes->end(), children_.begin(), children_.begin() + number_to_remove);
127   children_.weak_erase(children_.begin(), children_.begin() + number_to_remove);
128 }
129 
RemoveChild(NodeBase * child_node,Nodes * orphans)130 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild(
131     NodeBase* child_node, Nodes* orphans) {
132   DCHECK_EQ(this, child_node->parent());
133 
134   scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild());
135   while (orphan) {
136     orphans->push_back(orphan.release());
137     orphan = child_node->RemoveAndReturnLastChild();
138   }
139 
140   Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node);
141   DCHECK(i != children_.end());
142   children_.weak_erase(i);
143 
144   return scoped_ptr<NodeBase>(child_node);
145 }
146 
RemoveAndReturnLastChild()147 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() {
148   if (children_.empty())
149     return scoped_ptr<NodeBase>();
150 
151   scoped_ptr<NodeBase> last_child(children_.back());
152   children_.weak_erase(children_.end() - 1);
153   last_child->set_parent(NULL);
154   return last_child.Pass();
155 }
156 
ChooseSubtree(NodeBase * node)157 RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) {
158   DCHECK(node);
159   // Should never be called on a node at equal or lower level in the tree than
160   // the node to insert.
161   DCHECK_GT(level_, node->Level());
162 
163   // If we are a parent of nodes on the provided node level, we are done.
164   if (level_ == node->Level() + 1)
165     return this;
166 
167   // Precompute a vector of expanded rects, used by both LeastOverlapIncrease
168   // and LeastAreaEnlargement.
169   Rects expanded_rects;
170   expanded_rects.reserve(children_.size());
171   for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i)
172     expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect()));
173 
174   Node* best_candidate = NULL;
175   // For parents of leaf nodes, we pick the node that will cause the least
176   // increase in overlap by the addition of this new node. This may detect a
177   // tie, in which case it will return NULL.
178   if (level_ == 1)
179     best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects);
180 
181   // For non-parents of leaf nodes, or for parents of leaf nodes with ties in
182   // overlap increase, we choose the subtree with least area enlargement caused
183   // by the addition of the new node.
184   if (!best_candidate)
185     best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects);
186 
187   DCHECK(best_candidate);
188   return best_candidate->ChooseSubtree(node);
189 }
190 
AddChild(scoped_ptr<NodeBase> node)191 size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) {
192   DCHECK(node);
193   // Sanity-check that the level of the child being added is one less than ours.
194   DCHECK_EQ(level_ - 1, node->Level());
195   node->set_parent(this);
196   set_rect(UnionRects(rect(), node->rect()));
197   children_.push_back(node.release());
198   return children_.size();
199 }
200 
Split(size_t min_children,size_t max_children)201 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children,
202                                                        size_t max_children) {
203   // We should have too many children to begin with.
204   DCHECK_EQ(max_children + 1, children_.size());
205 
206   // Determine if we should split along the horizontal or vertical axis.
207   std::vector<NodeBase*> vertical_sort(children_.get());
208   std::vector<NodeBase*> horizontal_sort(children_.get());
209   std::sort(vertical_sort.begin(),
210             vertical_sort.end(),
211             &RTreeBase::Node::CompareVertical);
212   std::sort(horizontal_sort.begin(),
213             horizontal_sort.end(),
214             &RTreeBase::Node::CompareHorizontal);
215 
216   Rects low_vertical_bounds;
217   Rects low_horizontal_bounds;
218   BuildLowBounds(vertical_sort,
219                  horizontal_sort,
220                  &low_vertical_bounds,
221                  &low_horizontal_bounds);
222 
223   Rects high_vertical_bounds;
224   Rects high_horizontal_bounds;
225   BuildHighBounds(vertical_sort,
226                   horizontal_sort,
227                   &high_vertical_bounds,
228                   &high_horizontal_bounds);
229 
230   // Choose |end_index| such that both Nodes after the split will have
231   // min_children <= children_.size() <= max_children.
232   size_t end_index = std::min(max_children, children_.size() - min_children);
233   bool is_vertical_split =
234       SmallestMarginSum(min_children,
235                         end_index,
236                         low_horizontal_bounds,
237                         high_horizontal_bounds) <
238       SmallestMarginSum(min_children,
239                         end_index,
240                         low_vertical_bounds,
241                         high_vertical_bounds);
242 
243   // Choose split index along chosen axis and perform the split.
244   const Rects& low_bounds(
245       is_vertical_split ? low_vertical_bounds : low_horizontal_bounds);
246   const Rects& high_bounds(
247       is_vertical_split ? high_vertical_bounds : high_horizontal_bounds);
248   size_t split_index =
249       ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds);
250 
251   const std::vector<NodeBase*>& sort(
252       is_vertical_split ? vertical_sort : horizontal_sort);
253   return DivideChildren(low_bounds, high_bounds, sort, split_index);
254 }
255 
Level() const256 int RTreeBase::Node::Level() const {
257   return level_;
258 }
259 
Node(int level)260 RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {
261 }
262 
263 // static
CompareVertical(const NodeBase * a,const NodeBase * b)264 bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) {
265   const Rect& a_rect = a->rect();
266   const Rect& b_rect = b->rect();
267   return (a_rect.y() < b_rect.y()) ||
268          ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height()));
269 }
270 
271 // static
CompareHorizontal(const NodeBase * a,const NodeBase * b)272 bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) {
273   const Rect& a_rect = a->rect();
274   const Rect& b_rect = b->rect();
275   return (a_rect.x() < b_rect.x()) ||
276          ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width()));
277 }
278 
279 // static
CompareCenterDistanceFromParent(const NodeBase * a,const NodeBase * b)280 bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a,
281                                                       const NodeBase* b) {
282   const NodeBase* p = a->parent();
283 
284   DCHECK(p);
285   DCHECK_EQ(p, b->parent());
286 
287   Vector2d p_center = CenterOfRect(p->rect());
288   Vector2d a_center = CenterOfRect(a->rect());
289   Vector2d b_center = CenterOfRect(b->rect());
290 
291   // We don't bother with square roots because we are only comparing the two
292   // values for sorting purposes.
293   return (a_center - p_center).LengthSquared() <
294          (b_center - p_center).LengthSquared();
295 }
296 
297 // static
BuildLowBounds(const std::vector<NodeBase * > & vertical_sort,const std::vector<NodeBase * > & horizontal_sort,Rects * vertical_bounds,Rects * horizontal_bounds)298 void RTreeBase::Node::BuildLowBounds(
299     const std::vector<NodeBase*>& vertical_sort,
300     const std::vector<NodeBase*>& horizontal_sort,
301     Rects* vertical_bounds,
302     Rects* horizontal_bounds) {
303   Rect vertical_bounds_rect;
304   vertical_bounds->reserve(vertical_sort.size());
305   for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin();
306        i != vertical_sort.end();
307        ++i) {
308     vertical_bounds_rect.Union((*i)->rect());
309     vertical_bounds->push_back(vertical_bounds_rect);
310   }
311 
312   Rect horizontal_bounds_rect;
313   horizontal_bounds->reserve(horizontal_sort.size());
314   for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin();
315        i != horizontal_sort.end();
316        ++i) {
317     horizontal_bounds_rect.Union((*i)->rect());
318     horizontal_bounds->push_back(horizontal_bounds_rect);
319   }
320 }
321 
322 // static
BuildHighBounds(const std::vector<NodeBase * > & vertical_sort,const std::vector<NodeBase * > & horizontal_sort,Rects * vertical_bounds,Rects * horizontal_bounds)323 void RTreeBase::Node::BuildHighBounds(
324     const std::vector<NodeBase*>& vertical_sort,
325     const std::vector<NodeBase*>& horizontal_sort,
326     Rects* vertical_bounds,
327     Rects* horizontal_bounds) {
328   Rect vertical_bounds_rect;
329   vertical_bounds->reserve(vertical_sort.size());
330   for (std::vector<NodeBase*>::const_reverse_iterator i =
331            vertical_sort.rbegin();
332        i != vertical_sort.rend();
333        ++i) {
334     vertical_bounds_rect.Union((*i)->rect());
335     vertical_bounds->push_back(vertical_bounds_rect);
336   }
337   std::reverse(vertical_bounds->begin(), vertical_bounds->end());
338 
339   Rect horizontal_bounds_rect;
340   horizontal_bounds->reserve(horizontal_sort.size());
341   for (std::vector<NodeBase*>::const_reverse_iterator i =
342            horizontal_sort.rbegin();
343        i != horizontal_sort.rend();
344        ++i) {
345     horizontal_bounds_rect.Union((*i)->rect());
346     horizontal_bounds->push_back(horizontal_bounds_rect);
347   }
348   std::reverse(horizontal_bounds->begin(), horizontal_bounds->end());
349 }
350 
ChooseSplitIndex(size_t start_index,size_t end_index,const Rects & low_bounds,const Rects & high_bounds)351 size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index,
352                                          size_t end_index,
353                                          const Rects& low_bounds,
354                                          const Rects& high_bounds) {
355   DCHECK_EQ(low_bounds.size(), high_bounds.size());
356 
357   int smallest_overlap_area = UnionRects(
358       low_bounds[start_index], high_bounds[start_index]).size().GetArea();
359   int smallest_combined_area = low_bounds[start_index].size().GetArea() +
360       high_bounds[start_index].size().GetArea();
361   size_t optimal_split_index = start_index;
362   for (size_t p = start_index + 1; p < end_index; ++p) {
363     const int overlap_area =
364         UnionRects(low_bounds[p], high_bounds[p]).size().GetArea();
365     const int combined_area =
366         low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea();
367     if ((overlap_area < smallest_overlap_area) ||
368         ((overlap_area == smallest_overlap_area) &&
369          (combined_area < smallest_combined_area))) {
370       smallest_overlap_area = overlap_area;
371       smallest_combined_area = combined_area;
372       optimal_split_index = p;
373     }
374   }
375 
376   // optimal_split_index currently points at the last element in the first set,
377   // so advance it by 1 to point at the first element in the second set.
378   return optimal_split_index + 1;
379 }
380 
381 // static
SmallestMarginSum(size_t start_index,size_t end_index,const Rects & low_bounds,const Rects & high_bounds)382 int RTreeBase::Node::SmallestMarginSum(size_t start_index,
383                                        size_t end_index,
384                                        const Rects& low_bounds,
385                                        const Rects& high_bounds) {
386   DCHECK_EQ(low_bounds.size(), high_bounds.size());
387   DCHECK_LT(start_index, low_bounds.size());
388   DCHECK_LE(start_index, end_index);
389   DCHECK_LE(end_index, low_bounds.size());
390   Rects::const_iterator i(low_bounds.begin() + start_index);
391   Rects::const_iterator j(high_bounds.begin() + start_index);
392   int smallest_sum = i->width() + i->height() + j->width() + j->height();
393   for (; i != (low_bounds.begin() + end_index); ++i, ++j) {
394     smallest_sum = std::min(
395         smallest_sum, i->width() + i->height() + j->width() + j->height());
396   }
397 
398   return smallest_sum;
399 }
400 
RecomputeLocalBounds()401 void RTreeBase::Node::RecomputeLocalBounds() {
402   Rect bounds;
403   for (size_t i = 0; i < children_.size(); ++i)
404     bounds.Union(children_[i]->rect());
405 
406   set_rect(bounds);
407 }
408 
OverlapIncreaseToAdd(const Rect & rect,const NodeBase * candidate_node,const Rect & expanded_rect) const409 int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect,
410                                           const NodeBase* candidate_node,
411                                           const Rect& expanded_rect) const {
412   DCHECK(candidate_node);
413 
414   // Early-out when |rect| is contained completely within |candidate|.
415   if (candidate_node->rect().Contains(rect))
416     return 0;
417 
418   int total_original_overlap = 0;
419   int total_expanded_overlap = 0;
420 
421   // Now calculate overlap with all other rects in this node.
422   for (Nodes::const_iterator it = children_.begin();
423        it != children_.end(); ++it) {
424     // Skip calculating overlap with the candidate rect.
425     if ((*it) == candidate_node)
426       continue;
427     NodeBase* overlap_node = (*it);
428     total_original_overlap += IntersectRects(
429         candidate_node->rect(), overlap_node->rect()).size().GetArea();
430     Rect expanded_overlap_rect = expanded_rect;
431     expanded_overlap_rect.Intersect(overlap_node->rect());
432     total_expanded_overlap += expanded_overlap_rect.size().GetArea();
433   }
434 
435   return total_expanded_overlap - total_original_overlap;
436 }
437 
DivideChildren(const Rects & low_bounds,const Rects & high_bounds,const std::vector<NodeBase * > & sorted_children,size_t split_index)438 scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren(
439     const Rects& low_bounds,
440     const Rects& high_bounds,
441     const std::vector<NodeBase*>& sorted_children,
442     size_t split_index) {
443   DCHECK_EQ(low_bounds.size(), high_bounds.size());
444   DCHECK_EQ(low_bounds.size(), sorted_children.size());
445   DCHECK_LT(split_index, low_bounds.size());
446   DCHECK_GT(split_index, 0U);
447 
448   scoped_ptr<Node> sibling(new Node(level_));
449   sibling->set_parent(parent());
450   set_rect(low_bounds[split_index - 1]);
451   sibling->set_rect(high_bounds[split_index]);
452 
453   // Our own children_ vector is unsorted, so we wipe it out and divide the
454   // sorted bounds rects between ourselves and our sibling.
455   children_.weak_clear();
456   children_.insert(children_.end(),
457                    sorted_children.begin(),
458                    sorted_children.begin() + split_index);
459   sibling->children_.insert(sibling->children_.end(),
460                             sorted_children.begin() + split_index,
461                             sorted_children.end());
462 
463   for (size_t i = 0; i < sibling->children_.size(); ++i)
464     sibling->children_[i]->set_parent(sibling.get());
465 
466   return sibling.PassAs<NodeBase>();
467 }
468 
LeastOverlapIncrease(const Rect & node_rect,const Rects & expanded_rects)469 RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease(
470     const Rect& node_rect,
471     const Rects& expanded_rects) {
472   NodeBase* best_node = children_.front();
473   int least_overlap_increase =
474       OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]);
475   for (size_t i = 1; i < children_.size(); ++i) {
476     int overlap_increase =
477         OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]);
478     if (overlap_increase < least_overlap_increase) {
479       least_overlap_increase = overlap_increase;
480       best_node = children_[i];
481     } else if (overlap_increase == least_overlap_increase) {
482       // If we are tied at zero there is no possible better overlap increase,
483       // so we can report a tie early.
484       if (overlap_increase == 0)
485         return NULL;
486 
487       best_node = NULL;
488     }
489   }
490 
491   // Ensure that our children are always Nodes and not Records.
492   DCHECK_GE(level_, 1);
493   return static_cast<Node*>(best_node);
494 }
495 
LeastAreaEnlargement(const Rect & node_rect,const Rects & expanded_rects)496 RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement(
497     const Rect& node_rect,
498     const Rects& expanded_rects) {
499   DCHECK(!children_.empty());
500   DCHECK_EQ(children_.size(), expanded_rects.size());
501 
502   NodeBase* best_node = children_.front();
503   int least_area_enlargement =
504       expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea();
505   for (size_t i = 1; i < children_.size(); ++i) {
506     NodeBase* candidate_node = children_[i];
507     int area_change = expanded_rects[i].size().GetArea() -
508                       candidate_node->rect().size().GetArea();
509     DCHECK_GE(area_change, 0);
510     if (area_change < least_area_enlargement) {
511       best_node = candidate_node;
512       least_area_enlargement = area_change;
513     } else if (area_change == least_area_enlargement &&
514         candidate_node->rect().size().GetArea() <
515             best_node->rect().size().GetArea()) {
516       // Ties are broken by choosing the entry with the least area.
517       best_node = candidate_node;
518     }
519   }
520 
521   // Ensure that our children are always Nodes and not Records.
522   DCHECK_GE(level_, 1);
523   return static_cast<Node*>(best_node);
524 }
525 
526 
527 // RTreeBase ------------------------------------------------------------------
528 
RTreeBase(size_t min_children,size_t max_children)529 RTreeBase::RTreeBase(size_t min_children, size_t max_children)
530     : root_(new Node()),
531       min_children_(min_children),
532       max_children_(max_children) {
533   DCHECK_GE(min_children_, 2U);
534   DCHECK_LE(min_children_, max_children_ / 2U);
535 }
536 
~RTreeBase()537 RTreeBase::~RTreeBase() {
538 }
539 
InsertNode(scoped_ptr<NodeBase> node,int * highest_reinsert_level)540 void RTreeBase::InsertNode(
541     scoped_ptr<NodeBase> node, int* highest_reinsert_level) {
542   // Find the most appropriate parent to insert node into.
543   Node* parent = root_->ChooseSubtree(node.get());
544   DCHECK(parent);
545   // Verify ChooseSubtree returned a Node at the correct level.
546   DCHECK_EQ(parent->Level(), node->Level() + 1);
547   Node* insert_parent = static_cast<Node*>(parent);
548   NodeBase* needs_bounds_recomputed = insert_parent->parent();
549   Nodes reinserts;
550   // Attempt to insert the Node, if this overflows the Node we must handle it.
551   while (insert_parent &&
552          insert_parent->AddChild(node.Pass()) > max_children_) {
553     // If we have yet to re-insert nodes at this level during this data insert,
554     // and we're not at the root, R*-Tree calls for re-insertion of some of the
555     // nodes, resulting in a better balance on the tree.
556     if (insert_parent->parent() &&
557         insert_parent->Level() > *highest_reinsert_level) {
558       insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts);
559       // Adjust highest_reinsert_level to this level.
560       *highest_reinsert_level = insert_parent->Level();
561       // RemoveNodesForReinsert() does not recompute bounds, so mark it.
562       needs_bounds_recomputed = insert_parent;
563       break;
564     }
565 
566     // Split() will create a sibling to insert_parent both of which will have
567     // valid bounds, but this invalidates their parent's bounds.
568     node = insert_parent->Split(min_children_, max_children_);
569     insert_parent = static_cast<Node*>(insert_parent->parent());
570     needs_bounds_recomputed = insert_parent;
571   }
572 
573   // If we have a Node to insert, and we hit the root of the current tree,
574   // we create a new root which is the parent of the current root and the
575   // insert_node. Note that we must release() the |root_| since
576   // ConstructParent() will take ownership of it.
577   if (!insert_parent && node) {
578     root_ = root_.release()->ConstructParent();
579     root_->AddChild(node.Pass());
580   }
581 
582   // Recompute bounds along insertion path.
583   if (needs_bounds_recomputed)
584     needs_bounds_recomputed->RecomputeBoundsUpToRoot();
585 
586   // Complete re-inserts, if any. The algorithm only allows for one invocation
587   // of RemoveNodesForReinsert() per level of the tree in an overall call to
588   // Insert().
589   while (!reinserts.empty()) {
590     Nodes::iterator last_element = reinserts.end() - 1;
591     NodeBase* temp_ptr(*last_element);
592     reinserts.weak_erase(last_element);
593     InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level);
594   }
595 }
596 
RemoveNode(NodeBase * node)597 scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) {
598   // We need to remove this node from its parent.
599   Node* parent = static_cast<Node*>(node->parent());
600   // Record nodes are never allowed as the root, so we should always have a
601   // parent.
602   DCHECK(parent);
603   // Should always be a leaf that had the record.
604   DCHECK_EQ(0, parent->Level());
605 
606   Nodes orphans;
607   scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans));
608 
609   // It's possible that by removing |node| from |parent| we have made |parent|
610   // have less than the minimum number of children, in which case we will need
611   // to remove and delete |parent| while reinserting any other children that it
612   // had. We traverse up the tree doing this until we remove a child from a
613   // parent that still has greater than or equal to the minimum number of Nodes.
614   while (parent->count() < min_children_) {
615     NodeBase* child = parent;
616     parent = static_cast<Node*>(parent->parent());
617 
618     // If we've hit the root, stop.
619     if (!parent)
620       break;
621 
622     parent->RemoveChild(child, &orphans);
623   }
624 
625   // If we stopped deleting nodes up the tree before encountering the root,
626   // we'll need to fix up the bounds from the first parent we didn't delete
627   // up to the root.
628   if (parent)
629     parent->RecomputeBoundsUpToRoot();
630   else
631     root_->RecomputeBoundsUpToRoot();
632 
633   while (!orphans.empty()) {
634     Nodes::iterator last_element = orphans.end() - 1;
635     NodeBase* temp_ptr(*last_element);
636     orphans.weak_erase(last_element);
637     int starting_level = -1;
638     InsertNode(make_scoped_ptr(temp_ptr), &starting_level);
639   }
640 
641   return removed_node.Pass();
642 }
643 
PruneRootIfNecessary()644 void RTreeBase::PruneRootIfNecessary() {
645   if (root()->count() == 1 && root()->Level() > 0) {
646     // Awkward reset(cast(release)) pattern here because there's no better way
647     // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase
648     // to Node.
649     root_.reset(
650         static_cast<Node*>(root_->RemoveAndReturnLastChild().release()));
651   }
652 }
653 
ResetRoot()654 void RTreeBase::ResetRoot() {
655   root_.reset(new Node());
656 }
657 
658 }  // namespace gfx
659