• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    licensing@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  */
49 
50 /* This implementation of poly1305 is by Andrew Moon
51  * (https://github.com/floodyberry/poly1305-donna) and released as public
52  * domain. It implements SIMD vectorization based on the algorithm described in
53  * http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte
54  * block size
55 */
56 
57 #include <emmintrin.h>
58 #include <stdint.h>
59 #include <openssl/opensslconf.h>
60 
61 #if !defined(OPENSSL_NO_POLY1305)
62 
63 #include <openssl/poly1305.h>
64 
65 #define ALIGN(x) __attribute__((aligned(x)))
66 #define INLINE inline
67 #define U8TO64_LE(m) (*(uint64_t*)(m))
68 #define U8TO32_LE(m) (*(uint32_t*)(m))
69 #define U64TO8_LE(m,v) (*(uint64_t*)(m)) = v
70 
71 typedef __m128i xmmi;
72 typedef unsigned __int128 uint128_t;
73 
74 static const uint32_t ALIGN(16) poly1305_x64_sse2_message_mask[4] =
75 	{(1 << 26) - 1, 0, (1 << 26) - 1, 0};
76 static const uint32_t ALIGN(16) poly1305_x64_sse2_5[4] = {5, 0, 5, 0};
77 static const uint32_t ALIGN(16) poly1305_x64_sse2_1shl128[4] =
78 	{(1 << 24), 0, (1 << 24), 0};
79 
80 static uint128_t INLINE
add128(uint128_t a,uint128_t b)81 add128(uint128_t a, uint128_t b)
82 	{
83 	return a + b;
84 	}
85 
86 static uint128_t INLINE
add128_64(uint128_t a,uint64_t b)87 add128_64(uint128_t a, uint64_t b)
88 	{
89 	return a + b;
90 	}
91 
92 static uint128_t INLINE
mul64x64_128(uint64_t a,uint64_t b)93 mul64x64_128(uint64_t a, uint64_t b)
94 	{
95 	return (uint128_t)a * b;
96 	}
97 
98 static uint64_t INLINE
lo128(uint128_t a)99 lo128(uint128_t a)
100 	{
101 	return (uint64_t)a;
102 	}
103 
104 static uint64_t INLINE
shr128(uint128_t v,const int shift)105 shr128(uint128_t v, const int shift)
106 	{
107 	return (uint64_t)(v >> shift);
108 	}
109 
110 static uint64_t INLINE
shr128_pair(uint64_t hi,uint64_t lo,const int shift)111 shr128_pair(uint64_t hi, uint64_t lo, const int shift)
112 	{
113 	return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift);
114 	}
115 
116 typedef struct poly1305_power_t
117 	{
118 	union
119 		{
120 		xmmi v;
121 		uint64_t u[2];
122 		uint32_t d[4];
123 		} R20,R21,R22,R23,R24,S21,S22,S23,S24;
124 	} poly1305_power;
125 
126 typedef struct poly1305_state_internal_t
127 	{
128 	poly1305_power P[2];     /* 288 bytes, top 32 bit halves unused = 144
129 				    bytes of free storage */
130 	union
131 		{
132 		xmmi H[5];           /*  80 bytes  */
133 		uint64_t HH[10];
134 		};
135 	/* uint64_t r0,r1,r2;       [24 bytes] */
136 	/* uint64_t pad0,pad1;      [16 bytes] */
137 	uint64_t started;        /*   8 bytes  */
138 	uint64_t leftover;       /*   8 bytes  */
139 	uint8_t buffer[64];      /*  64 bytes  */
140 	} poly1305_state_internal;   /* 448 bytes total + 63 bytes for
141 					alignment = 511 bytes raw */
142 
143 static poly1305_state_internal INLINE
poly1305_aligned_state(poly1305_state * state)144 *poly1305_aligned_state(poly1305_state *state)
145 	{
146 	return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63);
147 	}
148 
149 /* copy 0-63 bytes */
150 static void INLINE
poly1305_block_copy(uint8_t * dst,const uint8_t * src,size_t bytes)151 poly1305_block_copy(uint8_t *dst, const uint8_t *src, size_t bytes)
152 	{
153 	size_t offset = src - dst;
154 	if (bytes & 32)
155 		{
156 		_mm_storeu_si128((xmmi *)(dst + 0), _mm_loadu_si128((xmmi *)(dst + offset + 0)));
157 		_mm_storeu_si128((xmmi *)(dst + 16), _mm_loadu_si128((xmmi *)(dst + offset + 16)));
158 		dst += 32;
159 		}
160 	if (bytes & 16)
161 		{
162 		_mm_storeu_si128((xmmi *)dst,
163 				 _mm_loadu_si128((xmmi *)(dst + offset)));
164 		dst += 16;
165 		}
166 	if (bytes &  8)
167 		{
168 		*(uint64_t *)dst = *(uint64_t *)(dst + offset);
169 		dst += 8;
170 		}
171 	if (bytes &  4)
172 		{
173 		*(uint32_t *)dst = *(uint32_t *)(dst + offset);
174 		dst += 4;
175 		}
176 	if (bytes &  2)
177 		{
178 		*(uint16_t *)dst = *(uint16_t *)(dst + offset);
179 		dst += 2;
180 		}
181 	if (bytes &  1)
182 		{
183 		*( uint8_t *)dst = *( uint8_t *)(dst + offset);
184 		}
185 	}
186 
187 /* zero 0-15 bytes */
188 static void INLINE
poly1305_block_zero(uint8_t * dst,size_t bytes)189 poly1305_block_zero(uint8_t *dst, size_t bytes)
190 	{
191 	if (bytes &  8) { *(uint64_t *)dst = 0; dst += 8; }
192 	if (bytes &  4) { *(uint32_t *)dst = 0; dst += 4; }
193 	if (bytes &  2) { *(uint16_t *)dst = 0; dst += 2; }
194 	if (bytes &  1) { *( uint8_t *)dst = 0; }
195 	}
196 
197 static size_t INLINE
poly1305_min(size_t a,size_t b)198 poly1305_min(size_t a, size_t b)
199 	{
200 	return (a < b) ? a : b;
201 	}
202 
203 void
CRYPTO_poly1305_init(poly1305_state * state,const unsigned char key[32])204 CRYPTO_poly1305_init(poly1305_state *state, const unsigned char key[32])
205 	{
206 	poly1305_state_internal *st = poly1305_aligned_state(state);
207 	poly1305_power *p;
208 	uint64_t r0,r1,r2;
209 	uint64_t t0,t1;
210 
211 	/* clamp key */
212 	t0 = U8TO64_LE(key + 0);
213 	t1 = U8TO64_LE(key + 8);
214 	r0 = t0 & 0xffc0fffffff; t0 >>= 44; t0 |= t1 << 20;
215 	r1 = t0 & 0xfffffc0ffff; t1 >>= 24;
216 	r2 = t1 & 0x00ffffffc0f;
217 
218 	/* store r in un-used space of st->P[1] */
219 	p = &st->P[1];
220 	p->R20.d[1] = (uint32_t)(r0      );
221 	p->R20.d[3] = (uint32_t)(r0 >> 32);
222 	p->R21.d[1] = (uint32_t)(r1      );
223 	p->R21.d[3] = (uint32_t)(r1 >> 32);
224 	p->R22.d[1] = (uint32_t)(r2      );
225 	p->R22.d[3] = (uint32_t)(r2 >> 32);
226 
227 	/* store pad */
228 	p->R23.d[1] = U8TO32_LE(key + 16);
229 	p->R23.d[3] = U8TO32_LE(key + 20);
230 	p->R24.d[1] = U8TO32_LE(key + 24);
231 	p->R24.d[3] = U8TO32_LE(key + 28);
232 
233 	/* H = 0 */
234 	st->H[0] = _mm_setzero_si128();
235 	st->H[1] = _mm_setzero_si128();
236 	st->H[2] = _mm_setzero_si128();
237 	st->H[3] = _mm_setzero_si128();
238 	st->H[4] = _mm_setzero_si128();
239 
240 	st->started = 0;
241 	st->leftover = 0;
242 	}
243 
244 static void
poly1305_first_block(poly1305_state_internal * st,const uint8_t * m)245 poly1305_first_block(poly1305_state_internal *st, const uint8_t *m)
246 	{
247 	const xmmi MMASK =
248 		_mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
249 	const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
250 	const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
251 	xmmi T5,T6;
252 	poly1305_power *p;
253 	uint128_t d[3];
254 	uint64_t r0,r1,r2;
255 	uint64_t r20,r21,r22,s22;
256 	uint64_t pad0,pad1;
257 	uint64_t c;
258 	uint64_t i;
259 
260 	/* pull out stored info */
261 	p = &st->P[1];
262 
263 	r0   = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
264 	r1   = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
265 	r2   = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
266 	pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
267 	pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
268 
269 	/* compute powers r^2,r^4 */
270 	r20 = r0;
271 	r21 = r1;
272 	r22 = r2;
273 	for (i = 0; i < 2; i++)
274 		{
275 		s22 = r22 * (5 << 2);
276 
277 		d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22));
278 		d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21));
279 		d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20));
280 
281 		                           r20 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44);
282 		d[1] = add128_64(d[1], c); r21 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44);
283 		d[2] = add128_64(d[2], c); r22 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42);
284 		r20 += c * 5; c = (r20 >> 44); r20 = r20 & 0xfffffffffff;
285 		r21 += c;
286 
287 		p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)( r20                     ) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
288 		p->R21.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
289 		p->R22.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)               ) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
290 		p->R23.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
291 		p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16)              )            ), _MM_SHUFFLE(1,0,1,0));
292 		p->S21.v = _mm_mul_epu32(p->R21.v, FIVE);
293 		p->S22.v = _mm_mul_epu32(p->R22.v, FIVE);
294 		p->S23.v = _mm_mul_epu32(p->R23.v, FIVE);
295 		p->S24.v = _mm_mul_epu32(p->R24.v, FIVE);
296 		p--;
297 		}
298 
299 	/* put saved info back */
300 	p = &st->P[1];
301 	p->R20.d[1] = (uint32_t)(r0        );
302 	p->R20.d[3] = (uint32_t)(r0   >> 32);
303 	p->R21.d[1] = (uint32_t)(r1        );
304 	p->R21.d[3] = (uint32_t)(r1   >> 32);
305 	p->R22.d[1] = (uint32_t)(r2        );
306 	p->R22.d[3] = (uint32_t)(r2   >> 32);
307 	p->R23.d[1] = (uint32_t)(pad0      );
308 	p->R23.d[3] = (uint32_t)(pad0 >> 32);
309 	p->R24.d[1] = (uint32_t)(pad1      );
310 	p->R24.d[3] = (uint32_t)(pad1 >> 32);
311 
312 	/* H = [Mx,My] */
313 	T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
314 	T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
315 	st->H[0] = _mm_and_si128(MMASK, T5);
316 	st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
317 	T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
318 	st->H[2] = _mm_and_si128(MMASK, T5);
319 	st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
320 	st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
321 	}
322 
323 static void
poly1305_blocks(poly1305_state_internal * st,const uint8_t * m,size_t bytes)324 poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, size_t bytes)
325 	{
326 	const xmmi MMASK = _mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
327 	const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
328 	const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
329 
330 	poly1305_power *p;
331 	xmmi H0,H1,H2,H3,H4;
332 	xmmi T0,T1,T2,T3,T4,T5,T6;
333 	xmmi M0,M1,M2,M3,M4;
334 	xmmi C1,C2;
335 
336 	H0 = st->H[0];
337 	H1 = st->H[1];
338 	H2 = st->H[2];
339 	H3 = st->H[3];
340 	H4 = st->H[4];
341 
342 	while (bytes >= 64)
343 		{
344 		/* H *= [r^4,r^4] */
345 		p = &st->P[0];
346 		T0 = _mm_mul_epu32(H0, p->R20.v);
347 		T1 = _mm_mul_epu32(H0, p->R21.v);
348 		T2 = _mm_mul_epu32(H0, p->R22.v);
349 		T3 = _mm_mul_epu32(H0, p->R23.v);
350 		T4 = _mm_mul_epu32(H0, p->R24.v);
351 		T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
352 		T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
353 		T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
354 		T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
355 		T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
356 		T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
357 		T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
358 		T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
359 		T5 = _mm_mul_epu32(H1, p->R23.v);                                   T4 = _mm_add_epi64(T4, T5);
360 		T5 = _mm_mul_epu32(H2, p->R22.v);                                   T4 = _mm_add_epi64(T4, T5);
361 		T5 = _mm_mul_epu32(H3, p->R21.v);                                   T4 = _mm_add_epi64(T4, T5);
362 		T5 = _mm_mul_epu32(H4, p->R20.v);                                   T4 = _mm_add_epi64(T4, T5);
363 
364 		/* H += [Mx,My]*[r^2,r^2] */
365 		T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
366 		T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
367 		M0 = _mm_and_si128(MMASK, T5);
368 		M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
369 		T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
370 		M2 = _mm_and_si128(MMASK, T5);
371 		M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
372 		M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
373 
374 		p = &st->P[1];
375 		T5 = _mm_mul_epu32(M0, p->R20.v); T6 = _mm_mul_epu32(M0, p->R21.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
376 		T5 = _mm_mul_epu32(M1, p->S24.v); T6 = _mm_mul_epu32(M1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
377 		T5 = _mm_mul_epu32(M2, p->S23.v); T6 = _mm_mul_epu32(M2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
378 		T5 = _mm_mul_epu32(M3, p->S22.v); T6 = _mm_mul_epu32(M3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
379 		T5 = _mm_mul_epu32(M4, p->S21.v); T6 = _mm_mul_epu32(M4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
380 		T5 = _mm_mul_epu32(M0, p->R22.v); T6 = _mm_mul_epu32(M0, p->R23.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
381 		T5 = _mm_mul_epu32(M1, p->R21.v); T6 = _mm_mul_epu32(M1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
382 		T5 = _mm_mul_epu32(M2, p->R20.v); T6 = _mm_mul_epu32(M2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
383 		T5 = _mm_mul_epu32(M3, p->S24.v); T6 = _mm_mul_epu32(M3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
384 		T5 = _mm_mul_epu32(M4, p->S23.v); T6 = _mm_mul_epu32(M4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
385 		T5 = _mm_mul_epu32(M0, p->R24.v);                                   T4 = _mm_add_epi64(T4, T5);
386 		T5 = _mm_mul_epu32(M1, p->R23.v);                                   T4 = _mm_add_epi64(T4, T5);
387 		T5 = _mm_mul_epu32(M2, p->R22.v);                                   T4 = _mm_add_epi64(T4, T5);
388 		T5 = _mm_mul_epu32(M3, p->R21.v);                                   T4 = _mm_add_epi64(T4, T5);
389 		T5 = _mm_mul_epu32(M4, p->R20.v);                                   T4 = _mm_add_epi64(T4, T5);
390 
391 		/* H += [Mx,My] */
392 		T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 32)), _mm_loadl_epi64((xmmi *)(m + 48)));
393 		T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 40)), _mm_loadl_epi64((xmmi *)(m + 56)));
394 		M0 = _mm_and_si128(MMASK, T5);
395 		M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
396 		T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
397 		M2 = _mm_and_si128(MMASK, T5);
398 		M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
399 		M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
400 
401 		T0 = _mm_add_epi64(T0, M0);
402 		T1 = _mm_add_epi64(T1, M1);
403 		T2 = _mm_add_epi64(T2, M2);
404 		T3 = _mm_add_epi64(T3, M3);
405 		T4 = _mm_add_epi64(T4, M4);
406 
407 		/* reduce */
408 		C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
409 		C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
410 		C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
411 		C1 = _mm_srli_epi64(T3, 26);                              T3 = _mm_and_si128(T3, MMASK);                                T4 = _mm_add_epi64(T4, C1);
412 
413 		/* H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) */
414 		H0 = T0;
415 		H1 = T1;
416 		H2 = T2;
417 		H3 = T3;
418 		H4 = T4;
419 
420 		m += 64;
421 		bytes -= 64;
422 		}
423 
424 	st->H[0] = H0;
425 	st->H[1] = H1;
426 	st->H[2] = H2;
427 	st->H[3] = H3;
428 	st->H[4] = H4;
429 	}
430 
431 static size_t
poly1305_combine(poly1305_state_internal * st,const uint8_t * m,size_t bytes)432 poly1305_combine(poly1305_state_internal *st, const uint8_t *m, size_t bytes)
433 	{
434 	const xmmi MMASK =
435 		_mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
436 	const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
437 	const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
438 
439 	poly1305_power *p;
440 	xmmi H0,H1,H2,H3,H4;
441 	xmmi M0,M1,M2,M3,M4;
442 	xmmi T0,T1,T2,T3,T4,T5,T6;
443 	xmmi C1,C2;
444 
445 	uint64_t r0,r1,r2;
446 	uint64_t t0,t1,t2,t3,t4;
447 	uint64_t c;
448 	size_t consumed = 0;
449 
450 	H0 = st->H[0];
451 	H1 = st->H[1];
452 	H2 = st->H[2];
453 	H3 = st->H[3];
454 	H4 = st->H[4];
455 
456 	/* p = [r^2,r^2] */
457 	p = &st->P[1];
458 
459 	if (bytes >= 32)
460 		{
461 		/* H *= [r^2,r^2] */
462 		T0 = _mm_mul_epu32(H0, p->R20.v);
463 		T1 = _mm_mul_epu32(H0, p->R21.v);
464 		T2 = _mm_mul_epu32(H0, p->R22.v);
465 		T3 = _mm_mul_epu32(H0, p->R23.v);
466 		T4 = _mm_mul_epu32(H0, p->R24.v);
467 		T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
468 		T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
469 		T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
470 		T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
471 		T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
472 		T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
473 		T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
474 		T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
475 		T5 = _mm_mul_epu32(H1, p->R23.v);                                   T4 = _mm_add_epi64(T4, T5);
476 		T5 = _mm_mul_epu32(H2, p->R22.v);                                   T4 = _mm_add_epi64(T4, T5);
477 		T5 = _mm_mul_epu32(H3, p->R21.v);                                   T4 = _mm_add_epi64(T4, T5);
478 		T5 = _mm_mul_epu32(H4, p->R20.v);                                   T4 = _mm_add_epi64(T4, T5);
479 
480 		/* H += [Mx,My] */
481 		T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
482 		T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
483 		M0 = _mm_and_si128(MMASK, T5);
484 		M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
485 		T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
486 		M2 = _mm_and_si128(MMASK, T5);
487 		M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
488 		M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
489 
490 		T0 = _mm_add_epi64(T0, M0);
491 		T1 = _mm_add_epi64(T1, M1);
492 		T2 = _mm_add_epi64(T2, M2);
493 		T3 = _mm_add_epi64(T3, M3);
494 		T4 = _mm_add_epi64(T4, M4);
495 
496 		/* reduce */
497 		C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
498 		C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
499 		C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
500 		C1 = _mm_srli_epi64(T3, 26);                              T3 = _mm_and_si128(T3, MMASK);                                T4 = _mm_add_epi64(T4, C1);
501 
502 		/* H = (H*[r^2,r^2] + [Mx,My]) */
503 		H0 = T0;
504 		H1 = T1;
505 		H2 = T2;
506 		H3 = T3;
507 		H4 = T4;
508 
509 		consumed = 32;
510 		}
511 
512 	/* finalize, H *= [r^2,r] */
513 	r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
514 	r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
515 	r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
516 
517 	p->R20.d[2] = (uint32_t)( r0                    ) & 0x3ffffff;
518 	p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff;
519 	p->R22.d[2] = (uint32_t)((r1 >> 8)              ) & 0x3ffffff;
520 	p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff;
521 	p->R24.d[2] = (uint32_t)((r2 >> 16)             )            ;
522 	p->S21.d[2] = p->R21.d[2] * 5;
523 	p->S22.d[2] = p->R22.d[2] * 5;
524 	p->S23.d[2] = p->R23.d[2] * 5;
525 	p->S24.d[2] = p->R24.d[2] * 5;
526 
527 	/* H *= [r^2,r] */
528 	T0 = _mm_mul_epu32(H0, p->R20.v);
529 	T1 = _mm_mul_epu32(H0, p->R21.v);
530 	T2 = _mm_mul_epu32(H0, p->R22.v);
531 	T3 = _mm_mul_epu32(H0, p->R23.v);
532 	T4 = _mm_mul_epu32(H0, p->R24.v);
533 	T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
534 	T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
535 	T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
536 	T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
537 	T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
538 	T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
539 	T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
540 	T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
541 	T5 = _mm_mul_epu32(H1, p->R23.v);                                   T4 = _mm_add_epi64(T4, T5);
542 	T5 = _mm_mul_epu32(H2, p->R22.v);                                   T4 = _mm_add_epi64(T4, T5);
543 	T5 = _mm_mul_epu32(H3, p->R21.v);                                   T4 = _mm_add_epi64(T4, T5);
544 	T5 = _mm_mul_epu32(H4, p->R20.v);                                   T4 = _mm_add_epi64(T4, T5);
545 
546 	C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
547 	C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
548 	C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
549 	C1 = _mm_srli_epi64(T3, 26);                              T3 = _mm_and_si128(T3, MMASK);                                T4 = _mm_add_epi64(T4, C1);
550 
551 	/* H = H[0]+H[1] */
552 	H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8));
553 	H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8));
554 	H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8));
555 	H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8));
556 	H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8));
557 
558 	t0 = _mm_cvtsi128_si32(H0)    ; c = (t0 >> 26); t0 &= 0x3ffffff;
559 	t1 = _mm_cvtsi128_si32(H1) + c; c = (t1 >> 26); t1 &= 0x3ffffff;
560 	t2 = _mm_cvtsi128_si32(H2) + c; c = (t2 >> 26); t2 &= 0x3ffffff;
561 	t3 = _mm_cvtsi128_si32(H3) + c; c = (t3 >> 26); t3 &= 0x3ffffff;
562 	t4 = _mm_cvtsi128_si32(H4) + c; c = (t4 >> 26); t4 &= 0x3ffffff;
563 	t0 =              t0 + (c * 5); c = (t0 >> 26); t0 &= 0x3ffffff;
564 	t1 =              t1 + c;
565 
566 	st->HH[0] =  ((t0      ) | (t1 << 26)             ) & 0xfffffffffffull;
567 	st->HH[1] =  ((t1 >> 18) | (t2 <<  8) | (t3 << 34)) & 0xfffffffffffull;
568 	st->HH[2] =  ((t3 >> 10) | (t4 << 16)             ) & 0x3ffffffffffull;
569 
570 	return consumed;
571 	}
572 
573 void
CRYPTO_poly1305_update(poly1305_state * state,const unsigned char * m,size_t bytes)574 CRYPTO_poly1305_update(poly1305_state *state, const unsigned char *m,
575 		       size_t bytes)
576 	{
577 	poly1305_state_internal *st = poly1305_aligned_state(state);
578 	size_t want;
579 
580 	/* need at least 32 initial bytes to start the accelerated branch */
581 	if (!st->started)
582 		{
583 		if ((st->leftover == 0) && (bytes > 32))
584 			{
585 			poly1305_first_block(st, m);
586 			m += 32;
587 			bytes -= 32;
588 			}
589 		else
590 			{
591 			want = poly1305_min(32 - st->leftover, bytes);
592 			poly1305_block_copy(st->buffer + st->leftover, m, want);
593 			bytes -= want;
594 			m += want;
595 			st->leftover += want;
596 			if ((st->leftover < 32) || (bytes == 0))
597 				return;
598 			poly1305_first_block(st, st->buffer);
599 			st->leftover = 0;
600 			}
601 		st->started = 1;
602 		}
603 
604 	/* handle leftover */
605 	if (st->leftover)
606 		{
607 		want = poly1305_min(64 - st->leftover, bytes);
608 		poly1305_block_copy(st->buffer + st->leftover, m, want);
609 		bytes -= want;
610 		m += want;
611 		st->leftover += want;
612 		if (st->leftover < 64)
613 			return;
614 		poly1305_blocks(st, st->buffer, 64);
615 		st->leftover = 0;
616 		}
617 
618 	/* process 64 byte blocks */
619 	if (bytes >= 64)
620 		{
621 		want = (bytes & ~63);
622 		poly1305_blocks(st, m, want);
623 		m += want;
624 		bytes -= want;
625 		}
626 
627 	if (bytes)
628 		{
629 		poly1305_block_copy(st->buffer + st->leftover, m, bytes);
630 		st->leftover += bytes;
631 		}
632 	}
633 
634 void
CRYPTO_poly1305_finish(poly1305_state * state,unsigned char mac[16])635 CRYPTO_poly1305_finish(poly1305_state *state, unsigned char mac[16])
636 	{
637 	poly1305_state_internal *st = poly1305_aligned_state(state);
638 	size_t leftover = st->leftover;
639 	uint8_t *m = st->buffer;
640 	uint128_t d[3];
641 	uint64_t h0,h1,h2;
642 	uint64_t t0,t1;
643 	uint64_t g0,g1,g2,c,nc;
644 	uint64_t r0,r1,r2,s1,s2;
645 	poly1305_power *p;
646 
647 	if (st->started)
648 		{
649 		size_t consumed = poly1305_combine(st, m, leftover);
650 		leftover -= consumed;
651 		m += consumed;
652 		}
653 
654 	/* st->HH will either be 0 or have the combined result */
655 	h0 = st->HH[0];
656 	h1 = st->HH[1];
657 	h2 = st->HH[2];
658 
659 	p = &st->P[1];
660 	r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
661 	r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
662 	r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
663 	s1 = r1 * (5 << 2);
664 	s2 = r2 * (5 << 2);
665 
666 	if (leftover < 16)
667 		goto poly1305_donna_atmost15bytes;
668 
669 poly1305_donna_atleast16bytes:
670 	t0 = U8TO64_LE(m + 0);
671 	t1 = U8TO64_LE(m + 8);
672 	h0 += t0 & 0xfffffffffff;
673 	t0 = shr128_pair(t1, t0, 44);
674 	h1 += t0 & 0xfffffffffff;
675 	h2 += (t1 >> 24) | ((uint64_t)1 << 40);
676 
677 poly1305_donna_mul:
678 	d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), mul64x64_128(h2, s1));
679 	d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), mul64x64_128(h2, s2));
680 	d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), mul64x64_128(h2, r0));
681 	                           h0 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44);
682 	d[1] = add128_64(d[1], c); h1 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44);
683 	d[2] = add128_64(d[2], c); h2 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42);
684 	h0   += c * 5;
685 
686 	m += 16;
687 	leftover -= 16;
688 	if (leftover >= 16) goto poly1305_donna_atleast16bytes;
689 
690 	/* final bytes */
691 poly1305_donna_atmost15bytes:
692 	if (!leftover) goto poly1305_donna_finish;
693 
694 	m[leftover++] = 1;
695 	poly1305_block_zero(m + leftover, 16 - leftover);
696 	leftover = 16;
697 
698 	t0 = U8TO64_LE(m+0);
699 	t1 = U8TO64_LE(m+8);
700 	h0 += t0 & 0xfffffffffff; t0 = shr128_pair(t1, t0, 44);
701 	h1 += t0 & 0xfffffffffff;
702 	h2 += (t1 >> 24);
703 
704 	goto poly1305_donna_mul;
705 
706 poly1305_donna_finish:
707 	             c = (h0 >> 44); h0 &= 0xfffffffffff;
708 	h1 += c;     c = (h1 >> 44); h1 &= 0xfffffffffff;
709 	h2 += c;     c = (h2 >> 42); h2 &= 0x3ffffffffff;
710 	h0 += c * 5;
711 
712 	g0 = h0 + 5; c = (g0 >> 44); g0 &= 0xfffffffffff;
713 	g1 = h1 + c; c = (g1 >> 44); g1 &= 0xfffffffffff;
714 	g2 = h2 + c - ((uint64_t)1 << 42);
715 
716 	c = (g2 >> 63) - 1;
717 	nc = ~c;
718 	h0 = (h0 & nc) | (g0 & c);
719 	h1 = (h1 & nc) | (g1 & c);
720 	h2 = (h2 & nc) | (g2 & c);
721 
722 	/* pad */
723 	t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
724 	t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
725 	h0 += (t0 & 0xfffffffffff)    ; c = (h0 >> 44); h0 &= 0xfffffffffff; t0 = shr128_pair(t1, t0, 44);
726 	h1 += (t0 & 0xfffffffffff) + c; c = (h1 >> 44); h1 &= 0xfffffffffff; t1 = (t1 >> 24);
727 	h2 += (t1                ) + c;
728 
729 	U64TO8_LE(mac + 0, ((h0      ) | (h1 << 44)));
730 	U64TO8_LE(mac + 8, ((h1 >> 20) | (h2 << 24)));
731 	}
732 
733 #endif  /* !OPENSSL_NO_POLY1305 */
734