1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_common.h"
16
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_stackdepot.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_stoptheworld.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26
27 #if CAN_SANITIZE_LEAKS
28 namespace __lsan {
29
30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31 // also to protect the global list of root regions.
32 BlockingMutex global_mutex(LINKER_INITIALIZED);
33
34 THREADLOCAL int disable_counter;
DisabledInThisThread()35 bool DisabledInThisThread() { return disable_counter > 0; }
36
37 Flags lsan_flags;
38
InitializeFlags()39 static void InitializeFlags() {
40 Flags *f = flags();
41 // Default values.
42 f->report_objects = false;
43 f->resolution = 0;
44 f->max_leaks = 0;
45 f->exitcode = 23;
46 f->print_suppressions = true;
47 f->suppressions="";
48 f->use_registers = true;
49 f->use_globals = true;
50 f->use_stacks = true;
51 f->use_tls = true;
52 f->use_root_regions = true;
53 f->use_unaligned = false;
54 f->use_poisoned = false;
55 f->log_pointers = false;
56 f->log_threads = false;
57
58 const char *options = GetEnv("LSAN_OPTIONS");
59 if (options) {
60 ParseFlag(options, &f->use_registers, "use_registers", "");
61 ParseFlag(options, &f->use_globals, "use_globals", "");
62 ParseFlag(options, &f->use_stacks, "use_stacks", "");
63 ParseFlag(options, &f->use_tls, "use_tls", "");
64 ParseFlag(options, &f->use_root_regions, "use_root_regions", "");
65 ParseFlag(options, &f->use_unaligned, "use_unaligned", "");
66 ParseFlag(options, &f->use_poisoned, "use_poisoned", "");
67 ParseFlag(options, &f->report_objects, "report_objects", "");
68 ParseFlag(options, &f->resolution, "resolution", "");
69 CHECK_GE(&f->resolution, 0);
70 ParseFlag(options, &f->max_leaks, "max_leaks", "");
71 CHECK_GE(&f->max_leaks, 0);
72 ParseFlag(options, &f->log_pointers, "log_pointers", "");
73 ParseFlag(options, &f->log_threads, "log_threads", "");
74 ParseFlag(options, &f->exitcode, "exitcode", "");
75 ParseFlag(options, &f->print_suppressions, "print_suppressions", "");
76 ParseFlag(options, &f->suppressions, "suppressions", "");
77 }
78 }
79
80 #define LOG_POINTERS(...) \
81 do { \
82 if (flags()->log_pointers) Report(__VA_ARGS__); \
83 } while (0);
84
85 #define LOG_THREADS(...) \
86 do { \
87 if (flags()->log_threads) Report(__VA_ARGS__); \
88 } while (0);
89
90 SuppressionContext *suppression_ctx;
91
InitializeSuppressions()92 void InitializeSuppressions() {
93 CHECK(!suppression_ctx);
94 ALIGNED(64) static char placeholder[sizeof(SuppressionContext)];
95 suppression_ctx = new(placeholder) SuppressionContext;
96 char *suppressions_from_file;
97 uptr buffer_size;
98 if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
99 &buffer_size, 1 << 26 /* max_len */))
100 suppression_ctx->Parse(suppressions_from_file);
101 if (flags()->suppressions[0] && !buffer_size) {
102 Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
103 flags()->suppressions);
104 Die();
105 }
106 if (&__lsan_default_suppressions)
107 suppression_ctx->Parse(__lsan_default_suppressions());
108 }
109
110 struct RootRegion {
111 const void *begin;
112 uptr size;
113 };
114
115 InternalMmapVector<RootRegion> *root_regions;
116
InitializeRootRegions()117 void InitializeRootRegions() {
118 CHECK(!root_regions);
119 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
120 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
121 }
122
InitCommonLsan()123 void InitCommonLsan() {
124 InitializeFlags();
125 InitializeRootRegions();
126 if (common_flags()->detect_leaks) {
127 // Initialization which can fail or print warnings should only be done if
128 // LSan is actually enabled.
129 InitializeSuppressions();
130 InitializePlatformSpecificModules();
131 }
132 }
133
134 class Decorator: public __sanitizer::SanitizerCommonDecorator {
135 public:
Decorator()136 Decorator() : SanitizerCommonDecorator() { }
Error()137 const char *Error() { return Red(); }
Leak()138 const char *Leak() { return Blue(); }
End()139 const char *End() { return Default(); }
140 };
141
CanBeAHeapPointer(uptr p)142 static inline bool CanBeAHeapPointer(uptr p) {
143 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
144 // bound on heap addresses.
145 const uptr kMinAddress = 4 * 4096;
146 if (p < kMinAddress) return false;
147 #ifdef __x86_64__
148 // Accept only canonical form user-space addresses.
149 return ((p >> 47) == 0);
150 #else
151 return true;
152 #endif
153 }
154
155 // Scans the memory range, looking for byte patterns that point into allocator
156 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
157 // There are two usage modes for this function: finding reachable or ignored
158 // chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
159 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
160 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)161 void ScanRangeForPointers(uptr begin, uptr end,
162 Frontier *frontier,
163 const char *region_type, ChunkTag tag) {
164 const uptr alignment = flags()->pointer_alignment();
165 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
166 uptr pp = begin;
167 if (pp % alignment)
168 pp = pp + alignment - pp % alignment;
169 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
170 void *p = *reinterpret_cast<void **>(pp);
171 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
172 uptr chunk = PointsIntoChunk(p);
173 if (!chunk) continue;
174 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
175 if (chunk == begin) continue;
176 LsanMetadata m(chunk);
177 // Reachable beats ignored beats leaked.
178 if (m.tag() == kReachable) continue;
179 if (m.tag() == kIgnored && tag != kReachable) continue;
180
181 // Do this check relatively late so we can log only the interesting cases.
182 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
183 LOG_POINTERS(
184 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
185 "%zu.\n",
186 pp, p, chunk, chunk + m.requested_size(), m.requested_size());
187 continue;
188 }
189
190 m.set_tag(tag);
191 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
192 chunk, chunk + m.requested_size(), m.requested_size());
193 if (frontier)
194 frontier->push_back(chunk);
195 }
196 }
197
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)198 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
199 Frontier *frontier = reinterpret_cast<Frontier *>(arg);
200 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
201 }
202
203 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)204 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
205 Frontier *frontier) {
206 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
207 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
208 uptr registers_end = registers_begin + registers.size();
209 for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
210 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
211 LOG_THREADS("Processing thread %d.\n", os_id);
212 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
213 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
214 &tls_begin, &tls_end,
215 &cache_begin, &cache_end);
216 if (!thread_found) {
217 // If a thread can't be found in the thread registry, it's probably in the
218 // process of destruction. Log this event and move on.
219 LOG_THREADS("Thread %d not found in registry.\n", os_id);
220 continue;
221 }
222 uptr sp;
223 bool have_registers =
224 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
225 if (!have_registers) {
226 Report("Unable to get registers from thread %d.\n");
227 // If unable to get SP, consider the entire stack to be reachable.
228 sp = stack_begin;
229 }
230
231 if (flags()->use_registers && have_registers)
232 ScanRangeForPointers(registers_begin, registers_end, frontier,
233 "REGISTERS", kReachable);
234
235 if (flags()->use_stacks) {
236 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
237 if (sp < stack_begin || sp >= stack_end) {
238 // SP is outside the recorded stack range (e.g. the thread is running a
239 // signal handler on alternate stack). Again, consider the entire stack
240 // range to be reachable.
241 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
242 } else {
243 // Shrink the stack range to ignore out-of-scope values.
244 stack_begin = sp;
245 }
246 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
247 kReachable);
248 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
249 }
250
251 if (flags()->use_tls) {
252 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
253 if (cache_begin == cache_end) {
254 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
255 } else {
256 // Because LSan should not be loaded with dlopen(), we can assume
257 // that allocator cache will be part of static TLS image.
258 CHECK_LE(tls_begin, cache_begin);
259 CHECK_GE(tls_end, cache_end);
260 if (tls_begin < cache_begin)
261 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
262 kReachable);
263 if (tls_end > cache_end)
264 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
265 }
266 }
267 }
268 }
269
ProcessRootRegion(Frontier * frontier,uptr root_begin,uptr root_end)270 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
271 uptr root_end) {
272 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
273 uptr begin, end, prot;
274 while (proc_maps.Next(&begin, &end,
275 /*offset*/ 0, /*filename*/ 0, /*filename_size*/ 0,
276 &prot)) {
277 uptr intersection_begin = Max(root_begin, begin);
278 uptr intersection_end = Min(end, root_end);
279 if (intersection_begin >= intersection_end) continue;
280 bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
281 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
282 root_begin, root_end, begin, end,
283 is_readable ? "readable" : "unreadable");
284 if (is_readable)
285 ScanRangeForPointers(intersection_begin, intersection_end, frontier,
286 "ROOT", kReachable);
287 }
288 }
289
290 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)291 static void ProcessRootRegions(Frontier *frontier) {
292 if (!flags()->use_root_regions) return;
293 CHECK(root_regions);
294 for (uptr i = 0; i < root_regions->size(); i++) {
295 RootRegion region = (*root_regions)[i];
296 uptr begin_addr = reinterpret_cast<uptr>(region.begin);
297 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
298 }
299 }
300
FloodFillTag(Frontier * frontier,ChunkTag tag)301 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
302 while (frontier->size()) {
303 uptr next_chunk = frontier->back();
304 frontier->pop_back();
305 LsanMetadata m(next_chunk);
306 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
307 "HEAP", tag);
308 }
309 }
310
311 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
312 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)313 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
314 chunk = GetUserBegin(chunk);
315 LsanMetadata m(chunk);
316 if (m.allocated() && m.tag() != kReachable) {
317 ScanRangeForPointers(chunk, chunk + m.requested_size(),
318 /* frontier */ 0, "HEAP", kIndirectlyLeaked);
319 }
320 }
321
322 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
323 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)324 static void CollectIgnoredCb(uptr chunk, void *arg) {
325 CHECK(arg);
326 chunk = GetUserBegin(chunk);
327 LsanMetadata m(chunk);
328 if (m.allocated() && m.tag() == kIgnored)
329 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
330 }
331
332 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)333 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
334 // Holds the flood fill frontier.
335 Frontier frontier(1);
336
337 ProcessGlobalRegions(&frontier);
338 ProcessThreads(suspended_threads, &frontier);
339 ProcessRootRegions(&frontier);
340 FloodFillTag(&frontier, kReachable);
341 // The check here is relatively expensive, so we do this in a separate flood
342 // fill. That way we can skip the check for chunks that are reachable
343 // otherwise.
344 LOG_POINTERS("Processing platform-specific allocations.\n");
345 ProcessPlatformSpecificAllocations(&frontier);
346 FloodFillTag(&frontier, kReachable);
347
348 LOG_POINTERS("Scanning ignored chunks.\n");
349 CHECK_EQ(0, frontier.size());
350 ForEachChunk(CollectIgnoredCb, &frontier);
351 FloodFillTag(&frontier, kIgnored);
352
353 // Iterate over leaked chunks and mark those that are reachable from other
354 // leaked chunks.
355 LOG_POINTERS("Scanning leaked chunks.\n");
356 ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
357 }
358
PrintStackTraceById(u32 stack_trace_id)359 static void PrintStackTraceById(u32 stack_trace_id) {
360 CHECK(stack_trace_id);
361 uptr size = 0;
362 const uptr *trace = StackDepotGet(stack_trace_id, &size);
363 StackTrace::PrintStack(trace, size);
364 }
365
366 // ForEachChunk callback. Aggregates information about unreachable chunks into
367 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)368 static void CollectLeaksCb(uptr chunk, void *arg) {
369 CHECK(arg);
370 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
371 chunk = GetUserBegin(chunk);
372 LsanMetadata m(chunk);
373 if (!m.allocated()) return;
374 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
375 uptr resolution = flags()->resolution;
376 u32 stack_trace_id = 0;
377 if (resolution > 0) {
378 uptr size = 0;
379 const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
380 size = Min(size, resolution);
381 stack_trace_id = StackDepotPut(trace, size);
382 } else {
383 stack_trace_id = m.stack_trace_id();
384 }
385 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
386 m.tag());
387 }
388 }
389
PrintMatchedSuppressions()390 static void PrintMatchedSuppressions() {
391 InternalMmapVector<Suppression *> matched(1);
392 suppression_ctx->GetMatched(&matched);
393 if (!matched.size())
394 return;
395 const char *line = "-----------------------------------------------------";
396 Printf("%s\n", line);
397 Printf("Suppressions used:\n");
398 Printf(" count bytes template\n");
399 for (uptr i = 0; i < matched.size(); i++)
400 Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
401 matched[i]->weight, matched[i]->templ);
402 Printf("%s\n\n", line);
403 }
404
405 struct DoLeakCheckParam {
406 bool success;
407 LeakReport leak_report;
408 };
409
DoLeakCheckCallback(const SuspendedThreadsList & suspended_threads,void * arg)410 static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
411 void *arg) {
412 DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
413 CHECK(param);
414 CHECK(!param->success);
415 ClassifyAllChunks(suspended_threads);
416 ForEachChunk(CollectLeaksCb, ¶m->leak_report);
417 param->success = true;
418 }
419
DoLeakCheck()420 void DoLeakCheck() {
421 EnsureMainThreadIDIsCorrect();
422 BlockingMutexLock l(&global_mutex);
423 static bool already_done;
424 if (already_done) return;
425 already_done = true;
426 if (&__lsan_is_turned_off && __lsan_is_turned_off())
427 return;
428
429 DoLeakCheckParam param;
430 param.success = false;
431 LockThreadRegistry();
432 LockAllocator();
433 StopTheWorld(DoLeakCheckCallback, ¶m);
434 UnlockAllocator();
435 UnlockThreadRegistry();
436
437 if (!param.success) {
438 Report("LeakSanitizer has encountered a fatal error.\n");
439 Die();
440 }
441 param.leak_report.ApplySuppressions();
442 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
443 if (unsuppressed_count > 0) {
444 Decorator d;
445 Printf("\n"
446 "================================================================="
447 "\n");
448 Printf("%s", d.Error());
449 Report("ERROR: LeakSanitizer: detected memory leaks\n");
450 Printf("%s", d.End());
451 param.leak_report.ReportTopLeaks(flags()->max_leaks);
452 }
453 if (flags()->print_suppressions)
454 PrintMatchedSuppressions();
455 if (unsuppressed_count > 0) {
456 param.leak_report.PrintSummary();
457 if (flags()->exitcode)
458 internal__exit(flags()->exitcode);
459 }
460 }
461
GetSuppressionForAddr(uptr addr)462 static Suppression *GetSuppressionForAddr(uptr addr) {
463 Suppression *s;
464
465 // Suppress by module name.
466 const char *module_name;
467 uptr module_offset;
468 if (Symbolizer::Get()->GetModuleNameAndOffsetForPC(addr, &module_name,
469 &module_offset) &&
470 suppression_ctx->Match(module_name, SuppressionLeak, &s))
471 return s;
472
473 // Suppress by file or function name.
474 static const uptr kMaxAddrFrames = 16;
475 InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
476 for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
477 uptr addr_frames_num = Symbolizer::Get()->SymbolizePC(
478 addr, addr_frames.data(), kMaxAddrFrames);
479 for (uptr i = 0; i < addr_frames_num; i++) {
480 if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
481 suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s))
482 return s;
483 }
484 return 0;
485 }
486
GetSuppressionForStack(u32 stack_trace_id)487 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
488 uptr size = 0;
489 const uptr *trace = StackDepotGet(stack_trace_id, &size);
490 for (uptr i = 0; i < size; i++) {
491 Suppression *s =
492 GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
493 if (s) return s;
494 }
495 return 0;
496 }
497
498 ///// LeakReport implementation. /////
499
500 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
501 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
502 // in real-world applications.
503 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
504 // use a hash table.
505 const uptr kMaxLeaksConsidered = 5000;
506
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)507 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
508 uptr leaked_size, ChunkTag tag) {
509 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
510 bool is_directly_leaked = (tag == kDirectlyLeaked);
511 uptr i;
512 for (i = 0; i < leaks_.size(); i++) {
513 if (leaks_[i].stack_trace_id == stack_trace_id &&
514 leaks_[i].is_directly_leaked == is_directly_leaked) {
515 leaks_[i].hit_count++;
516 leaks_[i].total_size += leaked_size;
517 break;
518 }
519 }
520 if (i == leaks_.size()) {
521 if (leaks_.size() == kMaxLeaksConsidered) return;
522 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
523 is_directly_leaked, /* is_suppressed */ false };
524 leaks_.push_back(leak);
525 }
526 if (flags()->report_objects) {
527 LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
528 leaked_objects_.push_back(obj);
529 }
530 }
531
LeakComparator(const Leak & leak1,const Leak & leak2)532 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
533 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
534 return leak1.total_size > leak2.total_size;
535 else
536 return leak1.is_directly_leaked;
537 }
538
ReportTopLeaks(uptr num_leaks_to_report)539 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
540 CHECK(leaks_.size() <= kMaxLeaksConsidered);
541 Printf("\n");
542 if (leaks_.size() == kMaxLeaksConsidered)
543 Printf("Too many leaks! Only the first %zu leaks encountered will be "
544 "reported.\n",
545 kMaxLeaksConsidered);
546
547 uptr unsuppressed_count = UnsuppressedLeakCount();
548 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
549 Printf("The %zu top leak(s):\n", num_leaks_to_report);
550 InternalSort(&leaks_, leaks_.size(), LeakComparator);
551 uptr leaks_reported = 0;
552 for (uptr i = 0; i < leaks_.size(); i++) {
553 if (leaks_[i].is_suppressed) continue;
554 PrintReportForLeak(i);
555 leaks_reported++;
556 if (leaks_reported == num_leaks_to_report) break;
557 }
558 if (leaks_reported < unsuppressed_count) {
559 uptr remaining = unsuppressed_count - leaks_reported;
560 Printf("Omitting %zu more leak(s).\n", remaining);
561 }
562 }
563
PrintReportForLeak(uptr index)564 void LeakReport::PrintReportForLeak(uptr index) {
565 Decorator d;
566 Printf("%s", d.Leak());
567 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
568 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
569 leaks_[index].total_size, leaks_[index].hit_count);
570 Printf("%s", d.End());
571
572 PrintStackTraceById(leaks_[index].stack_trace_id);
573
574 if (flags()->report_objects) {
575 Printf("Objects leaked above:\n");
576 PrintLeakedObjectsForLeak(index);
577 Printf("\n");
578 }
579 }
580
PrintLeakedObjectsForLeak(uptr index)581 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
582 u32 leak_id = leaks_[index].id;
583 for (uptr j = 0; j < leaked_objects_.size(); j++) {
584 if (leaked_objects_[j].leak_id == leak_id)
585 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
586 leaked_objects_[j].size);
587 }
588 }
589
PrintSummary()590 void LeakReport::PrintSummary() {
591 CHECK(leaks_.size() <= kMaxLeaksConsidered);
592 uptr bytes = 0, allocations = 0;
593 for (uptr i = 0; i < leaks_.size(); i++) {
594 if (leaks_[i].is_suppressed) continue;
595 bytes += leaks_[i].total_size;
596 allocations += leaks_[i].hit_count;
597 }
598 InternalScopedBuffer<char> summary(kMaxSummaryLength);
599 internal_snprintf(summary.data(), summary.size(),
600 "%zu byte(s) leaked in %zu allocation(s).", bytes,
601 allocations);
602 ReportErrorSummary(summary.data());
603 }
604
ApplySuppressions()605 void LeakReport::ApplySuppressions() {
606 for (uptr i = 0; i < leaks_.size(); i++) {
607 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
608 if (s) {
609 s->weight += leaks_[i].total_size;
610 s->hit_count += leaks_[i].hit_count;
611 leaks_[i].is_suppressed = true;
612 }
613 }
614 }
615
UnsuppressedLeakCount()616 uptr LeakReport::UnsuppressedLeakCount() {
617 uptr result = 0;
618 for (uptr i = 0; i < leaks_.size(); i++)
619 if (!leaks_[i].is_suppressed) result++;
620 return result;
621 }
622
623 } // namespace __lsan
624 #endif // CAN_SANITIZE_LEAKS
625
626 using namespace __lsan; // NOLINT
627
628 extern "C" {
629 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)630 void __lsan_ignore_object(const void *p) {
631 #if CAN_SANITIZE_LEAKS
632 if (!common_flags()->detect_leaks)
633 return;
634 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
635 // locked.
636 BlockingMutexLock l(&global_mutex);
637 IgnoreObjectResult res = IgnoreObjectLocked(p);
638 if (res == kIgnoreObjectInvalid)
639 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
640 if (res == kIgnoreObjectAlreadyIgnored)
641 VReport(1, "__lsan_ignore_object(): "
642 "heap object at %p is already being ignored\n", p);
643 if (res == kIgnoreObjectSuccess)
644 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
645 #endif // CAN_SANITIZE_LEAKS
646 }
647
648 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)649 void __lsan_register_root_region(const void *begin, uptr size) {
650 #if CAN_SANITIZE_LEAKS
651 BlockingMutexLock l(&global_mutex);
652 CHECK(root_regions);
653 RootRegion region = {begin, size};
654 root_regions->push_back(region);
655 VReport(1, "Registered root region at %p of size %llu\n", begin, size);
656 #endif // CAN_SANITIZE_LEAKS
657 }
658
659 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)660 void __lsan_unregister_root_region(const void *begin, uptr size) {
661 #if CAN_SANITIZE_LEAKS
662 BlockingMutexLock l(&global_mutex);
663 CHECK(root_regions);
664 bool removed = false;
665 for (uptr i = 0; i < root_regions->size(); i++) {
666 RootRegion region = (*root_regions)[i];
667 if (region.begin == begin && region.size == size) {
668 removed = true;
669 uptr last_index = root_regions->size() - 1;
670 (*root_regions)[i] = (*root_regions)[last_index];
671 root_regions->pop_back();
672 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
673 break;
674 }
675 }
676 if (!removed) {
677 Report(
678 "__lsan_unregister_root_region(): region at %p of size %llu has not "
679 "been registered.\n",
680 begin, size);
681 Die();
682 }
683 #endif // CAN_SANITIZE_LEAKS
684 }
685
686 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()687 void __lsan_disable() {
688 #if CAN_SANITIZE_LEAKS
689 __lsan::disable_counter++;
690 #endif
691 }
692
693 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()694 void __lsan_enable() {
695 #if CAN_SANITIZE_LEAKS
696 if (!__lsan::disable_counter && common_flags()->detect_leaks) {
697 Report("Unmatched call to __lsan_enable().\n");
698 Die();
699 }
700 __lsan::disable_counter--;
701 #endif
702 }
703
704 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()705 void __lsan_do_leak_check() {
706 #if CAN_SANITIZE_LEAKS
707 if (common_flags()->detect_leaks)
708 __lsan::DoLeakCheck();
709 #endif // CAN_SANITIZE_LEAKS
710 }
711
712 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
713 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()714 int __lsan_is_turned_off() {
715 return 0;
716 }
717 #endif
718 } // extern "C"
719