• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Parse/ParseDiagnostic.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/DelayedDiagnostic.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/ScopeInfo.h"
32 #include "clang/Sema/Template.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/Support/ErrorHandling.h"
36 
37 using namespace clang;
38 
39 enum TypeDiagSelector {
40   TDS_Function,
41   TDS_Pointer,
42   TDS_ObjCObjOrBlock
43 };
44 
45 /// isOmittedBlockReturnType - Return true if this declarator is missing a
46 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)47 static bool isOmittedBlockReturnType(const Declarator &D) {
48   if (D.getContext() != Declarator::BlockLiteralContext ||
49       D.getDeclSpec().hasTypeSpecifier())
50     return false;
51 
52   if (D.getNumTypeObjects() == 0)
53     return true;   // ^{ ... }
54 
55   if (D.getNumTypeObjects() == 1 &&
56       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
57     return true;   // ^(int X, float Y) { ... }
58 
59   return false;
60 }
61 
62 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
63 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const AttributeList & attr,QualType type)64 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
65                                      QualType type) {
66   TypeDiagSelector WhichType;
67   bool useExpansionLoc = true;
68   switch (attr.getKind()) {
69   case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
70   case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
71   default:
72     // Assume everything else was a function attribute.
73     WhichType = TDS_Function;
74     useExpansionLoc = false;
75     break;
76   }
77 
78   SourceLocation loc = attr.getLoc();
79   StringRef name = attr.getName()->getName();
80 
81   // The GC attributes are usually written with macros;  special-case them.
82   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
83                                           : nullptr;
84   if (useExpansionLoc && loc.isMacroID() && II) {
85     if (II->isStr("strong")) {
86       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
87     } else if (II->isStr("weak")) {
88       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
89     }
90   }
91 
92   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
93     << type;
94 }
95 
96 // objc_gc applies to Objective-C pointers or, otherwise, to the
97 // smallest available pointer type (i.e. 'void*' in 'void**').
98 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
99     case AttributeList::AT_ObjCGC: \
100     case AttributeList::AT_ObjCOwnership
101 
102 // Function type attributes.
103 #define FUNCTION_TYPE_ATTRS_CASELIST \
104     case AttributeList::AT_NoReturn: \
105     case AttributeList::AT_CDecl: \
106     case AttributeList::AT_FastCall: \
107     case AttributeList::AT_StdCall: \
108     case AttributeList::AT_ThisCall: \
109     case AttributeList::AT_Pascal: \
110     case AttributeList::AT_MSABI: \
111     case AttributeList::AT_SysVABI: \
112     case AttributeList::AT_Regparm: \
113     case AttributeList::AT_Pcs: \
114     case AttributeList::AT_PnaclCall: \
115     case AttributeList::AT_IntelOclBicc
116 
117 // Microsoft-specific type qualifiers.
118 #define MS_TYPE_ATTRS_CASELIST  \
119     case AttributeList::AT_Ptr32: \
120     case AttributeList::AT_Ptr64: \
121     case AttributeList::AT_SPtr: \
122     case AttributeList::AT_UPtr
123 
124 namespace {
125   /// An object which stores processing state for the entire
126   /// GetTypeForDeclarator process.
127   class TypeProcessingState {
128     Sema &sema;
129 
130     /// The declarator being processed.
131     Declarator &declarator;
132 
133     /// The index of the declarator chunk we're currently processing.
134     /// May be the total number of valid chunks, indicating the
135     /// DeclSpec.
136     unsigned chunkIndex;
137 
138     /// Whether there are non-trivial modifications to the decl spec.
139     bool trivial;
140 
141     /// Whether we saved the attributes in the decl spec.
142     bool hasSavedAttrs;
143 
144     /// The original set of attributes on the DeclSpec.
145     SmallVector<AttributeList*, 2> savedAttrs;
146 
147     /// A list of attributes to diagnose the uselessness of when the
148     /// processing is complete.
149     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
150 
151   public:
TypeProcessingState(Sema & sema,Declarator & declarator)152     TypeProcessingState(Sema &sema, Declarator &declarator)
153       : sema(sema), declarator(declarator),
154         chunkIndex(declarator.getNumTypeObjects()),
155         trivial(true), hasSavedAttrs(false) {}
156 
getSema() const157     Sema &getSema() const {
158       return sema;
159     }
160 
getDeclarator() const161     Declarator &getDeclarator() const {
162       return declarator;
163     }
164 
isProcessingDeclSpec() const165     bool isProcessingDeclSpec() const {
166       return chunkIndex == declarator.getNumTypeObjects();
167     }
168 
getCurrentChunkIndex() const169     unsigned getCurrentChunkIndex() const {
170       return chunkIndex;
171     }
172 
setCurrentChunkIndex(unsigned idx)173     void setCurrentChunkIndex(unsigned idx) {
174       assert(idx <= declarator.getNumTypeObjects());
175       chunkIndex = idx;
176     }
177 
getCurrentAttrListRef() const178     AttributeList *&getCurrentAttrListRef() const {
179       if (isProcessingDeclSpec())
180         return getMutableDeclSpec().getAttributes().getListRef();
181       return declarator.getTypeObject(chunkIndex).getAttrListRef();
182     }
183 
184     /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()185     void saveDeclSpecAttrs() {
186       // Don't try to save them multiple times.
187       if (hasSavedAttrs) return;
188 
189       DeclSpec &spec = getMutableDeclSpec();
190       for (AttributeList *attr = spec.getAttributes().getList(); attr;
191              attr = attr->getNext())
192         savedAttrs.push_back(attr);
193       trivial &= savedAttrs.empty();
194       hasSavedAttrs = true;
195     }
196 
197     /// Record that we had nowhere to put the given type attribute.
198     /// We will diagnose such attributes later.
addIgnoredTypeAttr(AttributeList & attr)199     void addIgnoredTypeAttr(AttributeList &attr) {
200       ignoredTypeAttrs.push_back(&attr);
201     }
202 
203     /// Diagnose all the ignored type attributes, given that the
204     /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const205     void diagnoseIgnoredTypeAttrs(QualType type) const {
206       for (SmallVectorImpl<AttributeList*>::const_iterator
207              i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
208            i != e; ++i)
209         diagnoseBadTypeAttribute(getSema(), **i, type);
210     }
211 
~TypeProcessingState()212     ~TypeProcessingState() {
213       if (trivial) return;
214 
215       restoreDeclSpecAttrs();
216     }
217 
218   private:
getMutableDeclSpec() const219     DeclSpec &getMutableDeclSpec() const {
220       return const_cast<DeclSpec&>(declarator.getDeclSpec());
221     }
222 
restoreDeclSpecAttrs()223     void restoreDeclSpecAttrs() {
224       assert(hasSavedAttrs);
225 
226       if (savedAttrs.empty()) {
227         getMutableDeclSpec().getAttributes().set(nullptr);
228         return;
229       }
230 
231       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
232       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
233         savedAttrs[i]->setNext(savedAttrs[i+1]);
234       savedAttrs.back()->setNext(nullptr);
235     }
236   };
237 }
238 
spliceAttrIntoList(AttributeList & attr,AttributeList * & head)239 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
240   attr.setNext(head);
241   head = &attr;
242 }
243 
spliceAttrOutOfList(AttributeList & attr,AttributeList * & head)244 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
245   if (head == &attr) {
246     head = attr.getNext();
247     return;
248   }
249 
250   AttributeList *cur = head;
251   while (true) {
252     assert(cur && cur->getNext() && "ran out of attrs?");
253     if (cur->getNext() == &attr) {
254       cur->setNext(attr.getNext());
255       return;
256     }
257     cur = cur->getNext();
258   }
259 }
260 
moveAttrFromListToList(AttributeList & attr,AttributeList * & fromList,AttributeList * & toList)261 static void moveAttrFromListToList(AttributeList &attr,
262                                    AttributeList *&fromList,
263                                    AttributeList *&toList) {
264   spliceAttrOutOfList(attr, fromList);
265   spliceAttrIntoList(attr, toList);
266 }
267 
268 /// The location of a type attribute.
269 enum TypeAttrLocation {
270   /// The attribute is in the decl-specifier-seq.
271   TAL_DeclSpec,
272   /// The attribute is part of a DeclaratorChunk.
273   TAL_DeclChunk,
274   /// The attribute is immediately after the declaration's name.
275   TAL_DeclName
276 };
277 
278 static void processTypeAttrs(TypeProcessingState &state,
279                              QualType &type, TypeAttrLocation TAL,
280                              AttributeList *attrs);
281 
282 static bool handleFunctionTypeAttr(TypeProcessingState &state,
283                                    AttributeList &attr,
284                                    QualType &type);
285 
286 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
287                                              AttributeList &attr,
288                                              QualType &type);
289 
290 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
291                                  AttributeList &attr, QualType &type);
292 
293 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
294                                        AttributeList &attr, QualType &type);
295 
handleObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)296 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
297                                       AttributeList &attr, QualType &type) {
298   if (attr.getKind() == AttributeList::AT_ObjCGC)
299     return handleObjCGCTypeAttr(state, attr, type);
300   assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
301   return handleObjCOwnershipTypeAttr(state, attr, type);
302 }
303 
304 /// Given the index of a declarator chunk, check whether that chunk
305 /// directly specifies the return type of a function and, if so, find
306 /// an appropriate place for it.
307 ///
308 /// \param i - a notional index which the search will start
309 ///   immediately inside
maybeMovePastReturnType(Declarator & declarator,unsigned i)310 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
311                                                 unsigned i) {
312   assert(i <= declarator.getNumTypeObjects());
313 
314   DeclaratorChunk *result = nullptr;
315 
316   // First, look inwards past parens for a function declarator.
317   for (; i != 0; --i) {
318     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
319     switch (fnChunk.Kind) {
320     case DeclaratorChunk::Paren:
321       continue;
322 
323     // If we find anything except a function, bail out.
324     case DeclaratorChunk::Pointer:
325     case DeclaratorChunk::BlockPointer:
326     case DeclaratorChunk::Array:
327     case DeclaratorChunk::Reference:
328     case DeclaratorChunk::MemberPointer:
329       return result;
330 
331     // If we do find a function declarator, scan inwards from that,
332     // looking for a block-pointer declarator.
333     case DeclaratorChunk::Function:
334       for (--i; i != 0; --i) {
335         DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
336         switch (blockChunk.Kind) {
337         case DeclaratorChunk::Paren:
338         case DeclaratorChunk::Pointer:
339         case DeclaratorChunk::Array:
340         case DeclaratorChunk::Function:
341         case DeclaratorChunk::Reference:
342         case DeclaratorChunk::MemberPointer:
343           continue;
344         case DeclaratorChunk::BlockPointer:
345           result = &blockChunk;
346           goto continue_outer;
347         }
348         llvm_unreachable("bad declarator chunk kind");
349       }
350 
351       // If we run out of declarators doing that, we're done.
352       return result;
353     }
354     llvm_unreachable("bad declarator chunk kind");
355 
356     // Okay, reconsider from our new point.
357   continue_outer: ;
358   }
359 
360   // Ran out of chunks, bail out.
361   return result;
362 }
363 
364 /// Given that an objc_gc attribute was written somewhere on a
365 /// declaration *other* than on the declarator itself (for which, use
366 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
367 /// didn't apply in whatever position it was written in, try to move
368 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)369 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
370                                           AttributeList &attr,
371                                           QualType type) {
372   Declarator &declarator = state.getDeclarator();
373 
374   // Move it to the outermost normal or block pointer declarator.
375   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
376     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
377     switch (chunk.Kind) {
378     case DeclaratorChunk::Pointer:
379     case DeclaratorChunk::BlockPointer: {
380       // But don't move an ARC ownership attribute to the return type
381       // of a block.
382       DeclaratorChunk *destChunk = nullptr;
383       if (state.isProcessingDeclSpec() &&
384           attr.getKind() == AttributeList::AT_ObjCOwnership)
385         destChunk = maybeMovePastReturnType(declarator, i - 1);
386       if (!destChunk) destChunk = &chunk;
387 
388       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
389                              destChunk->getAttrListRef());
390       return;
391     }
392 
393     case DeclaratorChunk::Paren:
394     case DeclaratorChunk::Array:
395       continue;
396 
397     // We may be starting at the return type of a block.
398     case DeclaratorChunk::Function:
399       if (state.isProcessingDeclSpec() &&
400           attr.getKind() == AttributeList::AT_ObjCOwnership) {
401         if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
402           moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                                  dest->getAttrListRef());
404           return;
405         }
406       }
407       goto error;
408 
409     // Don't walk through these.
410     case DeclaratorChunk::Reference:
411     case DeclaratorChunk::MemberPointer:
412       goto error;
413     }
414   }
415  error:
416 
417   diagnoseBadTypeAttribute(state.getSema(), attr, type);
418 }
419 
420 /// Distribute an objc_gc type attribute that was written on the
421 /// declarator.
422 static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)423 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
424                                             AttributeList &attr,
425                                             QualType &declSpecType) {
426   Declarator &declarator = state.getDeclarator();
427 
428   // objc_gc goes on the innermost pointer to something that's not a
429   // pointer.
430   unsigned innermost = -1U;
431   bool considerDeclSpec = true;
432   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
433     DeclaratorChunk &chunk = declarator.getTypeObject(i);
434     switch (chunk.Kind) {
435     case DeclaratorChunk::Pointer:
436     case DeclaratorChunk::BlockPointer:
437       innermost = i;
438       continue;
439 
440     case DeclaratorChunk::Reference:
441     case DeclaratorChunk::MemberPointer:
442     case DeclaratorChunk::Paren:
443     case DeclaratorChunk::Array:
444       continue;
445 
446     case DeclaratorChunk::Function:
447       considerDeclSpec = false;
448       goto done;
449     }
450   }
451  done:
452 
453   // That might actually be the decl spec if we weren't blocked by
454   // anything in the declarator.
455   if (considerDeclSpec) {
456     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
457       // Splice the attribute into the decl spec.  Prevents the
458       // attribute from being applied multiple times and gives
459       // the source-location-filler something to work with.
460       state.saveDeclSpecAttrs();
461       moveAttrFromListToList(attr, declarator.getAttrListRef(),
462                declarator.getMutableDeclSpec().getAttributes().getListRef());
463       return;
464     }
465   }
466 
467   // Otherwise, if we found an appropriate chunk, splice the attribute
468   // into it.
469   if (innermost != -1U) {
470     moveAttrFromListToList(attr, declarator.getAttrListRef(),
471                        declarator.getTypeObject(innermost).getAttrListRef());
472     return;
473   }
474 
475   // Otherwise, diagnose when we're done building the type.
476   spliceAttrOutOfList(attr, declarator.getAttrListRef());
477   state.addIgnoredTypeAttr(attr);
478 }
479 
480 /// A function type attribute was written somewhere in a declaration
481 /// *other* than on the declarator itself or in the decl spec.  Given
482 /// that it didn't apply in whatever position it was written in, try
483 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)484 static void distributeFunctionTypeAttr(TypeProcessingState &state,
485                                        AttributeList &attr,
486                                        QualType type) {
487   Declarator &declarator = state.getDeclarator();
488 
489   // Try to push the attribute from the return type of a function to
490   // the function itself.
491   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
492     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
493     switch (chunk.Kind) {
494     case DeclaratorChunk::Function:
495       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
496                              chunk.getAttrListRef());
497       return;
498 
499     case DeclaratorChunk::Paren:
500     case DeclaratorChunk::Pointer:
501     case DeclaratorChunk::BlockPointer:
502     case DeclaratorChunk::Array:
503     case DeclaratorChunk::Reference:
504     case DeclaratorChunk::MemberPointer:
505       continue;
506     }
507   }
508 
509   diagnoseBadTypeAttribute(state.getSema(), attr, type);
510 }
511 
512 /// Try to distribute a function type attribute to the innermost
513 /// function chunk or type.  Returns true if the attribute was
514 /// distributed, false if no location was found.
515 static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,AttributeList & attr,AttributeList * & attrList,QualType & declSpecType)516 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
517                                       AttributeList &attr,
518                                       AttributeList *&attrList,
519                                       QualType &declSpecType) {
520   Declarator &declarator = state.getDeclarator();
521 
522   // Put it on the innermost function chunk, if there is one.
523   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
524     DeclaratorChunk &chunk = declarator.getTypeObject(i);
525     if (chunk.Kind != DeclaratorChunk::Function) continue;
526 
527     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
528     return true;
529   }
530 
531   return handleFunctionTypeAttr(state, attr, declSpecType);
532 }
533 
534 /// A function type attribute was written in the decl spec.  Try to
535 /// apply it somewhere.
536 static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)537 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
538                                        AttributeList &attr,
539                                        QualType &declSpecType) {
540   state.saveDeclSpecAttrs();
541 
542   // C++11 attributes before the decl specifiers actually appertain to
543   // the declarators. Move them straight there. We don't support the
544   // 'put them wherever you like' semantics we allow for GNU attributes.
545   if (attr.isCXX11Attribute()) {
546     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
547                            state.getDeclarator().getAttrListRef());
548     return;
549   }
550 
551   // Try to distribute to the innermost.
552   if (distributeFunctionTypeAttrToInnermost(state, attr,
553                                             state.getCurrentAttrListRef(),
554                                             declSpecType))
555     return;
556 
557   // If that failed, diagnose the bad attribute when the declarator is
558   // fully built.
559   state.addIgnoredTypeAttr(attr);
560 }
561 
562 /// A function type attribute was written on the declarator.  Try to
563 /// apply it somewhere.
564 static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)565 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
566                                          AttributeList &attr,
567                                          QualType &declSpecType) {
568   Declarator &declarator = state.getDeclarator();
569 
570   // Try to distribute to the innermost.
571   if (distributeFunctionTypeAttrToInnermost(state, attr,
572                                             declarator.getAttrListRef(),
573                                             declSpecType))
574     return;
575 
576   // If that failed, diagnose the bad attribute when the declarator is
577   // fully built.
578   spliceAttrOutOfList(attr, declarator.getAttrListRef());
579   state.addIgnoredTypeAttr(attr);
580 }
581 
582 /// \brief Given that there are attributes written on the declarator
583 /// itself, try to distribute any type attributes to the appropriate
584 /// declarator chunk.
585 ///
586 /// These are attributes like the following:
587 ///   int f ATTR;
588 ///   int (f ATTR)();
589 /// but not necessarily this:
590 ///   int f() ATTR;
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)591 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
592                                               QualType &declSpecType) {
593   // Collect all the type attributes from the declarator itself.
594   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
595   AttributeList *attr = state.getDeclarator().getAttributes();
596   AttributeList *next;
597   do {
598     next = attr->getNext();
599 
600     // Do not distribute C++11 attributes. They have strict rules for what
601     // they appertain to.
602     if (attr->isCXX11Attribute())
603       continue;
604 
605     switch (attr->getKind()) {
606     OBJC_POINTER_TYPE_ATTRS_CASELIST:
607       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
608       break;
609 
610     case AttributeList::AT_NSReturnsRetained:
611       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
612         break;
613       // fallthrough
614 
615     FUNCTION_TYPE_ATTRS_CASELIST:
616       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
617       break;
618 
619     MS_TYPE_ATTRS_CASELIST:
620       // Microsoft type attributes cannot go after the declarator-id.
621       continue;
622 
623     default:
624       break;
625     }
626   } while ((attr = next));
627 }
628 
629 /// Add a synthetic '()' to a block-literal declarator if it is
630 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)631 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
632                                           QualType declSpecType) {
633   Declarator &declarator = state.getDeclarator();
634 
635   // First, check whether the declarator would produce a function,
636   // i.e. whether the innermost semantic chunk is a function.
637   if (declarator.isFunctionDeclarator()) {
638     // If so, make that declarator a prototyped declarator.
639     declarator.getFunctionTypeInfo().hasPrototype = true;
640     return;
641   }
642 
643   // If there are any type objects, the type as written won't name a
644   // function, regardless of the decl spec type.  This is because a
645   // block signature declarator is always an abstract-declarator, and
646   // abstract-declarators can't just be parentheses chunks.  Therefore
647   // we need to build a function chunk unless there are no type
648   // objects and the decl spec type is a function.
649   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
650     return;
651 
652   // Note that there *are* cases with invalid declarators where
653   // declarators consist solely of parentheses.  In general, these
654   // occur only in failed efforts to make function declarators, so
655   // faking up the function chunk is still the right thing to do.
656 
657   // Otherwise, we need to fake up a function declarator.
658   SourceLocation loc = declarator.getLocStart();
659 
660   // ...and *prepend* it to the declarator.
661   SourceLocation NoLoc;
662   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
663                              /*HasProto=*/true,
664                              /*IsAmbiguous=*/false,
665                              /*LParenLoc=*/NoLoc,
666                              /*ArgInfo=*/nullptr,
667                              /*NumArgs=*/0,
668                              /*EllipsisLoc=*/NoLoc,
669                              /*RParenLoc=*/NoLoc,
670                              /*TypeQuals=*/0,
671                              /*RefQualifierIsLvalueRef=*/true,
672                              /*RefQualifierLoc=*/NoLoc,
673                              /*ConstQualifierLoc=*/NoLoc,
674                              /*VolatileQualifierLoc=*/NoLoc,
675                              /*MutableLoc=*/NoLoc,
676                              EST_None,
677                              /*ESpecLoc=*/NoLoc,
678                              /*Exceptions=*/nullptr,
679                              /*ExceptionRanges=*/nullptr,
680                              /*NumExceptions=*/0,
681                              /*NoexceptExpr=*/nullptr,
682                              loc, loc, declarator));
683 
684   // For consistency, make sure the state still has us as processing
685   // the decl spec.
686   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
687   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
688 }
689 
690 /// \brief Convert the specified declspec to the appropriate type
691 /// object.
692 /// \param state Specifies the declarator containing the declaration specifier
693 /// to be converted, along with other associated processing state.
694 /// \returns The type described by the declaration specifiers.  This function
695 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)696 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
697   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
698   // checking.
699 
700   Sema &S = state.getSema();
701   Declarator &declarator = state.getDeclarator();
702   const DeclSpec &DS = declarator.getDeclSpec();
703   SourceLocation DeclLoc = declarator.getIdentifierLoc();
704   if (DeclLoc.isInvalid())
705     DeclLoc = DS.getLocStart();
706 
707   ASTContext &Context = S.Context;
708 
709   QualType Result;
710   switch (DS.getTypeSpecType()) {
711   case DeclSpec::TST_void:
712     Result = Context.VoidTy;
713     break;
714   case DeclSpec::TST_char:
715     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
716       Result = Context.CharTy;
717     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
718       Result = Context.SignedCharTy;
719     else {
720       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
721              "Unknown TSS value");
722       Result = Context.UnsignedCharTy;
723     }
724     break;
725   case DeclSpec::TST_wchar:
726     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
727       Result = Context.WCharTy;
728     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
729       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
730         << DS.getSpecifierName(DS.getTypeSpecType(),
731                                Context.getPrintingPolicy());
732       Result = Context.getSignedWCharType();
733     } else {
734       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
735         "Unknown TSS value");
736       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
737         << DS.getSpecifierName(DS.getTypeSpecType(),
738                                Context.getPrintingPolicy());
739       Result = Context.getUnsignedWCharType();
740     }
741     break;
742   case DeclSpec::TST_char16:
743       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
744         "Unknown TSS value");
745       Result = Context.Char16Ty;
746     break;
747   case DeclSpec::TST_char32:
748       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
749         "Unknown TSS value");
750       Result = Context.Char32Ty;
751     break;
752   case DeclSpec::TST_unspecified:
753     // "<proto1,proto2>" is an objc qualified ID with a missing id.
754     if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
755       Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
756                                          (ObjCProtocolDecl*const*)PQ,
757                                          DS.getNumProtocolQualifiers());
758       Result = Context.getObjCObjectPointerType(Result);
759       break;
760     }
761 
762     // If this is a missing declspec in a block literal return context, then it
763     // is inferred from the return statements inside the block.
764     // The declspec is always missing in a lambda expr context; it is either
765     // specified with a trailing return type or inferred.
766     if (S.getLangOpts().CPlusPlus1y &&
767         declarator.getContext() == Declarator::LambdaExprContext) {
768       // In C++1y, a lambda's implicit return type is 'auto'.
769       Result = Context.getAutoDeductType();
770       break;
771     } else if (declarator.getContext() == Declarator::LambdaExprContext ||
772                isOmittedBlockReturnType(declarator)) {
773       Result = Context.DependentTy;
774       break;
775     }
776 
777     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
778     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
779     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
780     // Note that the one exception to this is function definitions, which are
781     // allowed to be completely missing a declspec.  This is handled in the
782     // parser already though by it pretending to have seen an 'int' in this
783     // case.
784     if (S.getLangOpts().ImplicitInt) {
785       // In C89 mode, we only warn if there is a completely missing declspec
786       // when one is not allowed.
787       if (DS.isEmpty()) {
788         S.Diag(DeclLoc, diag::ext_missing_declspec)
789           << DS.getSourceRange()
790         << FixItHint::CreateInsertion(DS.getLocStart(), "int");
791       }
792     } else if (!DS.hasTypeSpecifier()) {
793       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
794       // "At least one type specifier shall be given in the declaration
795       // specifiers in each declaration, and in the specifier-qualifier list in
796       // each struct declaration and type name."
797       if (S.getLangOpts().CPlusPlus) {
798         S.Diag(DeclLoc, diag::err_missing_type_specifier)
799           << DS.getSourceRange();
800 
801         // When this occurs in C++ code, often something is very broken with the
802         // value being declared, poison it as invalid so we don't get chains of
803         // errors.
804         declarator.setInvalidType(true);
805       } else {
806         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
807           << DS.getSourceRange();
808       }
809     }
810 
811     // FALL THROUGH.
812   case DeclSpec::TST_int: {
813     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
814       switch (DS.getTypeSpecWidth()) {
815       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
816       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
817       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
818       case DeclSpec::TSW_longlong:
819         Result = Context.LongLongTy;
820 
821         // 'long long' is a C99 or C++11 feature.
822         if (!S.getLangOpts().C99) {
823           if (S.getLangOpts().CPlusPlus)
824             S.Diag(DS.getTypeSpecWidthLoc(),
825                    S.getLangOpts().CPlusPlus11 ?
826                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
827           else
828             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
829         }
830         break;
831       }
832     } else {
833       switch (DS.getTypeSpecWidth()) {
834       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
835       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
836       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
837       case DeclSpec::TSW_longlong:
838         Result = Context.UnsignedLongLongTy;
839 
840         // 'long long' is a C99 or C++11 feature.
841         if (!S.getLangOpts().C99) {
842           if (S.getLangOpts().CPlusPlus)
843             S.Diag(DS.getTypeSpecWidthLoc(),
844                    S.getLangOpts().CPlusPlus11 ?
845                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
846           else
847             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
848         }
849         break;
850       }
851     }
852     break;
853   }
854   case DeclSpec::TST_int128:
855     if (!S.Context.getTargetInfo().hasInt128Type())
856       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
857     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
858       Result = Context.UnsignedInt128Ty;
859     else
860       Result = Context.Int128Ty;
861     break;
862   case DeclSpec::TST_half: Result = Context.HalfTy; break;
863   case DeclSpec::TST_float: Result = Context.FloatTy; break;
864   case DeclSpec::TST_double:
865     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
866       Result = Context.LongDoubleTy;
867     else
868       Result = Context.DoubleTy;
869 
870     if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
871       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
872       declarator.setInvalidType(true);
873     }
874     break;
875   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
876   case DeclSpec::TST_decimal32:    // _Decimal32
877   case DeclSpec::TST_decimal64:    // _Decimal64
878   case DeclSpec::TST_decimal128:   // _Decimal128
879     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
880     Result = Context.IntTy;
881     declarator.setInvalidType(true);
882     break;
883   case DeclSpec::TST_class:
884   case DeclSpec::TST_enum:
885   case DeclSpec::TST_union:
886   case DeclSpec::TST_struct:
887   case DeclSpec::TST_interface: {
888     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
889     if (!D) {
890       // This can happen in C++ with ambiguous lookups.
891       Result = Context.IntTy;
892       declarator.setInvalidType(true);
893       break;
894     }
895 
896     // If the type is deprecated or unavailable, diagnose it.
897     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
898 
899     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
900            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
901 
902     // TypeQuals handled by caller.
903     Result = Context.getTypeDeclType(D);
904 
905     // In both C and C++, make an ElaboratedType.
906     ElaboratedTypeKeyword Keyword
907       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
908     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
909     break;
910   }
911   case DeclSpec::TST_typename: {
912     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
913            DS.getTypeSpecSign() == 0 &&
914            "Can't handle qualifiers on typedef names yet!");
915     Result = S.GetTypeFromParser(DS.getRepAsType());
916     if (Result.isNull())
917       declarator.setInvalidType(true);
918     else if (DeclSpec::ProtocolQualifierListTy PQ
919                = DS.getProtocolQualifiers()) {
920       if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
921         // Silently drop any existing protocol qualifiers.
922         // TODO: determine whether that's the right thing to do.
923         if (ObjT->getNumProtocols())
924           Result = ObjT->getBaseType();
925 
926         if (DS.getNumProtocolQualifiers())
927           Result = Context.getObjCObjectType(Result,
928                                              (ObjCProtocolDecl*const*) PQ,
929                                              DS.getNumProtocolQualifiers());
930       } else if (Result->isObjCIdType()) {
931         // id<protocol-list>
932         Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
933                                            (ObjCProtocolDecl*const*) PQ,
934                                            DS.getNumProtocolQualifiers());
935         Result = Context.getObjCObjectPointerType(Result);
936       } else if (Result->isObjCClassType()) {
937         // Class<protocol-list>
938         Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
939                                            (ObjCProtocolDecl*const*) PQ,
940                                            DS.getNumProtocolQualifiers());
941         Result = Context.getObjCObjectPointerType(Result);
942       } else {
943         S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
944           << DS.getSourceRange();
945         declarator.setInvalidType(true);
946       }
947     }
948 
949     // TypeQuals handled by caller.
950     break;
951   }
952   case DeclSpec::TST_typeofType:
953     // FIXME: Preserve type source info.
954     Result = S.GetTypeFromParser(DS.getRepAsType());
955     assert(!Result.isNull() && "Didn't get a type for typeof?");
956     if (!Result->isDependentType())
957       if (const TagType *TT = Result->getAs<TagType>())
958         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
959     // TypeQuals handled by caller.
960     Result = Context.getTypeOfType(Result);
961     break;
962   case DeclSpec::TST_typeofExpr: {
963     Expr *E = DS.getRepAsExpr();
964     assert(E && "Didn't get an expression for typeof?");
965     // TypeQuals handled by caller.
966     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
967     if (Result.isNull()) {
968       Result = Context.IntTy;
969       declarator.setInvalidType(true);
970     }
971     break;
972   }
973   case DeclSpec::TST_decltype: {
974     Expr *E = DS.getRepAsExpr();
975     assert(E && "Didn't get an expression for decltype?");
976     // TypeQuals handled by caller.
977     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
978     if (Result.isNull()) {
979       Result = Context.IntTy;
980       declarator.setInvalidType(true);
981     }
982     break;
983   }
984   case DeclSpec::TST_underlyingType:
985     Result = S.GetTypeFromParser(DS.getRepAsType());
986     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
987     Result = S.BuildUnaryTransformType(Result,
988                                        UnaryTransformType::EnumUnderlyingType,
989                                        DS.getTypeSpecTypeLoc());
990     if (Result.isNull()) {
991       Result = Context.IntTy;
992       declarator.setInvalidType(true);
993     }
994     break;
995 
996   case DeclSpec::TST_auto:
997     // TypeQuals handled by caller.
998     // If auto is mentioned in a lambda parameter context, convert it to a
999     // template parameter type immediately, with the appropriate depth and
1000     // index, and update sema's state (LambdaScopeInfo) for the current lambda
1001     // being analyzed (which tracks the invented type template parameter).
1002     if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1003       sema::LambdaScopeInfo *LSI = S.getCurLambda();
1004       assert(LSI && "No LambdaScopeInfo on the stack!");
1005       const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1006       const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1007       const bool IsParameterPack = declarator.hasEllipsis();
1008 
1009       // Create a name for the invented template parameter type.
1010       std::string InventedTemplateParamName = "$auto-";
1011       llvm::raw_string_ostream ss(InventedTemplateParamName);
1012       ss << TemplateParameterDepth;
1013       ss << "-" << AutoParameterPosition;
1014       ss.flush();
1015 
1016       IdentifierInfo& TemplateParamII = Context.Idents.get(
1017                                         InventedTemplateParamName.c_str());
1018       // Turns out we must create the TemplateTypeParmDecl here to
1019       // retrieve the corresponding template parameter type.
1020       TemplateTypeParmDecl *CorrespondingTemplateParam =
1021         TemplateTypeParmDecl::Create(Context,
1022         // Temporarily add to the TranslationUnit DeclContext.  When the
1023         // associated TemplateParameterList is attached to a template
1024         // declaration (such as FunctionTemplateDecl), the DeclContext
1025         // for each template parameter gets updated appropriately via
1026         // a call to AdoptTemplateParameterList.
1027         Context.getTranslationUnitDecl(),
1028         /*KeyLoc*/ SourceLocation(),
1029         /*NameLoc*/ declarator.getLocStart(),
1030         TemplateParameterDepth,
1031         AutoParameterPosition,  // our template param index
1032         /* Identifier*/ &TemplateParamII, false, IsParameterPack);
1033       LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1034       // Replace the 'auto' in the function parameter with this invented
1035       // template type parameter.
1036       Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1037     } else {
1038       Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
1039     }
1040     break;
1041 
1042   case DeclSpec::TST_decltype_auto:
1043     Result = Context.getAutoType(QualType(),
1044                                  /*decltype(auto)*/true,
1045                                  /*IsDependent*/   false);
1046     break;
1047 
1048   case DeclSpec::TST_unknown_anytype:
1049     Result = Context.UnknownAnyTy;
1050     break;
1051 
1052   case DeclSpec::TST_atomic:
1053     Result = S.GetTypeFromParser(DS.getRepAsType());
1054     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1055     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1056     if (Result.isNull()) {
1057       Result = Context.IntTy;
1058       declarator.setInvalidType(true);
1059     }
1060     break;
1061 
1062   case DeclSpec::TST_error:
1063     Result = Context.IntTy;
1064     declarator.setInvalidType(true);
1065     break;
1066   }
1067 
1068   // Handle complex types.
1069   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1070     if (S.getLangOpts().Freestanding)
1071       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1072     Result = Context.getComplexType(Result);
1073   } else if (DS.isTypeAltiVecVector()) {
1074     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1075     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1076     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1077     if (DS.isTypeAltiVecPixel())
1078       VecKind = VectorType::AltiVecPixel;
1079     else if (DS.isTypeAltiVecBool())
1080       VecKind = VectorType::AltiVecBool;
1081     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1082   }
1083 
1084   // FIXME: Imaginary.
1085   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1086     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1087 
1088   // Before we process any type attributes, synthesize a block literal
1089   // function declarator if necessary.
1090   if (declarator.getContext() == Declarator::BlockLiteralContext)
1091     maybeSynthesizeBlockSignature(state, Result);
1092 
1093   // Apply any type attributes from the decl spec.  This may cause the
1094   // list of type attributes to be temporarily saved while the type
1095   // attributes are pushed around.
1096   if (AttributeList *attrs = DS.getAttributes().getList())
1097     processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1098 
1099   // Apply const/volatile/restrict qualifiers to T.
1100   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1101 
1102     // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1103     // of a function type includes any type qualifiers, the behavior is
1104     // undefined."
1105     if (Result->isFunctionType() && TypeQuals) {
1106       if (TypeQuals & DeclSpec::TQ_const)
1107         S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1108           << Result << DS.getSourceRange();
1109       else if (TypeQuals & DeclSpec::TQ_volatile)
1110         S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1111           << Result << DS.getSourceRange();
1112       else {
1113         assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1114                "Has CVRA quals but not C, V, R, or A?");
1115         // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1116         // function type later, in BuildQualifiedType.
1117       }
1118     }
1119 
1120     // C++11 [dcl.ref]p1:
1121     //   Cv-qualified references are ill-formed except when the
1122     //   cv-qualifiers are introduced through the use of a typedef-name
1123     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1124     //
1125     // There don't appear to be any other contexts in which a cv-qualified
1126     // reference type could be formed, so the 'ill-formed' clause here appears
1127     // to never happen.
1128     if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1129         TypeQuals && Result->isReferenceType()) {
1130       // If this occurs outside a template instantiation, warn the user about
1131       // it; they probably didn't mean to specify a redundant qualifier.
1132       typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
1133       QualLoc Quals[] = {
1134         QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
1135         QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
1136         QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())
1137       };
1138       for (unsigned I = 0, N = llvm::array_lengthof(Quals); I != N; ++I) {
1139         if (S.ActiveTemplateInstantiations.empty()) {
1140           if (TypeQuals & Quals[I].first)
1141             S.Diag(Quals[I].second, diag::warn_typecheck_reference_qualifiers)
1142               << DeclSpec::getSpecifierName(Quals[I].first) << Result
1143               << FixItHint::CreateRemoval(Quals[I].second);
1144         }
1145         TypeQuals &= ~Quals[I].first;
1146       }
1147     }
1148 
1149     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1150     // than once in the same specifier-list or qualifier-list, either directly
1151     // or via one or more typedefs."
1152     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1153         && TypeQuals & Result.getCVRQualifiers()) {
1154       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1155         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1156           << "const";
1157       }
1158 
1159       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1160         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1161           << "volatile";
1162       }
1163 
1164       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1165       // produce a warning in this case.
1166     }
1167 
1168     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1169 
1170     // If adding qualifiers fails, just use the unqualified type.
1171     if (Qualified.isNull())
1172       declarator.setInvalidType(true);
1173     else
1174       Result = Qualified;
1175   }
1176 
1177   return Result;
1178 }
1179 
getPrintableNameForEntity(DeclarationName Entity)1180 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1181   if (Entity)
1182     return Entity.getAsString();
1183 
1184   return "type name";
1185 }
1186 
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1187 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1188                                   Qualifiers Qs, const DeclSpec *DS) {
1189   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1190   // object or incomplete types shall not be restrict-qualified."
1191   if (Qs.hasRestrict()) {
1192     unsigned DiagID = 0;
1193     QualType ProblemTy;
1194 
1195     if (T->isAnyPointerType() || T->isReferenceType() ||
1196         T->isMemberPointerType()) {
1197       QualType EltTy;
1198       if (T->isObjCObjectPointerType())
1199         EltTy = T;
1200       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1201         EltTy = PTy->getPointeeType();
1202       else
1203         EltTy = T->getPointeeType();
1204 
1205       // If we have a pointer or reference, the pointee must have an object
1206       // incomplete type.
1207       if (!EltTy->isIncompleteOrObjectType()) {
1208         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1209         ProblemTy = EltTy;
1210       }
1211     } else if (!T->isDependentType()) {
1212       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1213       ProblemTy = T;
1214     }
1215 
1216     if (DiagID) {
1217       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1218       Qs.removeRestrict();
1219     }
1220   }
1221 
1222   return Context.getQualifiedType(T, Qs);
1223 }
1224 
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRA,const DeclSpec * DS)1225 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1226                                   unsigned CVRA, const DeclSpec *DS) {
1227   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1228   unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1229 
1230   // C11 6.7.3/5:
1231   //   If the same qualifier appears more than once in the same
1232   //   specifier-qualifier-list, either directly or via one or more typedefs,
1233   //   the behavior is the same as if it appeared only once.
1234   //
1235   // It's not specified what happens when the _Atomic qualifier is applied to
1236   // a type specified with the _Atomic specifier, but we assume that this
1237   // should be treated as if the _Atomic qualifier appeared multiple times.
1238   if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1239     // C11 6.7.3/5:
1240     //   If other qualifiers appear along with the _Atomic qualifier in a
1241     //   specifier-qualifier-list, the resulting type is the so-qualified
1242     //   atomic type.
1243     //
1244     // Don't need to worry about array types here, since _Atomic can't be
1245     // applied to such types.
1246     SplitQualType Split = T.getSplitUnqualifiedType();
1247     T = BuildAtomicType(QualType(Split.Ty, 0),
1248                         DS ? DS->getAtomicSpecLoc() : Loc);
1249     if (T.isNull())
1250       return T;
1251     Split.Quals.addCVRQualifiers(CVR);
1252     return BuildQualifiedType(T, Loc, Split.Quals);
1253   }
1254 
1255   return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1256 }
1257 
1258 /// \brief Build a paren type including \p T.
BuildParenType(QualType T)1259 QualType Sema::BuildParenType(QualType T) {
1260   return Context.getParenType(T);
1261 }
1262 
1263 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1264 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1265                                            SourceLocation loc,
1266                                            bool isReference) {
1267   // Bail out if retention is unrequired or already specified.
1268   if (!type->isObjCLifetimeType() ||
1269       type.getObjCLifetime() != Qualifiers::OCL_None)
1270     return type;
1271 
1272   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1273 
1274   // If the object type is const-qualified, we can safely use
1275   // __unsafe_unretained.  This is safe (because there are no read
1276   // barriers), and it'll be safe to coerce anything but __weak* to
1277   // the resulting type.
1278   if (type.isConstQualified()) {
1279     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1280 
1281   // Otherwise, check whether the static type does not require
1282   // retaining.  This currently only triggers for Class (possibly
1283   // protocol-qualifed, and arrays thereof).
1284   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1285     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1286 
1287   // If we are in an unevaluated context, like sizeof, skip adding a
1288   // qualification.
1289   } else if (S.isUnevaluatedContext()) {
1290     return type;
1291 
1292   // If that failed, give an error and recover using __strong.  __strong
1293   // is the option most likely to prevent spurious second-order diagnostics,
1294   // like when binding a reference to a field.
1295   } else {
1296     // These types can show up in private ivars in system headers, so
1297     // we need this to not be an error in those cases.  Instead we
1298     // want to delay.
1299     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1300       S.DelayedDiagnostics.add(
1301           sema::DelayedDiagnostic::makeForbiddenType(loc,
1302               diag::err_arc_indirect_no_ownership, type, isReference));
1303     } else {
1304       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1305     }
1306     implicitLifetime = Qualifiers::OCL_Strong;
1307   }
1308   assert(implicitLifetime && "didn't infer any lifetime!");
1309 
1310   Qualifiers qs;
1311   qs.addObjCLifetime(implicitLifetime);
1312   return S.Context.getQualifiedType(type, qs);
1313 }
1314 
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)1315 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1316   std::string Quals =
1317     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1318 
1319   switch (FnTy->getRefQualifier()) {
1320   case RQ_None:
1321     break;
1322 
1323   case RQ_LValue:
1324     if (!Quals.empty())
1325       Quals += ' ';
1326     Quals += '&';
1327     break;
1328 
1329   case RQ_RValue:
1330     if (!Quals.empty())
1331       Quals += ' ';
1332     Quals += "&&";
1333     break;
1334   }
1335 
1336   return Quals;
1337 }
1338 
1339 namespace {
1340 /// Kinds of declarator that cannot contain a qualified function type.
1341 ///
1342 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1343 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1344 ///     at the topmost level of a type.
1345 ///
1346 /// Parens and member pointers are permitted. We don't diagnose array and
1347 /// function declarators, because they don't allow function types at all.
1348 ///
1349 /// The values of this enum are used in diagnostics.
1350 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1351 }
1352 
1353 /// Check whether the type T is a qualified function type, and if it is,
1354 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)1355 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1356                                    QualifiedFunctionKind QFK) {
1357   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1358   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1359   if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1360     return false;
1361 
1362   S.Diag(Loc, diag::err_compound_qualified_function_type)
1363     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1364     << getFunctionQualifiersAsString(FPT);
1365   return true;
1366 }
1367 
1368 /// \brief Build a pointer type.
1369 ///
1370 /// \param T The type to which we'll be building a pointer.
1371 ///
1372 /// \param Loc The location of the entity whose type involves this
1373 /// pointer type or, if there is no such entity, the location of the
1374 /// type that will have pointer type.
1375 ///
1376 /// \param Entity The name of the entity that involves the pointer
1377 /// type, if known.
1378 ///
1379 /// \returns A suitable pointer type, if there are no
1380 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1381 QualType Sema::BuildPointerType(QualType T,
1382                                 SourceLocation Loc, DeclarationName Entity) {
1383   if (T->isReferenceType()) {
1384     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1385     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1386       << getPrintableNameForEntity(Entity) << T;
1387     return QualType();
1388   }
1389 
1390   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1391     return QualType();
1392 
1393   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1394 
1395   // In ARC, it is forbidden to build pointers to unqualified pointers.
1396   if (getLangOpts().ObjCAutoRefCount)
1397     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1398 
1399   // Build the pointer type.
1400   return Context.getPointerType(T);
1401 }
1402 
1403 /// \brief Build a reference type.
1404 ///
1405 /// \param T The type to which we'll be building a reference.
1406 ///
1407 /// \param Loc The location of the entity whose type involves this
1408 /// reference type or, if there is no such entity, the location of the
1409 /// type that will have reference type.
1410 ///
1411 /// \param Entity The name of the entity that involves the reference
1412 /// type, if known.
1413 ///
1414 /// \returns A suitable reference type, if there are no
1415 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)1416 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1417                                   SourceLocation Loc,
1418                                   DeclarationName Entity) {
1419   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1420          "Unresolved overloaded function type");
1421 
1422   // C++0x [dcl.ref]p6:
1423   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1424   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1425   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1426   //   the type "lvalue reference to T", while an attempt to create the type
1427   //   "rvalue reference to cv TR" creates the type TR.
1428   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1429 
1430   // C++ [dcl.ref]p4: There shall be no references to references.
1431   //
1432   // According to C++ DR 106, references to references are only
1433   // diagnosed when they are written directly (e.g., "int & &"),
1434   // but not when they happen via a typedef:
1435   //
1436   //   typedef int& intref;
1437   //   typedef intref& intref2;
1438   //
1439   // Parser::ParseDeclaratorInternal diagnoses the case where
1440   // references are written directly; here, we handle the
1441   // collapsing of references-to-references as described in C++0x.
1442   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1443 
1444   // C++ [dcl.ref]p1:
1445   //   A declarator that specifies the type "reference to cv void"
1446   //   is ill-formed.
1447   if (T->isVoidType()) {
1448     Diag(Loc, diag::err_reference_to_void);
1449     return QualType();
1450   }
1451 
1452   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1453     return QualType();
1454 
1455   // In ARC, it is forbidden to build references to unqualified pointers.
1456   if (getLangOpts().ObjCAutoRefCount)
1457     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1458 
1459   // Handle restrict on references.
1460   if (LValueRef)
1461     return Context.getLValueReferenceType(T, SpelledAsLValue);
1462   return Context.getRValueReferenceType(T);
1463 }
1464 
1465 /// Check whether the specified array size makes the array type a VLA.  If so,
1466 /// return true, if not, return the size of the array in SizeVal.
isArraySizeVLA(Sema & S,Expr * ArraySize,llvm::APSInt & SizeVal)1467 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1468   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1469   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1470   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1471   public:
1472     VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1473 
1474     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1475     }
1476 
1477     void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
1478       S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1479     }
1480   } Diagnoser;
1481 
1482   return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1483                                            S.LangOpts.GNUMode).isInvalid();
1484 }
1485 
1486 
1487 /// \brief Build an array type.
1488 ///
1489 /// \param T The type of each element in the array.
1490 ///
1491 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1492 ///
1493 /// \param ArraySize Expression describing the size of the array.
1494 ///
1495 /// \param Brackets The range from the opening '[' to the closing ']'.
1496 ///
1497 /// \param Entity The name of the entity that involves the array
1498 /// type, if known.
1499 ///
1500 /// \returns A suitable array type, if there are no errors. Otherwise,
1501 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)1502 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1503                               Expr *ArraySize, unsigned Quals,
1504                               SourceRange Brackets, DeclarationName Entity) {
1505 
1506   SourceLocation Loc = Brackets.getBegin();
1507   if (getLangOpts().CPlusPlus) {
1508     // C++ [dcl.array]p1:
1509     //   T is called the array element type; this type shall not be a reference
1510     //   type, the (possibly cv-qualified) type void, a function type or an
1511     //   abstract class type.
1512     //
1513     // C++ [dcl.array]p3:
1514     //   When several "array of" specifications are adjacent, [...] only the
1515     //   first of the constant expressions that specify the bounds of the arrays
1516     //   may be omitted.
1517     //
1518     // Note: function types are handled in the common path with C.
1519     if (T->isReferenceType()) {
1520       Diag(Loc, diag::err_illegal_decl_array_of_references)
1521       << getPrintableNameForEntity(Entity) << T;
1522       return QualType();
1523     }
1524 
1525     if (T->isVoidType() || T->isIncompleteArrayType()) {
1526       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1527       return QualType();
1528     }
1529 
1530     if (RequireNonAbstractType(Brackets.getBegin(), T,
1531                                diag::err_array_of_abstract_type))
1532       return QualType();
1533 
1534     // Mentioning a member pointer type for an array type causes us to lock in
1535     // an inheritance model, even if it's inside an unused typedef.
1536     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
1537       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
1538         if (!MPTy->getClass()->isDependentType())
1539           RequireCompleteType(Loc, T, 0);
1540 
1541   } else {
1542     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1543     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1544     if (RequireCompleteType(Loc, T,
1545                             diag::err_illegal_decl_array_incomplete_type))
1546       return QualType();
1547   }
1548 
1549   if (T->isFunctionType()) {
1550     Diag(Loc, diag::err_illegal_decl_array_of_functions)
1551       << getPrintableNameForEntity(Entity) << T;
1552     return QualType();
1553   }
1554 
1555   if (const RecordType *EltTy = T->getAs<RecordType>()) {
1556     // If the element type is a struct or union that contains a variadic
1557     // array, accept it as a GNU extension: C99 6.7.2.1p2.
1558     if (EltTy->getDecl()->hasFlexibleArrayMember())
1559       Diag(Loc, diag::ext_flexible_array_in_array) << T;
1560   } else if (T->isObjCObjectType()) {
1561     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1562     return QualType();
1563   }
1564 
1565   // Do placeholder conversions on the array size expression.
1566   if (ArraySize && ArraySize->hasPlaceholderType()) {
1567     ExprResult Result = CheckPlaceholderExpr(ArraySize);
1568     if (Result.isInvalid()) return QualType();
1569     ArraySize = Result.get();
1570   }
1571 
1572   // Do lvalue-to-rvalue conversions on the array size expression.
1573   if (ArraySize && !ArraySize->isRValue()) {
1574     ExprResult Result = DefaultLvalueConversion(ArraySize);
1575     if (Result.isInvalid())
1576       return QualType();
1577 
1578     ArraySize = Result.get();
1579   }
1580 
1581   // C99 6.7.5.2p1: The size expression shall have integer type.
1582   // C++11 allows contextual conversions to such types.
1583   if (!getLangOpts().CPlusPlus11 &&
1584       ArraySize && !ArraySize->isTypeDependent() &&
1585       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1586     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1587       << ArraySize->getType() << ArraySize->getSourceRange();
1588     return QualType();
1589   }
1590 
1591   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1592   if (!ArraySize) {
1593     if (ASM == ArrayType::Star)
1594       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
1595     else
1596       T = Context.getIncompleteArrayType(T, ASM, Quals);
1597   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1598     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1599   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1600               !T->isConstantSizeType()) ||
1601              isArraySizeVLA(*this, ArraySize, ConstVal)) {
1602     // Even in C++11, don't allow contextual conversions in the array bound
1603     // of a VLA.
1604     if (getLangOpts().CPlusPlus11 &&
1605         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1606       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1607         << ArraySize->getType() << ArraySize->getSourceRange();
1608       return QualType();
1609     }
1610 
1611     // C99: an array with an element type that has a non-constant-size is a VLA.
1612     // C99: an array with a non-ICE size is a VLA.  We accept any expression
1613     // that we can fold to a non-zero positive value as an extension.
1614     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1615   } else {
1616     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1617     // have a value greater than zero.
1618     if (ConstVal.isSigned() && ConstVal.isNegative()) {
1619       if (Entity)
1620         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1621           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1622       else
1623         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1624           << ArraySize->getSourceRange();
1625       return QualType();
1626     }
1627     if (ConstVal == 0) {
1628       // GCC accepts zero sized static arrays. We allow them when
1629       // we're not in a SFINAE context.
1630       Diag(ArraySize->getLocStart(),
1631            isSFINAEContext()? diag::err_typecheck_zero_array_size
1632                             : diag::ext_typecheck_zero_array_size)
1633         << ArraySize->getSourceRange();
1634 
1635       if (ASM == ArrayType::Static) {
1636         Diag(ArraySize->getLocStart(),
1637              diag::warn_typecheck_zero_static_array_size)
1638           << ArraySize->getSourceRange();
1639         ASM = ArrayType::Normal;
1640       }
1641     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1642                !T->isIncompleteType() && !T->isUndeducedType()) {
1643       // Is the array too large?
1644       unsigned ActiveSizeBits
1645         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1646       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1647         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1648           << ConstVal.toString(10)
1649           << ArraySize->getSourceRange();
1650         return QualType();
1651       }
1652     }
1653 
1654     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1655   }
1656 
1657   // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1658   if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1659     Diag(Loc, diag::err_opencl_vla);
1660     return QualType();
1661   }
1662   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1663   if (!getLangOpts().C99) {
1664     if (T->isVariableArrayType()) {
1665       // Prohibit the use of non-POD types in VLAs.
1666       QualType BaseT = Context.getBaseElementType(T);
1667       if (!T->isDependentType() &&
1668           !RequireCompleteType(Loc, BaseT, 0) &&
1669           !BaseT.isPODType(Context) &&
1670           !BaseT->isObjCLifetimeType()) {
1671         Diag(Loc, diag::err_vla_non_pod)
1672           << BaseT;
1673         return QualType();
1674       }
1675       // Prohibit the use of VLAs during template argument deduction.
1676       else if (isSFINAEContext()) {
1677         Diag(Loc, diag::err_vla_in_sfinae);
1678         return QualType();
1679       }
1680       // Just extwarn about VLAs.
1681       else
1682         Diag(Loc, diag::ext_vla);
1683     } else if (ASM != ArrayType::Normal || Quals != 0)
1684       Diag(Loc,
1685            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1686                                      : diag::ext_c99_array_usage) << ASM;
1687   }
1688 
1689   if (T->isVariableArrayType()) {
1690     // Warn about VLAs for -Wvla.
1691     Diag(Loc, diag::warn_vla_used);
1692   }
1693 
1694   return T;
1695 }
1696 
1697 /// \brief Build an ext-vector type.
1698 ///
1699 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)1700 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1701                                   SourceLocation AttrLoc) {
1702   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1703   // in conjunction with complex types (pointers, arrays, functions, etc.).
1704   if (!T->isDependentType() &&
1705       !T->isIntegerType() && !T->isRealFloatingType()) {
1706     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1707     return QualType();
1708   }
1709 
1710   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1711     llvm::APSInt vecSize(32);
1712     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1713       Diag(AttrLoc, diag::err_attribute_argument_type)
1714         << "ext_vector_type" << AANT_ArgumentIntegerConstant
1715         << ArraySize->getSourceRange();
1716       return QualType();
1717     }
1718 
1719     // unlike gcc's vector_size attribute, the size is specified as the
1720     // number of elements, not the number of bytes.
1721     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1722 
1723     if (vectorSize == 0) {
1724       Diag(AttrLoc, diag::err_attribute_zero_size)
1725       << ArraySize->getSourceRange();
1726       return QualType();
1727     }
1728 
1729     if (VectorType::isVectorSizeTooLarge(vectorSize)) {
1730       Diag(AttrLoc, diag::err_attribute_size_too_large)
1731         << ArraySize->getSourceRange();
1732       return QualType();
1733     }
1734 
1735     return Context.getExtVectorType(T, vectorSize);
1736   }
1737 
1738   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1739 }
1740 
CheckFunctionReturnType(QualType T,SourceLocation Loc)1741 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1742   if (T->isArrayType() || T->isFunctionType()) {
1743     Diag(Loc, diag::err_func_returning_array_function)
1744       << T->isFunctionType() << T;
1745     return true;
1746   }
1747 
1748   // Functions cannot return half FP.
1749   if (T->isHalfType()) {
1750     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1751       FixItHint::CreateInsertion(Loc, "*");
1752     return true;
1753   }
1754 
1755   // Methods cannot return interface types. All ObjC objects are
1756   // passed by reference.
1757   if (T->isObjCObjectType()) {
1758     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1759     return 0;
1760   }
1761 
1762   return false;
1763 }
1764 
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)1765 QualType Sema::BuildFunctionType(QualType T,
1766                                  MutableArrayRef<QualType> ParamTypes,
1767                                  SourceLocation Loc, DeclarationName Entity,
1768                                  const FunctionProtoType::ExtProtoInfo &EPI) {
1769   bool Invalid = false;
1770 
1771   Invalid |= CheckFunctionReturnType(T, Loc);
1772 
1773   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1774     // FIXME: Loc is too inprecise here, should use proper locations for args.
1775     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1776     if (ParamType->isVoidType()) {
1777       Diag(Loc, diag::err_param_with_void_type);
1778       Invalid = true;
1779     } else if (ParamType->isHalfType()) {
1780       // Disallow half FP arguments.
1781       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1782         FixItHint::CreateInsertion(Loc, "*");
1783       Invalid = true;
1784     }
1785 
1786     ParamTypes[Idx] = ParamType;
1787   }
1788 
1789   if (Invalid)
1790     return QualType();
1791 
1792   return Context.getFunctionType(T, ParamTypes, EPI);
1793 }
1794 
1795 /// \brief Build a member pointer type \c T Class::*.
1796 ///
1797 /// \param T the type to which the member pointer refers.
1798 /// \param Class the class type into which the member pointer points.
1799 /// \param Loc the location where this type begins
1800 /// \param Entity the name of the entity that will have this member pointer type
1801 ///
1802 /// \returns a member pointer type, if successful, or a NULL type if there was
1803 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)1804 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1805                                       SourceLocation Loc,
1806                                       DeclarationName Entity) {
1807   // Verify that we're not building a pointer to pointer to function with
1808   // exception specification.
1809   if (CheckDistantExceptionSpec(T)) {
1810     Diag(Loc, diag::err_distant_exception_spec);
1811 
1812     // FIXME: If we're doing this as part of template instantiation,
1813     // we should return immediately.
1814 
1815     // Build the type anyway, but use the canonical type so that the
1816     // exception specifiers are stripped off.
1817     T = Context.getCanonicalType(T);
1818   }
1819 
1820   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1821   //   with reference type, or "cv void."
1822   if (T->isReferenceType()) {
1823     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1824       << getPrintableNameForEntity(Entity) << T;
1825     return QualType();
1826   }
1827 
1828   if (T->isVoidType()) {
1829     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1830       << getPrintableNameForEntity(Entity);
1831     return QualType();
1832   }
1833 
1834   if (!Class->isDependentType() && !Class->isRecordType()) {
1835     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1836     return QualType();
1837   }
1838 
1839   // Adjust the default free function calling convention to the default method
1840   // calling convention.
1841   if (T->isFunctionType())
1842     adjustMemberFunctionCC(T, /*IsStatic=*/false);
1843 
1844   return Context.getMemberPointerType(T, Class.getTypePtr());
1845 }
1846 
1847 /// \brief Build a block pointer type.
1848 ///
1849 /// \param T The type to which we'll be building a block pointer.
1850 ///
1851 /// \param Loc The source location, used for diagnostics.
1852 ///
1853 /// \param Entity The name of the entity that involves the block pointer
1854 /// type, if known.
1855 ///
1856 /// \returns A suitable block pointer type, if there are no
1857 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1858 QualType Sema::BuildBlockPointerType(QualType T,
1859                                      SourceLocation Loc,
1860                                      DeclarationName Entity) {
1861   if (!T->isFunctionType()) {
1862     Diag(Loc, diag::err_nonfunction_block_type);
1863     return QualType();
1864   }
1865 
1866   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
1867     return QualType();
1868 
1869   return Context.getBlockPointerType(T);
1870 }
1871 
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)1872 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1873   QualType QT = Ty.get();
1874   if (QT.isNull()) {
1875     if (TInfo) *TInfo = nullptr;
1876     return QualType();
1877   }
1878 
1879   TypeSourceInfo *DI = nullptr;
1880   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1881     QT = LIT->getType();
1882     DI = LIT->getTypeSourceInfo();
1883   }
1884 
1885   if (TInfo) *TInfo = DI;
1886   return QT;
1887 }
1888 
1889 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1890                                             Qualifiers::ObjCLifetime ownership,
1891                                             unsigned chunkIndex);
1892 
1893 /// Given that this is the declaration of a parameter under ARC,
1894 /// attempt to infer attributes and such for pointer-to-whatever
1895 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)1896 static void inferARCWriteback(TypeProcessingState &state,
1897                               QualType &declSpecType) {
1898   Sema &S = state.getSema();
1899   Declarator &declarator = state.getDeclarator();
1900 
1901   // TODO: should we care about decl qualifiers?
1902 
1903   // Check whether the declarator has the expected form.  We walk
1904   // from the inside out in order to make the block logic work.
1905   unsigned outermostPointerIndex = 0;
1906   bool isBlockPointer = false;
1907   unsigned numPointers = 0;
1908   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1909     unsigned chunkIndex = i;
1910     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1911     switch (chunk.Kind) {
1912     case DeclaratorChunk::Paren:
1913       // Ignore parens.
1914       break;
1915 
1916     case DeclaratorChunk::Reference:
1917     case DeclaratorChunk::Pointer:
1918       // Count the number of pointers.  Treat references
1919       // interchangeably as pointers; if they're mis-ordered, normal
1920       // type building will discover that.
1921       outermostPointerIndex = chunkIndex;
1922       numPointers++;
1923       break;
1924 
1925     case DeclaratorChunk::BlockPointer:
1926       // If we have a pointer to block pointer, that's an acceptable
1927       // indirect reference; anything else is not an application of
1928       // the rules.
1929       if (numPointers != 1) return;
1930       numPointers++;
1931       outermostPointerIndex = chunkIndex;
1932       isBlockPointer = true;
1933 
1934       // We don't care about pointer structure in return values here.
1935       goto done;
1936 
1937     case DeclaratorChunk::Array: // suppress if written (id[])?
1938     case DeclaratorChunk::Function:
1939     case DeclaratorChunk::MemberPointer:
1940       return;
1941     }
1942   }
1943  done:
1944 
1945   // If we have *one* pointer, then we want to throw the qualifier on
1946   // the declaration-specifiers, which means that it needs to be a
1947   // retainable object type.
1948   if (numPointers == 1) {
1949     // If it's not a retainable object type, the rule doesn't apply.
1950     if (!declSpecType->isObjCRetainableType()) return;
1951 
1952     // If it already has lifetime, don't do anything.
1953     if (declSpecType.getObjCLifetime()) return;
1954 
1955     // Otherwise, modify the type in-place.
1956     Qualifiers qs;
1957 
1958     if (declSpecType->isObjCARCImplicitlyUnretainedType())
1959       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1960     else
1961       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1962     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1963 
1964   // If we have *two* pointers, then we want to throw the qualifier on
1965   // the outermost pointer.
1966   } else if (numPointers == 2) {
1967     // If we don't have a block pointer, we need to check whether the
1968     // declaration-specifiers gave us something that will turn into a
1969     // retainable object pointer after we slap the first pointer on it.
1970     if (!isBlockPointer && !declSpecType->isObjCObjectType())
1971       return;
1972 
1973     // Look for an explicit lifetime attribute there.
1974     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1975     if (chunk.Kind != DeclaratorChunk::Pointer &&
1976         chunk.Kind != DeclaratorChunk::BlockPointer)
1977       return;
1978     for (const AttributeList *attr = chunk.getAttrs(); attr;
1979            attr = attr->getNext())
1980       if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1981         return;
1982 
1983     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1984                                           outermostPointerIndex);
1985 
1986   // Any other number of pointers/references does not trigger the rule.
1987   } else return;
1988 
1989   // TODO: mark whether we did this inference?
1990 }
1991 
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc)1992 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
1993                                      SourceLocation FallbackLoc,
1994                                      SourceLocation ConstQualLoc,
1995                                      SourceLocation VolatileQualLoc,
1996                                      SourceLocation RestrictQualLoc,
1997                                      SourceLocation AtomicQualLoc) {
1998   if (!Quals)
1999     return;
2000 
2001   struct Qual {
2002     unsigned Mask;
2003     const char *Name;
2004     SourceLocation Loc;
2005   } const QualKinds[4] = {
2006     { DeclSpec::TQ_const, "const", ConstQualLoc },
2007     { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
2008     { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
2009     { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
2010   };
2011 
2012   SmallString<32> QualStr;
2013   unsigned NumQuals = 0;
2014   SourceLocation Loc;
2015   FixItHint FixIts[4];
2016 
2017   // Build a string naming the redundant qualifiers.
2018   for (unsigned I = 0; I != 4; ++I) {
2019     if (Quals & QualKinds[I].Mask) {
2020       if (!QualStr.empty()) QualStr += ' ';
2021       QualStr += QualKinds[I].Name;
2022 
2023       // If we have a location for the qualifier, offer a fixit.
2024       SourceLocation QualLoc = QualKinds[I].Loc;
2025       if (!QualLoc.isInvalid()) {
2026         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2027         if (Loc.isInvalid() ||
2028             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2029           Loc = QualLoc;
2030       }
2031 
2032       ++NumQuals;
2033     }
2034   }
2035 
2036   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2037     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2038 }
2039 
2040 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)2041 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2042                                                   Declarator &D,
2043                                                   unsigned FunctionChunkIndex) {
2044   if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2045     // FIXME: TypeSourceInfo doesn't preserve location information for
2046     // qualifiers.
2047     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2048                                 RetTy.getLocalCVRQualifiers(),
2049                                 D.getIdentifierLoc());
2050     return;
2051   }
2052 
2053   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2054                 End = D.getNumTypeObjects();
2055        OuterChunkIndex != End; ++OuterChunkIndex) {
2056     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2057     switch (OuterChunk.Kind) {
2058     case DeclaratorChunk::Paren:
2059       continue;
2060 
2061     case DeclaratorChunk::Pointer: {
2062       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2063       S.diagnoseIgnoredQualifiers(
2064           diag::warn_qual_return_type,
2065           PTI.TypeQuals,
2066           SourceLocation(),
2067           SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2068           SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2069           SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2070           SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2071       return;
2072     }
2073 
2074     case DeclaratorChunk::Function:
2075     case DeclaratorChunk::BlockPointer:
2076     case DeclaratorChunk::Reference:
2077     case DeclaratorChunk::Array:
2078     case DeclaratorChunk::MemberPointer:
2079       // FIXME: We can't currently provide an accurate source location and a
2080       // fix-it hint for these.
2081       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2082       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2083                                   RetTy.getCVRQualifiers() | AtomicQual,
2084                                   D.getIdentifierLoc());
2085       return;
2086     }
2087 
2088     llvm_unreachable("unknown declarator chunk kind");
2089   }
2090 
2091   // If the qualifiers come from a conversion function type, don't diagnose
2092   // them -- they're not necessarily redundant, since such a conversion
2093   // operator can be explicitly called as "x.operator const int()".
2094   if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2095     return;
2096 
2097   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2098   // which are present there.
2099   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2100                               D.getDeclSpec().getTypeQualifiers(),
2101                               D.getIdentifierLoc(),
2102                               D.getDeclSpec().getConstSpecLoc(),
2103                               D.getDeclSpec().getVolatileSpecLoc(),
2104                               D.getDeclSpec().getRestrictSpecLoc(),
2105                               D.getDeclSpec().getAtomicSpecLoc());
2106 }
2107 
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)2108 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2109                                              TypeSourceInfo *&ReturnTypeInfo) {
2110   Sema &SemaRef = state.getSema();
2111   Declarator &D = state.getDeclarator();
2112   QualType T;
2113   ReturnTypeInfo = nullptr;
2114 
2115   // The TagDecl owned by the DeclSpec.
2116   TagDecl *OwnedTagDecl = nullptr;
2117 
2118   bool ContainsPlaceholderType = false;
2119 
2120   switch (D.getName().getKind()) {
2121   case UnqualifiedId::IK_ImplicitSelfParam:
2122   case UnqualifiedId::IK_OperatorFunctionId:
2123   case UnqualifiedId::IK_Identifier:
2124   case UnqualifiedId::IK_LiteralOperatorId:
2125   case UnqualifiedId::IK_TemplateId:
2126     T = ConvertDeclSpecToType(state);
2127     ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2128 
2129     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2130       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2131       // Owned declaration is embedded in declarator.
2132       OwnedTagDecl->setEmbeddedInDeclarator(true);
2133     }
2134     break;
2135 
2136   case UnqualifiedId::IK_ConstructorName:
2137   case UnqualifiedId::IK_ConstructorTemplateId:
2138   case UnqualifiedId::IK_DestructorName:
2139     // Constructors and destructors don't have return types. Use
2140     // "void" instead.
2141     T = SemaRef.Context.VoidTy;
2142     if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2143       processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2144     break;
2145 
2146   case UnqualifiedId::IK_ConversionFunctionId:
2147     // The result type of a conversion function is the type that it
2148     // converts to.
2149     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2150                                   &ReturnTypeInfo);
2151     ContainsPlaceholderType = T->getContainedAutoType();
2152     break;
2153   }
2154 
2155   if (D.getAttributes())
2156     distributeTypeAttrsFromDeclarator(state, T);
2157 
2158   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2159   // In C++11, a function declarator using 'auto' must have a trailing return
2160   // type (this is checked later) and we can skip this. In other languages
2161   // using auto, we need to check regardless.
2162   // C++14 In generic lambdas allow 'auto' in their parameters.
2163   if (ContainsPlaceholderType &&
2164       (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2165     int Error = -1;
2166 
2167     switch (D.getContext()) {
2168     case Declarator::KNRTypeListContext:
2169       llvm_unreachable("K&R type lists aren't allowed in C++");
2170     case Declarator::LambdaExprContext:
2171       llvm_unreachable("Can't specify a type specifier in lambda grammar");
2172     case Declarator::ObjCParameterContext:
2173     case Declarator::ObjCResultContext:
2174     case Declarator::PrototypeContext:
2175       Error = 0;
2176       break;
2177     case Declarator::LambdaExprParameterContext:
2178       if (!(SemaRef.getLangOpts().CPlusPlus1y
2179               && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2180         Error = 14;
2181       break;
2182     case Declarator::MemberContext:
2183       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2184         break;
2185       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2186       case TTK_Enum: llvm_unreachable("unhandled tag kind");
2187       case TTK_Struct: Error = 1; /* Struct member */ break;
2188       case TTK_Union:  Error = 2; /* Union member */ break;
2189       case TTK_Class:  Error = 3; /* Class member */ break;
2190       case TTK_Interface: Error = 4; /* Interface member */ break;
2191       }
2192       break;
2193     case Declarator::CXXCatchContext:
2194     case Declarator::ObjCCatchContext:
2195       Error = 5; // Exception declaration
2196       break;
2197     case Declarator::TemplateParamContext:
2198       Error = 6; // Template parameter
2199       break;
2200     case Declarator::BlockLiteralContext:
2201       Error = 7; // Block literal
2202       break;
2203     case Declarator::TemplateTypeArgContext:
2204       Error = 8; // Template type argument
2205       break;
2206     case Declarator::AliasDeclContext:
2207     case Declarator::AliasTemplateContext:
2208       Error = 10; // Type alias
2209       break;
2210     case Declarator::TrailingReturnContext:
2211       if (!SemaRef.getLangOpts().CPlusPlus1y)
2212         Error = 11; // Function return type
2213       break;
2214     case Declarator::ConversionIdContext:
2215       if (!SemaRef.getLangOpts().CPlusPlus1y)
2216         Error = 12; // conversion-type-id
2217       break;
2218     case Declarator::TypeNameContext:
2219       Error = 13; // Generic
2220       break;
2221     case Declarator::FileContext:
2222     case Declarator::BlockContext:
2223     case Declarator::ForContext:
2224     case Declarator::ConditionContext:
2225     case Declarator::CXXNewContext:
2226       break;
2227     }
2228 
2229     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2230       Error = 9;
2231 
2232     // In Objective-C it is an error to use 'auto' on a function declarator.
2233     if (D.isFunctionDeclarator())
2234       Error = 11;
2235 
2236     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2237     // contains a trailing return type. That is only legal at the outermost
2238     // level. Check all declarator chunks (outermost first) anyway, to give
2239     // better diagnostics.
2240     if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2241       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2242         unsigned chunkIndex = e - i - 1;
2243         state.setCurrentChunkIndex(chunkIndex);
2244         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2245         if (DeclType.Kind == DeclaratorChunk::Function) {
2246           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2247           if (FTI.hasTrailingReturnType()) {
2248             Error = -1;
2249             break;
2250           }
2251         }
2252       }
2253     }
2254 
2255     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2256     if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2257       AutoRange = D.getName().getSourceRange();
2258 
2259     if (Error != -1) {
2260       const bool IsDeclTypeAuto =
2261           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
2262       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2263         << IsDeclTypeAuto << Error << AutoRange;
2264       T = SemaRef.Context.IntTy;
2265       D.setInvalidType(true);
2266     } else
2267       SemaRef.Diag(AutoRange.getBegin(),
2268                    diag::warn_cxx98_compat_auto_type_specifier)
2269         << AutoRange;
2270   }
2271 
2272   if (SemaRef.getLangOpts().CPlusPlus &&
2273       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2274     // Check the contexts where C++ forbids the declaration of a new class
2275     // or enumeration in a type-specifier-seq.
2276     switch (D.getContext()) {
2277     case Declarator::TrailingReturnContext:
2278       // Class and enumeration definitions are syntactically not allowed in
2279       // trailing return types.
2280       llvm_unreachable("parser should not have allowed this");
2281       break;
2282     case Declarator::FileContext:
2283     case Declarator::MemberContext:
2284     case Declarator::BlockContext:
2285     case Declarator::ForContext:
2286     case Declarator::BlockLiteralContext:
2287     case Declarator::LambdaExprContext:
2288       // C++11 [dcl.type]p3:
2289       //   A type-specifier-seq shall not define a class or enumeration unless
2290       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2291       //   the declaration of a template-declaration.
2292     case Declarator::AliasDeclContext:
2293       break;
2294     case Declarator::AliasTemplateContext:
2295       SemaRef.Diag(OwnedTagDecl->getLocation(),
2296              diag::err_type_defined_in_alias_template)
2297         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2298       D.setInvalidType(true);
2299       break;
2300     case Declarator::TypeNameContext:
2301     case Declarator::ConversionIdContext:
2302     case Declarator::TemplateParamContext:
2303     case Declarator::CXXNewContext:
2304     case Declarator::CXXCatchContext:
2305     case Declarator::ObjCCatchContext:
2306     case Declarator::TemplateTypeArgContext:
2307       SemaRef.Diag(OwnedTagDecl->getLocation(),
2308              diag::err_type_defined_in_type_specifier)
2309         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2310       D.setInvalidType(true);
2311       break;
2312     case Declarator::PrototypeContext:
2313     case Declarator::LambdaExprParameterContext:
2314     case Declarator::ObjCParameterContext:
2315     case Declarator::ObjCResultContext:
2316     case Declarator::KNRTypeListContext:
2317       // C++ [dcl.fct]p6:
2318       //   Types shall not be defined in return or parameter types.
2319       SemaRef.Diag(OwnedTagDecl->getLocation(),
2320                    diag::err_type_defined_in_param_type)
2321         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2322       D.setInvalidType(true);
2323       break;
2324     case Declarator::ConditionContext:
2325       // C++ 6.4p2:
2326       // The type-specifier-seq shall not contain typedef and shall not declare
2327       // a new class or enumeration.
2328       SemaRef.Diag(OwnedTagDecl->getLocation(),
2329                    diag::err_type_defined_in_condition);
2330       D.setInvalidType(true);
2331       break;
2332     }
2333   }
2334 
2335   return T;
2336 }
2337 
2338 /// Produce an appropriate diagnostic for an ambiguity between a function
2339 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)2340 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2341                                        DeclaratorChunk &DeclType, QualType RT) {
2342   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2343   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2344 
2345   // If the return type is void there is no ambiguity.
2346   if (RT->isVoidType())
2347     return;
2348 
2349   // An initializer for a non-class type can have at most one argument.
2350   if (!RT->isRecordType() && FTI.NumParams > 1)
2351     return;
2352 
2353   // An initializer for a reference must have exactly one argument.
2354   if (RT->isReferenceType() && FTI.NumParams != 1)
2355     return;
2356 
2357   // Only warn if this declarator is declaring a function at block scope, and
2358   // doesn't have a storage class (such as 'extern') specified.
2359   if (!D.isFunctionDeclarator() ||
2360       D.getFunctionDefinitionKind() != FDK_Declaration ||
2361       !S.CurContext->isFunctionOrMethod() ||
2362       D.getDeclSpec().getStorageClassSpec()
2363         != DeclSpec::SCS_unspecified)
2364     return;
2365 
2366   // Inside a condition, a direct initializer is not permitted. We allow one to
2367   // be parsed in order to give better diagnostics in condition parsing.
2368   if (D.getContext() == Declarator::ConditionContext)
2369     return;
2370 
2371   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2372 
2373   S.Diag(DeclType.Loc,
2374          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
2375                        : diag::warn_empty_parens_are_function_decl)
2376       << ParenRange;
2377 
2378   // If the declaration looks like:
2379   //   T var1,
2380   //   f();
2381   // and name lookup finds a function named 'f', then the ',' was
2382   // probably intended to be a ';'.
2383   if (!D.isFirstDeclarator() && D.getIdentifier()) {
2384     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2385     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2386     if (Comma.getFileID() != Name.getFileID() ||
2387         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2388       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2389                           Sema::LookupOrdinaryName);
2390       if (S.LookupName(Result, S.getCurScope()))
2391         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2392           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2393           << D.getIdentifier();
2394     }
2395   }
2396 
2397   if (FTI.NumParams > 0) {
2398     // For a declaration with parameters, eg. "T var(T());", suggest adding
2399     // parens around the first parameter to turn the declaration into a
2400     // variable declaration.
2401     SourceRange Range = FTI.Params[0].Param->getSourceRange();
2402     SourceLocation B = Range.getBegin();
2403     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
2404     // FIXME: Maybe we should suggest adding braces instead of parens
2405     // in C++11 for classes that don't have an initializer_list constructor.
2406     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2407       << FixItHint::CreateInsertion(B, "(")
2408       << FixItHint::CreateInsertion(E, ")");
2409   } else {
2410     // For a declaration without parameters, eg. "T var();", suggest replacing
2411     // the parens with an initializer to turn the declaration into a variable
2412     // declaration.
2413     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2414 
2415     // Empty parens mean value-initialization, and no parens mean
2416     // default initialization. These are equivalent if the default
2417     // constructor is user-provided or if zero-initialization is a
2418     // no-op.
2419     if (RD && RD->hasDefinition() &&
2420         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2421       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2422         << FixItHint::CreateRemoval(ParenRange);
2423     else {
2424       std::string Init =
2425           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2426       if (Init.empty() && S.LangOpts.CPlusPlus11)
2427         Init = "{}";
2428       if (!Init.empty())
2429         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2430           << FixItHint::CreateReplacement(ParenRange, Init);
2431     }
2432   }
2433 }
2434 
2435 /// Helper for figuring out the default CC for a function declarator type.  If
2436 /// this is the outermost chunk, then we can determine the CC from the
2437 /// declarator context.  If not, then this could be either a member function
2438 /// type or normal function type.
2439 static CallingConv
getCCForDeclaratorChunk(Sema & S,Declarator & D,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)2440 getCCForDeclaratorChunk(Sema &S, Declarator &D,
2441                         const DeclaratorChunk::FunctionTypeInfo &FTI,
2442                         unsigned ChunkIndex) {
2443   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2444 
2445   bool IsCXXInstanceMethod = false;
2446 
2447   if (S.getLangOpts().CPlusPlus) {
2448     // Look inwards through parentheses to see if this chunk will form a
2449     // member pointer type or if we're the declarator.  Any type attributes
2450     // between here and there will override the CC we choose here.
2451     unsigned I = ChunkIndex;
2452     bool FoundNonParen = false;
2453     while (I && !FoundNonParen) {
2454       --I;
2455       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2456         FoundNonParen = true;
2457     }
2458 
2459     if (FoundNonParen) {
2460       // If we're not the declarator, we're a regular function type unless we're
2461       // in a member pointer.
2462       IsCXXInstanceMethod =
2463           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2464     } else {
2465       // We're the innermost decl chunk, so must be a function declarator.
2466       assert(D.isFunctionDeclarator());
2467 
2468       // If we're inside a record, we're declaring a method, but it could be
2469       // explicitly or implicitly static.
2470       IsCXXInstanceMethod =
2471           D.isFirstDeclarationOfMember() &&
2472           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2473           !D.isStaticMember();
2474     }
2475   }
2476 
2477   return S.Context.getDefaultCallingConvention(FTI.isVariadic,
2478                                                IsCXXInstanceMethod);
2479 }
2480 
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)2481 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2482                                                 QualType declSpecType,
2483                                                 TypeSourceInfo *TInfo) {
2484 
2485   QualType T = declSpecType;
2486   Declarator &D = state.getDeclarator();
2487   Sema &S = state.getSema();
2488   ASTContext &Context = S.Context;
2489   const LangOptions &LangOpts = S.getLangOpts();
2490 
2491   // The name we're declaring, if any.
2492   DeclarationName Name;
2493   if (D.getIdentifier())
2494     Name = D.getIdentifier();
2495 
2496   // Does this declaration declare a typedef-name?
2497   bool IsTypedefName =
2498     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2499     D.getContext() == Declarator::AliasDeclContext ||
2500     D.getContext() == Declarator::AliasTemplateContext;
2501 
2502   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2503   bool IsQualifiedFunction = T->isFunctionProtoType() &&
2504       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2505        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2506 
2507   // If T is 'decltype(auto)', the only declarators we can have are parens
2508   // and at most one function declarator if this is a function declaration.
2509   if (const AutoType *AT = T->getAs<AutoType>()) {
2510     if (AT->isDecltypeAuto()) {
2511       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2512         unsigned Index = E - I - 1;
2513         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2514         unsigned DiagId = diag::err_decltype_auto_compound_type;
2515         unsigned DiagKind = 0;
2516         switch (DeclChunk.Kind) {
2517         case DeclaratorChunk::Paren:
2518           continue;
2519         case DeclaratorChunk::Function: {
2520           unsigned FnIndex;
2521           if (D.isFunctionDeclarationContext() &&
2522               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2523             continue;
2524           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2525           break;
2526         }
2527         case DeclaratorChunk::Pointer:
2528         case DeclaratorChunk::BlockPointer:
2529         case DeclaratorChunk::MemberPointer:
2530           DiagKind = 0;
2531           break;
2532         case DeclaratorChunk::Reference:
2533           DiagKind = 1;
2534           break;
2535         case DeclaratorChunk::Array:
2536           DiagKind = 2;
2537           break;
2538         }
2539 
2540         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2541         D.setInvalidType(true);
2542         break;
2543       }
2544     }
2545   }
2546 
2547   // Walk the DeclTypeInfo, building the recursive type as we go.
2548   // DeclTypeInfos are ordered from the identifier out, which is
2549   // opposite of what we want :).
2550   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2551     unsigned chunkIndex = e - i - 1;
2552     state.setCurrentChunkIndex(chunkIndex);
2553     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2554     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
2555     switch (DeclType.Kind) {
2556     case DeclaratorChunk::Paren:
2557       T = S.BuildParenType(T);
2558       break;
2559     case DeclaratorChunk::BlockPointer:
2560       // If blocks are disabled, emit an error.
2561       if (!LangOpts.Blocks)
2562         S.Diag(DeclType.Loc, diag::err_blocks_disable);
2563 
2564       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2565       if (DeclType.Cls.TypeQuals)
2566         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2567       break;
2568     case DeclaratorChunk::Pointer:
2569       // Verify that we're not building a pointer to pointer to function with
2570       // exception specification.
2571       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2572         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2573         D.setInvalidType(true);
2574         // Build the type anyway.
2575       }
2576       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2577         T = Context.getObjCObjectPointerType(T);
2578         if (DeclType.Ptr.TypeQuals)
2579           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2580         break;
2581       }
2582       T = S.BuildPointerType(T, DeclType.Loc, Name);
2583       if (DeclType.Ptr.TypeQuals)
2584         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2585 
2586       break;
2587     case DeclaratorChunk::Reference: {
2588       // Verify that we're not building a reference to pointer to function with
2589       // exception specification.
2590       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2591         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2592         D.setInvalidType(true);
2593         // Build the type anyway.
2594       }
2595       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2596 
2597       if (DeclType.Ref.HasRestrict)
2598         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2599       break;
2600     }
2601     case DeclaratorChunk::Array: {
2602       // Verify that we're not building an array of pointers to function with
2603       // exception specification.
2604       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2605         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2606         D.setInvalidType(true);
2607         // Build the type anyway.
2608       }
2609       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2610       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2611       ArrayType::ArraySizeModifier ASM;
2612       if (ATI.isStar)
2613         ASM = ArrayType::Star;
2614       else if (ATI.hasStatic)
2615         ASM = ArrayType::Static;
2616       else
2617         ASM = ArrayType::Normal;
2618       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2619         // FIXME: This check isn't quite right: it allows star in prototypes
2620         // for function definitions, and disallows some edge cases detailed
2621         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2622         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2623         ASM = ArrayType::Normal;
2624         D.setInvalidType(true);
2625       }
2626 
2627       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2628       // shall appear only in a declaration of a function parameter with an
2629       // array type, ...
2630       if (ASM == ArrayType::Static || ATI.TypeQuals) {
2631         if (!(D.isPrototypeContext() ||
2632               D.getContext() == Declarator::KNRTypeListContext)) {
2633           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2634               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2635           // Remove the 'static' and the type qualifiers.
2636           if (ASM == ArrayType::Static)
2637             ASM = ArrayType::Normal;
2638           ATI.TypeQuals = 0;
2639           D.setInvalidType(true);
2640         }
2641 
2642         // C99 6.7.5.2p1: ... and then only in the outermost array type
2643         // derivation.
2644         unsigned x = chunkIndex;
2645         while (x != 0) {
2646           // Walk outwards along the declarator chunks.
2647           x--;
2648           const DeclaratorChunk &DC = D.getTypeObject(x);
2649           switch (DC.Kind) {
2650           case DeclaratorChunk::Paren:
2651             continue;
2652           case DeclaratorChunk::Array:
2653           case DeclaratorChunk::Pointer:
2654           case DeclaratorChunk::Reference:
2655           case DeclaratorChunk::MemberPointer:
2656             S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2657               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2658             if (ASM == ArrayType::Static)
2659               ASM = ArrayType::Normal;
2660             ATI.TypeQuals = 0;
2661             D.setInvalidType(true);
2662             break;
2663           case DeclaratorChunk::Function:
2664           case DeclaratorChunk::BlockPointer:
2665             // These are invalid anyway, so just ignore.
2666             break;
2667           }
2668         }
2669       }
2670       const AutoType *AT = T->getContainedAutoType();
2671       // Allow arrays of auto if we are a generic lambda parameter.
2672       // i.e. [](auto (&array)[5]) { return array[0]; }; OK
2673       if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
2674         // We've already diagnosed this for decltype(auto).
2675         if (!AT->isDecltypeAuto())
2676           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2677             << getPrintableNameForEntity(Name) << T;
2678         T = QualType();
2679         break;
2680       }
2681 
2682       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2683                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2684       break;
2685     }
2686     case DeclaratorChunk::Function: {
2687       // If the function declarator has a prototype (i.e. it is not () and
2688       // does not have a K&R-style identifier list), then the arguments are part
2689       // of the type, otherwise the argument list is ().
2690       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2691       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2692 
2693       // Check for auto functions and trailing return type and adjust the
2694       // return type accordingly.
2695       if (!D.isInvalidType()) {
2696         // trailing-return-type is only required if we're declaring a function,
2697         // and not, for instance, a pointer to a function.
2698         if (D.getDeclSpec().containsPlaceholderType() &&
2699             !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2700             !S.getLangOpts().CPlusPlus1y) {
2701           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2702                  D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
2703                      ? diag::err_auto_missing_trailing_return
2704                      : diag::err_deduced_return_type);
2705           T = Context.IntTy;
2706           D.setInvalidType(true);
2707         } else if (FTI.hasTrailingReturnType()) {
2708           // T must be exactly 'auto' at this point. See CWG issue 681.
2709           if (isa<ParenType>(T)) {
2710             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2711                  diag::err_trailing_return_in_parens)
2712               << T << D.getDeclSpec().getSourceRange();
2713             D.setInvalidType(true);
2714           } else if (D.getContext() != Declarator::LambdaExprContext &&
2715                      (T.hasQualifiers() || !isa<AutoType>(T) ||
2716                       cast<AutoType>(T)->isDecltypeAuto())) {
2717             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2718                  diag::err_trailing_return_without_auto)
2719               << T << D.getDeclSpec().getSourceRange();
2720             D.setInvalidType(true);
2721           }
2722           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2723           if (T.isNull()) {
2724             // An error occurred parsing the trailing return type.
2725             T = Context.IntTy;
2726             D.setInvalidType(true);
2727           }
2728         }
2729       }
2730 
2731       // C99 6.7.5.3p1: The return type may not be a function or array type.
2732       // For conversion functions, we'll diagnose this particular error later.
2733       if ((T->isArrayType() || T->isFunctionType()) &&
2734           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2735         unsigned diagID = diag::err_func_returning_array_function;
2736         // Last processing chunk in block context means this function chunk
2737         // represents the block.
2738         if (chunkIndex == 0 &&
2739             D.getContext() == Declarator::BlockLiteralContext)
2740           diagID = diag::err_block_returning_array_function;
2741         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2742         T = Context.IntTy;
2743         D.setInvalidType(true);
2744       }
2745 
2746       // Do not allow returning half FP value.
2747       // FIXME: This really should be in BuildFunctionType.
2748       if (T->isHalfType()) {
2749         if (S.getLangOpts().OpenCL) {
2750           if (!S.getOpenCLOptions().cl_khr_fp16) {
2751             S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2752             D.setInvalidType(true);
2753           }
2754         } else {
2755           S.Diag(D.getIdentifierLoc(),
2756             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2757           D.setInvalidType(true);
2758         }
2759       }
2760 
2761       // Methods cannot return interface types. All ObjC objects are
2762       // passed by reference.
2763       if (T->isObjCObjectType()) {
2764         SourceLocation DiagLoc, FixitLoc;
2765         if (TInfo) {
2766           DiagLoc = TInfo->getTypeLoc().getLocStart();
2767           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2768         } else {
2769           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2770           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2771         }
2772         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2773           << 0 << T
2774           << FixItHint::CreateInsertion(FixitLoc, "*");
2775 
2776         T = Context.getObjCObjectPointerType(T);
2777         if (TInfo) {
2778           TypeLocBuilder TLB;
2779           TLB.pushFullCopy(TInfo->getTypeLoc());
2780           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2781           TLoc.setStarLoc(FixitLoc);
2782           TInfo = TLB.getTypeSourceInfo(Context, T);
2783         }
2784 
2785         D.setInvalidType(true);
2786       }
2787 
2788       // cv-qualifiers on return types are pointless except when the type is a
2789       // class type in C++.
2790       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2791           !(S.getLangOpts().CPlusPlus &&
2792             (T->isDependentType() || T->isRecordType())))
2793         diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
2794 
2795       // Objective-C ARC ownership qualifiers are ignored on the function
2796       // return type (by type canonicalization). Complain if this attribute
2797       // was written here.
2798       if (T.getQualifiers().hasObjCLifetime()) {
2799         SourceLocation AttrLoc;
2800         if (chunkIndex + 1 < D.getNumTypeObjects()) {
2801           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2802           for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2803                Attr; Attr = Attr->getNext()) {
2804             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2805               AttrLoc = Attr->getLoc();
2806               break;
2807             }
2808           }
2809         }
2810         if (AttrLoc.isInvalid()) {
2811           for (const AttributeList *Attr
2812                  = D.getDeclSpec().getAttributes().getList();
2813                Attr; Attr = Attr->getNext()) {
2814             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2815               AttrLoc = Attr->getLoc();
2816               break;
2817             }
2818           }
2819         }
2820 
2821         if (AttrLoc.isValid()) {
2822           // The ownership attributes are almost always written via
2823           // the predefined
2824           // __strong/__weak/__autoreleasing/__unsafe_unretained.
2825           if (AttrLoc.isMacroID())
2826             AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2827 
2828           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2829             << T.getQualifiers().getObjCLifetime();
2830         }
2831       }
2832 
2833       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
2834         // C++ [dcl.fct]p6:
2835         //   Types shall not be defined in return or parameter types.
2836         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2837         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2838           << Context.getTypeDeclType(Tag);
2839       }
2840 
2841       // Exception specs are not allowed in typedefs. Complain, but add it
2842       // anyway.
2843       if (IsTypedefName && FTI.getExceptionSpecType())
2844         S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2845           << (D.getContext() == Declarator::AliasDeclContext ||
2846               D.getContext() == Declarator::AliasTemplateContext);
2847 
2848       // If we see "T var();" or "T var(T());" at block scope, it is probably
2849       // an attempt to initialize a variable, not a function declaration.
2850       if (FTI.isAmbiguous)
2851         warnAboutAmbiguousFunction(S, D, DeclType, T);
2852 
2853       FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
2854 
2855       if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2856         // Simple void foo(), where the incoming T is the result type.
2857         T = Context.getFunctionNoProtoType(T, EI);
2858       } else {
2859         // We allow a zero-parameter variadic function in C if the
2860         // function is marked with the "overloadable" attribute. Scan
2861         // for this attribute now.
2862         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
2863           bool Overloadable = false;
2864           for (const AttributeList *Attrs = D.getAttributes();
2865                Attrs; Attrs = Attrs->getNext()) {
2866             if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2867               Overloadable = true;
2868               break;
2869             }
2870           }
2871 
2872           if (!Overloadable)
2873             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
2874         }
2875 
2876         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
2877           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2878           // definition.
2879           S.Diag(FTI.Params[0].IdentLoc,
2880                  diag::err_ident_list_in_fn_declaration);
2881           D.setInvalidType(true);
2882           // Recover by creating a K&R-style function type.
2883           T = Context.getFunctionNoProtoType(T, EI);
2884           break;
2885         }
2886 
2887         FunctionProtoType::ExtProtoInfo EPI;
2888         EPI.ExtInfo = EI;
2889         EPI.Variadic = FTI.isVariadic;
2890         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2891         EPI.TypeQuals = FTI.TypeQuals;
2892         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2893                     : FTI.RefQualifierIsLValueRef? RQ_LValue
2894                     : RQ_RValue;
2895 
2896         // Otherwise, we have a function with a parameter list that is
2897         // potentially variadic.
2898         SmallVector<QualType, 16> ParamTys;
2899         ParamTys.reserve(FTI.NumParams);
2900 
2901         SmallVector<bool, 16> ConsumedParameters;
2902         ConsumedParameters.reserve(FTI.NumParams);
2903         bool HasAnyConsumedParameters = false;
2904 
2905         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
2906           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
2907           QualType ParamTy = Param->getType();
2908           assert(!ParamTy.isNull() && "Couldn't parse type?");
2909 
2910           // Look for 'void'.  void is allowed only as a single parameter to a
2911           // function with no other parameters (C99 6.7.5.3p10).  We record
2912           // int(void) as a FunctionProtoType with an empty parameter list.
2913           if (ParamTy->isVoidType()) {
2914             // If this is something like 'float(int, void)', reject it.  'void'
2915             // is an incomplete type (C99 6.2.5p19) and function decls cannot
2916             // have parameters of incomplete type.
2917             if (FTI.NumParams != 1 || FTI.isVariadic) {
2918               S.Diag(DeclType.Loc, diag::err_void_only_param);
2919               ParamTy = Context.IntTy;
2920               Param->setType(ParamTy);
2921             } else if (FTI.Params[i].Ident) {
2922               // Reject, but continue to parse 'int(void abc)'.
2923               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
2924               ParamTy = Context.IntTy;
2925               Param->setType(ParamTy);
2926             } else {
2927               // Reject, but continue to parse 'float(const void)'.
2928               if (ParamTy.hasQualifiers())
2929                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2930 
2931               // Do not add 'void' to the list.
2932               break;
2933             }
2934           } else if (ParamTy->isHalfType()) {
2935             // Disallow half FP parameters.
2936             // FIXME: This really should be in BuildFunctionType.
2937             if (S.getLangOpts().OpenCL) {
2938               if (!S.getOpenCLOptions().cl_khr_fp16) {
2939                 S.Diag(Param->getLocation(),
2940                   diag::err_opencl_half_param) << ParamTy;
2941                 D.setInvalidType();
2942                 Param->setInvalidDecl();
2943               }
2944             } else {
2945               S.Diag(Param->getLocation(),
2946                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2947               D.setInvalidType();
2948             }
2949           } else if (!FTI.hasPrototype) {
2950             if (ParamTy->isPromotableIntegerType()) {
2951               ParamTy = Context.getPromotedIntegerType(ParamTy);
2952               Param->setKNRPromoted(true);
2953             } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
2954               if (BTy->getKind() == BuiltinType::Float) {
2955                 ParamTy = Context.DoubleTy;
2956                 Param->setKNRPromoted(true);
2957               }
2958             }
2959           }
2960 
2961           if (LangOpts.ObjCAutoRefCount) {
2962             bool Consumed = Param->hasAttr<NSConsumedAttr>();
2963             ConsumedParameters.push_back(Consumed);
2964             HasAnyConsumedParameters |= Consumed;
2965           }
2966 
2967           ParamTys.push_back(ParamTy);
2968         }
2969 
2970         if (HasAnyConsumedParameters)
2971           EPI.ConsumedParameters = ConsumedParameters.data();
2972 
2973         SmallVector<QualType, 4> Exceptions;
2974         SmallVector<ParsedType, 2> DynamicExceptions;
2975         SmallVector<SourceRange, 2> DynamicExceptionRanges;
2976         Expr *NoexceptExpr = nullptr;
2977 
2978         if (FTI.getExceptionSpecType() == EST_Dynamic) {
2979           // FIXME: It's rather inefficient to have to split into two vectors
2980           // here.
2981           unsigned N = FTI.NumExceptions;
2982           DynamicExceptions.reserve(N);
2983           DynamicExceptionRanges.reserve(N);
2984           for (unsigned I = 0; I != N; ++I) {
2985             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2986             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2987           }
2988         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2989           NoexceptExpr = FTI.NoexceptExpr;
2990         }
2991 
2992         S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2993                                       DynamicExceptions,
2994                                       DynamicExceptionRanges,
2995                                       NoexceptExpr,
2996                                       Exceptions,
2997                                       EPI);
2998 
2999         T = Context.getFunctionType(T, ParamTys, EPI);
3000       }
3001 
3002       break;
3003     }
3004     case DeclaratorChunk::MemberPointer:
3005       // The scope spec must refer to a class, or be dependent.
3006       CXXScopeSpec &SS = DeclType.Mem.Scope();
3007       QualType ClsType;
3008       if (SS.isInvalid()) {
3009         // Avoid emitting extra errors if we already errored on the scope.
3010         D.setInvalidType(true);
3011       } else if (S.isDependentScopeSpecifier(SS) ||
3012                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
3013         NestedNameSpecifier *NNS = SS.getScopeRep();
3014         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
3015         switch (NNS->getKind()) {
3016         case NestedNameSpecifier::Identifier:
3017           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
3018                                                  NNS->getAsIdentifier());
3019           break;
3020 
3021         case NestedNameSpecifier::Namespace:
3022         case NestedNameSpecifier::NamespaceAlias:
3023         case NestedNameSpecifier::Global:
3024           llvm_unreachable("Nested-name-specifier must name a type");
3025 
3026         case NestedNameSpecifier::TypeSpec:
3027         case NestedNameSpecifier::TypeSpecWithTemplate:
3028           ClsType = QualType(NNS->getAsType(), 0);
3029           // Note: if the NNS has a prefix and ClsType is a nondependent
3030           // TemplateSpecializationType, then the NNS prefix is NOT included
3031           // in ClsType; hence we wrap ClsType into an ElaboratedType.
3032           // NOTE: in particular, no wrap occurs if ClsType already is an
3033           // Elaborated, DependentName, or DependentTemplateSpecialization.
3034           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
3035             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
3036           break;
3037         }
3038       } else {
3039         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
3040              diag::err_illegal_decl_mempointer_in_nonclass)
3041           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
3042           << DeclType.Mem.Scope().getRange();
3043         D.setInvalidType(true);
3044       }
3045 
3046       if (!ClsType.isNull())
3047         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
3048       if (T.isNull()) {
3049         T = Context.IntTy;
3050         D.setInvalidType(true);
3051       } else if (DeclType.Mem.TypeQuals) {
3052         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
3053       }
3054       break;
3055     }
3056 
3057     if (T.isNull()) {
3058       D.setInvalidType(true);
3059       T = Context.IntTy;
3060     }
3061 
3062     // See if there are any attributes on this declarator chunk.
3063     if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
3064       processTypeAttrs(state, T, TAL_DeclChunk, attrs);
3065   }
3066 
3067   if (LangOpts.CPlusPlus && T->isFunctionType()) {
3068     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3069     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3070 
3071     // C++ 8.3.5p4:
3072     //   A cv-qualifier-seq shall only be part of the function type
3073     //   for a nonstatic member function, the function type to which a pointer
3074     //   to member refers, or the top-level function type of a function typedef
3075     //   declaration.
3076     //
3077     // Core issue 547 also allows cv-qualifiers on function types that are
3078     // top-level template type arguments.
3079     bool FreeFunction;
3080     if (!D.getCXXScopeSpec().isSet()) {
3081       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3082                        D.getContext() != Declarator::LambdaExprContext) ||
3083                       D.getDeclSpec().isFriendSpecified());
3084     } else {
3085       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3086       FreeFunction = (DC && !DC->isRecord());
3087     }
3088 
3089     // C++11 [dcl.fct]p6 (w/DR1417):
3090     // An attempt to specify a function type with a cv-qualifier-seq or a
3091     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3092     //  - the function type for a non-static member function,
3093     //  - the function type to which a pointer to member refers,
3094     //  - the top-level function type of a function typedef declaration or
3095     //    alias-declaration,
3096     //  - the type-id in the default argument of a type-parameter, or
3097     //  - the type-id of a template-argument for a type-parameter
3098     //
3099     // FIXME: Checking this here is insufficient. We accept-invalid on:
3100     //
3101     //   template<typename T> struct S { void f(T); };
3102     //   S<int() const> s;
3103     //
3104     // ... for instance.
3105     if (IsQualifiedFunction &&
3106         !(!FreeFunction &&
3107           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3108         !IsTypedefName &&
3109         D.getContext() != Declarator::TemplateTypeArgContext) {
3110       SourceLocation Loc = D.getLocStart();
3111       SourceRange RemovalRange;
3112       unsigned I;
3113       if (D.isFunctionDeclarator(I)) {
3114         SmallVector<SourceLocation, 4> RemovalLocs;
3115         const DeclaratorChunk &Chunk = D.getTypeObject(I);
3116         assert(Chunk.Kind == DeclaratorChunk::Function);
3117         if (Chunk.Fun.hasRefQualifier())
3118           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3119         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3120           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3121         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3122           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3123         // FIXME: We do not track the location of the __restrict qualifier.
3124         //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3125         //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3126         if (!RemovalLocs.empty()) {
3127           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3128                     BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3129           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3130           Loc = RemovalLocs.front();
3131         }
3132       }
3133 
3134       S.Diag(Loc, diag::err_invalid_qualified_function_type)
3135         << FreeFunction << D.isFunctionDeclarator() << T
3136         << getFunctionQualifiersAsString(FnTy)
3137         << FixItHint::CreateRemoval(RemovalRange);
3138 
3139       // Strip the cv-qualifiers and ref-qualifiers from the type.
3140       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3141       EPI.TypeQuals = 0;
3142       EPI.RefQualifier = RQ_None;
3143 
3144       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
3145                                   EPI);
3146       // Rebuild any parens around the identifier in the function type.
3147       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3148         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3149           break;
3150         T = S.BuildParenType(T);
3151       }
3152     }
3153   }
3154 
3155   // Apply any undistributed attributes from the declarator.
3156   if (!T.isNull())
3157     if (AttributeList *attrs = D.getAttributes())
3158       processTypeAttrs(state, T, TAL_DeclName, attrs);
3159 
3160   // Diagnose any ignored type attributes.
3161   if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
3162 
3163   // C++0x [dcl.constexpr]p9:
3164   //  A constexpr specifier used in an object declaration declares the object
3165   //  as const.
3166   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3167     T.addConst();
3168   }
3169 
3170   // If there was an ellipsis in the declarator, the declaration declares a
3171   // parameter pack whose type may be a pack expansion type.
3172   if (D.hasEllipsis() && !T.isNull()) {
3173     // C++0x [dcl.fct]p13:
3174     //   A declarator-id or abstract-declarator containing an ellipsis shall
3175     //   only be used in a parameter-declaration. Such a parameter-declaration
3176     //   is a parameter pack (14.5.3). [...]
3177     switch (D.getContext()) {
3178     case Declarator::PrototypeContext:
3179     case Declarator::LambdaExprParameterContext:
3180       // C++0x [dcl.fct]p13:
3181       //   [...] When it is part of a parameter-declaration-clause, the
3182       //   parameter pack is a function parameter pack (14.5.3). The type T
3183       //   of the declarator-id of the function parameter pack shall contain
3184       //   a template parameter pack; each template parameter pack in T is
3185       //   expanded by the function parameter pack.
3186       //
3187       // We represent function parameter packs as function parameters whose
3188       // type is a pack expansion.
3189       if (!T->containsUnexpandedParameterPack()) {
3190         S.Diag(D.getEllipsisLoc(),
3191              diag::err_function_parameter_pack_without_parameter_packs)
3192           << T <<  D.getSourceRange();
3193         D.setEllipsisLoc(SourceLocation());
3194       } else {
3195         T = Context.getPackExpansionType(T, None);
3196       }
3197       break;
3198     case Declarator::TemplateParamContext:
3199       // C++0x [temp.param]p15:
3200       //   If a template-parameter is a [...] is a parameter-declaration that
3201       //   declares a parameter pack (8.3.5), then the template-parameter is a
3202       //   template parameter pack (14.5.3).
3203       //
3204       // Note: core issue 778 clarifies that, if there are any unexpanded
3205       // parameter packs in the type of the non-type template parameter, then
3206       // it expands those parameter packs.
3207       if (T->containsUnexpandedParameterPack())
3208         T = Context.getPackExpansionType(T, None);
3209       else
3210         S.Diag(D.getEllipsisLoc(),
3211                LangOpts.CPlusPlus11
3212                  ? diag::warn_cxx98_compat_variadic_templates
3213                  : diag::ext_variadic_templates);
3214       break;
3215 
3216     case Declarator::FileContext:
3217     case Declarator::KNRTypeListContext:
3218     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3219     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3220     case Declarator::TypeNameContext:
3221     case Declarator::CXXNewContext:
3222     case Declarator::AliasDeclContext:
3223     case Declarator::AliasTemplateContext:
3224     case Declarator::MemberContext:
3225     case Declarator::BlockContext:
3226     case Declarator::ForContext:
3227     case Declarator::ConditionContext:
3228     case Declarator::CXXCatchContext:
3229     case Declarator::ObjCCatchContext:
3230     case Declarator::BlockLiteralContext:
3231     case Declarator::LambdaExprContext:
3232     case Declarator::ConversionIdContext:
3233     case Declarator::TrailingReturnContext:
3234     case Declarator::TemplateTypeArgContext:
3235       // FIXME: We may want to allow parameter packs in block-literal contexts
3236       // in the future.
3237       S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3238       D.setEllipsisLoc(SourceLocation());
3239       break;
3240     }
3241   }
3242 
3243   if (T.isNull())
3244     return Context.getNullTypeSourceInfo();
3245   else if (D.isInvalidType())
3246     return Context.getTrivialTypeSourceInfo(T);
3247 
3248   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3249 }
3250 
3251 /// GetTypeForDeclarator - Convert the type for the specified
3252 /// declarator to Type instances.
3253 ///
3254 /// The result of this call will never be null, but the associated
3255 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)3256 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3257   // Determine the type of the declarator. Not all forms of declarator
3258   // have a type.
3259 
3260   TypeProcessingState state(*this, D);
3261 
3262   TypeSourceInfo *ReturnTypeInfo = nullptr;
3263   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3264   if (T.isNull())
3265     return Context.getNullTypeSourceInfo();
3266 
3267   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3268     inferARCWriteback(state, T);
3269 
3270   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3271 }
3272 
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3273 static void transferARCOwnershipToDeclSpec(Sema &S,
3274                                            QualType &declSpecTy,
3275                                            Qualifiers::ObjCLifetime ownership) {
3276   if (declSpecTy->isObjCRetainableType() &&
3277       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3278     Qualifiers qs;
3279     qs.addObjCLifetime(ownership);
3280     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3281   }
3282 }
3283 
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)3284 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3285                                             Qualifiers::ObjCLifetime ownership,
3286                                             unsigned chunkIndex) {
3287   Sema &S = state.getSema();
3288   Declarator &D = state.getDeclarator();
3289 
3290   // Look for an explicit lifetime attribute.
3291   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3292   for (const AttributeList *attr = chunk.getAttrs(); attr;
3293          attr = attr->getNext())
3294     if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3295       return;
3296 
3297   const char *attrStr = nullptr;
3298   switch (ownership) {
3299   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3300   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3301   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3302   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3303   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3304   }
3305 
3306   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
3307   Arg->Ident = &S.Context.Idents.get(attrStr);
3308   Arg->Loc = SourceLocation();
3309 
3310   ArgsUnion Args(Arg);
3311 
3312   // If there wasn't one, add one (with an invalid source location
3313   // so that we don't make an AttributedType for it).
3314   AttributeList *attr = D.getAttributePool()
3315     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3316             /*scope*/ nullptr, SourceLocation(),
3317             /*args*/ &Args, 1, AttributeList::AS_GNU);
3318   spliceAttrIntoList(*attr, chunk.getAttrListRef());
3319 
3320   // TODO: mark whether we did this inference?
3321 }
3322 
3323 /// \brief Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)3324 static void transferARCOwnership(TypeProcessingState &state,
3325                                  QualType &declSpecTy,
3326                                  Qualifiers::ObjCLifetime ownership) {
3327   Sema &S = state.getSema();
3328   Declarator &D = state.getDeclarator();
3329 
3330   int inner = -1;
3331   bool hasIndirection = false;
3332   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3333     DeclaratorChunk &chunk = D.getTypeObject(i);
3334     switch (chunk.Kind) {
3335     case DeclaratorChunk::Paren:
3336       // Ignore parens.
3337       break;
3338 
3339     case DeclaratorChunk::Array:
3340     case DeclaratorChunk::Reference:
3341     case DeclaratorChunk::Pointer:
3342       if (inner != -1)
3343         hasIndirection = true;
3344       inner = i;
3345       break;
3346 
3347     case DeclaratorChunk::BlockPointer:
3348       if (inner != -1)
3349         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3350       return;
3351 
3352     case DeclaratorChunk::Function:
3353     case DeclaratorChunk::MemberPointer:
3354       return;
3355     }
3356   }
3357 
3358   if (inner == -1)
3359     return;
3360 
3361   DeclaratorChunk &chunk = D.getTypeObject(inner);
3362   if (chunk.Kind == DeclaratorChunk::Pointer) {
3363     if (declSpecTy->isObjCRetainableType())
3364       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3365     if (declSpecTy->isObjCObjectType() && hasIndirection)
3366       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3367   } else {
3368     assert(chunk.Kind == DeclaratorChunk::Array ||
3369            chunk.Kind == DeclaratorChunk::Reference);
3370     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3371   }
3372 }
3373 
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)3374 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3375   TypeProcessingState state(*this, D);
3376 
3377   TypeSourceInfo *ReturnTypeInfo = nullptr;
3378   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3379   if (declSpecTy.isNull())
3380     return Context.getNullTypeSourceInfo();
3381 
3382   if (getLangOpts().ObjCAutoRefCount) {
3383     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3384     if (ownership != Qualifiers::OCL_None)
3385       transferARCOwnership(state, declSpecTy, ownership);
3386   }
3387 
3388   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3389 }
3390 
3391 /// Map an AttributedType::Kind to an AttributeList::Kind.
getAttrListKind(AttributedType::Kind kind)3392 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3393   switch (kind) {
3394   case AttributedType::attr_address_space:
3395     return AttributeList::AT_AddressSpace;
3396   case AttributedType::attr_regparm:
3397     return AttributeList::AT_Regparm;
3398   case AttributedType::attr_vector_size:
3399     return AttributeList::AT_VectorSize;
3400   case AttributedType::attr_neon_vector_type:
3401     return AttributeList::AT_NeonVectorType;
3402   case AttributedType::attr_neon_polyvector_type:
3403     return AttributeList::AT_NeonPolyVectorType;
3404   case AttributedType::attr_objc_gc:
3405     return AttributeList::AT_ObjCGC;
3406   case AttributedType::attr_objc_ownership:
3407     return AttributeList::AT_ObjCOwnership;
3408   case AttributedType::attr_noreturn:
3409     return AttributeList::AT_NoReturn;
3410   case AttributedType::attr_cdecl:
3411     return AttributeList::AT_CDecl;
3412   case AttributedType::attr_fastcall:
3413     return AttributeList::AT_FastCall;
3414   case AttributedType::attr_stdcall:
3415     return AttributeList::AT_StdCall;
3416   case AttributedType::attr_thiscall:
3417     return AttributeList::AT_ThisCall;
3418   case AttributedType::attr_pascal:
3419     return AttributeList::AT_Pascal;
3420   case AttributedType::attr_pcs:
3421   case AttributedType::attr_pcs_vfp:
3422     return AttributeList::AT_Pcs;
3423   case AttributedType::attr_pnaclcall:
3424     return AttributeList::AT_PnaclCall;
3425   case AttributedType::attr_inteloclbicc:
3426     return AttributeList::AT_IntelOclBicc;
3427   case AttributedType::attr_ms_abi:
3428     return AttributeList::AT_MSABI;
3429   case AttributedType::attr_sysv_abi:
3430     return AttributeList::AT_SysVABI;
3431   case AttributedType::attr_ptr32:
3432     return AttributeList::AT_Ptr32;
3433   case AttributedType::attr_ptr64:
3434     return AttributeList::AT_Ptr64;
3435   case AttributedType::attr_sptr:
3436     return AttributeList::AT_SPtr;
3437   case AttributedType::attr_uptr:
3438     return AttributeList::AT_UPtr;
3439   }
3440   llvm_unreachable("unexpected attribute kind!");
3441 }
3442 
fillAttributedTypeLoc(AttributedTypeLoc TL,const AttributeList * attrs)3443 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3444                                   const AttributeList *attrs) {
3445   AttributedType::Kind kind = TL.getAttrKind();
3446 
3447   assert(attrs && "no type attributes in the expected location!");
3448   AttributeList::Kind parsedKind = getAttrListKind(kind);
3449   while (attrs->getKind() != parsedKind) {
3450     attrs = attrs->getNext();
3451     assert(attrs && "no matching attribute in expected location!");
3452   }
3453 
3454   TL.setAttrNameLoc(attrs->getLoc());
3455   if (TL.hasAttrExprOperand()) {
3456     assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
3457     TL.setAttrExprOperand(attrs->getArgAsExpr(0));
3458   } else if (TL.hasAttrEnumOperand()) {
3459     assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
3460            "unexpected attribute operand kind");
3461     if (attrs->isArgIdent(0))
3462       TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
3463     else
3464       TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
3465   }
3466 
3467   // FIXME: preserve this information to here.
3468   if (TL.hasAttrOperand())
3469     TL.setAttrOperandParensRange(SourceRange());
3470 }
3471 
3472 namespace {
3473   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3474     ASTContext &Context;
3475     const DeclSpec &DS;
3476 
3477   public:
TypeSpecLocFiller(ASTContext & Context,const DeclSpec & DS)3478     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3479       : Context(Context), DS(DS) {}
3480 
VisitAttributedTypeLoc(AttributedTypeLoc TL)3481     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3482       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3483       Visit(TL.getModifiedLoc());
3484     }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3485     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3486       Visit(TL.getUnqualifiedLoc());
3487     }
VisitTypedefTypeLoc(TypedefTypeLoc TL)3488     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3489       TL.setNameLoc(DS.getTypeSpecTypeLoc());
3490     }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)3491     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3492       TL.setNameLoc(DS.getTypeSpecTypeLoc());
3493       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3494       // addition field. What we have is good enough for dispay of location
3495       // of 'fixit' on interface name.
3496       TL.setNameEndLoc(DS.getLocEnd());
3497     }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)3498     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3499       // Handle the base type, which might not have been written explicitly.
3500       if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3501         TL.setHasBaseTypeAsWritten(false);
3502         TL.getBaseLoc().initialize(Context, SourceLocation());
3503       } else {
3504         TL.setHasBaseTypeAsWritten(true);
3505         Visit(TL.getBaseLoc());
3506       }
3507 
3508       // Protocol qualifiers.
3509       if (DS.getProtocolQualifiers()) {
3510         assert(TL.getNumProtocols() > 0);
3511         assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3512         TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3513         TL.setRAngleLoc(DS.getSourceRange().getEnd());
3514         for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3515           TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3516       } else {
3517         assert(TL.getNumProtocols() == 0);
3518         TL.setLAngleLoc(SourceLocation());
3519         TL.setRAngleLoc(SourceLocation());
3520       }
3521     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3522     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3523       TL.setStarLoc(SourceLocation());
3524       Visit(TL.getPointeeLoc());
3525     }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)3526     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3527       TypeSourceInfo *TInfo = nullptr;
3528       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3529 
3530       // If we got no declarator info from previous Sema routines,
3531       // just fill with the typespec loc.
3532       if (!TInfo) {
3533         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3534         return;
3535       }
3536 
3537       TypeLoc OldTL = TInfo->getTypeLoc();
3538       if (TInfo->getType()->getAs<ElaboratedType>()) {
3539         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3540         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3541             .castAs<TemplateSpecializationTypeLoc>();
3542         TL.copy(NamedTL);
3543       } else {
3544         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3545         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3546       }
3547 
3548     }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)3549     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3550       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3551       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3552       TL.setParensRange(DS.getTypeofParensRange());
3553     }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)3554     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3555       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3556       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3557       TL.setParensRange(DS.getTypeofParensRange());
3558       assert(DS.getRepAsType());
3559       TypeSourceInfo *TInfo = nullptr;
3560       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3561       TL.setUnderlyingTInfo(TInfo);
3562     }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)3563     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3564       // FIXME: This holds only because we only have one unary transform.
3565       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3566       TL.setKWLoc(DS.getTypeSpecTypeLoc());
3567       TL.setParensRange(DS.getTypeofParensRange());
3568       assert(DS.getRepAsType());
3569       TypeSourceInfo *TInfo = nullptr;
3570       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3571       TL.setUnderlyingTInfo(TInfo);
3572     }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)3573     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3574       // By default, use the source location of the type specifier.
3575       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3576       if (TL.needsExtraLocalData()) {
3577         // Set info for the written builtin specifiers.
3578         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3579         // Try to have a meaningful source location.
3580         if (TL.getWrittenSignSpec() != TSS_unspecified)
3581           // Sign spec loc overrides the others (e.g., 'unsigned long').
3582           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3583         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3584           // Width spec loc overrides type spec loc (e.g., 'short int').
3585           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3586       }
3587     }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)3588     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3589       ElaboratedTypeKeyword Keyword
3590         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3591       if (DS.getTypeSpecType() == TST_typename) {
3592         TypeSourceInfo *TInfo = nullptr;
3593         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3594         if (TInfo) {
3595           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3596           return;
3597         }
3598       }
3599       TL.setElaboratedKeywordLoc(Keyword != ETK_None
3600                                  ? DS.getTypeSpecTypeLoc()
3601                                  : SourceLocation());
3602       const CXXScopeSpec& SS = DS.getTypeSpecScope();
3603       TL.setQualifierLoc(SS.getWithLocInContext(Context));
3604       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3605     }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)3606     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3607       assert(DS.getTypeSpecType() == TST_typename);
3608       TypeSourceInfo *TInfo = nullptr;
3609       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3610       assert(TInfo);
3611       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3612     }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)3613     void VisitDependentTemplateSpecializationTypeLoc(
3614                                  DependentTemplateSpecializationTypeLoc TL) {
3615       assert(DS.getTypeSpecType() == TST_typename);
3616       TypeSourceInfo *TInfo = nullptr;
3617       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3618       assert(TInfo);
3619       TL.copy(
3620           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3621     }
VisitTagTypeLoc(TagTypeLoc TL)3622     void VisitTagTypeLoc(TagTypeLoc TL) {
3623       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3624     }
VisitAtomicTypeLoc(AtomicTypeLoc TL)3625     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3626       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3627       // or an _Atomic qualifier.
3628       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3629         TL.setKWLoc(DS.getTypeSpecTypeLoc());
3630         TL.setParensRange(DS.getTypeofParensRange());
3631 
3632         TypeSourceInfo *TInfo = nullptr;
3633         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3634         assert(TInfo);
3635         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3636       } else {
3637         TL.setKWLoc(DS.getAtomicSpecLoc());
3638         // No parens, to indicate this was spelled as an _Atomic qualifier.
3639         TL.setParensRange(SourceRange());
3640         Visit(TL.getValueLoc());
3641       }
3642     }
3643 
VisitTypeLoc(TypeLoc TL)3644     void VisitTypeLoc(TypeLoc TL) {
3645       // FIXME: add other typespec types and change this to an assert.
3646       TL.initialize(Context, DS.getTypeSpecTypeLoc());
3647     }
3648   };
3649 
3650   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3651     ASTContext &Context;
3652     const DeclaratorChunk &Chunk;
3653 
3654   public:
DeclaratorLocFiller(ASTContext & Context,const DeclaratorChunk & Chunk)3655     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3656       : Context(Context), Chunk(Chunk) {}
3657 
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)3658     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3659       llvm_unreachable("qualified type locs not expected here!");
3660     }
VisitDecayedTypeLoc(DecayedTypeLoc TL)3661     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3662       llvm_unreachable("decayed type locs not expected here!");
3663     }
3664 
VisitAttributedTypeLoc(AttributedTypeLoc TL)3665     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3666       fillAttributedTypeLoc(TL, Chunk.getAttrs());
3667     }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)3668     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
3669       // nothing
3670     }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)3671     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3672       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3673       TL.setCaretLoc(Chunk.Loc);
3674     }
VisitPointerTypeLoc(PointerTypeLoc TL)3675     void VisitPointerTypeLoc(PointerTypeLoc TL) {
3676       assert(Chunk.Kind == DeclaratorChunk::Pointer);
3677       TL.setStarLoc(Chunk.Loc);
3678     }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)3679     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3680       assert(Chunk.Kind == DeclaratorChunk::Pointer);
3681       TL.setStarLoc(Chunk.Loc);
3682     }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)3683     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3684       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3685       const CXXScopeSpec& SS = Chunk.Mem.Scope();
3686       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3687 
3688       const Type* ClsTy = TL.getClass();
3689       QualType ClsQT = QualType(ClsTy, 0);
3690       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3691       // Now copy source location info into the type loc component.
3692       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3693       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3694       case NestedNameSpecifier::Identifier:
3695         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3696         {
3697           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3698           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3699           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3700           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3701         }
3702         break;
3703 
3704       case NestedNameSpecifier::TypeSpec:
3705       case NestedNameSpecifier::TypeSpecWithTemplate:
3706         if (isa<ElaboratedType>(ClsTy)) {
3707           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3708           ETLoc.setElaboratedKeywordLoc(SourceLocation());
3709           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3710           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3711           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3712         } else {
3713           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3714         }
3715         break;
3716 
3717       case NestedNameSpecifier::Namespace:
3718       case NestedNameSpecifier::NamespaceAlias:
3719       case NestedNameSpecifier::Global:
3720         llvm_unreachable("Nested-name-specifier must name a type");
3721       }
3722 
3723       // Finally fill in MemberPointerLocInfo fields.
3724       TL.setStarLoc(Chunk.Loc);
3725       TL.setClassTInfo(ClsTInfo);
3726     }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)3727     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3728       assert(Chunk.Kind == DeclaratorChunk::Reference);
3729       // 'Amp' is misleading: this might have been originally
3730       /// spelled with AmpAmp.
3731       TL.setAmpLoc(Chunk.Loc);
3732     }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)3733     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3734       assert(Chunk.Kind == DeclaratorChunk::Reference);
3735       assert(!Chunk.Ref.LValueRef);
3736       TL.setAmpAmpLoc(Chunk.Loc);
3737     }
VisitArrayTypeLoc(ArrayTypeLoc TL)3738     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3739       assert(Chunk.Kind == DeclaratorChunk::Array);
3740       TL.setLBracketLoc(Chunk.Loc);
3741       TL.setRBracketLoc(Chunk.EndLoc);
3742       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3743     }
VisitFunctionTypeLoc(FunctionTypeLoc TL)3744     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3745       assert(Chunk.Kind == DeclaratorChunk::Function);
3746       TL.setLocalRangeBegin(Chunk.Loc);
3747       TL.setLocalRangeEnd(Chunk.EndLoc);
3748 
3749       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3750       TL.setLParenLoc(FTI.getLParenLoc());
3751       TL.setRParenLoc(FTI.getRParenLoc());
3752       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
3753         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
3754         TL.setParam(tpi++, Param);
3755       }
3756       // FIXME: exception specs
3757     }
VisitParenTypeLoc(ParenTypeLoc TL)3758     void VisitParenTypeLoc(ParenTypeLoc TL) {
3759       assert(Chunk.Kind == DeclaratorChunk::Paren);
3760       TL.setLParenLoc(Chunk.Loc);
3761       TL.setRParenLoc(Chunk.EndLoc);
3762     }
3763 
VisitTypeLoc(TypeLoc TL)3764     void VisitTypeLoc(TypeLoc TL) {
3765       llvm_unreachable("unsupported TypeLoc kind in declarator!");
3766     }
3767   };
3768 }
3769 
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)3770 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3771   SourceLocation Loc;
3772   switch (Chunk.Kind) {
3773   case DeclaratorChunk::Function:
3774   case DeclaratorChunk::Array:
3775   case DeclaratorChunk::Paren:
3776     llvm_unreachable("cannot be _Atomic qualified");
3777 
3778   case DeclaratorChunk::Pointer:
3779     Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3780     break;
3781 
3782   case DeclaratorChunk::BlockPointer:
3783   case DeclaratorChunk::Reference:
3784   case DeclaratorChunk::MemberPointer:
3785     // FIXME: Provide a source location for the _Atomic keyword.
3786     break;
3787   }
3788 
3789   ATL.setKWLoc(Loc);
3790   ATL.setParensRange(SourceRange());
3791 }
3792 
3793 /// \brief Create and instantiate a TypeSourceInfo with type source information.
3794 ///
3795 /// \param T QualType referring to the type as written in source code.
3796 ///
3797 /// \param ReturnTypeInfo For declarators whose return type does not show
3798 /// up in the normal place in the declaration specifiers (such as a C++
3799 /// conversion function), this pointer will refer to a type source information
3800 /// for that return type.
3801 TypeSourceInfo *
GetTypeSourceInfoForDeclarator(Declarator & D,QualType T,TypeSourceInfo * ReturnTypeInfo)3802 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3803                                      TypeSourceInfo *ReturnTypeInfo) {
3804   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3805   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3806 
3807   // Handle parameter packs whose type is a pack expansion.
3808   if (isa<PackExpansionType>(T)) {
3809     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3810     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3811   }
3812 
3813   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3814     // An AtomicTypeLoc might be produced by an atomic qualifier in this
3815     // declarator chunk.
3816     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3817       fillAtomicQualLoc(ATL, D.getTypeObject(i));
3818       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3819     }
3820 
3821     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3822       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3823       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3824     }
3825 
3826     // FIXME: Ordering here?
3827     while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
3828       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3829 
3830     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3831     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3832   }
3833 
3834   // If we have different source information for the return type, use
3835   // that.  This really only applies to C++ conversion functions.
3836   if (ReturnTypeInfo) {
3837     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3838     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3839     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3840   } else {
3841     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3842   }
3843 
3844   return TInfo;
3845 }
3846 
3847 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)3848 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3849   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3850   // and Sema during declaration parsing. Try deallocating/caching them when
3851   // it's appropriate, instead of allocating them and keeping them around.
3852   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3853                                                        TypeAlignment);
3854   new (LocT) LocInfoType(T, TInfo);
3855   assert(LocT->getTypeClass() != T->getTypeClass() &&
3856          "LocInfoType's TypeClass conflicts with an existing Type class");
3857   return ParsedType::make(QualType(LocT, 0));
3858 }
3859 
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const3860 void LocInfoType::getAsStringInternal(std::string &Str,
3861                                       const PrintingPolicy &Policy) const {
3862   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3863          " was used directly instead of getting the QualType through"
3864          " GetTypeFromParser");
3865 }
3866 
ActOnTypeName(Scope * S,Declarator & D)3867 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3868   // C99 6.7.6: Type names have no identifier.  This is already validated by
3869   // the parser.
3870   assert(D.getIdentifier() == nullptr &&
3871          "Type name should have no identifier!");
3872 
3873   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3874   QualType T = TInfo->getType();
3875   if (D.isInvalidType())
3876     return true;
3877 
3878   // Make sure there are no unused decl attributes on the declarator.
3879   // We don't want to do this for ObjC parameters because we're going
3880   // to apply them to the actual parameter declaration.
3881   // Likewise, we don't want to do this for alias declarations, because
3882   // we are actually going to build a declaration from this eventually.
3883   if (D.getContext() != Declarator::ObjCParameterContext &&
3884       D.getContext() != Declarator::AliasDeclContext &&
3885       D.getContext() != Declarator::AliasTemplateContext)
3886     checkUnusedDeclAttributes(D);
3887 
3888   if (getLangOpts().CPlusPlus) {
3889     // Check that there are no default arguments (C++ only).
3890     CheckExtraCXXDefaultArguments(D);
3891   }
3892 
3893   return CreateParsedType(T, TInfo);
3894 }
3895 
ActOnObjCInstanceType(SourceLocation Loc)3896 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3897   QualType T = Context.getObjCInstanceType();
3898   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3899   return CreateParsedType(T, TInfo);
3900 }
3901 
3902 
3903 //===----------------------------------------------------------------------===//
3904 // Type Attribute Processing
3905 //===----------------------------------------------------------------------===//
3906 
3907 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3908 /// specified type.  The attribute contains 1 argument, the id of the address
3909 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const AttributeList & Attr,Sema & S)3910 static void HandleAddressSpaceTypeAttribute(QualType &Type,
3911                                             const AttributeList &Attr, Sema &S){
3912 
3913   // If this type is already address space qualified, reject it.
3914   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3915   // qualifiers for two or more different address spaces."
3916   if (Type.getAddressSpace()) {
3917     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3918     Attr.setInvalid();
3919     return;
3920   }
3921 
3922   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3923   // qualified by an address-space qualifier."
3924   if (Type->isFunctionType()) {
3925     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3926     Attr.setInvalid();
3927     return;
3928   }
3929 
3930   unsigned ASIdx;
3931   if (Attr.getKind() == AttributeList::AT_AddressSpace) {
3932     // Check the attribute arguments.
3933     if (Attr.getNumArgs() != 1) {
3934       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3935         << Attr.getName() << 1;
3936       Attr.setInvalid();
3937       return;
3938     }
3939     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3940     llvm::APSInt addrSpace(32);
3941     if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3942         !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3943       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3944         << Attr.getName() << AANT_ArgumentIntegerConstant
3945         << ASArgExpr->getSourceRange();
3946       Attr.setInvalid();
3947       return;
3948     }
3949 
3950     // Bounds checking.
3951     if (addrSpace.isSigned()) {
3952       if (addrSpace.isNegative()) {
3953         S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3954           << ASArgExpr->getSourceRange();
3955         Attr.setInvalid();
3956         return;
3957       }
3958       addrSpace.setIsSigned(false);
3959     }
3960     llvm::APSInt max(addrSpace.getBitWidth());
3961     max = Qualifiers::MaxAddressSpace;
3962     if (addrSpace > max) {
3963       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3964         << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3965       Attr.setInvalid();
3966       return;
3967     }
3968     ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3969   } else {
3970     // The keyword-based type attributes imply which address space to use.
3971     switch (Attr.getKind()) {
3972     case AttributeList::AT_OpenCLGlobalAddressSpace:
3973       ASIdx = LangAS::opencl_global; break;
3974     case AttributeList::AT_OpenCLLocalAddressSpace:
3975       ASIdx = LangAS::opencl_local; break;
3976     case AttributeList::AT_OpenCLConstantAddressSpace:
3977       ASIdx = LangAS::opencl_constant; break;
3978     default:
3979       assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
3980       ASIdx = 0; break;
3981     }
3982   }
3983 
3984   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3985 }
3986 
3987 /// Does this type have a "direct" ownership qualifier?  That is,
3988 /// is it written like "__strong id", as opposed to something like
3989 /// "typeof(foo)", where that happens to be strong?
hasDirectOwnershipQualifier(QualType type)3990 static bool hasDirectOwnershipQualifier(QualType type) {
3991   // Fast path: no qualifier at all.
3992   assert(type.getQualifiers().hasObjCLifetime());
3993 
3994   while (true) {
3995     // __strong id
3996     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3997       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3998         return true;
3999 
4000       type = attr->getModifiedType();
4001 
4002     // X *__strong (...)
4003     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
4004       type = paren->getInnerType();
4005 
4006     // That's it for things we want to complain about.  In particular,
4007     // we do not want to look through typedefs, typeof(expr),
4008     // typeof(type), or any other way that the type is somehow
4009     // abstracted.
4010     } else {
4011 
4012       return false;
4013     }
4014   }
4015 }
4016 
4017 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
4018 /// attribute on the specified type.
4019 ///
4020 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4021 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
4022                                        AttributeList &attr,
4023                                        QualType &type) {
4024   bool NonObjCPointer = false;
4025 
4026   if (!type->isDependentType() && !type->isUndeducedType()) {
4027     if (const PointerType *ptr = type->getAs<PointerType>()) {
4028       QualType pointee = ptr->getPointeeType();
4029       if (pointee->isObjCRetainableType() || pointee->isPointerType())
4030         return false;
4031       // It is important not to lose the source info that there was an attribute
4032       // applied to non-objc pointer. We will create an attributed type but
4033       // its type will be the same as the original type.
4034       NonObjCPointer = true;
4035     } else if (!type->isObjCRetainableType()) {
4036       return false;
4037     }
4038 
4039     // Don't accept an ownership attribute in the declspec if it would
4040     // just be the return type of a block pointer.
4041     if (state.isProcessingDeclSpec()) {
4042       Declarator &D = state.getDeclarator();
4043       if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
4044         return false;
4045     }
4046   }
4047 
4048   Sema &S = state.getSema();
4049   SourceLocation AttrLoc = attr.getLoc();
4050   if (AttrLoc.isMacroID())
4051     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
4052 
4053   if (!attr.isArgIdent(0)) {
4054     S.Diag(AttrLoc, diag::err_attribute_argument_type)
4055       << attr.getName() << AANT_ArgumentString;
4056     attr.setInvalid();
4057     return true;
4058   }
4059 
4060   // Consume lifetime attributes without further comment outside of
4061   // ARC mode.
4062   if (!S.getLangOpts().ObjCAutoRefCount)
4063     return true;
4064 
4065   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4066   Qualifiers::ObjCLifetime lifetime;
4067   if (II->isStr("none"))
4068     lifetime = Qualifiers::OCL_ExplicitNone;
4069   else if (II->isStr("strong"))
4070     lifetime = Qualifiers::OCL_Strong;
4071   else if (II->isStr("weak"))
4072     lifetime = Qualifiers::OCL_Weak;
4073   else if (II->isStr("autoreleasing"))
4074     lifetime = Qualifiers::OCL_Autoreleasing;
4075   else {
4076     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
4077       << attr.getName() << II;
4078     attr.setInvalid();
4079     return true;
4080   }
4081 
4082   SplitQualType underlyingType = type.split();
4083 
4084   // Check for redundant/conflicting ownership qualifiers.
4085   if (Qualifiers::ObjCLifetime previousLifetime
4086         = type.getQualifiers().getObjCLifetime()) {
4087     // If it's written directly, that's an error.
4088     if (hasDirectOwnershipQualifier(type)) {
4089       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
4090         << type;
4091       return true;
4092     }
4093 
4094     // Otherwise, if the qualifiers actually conflict, pull sugar off
4095     // until we reach a type that is directly qualified.
4096     if (previousLifetime != lifetime) {
4097       // This should always terminate: the canonical type is
4098       // qualified, so some bit of sugar must be hiding it.
4099       while (!underlyingType.Quals.hasObjCLifetime()) {
4100         underlyingType = underlyingType.getSingleStepDesugaredType();
4101       }
4102       underlyingType.Quals.removeObjCLifetime();
4103     }
4104   }
4105 
4106   underlyingType.Quals.addObjCLifetime(lifetime);
4107 
4108   if (NonObjCPointer) {
4109     StringRef name = attr.getName()->getName();
4110     switch (lifetime) {
4111     case Qualifiers::OCL_None:
4112     case Qualifiers::OCL_ExplicitNone:
4113       break;
4114     case Qualifiers::OCL_Strong: name = "__strong"; break;
4115     case Qualifiers::OCL_Weak: name = "__weak"; break;
4116     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4117     }
4118     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4119       << TDS_ObjCObjOrBlock << type;
4120   }
4121 
4122   QualType origType = type;
4123   if (!NonObjCPointer)
4124     type = S.Context.getQualifiedType(underlyingType);
4125 
4126   // If we have a valid source location for the attribute, use an
4127   // AttributedType instead.
4128   if (AttrLoc.isValid())
4129     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4130                                        origType, type);
4131 
4132   // Forbid __weak if the runtime doesn't support it.
4133   if (lifetime == Qualifiers::OCL_Weak &&
4134       !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4135 
4136     // Actually, delay this until we know what we're parsing.
4137     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4138       S.DelayedDiagnostics.add(
4139           sema::DelayedDiagnostic::makeForbiddenType(
4140               S.getSourceManager().getExpansionLoc(AttrLoc),
4141               diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4142     } else {
4143       S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4144     }
4145 
4146     attr.setInvalid();
4147     return true;
4148   }
4149 
4150   // Forbid __weak for class objects marked as
4151   // objc_arc_weak_reference_unavailable
4152   if (lifetime == Qualifiers::OCL_Weak) {
4153     if (const ObjCObjectPointerType *ObjT =
4154           type->getAs<ObjCObjectPointerType>()) {
4155       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4156         if (Class->isArcWeakrefUnavailable()) {
4157             S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4158             S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4159                    diag::note_class_declared);
4160         }
4161       }
4162     }
4163   }
4164 
4165   return true;
4166 }
4167 
4168 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4169 /// attribute on the specified type.  Returns true to indicate that
4170 /// the attribute was handled, false to indicate that the type does
4171 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4172 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4173                                  AttributeList &attr,
4174                                  QualType &type) {
4175   Sema &S = state.getSema();
4176 
4177   // Delay if this isn't some kind of pointer.
4178   if (!type->isPointerType() &&
4179       !type->isObjCObjectPointerType() &&
4180       !type->isBlockPointerType())
4181     return false;
4182 
4183   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4184     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4185     attr.setInvalid();
4186     return true;
4187   }
4188 
4189   // Check the attribute arguments.
4190   if (!attr.isArgIdent(0)) {
4191     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
4192       << attr.getName() << AANT_ArgumentString;
4193     attr.setInvalid();
4194     return true;
4195   }
4196   Qualifiers::GC GCAttr;
4197   if (attr.getNumArgs() > 1) {
4198     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4199       << attr.getName() << 1;
4200     attr.setInvalid();
4201     return true;
4202   }
4203 
4204   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4205   if (II->isStr("weak"))
4206     GCAttr = Qualifiers::Weak;
4207   else if (II->isStr("strong"))
4208     GCAttr = Qualifiers::Strong;
4209   else {
4210     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4211       << attr.getName() << II;
4212     attr.setInvalid();
4213     return true;
4214   }
4215 
4216   QualType origType = type;
4217   type = S.Context.getObjCGCQualType(origType, GCAttr);
4218 
4219   // Make an attributed type to preserve the source information.
4220   if (attr.getLoc().isValid())
4221     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4222                                        origType, type);
4223 
4224   return true;
4225 }
4226 
4227 namespace {
4228   /// A helper class to unwrap a type down to a function for the
4229   /// purposes of applying attributes there.
4230   ///
4231   /// Use:
4232   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
4233   ///   if (unwrapped.isFunctionType()) {
4234   ///     const FunctionType *fn = unwrapped.get();
4235   ///     // change fn somehow
4236   ///     T = unwrapped.wrap(fn);
4237   ///   }
4238   struct FunctionTypeUnwrapper {
4239     enum WrapKind {
4240       Desugar,
4241       Parens,
4242       Pointer,
4243       BlockPointer,
4244       Reference,
4245       MemberPointer
4246     };
4247 
4248     QualType Original;
4249     const FunctionType *Fn;
4250     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4251 
FunctionTypeUnwrapper__anon8caf6fbd0411::FunctionTypeUnwrapper4252     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4253       while (true) {
4254         const Type *Ty = T.getTypePtr();
4255         if (isa<FunctionType>(Ty)) {
4256           Fn = cast<FunctionType>(Ty);
4257           return;
4258         } else if (isa<ParenType>(Ty)) {
4259           T = cast<ParenType>(Ty)->getInnerType();
4260           Stack.push_back(Parens);
4261         } else if (isa<PointerType>(Ty)) {
4262           T = cast<PointerType>(Ty)->getPointeeType();
4263           Stack.push_back(Pointer);
4264         } else if (isa<BlockPointerType>(Ty)) {
4265           T = cast<BlockPointerType>(Ty)->getPointeeType();
4266           Stack.push_back(BlockPointer);
4267         } else if (isa<MemberPointerType>(Ty)) {
4268           T = cast<MemberPointerType>(Ty)->getPointeeType();
4269           Stack.push_back(MemberPointer);
4270         } else if (isa<ReferenceType>(Ty)) {
4271           T = cast<ReferenceType>(Ty)->getPointeeType();
4272           Stack.push_back(Reference);
4273         } else {
4274           const Type *DTy = Ty->getUnqualifiedDesugaredType();
4275           if (Ty == DTy) {
4276             Fn = nullptr;
4277             return;
4278           }
4279 
4280           T = QualType(DTy, 0);
4281           Stack.push_back(Desugar);
4282         }
4283       }
4284     }
4285 
isFunctionType__anon8caf6fbd0411::FunctionTypeUnwrapper4286     bool isFunctionType() const { return (Fn != nullptr); }
get__anon8caf6fbd0411::FunctionTypeUnwrapper4287     const FunctionType *get() const { return Fn; }
4288 
wrap__anon8caf6fbd0411::FunctionTypeUnwrapper4289     QualType wrap(Sema &S, const FunctionType *New) {
4290       // If T wasn't modified from the unwrapped type, do nothing.
4291       if (New == get()) return Original;
4292 
4293       Fn = New;
4294       return wrap(S.Context, Original, 0);
4295     }
4296 
4297   private:
wrap__anon8caf6fbd0411::FunctionTypeUnwrapper4298     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4299       if (I == Stack.size())
4300         return C.getQualifiedType(Fn, Old.getQualifiers());
4301 
4302       // Build up the inner type, applying the qualifiers from the old
4303       // type to the new type.
4304       SplitQualType SplitOld = Old.split();
4305 
4306       // As a special case, tail-recurse if there are no qualifiers.
4307       if (SplitOld.Quals.empty())
4308         return wrap(C, SplitOld.Ty, I);
4309       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4310     }
4311 
wrap__anon8caf6fbd0411::FunctionTypeUnwrapper4312     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4313       if (I == Stack.size()) return QualType(Fn, 0);
4314 
4315       switch (static_cast<WrapKind>(Stack[I++])) {
4316       case Desugar:
4317         // This is the point at which we potentially lose source
4318         // information.
4319         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4320 
4321       case Parens: {
4322         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4323         return C.getParenType(New);
4324       }
4325 
4326       case Pointer: {
4327         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4328         return C.getPointerType(New);
4329       }
4330 
4331       case BlockPointer: {
4332         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4333         return C.getBlockPointerType(New);
4334       }
4335 
4336       case MemberPointer: {
4337         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4338         QualType New = wrap(C, OldMPT->getPointeeType(), I);
4339         return C.getMemberPointerType(New, OldMPT->getClass());
4340       }
4341 
4342       case Reference: {
4343         const ReferenceType *OldRef = cast<ReferenceType>(Old);
4344         QualType New = wrap(C, OldRef->getPointeeType(), I);
4345         if (isa<LValueReferenceType>(OldRef))
4346           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4347         else
4348           return C.getRValueReferenceType(New);
4349       }
4350       }
4351 
4352       llvm_unreachable("unknown wrapping kind");
4353     }
4354   };
4355 }
4356 
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,AttributeList & Attr,QualType & Type)4357 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4358                                              AttributeList &Attr,
4359                                              QualType &Type) {
4360   Sema &S = State.getSema();
4361 
4362   AttributeList::Kind Kind = Attr.getKind();
4363   QualType Desugared = Type;
4364   const AttributedType *AT = dyn_cast<AttributedType>(Type);
4365   while (AT) {
4366     AttributedType::Kind CurAttrKind = AT->getAttrKind();
4367 
4368     // You cannot specify duplicate type attributes, so if the attribute has
4369     // already been applied, flag it.
4370     if (getAttrListKind(CurAttrKind) == Kind) {
4371       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4372         << Attr.getName();
4373       return true;
4374     }
4375 
4376     // You cannot have both __sptr and __uptr on the same type, nor can you
4377     // have __ptr32 and __ptr64.
4378     if ((CurAttrKind == AttributedType::attr_ptr32 &&
4379          Kind == AttributeList::AT_Ptr64) ||
4380         (CurAttrKind == AttributedType::attr_ptr64 &&
4381          Kind == AttributeList::AT_Ptr32)) {
4382       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4383         << "'__ptr32'" << "'__ptr64'";
4384       return true;
4385     } else if ((CurAttrKind == AttributedType::attr_sptr &&
4386                 Kind == AttributeList::AT_UPtr) ||
4387                (CurAttrKind == AttributedType::attr_uptr &&
4388                 Kind == AttributeList::AT_SPtr)) {
4389       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4390         << "'__sptr'" << "'__uptr'";
4391       return true;
4392     }
4393 
4394     Desugared = AT->getEquivalentType();
4395     AT = dyn_cast<AttributedType>(Desugared);
4396   }
4397 
4398   // Pointer type qualifiers can only operate on pointer types, but not
4399   // pointer-to-member types.
4400   if (!isa<PointerType>(Desugared)) {
4401     S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4402                           diag::err_attribute_no_member_pointers :
4403                           diag::err_attribute_pointers_only) << Attr.getName();
4404     return true;
4405   }
4406 
4407   AttributedType::Kind TAK;
4408   switch (Kind) {
4409   default: llvm_unreachable("Unknown attribute kind");
4410   case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4411   case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4412   case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4413   case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4414   }
4415 
4416   Type = S.Context.getAttributedType(TAK, Type, Type);
4417   return false;
4418 }
4419 
getCCTypeAttrKind(AttributeList & Attr)4420 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4421   assert(!Attr.isInvalid());
4422   switch (Attr.getKind()) {
4423   default:
4424     llvm_unreachable("not a calling convention attribute");
4425   case AttributeList::AT_CDecl:
4426     return AttributedType::attr_cdecl;
4427   case AttributeList::AT_FastCall:
4428     return AttributedType::attr_fastcall;
4429   case AttributeList::AT_StdCall:
4430     return AttributedType::attr_stdcall;
4431   case AttributeList::AT_ThisCall:
4432     return AttributedType::attr_thiscall;
4433   case AttributeList::AT_Pascal:
4434     return AttributedType::attr_pascal;
4435   case AttributeList::AT_Pcs: {
4436     // The attribute may have had a fixit applied where we treated an
4437     // identifier as a string literal.  The contents of the string are valid,
4438     // but the form may not be.
4439     StringRef Str;
4440     if (Attr.isArgExpr(0))
4441       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
4442     else
4443       Str = Attr.getArgAsIdent(0)->Ident->getName();
4444     return llvm::StringSwitch<AttributedType::Kind>(Str)
4445         .Case("aapcs", AttributedType::attr_pcs)
4446         .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4447   }
4448   case AttributeList::AT_PnaclCall:
4449     return AttributedType::attr_pnaclcall;
4450   case AttributeList::AT_IntelOclBicc:
4451     return AttributedType::attr_inteloclbicc;
4452   case AttributeList::AT_MSABI:
4453     return AttributedType::attr_ms_abi;
4454   case AttributeList::AT_SysVABI:
4455     return AttributedType::attr_sysv_abi;
4456   }
4457   llvm_unreachable("unexpected attribute kind!");
4458 }
4459 
4460 /// Process an individual function attribute.  Returns true to
4461 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)4462 static bool handleFunctionTypeAttr(TypeProcessingState &state,
4463                                    AttributeList &attr,
4464                                    QualType &type) {
4465   Sema &S = state.getSema();
4466 
4467   FunctionTypeUnwrapper unwrapped(S, type);
4468 
4469   if (attr.getKind() == AttributeList::AT_NoReturn) {
4470     if (S.CheckNoReturnAttr(attr))
4471       return true;
4472 
4473     // Delay if this is not a function type.
4474     if (!unwrapped.isFunctionType())
4475       return false;
4476 
4477     // Otherwise we can process right away.
4478     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4479     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4480     return true;
4481   }
4482 
4483   // ns_returns_retained is not always a type attribute, but if we got
4484   // here, we're treating it as one right now.
4485   if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4486     assert(S.getLangOpts().ObjCAutoRefCount &&
4487            "ns_returns_retained treated as type attribute in non-ARC");
4488     if (attr.getNumArgs()) return true;
4489 
4490     // Delay if this is not a function type.
4491     if (!unwrapped.isFunctionType())
4492       return false;
4493 
4494     FunctionType::ExtInfo EI
4495       = unwrapped.get()->getExtInfo().withProducesResult(true);
4496     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4497     return true;
4498   }
4499 
4500   if (attr.getKind() == AttributeList::AT_Regparm) {
4501     unsigned value;
4502     if (S.CheckRegparmAttr(attr, value))
4503       return true;
4504 
4505     // Delay if this is not a function type.
4506     if (!unwrapped.isFunctionType())
4507       return false;
4508 
4509     // Diagnose regparm with fastcall.
4510     const FunctionType *fn = unwrapped.get();
4511     CallingConv CC = fn->getCallConv();
4512     if (CC == CC_X86FastCall) {
4513       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4514         << FunctionType::getNameForCallConv(CC)
4515         << "regparm";
4516       attr.setInvalid();
4517       return true;
4518     }
4519 
4520     FunctionType::ExtInfo EI =
4521       unwrapped.get()->getExtInfo().withRegParm(value);
4522     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4523     return true;
4524   }
4525 
4526   // Delay if the type didn't work out to a function.
4527   if (!unwrapped.isFunctionType()) return false;
4528 
4529   // Otherwise, a calling convention.
4530   CallingConv CC;
4531   if (S.CheckCallingConvAttr(attr, CC))
4532     return true;
4533 
4534   const FunctionType *fn = unwrapped.get();
4535   CallingConv CCOld = fn->getCallConv();
4536   AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
4537 
4538   if (CCOld != CC) {
4539     // Error out on when there's already an attribute on the type
4540     // and the CCs don't match.
4541     const AttributedType *AT = S.getCallingConvAttributedType(type);
4542     if (AT && AT->getAttrKind() != CCAttrKind) {
4543       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4544         << FunctionType::getNameForCallConv(CC)
4545         << FunctionType::getNameForCallConv(CCOld);
4546       attr.setInvalid();
4547       return true;
4548     }
4549   }
4550 
4551   // Diagnose use of callee-cleanup calling convention on variadic functions.
4552   if (isCalleeCleanup(CC)) {
4553     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
4554     if (FnP && FnP->isVariadic()) {
4555       unsigned DiagID = diag::err_cconv_varargs;
4556       // stdcall and fastcall are ignored with a warning for GCC and MS
4557       // compatibility.
4558       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
4559         DiagID = diag::warn_cconv_varargs;
4560 
4561       S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
4562       attr.setInvalid();
4563       return true;
4564     }
4565   }
4566 
4567   // Diagnose the use of X86 fastcall on unprototyped functions.
4568   if (CC == CC_X86FastCall) {
4569     if (isa<FunctionNoProtoType>(fn)) {
4570       S.Diag(attr.getLoc(), diag::err_cconv_knr)
4571         << FunctionType::getNameForCallConv(CC);
4572       attr.setInvalid();
4573       return true;
4574     }
4575 
4576     // Also diagnose fastcall with regparm.
4577     if (fn->getHasRegParm()) {
4578       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4579         << "regparm"
4580         << FunctionType::getNameForCallConv(CC);
4581       attr.setInvalid();
4582       return true;
4583     }
4584   }
4585 
4586   // Modify the CC from the wrapped function type, wrap it all back, and then
4587   // wrap the whole thing in an AttributedType as written.  The modified type
4588   // might have a different CC if we ignored the attribute.
4589   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4590   QualType Equivalent =
4591       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4592   type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
4593   return true;
4594 }
4595 
hasExplicitCallingConv(QualType & T)4596 bool Sema::hasExplicitCallingConv(QualType &T) {
4597   QualType R = T.IgnoreParens();
4598   while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
4599     if (AT->isCallingConv())
4600       return true;
4601     R = AT->getModifiedType().IgnoreParens();
4602   }
4603   return false;
4604 }
4605 
adjustMemberFunctionCC(QualType & T,bool IsStatic)4606 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
4607   FunctionTypeUnwrapper Unwrapped(*this, T);
4608   const FunctionType *FT = Unwrapped.get();
4609   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
4610                      cast<FunctionProtoType>(FT)->isVariadic());
4611 
4612   // Only adjust types with the default convention.  For example, on Windows we
4613   // should adjust a __cdecl type to __thiscall for instance methods, and a
4614   // __thiscall type to __cdecl for static methods.
4615   CallingConv CurCC = FT->getCallConv();
4616   CallingConv FromCC =
4617       Context.getDefaultCallingConvention(IsVariadic, IsStatic);
4618   CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
4619   if (CurCC != FromCC || FromCC == ToCC)
4620     return;
4621 
4622   if (hasExplicitCallingConv(T))
4623     return;
4624 
4625   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
4626   QualType Wrapped = Unwrapped.wrap(*this, FT);
4627   T = Context.getAdjustedType(T, Wrapped);
4628 }
4629 
4630 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
4631 /// and float scalars, although arrays, pointers, and function return values are
4632 /// allowed in conjunction with this construct. Aggregates with this attribute
4633 /// are invalid, even if they are of the same size as a corresponding scalar.
4634 /// The raw attribute should contain precisely 1 argument, the vector size for
4635 /// the variable, measured in bytes. If curType and rawAttr are well formed,
4636 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4637 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4638                                  Sema &S) {
4639   // Check the attribute arguments.
4640   if (Attr.getNumArgs() != 1) {
4641     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4642       << Attr.getName() << 1;
4643     Attr.setInvalid();
4644     return;
4645   }
4646   Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4647   llvm::APSInt vecSize(32);
4648   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4649       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4650     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4651       << Attr.getName() << AANT_ArgumentIntegerConstant
4652       << sizeExpr->getSourceRange();
4653     Attr.setInvalid();
4654     return;
4655   }
4656   // The base type must be integer (not Boolean or enumeration) or float, and
4657   // can't already be a vector.
4658   if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
4659       (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
4660     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4661     Attr.setInvalid();
4662     return;
4663   }
4664   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4665   // vecSize is specified in bytes - convert to bits.
4666   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4667 
4668   // the vector size needs to be an integral multiple of the type size.
4669   if (vectorSize % typeSize) {
4670     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4671       << sizeExpr->getSourceRange();
4672     Attr.setInvalid();
4673     return;
4674   }
4675   if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
4676     S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
4677       << sizeExpr->getSourceRange();
4678     Attr.setInvalid();
4679     return;
4680   }
4681   if (vectorSize == 0) {
4682     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4683       << sizeExpr->getSourceRange();
4684     Attr.setInvalid();
4685     return;
4686   }
4687 
4688   // Success! Instantiate the vector type, the number of elements is > 0, and
4689   // not required to be a power of 2, unlike GCC.
4690   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4691                                     VectorType::GenericVector);
4692 }
4693 
4694 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4695 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)4696 static void HandleExtVectorTypeAttr(QualType &CurType,
4697                                     const AttributeList &Attr,
4698                                     Sema &S) {
4699   // check the attribute arguments.
4700   if (Attr.getNumArgs() != 1) {
4701     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4702       << Attr.getName() << 1;
4703     return;
4704   }
4705 
4706   Expr *sizeExpr;
4707 
4708   // Special case where the argument is a template id.
4709   if (Attr.isArgIdent(0)) {
4710     CXXScopeSpec SS;
4711     SourceLocation TemplateKWLoc;
4712     UnqualifiedId id;
4713     id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
4714 
4715     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4716                                           id, false, false);
4717     if (Size.isInvalid())
4718       return;
4719 
4720     sizeExpr = Size.get();
4721   } else {
4722     sizeExpr = Attr.getArgAsExpr(0);
4723   }
4724 
4725   // Create the vector type.
4726   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4727   if (!T.isNull())
4728     CurType = T;
4729 }
4730 
isPermittedNeonBaseType(QualType & Ty,VectorType::VectorKind VecKind,Sema & S)4731 static bool isPermittedNeonBaseType(QualType &Ty,
4732                                     VectorType::VectorKind VecKind, Sema &S) {
4733   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
4734   if (!BTy)
4735     return false;
4736 
4737   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4738 
4739   // Signed poly is mathematically wrong, but has been baked into some ABIs by
4740   // now.
4741   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
4742                         Triple.getArch() == llvm::Triple::aarch64_be ||
4743                         Triple.getArch() == llvm::Triple::arm64 ||
4744                         Triple.getArch() == llvm::Triple::arm64_be;
4745   if (VecKind == VectorType::NeonPolyVector) {
4746     if (IsPolyUnsigned) {
4747       // AArch64 polynomial vectors are unsigned and support poly64.
4748       return BTy->getKind() == BuiltinType::UChar ||
4749              BTy->getKind() == BuiltinType::UShort ||
4750              BTy->getKind() == BuiltinType::ULong ||
4751              BTy->getKind() == BuiltinType::ULongLong;
4752     } else {
4753       // AArch32 polynomial vector are signed.
4754       return BTy->getKind() == BuiltinType::SChar ||
4755              BTy->getKind() == BuiltinType::Short;
4756     }
4757   }
4758 
4759   // Non-polynomial vector types: the usual suspects are allowed, as well as
4760   // float64_t on AArch64.
4761   bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
4762                  Triple.getArch() == llvm::Triple::aarch64_be ||
4763                  Triple.getArch() == llvm::Triple::arm64 ||
4764                  Triple.getArch() == llvm::Triple::arm64_be;
4765 
4766   if (Is64Bit && BTy->getKind() == BuiltinType::Double)
4767     return true;
4768 
4769   return BTy->getKind() == BuiltinType::SChar ||
4770          BTy->getKind() == BuiltinType::UChar ||
4771          BTy->getKind() == BuiltinType::Short ||
4772          BTy->getKind() == BuiltinType::UShort ||
4773          BTy->getKind() == BuiltinType::Int ||
4774          BTy->getKind() == BuiltinType::UInt ||
4775          BTy->getKind() == BuiltinType::Long ||
4776          BTy->getKind() == BuiltinType::ULong ||
4777          BTy->getKind() == BuiltinType::LongLong ||
4778          BTy->getKind() == BuiltinType::ULongLong ||
4779          BTy->getKind() == BuiltinType::Float ||
4780          BTy->getKind() == BuiltinType::Half;
4781 }
4782 
4783 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4784 /// "neon_polyvector_type" attributes are used to create vector types that
4785 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
4786 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
4787 /// the argument to these Neon attributes is the number of vector elements,
4788 /// not the vector size in bytes.  The vector width and element type must
4789 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S,VectorType::VectorKind VecKind)4790 static void HandleNeonVectorTypeAttr(QualType& CurType,
4791                                      const AttributeList &Attr, Sema &S,
4792                                      VectorType::VectorKind VecKind) {
4793   // Target must have NEON
4794   if (!S.Context.getTargetInfo().hasFeature("neon")) {
4795     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
4796     Attr.setInvalid();
4797     return;
4798   }
4799   // Check the attribute arguments.
4800   if (Attr.getNumArgs() != 1) {
4801     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4802       << Attr.getName() << 1;
4803     Attr.setInvalid();
4804     return;
4805   }
4806   // The number of elements must be an ICE.
4807   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4808   llvm::APSInt numEltsInt(32);
4809   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4810       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4811     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4812       << Attr.getName() << AANT_ArgumentIntegerConstant
4813       << numEltsExpr->getSourceRange();
4814     Attr.setInvalid();
4815     return;
4816   }
4817   // Only certain element types are supported for Neon vectors.
4818   if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
4819     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4820     Attr.setInvalid();
4821     return;
4822   }
4823 
4824   // The total size of the vector must be 64 or 128 bits.
4825   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4826   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4827   unsigned vecSize = typeSize * numElts;
4828   if (vecSize != 64 && vecSize != 128) {
4829     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4830     Attr.setInvalid();
4831     return;
4832   }
4833 
4834   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4835 }
4836 
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,AttributeList * attrs)4837 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4838                              TypeAttrLocation TAL, AttributeList *attrs) {
4839   // Scan through and apply attributes to this type where it makes sense.  Some
4840   // attributes (such as __address_space__, __vector_size__, etc) apply to the
4841   // type, but others can be present in the type specifiers even though they
4842   // apply to the decl.  Here we apply type attributes and ignore the rest.
4843 
4844   AttributeList *next;
4845   do {
4846     AttributeList &attr = *attrs;
4847     next = attr.getNext();
4848 
4849     // Skip attributes that were marked to be invalid.
4850     if (attr.isInvalid())
4851       continue;
4852 
4853     if (attr.isCXX11Attribute()) {
4854       // [[gnu::...]] attributes are treated as declaration attributes, so may
4855       // not appertain to a DeclaratorChunk, even if we handle them as type
4856       // attributes.
4857       if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4858         if (TAL == TAL_DeclChunk) {
4859           state.getSema().Diag(attr.getLoc(),
4860                                diag::warn_cxx11_gnu_attribute_on_type)
4861               << attr.getName();
4862           continue;
4863         }
4864       } else if (TAL != TAL_DeclChunk) {
4865         // Otherwise, only consider type processing for a C++11 attribute if
4866         // it's actually been applied to a type.
4867         continue;
4868       }
4869     }
4870 
4871     // If this is an attribute we can handle, do so now,
4872     // otherwise, add it to the FnAttrs list for rechaining.
4873     switch (attr.getKind()) {
4874     default:
4875       // A C++11 attribute on a declarator chunk must appertain to a type.
4876       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4877         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4878           << attr.getName();
4879         attr.setUsedAsTypeAttr();
4880       }
4881       break;
4882 
4883     case AttributeList::UnknownAttribute:
4884       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4885         state.getSema().Diag(attr.getLoc(),
4886                              diag::warn_unknown_attribute_ignored)
4887           << attr.getName();
4888       break;
4889 
4890     case AttributeList::IgnoredAttribute:
4891       break;
4892 
4893     case AttributeList::AT_MayAlias:
4894       // FIXME: This attribute needs to actually be handled, but if we ignore
4895       // it it breaks large amounts of Linux software.
4896       attr.setUsedAsTypeAttr();
4897       break;
4898     case AttributeList::AT_OpenCLPrivateAddressSpace:
4899     case AttributeList::AT_OpenCLGlobalAddressSpace:
4900     case AttributeList::AT_OpenCLLocalAddressSpace:
4901     case AttributeList::AT_OpenCLConstantAddressSpace:
4902     case AttributeList::AT_AddressSpace:
4903       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4904       attr.setUsedAsTypeAttr();
4905       break;
4906     OBJC_POINTER_TYPE_ATTRS_CASELIST:
4907       if (!handleObjCPointerTypeAttr(state, attr, type))
4908         distributeObjCPointerTypeAttr(state, attr, type);
4909       attr.setUsedAsTypeAttr();
4910       break;
4911     case AttributeList::AT_VectorSize:
4912       HandleVectorSizeAttr(type, attr, state.getSema());
4913       attr.setUsedAsTypeAttr();
4914       break;
4915     case AttributeList::AT_ExtVectorType:
4916       HandleExtVectorTypeAttr(type, attr, state.getSema());
4917       attr.setUsedAsTypeAttr();
4918       break;
4919     case AttributeList::AT_NeonVectorType:
4920       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4921                                VectorType::NeonVector);
4922       attr.setUsedAsTypeAttr();
4923       break;
4924     case AttributeList::AT_NeonPolyVectorType:
4925       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4926                                VectorType::NeonPolyVector);
4927       attr.setUsedAsTypeAttr();
4928       break;
4929     case AttributeList::AT_OpenCLImageAccess:
4930       // FIXME: there should be some type checking happening here, I would
4931       // imagine, but the original handler's checking was entirely superfluous.
4932       attr.setUsedAsTypeAttr();
4933       break;
4934 
4935     MS_TYPE_ATTRS_CASELIST:
4936       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4937         attr.setUsedAsTypeAttr();
4938       break;
4939 
4940     case AttributeList::AT_NSReturnsRetained:
4941       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4942         break;
4943       // fallthrough into the function attrs
4944 
4945     FUNCTION_TYPE_ATTRS_CASELIST:
4946       attr.setUsedAsTypeAttr();
4947 
4948       // Never process function type attributes as part of the
4949       // declaration-specifiers.
4950       if (TAL == TAL_DeclSpec)
4951         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4952 
4953       // Otherwise, handle the possible delays.
4954       else if (!handleFunctionTypeAttr(state, attr, type))
4955         distributeFunctionTypeAttr(state, attr, type);
4956       break;
4957     }
4958   } while ((attrs = next));
4959 }
4960 
4961 /// \brief Ensure that the type of the given expression is complete.
4962 ///
4963 /// This routine checks whether the expression \p E has a complete type. If the
4964 /// expression refers to an instantiable construct, that instantiation is
4965 /// performed as needed to complete its type. Furthermore
4966 /// Sema::RequireCompleteType is called for the expression's type (or in the
4967 /// case of a reference type, the referred-to type).
4968 ///
4969 /// \param E The expression whose type is required to be complete.
4970 /// \param Diagnoser The object that will emit a diagnostic if the type is
4971 /// incomplete.
4972 ///
4973 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4974 /// otherwise.
RequireCompleteExprType(Expr * E,TypeDiagnoser & Diagnoser)4975 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4976   QualType T = E->getType();
4977 
4978   // Fast path the case where the type is already complete.
4979   if (!T->isIncompleteType())
4980     // FIXME: The definition might not be visible.
4981     return false;
4982 
4983   // Incomplete array types may be completed by the initializer attached to
4984   // their definitions. For static data members of class templates and for
4985   // variable templates, we need to instantiate the definition to get this
4986   // initializer and complete the type.
4987   if (T->isIncompleteArrayType()) {
4988     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4989       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4990         if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
4991           SourceLocation PointOfInstantiation = E->getExprLoc();
4992 
4993           if (MemberSpecializationInfo *MSInfo =
4994                   Var->getMemberSpecializationInfo()) {
4995             // If we don't already have a point of instantiation, this is it.
4996             if (MSInfo->getPointOfInstantiation().isInvalid()) {
4997               MSInfo->setPointOfInstantiation(PointOfInstantiation);
4998 
4999               // This is a modification of an existing AST node. Notify
5000               // listeners.
5001               if (ASTMutationListener *L = getASTMutationListener())
5002                 L->StaticDataMemberInstantiated(Var);
5003             }
5004           } else {
5005             VarTemplateSpecializationDecl *VarSpec =
5006                 cast<VarTemplateSpecializationDecl>(Var);
5007             if (VarSpec->getPointOfInstantiation().isInvalid())
5008               VarSpec->setPointOfInstantiation(PointOfInstantiation);
5009           }
5010 
5011           InstantiateVariableDefinition(PointOfInstantiation, Var);
5012 
5013           // Update the type to the newly instantiated definition's type both
5014           // here and within the expression.
5015           if (VarDecl *Def = Var->getDefinition()) {
5016             DRE->setDecl(Def);
5017             T = Def->getType();
5018             DRE->setType(T);
5019             E->setType(T);
5020           }
5021 
5022           // We still go on to try to complete the type independently, as it
5023           // may also require instantiations or diagnostics if it remains
5024           // incomplete.
5025         }
5026       }
5027     }
5028   }
5029 
5030   // FIXME: Are there other cases which require instantiating something other
5031   // than the type to complete the type of an expression?
5032 
5033   // Look through reference types and complete the referred type.
5034   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5035     T = Ref->getPointeeType();
5036 
5037   return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
5038 }
5039 
5040 namespace {
5041   struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
5042     unsigned DiagID;
5043 
TypeDiagnoserDiag__anon8caf6fbd0511::TypeDiagnoserDiag5044     TypeDiagnoserDiag(unsigned DiagID)
5045       : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
5046 
diagnose__anon8caf6fbd0511::TypeDiagnoserDiag5047     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5048       if (Suppressed) return;
5049       S.Diag(Loc, DiagID) << T;
5050     }
5051   };
5052 }
5053 
RequireCompleteExprType(Expr * E,unsigned DiagID)5054 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
5055   TypeDiagnoserDiag Diagnoser(DiagID);
5056   return RequireCompleteExprType(E, Diagnoser);
5057 }
5058 
5059 /// @brief Ensure that the type T is a complete type.
5060 ///
5061 /// This routine checks whether the type @p T is complete in any
5062 /// context where a complete type is required. If @p T is a complete
5063 /// type, returns false. If @p T is a class template specialization,
5064 /// this routine then attempts to perform class template
5065 /// instantiation. If instantiation fails, or if @p T is incomplete
5066 /// and cannot be completed, issues the diagnostic @p diag (giving it
5067 /// the type @p T) and returns true.
5068 ///
5069 /// @param Loc  The location in the source that the incomplete type
5070 /// diagnostic should refer to.
5071 ///
5072 /// @param T  The type that this routine is examining for completeness.
5073 ///
5074 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
5075 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5076 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5077                                TypeDiagnoser &Diagnoser) {
5078   if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
5079     return true;
5080   if (const TagType *Tag = T->getAs<TagType>()) {
5081     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
5082       Tag->getDecl()->setCompleteDefinitionRequired();
5083       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
5084     }
5085   }
5086   return false;
5087 }
5088 
5089 /// \brief Determine whether there is any declaration of \p D that was ever a
5090 ///        definition (perhaps before module merging) and is currently visible.
5091 /// \param D The definition of the entity.
5092 /// \param Suggested Filled in with the declaration that should be made visible
5093 ///        in order to provide a definition of this entity.
hasVisibleDefinition(Sema & S,NamedDecl * D,NamedDecl ** Suggested)5094 static bool hasVisibleDefinition(Sema &S, NamedDecl *D, NamedDecl **Suggested) {
5095   // Easy case: if we don't have modules, all declarations are visible.
5096   if (!S.getLangOpts().Modules)
5097     return true;
5098 
5099   // If this definition was instantiated from a template, map back to the
5100   // pattern from which it was instantiated.
5101   //
5102   // FIXME: There must be a better place for this to live.
5103   if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
5104     if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
5105       auto From = TD->getInstantiatedFrom();
5106       if (auto *CTD = From.dyn_cast<ClassTemplateDecl*>()) {
5107         while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
5108           if (NewCTD->isMemberSpecialization())
5109             break;
5110           CTD = NewCTD;
5111         }
5112         RD = CTD->getTemplatedDecl();
5113       } else if (auto *CTPSD = From.dyn_cast<
5114                      ClassTemplatePartialSpecializationDecl *>()) {
5115         while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
5116           if (NewCTPSD->isMemberSpecialization())
5117             break;
5118           CTPSD = NewCTPSD;
5119         }
5120         RD = CTPSD;
5121       }
5122     } else if (isTemplateInstantiation(RD->getTemplateSpecializationKind())) {
5123       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
5124         RD = NewRD;
5125     }
5126     D = RD->getDefinition();
5127   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
5128     while (auto *NewED = ED->getInstantiatedFromMemberEnum())
5129       ED = NewED;
5130     if (ED->isFixed()) {
5131       // If the enum has a fixed underlying type, any declaration of it will do.
5132       *Suggested = nullptr;
5133       for (auto *Redecl : ED->redecls()) {
5134         if (LookupResult::isVisible(S, Redecl))
5135           return true;
5136         if (Redecl->isThisDeclarationADefinition() ||
5137             (Redecl->isCanonicalDecl() && !*Suggested))
5138           *Suggested = Redecl;
5139       }
5140       return false;
5141     }
5142     D = ED->getDefinition();
5143   }
5144   assert(D && "missing definition for pattern of instantiated definition");
5145 
5146   // FIXME: If we merged any other decl into D, and that declaration is visible,
5147   // then we should consider a definition to be visible.
5148   *Suggested = D;
5149   return LookupResult::isVisible(S, D);
5150 }
5151 
5152 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)5153 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
5154   RD = RD->getMostRecentDecl();
5155   if (!RD->hasAttr<MSInheritanceAttr>()) {
5156     MSInheritanceAttr::Spelling IM;
5157 
5158     switch (S.MSPointerToMemberRepresentationMethod) {
5159     case LangOptions::PPTMK_BestCase:
5160       IM = RD->calculateInheritanceModel();
5161       break;
5162     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
5163       IM = MSInheritanceAttr::Keyword_single_inheritance;
5164       break;
5165     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
5166       IM = MSInheritanceAttr::Keyword_multiple_inheritance;
5167       break;
5168     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
5169       IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
5170       break;
5171     }
5172 
5173     RD->addAttr(MSInheritanceAttr::CreateImplicit(
5174         S.getASTContext(), IM,
5175         /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
5176             LangOptions::PPTMK_BestCase,
5177         S.ImplicitMSInheritanceAttrLoc.isValid()
5178             ? S.ImplicitMSInheritanceAttrLoc
5179             : RD->getSourceRange()));
5180   }
5181 
5182   if (RD->hasDefinition()) {
5183     // Assign inheritance models to all of the base classes, because now we can
5184     // form pointers to members of base classes without calling
5185     // RequireCompleteType on the pointer to member of the base class type.
5186     for (const CXXBaseSpecifier &BS : RD->bases())
5187       assignInheritanceModel(S, BS.getType()->getAsCXXRecordDecl());
5188   }
5189 }
5190 
5191 /// \brief The implementation of RequireCompleteType
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5192 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
5193                                    TypeDiagnoser &Diagnoser) {
5194   // FIXME: Add this assertion to make sure we always get instantiation points.
5195   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
5196   // FIXME: Add this assertion to help us flush out problems with
5197   // checking for dependent types and type-dependent expressions.
5198   //
5199   //  assert(!T->isDependentType() &&
5200   //         "Can't ask whether a dependent type is complete");
5201 
5202   // If we have a complete type, we're done.
5203   NamedDecl *Def = nullptr;
5204   if (!T->isIncompleteType(&Def)) {
5205     // If we know about the definition but it is not visible, complain.
5206     NamedDecl *SuggestedDef = nullptr;
5207     if (!Diagnoser.Suppressed && Def &&
5208         !hasVisibleDefinition(*this, Def, &SuggestedDef)) {
5209       // Suppress this error outside of a SFINAE context if we've already
5210       // emitted the error once for this type. There's no usefulness in
5211       // repeating the diagnostic.
5212       // FIXME: Add a Fix-It that imports the corresponding module or includes
5213       // the header.
5214       Module *Owner = SuggestedDef->getOwningModule();
5215       Diag(Loc, diag::err_module_private_definition)
5216         << T << Owner->getFullModuleName();
5217       Diag(SuggestedDef->getLocation(), diag::note_previous_definition);
5218 
5219       // Try to recover by implicitly importing this module.
5220       createImplicitModuleImportForErrorRecovery(Loc, Owner);
5221     }
5222 
5223     // We lock in the inheritance model once somebody has asked us to ensure
5224     // that a pointer-to-member type is complete.
5225     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5226       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
5227         if (!MPTy->getClass()->isDependentType()) {
5228           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
5229           assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
5230         }
5231       }
5232     }
5233 
5234     return false;
5235   }
5236 
5237   const TagType *Tag = T->getAs<TagType>();
5238   const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
5239 
5240   // If there's an unimported definition of this type in a module (for
5241   // instance, because we forward declared it, then imported the definition),
5242   // import that definition now.
5243   //
5244   // FIXME: What about other cases where an import extends a redeclaration
5245   // chain for a declaration that can be accessed through a mechanism other
5246   // than name lookup (eg, referenced in a template, or a variable whose type
5247   // could be completed by the module)?
5248   if (Tag || IFace) {
5249     NamedDecl *D =
5250         Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
5251 
5252     // Avoid diagnosing invalid decls as incomplete.
5253     if (D->isInvalidDecl())
5254       return true;
5255 
5256     // Give the external AST source a chance to complete the type.
5257     if (auto *Source = Context.getExternalSource()) {
5258       if (Tag)
5259         Source->CompleteType(Tag->getDecl());
5260       else
5261         Source->CompleteType(IFace->getDecl());
5262 
5263       // If the external source completed the type, go through the motions
5264       // again to ensure we're allowed to use the completed type.
5265       if (!T->isIncompleteType())
5266         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
5267     }
5268   }
5269 
5270   // If we have a class template specialization or a class member of a
5271   // class template specialization, or an array with known size of such,
5272   // try to instantiate it.
5273   QualType MaybeTemplate = T;
5274   while (const ConstantArrayType *Array
5275            = Context.getAsConstantArrayType(MaybeTemplate))
5276     MaybeTemplate = Array->getElementType();
5277   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
5278     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
5279           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
5280       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
5281         return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
5282                                                       TSK_ImplicitInstantiation,
5283                                             /*Complain=*/!Diagnoser.Suppressed);
5284     } else if (CXXRecordDecl *Rec
5285                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
5286       CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
5287       if (!Rec->isBeingDefined() && Pattern) {
5288         MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
5289         assert(MSI && "Missing member specialization information?");
5290         // This record was instantiated from a class within a template.
5291         if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5292           return InstantiateClass(Loc, Rec, Pattern,
5293                                   getTemplateInstantiationArgs(Rec),
5294                                   TSK_ImplicitInstantiation,
5295                                   /*Complain=*/!Diagnoser.Suppressed);
5296       }
5297     }
5298   }
5299 
5300   if (Diagnoser.Suppressed)
5301     return true;
5302 
5303   // We have an incomplete type. Produce a diagnostic.
5304   if (Ident___float128 &&
5305       T == Context.getTypeDeclType(Context.getFloat128StubType())) {
5306     Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
5307     return true;
5308   }
5309 
5310   Diagnoser.diagnose(*this, Loc, T);
5311 
5312   // If the type was a forward declaration of a class/struct/union
5313   // type, produce a note.
5314   if (Tag && !Tag->getDecl()->isInvalidDecl())
5315     Diag(Tag->getDecl()->getLocation(),
5316          Tag->isBeingDefined() ? diag::note_type_being_defined
5317                                : diag::note_forward_declaration)
5318       << QualType(Tag, 0);
5319 
5320   // If the Objective-C class was a forward declaration, produce a note.
5321   if (IFace && !IFace->getDecl()->isInvalidDecl())
5322     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5323 
5324   // If we have external information that we can use to suggest a fix,
5325   // produce a note.
5326   if (ExternalSource)
5327     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
5328 
5329   return true;
5330 }
5331 
RequireCompleteType(SourceLocation Loc,QualType T,unsigned DiagID)5332 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5333                                unsigned DiagID) {
5334   TypeDiagnoserDiag Diagnoser(DiagID);
5335   return RequireCompleteType(Loc, T, Diagnoser);
5336 }
5337 
5338 /// \brief Get diagnostic %select index for tag kind for
5339 /// literal type diagnostic message.
5340 /// WARNING: Indexes apply to particular diagnostics only!
5341 ///
5342 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)5343 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5344   switch (Tag) {
5345   case TTK_Struct: return 0;
5346   case TTK_Interface: return 1;
5347   case TTK_Class:  return 2;
5348   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5349   }
5350 }
5351 
5352 /// @brief Ensure that the type T is a literal type.
5353 ///
5354 /// This routine checks whether the type @p T is a literal type. If @p T is an
5355 /// incomplete type, an attempt is made to complete it. If @p T is a literal
5356 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5357 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5358 /// it the type @p T), along with notes explaining why the type is not a
5359 /// literal type, and returns true.
5360 ///
5361 /// @param Loc  The location in the source that the non-literal type
5362 /// diagnostic should refer to.
5363 ///
5364 /// @param T  The type that this routine is examining for literalness.
5365 ///
5366 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
5367 ///
5368 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5369 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5370 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5371                               TypeDiagnoser &Diagnoser) {
5372   assert(!T->isDependentType() && "type should not be dependent");
5373 
5374   QualType ElemType = Context.getBaseElementType(T);
5375   RequireCompleteType(Loc, ElemType, 0);
5376 
5377   if (T->isLiteralType(Context))
5378     return false;
5379 
5380   if (Diagnoser.Suppressed)
5381     return true;
5382 
5383   Diagnoser.diagnose(*this, Loc, T);
5384 
5385   if (T->isVariableArrayType())
5386     return true;
5387 
5388   const RecordType *RT = ElemType->getAs<RecordType>();
5389   if (!RT)
5390     return true;
5391 
5392   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5393 
5394   // A partially-defined class type can't be a literal type, because a literal
5395   // class type must have a trivial destructor (which can't be checked until
5396   // the class definition is complete).
5397   if (!RD->isCompleteDefinition()) {
5398     RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5399     return true;
5400   }
5401 
5402   // If the class has virtual base classes, then it's not an aggregate, and
5403   // cannot have any constexpr constructors or a trivial default constructor,
5404   // so is non-literal. This is better to diagnose than the resulting absence
5405   // of constexpr constructors.
5406   if (RD->getNumVBases()) {
5407     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5408       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5409     for (const auto &I : RD->vbases())
5410       Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
5411           << I.getSourceRange();
5412   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5413              !RD->hasTrivialDefaultConstructor()) {
5414     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5415   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5416     for (const auto &I : RD->bases()) {
5417       if (!I.getType()->isLiteralType(Context)) {
5418         Diag(I.getLocStart(),
5419              diag::note_non_literal_base_class)
5420           << RD << I.getType() << I.getSourceRange();
5421         return true;
5422       }
5423     }
5424     for (const auto *I : RD->fields()) {
5425       if (!I->getType()->isLiteralType(Context) ||
5426           I->getType().isVolatileQualified()) {
5427         Diag(I->getLocation(), diag::note_non_literal_field)
5428           << RD << I << I->getType()
5429           << I->getType().isVolatileQualified();
5430         return true;
5431       }
5432     }
5433   } else if (!RD->hasTrivialDestructor()) {
5434     // All fields and bases are of literal types, so have trivial destructors.
5435     // If this class's destructor is non-trivial it must be user-declared.
5436     CXXDestructorDecl *Dtor = RD->getDestructor();
5437     assert(Dtor && "class has literal fields and bases but no dtor?");
5438     if (!Dtor)
5439       return true;
5440 
5441     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5442          diag::note_non_literal_user_provided_dtor :
5443          diag::note_non_literal_nontrivial_dtor) << RD;
5444     if (!Dtor->isUserProvided())
5445       SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5446   }
5447 
5448   return true;
5449 }
5450 
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)5451 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5452   TypeDiagnoserDiag Diagnoser(DiagID);
5453   return RequireLiteralType(Loc, T, Diagnoser);
5454 }
5455 
5456 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5457 /// and qualified by the nested-name-specifier contained in SS.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T)5458 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5459                                  const CXXScopeSpec &SS, QualType T) {
5460   if (T.isNull())
5461     return T;
5462   NestedNameSpecifier *NNS;
5463   if (SS.isValid())
5464     NNS = SS.getScopeRep();
5465   else {
5466     if (Keyword == ETK_None)
5467       return T;
5468     NNS = nullptr;
5469   }
5470   return Context.getElaboratedType(Keyword, NNS, T);
5471 }
5472 
BuildTypeofExprType(Expr * E,SourceLocation Loc)5473 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5474   ExprResult ER = CheckPlaceholderExpr(E);
5475   if (ER.isInvalid()) return QualType();
5476   E = ER.get();
5477 
5478   if (!E->isTypeDependent()) {
5479     QualType T = E->getType();
5480     if (const TagType *TT = T->getAs<TagType>())
5481       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5482   }
5483   return Context.getTypeOfExprType(E);
5484 }
5485 
5486 /// getDecltypeForExpr - Given an expr, will return the decltype for
5487 /// that expression, according to the rules in C++11
5488 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Sema & S,Expr * E)5489 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5490   if (E->isTypeDependent())
5491     return S.Context.DependentTy;
5492 
5493   // C++11 [dcl.type.simple]p4:
5494   //   The type denoted by decltype(e) is defined as follows:
5495   //
5496   //     - if e is an unparenthesized id-expression or an unparenthesized class
5497   //       member access (5.2.5), decltype(e) is the type of the entity named
5498   //       by e. If there is no such entity, or if e names a set of overloaded
5499   //       functions, the program is ill-formed;
5500   //
5501   // We apply the same rules for Objective-C ivar and property references.
5502   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5503     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5504       return VD->getType();
5505   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5506     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5507       return FD->getType();
5508   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5509     return IR->getDecl()->getType();
5510   } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5511     if (PR->isExplicitProperty())
5512       return PR->getExplicitProperty()->getType();
5513   }
5514 
5515   // C++11 [expr.lambda.prim]p18:
5516   //   Every occurrence of decltype((x)) where x is a possibly
5517   //   parenthesized id-expression that names an entity of automatic
5518   //   storage duration is treated as if x were transformed into an
5519   //   access to a corresponding data member of the closure type that
5520   //   would have been declared if x were an odr-use of the denoted
5521   //   entity.
5522   using namespace sema;
5523   if (S.getCurLambda()) {
5524     if (isa<ParenExpr>(E)) {
5525       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5526         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5527           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5528           if (!T.isNull())
5529             return S.Context.getLValueReferenceType(T);
5530         }
5531       }
5532     }
5533   }
5534 
5535 
5536   // C++11 [dcl.type.simple]p4:
5537   //   [...]
5538   QualType T = E->getType();
5539   switch (E->getValueKind()) {
5540   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5541   //       type of e;
5542   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5543   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5544   //       type of e;
5545   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5546   //  - otherwise, decltype(e) is the type of e.
5547   case VK_RValue: break;
5548   }
5549 
5550   return T;
5551 }
5552 
BuildDecltypeType(Expr * E,SourceLocation Loc)5553 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
5554   ExprResult ER = CheckPlaceholderExpr(E);
5555   if (ER.isInvalid()) return QualType();
5556   E = ER.get();
5557 
5558   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5559 }
5560 
BuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)5561 QualType Sema::BuildUnaryTransformType(QualType BaseType,
5562                                        UnaryTransformType::UTTKind UKind,
5563                                        SourceLocation Loc) {
5564   switch (UKind) {
5565   case UnaryTransformType::EnumUnderlyingType:
5566     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5567       Diag(Loc, diag::err_only_enums_have_underlying_types);
5568       return QualType();
5569     } else {
5570       QualType Underlying = BaseType;
5571       if (!BaseType->isDependentType()) {
5572         // The enum could be incomplete if we're parsing its definition or
5573         // recovering from an error.
5574         NamedDecl *FwdDecl = nullptr;
5575         if (BaseType->isIncompleteType(&FwdDecl)) {
5576           Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
5577           Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
5578           return QualType();
5579         }
5580 
5581         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5582         assert(ED && "EnumType has no EnumDecl");
5583 
5584         DiagnoseUseOfDecl(ED, Loc);
5585 
5586         Underlying = ED->getIntegerType();
5587         assert(!Underlying.isNull());
5588       }
5589       return Context.getUnaryTransformType(BaseType, Underlying,
5590                                         UnaryTransformType::EnumUnderlyingType);
5591     }
5592   }
5593   llvm_unreachable("unknown unary transform type");
5594 }
5595 
BuildAtomicType(QualType T,SourceLocation Loc)5596 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5597   if (!T->isDependentType()) {
5598     // FIXME: It isn't entirely clear whether incomplete atomic types
5599     // are allowed or not; for simplicity, ban them for the moment.
5600     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5601       return QualType();
5602 
5603     int DisallowedKind = -1;
5604     if (T->isArrayType())
5605       DisallowedKind = 1;
5606     else if (T->isFunctionType())
5607       DisallowedKind = 2;
5608     else if (T->isReferenceType())
5609       DisallowedKind = 3;
5610     else if (T->isAtomicType())
5611       DisallowedKind = 4;
5612     else if (T.hasQualifiers())
5613       DisallowedKind = 5;
5614     else if (!T.isTriviallyCopyableType(Context))
5615       // Some other non-trivially-copyable type (probably a C++ class)
5616       DisallowedKind = 6;
5617 
5618     if (DisallowedKind != -1) {
5619       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5620       return QualType();
5621     }
5622 
5623     // FIXME: Do we need any handling for ARC here?
5624   }
5625 
5626   // Build the pointer type.
5627   return Context.getAtomicType(T);
5628 }
5629