• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Enums and other top level class definitions.
32 //
33 // Note: internal/types.cc defines stringification routines for some
34 // of these enums. Please update those routines if you extend or
35 // remove enums from here.
36 
37 #ifndef CERES_PUBLIC_TYPES_H_
38 #define CERES_PUBLIC_TYPES_H_
39 
40 #include <string>
41 
42 #include "ceres/internal/port.h"
43 #include "ceres/internal/disable_warnings.h"
44 
45 namespace ceres {
46 
47 // Basic integer types. These typedefs are in the Ceres namespace to avoid
48 // conflicts with other packages having similar typedefs.
49 typedef int   int32;
50 
51 // Argument type used in interfaces that can optionally take ownership
52 // of a passed in argument. If TAKE_OWNERSHIP is passed, the called
53 // object takes ownership of the pointer argument, and will call
54 // delete on it upon completion.
55 enum Ownership {
56   DO_NOT_TAKE_OWNERSHIP,
57   TAKE_OWNERSHIP
58 };
59 
60 // TODO(keir): Considerably expand the explanations of each solver type.
61 enum LinearSolverType {
62   // These solvers are for general rectangular systems formed from the
63   // normal equations A'A x = A'b. They are direct solvers and do not
64   // assume any special problem structure.
65 
66   // Solve the normal equations using a dense Cholesky solver; based
67   // on Eigen.
68   DENSE_NORMAL_CHOLESKY,
69 
70   // Solve the normal equations using a dense QR solver; based on
71   // Eigen.
72   DENSE_QR,
73 
74   // Solve the normal equations using a sparse cholesky solver; requires
75   // SuiteSparse or CXSparse.
76   SPARSE_NORMAL_CHOLESKY,
77 
78   // Specialized solvers, specific to problems with a generalized
79   // bi-partitite structure.
80 
81   // Solves the reduced linear system using a dense Cholesky solver;
82   // based on Eigen.
83   DENSE_SCHUR,
84 
85   // Solves the reduced linear system using a sparse Cholesky solver;
86   // based on CHOLMOD.
87   SPARSE_SCHUR,
88 
89   // Solves the reduced linear system using Conjugate Gradients, based
90   // on a new Ceres implementation.  Suitable for large scale
91   // problems.
92   ITERATIVE_SCHUR,
93 
94   // Conjugate gradients on the normal equations.
95   CGNR
96 };
97 
98 enum PreconditionerType {
99   // Trivial preconditioner - the identity matrix.
100   IDENTITY,
101 
102   // Block diagonal of the Gauss-Newton Hessian.
103   JACOBI,
104 
105   // Note: The following three preconditioners can only be used with
106   // the ITERATIVE_SCHUR solver. They are well suited for Structure
107   // from Motion problems.
108 
109   // Block diagonal of the Schur complement. This preconditioner may
110   // only be used with the ITERATIVE_SCHUR solver.
111   SCHUR_JACOBI,
112 
113   // Visibility clustering based preconditioners.
114   //
115   // The following two preconditioners use the visibility structure of
116   // the scene to determine the sparsity structure of the
117   // preconditioner. This is done using a clustering algorithm. The
118   // available visibility clustering algorithms are described below.
119   //
120   // Note: Requires SuiteSparse.
121   CLUSTER_JACOBI,
122   CLUSTER_TRIDIAGONAL
123 };
124 
125 enum VisibilityClusteringType {
126   // Canonical views algorithm as described in
127   //
128   // "Scene Summarization for Online Image Collections", Ian Simon, Noah
129   // Snavely, Steven M. Seitz, ICCV 2007.
130   //
131   // This clustering algorithm can be quite slow, but gives high
132   // quality clusters. The original visibility based clustering paper
133   // used this algorithm.
134   CANONICAL_VIEWS,
135 
136   // The classic single linkage algorithm. It is extremely fast as
137   // compared to CANONICAL_VIEWS, but can give slightly poorer
138   // results. For problems with large number of cameras though, this
139   // is generally a pretty good option.
140   //
141   // If you are using SCHUR_JACOBI preconditioner and have SuiteSparse
142   // available, CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL in combination
143   // with the SINGLE_LINKAGE algorithm will generally give better
144   // results.
145   SINGLE_LINKAGE
146 };
147 
148 enum SparseLinearAlgebraLibraryType {
149   // High performance sparse Cholesky factorization and approximate
150   // minimum degree ordering.
151   SUITE_SPARSE,
152 
153   // A lightweight replacment for SuiteSparse, which does not require
154   // a LAPACK/BLAS implementation. Consequently, its performance is
155   // also a bit lower than SuiteSparse.
156   CX_SPARSE,
157 
158   // Eigen's sparse linear algebra routines. In particular Ceres uses
159   // the Simplicial LDLT routines.
160   EIGEN_SPARSE
161 };
162 
163 enum DenseLinearAlgebraLibraryType {
164   EIGEN,
165   LAPACK
166 };
167 
168 // Logging options
169 // The options get progressively noisier.
170 enum LoggingType {
171   SILENT,
172   PER_MINIMIZER_ITERATION
173 };
174 
175 enum MinimizerType {
176   LINE_SEARCH,
177   TRUST_REGION
178 };
179 
180 enum LineSearchDirectionType {
181   // Negative of the gradient.
182   STEEPEST_DESCENT,
183 
184   // A generalization of the Conjugate Gradient method to non-linear
185   // functions. The generalization can be performed in a number of
186   // different ways, resulting in a variety of search directions. The
187   // precise choice of the non-linear conjugate gradient algorithm
188   // used is determined by NonlinerConjuateGradientType.
189   NONLINEAR_CONJUGATE_GRADIENT,
190 
191   // BFGS, and it's limited memory approximation L-BFGS, are quasi-Newton
192   // algorithms that approximate the Hessian matrix by iteratively refining
193   // an initial estimate with rank-one updates using the gradient at each
194   // iteration. They are a generalisation of the Secant method and satisfy
195   // the Secant equation.  The Secant equation has an infinium of solutions
196   // in multiple dimensions, as there are N*(N+1)/2 degrees of freedom in a
197   // symmetric matrix but only N conditions are specified by the Secant
198   // equation. The requirement that the Hessian approximation be positive
199   // definite imposes another N additional constraints, but that still leaves
200   // remaining degrees-of-freedom.  (L)BFGS methods uniquely deteremine the
201   // approximate Hessian by imposing the additional constraints that the
202   // approximation at the next iteration must be the 'closest' to the current
203   // approximation (the nature of how this proximity is measured is actually
204   // the defining difference between a family of quasi-Newton methods including
205   // (L)BFGS & DFP). (L)BFGS is currently regarded as being the best known
206   // general quasi-Newton method.
207   //
208   // The principal difference between BFGS and L-BFGS is that whilst BFGS
209   // maintains a full, dense approximation to the (inverse) Hessian, L-BFGS
210   // maintains only a window of the last M observations of the parameters and
211   // gradients. Using this observation history, the calculation of the next
212   // search direction can be computed without requiring the construction of the
213   // full dense inverse Hessian approximation. This is particularly important
214   // for problems with a large number of parameters, where storage of an N-by-N
215   // matrix in memory would be prohibitive.
216   //
217   // For more details on BFGS see:
218   //
219   // Broyden, C.G., "The Convergence of a Class of Double-rank Minimization
220   // Algorithms,"; J. Inst. Maths. Applics., Vol. 6, pp 76–90, 1970.
221   //
222   // Fletcher, R., "A New Approach to Variable Metric Algorithms,"
223   // Computer Journal, Vol. 13, pp 317–322, 1970.
224   //
225   // Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational
226   // Means," Mathematics of Computing, Vol. 24, pp 23–26, 1970.
227   //
228   // Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function
229   // Minimization," Mathematics of Computing, Vol. 24, pp 647–656, 1970.
230   //
231   // For more details on L-BFGS see:
232   //
233   // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
234   // Storage". Mathematics of Computation 35 (151): 773–782.
235   //
236   // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
237   // "Representations of Quasi-Newton Matrices and their use in
238   // Limited Memory Methods". Mathematical Programming 63 (4):
239   // 129–156.
240   //
241   // A general reference for both methods:
242   //
243   // Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.
244   LBFGS,
245   BFGS,
246 };
247 
248 // Nonliner conjugate gradient methods are a generalization of the
249 // method of Conjugate Gradients for linear systems. The
250 // generalization can be carried out in a number of different ways
251 // leading to number of different rules for computing the search
252 // direction. Ceres provides a number of different variants. For more
253 // details see Numerical Optimization by Nocedal & Wright.
254 enum NonlinearConjugateGradientType {
255   FLETCHER_REEVES,
256   POLAK_RIBIERE,
257   HESTENES_STIEFEL,
258 };
259 
260 enum LineSearchType {
261   // Backtracking line search with polynomial interpolation or
262   // bisection.
263   ARMIJO,
264   WOLFE,
265 };
266 
267 // Ceres supports different strategies for computing the trust region
268 // step.
269 enum TrustRegionStrategyType {
270   // The default trust region strategy is to use the step computation
271   // used in the Levenberg-Marquardt algorithm. For more details see
272   // levenberg_marquardt_strategy.h
273   LEVENBERG_MARQUARDT,
274 
275   // Powell's dogleg algorithm interpolates between the Cauchy point
276   // and the Gauss-Newton step. It is particularly useful if the
277   // LEVENBERG_MARQUARDT algorithm is making a large number of
278   // unsuccessful steps. For more details see dogleg_strategy.h.
279   //
280   // NOTES:
281   //
282   // 1. This strategy has not been experimented with or tested as
283   // extensively as LEVENBERG_MARQUARDT, and therefore it should be
284   // considered EXPERIMENTAL for now.
285   //
286   // 2. For now this strategy should only be used with exact
287   // factorization based linear solvers, i.e., SPARSE_SCHUR,
288   // DENSE_SCHUR, DENSE_QR and SPARSE_NORMAL_CHOLESKY.
289   DOGLEG
290 };
291 
292 // Ceres supports two different dogleg strategies.
293 // The "traditional" dogleg method by Powell and the
294 // "subspace" method described in
295 // R. H. Byrd, R. B. Schnabel, and G. A. Shultz,
296 // "Approximate solution of the trust region problem by minimization
297 //  over two-dimensional subspaces", Mathematical Programming,
298 // 40 (1988), pp. 247--263
299 enum DoglegType {
300   // The traditional approach constructs a dogleg path
301   // consisting of two line segments and finds the furthest
302   // point on that path that is still inside the trust region.
303   TRADITIONAL_DOGLEG,
304 
305   // The subspace approach finds the exact minimum of the model
306   // constrained to the subspace spanned by the dogleg path.
307   SUBSPACE_DOGLEG
308 };
309 
310 enum TerminationType {
311   // Minimizer terminated because one of the convergence criterion set
312   // by the user was satisfied.
313   //
314   // 1.  (new_cost - old_cost) < function_tolerance * old_cost;
315   // 2.  max_i |gradient_i| < gradient_tolerance
316   // 3.  |step|_2 <= parameter_tolerance * ( |x|_2 +  parameter_tolerance)
317   //
318   // The user's parameter blocks will be updated with the solution.
319   CONVERGENCE,
320 
321   // The solver ran for maximum number of iterations or maximum amount
322   // of time specified by the user, but none of the convergence
323   // criterion specified by the user were met. The user's parameter
324   // blocks will be updated with the solution found so far.
325   NO_CONVERGENCE,
326 
327   // The minimizer terminated because of an error.  The user's
328   // parameter blocks will not be updated.
329   FAILURE,
330 
331   // Using an IterationCallback object, user code can control the
332   // minimizer. The following enums indicate that the user code was
333   // responsible for termination.
334   //
335   // Minimizer terminated successfully because a user
336   // IterationCallback returned SOLVER_TERMINATE_SUCCESSFULLY.
337   //
338   // The user's parameter blocks will be updated with the solution.
339   USER_SUCCESS,
340 
341   // Minimizer terminated because because a user IterationCallback
342   // returned SOLVER_ABORT.
343   //
344   // The user's parameter blocks will not be updated.
345   USER_FAILURE
346 };
347 
348 // Enums used by the IterationCallback instances to indicate to the
349 // solver whether it should continue solving, the user detected an
350 // error or the solution is good enough and the solver should
351 // terminate.
352 enum CallbackReturnType {
353   // Continue solving to next iteration.
354   SOLVER_CONTINUE,
355 
356   // Terminate solver, and do not update the parameter blocks upon
357   // return. Unless the user has set
358   // Solver:Options:::update_state_every_iteration, in which case the
359   // state would have been updated every iteration
360   // anyways. Solver::Summary::termination_type is set to USER_ABORT.
361   SOLVER_ABORT,
362 
363   // Terminate solver, update state and
364   // return. Solver::Summary::termination_type is set to USER_SUCCESS.
365   SOLVER_TERMINATE_SUCCESSFULLY
366 };
367 
368 // The format in which linear least squares problems should be logged
369 // when Solver::Options::lsqp_iterations_to_dump is non-empty.
370 enum DumpFormatType {
371   // Print the linear least squares problem in a human readable format
372   // to stderr. The Jacobian is printed as a dense matrix. The vectors
373   // D, x and f are printed as dense vectors. This should only be used
374   // for small problems.
375   CONSOLE,
376 
377   // Write out the linear least squares problem to the directory
378   // pointed to by Solver::Options::lsqp_dump_directory as text files
379   // which can be read into MATLAB/Octave. The Jacobian is dumped as a
380   // text file containing (i,j,s) triplets, the vectors D, x and f are
381   // dumped as text files containing a list of their values.
382   //
383   // A MATLAB/octave script called lm_iteration_???.m is also output,
384   // which can be used to parse and load the problem into memory.
385   TEXTFILE
386 };
387 
388 // For SizedCostFunction and AutoDiffCostFunction, DYNAMIC can be
389 // specified for the number of residuals. If specified, then the
390 // number of residuas for that cost function can vary at runtime.
391 enum DimensionType {
392   DYNAMIC = -1
393 };
394 
395 enum NumericDiffMethod {
396   CENTRAL,
397   FORWARD
398 };
399 
400 enum LineSearchInterpolationType {
401   BISECTION,
402   QUADRATIC,
403   CUBIC
404 };
405 
406 enum CovarianceAlgorithmType {
407   DENSE_SVD,
408   SUITE_SPARSE_QR,
409   EIGEN_SPARSE_QR
410 };
411 
412 CERES_EXPORT const char* LinearSolverTypeToString(
413     LinearSolverType type);
414 CERES_EXPORT bool StringToLinearSolverType(string value,
415                                            LinearSolverType* type);
416 
417 CERES_EXPORT const char* PreconditionerTypeToString(PreconditionerType type);
418 CERES_EXPORT bool StringToPreconditionerType(string value,
419                                              PreconditionerType* type);
420 
421 CERES_EXPORT const char* VisibilityClusteringTypeToString(
422     VisibilityClusteringType type);
423 CERES_EXPORT bool StringToVisibilityClusteringType(string value,
424                                       VisibilityClusteringType* type);
425 
426 CERES_EXPORT const char* SparseLinearAlgebraLibraryTypeToString(
427     SparseLinearAlgebraLibraryType type);
428 CERES_EXPORT bool StringToSparseLinearAlgebraLibraryType(
429     string value,
430     SparseLinearAlgebraLibraryType* type);
431 
432 CERES_EXPORT const char* DenseLinearAlgebraLibraryTypeToString(
433     DenseLinearAlgebraLibraryType type);
434 CERES_EXPORT bool StringToDenseLinearAlgebraLibraryType(
435     string value,
436     DenseLinearAlgebraLibraryType* type);
437 
438 CERES_EXPORT const char* TrustRegionStrategyTypeToString(
439     TrustRegionStrategyType type);
440 CERES_EXPORT bool StringToTrustRegionStrategyType(string value,
441                                      TrustRegionStrategyType* type);
442 
443 CERES_EXPORT const char* DoglegTypeToString(DoglegType type);
444 CERES_EXPORT bool StringToDoglegType(string value, DoglegType* type);
445 
446 CERES_EXPORT const char* MinimizerTypeToString(MinimizerType type);
447 CERES_EXPORT bool StringToMinimizerType(string value, MinimizerType* type);
448 
449 CERES_EXPORT const char* LineSearchDirectionTypeToString(
450     LineSearchDirectionType type);
451 CERES_EXPORT bool StringToLineSearchDirectionType(string value,
452                                      LineSearchDirectionType* type);
453 
454 CERES_EXPORT const char* LineSearchTypeToString(LineSearchType type);
455 CERES_EXPORT bool StringToLineSearchType(string value, LineSearchType* type);
456 
457 CERES_EXPORT const char* NonlinearConjugateGradientTypeToString(
458     NonlinearConjugateGradientType type);
459 CERES_EXPORT bool StringToNonlinearConjugateGradientType(
460     string value,
461     NonlinearConjugateGradientType* type);
462 
463 CERES_EXPORT const char* LineSearchInterpolationTypeToString(
464     LineSearchInterpolationType type);
465 CERES_EXPORT bool StringToLineSearchInterpolationType(
466     string value,
467     LineSearchInterpolationType* type);
468 
469 CERES_EXPORT const char* CovarianceAlgorithmTypeToString(
470     CovarianceAlgorithmType type);
471 CERES_EXPORT bool StringToCovarianceAlgorithmType(
472     string value,
473     CovarianceAlgorithmType* type);
474 
475 CERES_EXPORT const char* TerminationTypeToString(TerminationType type);
476 
477 CERES_EXPORT bool IsSchurType(LinearSolverType type);
478 CERES_EXPORT bool IsSparseLinearAlgebraLibraryTypeAvailable(
479     SparseLinearAlgebraLibraryType type);
480 CERES_EXPORT bool IsDenseLinearAlgebraLibraryTypeAvailable(
481     DenseLinearAlgebraLibraryType type);
482 
483 }  // namespace ceres
484 
485 #include "ceres/internal/reenable_warnings.h"
486 
487 #endif  // CERES_PUBLIC_TYPES_H_
488