• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37 
38 #include "src/v8.h"
39 
40 #include "src/allocation.h"
41 #include "src/builtins.h"
42 #include "src/gdb-jit.h"
43 #include "src/isolate.h"
44 #include "src/runtime.h"
45 #include "src/token.h"
46 
47 namespace v8 {
48 
49 class ApiFunction;
50 
51 namespace internal {
52 
53 class StatsCounter;
54 // -----------------------------------------------------------------------------
55 // Platform independent assembler base class.
56 
57 class AssemblerBase: public Malloced {
58  public:
59   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
60   virtual ~AssemblerBase();
61 
isolate()62   Isolate* isolate() const { return isolate_; }
jit_cookie()63   int jit_cookie() const { return jit_cookie_; }
64 
emit_debug_code()65   bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)66   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
67 
serializer_enabled()68   bool serializer_enabled() const { return serializer_enabled_; }
69 
predictable_code_size()70   bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)71   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
72 
enabled_cpu_features()73   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)74   void set_enabled_cpu_features(uint64_t features) {
75     enabled_cpu_features_ = features;
76   }
IsEnabled(CpuFeature f)77   bool IsEnabled(CpuFeature f) {
78     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
79   }
80 
81   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
82   // cross-snapshotting.
QuietNaN(HeapObject * nan)83   static void QuietNaN(HeapObject* nan) { }
84 
pc_offset()85   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
86 
87   // This function is called when code generation is aborted, so that
88   // the assembler could clean up internal data structures.
AbortedCodeGeneration()89   virtual void AbortedCodeGeneration() { }
90 
91   static const int kMinimalBufferSize = 4*KB;
92 
93  protected:
94   // The buffer into which code and relocation info are generated. It could
95   // either be owned by the assembler or be provided externally.
96   byte* buffer_;
97   int buffer_size_;
98   bool own_buffer_;
99 
100   // The program counter, which points into the buffer above and moves forward.
101   byte* pc_;
102 
103  private:
104   Isolate* isolate_;
105   int jit_cookie_;
106   uint64_t enabled_cpu_features_;
107   bool emit_debug_code_;
108   bool predictable_code_size_;
109   bool serializer_enabled_;
110 };
111 
112 
113 // Avoids emitting debug code during the lifetime of this scope object.
114 class DontEmitDebugCodeScope BASE_EMBEDDED {
115  public:
DontEmitDebugCodeScope(AssemblerBase * assembler)116   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
117       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
118     assembler_->set_emit_debug_code(false);
119   }
~DontEmitDebugCodeScope()120   ~DontEmitDebugCodeScope() {
121     assembler_->set_emit_debug_code(old_value_);
122   }
123  private:
124   AssemblerBase* assembler_;
125   bool old_value_;
126 };
127 
128 
129 // Avoids using instructions that vary in size in unpredictable ways between the
130 // snapshot and the running VM.
131 class PredictableCodeSizeScope {
132  public:
133   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
134   ~PredictableCodeSizeScope();
135 
136  private:
137   AssemblerBase* assembler_;
138   int expected_size_;
139   int start_offset_;
140   bool old_value_;
141 };
142 
143 
144 // Enable a specified feature within a scope.
145 class CpuFeatureScope BASE_EMBEDDED {
146  public:
147 #ifdef DEBUG
148   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
149   ~CpuFeatureScope();
150 
151  private:
152   AssemblerBase* assembler_;
153   uint64_t old_enabled_;
154 #else
155   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
156 #endif
157 };
158 
159 
160 // CpuFeatures keeps track of which features are supported by the target CPU.
161 // Supported features must be enabled by a CpuFeatureScope before use.
162 // Example:
163 //   if (assembler->IsSupported(SSE3)) {
164 //     CpuFeatureScope fscope(assembler, SSE3);
165 //     // Generate code containing SSE3 instructions.
166 //   } else {
167 //     // Generate alternative code.
168 //   }
169 class CpuFeatures : public AllStatic {
170  public:
Probe(bool cross_compile)171   static void Probe(bool cross_compile) {
172     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
173     if (initialized_) return;
174     initialized_ = true;
175     ProbeImpl(cross_compile);
176   }
177 
IsSupported(CpuFeature f)178   static bool IsSupported(CpuFeature f) {
179     return (supported_ & (1u << f)) != 0;
180   }
181 
182   static inline bool SupportsCrankshaft();
183 
cache_line_size()184   static inline unsigned cache_line_size() {
185     ASSERT(cache_line_size_ != 0);
186     return cache_line_size_;
187   }
188 
189   static void PrintTarget();
190   static void PrintFeatures();
191 
192  private:
193   // Platform-dependent implementation.
194   static void ProbeImpl(bool cross_compile);
195 
196   static unsigned supported_;
197   static unsigned cache_line_size_;
198   static bool initialized_;
199   friend class ExternalReference;
200   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
201 };
202 
203 
204 // -----------------------------------------------------------------------------
205 // Labels represent pc locations; they are typically jump or call targets.
206 // After declaration, a label can be freely used to denote known or (yet)
207 // unknown pc location. Assembler::bind() is used to bind a label to the
208 // current pc. A label can be bound only once.
209 
210 class Label BASE_EMBEDDED {
211  public:
212   enum Distance {
213     kNear, kFar
214   };
215 
INLINE(Label ())216   INLINE(Label()) {
217     Unuse();
218     UnuseNear();
219   }
220 
INLINE(~Label ())221   INLINE(~Label()) {
222     ASSERT(!is_linked());
223     ASSERT(!is_near_linked());
224   }
225 
INLINE(void Unuse ())226   INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())227   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
228 
INLINE(bool is_bound ()const)229   INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)230   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)231   INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)232   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
233 
234   // Returns the position of bound or linked labels. Cannot be used
235   // for unused labels.
236   int pos() const;
near_link_pos()237   int near_link_pos() const { return near_link_pos_ - 1; }
238 
239  private:
240   // pos_ encodes both the binding state (via its sign)
241   // and the binding position (via its value) of a label.
242   //
243   // pos_ <  0  bound label, pos() returns the jump target position
244   // pos_ == 0  unused label
245   // pos_ >  0  linked label, pos() returns the last reference position
246   int pos_;
247 
248   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
249   int near_link_pos_;
250 
bind_to(int pos)251   void bind_to(int pos)  {
252     pos_ = -pos - 1;
253     ASSERT(is_bound());
254   }
255   void link_to(int pos, Distance distance = kFar) {
256     if (distance == kNear) {
257       near_link_pos_ = pos + 1;
258       ASSERT(is_near_linked());
259     } else {
260       pos_ = pos + 1;
261       ASSERT(is_linked());
262     }
263   }
264 
265   friend class Assembler;
266   friend class Displacement;
267   friend class RegExpMacroAssemblerIrregexp;
268 
269 #if V8_TARGET_ARCH_ARM64
270   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
271   // branches to distant targets. Copying labels would confuse the Assembler.
272   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
273 #endif
274 };
275 
276 
277 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
278 
279 // Specifies whether to perform icache flush operations on RelocInfo updates.
280 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
281 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
282 // skipped (only use this if you will flush the icache manually before it is
283 // executed).
284 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
285 
286 // -----------------------------------------------------------------------------
287 // Relocation information
288 
289 
290 // Relocation information consists of the address (pc) of the datum
291 // to which the relocation information applies, the relocation mode
292 // (rmode), and an optional data field. The relocation mode may be
293 // "descriptive" and not indicate a need for relocation, but simply
294 // describe a property of the datum. Such rmodes are useful for GC
295 // and nice disassembly output.
296 
297 class RelocInfo {
298  public:
299   // The constant kNoPosition is used with the collecting of source positions
300   // in the relocation information. Two types of source positions are collected
301   // "position" (RelocMode position) and "statement position" (RelocMode
302   // statement_position). The "position" is collected at places in the source
303   // code which are of interest when making stack traces to pin-point the source
304   // location of a stack frame as close as possible. The "statement position" is
305   // collected at the beginning at each statement, and is used to indicate
306   // possible break locations. kNoPosition is used to indicate an
307   // invalid/uninitialized position value.
308   static const int kNoPosition = -1;
309 
310   // This string is used to add padding comments to the reloc info in cases
311   // where we are not sure to have enough space for patching in during
312   // lazy deoptimization. This is the case if we have indirect calls for which
313   // we do not normally record relocation info.
314   static const char* const kFillerCommentString;
315 
316   // The minimum size of a comment is equal to three bytes for the extra tagged
317   // pc + the tag for the data, and kPointerSize for the actual pointer to the
318   // comment.
319   static const int kMinRelocCommentSize = 3 + kPointerSize;
320 
321   // The maximum size for a call instruction including pc-jump.
322   static const int kMaxCallSize = 6;
323 
324   // The maximum pc delta that will use the short encoding.
325   static const int kMaxSmallPCDelta;
326 
327   enum Mode {
328     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
329     CODE_TARGET,  // Code target which is not any of the above.
330     CODE_TARGET_WITH_ID,
331     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
332     DEBUG_BREAK,  // Code target for the debugger statement.
333     EMBEDDED_OBJECT,
334     CELL,
335 
336     // Everything after runtime_entry (inclusive) is not GC'ed.
337     RUNTIME_ENTRY,
338     JS_RETURN,  // Marks start of the ExitJSFrame code.
339     COMMENT,
340     POSITION,  // See comment for kNoPosition above.
341     STATEMENT_POSITION,  // See comment for kNoPosition above.
342     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
343     EXTERNAL_REFERENCE,  // The address of an external C++ function.
344     INTERNAL_REFERENCE,  // An address inside the same function.
345 
346     // Marks constant and veneer pools. Only used on ARM and ARM64.
347     // They use a custom noncompact encoding.
348     CONST_POOL,
349     VENEER_POOL,
350 
351     // add more as needed
352     // Pseudo-types
353     NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
354     NONE32,  // never recorded 32-bit value
355     NONE64,  // never recorded 64-bit value
356     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
357                         // code aging.
358     FIRST_REAL_RELOC_MODE = CODE_TARGET,
359     LAST_REAL_RELOC_MODE = VENEER_POOL,
360     FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
361     LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
362     LAST_CODE_ENUM = DEBUG_BREAK,
363     LAST_GCED_ENUM = CELL,
364     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
365     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
366     LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
367   };
368 
RelocInfo()369   RelocInfo() {}
370 
RelocInfo(byte * pc,Mode rmode,intptr_t data,Code * host)371   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
372       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
373   }
RelocInfo(byte * pc,double data64)374   RelocInfo(byte* pc, double data64)
375       : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
376   }
377 
IsRealRelocMode(Mode mode)378   static inline bool IsRealRelocMode(Mode mode) {
379     return mode >= FIRST_REAL_RELOC_MODE &&
380         mode <= LAST_REAL_RELOC_MODE;
381   }
IsPseudoRelocMode(Mode mode)382   static inline bool IsPseudoRelocMode(Mode mode) {
383     ASSERT(!IsRealRelocMode(mode));
384     return mode >= FIRST_PSEUDO_RELOC_MODE &&
385         mode <= LAST_PSEUDO_RELOC_MODE;
386   }
IsConstructCall(Mode mode)387   static inline bool IsConstructCall(Mode mode) {
388     return mode == CONSTRUCT_CALL;
389   }
IsCodeTarget(Mode mode)390   static inline bool IsCodeTarget(Mode mode) {
391     return mode <= LAST_CODE_ENUM;
392   }
IsEmbeddedObject(Mode mode)393   static inline bool IsEmbeddedObject(Mode mode) {
394     return mode == EMBEDDED_OBJECT;
395   }
IsRuntimeEntry(Mode mode)396   static inline bool IsRuntimeEntry(Mode mode) {
397     return mode == RUNTIME_ENTRY;
398   }
399   // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)400   static inline bool IsGCRelocMode(Mode mode) {
401     return mode <= LAST_GCED_ENUM;
402   }
IsJSReturn(Mode mode)403   static inline bool IsJSReturn(Mode mode) {
404     return mode == JS_RETURN;
405   }
IsComment(Mode mode)406   static inline bool IsComment(Mode mode) {
407     return mode == COMMENT;
408   }
IsConstPool(Mode mode)409   static inline bool IsConstPool(Mode mode) {
410     return mode == CONST_POOL;
411   }
IsVeneerPool(Mode mode)412   static inline bool IsVeneerPool(Mode mode) {
413     return mode == VENEER_POOL;
414   }
IsPosition(Mode mode)415   static inline bool IsPosition(Mode mode) {
416     return mode == POSITION || mode == STATEMENT_POSITION;
417   }
IsStatementPosition(Mode mode)418   static inline bool IsStatementPosition(Mode mode) {
419     return mode == STATEMENT_POSITION;
420   }
IsExternalReference(Mode mode)421   static inline bool IsExternalReference(Mode mode) {
422     return mode == EXTERNAL_REFERENCE;
423   }
IsInternalReference(Mode mode)424   static inline bool IsInternalReference(Mode mode) {
425     return mode == INTERNAL_REFERENCE;
426   }
IsDebugBreakSlot(Mode mode)427   static inline bool IsDebugBreakSlot(Mode mode) {
428     return mode == DEBUG_BREAK_SLOT;
429   }
IsNone(Mode mode)430   static inline bool IsNone(Mode mode) {
431     return mode == NONE32 || mode == NONE64;
432   }
IsCodeAgeSequence(Mode mode)433   static inline bool IsCodeAgeSequence(Mode mode) {
434     return mode == CODE_AGE_SEQUENCE;
435   }
ModeMask(Mode mode)436   static inline int ModeMask(Mode mode) { return 1 << mode; }
437 
438   // Returns true if the first RelocInfo has the same mode and raw data as the
439   // second one.
IsEqual(RelocInfo first,RelocInfo second)440   static inline bool IsEqual(RelocInfo first, RelocInfo second) {
441     return first.rmode() == second.rmode() &&
442            (first.rmode() == RelocInfo::NONE64 ?
443               first.raw_data64() == second.raw_data64() :
444               first.data() == second.data());
445   }
446 
447   // Accessors
pc()448   byte* pc() const { return pc_; }
set_pc(byte * pc)449   void set_pc(byte* pc) { pc_ = pc; }
rmode()450   Mode rmode() const {  return rmode_; }
data()451   intptr_t data() const { return data_; }
data64()452   double data64() const { return data64_; }
raw_data64()453   uint64_t raw_data64() {
454     return BitCast<uint64_t>(data64_);
455   }
host()456   Code* host() const { return host_; }
set_host(Code * host)457   void set_host(Code* host) { host_ = host; }
458 
459   // Apply a relocation by delta bytes
460   INLINE(void apply(intptr_t delta,
461                     ICacheFlushMode icache_flush_mode =
462                         FLUSH_ICACHE_IF_NEEDED));
463 
464   // Is the pointer this relocation info refers to coded like a plain pointer
465   // or is it strange in some way (e.g. relative or patched into a series of
466   // instructions).
467   bool IsCodedSpecially();
468 
469   // If true, the pointer this relocation info refers to is an entry in the
470   // constant pool, otherwise the pointer is embedded in the instruction stream.
471   bool IsInConstantPool();
472 
473   // Read/modify the code target in the branch/call instruction
474   // this relocation applies to;
475   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
476   INLINE(Address target_address());
477   INLINE(void set_target_address(Address target,
478                                  WriteBarrierMode write_barrier_mode =
479                                      UPDATE_WRITE_BARRIER,
480                                  ICacheFlushMode icache_flush_mode =
481                                      FLUSH_ICACHE_IF_NEEDED));
482   INLINE(Object* target_object());
483   INLINE(Handle<Object> target_object_handle(Assembler* origin));
484   INLINE(void set_target_object(Object* target,
485                                 WriteBarrierMode write_barrier_mode =
486                                     UPDATE_WRITE_BARRIER,
487                                 ICacheFlushMode icache_flush_mode =
488                                     FLUSH_ICACHE_IF_NEEDED));
489   INLINE(Address target_runtime_entry(Assembler* origin));
490   INLINE(void set_target_runtime_entry(Address target,
491                                        WriteBarrierMode write_barrier_mode =
492                                            UPDATE_WRITE_BARRIER,
493                                        ICacheFlushMode icache_flush_mode =
494                                            FLUSH_ICACHE_IF_NEEDED));
495   INLINE(Cell* target_cell());
496   INLINE(Handle<Cell> target_cell_handle());
497   INLINE(void set_target_cell(Cell* cell,
498                               WriteBarrierMode write_barrier_mode =
499                                   UPDATE_WRITE_BARRIER,
500                               ICacheFlushMode icache_flush_mode =
501                                   FLUSH_ICACHE_IF_NEEDED));
502   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
503   INLINE(Code* code_age_stub());
504   INLINE(void set_code_age_stub(Code* stub,
505                                 ICacheFlushMode icache_flush_mode =
506                                     FLUSH_ICACHE_IF_NEEDED));
507 
508   // Returns the address of the constant pool entry where the target address
509   // is held.  This should only be called if IsInConstantPool returns true.
510   INLINE(Address constant_pool_entry_address());
511 
512   // Read the address of the word containing the target_address in an
513   // instruction stream.  What this means exactly is architecture-independent.
514   // The only architecture-independent user of this function is the serializer.
515   // The serializer uses it to find out how many raw bytes of instruction to
516   // output before the next target.  Architecture-independent code shouldn't
517   // dereference the pointer it gets back from this.
518   INLINE(Address target_address_address());
519 
520   // This indicates how much space a target takes up when deserializing a code
521   // stream.  For most architectures this is just the size of a pointer.  For
522   // an instruction like movw/movt where the target bits are mixed into the
523   // instruction bits the size of the target will be zero, indicating that the
524   // serializer should not step forwards in memory after a target is resolved
525   // and written.  In this case the target_address_address function above
526   // should return the end of the instructions to be patched, allowing the
527   // deserializer to deserialize the instructions as raw bytes and put them in
528   // place, ready to be patched with the target.
529   INLINE(int target_address_size());
530 
531   // Read/modify the reference in the instruction this relocation
532   // applies to; can only be called if rmode_ is external_reference
533   INLINE(Address target_reference());
534 
535   // Read/modify the address of a call instruction. This is used to relocate
536   // the break points where straight-line code is patched with a call
537   // instruction.
538   INLINE(Address call_address());
539   INLINE(void set_call_address(Address target));
540   INLINE(Object* call_object());
541   INLINE(void set_call_object(Object* target));
542   INLINE(Object** call_object_address());
543 
544   // Wipe out a relocation to a fixed value, used for making snapshots
545   // reproducible.
546   INLINE(void WipeOut());
547 
548   template<typename StaticVisitor> inline void Visit(Heap* heap);
549   inline void Visit(Isolate* isolate, ObjectVisitor* v);
550 
551   // Patch the code with some other code.
552   void PatchCode(byte* instructions, int instruction_count);
553 
554   // Patch the code with a call.
555   void PatchCodeWithCall(Address target, int guard_bytes);
556 
557   // Check whether this return sequence has been patched
558   // with a call to the debugger.
559   INLINE(bool IsPatchedReturnSequence());
560 
561   // Check whether this debug break slot has been patched with a call to the
562   // debugger.
563   INLINE(bool IsPatchedDebugBreakSlotSequence());
564 
565 #ifdef DEBUG
566   // Check whether the given code contains relocation information that
567   // either is position-relative or movable by the garbage collector.
568   static bool RequiresRelocation(const CodeDesc& desc);
569 #endif
570 
571 #ifdef ENABLE_DISASSEMBLER
572   // Printing
573   static const char* RelocModeName(Mode rmode);
574   void Print(Isolate* isolate, FILE* out);
575 #endif  // ENABLE_DISASSEMBLER
576 #ifdef VERIFY_HEAP
577   void Verify(Isolate* isolate);
578 #endif
579 
580   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
581   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
582   static const int kDataMask =
583       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
584   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
585 
586  private:
587   // On ARM, note that pc_ is the address of the constant pool entry
588   // to be relocated and not the address of the instruction
589   // referencing the constant pool entry (except when rmode_ ==
590   // comment).
591   byte* pc_;
592   Mode rmode_;
593   union {
594     intptr_t data_;
595     double data64_;
596   };
597   Code* host_;
598   // External-reference pointers are also split across instruction-pairs
599   // on some platforms, but are accessed via indirect pointers. This location
600   // provides a place for that pointer to exist naturally. Its address
601   // is returned by RelocInfo::target_reference_address().
602   Address reconstructed_adr_ptr_;
603   friend class RelocIterator;
604 };
605 
606 
607 // RelocInfoWriter serializes a stream of relocation info. It writes towards
608 // lower addresses.
609 class RelocInfoWriter BASE_EMBEDDED {
610  public:
RelocInfoWriter()611   RelocInfoWriter() : pos_(NULL),
612                       last_pc_(NULL),
613                       last_id_(0),
614                       last_position_(0) {}
RelocInfoWriter(byte * pos,byte * pc)615   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
616                                          last_pc_(pc),
617                                          last_id_(0),
618                                          last_position_(0) {}
619 
pos()620   byte* pos() const { return pos_; }
last_pc()621   byte* last_pc() const { return last_pc_; }
622 
623   void Write(const RelocInfo* rinfo);
624 
625   // Update the state of the stream after reloc info buffer
626   // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)627   void Reposition(byte* pos, byte* pc) {
628     pos_ = pos;
629     last_pc_ = pc;
630   }
631 
632   // Max size (bytes) of a written RelocInfo. Longest encoding is
633   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
634   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
635   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
636   // Here we use the maximum of the two.
637   static const int kMaxSize = 16;
638 
639  private:
640   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
641   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
642   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
643   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
644   inline void WriteExtraTaggedPoolData(int data, int pool_type);
645   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
646   inline void WriteTaggedData(intptr_t data_delta, int tag);
647   inline void WriteExtraTag(int extra_tag, int top_tag);
648 
649   byte* pos_;
650   byte* last_pc_;
651   int last_id_;
652   int last_position_;
653   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
654 };
655 
656 
657 // A RelocIterator iterates over relocation information.
658 // Typical use:
659 //
660 //   for (RelocIterator it(code); !it.done(); it.next()) {
661 //     // do something with it.rinfo() here
662 //   }
663 //
664 // A mask can be specified to skip unwanted modes.
665 class RelocIterator: public Malloced {
666  public:
667   // Create a new iterator positioned at
668   // the beginning of the reloc info.
669   // Relocation information with mode k is included in the
670   // iteration iff bit k of mode_mask is set.
671   explicit RelocIterator(Code* code, int mode_mask = -1);
672   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
673 
674   // Iteration
done()675   bool done() const { return done_; }
676   void next();
677 
678   // Return pointer valid until next next().
rinfo()679   RelocInfo* rinfo() {
680     ASSERT(!done());
681     return &rinfo_;
682   }
683 
684  private:
685   // Advance* moves the position before/after reading.
686   // *Read* reads from current byte(s) into rinfo_.
687   // *Get* just reads and returns info on current byte.
688   void Advance(int bytes = 1) { pos_ -= bytes; }
689   int AdvanceGetTag();
690   int GetExtraTag();
691   int GetTopTag();
692   void ReadTaggedPC();
693   void AdvanceReadPC();
694   void AdvanceReadId();
695   void AdvanceReadPoolData();
696   void AdvanceReadPosition();
697   void AdvanceReadData();
698   void AdvanceReadVariableLengthPCJump();
699   int GetLocatableTypeTag();
700   void ReadTaggedId();
701   void ReadTaggedPosition();
702 
703   // If the given mode is wanted, set it in rinfo_ and return true.
704   // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)705   bool SetMode(RelocInfo::Mode mode) {
706     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
707   }
708 
709   byte* pos_;
710   byte* end_;
711   byte* code_age_sequence_;
712   RelocInfo rinfo_;
713   bool done_;
714   int mode_mask_;
715   int last_id_;
716   int last_position_;
717   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
718 };
719 
720 
721 //------------------------------------------------------------------------------
722 // External function
723 
724 //----------------------------------------------------------------------------
725 class IC_Utility;
726 class SCTableReference;
727 class Debug_Address;
728 
729 
730 // An ExternalReference represents a C++ address used in the generated
731 // code. All references to C++ functions and variables must be encapsulated in
732 // an ExternalReference instance. This is done in order to track the origin of
733 // all external references in the code so that they can be bound to the correct
734 // addresses when deserializing a heap.
735 class ExternalReference BASE_EMBEDDED {
736  public:
737   // Used in the simulator to support different native api calls.
738   enum Type {
739     // Builtin call.
740     // Object* f(v8::internal::Arguments).
741     BUILTIN_CALL,  // default
742 
743     // Builtin that takes float arguments and returns an int.
744     // int f(double, double).
745     BUILTIN_COMPARE_CALL,
746 
747     // Builtin call that returns floating point.
748     // double f(double, double).
749     BUILTIN_FP_FP_CALL,
750 
751     // Builtin call that returns floating point.
752     // double f(double).
753     BUILTIN_FP_CALL,
754 
755     // Builtin call that returns floating point.
756     // double f(double, int).
757     BUILTIN_FP_INT_CALL,
758 
759     // Direct call to API function callback.
760     // void f(v8::FunctionCallbackInfo&)
761     DIRECT_API_CALL,
762 
763     // Call to function callback via InvokeFunctionCallback.
764     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
765     PROFILING_API_CALL,
766 
767     // Direct call to accessor getter callback.
768     // void f(Local<String> property, PropertyCallbackInfo& info)
769     DIRECT_GETTER_CALL,
770 
771     // Call to accessor getter callback via InvokeAccessorGetterCallback.
772     // void f(Local<String> property, PropertyCallbackInfo& info,
773     //     AccessorGetterCallback callback)
774     PROFILING_GETTER_CALL
775   };
776 
777   static void SetUp();
778   static void InitializeMathExpData();
779   static void TearDownMathExpData();
780 
781   typedef void* ExternalReferenceRedirector(void* original, Type type);
782 
ExternalReference()783   ExternalReference() : address_(NULL) {}
784 
785   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
786 
787   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
788 
789   ExternalReference(Builtins::Name name, Isolate* isolate);
790 
791   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
792 
793   ExternalReference(const Runtime::Function* f, Isolate* isolate);
794 
795   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
796 
797   explicit ExternalReference(StatsCounter* counter);
798 
799   ExternalReference(Isolate::AddressId id, Isolate* isolate);
800 
801   explicit ExternalReference(const SCTableReference& table_ref);
802 
803   // Isolate as an external reference.
804   static ExternalReference isolate_address(Isolate* isolate);
805 
806   // One-of-a-kind references. These references are not part of a general
807   // pattern. This means that they have to be added to the
808   // ExternalReferenceTable in serialize.cc manually.
809 
810   static ExternalReference incremental_marking_record_write_function(
811       Isolate* isolate);
812   static ExternalReference store_buffer_overflow_function(
813       Isolate* isolate);
814   static ExternalReference flush_icache_function(Isolate* isolate);
815   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
816 
817   static ExternalReference get_date_field_function(Isolate* isolate);
818   static ExternalReference date_cache_stamp(Isolate* isolate);
819 
820   static ExternalReference get_make_code_young_function(Isolate* isolate);
821   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
822 
823   // Deoptimization support.
824   static ExternalReference new_deoptimizer_function(Isolate* isolate);
825   static ExternalReference compute_output_frames_function(Isolate* isolate);
826 
827   // Log support.
828   static ExternalReference log_enter_external_function(Isolate* isolate);
829   static ExternalReference log_leave_external_function(Isolate* isolate);
830 
831   // Static data in the keyed lookup cache.
832   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
833   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
834 
835   // Static variable Heap::roots_array_start()
836   static ExternalReference roots_array_start(Isolate* isolate);
837 
838   // Static variable Heap::allocation_sites_list_address()
839   static ExternalReference allocation_sites_list_address(Isolate* isolate);
840 
841   // Static variable StackGuard::address_of_jslimit()
842   static ExternalReference address_of_stack_limit(Isolate* isolate);
843 
844   // Static variable StackGuard::address_of_real_jslimit()
845   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
846 
847   // Static variable RegExpStack::limit_address()
848   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
849 
850   // Static variables for RegExp.
851   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
852   static ExternalReference address_of_regexp_stack_memory_address(
853       Isolate* isolate);
854   static ExternalReference address_of_regexp_stack_memory_size(
855       Isolate* isolate);
856 
857   // Static variable Heap::NewSpaceStart()
858   static ExternalReference new_space_start(Isolate* isolate);
859   static ExternalReference new_space_mask(Isolate* isolate);
860   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
861   static ExternalReference new_space_mark_bits(Isolate* isolate);
862 
863   // Write barrier.
864   static ExternalReference store_buffer_top(Isolate* isolate);
865 
866   // Used for fast allocation in generated code.
867   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
868   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
869   static ExternalReference old_pointer_space_allocation_top_address(
870       Isolate* isolate);
871   static ExternalReference old_pointer_space_allocation_limit_address(
872       Isolate* isolate);
873   static ExternalReference old_data_space_allocation_top_address(
874       Isolate* isolate);
875   static ExternalReference old_data_space_allocation_limit_address(
876       Isolate* isolate);
877 
878   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
879   static ExternalReference power_double_double_function(Isolate* isolate);
880   static ExternalReference power_double_int_function(Isolate* isolate);
881 
882   static ExternalReference handle_scope_next_address(Isolate* isolate);
883   static ExternalReference handle_scope_limit_address(Isolate* isolate);
884   static ExternalReference handle_scope_level_address(Isolate* isolate);
885 
886   static ExternalReference scheduled_exception_address(Isolate* isolate);
887   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
888   static ExternalReference address_of_has_pending_message(Isolate* isolate);
889   static ExternalReference address_of_pending_message_script(Isolate* isolate);
890 
891   // Static variables containing common double constants.
892   static ExternalReference address_of_min_int();
893   static ExternalReference address_of_one_half();
894   static ExternalReference address_of_minus_one_half();
895   static ExternalReference address_of_minus_zero();
896   static ExternalReference address_of_zero();
897   static ExternalReference address_of_uint8_max_value();
898   static ExternalReference address_of_negative_infinity();
899   static ExternalReference address_of_canonical_non_hole_nan();
900   static ExternalReference address_of_the_hole_nan();
901   static ExternalReference address_of_uint32_bias();
902 
903   static ExternalReference math_log_double_function(Isolate* isolate);
904 
905   static ExternalReference math_exp_constants(int constant_index);
906   static ExternalReference math_exp_log_table();
907 
908   static ExternalReference page_flags(Page* page);
909 
910   static ExternalReference ForDeoptEntry(Address entry);
911 
912   static ExternalReference cpu_features();
913 
914   static ExternalReference debug_after_break_target_address(Isolate* isolate);
915   static ExternalReference debug_restarter_frame_function_pointer_address(
916       Isolate* isolate);
917 
918   static ExternalReference is_profiling_address(Isolate* isolate);
919   static ExternalReference invoke_function_callback(Isolate* isolate);
920   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
921 
address()922   Address address() const { return reinterpret_cast<Address>(address_); }
923 
924   // Function Debug::Break()
925   static ExternalReference debug_break(Isolate* isolate);
926 
927   // Used to check if single stepping is enabled in generated code.
928   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
929 
930 #ifndef V8_INTERPRETED_REGEXP
931   // C functions called from RegExp generated code.
932 
933   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
934   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
935 
936   // Function RegExpMacroAssembler*::CheckStackGuardState()
937   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
938 
939   // Function NativeRegExpMacroAssembler::GrowStack()
940   static ExternalReference re_grow_stack(Isolate* isolate);
941 
942   // byte NativeRegExpMacroAssembler::word_character_bitmap
943   static ExternalReference re_word_character_map();
944 
945 #endif
946 
947   // This lets you register a function that rewrites all external references.
948   // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)949   static void set_redirector(Isolate* isolate,
950                              ExternalReferenceRedirector* redirector) {
951     // We can't stack them.
952     ASSERT(isolate->external_reference_redirector() == NULL);
953     isolate->set_external_reference_redirector(
954         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
955   }
956 
957   static ExternalReference stress_deopt_count(Isolate* isolate);
958 
959   bool operator==(const ExternalReference& other) const {
960     return address_ == other.address_;
961   }
962 
963   bool operator!=(const ExternalReference& other) const {
964     return !(*this == other);
965   }
966 
967  private:
ExternalReference(void * address)968   explicit ExternalReference(void* address)
969       : address_(address) {}
970 
971   static void* Redirect(Isolate* isolate,
972                         void* address,
973                         Type type = ExternalReference::BUILTIN_CALL) {
974     ExternalReferenceRedirector* redirector =
975         reinterpret_cast<ExternalReferenceRedirector*>(
976             isolate->external_reference_redirector());
977     if (redirector == NULL) return address;
978     void* answer = (*redirector)(address, type);
979     return answer;
980   }
981 
982   static void* Redirect(Isolate* isolate,
983                         Address address_arg,
984                         Type type = ExternalReference::BUILTIN_CALL) {
985     ExternalReferenceRedirector* redirector =
986         reinterpret_cast<ExternalReferenceRedirector*>(
987             isolate->external_reference_redirector());
988     void* address = reinterpret_cast<void*>(address_arg);
989     void* answer = (redirector == NULL) ?
990                    address :
991                    (*redirector)(address, type);
992     return answer;
993   }
994 
995   void* address_;
996 };
997 
998 
999 // -----------------------------------------------------------------------------
1000 // Position recording support
1001 
1002 struct PositionState {
PositionStatePositionState1003   PositionState() : current_position(RelocInfo::kNoPosition),
1004                     written_position(RelocInfo::kNoPosition),
1005                     current_statement_position(RelocInfo::kNoPosition),
1006                     written_statement_position(RelocInfo::kNoPosition) {}
1007 
1008   int current_position;
1009   int written_position;
1010 
1011   int current_statement_position;
1012   int written_statement_position;
1013 };
1014 
1015 
1016 class PositionsRecorder BASE_EMBEDDED {
1017  public:
PositionsRecorder(Assembler * assembler)1018   explicit PositionsRecorder(Assembler* assembler)
1019       : assembler_(assembler) {
1020 #ifdef ENABLE_GDB_JIT_INTERFACE
1021     gdbjit_lineinfo_ = NULL;
1022 #endif
1023     jit_handler_data_ = NULL;
1024   }
1025 
1026 #ifdef ENABLE_GDB_JIT_INTERFACE
~PositionsRecorder()1027   ~PositionsRecorder() {
1028     delete gdbjit_lineinfo_;
1029   }
1030 
StartGDBJITLineInfoRecording()1031   void StartGDBJITLineInfoRecording() {
1032     if (FLAG_gdbjit) {
1033       gdbjit_lineinfo_ = new GDBJITLineInfo();
1034     }
1035   }
1036 
DetachGDBJITLineInfo()1037   GDBJITLineInfo* DetachGDBJITLineInfo() {
1038     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
1039     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
1040     return lineinfo;
1041   }
1042 #endif
AttachJITHandlerData(void * user_data)1043   void AttachJITHandlerData(void* user_data) {
1044     jit_handler_data_ = user_data;
1045   }
1046 
DetachJITHandlerData()1047   void* DetachJITHandlerData() {
1048     void* old_data = jit_handler_data_;
1049     jit_handler_data_ = NULL;
1050     return old_data;
1051   }
1052   // Set current position to pos.
1053   void RecordPosition(int pos);
1054 
1055   // Set current statement position to pos.
1056   void RecordStatementPosition(int pos);
1057 
1058   // Write recorded positions to relocation information.
1059   bool WriteRecordedPositions();
1060 
current_position()1061   int current_position() const { return state_.current_position; }
1062 
current_statement_position()1063   int current_statement_position() const {
1064     return state_.current_statement_position;
1065   }
1066 
1067  private:
1068   Assembler* assembler_;
1069   PositionState state_;
1070 #ifdef ENABLE_GDB_JIT_INTERFACE
1071   GDBJITLineInfo* gdbjit_lineinfo_;
1072 #endif
1073 
1074   // Currently jit_handler_data_ is used to store JITHandler-specific data
1075   // over the lifetime of a PositionsRecorder
1076   void* jit_handler_data_;
1077   friend class PreservePositionScope;
1078 
1079   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
1080 };
1081 
1082 
1083 class PreservePositionScope BASE_EMBEDDED {
1084  public:
PreservePositionScope(PositionsRecorder * positions_recorder)1085   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
1086       : positions_recorder_(positions_recorder),
1087         saved_state_(positions_recorder->state_) {}
1088 
~PreservePositionScope()1089   ~PreservePositionScope() {
1090     positions_recorder_->state_ = saved_state_;
1091   }
1092 
1093  private:
1094   PositionsRecorder* positions_recorder_;
1095   const PositionState saved_state_;
1096 
1097   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
1098 };
1099 
1100 
1101 // -----------------------------------------------------------------------------
1102 // Utility functions
1103 
NumberOfBitsSet(uint32_t x)1104 inline int NumberOfBitsSet(uint32_t x) {
1105   unsigned int num_bits_set;
1106   for (num_bits_set = 0; x; x >>= 1) {
1107     num_bits_set += x & 1;
1108   }
1109   return num_bits_set;
1110 }
1111 
1112 bool EvalComparison(Token::Value op, double op1, double op2);
1113 
1114 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1115 double power_helper(double x, double y);
1116 double power_double_int(double x, int y);
1117 double power_double_double(double x, double y);
1118 
1119 // Helper class for generating code or data associated with the code
1120 // right after a call instruction. As an example this can be used to
1121 // generate safepoint data after calls for crankshaft.
1122 class CallWrapper {
1123  public:
CallWrapper()1124   CallWrapper() { }
~CallWrapper()1125   virtual ~CallWrapper() { }
1126   // Called just before emitting a call. Argument is the size of the generated
1127   // call code.
1128   virtual void BeforeCall(int call_size) const = 0;
1129   // Called just after emitting a call, i.e., at the return site for the call.
1130   virtual void AfterCall() const = 0;
1131 };
1132 
1133 class NullCallWrapper : public CallWrapper {
1134  public:
NullCallWrapper()1135   NullCallWrapper() { }
~NullCallWrapper()1136   virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1137   virtual void BeforeCall(int call_size) const { }
AfterCall()1138   virtual void AfterCall() const { }
1139 };
1140 
1141 
1142 // The multiplier and shift for signed division via multiplication, see Warren's
1143 // "Hacker's Delight", chapter 10.
1144 class MultiplierAndShift {
1145  public:
1146   explicit MultiplierAndShift(int32_t d);
multiplier()1147   int32_t multiplier() const { return multiplier_; }
shift()1148   int32_t shift() const { return shift_; }
1149 
1150  private:
1151   int32_t multiplier_;
1152   int32_t shift_;
1153 };
1154 
1155 
1156 } }  // namespace v8::internal
1157 
1158 #endif  // V8_ASSEMBLER_H_
1159