• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #include "src/double.h"
8 #include "src/factory.h"
9 #include "src/hydrogen-infer-representation.h"
10 #include "src/property-details-inl.h"
11 
12 #if V8_TARGET_ARCH_IA32
13 #include "src/ia32/lithium-ia32.h"
14 #elif V8_TARGET_ARCH_X64
15 #include "src/x64/lithium-x64.h"
16 #elif V8_TARGET_ARCH_ARM64
17 #include "src/arm64/lithium-arm64.h"
18 #elif V8_TARGET_ARCH_ARM
19 #include "src/arm/lithium-arm.h"
20 #elif V8_TARGET_ARCH_MIPS
21 #include "src/mips/lithium-mips.h"
22 #elif V8_TARGET_ARCH_X87
23 #include "src/x87/lithium-x87.h"
24 #else
25 #error Unsupported target architecture.
26 #endif
27 
28 namespace v8 {
29 namespace internal {
30 
31 #define DEFINE_COMPILE(type)                                         \
32   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
33     return builder->Do##type(this);                                  \
34   }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)35 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
36 #undef DEFINE_COMPILE
37 
38 
39 Isolate* HValue::isolate() const {
40   ASSERT(block() != NULL);
41   return block()->isolate();
42 }
43 
44 
AssumeRepresentation(Representation r)45 void HValue::AssumeRepresentation(Representation r) {
46   if (CheckFlag(kFlexibleRepresentation)) {
47     ChangeRepresentation(r);
48     // The representation of the value is dictated by type feedback and
49     // will not be changed later.
50     ClearFlag(kFlexibleRepresentation);
51   }
52 }
53 
54 
InferRepresentation(HInferRepresentationPhase * h_infer)55 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
56   ASSERT(CheckFlag(kFlexibleRepresentation));
57   Representation new_rep = RepresentationFromInputs();
58   UpdateRepresentation(new_rep, h_infer, "inputs");
59   new_rep = RepresentationFromUses();
60   UpdateRepresentation(new_rep, h_infer, "uses");
61   if (representation().IsSmi() && HasNonSmiUse()) {
62     UpdateRepresentation(
63         Representation::Integer32(), h_infer, "use requirements");
64   }
65 }
66 
67 
RepresentationFromUses()68 Representation HValue::RepresentationFromUses() {
69   if (HasNoUses()) return Representation::None();
70 
71   // Array of use counts for each representation.
72   int use_count[Representation::kNumRepresentations] = { 0 };
73 
74   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
75     HValue* use = it.value();
76     Representation rep = use->observed_input_representation(it.index());
77     if (rep.IsNone()) continue;
78     if (FLAG_trace_representation) {
79       PrintF("#%d %s is used by #%d %s as %s%s\n",
80              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
81              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
82     }
83     use_count[rep.kind()] += 1;
84   }
85   if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
86   int tagged_count = use_count[Representation::kTagged];
87   int double_count = use_count[Representation::kDouble];
88   int int32_count = use_count[Representation::kInteger32];
89   int smi_count = use_count[Representation::kSmi];
90 
91   if (tagged_count > 0) return Representation::Tagged();
92   if (double_count > 0) return Representation::Double();
93   if (int32_count > 0) return Representation::Integer32();
94   if (smi_count > 0) return Representation::Smi();
95 
96   return Representation::None();
97 }
98 
99 
UpdateRepresentation(Representation new_rep,HInferRepresentationPhase * h_infer,const char * reason)100 void HValue::UpdateRepresentation(Representation new_rep,
101                                   HInferRepresentationPhase* h_infer,
102                                   const char* reason) {
103   Representation r = representation();
104   if (new_rep.is_more_general_than(r)) {
105     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
106     if (FLAG_trace_representation) {
107       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
108              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
109     }
110     ChangeRepresentation(new_rep);
111     AddDependantsToWorklist(h_infer);
112   }
113 }
114 
115 
AddDependantsToWorklist(HInferRepresentationPhase * h_infer)116 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
117   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
118     h_infer->AddToWorklist(it.value());
119   }
120   for (int i = 0; i < OperandCount(); ++i) {
121     h_infer->AddToWorklist(OperandAt(i));
122   }
123 }
124 
125 
ConvertAndSetOverflow(Representation r,int64_t result,bool * overflow)126 static int32_t ConvertAndSetOverflow(Representation r,
127                                      int64_t result,
128                                      bool* overflow) {
129   if (r.IsSmi()) {
130     if (result > Smi::kMaxValue) {
131       *overflow = true;
132       return Smi::kMaxValue;
133     }
134     if (result < Smi::kMinValue) {
135       *overflow = true;
136       return Smi::kMinValue;
137     }
138   } else {
139     if (result > kMaxInt) {
140       *overflow = true;
141       return kMaxInt;
142     }
143     if (result < kMinInt) {
144       *overflow = true;
145       return kMinInt;
146     }
147   }
148   return static_cast<int32_t>(result);
149 }
150 
151 
AddWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)152 static int32_t AddWithoutOverflow(Representation r,
153                                   int32_t a,
154                                   int32_t b,
155                                   bool* overflow) {
156   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
157   return ConvertAndSetOverflow(r, result, overflow);
158 }
159 
160 
SubWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)161 static int32_t SubWithoutOverflow(Representation r,
162                                   int32_t a,
163                                   int32_t b,
164                                   bool* overflow) {
165   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
166   return ConvertAndSetOverflow(r, result, overflow);
167 }
168 
169 
MulWithoutOverflow(const Representation & r,int32_t a,int32_t b,bool * overflow)170 static int32_t MulWithoutOverflow(const Representation& r,
171                                   int32_t a,
172                                   int32_t b,
173                                   bool* overflow) {
174   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
175   return ConvertAndSetOverflow(r, result, overflow);
176 }
177 
178 
Mask() const179 int32_t Range::Mask() const {
180   if (lower_ == upper_) return lower_;
181   if (lower_ >= 0) {
182     int32_t res = 1;
183     while (res < upper_) {
184       res = (res << 1) | 1;
185     }
186     return res;
187   }
188   return 0xffffffff;
189 }
190 
191 
AddConstant(int32_t value)192 void Range::AddConstant(int32_t value) {
193   if (value == 0) return;
194   bool may_overflow = false;  // Overflow is ignored here.
195   Representation r = Representation::Integer32();
196   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
197   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
198 #ifdef DEBUG
199   Verify();
200 #endif
201 }
202 
203 
Intersect(Range * other)204 void Range::Intersect(Range* other) {
205   upper_ = Min(upper_, other->upper_);
206   lower_ = Max(lower_, other->lower_);
207   bool b = CanBeMinusZero() && other->CanBeMinusZero();
208   set_can_be_minus_zero(b);
209 }
210 
211 
Union(Range * other)212 void Range::Union(Range* other) {
213   upper_ = Max(upper_, other->upper_);
214   lower_ = Min(lower_, other->lower_);
215   bool b = CanBeMinusZero() || other->CanBeMinusZero();
216   set_can_be_minus_zero(b);
217 }
218 
219 
CombinedMax(Range * other)220 void Range::CombinedMax(Range* other) {
221   upper_ = Max(upper_, other->upper_);
222   lower_ = Max(lower_, other->lower_);
223   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
224 }
225 
226 
CombinedMin(Range * other)227 void Range::CombinedMin(Range* other) {
228   upper_ = Min(upper_, other->upper_);
229   lower_ = Min(lower_, other->lower_);
230   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
231 }
232 
233 
Sar(int32_t value)234 void Range::Sar(int32_t value) {
235   int32_t bits = value & 0x1F;
236   lower_ = lower_ >> bits;
237   upper_ = upper_ >> bits;
238   set_can_be_minus_zero(false);
239 }
240 
241 
Shl(int32_t value)242 void Range::Shl(int32_t value) {
243   int32_t bits = value & 0x1F;
244   int old_lower = lower_;
245   int old_upper = upper_;
246   lower_ = lower_ << bits;
247   upper_ = upper_ << bits;
248   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
249     upper_ = kMaxInt;
250     lower_ = kMinInt;
251   }
252   set_can_be_minus_zero(false);
253 }
254 
255 
AddAndCheckOverflow(const Representation & r,Range * other)256 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
257   bool may_overflow = false;
258   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
259   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
260   KeepOrder();
261 #ifdef DEBUG
262   Verify();
263 #endif
264   return may_overflow;
265 }
266 
267 
SubAndCheckOverflow(const Representation & r,Range * other)268 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
269   bool may_overflow = false;
270   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
271   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
272   KeepOrder();
273 #ifdef DEBUG
274   Verify();
275 #endif
276   return may_overflow;
277 }
278 
279 
KeepOrder()280 void Range::KeepOrder() {
281   if (lower_ > upper_) {
282     int32_t tmp = lower_;
283     lower_ = upper_;
284     upper_ = tmp;
285   }
286 }
287 
288 
289 #ifdef DEBUG
Verify() const290 void Range::Verify() const {
291   ASSERT(lower_ <= upper_);
292 }
293 #endif
294 
295 
MulAndCheckOverflow(const Representation & r,Range * other)296 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
297   bool may_overflow = false;
298   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
299   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
300   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
301   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
302   lower_ = Min(Min(v1, v2), Min(v3, v4));
303   upper_ = Max(Max(v1, v2), Max(v3, v4));
304 #ifdef DEBUG
305   Verify();
306 #endif
307   return may_overflow;
308 }
309 
310 
IsDefinedAfter(HBasicBlock * other) const311 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
312   return block()->block_id() > other->block_id();
313 }
314 
315 
tail()316 HUseListNode* HUseListNode::tail() {
317   // Skip and remove dead items in the use list.
318   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
319     tail_ = tail_->tail_;
320   }
321   return tail_;
322 }
323 
324 
CheckUsesForFlag(Flag f) const325 bool HValue::CheckUsesForFlag(Flag f) const {
326   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
327     if (it.value()->IsSimulate()) continue;
328     if (!it.value()->CheckFlag(f)) return false;
329   }
330   return true;
331 }
332 
333 
CheckUsesForFlag(Flag f,HValue ** value) const334 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
335   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
336     if (it.value()->IsSimulate()) continue;
337     if (!it.value()->CheckFlag(f)) {
338       *value = it.value();
339       return false;
340     }
341   }
342   return true;
343 }
344 
345 
HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const346 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
347   bool return_value = false;
348   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
349     if (it.value()->IsSimulate()) continue;
350     if (!it.value()->CheckFlag(f)) return false;
351     return_value = true;
352   }
353   return return_value;
354 }
355 
356 
HUseIterator(HUseListNode * head)357 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
358   Advance();
359 }
360 
361 
Advance()362 void HUseIterator::Advance() {
363   current_ = next_;
364   if (current_ != NULL) {
365     next_ = current_->tail();
366     value_ = current_->value();
367     index_ = current_->index();
368   }
369 }
370 
371 
UseCount() const372 int HValue::UseCount() const {
373   int count = 0;
374   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
375   return count;
376 }
377 
378 
RemoveUse(HValue * value,int index)379 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
380   HUseListNode* previous = NULL;
381   HUseListNode* current = use_list_;
382   while (current != NULL) {
383     if (current->value() == value && current->index() == index) {
384       if (previous == NULL) {
385         use_list_ = current->tail();
386       } else {
387         previous->set_tail(current->tail());
388       }
389       break;
390     }
391 
392     previous = current;
393     current = current->tail();
394   }
395 
396 #ifdef DEBUG
397   // Do not reuse use list nodes in debug mode, zap them.
398   if (current != NULL) {
399     HUseListNode* temp =
400         new(block()->zone())
401         HUseListNode(current->value(), current->index(), NULL);
402     current->Zap();
403     current = temp;
404   }
405 #endif
406   return current;
407 }
408 
409 
Equals(HValue * other)410 bool HValue::Equals(HValue* other) {
411   if (other->opcode() != opcode()) return false;
412   if (!other->representation().Equals(representation())) return false;
413   if (!other->type_.Equals(type_)) return false;
414   if (other->flags() != flags()) return false;
415   if (OperandCount() != other->OperandCount()) return false;
416   for (int i = 0; i < OperandCount(); ++i) {
417     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
418   }
419   bool result = DataEquals(other);
420   ASSERT(!result || Hashcode() == other->Hashcode());
421   return result;
422 }
423 
424 
Hashcode()425 intptr_t HValue::Hashcode() {
426   intptr_t result = opcode();
427   int count = OperandCount();
428   for (int i = 0; i < count; ++i) {
429     result = result * 19 + OperandAt(i)->id() + (result >> 7);
430   }
431   return result;
432 }
433 
434 
Mnemonic() const435 const char* HValue::Mnemonic() const {
436   switch (opcode()) {
437 #define MAKE_CASE(type) case k##type: return #type;
438     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
439 #undef MAKE_CASE
440     case kPhi: return "Phi";
441     default: return "";
442   }
443 }
444 
445 
CanReplaceWithDummyUses()446 bool HValue::CanReplaceWithDummyUses() {
447   return FLAG_unreachable_code_elimination &&
448       !(block()->IsReachable() ||
449         IsBlockEntry() ||
450         IsControlInstruction() ||
451         IsArgumentsObject() ||
452         IsCapturedObject() ||
453         IsSimulate() ||
454         IsEnterInlined() ||
455         IsLeaveInlined());
456 }
457 
458 
IsInteger32Constant()459 bool HValue::IsInteger32Constant() {
460   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
461 }
462 
463 
GetInteger32Constant()464 int32_t HValue::GetInteger32Constant() {
465   return HConstant::cast(this)->Integer32Value();
466 }
467 
468 
EqualsInteger32Constant(int32_t value)469 bool HValue::EqualsInteger32Constant(int32_t value) {
470   return IsInteger32Constant() && GetInteger32Constant() == value;
471 }
472 
473 
SetOperandAt(int index,HValue * value)474 void HValue::SetOperandAt(int index, HValue* value) {
475   RegisterUse(index, value);
476   InternalSetOperandAt(index, value);
477 }
478 
479 
DeleteAndReplaceWith(HValue * other)480 void HValue::DeleteAndReplaceWith(HValue* other) {
481   // We replace all uses first, so Delete can assert that there are none.
482   if (other != NULL) ReplaceAllUsesWith(other);
483   Kill();
484   DeleteFromGraph();
485 }
486 
487 
ReplaceAllUsesWith(HValue * other)488 void HValue::ReplaceAllUsesWith(HValue* other) {
489   while (use_list_ != NULL) {
490     HUseListNode* list_node = use_list_;
491     HValue* value = list_node->value();
492     ASSERT(!value->block()->IsStartBlock());
493     value->InternalSetOperandAt(list_node->index(), other);
494     use_list_ = list_node->tail();
495     list_node->set_tail(other->use_list_);
496     other->use_list_ = list_node;
497   }
498 }
499 
500 
Kill()501 void HValue::Kill() {
502   // Instead of going through the entire use list of each operand, we only
503   // check the first item in each use list and rely on the tail() method to
504   // skip dead items, removing them lazily next time we traverse the list.
505   SetFlag(kIsDead);
506   for (int i = 0; i < OperandCount(); ++i) {
507     HValue* operand = OperandAt(i);
508     if (operand == NULL) continue;
509     HUseListNode* first = operand->use_list_;
510     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
511       operand->use_list_ = first->tail();
512     }
513   }
514 }
515 
516 
SetBlock(HBasicBlock * block)517 void HValue::SetBlock(HBasicBlock* block) {
518   ASSERT(block_ == NULL || block == NULL);
519   block_ = block;
520   if (id_ == kNoNumber && block != NULL) {
521     id_ = block->graph()->GetNextValueID(this);
522   }
523 }
524 
525 
PrintTypeTo(StringStream * stream)526 void HValue::PrintTypeTo(StringStream* stream) {
527   if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
528   stream->Add(" type:%s", type().ToString());
529 }
530 
531 
PrintChangesTo(StringStream * stream)532 void HValue::PrintChangesTo(StringStream* stream) {
533   GVNFlagSet changes_flags = ChangesFlags();
534   if (changes_flags.IsEmpty()) return;
535   stream->Add(" changes[");
536   if (changes_flags == AllSideEffectsFlagSet()) {
537     stream->Add("*");
538   } else {
539     bool add_comma = false;
540 #define PRINT_DO(Type)                      \
541     if (changes_flags.Contains(k##Type)) {  \
542       if (add_comma) stream->Add(",");      \
543       add_comma = true;                     \
544       stream->Add(#Type);                   \
545     }
546     GVN_TRACKED_FLAG_LIST(PRINT_DO);
547     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
548 #undef PRINT_DO
549   }
550   stream->Add("]");
551 }
552 
553 
PrintNameTo(StringStream * stream)554 void HValue::PrintNameTo(StringStream* stream) {
555   stream->Add("%s%d", representation_.Mnemonic(), id());
556 }
557 
558 
HasMonomorphicJSObjectType()559 bool HValue::HasMonomorphicJSObjectType() {
560   return !GetMonomorphicJSObjectMap().is_null();
561 }
562 
563 
UpdateInferredType()564 bool HValue::UpdateInferredType() {
565   HType type = CalculateInferredType();
566   bool result = (!type.Equals(type_));
567   type_ = type;
568   return result;
569 }
570 
571 
RegisterUse(int index,HValue * new_value)572 void HValue::RegisterUse(int index, HValue* new_value) {
573   HValue* old_value = OperandAt(index);
574   if (old_value == new_value) return;
575 
576   HUseListNode* removed = NULL;
577   if (old_value != NULL) {
578     removed = old_value->RemoveUse(this, index);
579   }
580 
581   if (new_value != NULL) {
582     if (removed == NULL) {
583       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
584           this, index, new_value->use_list_);
585     } else {
586       removed->set_tail(new_value->use_list_);
587       new_value->use_list_ = removed;
588     }
589   }
590 }
591 
592 
AddNewRange(Range * r,Zone * zone)593 void HValue::AddNewRange(Range* r, Zone* zone) {
594   if (!HasRange()) ComputeInitialRange(zone);
595   if (!HasRange()) range_ = new(zone) Range();
596   ASSERT(HasRange());
597   r->StackUpon(range_);
598   range_ = r;
599 }
600 
601 
RemoveLastAddedRange()602 void HValue::RemoveLastAddedRange() {
603   ASSERT(HasRange());
604   ASSERT(range_->next() != NULL);
605   range_ = range_->next();
606 }
607 
608 
ComputeInitialRange(Zone * zone)609 void HValue::ComputeInitialRange(Zone* zone) {
610   ASSERT(!HasRange());
611   range_ = InferRange(zone);
612   ASSERT(HasRange());
613 }
614 
615 
PrintTo(FILE * out)616 void HSourcePosition::PrintTo(FILE* out) {
617   if (IsUnknown()) {
618     PrintF(out, "<?>");
619   } else {
620     if (FLAG_hydrogen_track_positions) {
621       PrintF(out, "<%d:%d>", inlining_id(), position());
622     } else {
623       PrintF(out, "<0:%d>", raw());
624     }
625   }
626 }
627 
628 
PrintTo(StringStream * stream)629 void HInstruction::PrintTo(StringStream* stream) {
630   PrintMnemonicTo(stream);
631   PrintDataTo(stream);
632   PrintChangesTo(stream);
633   PrintTypeTo(stream);
634   if (CheckFlag(HValue::kHasNoObservableSideEffects)) {
635     stream->Add(" [noOSE]");
636   }
637   if (CheckFlag(HValue::kIsDead)) {
638     stream->Add(" [dead]");
639   }
640 }
641 
642 
PrintDataTo(StringStream * stream)643 void HInstruction::PrintDataTo(StringStream *stream) {
644   for (int i = 0; i < OperandCount(); ++i) {
645     if (i > 0) stream->Add(" ");
646     OperandAt(i)->PrintNameTo(stream);
647   }
648 }
649 
650 
PrintMnemonicTo(StringStream * stream)651 void HInstruction::PrintMnemonicTo(StringStream* stream) {
652   stream->Add("%s ", Mnemonic());
653 }
654 
655 
Unlink()656 void HInstruction::Unlink() {
657   ASSERT(IsLinked());
658   ASSERT(!IsControlInstruction());  // Must never move control instructions.
659   ASSERT(!IsBlockEntry());  // Doesn't make sense to delete these.
660   ASSERT(previous_ != NULL);
661   previous_->next_ = next_;
662   if (next_ == NULL) {
663     ASSERT(block()->last() == this);
664     block()->set_last(previous_);
665   } else {
666     next_->previous_ = previous_;
667   }
668   clear_block();
669 }
670 
671 
InsertBefore(HInstruction * next)672 void HInstruction::InsertBefore(HInstruction* next) {
673   ASSERT(!IsLinked());
674   ASSERT(!next->IsBlockEntry());
675   ASSERT(!IsControlInstruction());
676   ASSERT(!next->block()->IsStartBlock());
677   ASSERT(next->previous_ != NULL);
678   HInstruction* prev = next->previous();
679   prev->next_ = this;
680   next->previous_ = this;
681   next_ = next;
682   previous_ = prev;
683   SetBlock(next->block());
684   if (!has_position() && next->has_position()) {
685     set_position(next->position());
686   }
687 }
688 
689 
InsertAfter(HInstruction * previous)690 void HInstruction::InsertAfter(HInstruction* previous) {
691   ASSERT(!IsLinked());
692   ASSERT(!previous->IsControlInstruction());
693   ASSERT(!IsControlInstruction() || previous->next_ == NULL);
694   HBasicBlock* block = previous->block();
695   // Never insert anything except constants into the start block after finishing
696   // it.
697   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
698     ASSERT(block->end()->SecondSuccessor() == NULL);
699     InsertAfter(block->end()->FirstSuccessor()->first());
700     return;
701   }
702 
703   // If we're inserting after an instruction with side-effects that is
704   // followed by a simulate instruction, we need to insert after the
705   // simulate instruction instead.
706   HInstruction* next = previous->next_;
707   if (previous->HasObservableSideEffects() && next != NULL) {
708     ASSERT(next->IsSimulate());
709     previous = next;
710     next = previous->next_;
711   }
712 
713   previous_ = previous;
714   next_ = next;
715   SetBlock(block);
716   previous->next_ = this;
717   if (next != NULL) next->previous_ = this;
718   if (block->last() == previous) {
719     block->set_last(this);
720   }
721   if (!has_position() && previous->has_position()) {
722     set_position(previous->position());
723   }
724 }
725 
726 
Dominates(HInstruction * other)727 bool HInstruction::Dominates(HInstruction* other) {
728   if (block() != other->block()) {
729     return block()->Dominates(other->block());
730   }
731   // Both instructions are in the same basic block. This instruction
732   // should precede the other one in order to dominate it.
733   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
734     if (instr == other) {
735       return true;
736     }
737   }
738   return false;
739 }
740 
741 
742 #ifdef DEBUG
Verify()743 void HInstruction::Verify() {
744   // Verify that input operands are defined before use.
745   HBasicBlock* cur_block = block();
746   for (int i = 0; i < OperandCount(); ++i) {
747     HValue* other_operand = OperandAt(i);
748     if (other_operand == NULL) continue;
749     HBasicBlock* other_block = other_operand->block();
750     if (cur_block == other_block) {
751       if (!other_operand->IsPhi()) {
752         HInstruction* cur = this->previous();
753         while (cur != NULL) {
754           if (cur == other_operand) break;
755           cur = cur->previous();
756         }
757         // Must reach other operand in the same block!
758         ASSERT(cur == other_operand);
759       }
760     } else {
761       // If the following assert fires, you may have forgotten an
762       // AddInstruction.
763       ASSERT(other_block->Dominates(cur_block));
764     }
765   }
766 
767   // Verify that instructions that may have side-effects are followed
768   // by a simulate instruction.
769   if (HasObservableSideEffects() && !IsOsrEntry()) {
770     ASSERT(next()->IsSimulate());
771   }
772 
773   // Verify that instructions that can be eliminated by GVN have overridden
774   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
775   // don't actually care whether DataEquals returns true or false here.
776   if (CheckFlag(kUseGVN)) DataEquals(this);
777 
778   // Verify that all uses are in the graph.
779   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
780     if (use.value()->IsInstruction()) {
781       ASSERT(HInstruction::cast(use.value())->IsLinked());
782     }
783   }
784 }
785 #endif
786 
787 
CanDeoptimize()788 bool HInstruction::CanDeoptimize() {
789   // TODO(titzer): make this a virtual method?
790   switch (opcode()) {
791     case HValue::kAbnormalExit:
792     case HValue::kAccessArgumentsAt:
793     case HValue::kAllocate:
794     case HValue::kArgumentsElements:
795     case HValue::kArgumentsLength:
796     case HValue::kArgumentsObject:
797     case HValue::kBlockEntry:
798     case HValue::kBoundsCheckBaseIndexInformation:
799     case HValue::kCallFunction:
800     case HValue::kCallNew:
801     case HValue::kCallNewArray:
802     case HValue::kCallStub:
803     case HValue::kCallWithDescriptor:
804     case HValue::kCapturedObject:
805     case HValue::kClassOfTestAndBranch:
806     case HValue::kCompareGeneric:
807     case HValue::kCompareHoleAndBranch:
808     case HValue::kCompareMap:
809     case HValue::kCompareMinusZeroAndBranch:
810     case HValue::kCompareNumericAndBranch:
811     case HValue::kCompareObjectEqAndBranch:
812     case HValue::kConstant:
813     case HValue::kConstructDouble:
814     case HValue::kContext:
815     case HValue::kDebugBreak:
816     case HValue::kDeclareGlobals:
817     case HValue::kDoubleBits:
818     case HValue::kDummyUse:
819     case HValue::kEnterInlined:
820     case HValue::kEnvironmentMarker:
821     case HValue::kForceRepresentation:
822     case HValue::kGetCachedArrayIndex:
823     case HValue::kGoto:
824     case HValue::kHasCachedArrayIndexAndBranch:
825     case HValue::kHasInstanceTypeAndBranch:
826     case HValue::kInnerAllocatedObject:
827     case HValue::kInstanceOf:
828     case HValue::kInstanceOfKnownGlobal:
829     case HValue::kIsConstructCallAndBranch:
830     case HValue::kIsObjectAndBranch:
831     case HValue::kIsSmiAndBranch:
832     case HValue::kIsStringAndBranch:
833     case HValue::kIsUndetectableAndBranch:
834     case HValue::kLeaveInlined:
835     case HValue::kLoadFieldByIndex:
836     case HValue::kLoadGlobalGeneric:
837     case HValue::kLoadNamedField:
838     case HValue::kLoadNamedGeneric:
839     case HValue::kLoadRoot:
840     case HValue::kMapEnumLength:
841     case HValue::kMathMinMax:
842     case HValue::kParameter:
843     case HValue::kPhi:
844     case HValue::kPushArguments:
845     case HValue::kRegExpLiteral:
846     case HValue::kReturn:
847     case HValue::kSeqStringGetChar:
848     case HValue::kStoreCodeEntry:
849     case HValue::kStoreFrameContext:
850     case HValue::kStoreKeyed:
851     case HValue::kStoreNamedField:
852     case HValue::kStoreNamedGeneric:
853     case HValue::kStringCharCodeAt:
854     case HValue::kStringCharFromCode:
855     case HValue::kThisFunction:
856     case HValue::kTypeofIsAndBranch:
857     case HValue::kUnknownOSRValue:
858     case HValue::kUseConst:
859       return false;
860 
861     case HValue::kAdd:
862     case HValue::kAllocateBlockContext:
863     case HValue::kApplyArguments:
864     case HValue::kBitwise:
865     case HValue::kBoundsCheck:
866     case HValue::kBranch:
867     case HValue::kCallJSFunction:
868     case HValue::kCallRuntime:
869     case HValue::kChange:
870     case HValue::kCheckHeapObject:
871     case HValue::kCheckInstanceType:
872     case HValue::kCheckMapValue:
873     case HValue::kCheckMaps:
874     case HValue::kCheckSmi:
875     case HValue::kCheckValue:
876     case HValue::kClampToUint8:
877     case HValue::kDateField:
878     case HValue::kDeoptimize:
879     case HValue::kDiv:
880     case HValue::kForInCacheArray:
881     case HValue::kForInPrepareMap:
882     case HValue::kFunctionLiteral:
883     case HValue::kInvokeFunction:
884     case HValue::kLoadContextSlot:
885     case HValue::kLoadFunctionPrototype:
886     case HValue::kLoadGlobalCell:
887     case HValue::kLoadKeyed:
888     case HValue::kLoadKeyedGeneric:
889     case HValue::kMathFloorOfDiv:
890     case HValue::kMod:
891     case HValue::kMul:
892     case HValue::kOsrEntry:
893     case HValue::kPower:
894     case HValue::kRor:
895     case HValue::kSar:
896     case HValue::kSeqStringSetChar:
897     case HValue::kShl:
898     case HValue::kShr:
899     case HValue::kSimulate:
900     case HValue::kStackCheck:
901     case HValue::kStoreContextSlot:
902     case HValue::kStoreGlobalCell:
903     case HValue::kStoreKeyedGeneric:
904     case HValue::kStringAdd:
905     case HValue::kStringCompareAndBranch:
906     case HValue::kSub:
907     case HValue::kToFastProperties:
908     case HValue::kTransitionElementsKind:
909     case HValue::kTrapAllocationMemento:
910     case HValue::kTypeof:
911     case HValue::kUnaryMathOperation:
912     case HValue::kWrapReceiver:
913       return true;
914   }
915   UNREACHABLE();
916   return true;
917 }
918 
919 
PrintDataTo(StringStream * stream)920 void HDummyUse::PrintDataTo(StringStream* stream) {
921   value()->PrintNameTo(stream);
922 }
923 
924 
PrintDataTo(StringStream * stream)925 void HEnvironmentMarker::PrintDataTo(StringStream* stream) {
926   stream->Add("%s var[%d]", kind() == BIND ? "bind" : "lookup", index());
927 }
928 
929 
PrintDataTo(StringStream * stream)930 void HUnaryCall::PrintDataTo(StringStream* stream) {
931   value()->PrintNameTo(stream);
932   stream->Add(" ");
933   stream->Add("#%d", argument_count());
934 }
935 
936 
PrintDataTo(StringStream * stream)937 void HCallJSFunction::PrintDataTo(StringStream* stream) {
938   function()->PrintNameTo(stream);
939   stream->Add(" ");
940   stream->Add("#%d", argument_count());
941 }
942 
943 
New(Zone * zone,HValue * context,HValue * function,int argument_count,bool pass_argument_count)944 HCallJSFunction* HCallJSFunction::New(
945     Zone* zone,
946     HValue* context,
947     HValue* function,
948     int argument_count,
949     bool pass_argument_count) {
950   bool has_stack_check = false;
951   if (function->IsConstant()) {
952     HConstant* fun_const = HConstant::cast(function);
953     Handle<JSFunction> jsfun =
954         Handle<JSFunction>::cast(fun_const->handle(zone->isolate()));
955     has_stack_check = !jsfun.is_null() &&
956         (jsfun->code()->kind() == Code::FUNCTION ||
957          jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
958   }
959 
960   return new(zone) HCallJSFunction(
961       function, argument_count, pass_argument_count,
962       has_stack_check);
963 }
964 
965 
966 
967 
PrintDataTo(StringStream * stream)968 void HBinaryCall::PrintDataTo(StringStream* stream) {
969   first()->PrintNameTo(stream);
970   stream->Add(" ");
971   second()->PrintNameTo(stream);
972   stream->Add(" ");
973   stream->Add("#%d", argument_count());
974 }
975 
976 
ApplyIndexChange()977 void HBoundsCheck::ApplyIndexChange() {
978   if (skip_check()) return;
979 
980   DecompositionResult decomposition;
981   bool index_is_decomposable = index()->TryDecompose(&decomposition);
982   if (index_is_decomposable) {
983     ASSERT(decomposition.base() == base());
984     if (decomposition.offset() == offset() &&
985         decomposition.scale() == scale()) return;
986   } else {
987     return;
988   }
989 
990   ReplaceAllUsesWith(index());
991 
992   HValue* current_index = decomposition.base();
993   int actual_offset = decomposition.offset() + offset();
994   int actual_scale = decomposition.scale() + scale();
995 
996   Zone* zone = block()->graph()->zone();
997   HValue* context = block()->graph()->GetInvalidContext();
998   if (actual_offset != 0) {
999     HConstant* add_offset = HConstant::New(zone, context, actual_offset);
1000     add_offset->InsertBefore(this);
1001     HInstruction* add = HAdd::New(zone, context,
1002                                   current_index, add_offset);
1003     add->InsertBefore(this);
1004     add->AssumeRepresentation(index()->representation());
1005     add->ClearFlag(kCanOverflow);
1006     current_index = add;
1007   }
1008 
1009   if (actual_scale != 0) {
1010     HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
1011     sar_scale->InsertBefore(this);
1012     HInstruction* sar = HSar::New(zone, context,
1013                                   current_index, sar_scale);
1014     sar->InsertBefore(this);
1015     sar->AssumeRepresentation(index()->representation());
1016     current_index = sar;
1017   }
1018 
1019   SetOperandAt(0, current_index);
1020 
1021   base_ = NULL;
1022   offset_ = 0;
1023   scale_ = 0;
1024 }
1025 
1026 
PrintDataTo(StringStream * stream)1027 void HBoundsCheck::PrintDataTo(StringStream* stream) {
1028   index()->PrintNameTo(stream);
1029   stream->Add(" ");
1030   length()->PrintNameTo(stream);
1031   if (base() != NULL && (offset() != 0 || scale() != 0)) {
1032     stream->Add(" base: ((");
1033     if (base() != index()) {
1034       index()->PrintNameTo(stream);
1035     } else {
1036       stream->Add("index");
1037     }
1038     stream->Add(" + %d) >> %d)", offset(), scale());
1039   }
1040   if (skip_check()) {
1041     stream->Add(" [DISABLED]");
1042   }
1043 }
1044 
1045 
InferRepresentation(HInferRepresentationPhase * h_infer)1046 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
1047   ASSERT(CheckFlag(kFlexibleRepresentation));
1048   HValue* actual_index = index()->ActualValue();
1049   HValue* actual_length = length()->ActualValue();
1050   Representation index_rep = actual_index->representation();
1051   Representation length_rep = actual_length->representation();
1052   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
1053     index_rep = Representation::Smi();
1054   }
1055   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
1056     length_rep = Representation::Smi();
1057   }
1058   Representation r = index_rep.generalize(length_rep);
1059   if (r.is_more_general_than(Representation::Integer32())) {
1060     r = Representation::Integer32();
1061   }
1062   UpdateRepresentation(r, h_infer, "boundscheck");
1063 }
1064 
1065 
InferRange(Zone * zone)1066 Range* HBoundsCheck::InferRange(Zone* zone) {
1067   Representation r = representation();
1068   if (r.IsSmiOrInteger32() && length()->HasRange()) {
1069     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
1070     int lower = 0;
1071 
1072     Range* result = new(zone) Range(lower, upper);
1073     if (index()->HasRange()) {
1074       result->Intersect(index()->range());
1075     }
1076 
1077     // In case of Smi representation, clamp result to Smi::kMaxValue.
1078     if (r.IsSmi()) result->ClampToSmi();
1079     return result;
1080   }
1081   return HValue::InferRange(zone);
1082 }
1083 
1084 
PrintDataTo(StringStream * stream)1085 void HBoundsCheckBaseIndexInformation::PrintDataTo(StringStream* stream) {
1086   stream->Add("base: ");
1087   base_index()->PrintNameTo(stream);
1088   stream->Add(", check: ");
1089   base_index()->PrintNameTo(stream);
1090 }
1091 
1092 
PrintDataTo(StringStream * stream)1093 void HCallWithDescriptor::PrintDataTo(StringStream* stream) {
1094   for (int i = 0; i < OperandCount(); i++) {
1095     OperandAt(i)->PrintNameTo(stream);
1096     stream->Add(" ");
1097   }
1098   stream->Add("#%d", argument_count());
1099 }
1100 
1101 
PrintDataTo(StringStream * stream)1102 void HCallNewArray::PrintDataTo(StringStream* stream) {
1103   stream->Add(ElementsKindToString(elements_kind()));
1104   stream->Add(" ");
1105   HBinaryCall::PrintDataTo(stream);
1106 }
1107 
1108 
PrintDataTo(StringStream * stream)1109 void HCallRuntime::PrintDataTo(StringStream* stream) {
1110   stream->Add("%o ", *name());
1111   if (save_doubles() == kSaveFPRegs) {
1112     stream->Add("[save doubles] ");
1113   }
1114   stream->Add("#%d", argument_count());
1115 }
1116 
1117 
PrintDataTo(StringStream * stream)1118 void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
1119   stream->Add("class_of_test(");
1120   value()->PrintNameTo(stream);
1121   stream->Add(", \"%o\")", *class_name());
1122 }
1123 
1124 
PrintDataTo(StringStream * stream)1125 void HWrapReceiver::PrintDataTo(StringStream* stream) {
1126   receiver()->PrintNameTo(stream);
1127   stream->Add(" ");
1128   function()->PrintNameTo(stream);
1129 }
1130 
1131 
PrintDataTo(StringStream * stream)1132 void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
1133   arguments()->PrintNameTo(stream);
1134   stream->Add("[");
1135   index()->PrintNameTo(stream);
1136   stream->Add("], length ");
1137   length()->PrintNameTo(stream);
1138 }
1139 
1140 
PrintDataTo(StringStream * stream)1141 void HAllocateBlockContext::PrintDataTo(StringStream* stream) {
1142   context()->PrintNameTo(stream);
1143   stream->Add(" ");
1144   function()->PrintNameTo(stream);
1145 }
1146 
1147 
PrintDataTo(StringStream * stream)1148 void HControlInstruction::PrintDataTo(StringStream* stream) {
1149   stream->Add(" goto (");
1150   bool first_block = true;
1151   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
1152     stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
1153     first_block = false;
1154   }
1155   stream->Add(")");
1156 }
1157 
1158 
PrintDataTo(StringStream * stream)1159 void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
1160   value()->PrintNameTo(stream);
1161   HControlInstruction::PrintDataTo(stream);
1162 }
1163 
1164 
PrintDataTo(StringStream * stream)1165 void HReturn::PrintDataTo(StringStream* stream) {
1166   value()->PrintNameTo(stream);
1167   stream->Add(" (pop ");
1168   parameter_count()->PrintNameTo(stream);
1169   stream->Add(" values)");
1170 }
1171 
1172 
observed_input_representation(int index)1173 Representation HBranch::observed_input_representation(int index) {
1174   static const ToBooleanStub::Types tagged_types(
1175       ToBooleanStub::NULL_TYPE |
1176       ToBooleanStub::SPEC_OBJECT |
1177       ToBooleanStub::STRING |
1178       ToBooleanStub::SYMBOL);
1179   if (expected_input_types_.ContainsAnyOf(tagged_types)) {
1180     return Representation::Tagged();
1181   }
1182   if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
1183     if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1184       return Representation::Double();
1185     }
1186     return Representation::Tagged();
1187   }
1188   if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1189     return Representation::Double();
1190   }
1191   if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
1192     return Representation::Smi();
1193   }
1194   return Representation::None();
1195 }
1196 
1197 
KnownSuccessorBlock(HBasicBlock ** block)1198 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
1199   HValue* value = this->value();
1200   if (value->EmitAtUses()) {
1201     ASSERT(value->IsConstant());
1202     ASSERT(!value->representation().IsDouble());
1203     *block = HConstant::cast(value)->BooleanValue()
1204         ? FirstSuccessor()
1205         : SecondSuccessor();
1206     return true;
1207   }
1208   *block = NULL;
1209   return false;
1210 }
1211 
1212 
PrintDataTo(StringStream * stream)1213 void HBranch::PrintDataTo(StringStream* stream) {
1214   HUnaryControlInstruction::PrintDataTo(stream);
1215   stream->Add(" ");
1216   expected_input_types().Print(stream);
1217 }
1218 
1219 
PrintDataTo(StringStream * stream)1220 void HCompareMap::PrintDataTo(StringStream* stream) {
1221   value()->PrintNameTo(stream);
1222   stream->Add(" (%p)", *map().handle());
1223   HControlInstruction::PrintDataTo(stream);
1224   if (known_successor_index() == 0) {
1225     stream->Add(" [true]");
1226   } else if (known_successor_index() == 1) {
1227     stream->Add(" [false]");
1228   }
1229 }
1230 
1231 
OpName() const1232 const char* HUnaryMathOperation::OpName() const {
1233   switch (op()) {
1234     case kMathFloor: return "floor";
1235     case kMathRound: return "round";
1236     case kMathAbs: return "abs";
1237     case kMathLog: return "log";
1238     case kMathExp: return "exp";
1239     case kMathSqrt: return "sqrt";
1240     case kMathPowHalf: return "pow-half";
1241     case kMathClz32: return "clz32";
1242     default:
1243       UNREACHABLE();
1244       return NULL;
1245   }
1246 }
1247 
1248 
InferRange(Zone * zone)1249 Range* HUnaryMathOperation::InferRange(Zone* zone) {
1250   Representation r = representation();
1251   if (op() == kMathClz32) return new(zone) Range(0, 32);
1252   if (r.IsSmiOrInteger32() && value()->HasRange()) {
1253     if (op() == kMathAbs) {
1254       int upper = value()->range()->upper();
1255       int lower = value()->range()->lower();
1256       bool spans_zero = value()->range()->CanBeZero();
1257       // Math.abs(kMinInt) overflows its representation, on which the
1258       // instruction deopts. Hence clamp it to kMaxInt.
1259       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
1260       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
1261       Range* result =
1262           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
1263                           Max(abs_lower, abs_upper));
1264       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
1265       // Smi::kMaxValue.
1266       if (r.IsSmi()) result->ClampToSmi();
1267       return result;
1268     }
1269   }
1270   return HValue::InferRange(zone);
1271 }
1272 
1273 
PrintDataTo(StringStream * stream)1274 void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
1275   const char* name = OpName();
1276   stream->Add("%s ", name);
1277   value()->PrintNameTo(stream);
1278 }
1279 
1280 
PrintDataTo(StringStream * stream)1281 void HUnaryOperation::PrintDataTo(StringStream* stream) {
1282   value()->PrintNameTo(stream);
1283 }
1284 
1285 
PrintDataTo(StringStream * stream)1286 void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
1287   value()->PrintNameTo(stream);
1288   switch (from_) {
1289     case FIRST_JS_RECEIVER_TYPE:
1290       if (to_ == LAST_TYPE) stream->Add(" spec_object");
1291       break;
1292     case JS_REGEXP_TYPE:
1293       if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
1294       break;
1295     case JS_ARRAY_TYPE:
1296       if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
1297       break;
1298     case JS_FUNCTION_TYPE:
1299       if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
1300       break;
1301     default:
1302       break;
1303   }
1304 }
1305 
1306 
PrintDataTo(StringStream * stream)1307 void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
1308   value()->PrintNameTo(stream);
1309   stream->Add(" == %o", *type_literal_.handle());
1310   HControlInstruction::PrintDataTo(stream);
1311 }
1312 
1313 
TypeOfString(HConstant * constant,Isolate * isolate)1314 static String* TypeOfString(HConstant* constant, Isolate* isolate) {
1315   Heap* heap = isolate->heap();
1316   if (constant->HasNumberValue()) return heap->number_string();
1317   if (constant->IsUndetectable()) return heap->undefined_string();
1318   if (constant->HasStringValue()) return heap->string_string();
1319   switch (constant->GetInstanceType()) {
1320     case ODDBALL_TYPE: {
1321       Unique<Object> unique = constant->GetUnique();
1322       if (unique.IsKnownGlobal(heap->true_value()) ||
1323           unique.IsKnownGlobal(heap->false_value())) {
1324         return heap->boolean_string();
1325       }
1326       if (unique.IsKnownGlobal(heap->null_value())) {
1327         return FLAG_harmony_typeof ? heap->null_string()
1328                                    : heap->object_string();
1329       }
1330       ASSERT(unique.IsKnownGlobal(heap->undefined_value()));
1331       return heap->undefined_string();
1332     }
1333     case SYMBOL_TYPE:
1334       return heap->symbol_string();
1335     case JS_FUNCTION_TYPE:
1336     case JS_FUNCTION_PROXY_TYPE:
1337       return heap->function_string();
1338     default:
1339       return heap->object_string();
1340   }
1341 }
1342 
1343 
KnownSuccessorBlock(HBasicBlock ** block)1344 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
1345   if (FLAG_fold_constants && value()->IsConstant()) {
1346     HConstant* constant = HConstant::cast(value());
1347     String* type_string = TypeOfString(constant, isolate());
1348     bool same_type = type_literal_.IsKnownGlobal(type_string);
1349     *block = same_type ? FirstSuccessor() : SecondSuccessor();
1350     return true;
1351   } else if (value()->representation().IsSpecialization()) {
1352     bool number_type =
1353         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
1354     *block = number_type ? FirstSuccessor() : SecondSuccessor();
1355     return true;
1356   }
1357   *block = NULL;
1358   return false;
1359 }
1360 
1361 
PrintDataTo(StringStream * stream)1362 void HCheckMapValue::PrintDataTo(StringStream* stream) {
1363   value()->PrintNameTo(stream);
1364   stream->Add(" ");
1365   map()->PrintNameTo(stream);
1366 }
1367 
1368 
Canonicalize()1369 HValue* HCheckMapValue::Canonicalize() {
1370   if (map()->IsConstant()) {
1371     HConstant* c_map = HConstant::cast(map());
1372     return HCheckMaps::CreateAndInsertAfter(
1373         block()->graph()->zone(), value(), c_map->MapValue(),
1374         c_map->HasStableMapValue(), this);
1375   }
1376   return this;
1377 }
1378 
1379 
PrintDataTo(StringStream * stream)1380 void HForInPrepareMap::PrintDataTo(StringStream* stream) {
1381   enumerable()->PrintNameTo(stream);
1382 }
1383 
1384 
PrintDataTo(StringStream * stream)1385 void HForInCacheArray::PrintDataTo(StringStream* stream) {
1386   enumerable()->PrintNameTo(stream);
1387   stream->Add(" ");
1388   map()->PrintNameTo(stream);
1389   stream->Add("[%d]", idx_);
1390 }
1391 
1392 
PrintDataTo(StringStream * stream)1393 void HLoadFieldByIndex::PrintDataTo(StringStream* stream) {
1394   object()->PrintNameTo(stream);
1395   stream->Add(" ");
1396   index()->PrintNameTo(stream);
1397 }
1398 
1399 
MatchLeftIsOnes(HValue * l,HValue * r,HValue ** negated)1400 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
1401   if (!l->EqualsInteger32Constant(~0)) return false;
1402   *negated = r;
1403   return true;
1404 }
1405 
1406 
MatchNegationViaXor(HValue * instr,HValue ** negated)1407 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
1408   if (!instr->IsBitwise()) return false;
1409   HBitwise* b = HBitwise::cast(instr);
1410   return (b->op() == Token::BIT_XOR) &&
1411       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
1412        MatchLeftIsOnes(b->right(), b->left(), negated));
1413 }
1414 
1415 
MatchDoubleNegation(HValue * instr,HValue ** arg)1416 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
1417   HValue* negated;
1418   return MatchNegationViaXor(instr, &negated) &&
1419       MatchNegationViaXor(negated, arg);
1420 }
1421 
1422 
Canonicalize()1423 HValue* HBitwise::Canonicalize() {
1424   if (!representation().IsSmiOrInteger32()) return this;
1425   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
1426   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
1427   if (left()->EqualsInteger32Constant(nop_constant) &&
1428       !right()->CheckFlag(kUint32)) {
1429     return right();
1430   }
1431   if (right()->EqualsInteger32Constant(nop_constant) &&
1432       !left()->CheckFlag(kUint32)) {
1433     return left();
1434   }
1435   // Optimize double negation, a common pattern used for ToInt32(x).
1436   HValue* arg;
1437   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
1438     return arg;
1439   }
1440   return this;
1441 }
1442 
1443 
RepresentationFromInputs()1444 Representation HAdd::RepresentationFromInputs() {
1445   Representation left_rep = left()->representation();
1446   if (left_rep.IsExternal()) {
1447     return Representation::External();
1448   }
1449   return HArithmeticBinaryOperation::RepresentationFromInputs();
1450 }
1451 
1452 
RequiredInputRepresentation(int index)1453 Representation HAdd::RequiredInputRepresentation(int index) {
1454   if (index == 2) {
1455     Representation left_rep = left()->representation();
1456     if (left_rep.IsExternal()) {
1457       return Representation::Integer32();
1458     }
1459   }
1460   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
1461 }
1462 
1463 
IsIdentityOperation(HValue * arg1,HValue * arg2,int32_t identity)1464 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
1465   return arg1->representation().IsSpecialization() &&
1466     arg2->EqualsInteger32Constant(identity);
1467 }
1468 
1469 
Canonicalize()1470 HValue* HAdd::Canonicalize() {
1471   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
1472   if (IsIdentityOperation(left(), right(), 0) &&
1473       !left()->representation().IsDouble()) {  // Left could be -0.
1474     return left();
1475   }
1476   if (IsIdentityOperation(right(), left(), 0) &&
1477       !left()->representation().IsDouble()) {  // Right could be -0.
1478     return right();
1479   }
1480   return this;
1481 }
1482 
1483 
Canonicalize()1484 HValue* HSub::Canonicalize() {
1485   if (IsIdentityOperation(left(), right(), 0)) return left();
1486   return this;
1487 }
1488 
1489 
Canonicalize()1490 HValue* HMul::Canonicalize() {
1491   if (IsIdentityOperation(left(), right(), 1)) return left();
1492   if (IsIdentityOperation(right(), left(), 1)) return right();
1493   return this;
1494 }
1495 
1496 
MulMinusOne()1497 bool HMul::MulMinusOne() {
1498   if (left()->EqualsInteger32Constant(-1) ||
1499       right()->EqualsInteger32Constant(-1)) {
1500     return true;
1501   }
1502 
1503   return false;
1504 }
1505 
1506 
Canonicalize()1507 HValue* HMod::Canonicalize() {
1508   return this;
1509 }
1510 
1511 
Canonicalize()1512 HValue* HDiv::Canonicalize() {
1513   if (IsIdentityOperation(left(), right(), 1)) return left();
1514   return this;
1515 }
1516 
1517 
Canonicalize()1518 HValue* HChange::Canonicalize() {
1519   return (from().Equals(to())) ? value() : this;
1520 }
1521 
1522 
Canonicalize()1523 HValue* HWrapReceiver::Canonicalize() {
1524   if (HasNoUses()) return NULL;
1525   if (receiver()->type().IsJSObject()) {
1526     return receiver();
1527   }
1528   return this;
1529 }
1530 
1531 
PrintDataTo(StringStream * stream)1532 void HTypeof::PrintDataTo(StringStream* stream) {
1533   value()->PrintNameTo(stream);
1534 }
1535 
1536 
New(Zone * zone,HValue * context,HValue * value,Representation representation)1537 HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
1538        HValue* value, Representation representation) {
1539   if (FLAG_fold_constants && value->IsConstant()) {
1540     HConstant* c = HConstant::cast(value);
1541     if (c->HasNumberValue()) {
1542       double double_res = c->DoubleValue();
1543       if (representation.IsDouble()) {
1544         return HConstant::New(zone, context, double_res);
1545 
1546       } else if (representation.CanContainDouble(double_res)) {
1547         return HConstant::New(zone, context,
1548                               static_cast<int32_t>(double_res),
1549                               representation);
1550       }
1551     }
1552   }
1553   return new(zone) HForceRepresentation(value, representation);
1554 }
1555 
1556 
PrintDataTo(StringStream * stream)1557 void HForceRepresentation::PrintDataTo(StringStream* stream) {
1558   stream->Add("%s ", representation().Mnemonic());
1559   value()->PrintNameTo(stream);
1560 }
1561 
1562 
PrintDataTo(StringStream * stream)1563 void HChange::PrintDataTo(StringStream* stream) {
1564   HUnaryOperation::PrintDataTo(stream);
1565   stream->Add(" %s to %s", from().Mnemonic(), to().Mnemonic());
1566 
1567   if (CanTruncateToSmi()) stream->Add(" truncating-smi");
1568   if (CanTruncateToInt32()) stream->Add(" truncating-int32");
1569   if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
1570   if (CheckFlag(kAllowUndefinedAsNaN)) stream->Add(" allow-undefined-as-nan");
1571 }
1572 
1573 
Canonicalize()1574 HValue* HUnaryMathOperation::Canonicalize() {
1575   if (op() == kMathRound || op() == kMathFloor) {
1576     HValue* val = value();
1577     if (val->IsChange()) val = HChange::cast(val)->value();
1578     if (val->representation().IsSmiOrInteger32()) {
1579       if (val->representation().Equals(representation())) return val;
1580       return Prepend(new(block()->zone()) HChange(
1581           val, representation(), false, false));
1582     }
1583   }
1584   if (op() == kMathFloor && value()->IsDiv() && value()->UseCount() == 1) {
1585     HDiv* hdiv = HDiv::cast(value());
1586 
1587     HValue* left = hdiv->left();
1588     if (left->representation().IsInteger32()) {
1589       // A value with an integer representation does not need to be transformed.
1590     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
1591       // A change from an integer32 can be replaced by the integer32 value.
1592       left = HChange::cast(left)->value();
1593     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
1594       left = Prepend(new(block()->zone()) HChange(
1595           left, Representation::Integer32(), false, false));
1596     } else {
1597       return this;
1598     }
1599 
1600     HValue* right = hdiv->right();
1601     if (right->IsInteger32Constant()) {
1602       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
1603           Representation::Integer32(), right->block()->zone()));
1604     } else if (right->representation().IsInteger32()) {
1605       // A value with an integer representation does not need to be transformed.
1606     } else if (right->IsChange() &&
1607                HChange::cast(right)->from().IsInteger32()) {
1608       // A change from an integer32 can be replaced by the integer32 value.
1609       right = HChange::cast(right)->value();
1610     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
1611       right = Prepend(new(block()->zone()) HChange(
1612           right, Representation::Integer32(), false, false));
1613     } else {
1614       return this;
1615     }
1616 
1617     return Prepend(HMathFloorOfDiv::New(
1618         block()->zone(), context(), left, right));
1619   }
1620   return this;
1621 }
1622 
1623 
Canonicalize()1624 HValue* HCheckInstanceType::Canonicalize() {
1625   if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
1626       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
1627       (check_ == IS_STRING && value()->type().IsString())) {
1628     return value();
1629   }
1630 
1631   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
1632     if (HConstant::cast(value())->HasInternalizedStringValue()) {
1633       return value();
1634     }
1635   }
1636   return this;
1637 }
1638 
1639 
GetCheckInterval(InstanceType * first,InstanceType * last)1640 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
1641                                           InstanceType* last) {
1642   ASSERT(is_interval_check());
1643   switch (check_) {
1644     case IS_SPEC_OBJECT:
1645       *first = FIRST_SPEC_OBJECT_TYPE;
1646       *last = LAST_SPEC_OBJECT_TYPE;
1647       return;
1648     case IS_JS_ARRAY:
1649       *first = *last = JS_ARRAY_TYPE;
1650       return;
1651     default:
1652       UNREACHABLE();
1653   }
1654 }
1655 
1656 
GetCheckMaskAndTag(uint8_t * mask,uint8_t * tag)1657 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
1658   ASSERT(!is_interval_check());
1659   switch (check_) {
1660     case IS_STRING:
1661       *mask = kIsNotStringMask;
1662       *tag = kStringTag;
1663       return;
1664     case IS_INTERNALIZED_STRING:
1665       *mask = kIsNotStringMask | kIsNotInternalizedMask;
1666       *tag = kInternalizedTag;
1667       return;
1668     default:
1669       UNREACHABLE();
1670   }
1671 }
1672 
1673 
PrintDataTo(StringStream * stream)1674 void HCheckMaps::PrintDataTo(StringStream* stream) {
1675   value()->PrintNameTo(stream);
1676   stream->Add(" [%p", *maps()->at(0).handle());
1677   for (int i = 1; i < maps()->size(); ++i) {
1678     stream->Add(",%p", *maps()->at(i).handle());
1679   }
1680   stream->Add("]%s", IsStabilityCheck() ? "(stability-check)" : "");
1681 }
1682 
1683 
Canonicalize()1684 HValue* HCheckMaps::Canonicalize() {
1685   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
1686     HConstant* c_value = HConstant::cast(value());
1687     if (c_value->HasObjectMap()) {
1688       for (int i = 0; i < maps()->size(); ++i) {
1689         if (c_value->ObjectMap() == maps()->at(i)) {
1690           if (maps()->size() > 1) {
1691             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
1692                     maps()->at(i), block()->graph()->zone()));
1693           }
1694           MarkAsStabilityCheck();
1695           break;
1696         }
1697       }
1698     }
1699   }
1700   return this;
1701 }
1702 
1703 
PrintDataTo(StringStream * stream)1704 void HCheckValue::PrintDataTo(StringStream* stream) {
1705   value()->PrintNameTo(stream);
1706   stream->Add(" ");
1707   object().handle()->ShortPrint(stream);
1708 }
1709 
1710 
Canonicalize()1711 HValue* HCheckValue::Canonicalize() {
1712   return (value()->IsConstant() &&
1713           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
1714 }
1715 
1716 
GetCheckName()1717 const char* HCheckInstanceType::GetCheckName() {
1718   switch (check_) {
1719     case IS_SPEC_OBJECT: return "object";
1720     case IS_JS_ARRAY: return "array";
1721     case IS_STRING: return "string";
1722     case IS_INTERNALIZED_STRING: return "internalized_string";
1723   }
1724   UNREACHABLE();
1725   return "";
1726 }
1727 
1728 
PrintDataTo(StringStream * stream)1729 void HCheckInstanceType::PrintDataTo(StringStream* stream) {
1730   stream->Add("%s ", GetCheckName());
1731   HUnaryOperation::PrintDataTo(stream);
1732 }
1733 
1734 
PrintDataTo(StringStream * stream)1735 void HCallStub::PrintDataTo(StringStream* stream) {
1736   stream->Add("%s ",
1737               CodeStub::MajorName(major_key_, false));
1738   HUnaryCall::PrintDataTo(stream);
1739 }
1740 
1741 
PrintDataTo(StringStream * stream)1742 void HUnknownOSRValue::PrintDataTo(StringStream *stream) {
1743   const char* type = "expression";
1744   if (environment_->is_local_index(index_)) type = "local";
1745   if (environment_->is_special_index(index_)) type = "special";
1746   if (environment_->is_parameter_index(index_)) type = "parameter";
1747   stream->Add("%s @ %d", type, index_);
1748 }
1749 
1750 
PrintDataTo(StringStream * stream)1751 void HInstanceOf::PrintDataTo(StringStream* stream) {
1752   left()->PrintNameTo(stream);
1753   stream->Add(" ");
1754   right()->PrintNameTo(stream);
1755   stream->Add(" ");
1756   context()->PrintNameTo(stream);
1757 }
1758 
1759 
InferRange(Zone * zone)1760 Range* HValue::InferRange(Zone* zone) {
1761   Range* result;
1762   if (representation().IsSmi() || type().IsSmi()) {
1763     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
1764     result->set_can_be_minus_zero(false);
1765   } else {
1766     result = new(zone) Range();
1767     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
1768     // TODO(jkummerow): The range cannot be minus zero when the upper type
1769     // bound is Integer32.
1770   }
1771   return result;
1772 }
1773 
1774 
InferRange(Zone * zone)1775 Range* HChange::InferRange(Zone* zone) {
1776   Range* input_range = value()->range();
1777   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
1778       (to().IsSmi() ||
1779        (to().IsTagged() &&
1780         input_range != NULL &&
1781         input_range->IsInSmiRange()))) {
1782     set_type(HType::Smi());
1783     ClearChangesFlag(kNewSpacePromotion);
1784   }
1785   if (to().IsSmiOrTagged() &&
1786       input_range != NULL &&
1787       input_range->IsInSmiRange() &&
1788       (!SmiValuesAre32Bits() ||
1789        !value()->CheckFlag(HValue::kUint32) ||
1790        input_range->upper() != kMaxInt)) {
1791     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
1792     // interval, so we treat kMaxInt as a sentinel for this entire interval.
1793     ClearFlag(kCanOverflow);
1794   }
1795   Range* result = (input_range != NULL)
1796       ? input_range->Copy(zone)
1797       : HValue::InferRange(zone);
1798   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
1799                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
1800                                   CheckFlag(kAllUsesTruncatingToSmi)));
1801   if (to().IsSmi()) result->ClampToSmi();
1802   return result;
1803 }
1804 
1805 
InferRange(Zone * zone)1806 Range* HConstant::InferRange(Zone* zone) {
1807   if (has_int32_value_) {
1808     Range* result = new(zone) Range(int32_value_, int32_value_);
1809     result->set_can_be_minus_zero(false);
1810     return result;
1811   }
1812   return HValue::InferRange(zone);
1813 }
1814 
1815 
position() const1816 HSourcePosition HPhi::position() const {
1817   return block()->first()->position();
1818 }
1819 
1820 
InferRange(Zone * zone)1821 Range* HPhi::InferRange(Zone* zone) {
1822   Representation r = representation();
1823   if (r.IsSmiOrInteger32()) {
1824     if (block()->IsLoopHeader()) {
1825       Range* range = r.IsSmi()
1826           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
1827           : new(zone) Range(kMinInt, kMaxInt);
1828       return range;
1829     } else {
1830       Range* range = OperandAt(0)->range()->Copy(zone);
1831       for (int i = 1; i < OperandCount(); ++i) {
1832         range->Union(OperandAt(i)->range());
1833       }
1834       return range;
1835     }
1836   } else {
1837     return HValue::InferRange(zone);
1838   }
1839 }
1840 
1841 
InferRange(Zone * zone)1842 Range* HAdd::InferRange(Zone* zone) {
1843   Representation r = representation();
1844   if (r.IsSmiOrInteger32()) {
1845     Range* a = left()->range();
1846     Range* b = right()->range();
1847     Range* res = a->Copy(zone);
1848     if (!res->AddAndCheckOverflow(r, b) ||
1849         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1850         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1851       ClearFlag(kCanOverflow);
1852     }
1853     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1854                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1855                                a->CanBeMinusZero() && b->CanBeMinusZero());
1856     return res;
1857   } else {
1858     return HValue::InferRange(zone);
1859   }
1860 }
1861 
1862 
InferRange(Zone * zone)1863 Range* HSub::InferRange(Zone* zone) {
1864   Representation r = representation();
1865   if (r.IsSmiOrInteger32()) {
1866     Range* a = left()->range();
1867     Range* b = right()->range();
1868     Range* res = a->Copy(zone);
1869     if (!res->SubAndCheckOverflow(r, b) ||
1870         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1871         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1872       ClearFlag(kCanOverflow);
1873     }
1874     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1875                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1876                                a->CanBeMinusZero() && b->CanBeZero());
1877     return res;
1878   } else {
1879     return HValue::InferRange(zone);
1880   }
1881 }
1882 
1883 
InferRange(Zone * zone)1884 Range* HMul::InferRange(Zone* zone) {
1885   Representation r = representation();
1886   if (r.IsSmiOrInteger32()) {
1887     Range* a = left()->range();
1888     Range* b = right()->range();
1889     Range* res = a->Copy(zone);
1890     if (!res->MulAndCheckOverflow(r, b) ||
1891         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1892          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
1893          MulMinusOne())) {
1894       // Truncated int multiplication is too precise and therefore not the
1895       // same as converting to Double and back.
1896       // Handle truncated integer multiplication by -1 special.
1897       ClearFlag(kCanOverflow);
1898     }
1899     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1900                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1901                                ((a->CanBeZero() && b->CanBeNegative()) ||
1902                                 (a->CanBeNegative() && b->CanBeZero())));
1903     return res;
1904   } else {
1905     return HValue::InferRange(zone);
1906   }
1907 }
1908 
1909 
InferRange(Zone * zone)1910 Range* HDiv::InferRange(Zone* zone) {
1911   if (representation().IsInteger32()) {
1912     Range* a = left()->range();
1913     Range* b = right()->range();
1914     Range* result = new(zone) Range();
1915     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1916                                   (a->CanBeMinusZero() ||
1917                                    (a->CanBeZero() && b->CanBeNegative())));
1918     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1919       ClearFlag(kCanOverflow);
1920     }
1921 
1922     if (!b->CanBeZero()) {
1923       ClearFlag(kCanBeDivByZero);
1924     }
1925     return result;
1926   } else {
1927     return HValue::InferRange(zone);
1928   }
1929 }
1930 
1931 
InferRange(Zone * zone)1932 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
1933   if (representation().IsInteger32()) {
1934     Range* a = left()->range();
1935     Range* b = right()->range();
1936     Range* result = new(zone) Range();
1937     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1938                                   (a->CanBeMinusZero() ||
1939                                    (a->CanBeZero() && b->CanBeNegative())));
1940     if (!a->Includes(kMinInt)) {
1941       ClearFlag(kLeftCanBeMinInt);
1942     }
1943 
1944     if (!a->CanBeNegative()) {
1945       ClearFlag(HValue::kLeftCanBeNegative);
1946     }
1947 
1948     if (!a->CanBePositive()) {
1949       ClearFlag(HValue::kLeftCanBePositive);
1950     }
1951 
1952     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1953       ClearFlag(kCanOverflow);
1954     }
1955 
1956     if (!b->CanBeZero()) {
1957       ClearFlag(kCanBeDivByZero);
1958     }
1959     return result;
1960   } else {
1961     return HValue::InferRange(zone);
1962   }
1963 }
1964 
1965 
InferRange(Zone * zone)1966 Range* HMod::InferRange(Zone* zone) {
1967   if (representation().IsInteger32()) {
1968     Range* a = left()->range();
1969     Range* b = right()->range();
1970 
1971     // The magnitude of the modulus is bounded by the right operand. Note that
1972     // apart for the cases involving kMinInt, the calculation below is the same
1973     // as Max(Abs(b->lower()), Abs(b->upper())) - 1.
1974     int32_t positive_bound = -(Min(NegAbs(b->lower()), NegAbs(b->upper())) + 1);
1975 
1976     // The result of the modulo operation has the sign of its left operand.
1977     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
1978     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
1979                                     a->CanBePositive() ? positive_bound : 0);
1980 
1981     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1982                                   left_can_be_negative);
1983 
1984     if (!a->CanBeNegative()) {
1985       ClearFlag(HValue::kLeftCanBeNegative);
1986     }
1987 
1988     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1989       ClearFlag(HValue::kCanOverflow);
1990     }
1991 
1992     if (!b->CanBeZero()) {
1993       ClearFlag(HValue::kCanBeDivByZero);
1994     }
1995     return result;
1996   } else {
1997     return HValue::InferRange(zone);
1998   }
1999 }
2000 
2001 
ExaminePhi(HPhi * phi)2002 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
2003   if (phi->block()->loop_information() == NULL) return NULL;
2004   if (phi->OperandCount() != 2) return NULL;
2005   int32_t candidate_increment;
2006 
2007   candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
2008   if (candidate_increment != 0) {
2009     return new(phi->block()->graph()->zone())
2010         InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
2011   }
2012 
2013   candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
2014   if (candidate_increment != 0) {
2015     return new(phi->block()->graph()->zone())
2016         InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
2017   }
2018 
2019   return NULL;
2020 }
2021 
2022 
2023 /*
2024  * This function tries to match the following patterns (and all the relevant
2025  * variants related to |, & and + being commutative):
2026  * base | constant_or_mask
2027  * base & constant_and_mask
2028  * (base + constant_offset) & constant_and_mask
2029  * (base - constant_offset) & constant_and_mask
2030  */
DecomposeBitwise(HValue * value,BitwiseDecompositionResult * result)2031 void InductionVariableData::DecomposeBitwise(
2032     HValue* value,
2033     BitwiseDecompositionResult* result) {
2034   HValue* base = IgnoreOsrValue(value);
2035   result->base = value;
2036 
2037   if (!base->representation().IsInteger32()) return;
2038 
2039   if (base->IsBitwise()) {
2040     bool allow_offset = false;
2041     int32_t mask = 0;
2042 
2043     HBitwise* bitwise = HBitwise::cast(base);
2044     if (bitwise->right()->IsInteger32Constant()) {
2045       mask = bitwise->right()->GetInteger32Constant();
2046       base = bitwise->left();
2047     } else if (bitwise->left()->IsInteger32Constant()) {
2048       mask = bitwise->left()->GetInteger32Constant();
2049       base = bitwise->right();
2050     } else {
2051       return;
2052     }
2053     if (bitwise->op() == Token::BIT_AND) {
2054       result->and_mask = mask;
2055       allow_offset = true;
2056     } else if (bitwise->op() == Token::BIT_OR) {
2057       result->or_mask = mask;
2058     } else {
2059       return;
2060     }
2061 
2062     result->context = bitwise->context();
2063 
2064     if (allow_offset) {
2065       if (base->IsAdd()) {
2066         HAdd* add = HAdd::cast(base);
2067         if (add->right()->IsInteger32Constant()) {
2068           base = add->left();
2069         } else if (add->left()->IsInteger32Constant()) {
2070           base = add->right();
2071         }
2072       } else if (base->IsSub()) {
2073         HSub* sub = HSub::cast(base);
2074         if (sub->right()->IsInteger32Constant()) {
2075           base = sub->left();
2076         }
2077       }
2078     }
2079 
2080     result->base = base;
2081   }
2082 }
2083 
2084 
AddCheck(HBoundsCheck * check,int32_t upper_limit)2085 void InductionVariableData::AddCheck(HBoundsCheck* check,
2086                                      int32_t upper_limit) {
2087   ASSERT(limit_validity() != NULL);
2088   if (limit_validity() != check->block() &&
2089       !limit_validity()->Dominates(check->block())) return;
2090   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2091       check->block()->current_loop())) return;
2092 
2093   ChecksRelatedToLength* length_checks = checks();
2094   while (length_checks != NULL) {
2095     if (length_checks->length() == check->length()) break;
2096     length_checks = length_checks->next();
2097   }
2098   if (length_checks == NULL) {
2099     length_checks = new(check->block()->zone())
2100         ChecksRelatedToLength(check->length(), checks());
2101     checks_ = length_checks;
2102   }
2103 
2104   length_checks->AddCheck(check, upper_limit);
2105 }
2106 
2107 
CloseCurrentBlock()2108 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
2109   if (checks() != NULL) {
2110     InductionVariableCheck* c = checks();
2111     HBasicBlock* current_block = c->check()->block();
2112     while (c != NULL && c->check()->block() == current_block) {
2113       c->set_upper_limit(current_upper_limit_);
2114       c = c->next();
2115     }
2116   }
2117 }
2118 
2119 
UseNewIndexInCurrentBlock(Token::Value token,int32_t mask,HValue * index_base,HValue * context)2120 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
2121     Token::Value token,
2122     int32_t mask,
2123     HValue* index_base,
2124     HValue* context) {
2125   ASSERT(first_check_in_block() != NULL);
2126   HValue* previous_index = first_check_in_block()->index();
2127   ASSERT(context != NULL);
2128 
2129   Zone* zone = index_base->block()->graph()->zone();
2130   set_added_constant(HConstant::New(zone, context, mask));
2131   if (added_index() != NULL) {
2132     added_constant()->InsertBefore(added_index());
2133   } else {
2134     added_constant()->InsertBefore(first_check_in_block());
2135   }
2136 
2137   if (added_index() == NULL) {
2138     first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
2139     HInstruction* new_index =  HBitwise::New(zone, context, token, index_base,
2140                                              added_constant());
2141     ASSERT(new_index->IsBitwise());
2142     new_index->ClearAllSideEffects();
2143     new_index->AssumeRepresentation(Representation::Integer32());
2144     set_added_index(HBitwise::cast(new_index));
2145     added_index()->InsertBefore(first_check_in_block());
2146   }
2147   ASSERT(added_index()->op() == token);
2148 
2149   added_index()->SetOperandAt(1, index_base);
2150   added_index()->SetOperandAt(2, added_constant());
2151   first_check_in_block()->SetOperandAt(0, added_index());
2152   if (previous_index->UseCount() == 0) {
2153     previous_index->DeleteAndReplaceWith(NULL);
2154   }
2155 }
2156 
AddCheck(HBoundsCheck * check,int32_t upper_limit)2157 void InductionVariableData::ChecksRelatedToLength::AddCheck(
2158     HBoundsCheck* check,
2159     int32_t upper_limit) {
2160   BitwiseDecompositionResult decomposition;
2161   InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
2162 
2163   if (first_check_in_block() == NULL ||
2164       first_check_in_block()->block() != check->block()) {
2165     CloseCurrentBlock();
2166 
2167     first_check_in_block_ = check;
2168     set_added_index(NULL);
2169     set_added_constant(NULL);
2170     current_and_mask_in_block_ = decomposition.and_mask;
2171     current_or_mask_in_block_ = decomposition.or_mask;
2172     current_upper_limit_ = upper_limit;
2173 
2174     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2175         InductionVariableCheck(check, checks_, upper_limit);
2176     checks_ = new_check;
2177     return;
2178   }
2179 
2180   if (upper_limit > current_upper_limit()) {
2181     current_upper_limit_ = upper_limit;
2182   }
2183 
2184   if (decomposition.and_mask != 0 &&
2185       current_or_mask_in_block() == 0) {
2186     if (current_and_mask_in_block() == 0 ||
2187         decomposition.and_mask > current_and_mask_in_block()) {
2188       UseNewIndexInCurrentBlock(Token::BIT_AND,
2189                                 decomposition.and_mask,
2190                                 decomposition.base,
2191                                 decomposition.context);
2192       current_and_mask_in_block_ = decomposition.and_mask;
2193     }
2194     check->set_skip_check();
2195   }
2196   if (current_and_mask_in_block() == 0) {
2197     if (decomposition.or_mask > current_or_mask_in_block()) {
2198       UseNewIndexInCurrentBlock(Token::BIT_OR,
2199                                 decomposition.or_mask,
2200                                 decomposition.base,
2201                                 decomposition.context);
2202       current_or_mask_in_block_ = decomposition.or_mask;
2203     }
2204     check->set_skip_check();
2205   }
2206 
2207   if (!check->skip_check()) {
2208     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2209         InductionVariableCheck(check, checks_, upper_limit);
2210     checks_ = new_check;
2211   }
2212 }
2213 
2214 
2215 /*
2216  * This method detects if phi is an induction variable, with phi_operand as
2217  * its "incremented" value (the other operand would be the "base" value).
2218  *
2219  * It cheks is phi_operand has the form "phi + constant".
2220  * If yes, the constant is the increment that the induction variable gets at
2221  * every loop iteration.
2222  * Otherwise it returns 0.
2223  */
ComputeIncrement(HPhi * phi,HValue * phi_operand)2224 int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
2225                                                 HValue* phi_operand) {
2226   if (!phi_operand->representation().IsInteger32()) return 0;
2227 
2228   if (phi_operand->IsAdd()) {
2229     HAdd* operation = HAdd::cast(phi_operand);
2230     if (operation->left() == phi &&
2231         operation->right()->IsInteger32Constant()) {
2232       return operation->right()->GetInteger32Constant();
2233     } else if (operation->right() == phi &&
2234                operation->left()->IsInteger32Constant()) {
2235       return operation->left()->GetInteger32Constant();
2236     }
2237   } else if (phi_operand->IsSub()) {
2238     HSub* operation = HSub::cast(phi_operand);
2239     if (operation->left() == phi &&
2240         operation->right()->IsInteger32Constant()) {
2241       return -operation->right()->GetInteger32Constant();
2242     }
2243   }
2244 
2245   return 0;
2246 }
2247 
2248 
2249 /*
2250  * Swaps the information in "update" with the one contained in "this".
2251  * The swapping is important because this method is used while doing a
2252  * dominator tree traversal, and "update" will retain the old data that
2253  * will be restored while backtracking.
2254  */
UpdateAdditionalLimit(InductionVariableLimitUpdate * update)2255 void InductionVariableData::UpdateAdditionalLimit(
2256     InductionVariableLimitUpdate* update) {
2257   ASSERT(update->updated_variable == this);
2258   if (update->limit_is_upper) {
2259     swap(&additional_upper_limit_, &update->limit);
2260     swap(&additional_upper_limit_is_included_, &update->limit_is_included);
2261   } else {
2262     swap(&additional_lower_limit_, &update->limit);
2263     swap(&additional_lower_limit_is_included_, &update->limit_is_included);
2264   }
2265 }
2266 
2267 
ComputeUpperLimit(int32_t and_mask,int32_t or_mask)2268 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
2269                                                  int32_t or_mask) {
2270   // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
2271   const int32_t MAX_LIMIT = 1 << 30;
2272 
2273   int32_t result = MAX_LIMIT;
2274 
2275   if (limit() != NULL &&
2276       limit()->IsInteger32Constant()) {
2277     int32_t limit_value = limit()->GetInteger32Constant();
2278     if (!limit_included()) {
2279       limit_value--;
2280     }
2281     if (limit_value < result) result = limit_value;
2282   }
2283 
2284   if (additional_upper_limit() != NULL &&
2285       additional_upper_limit()->IsInteger32Constant()) {
2286     int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
2287     if (!additional_upper_limit_is_included()) {
2288       limit_value--;
2289     }
2290     if (limit_value < result) result = limit_value;
2291   }
2292 
2293   if (and_mask > 0 && and_mask < MAX_LIMIT) {
2294     if (and_mask < result) result = and_mask;
2295     return result;
2296   }
2297 
2298   // Add the effect of the or_mask.
2299   result |= or_mask;
2300 
2301   return result >= MAX_LIMIT ? kNoLimit : result;
2302 }
2303 
2304 
IgnoreOsrValue(HValue * v)2305 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
2306   if (!v->IsPhi()) return v;
2307   HPhi* phi = HPhi::cast(v);
2308   if (phi->OperandCount() != 2) return v;
2309   if (phi->OperandAt(0)->block()->is_osr_entry()) {
2310     return phi->OperandAt(1);
2311   } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
2312     return phi->OperandAt(0);
2313   } else {
2314     return v;
2315   }
2316 }
2317 
2318 
GetInductionVariableData(HValue * v)2319 InductionVariableData* InductionVariableData::GetInductionVariableData(
2320     HValue* v) {
2321   v = IgnoreOsrValue(v);
2322   if (v->IsPhi()) {
2323     return HPhi::cast(v)->induction_variable_data();
2324   }
2325   return NULL;
2326 }
2327 
2328 
2329 /*
2330  * Check if a conditional branch to "current_branch" with token "token" is
2331  * the branch that keeps the induction loop running (and, conversely, will
2332  * terminate it if the "other_branch" is taken).
2333  *
2334  * Three conditions must be met:
2335  * - "current_branch" must be in the induction loop.
2336  * - "other_branch" must be out of the induction loop.
2337  * - "token" and the induction increment must be "compatible": the token should
2338  *   be a condition that keeps the execution inside the loop until the limit is
2339  *   reached.
2340  */
CheckIfBranchIsLoopGuard(Token::Value token,HBasicBlock * current_branch,HBasicBlock * other_branch)2341 bool InductionVariableData::CheckIfBranchIsLoopGuard(
2342     Token::Value token,
2343     HBasicBlock* current_branch,
2344     HBasicBlock* other_branch) {
2345   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2346       current_branch->current_loop())) {
2347     return false;
2348   }
2349 
2350   if (phi()->block()->current_loop()->IsNestedInThisLoop(
2351       other_branch->current_loop())) {
2352     return false;
2353   }
2354 
2355   if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
2356     return true;
2357   }
2358   if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
2359     return true;
2360   }
2361   if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
2362     return true;
2363   }
2364 
2365   return false;
2366 }
2367 
2368 
ComputeLimitFromPredecessorBlock(HBasicBlock * block,LimitFromPredecessorBlock * result)2369 void InductionVariableData::ComputeLimitFromPredecessorBlock(
2370     HBasicBlock* block,
2371     LimitFromPredecessorBlock* result) {
2372   if (block->predecessors()->length() != 1) return;
2373   HBasicBlock* predecessor = block->predecessors()->at(0);
2374   HInstruction* end = predecessor->last();
2375 
2376   if (!end->IsCompareNumericAndBranch()) return;
2377   HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
2378 
2379   Token::Value token = branch->token();
2380   if (!Token::IsArithmeticCompareOp(token)) return;
2381 
2382   HBasicBlock* other_target;
2383   if (block == branch->SuccessorAt(0)) {
2384     other_target = branch->SuccessorAt(1);
2385   } else {
2386     other_target = branch->SuccessorAt(0);
2387     token = Token::NegateCompareOp(token);
2388     ASSERT(block == branch->SuccessorAt(1));
2389   }
2390 
2391   InductionVariableData* data;
2392 
2393   data = GetInductionVariableData(branch->left());
2394   HValue* limit = branch->right();
2395   if (data == NULL) {
2396     data = GetInductionVariableData(branch->right());
2397     token = Token::ReverseCompareOp(token);
2398     limit = branch->left();
2399   }
2400 
2401   if (data != NULL) {
2402     result->variable = data;
2403     result->token = token;
2404     result->limit = limit;
2405     result->other_target = other_target;
2406   }
2407 }
2408 
2409 
2410 /*
2411  * Compute the limit that is imposed on an induction variable when entering
2412  * "block" (if any).
2413  * If the limit is the "proper" induction limit (the one that makes the loop
2414  * terminate when the induction variable reaches it) it is stored directly in
2415  * the induction variable data.
2416  * Otherwise the limit is written in "additional_limit" and the method
2417  * returns true.
2418  */
ComputeInductionVariableLimit(HBasicBlock * block,InductionVariableLimitUpdate * additional_limit)2419 bool InductionVariableData::ComputeInductionVariableLimit(
2420     HBasicBlock* block,
2421     InductionVariableLimitUpdate* additional_limit) {
2422   LimitFromPredecessorBlock limit;
2423   ComputeLimitFromPredecessorBlock(block, &limit);
2424   if (!limit.LimitIsValid()) return false;
2425 
2426   if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
2427                                                block,
2428                                                limit.other_target)) {
2429     limit.variable->limit_ = limit.limit;
2430     limit.variable->limit_included_ = limit.LimitIsIncluded();
2431     limit.variable->limit_validity_ = block;
2432     limit.variable->induction_exit_block_ = block->predecessors()->at(0);
2433     limit.variable->induction_exit_target_ = limit.other_target;
2434     return false;
2435   } else {
2436     additional_limit->updated_variable = limit.variable;
2437     additional_limit->limit = limit.limit;
2438     additional_limit->limit_is_upper = limit.LimitIsUpper();
2439     additional_limit->limit_is_included = limit.LimitIsIncluded();
2440     return true;
2441   }
2442 }
2443 
2444 
InferRange(Zone * zone)2445 Range* HMathMinMax::InferRange(Zone* zone) {
2446   if (representation().IsSmiOrInteger32()) {
2447     Range* a = left()->range();
2448     Range* b = right()->range();
2449     Range* res = a->Copy(zone);
2450     if (operation_ == kMathMax) {
2451       res->CombinedMax(b);
2452     } else {
2453       ASSERT(operation_ == kMathMin);
2454       res->CombinedMin(b);
2455     }
2456     return res;
2457   } else {
2458     return HValue::InferRange(zone);
2459   }
2460 }
2461 
2462 
AddInput(HValue * value)2463 void HPushArguments::AddInput(HValue* value) {
2464   inputs_.Add(NULL, value->block()->zone());
2465   SetOperandAt(OperandCount() - 1, value);
2466 }
2467 
2468 
PrintTo(StringStream * stream)2469 void HPhi::PrintTo(StringStream* stream) {
2470   stream->Add("[");
2471   for (int i = 0; i < OperandCount(); ++i) {
2472     HValue* value = OperandAt(i);
2473     stream->Add(" ");
2474     value->PrintNameTo(stream);
2475     stream->Add(" ");
2476   }
2477   stream->Add(" uses:%d_%ds_%di_%dd_%dt",
2478               UseCount(),
2479               smi_non_phi_uses() + smi_indirect_uses(),
2480               int32_non_phi_uses() + int32_indirect_uses(),
2481               double_non_phi_uses() + double_indirect_uses(),
2482               tagged_non_phi_uses() + tagged_indirect_uses());
2483   PrintTypeTo(stream);
2484   stream->Add("]");
2485 }
2486 
2487 
AddInput(HValue * value)2488 void HPhi::AddInput(HValue* value) {
2489   inputs_.Add(NULL, value->block()->zone());
2490   SetOperandAt(OperandCount() - 1, value);
2491   // Mark phis that may have 'arguments' directly or indirectly as an operand.
2492   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
2493     SetFlag(kIsArguments);
2494   }
2495 }
2496 
2497 
HasRealUses()2498 bool HPhi::HasRealUses() {
2499   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2500     if (!it.value()->IsPhi()) return true;
2501   }
2502   return false;
2503 }
2504 
2505 
GetRedundantReplacement()2506 HValue* HPhi::GetRedundantReplacement() {
2507   HValue* candidate = NULL;
2508   int count = OperandCount();
2509   int position = 0;
2510   while (position < count && candidate == NULL) {
2511     HValue* current = OperandAt(position++);
2512     if (current != this) candidate = current;
2513   }
2514   while (position < count) {
2515     HValue* current = OperandAt(position++);
2516     if (current != this && current != candidate) return NULL;
2517   }
2518   ASSERT(candidate != this);
2519   return candidate;
2520 }
2521 
2522 
DeleteFromGraph()2523 void HPhi::DeleteFromGraph() {
2524   ASSERT(block() != NULL);
2525   block()->RemovePhi(this);
2526   ASSERT(block() == NULL);
2527 }
2528 
2529 
InitRealUses(int phi_id)2530 void HPhi::InitRealUses(int phi_id) {
2531   // Initialize real uses.
2532   phi_id_ = phi_id;
2533   // Compute a conservative approximation of truncating uses before inferring
2534   // representations. The proper, exact computation will be done later, when
2535   // inserting representation changes.
2536   SetFlag(kTruncatingToSmi);
2537   SetFlag(kTruncatingToInt32);
2538   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2539     HValue* value = it.value();
2540     if (!value->IsPhi()) {
2541       Representation rep = value->observed_input_representation(it.index());
2542       non_phi_uses_[rep.kind()] += 1;
2543       if (FLAG_trace_representation) {
2544         PrintF("#%d Phi is used by real #%d %s as %s\n",
2545                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
2546       }
2547       if (!value->IsSimulate()) {
2548         if (!value->CheckFlag(kTruncatingToSmi)) {
2549           ClearFlag(kTruncatingToSmi);
2550         }
2551         if (!value->CheckFlag(kTruncatingToInt32)) {
2552           ClearFlag(kTruncatingToInt32);
2553         }
2554       }
2555     }
2556   }
2557 }
2558 
2559 
AddNonPhiUsesFrom(HPhi * other)2560 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
2561   if (FLAG_trace_representation) {
2562     PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
2563            id(), other->id(),
2564            other->non_phi_uses_[Representation::kSmi],
2565            other->non_phi_uses_[Representation::kInteger32],
2566            other->non_phi_uses_[Representation::kDouble],
2567            other->non_phi_uses_[Representation::kTagged]);
2568   }
2569 
2570   for (int i = 0; i < Representation::kNumRepresentations; i++) {
2571     indirect_uses_[i] += other->non_phi_uses_[i];
2572   }
2573 }
2574 
2575 
AddIndirectUsesTo(int * dest)2576 void HPhi::AddIndirectUsesTo(int* dest) {
2577   for (int i = 0; i < Representation::kNumRepresentations; i++) {
2578     dest[i] += indirect_uses_[i];
2579   }
2580 }
2581 
2582 
MergeWith(ZoneList<HSimulate * > * list)2583 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
2584   while (!list->is_empty()) {
2585     HSimulate* from = list->RemoveLast();
2586     ZoneList<HValue*>* from_values = &from->values_;
2587     for (int i = 0; i < from_values->length(); ++i) {
2588       if (from->HasAssignedIndexAt(i)) {
2589         int index = from->GetAssignedIndexAt(i);
2590         if (HasValueForIndex(index)) continue;
2591         AddAssignedValue(index, from_values->at(i));
2592       } else {
2593         if (pop_count_ > 0) {
2594           pop_count_--;
2595         } else {
2596           AddPushedValue(from_values->at(i));
2597         }
2598       }
2599     }
2600     pop_count_ += from->pop_count_;
2601     from->DeleteAndReplaceWith(NULL);
2602   }
2603 }
2604 
2605 
PrintDataTo(StringStream * stream)2606 void HSimulate::PrintDataTo(StringStream* stream) {
2607   stream->Add("id=%d", ast_id().ToInt());
2608   if (pop_count_ > 0) stream->Add(" pop %d", pop_count_);
2609   if (values_.length() > 0) {
2610     if (pop_count_ > 0) stream->Add(" /");
2611     for (int i = values_.length() - 1; i >= 0; --i) {
2612       if (HasAssignedIndexAt(i)) {
2613         stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
2614       } else {
2615         stream->Add(" push ");
2616       }
2617       values_[i]->PrintNameTo(stream);
2618       if (i > 0) stream->Add(",");
2619     }
2620   }
2621 }
2622 
2623 
ReplayEnvironment(HEnvironment * env)2624 void HSimulate::ReplayEnvironment(HEnvironment* env) {
2625   if (done_with_replay_) return;
2626   ASSERT(env != NULL);
2627   env->set_ast_id(ast_id());
2628   env->Drop(pop_count());
2629   for (int i = values()->length() - 1; i >= 0; --i) {
2630     HValue* value = values()->at(i);
2631     if (HasAssignedIndexAt(i)) {
2632       env->Bind(GetAssignedIndexAt(i), value);
2633     } else {
2634       env->Push(value);
2635     }
2636   }
2637   done_with_replay_ = true;
2638 }
2639 
2640 
ReplayEnvironmentNested(const ZoneList<HValue * > * values,HCapturedObject * other)2641 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
2642                                     HCapturedObject* other) {
2643   for (int i = 0; i < values->length(); ++i) {
2644     HValue* value = values->at(i);
2645     if (value->IsCapturedObject()) {
2646       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
2647         values->at(i) = other;
2648       } else {
2649         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
2650       }
2651     }
2652   }
2653 }
2654 
2655 
2656 // Replay captured objects by replacing all captured objects with the
2657 // same capture id in the current and all outer environments.
ReplayEnvironment(HEnvironment * env)2658 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
2659   ASSERT(env != NULL);
2660   while (env != NULL) {
2661     ReplayEnvironmentNested(env->values(), this);
2662     env = env->outer();
2663   }
2664 }
2665 
2666 
PrintDataTo(StringStream * stream)2667 void HCapturedObject::PrintDataTo(StringStream* stream) {
2668   stream->Add("#%d ", capture_id());
2669   HDematerializedObject::PrintDataTo(stream);
2670 }
2671 
2672 
RegisterReturnTarget(HBasicBlock * return_target,Zone * zone)2673 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
2674                                          Zone* zone) {
2675   ASSERT(return_target->IsInlineReturnTarget());
2676   return_targets_.Add(return_target, zone);
2677 }
2678 
2679 
PrintDataTo(StringStream * stream)2680 void HEnterInlined::PrintDataTo(StringStream* stream) {
2681   SmartArrayPointer<char> name = function()->debug_name()->ToCString();
2682   stream->Add("%s, id=%d", name.get(), function()->id().ToInt());
2683 }
2684 
2685 
IsInteger32(double value)2686 static bool IsInteger32(double value) {
2687   double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
2688   return BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(value);
2689 }
2690 
2691 
HConstant(Handle<Object> object,Representation r)2692 HConstant::HConstant(Handle<Object> object, Representation r)
2693   : HTemplateInstruction<0>(HType::FromValue(object)),
2694     object_(Unique<Object>::CreateUninitialized(object)),
2695     object_map_(Handle<Map>::null()),
2696     has_stable_map_value_(false),
2697     has_smi_value_(false),
2698     has_int32_value_(false),
2699     has_double_value_(false),
2700     has_external_reference_value_(false),
2701     is_not_in_new_space_(true),
2702     boolean_value_(object->BooleanValue()),
2703     is_undetectable_(false),
2704     instance_type_(kUnknownInstanceType) {
2705   if (object->IsHeapObject()) {
2706     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
2707     Isolate* isolate = heap_object->GetIsolate();
2708     Handle<Map> map(heap_object->map(), isolate);
2709     is_not_in_new_space_ = !isolate->heap()->InNewSpace(*object);
2710     instance_type_ = map->instance_type();
2711     is_undetectable_ = map->is_undetectable();
2712     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
2713     has_stable_map_value_ = (instance_type_ == MAP_TYPE &&
2714                              Handle<Map>::cast(heap_object)->is_stable());
2715   }
2716   if (object->IsNumber()) {
2717     double n = object->Number();
2718     has_int32_value_ = IsInteger32(n);
2719     int32_value_ = DoubleToInt32(n);
2720     has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2721     double_value_ = n;
2722     has_double_value_ = true;
2723     // TODO(titzer): if this heap number is new space, tenure a new one.
2724   }
2725 
2726   Initialize(r);
2727 }
2728 
2729 
HConstant(Unique<Object> object,Unique<Map> object_map,bool has_stable_map_value,Representation r,HType type,bool is_not_in_new_space,bool boolean_value,bool is_undetectable,InstanceType instance_type)2730 HConstant::HConstant(Unique<Object> object,
2731                      Unique<Map> object_map,
2732                      bool has_stable_map_value,
2733                      Representation r,
2734                      HType type,
2735                      bool is_not_in_new_space,
2736                      bool boolean_value,
2737                      bool is_undetectable,
2738                      InstanceType instance_type)
2739   : HTemplateInstruction<0>(type),
2740     object_(object),
2741     object_map_(object_map),
2742     has_stable_map_value_(has_stable_map_value),
2743     has_smi_value_(false),
2744     has_int32_value_(false),
2745     has_double_value_(false),
2746     has_external_reference_value_(false),
2747     is_not_in_new_space_(is_not_in_new_space),
2748     boolean_value_(boolean_value),
2749     is_undetectable_(is_undetectable),
2750     instance_type_(instance_type) {
2751   ASSERT(!object.handle().is_null());
2752   ASSERT(!type.IsTaggedNumber() || type.IsNone());
2753   Initialize(r);
2754 }
2755 
2756 
HConstant(int32_t integer_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2757 HConstant::HConstant(int32_t integer_value,
2758                      Representation r,
2759                      bool is_not_in_new_space,
2760                      Unique<Object> object)
2761   : object_(object),
2762     object_map_(Handle<Map>::null()),
2763     has_stable_map_value_(false),
2764     has_smi_value_(Smi::IsValid(integer_value)),
2765     has_int32_value_(true),
2766     has_double_value_(true),
2767     has_external_reference_value_(false),
2768     is_not_in_new_space_(is_not_in_new_space),
2769     boolean_value_(integer_value != 0),
2770     is_undetectable_(false),
2771     int32_value_(integer_value),
2772     double_value_(FastI2D(integer_value)),
2773     instance_type_(kUnknownInstanceType) {
2774   // It's possible to create a constant with a value in Smi-range but stored
2775   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2776   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2777   bool is_smi = has_smi_value_ && !could_be_heapobject;
2778   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2779   Initialize(r);
2780 }
2781 
2782 
HConstant(double double_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2783 HConstant::HConstant(double double_value,
2784                      Representation r,
2785                      bool is_not_in_new_space,
2786                      Unique<Object> object)
2787   : object_(object),
2788     object_map_(Handle<Map>::null()),
2789     has_stable_map_value_(false),
2790     has_int32_value_(IsInteger32(double_value)),
2791     has_double_value_(true),
2792     has_external_reference_value_(false),
2793     is_not_in_new_space_(is_not_in_new_space),
2794     boolean_value_(double_value != 0 && !std::isnan(double_value)),
2795     is_undetectable_(false),
2796     int32_value_(DoubleToInt32(double_value)),
2797     double_value_(double_value),
2798     instance_type_(kUnknownInstanceType) {
2799   has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2800   // It's possible to create a constant with a value in Smi-range but stored
2801   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2802   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2803   bool is_smi = has_smi_value_ && !could_be_heapobject;
2804   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2805   Initialize(r);
2806 }
2807 
2808 
HConstant(ExternalReference reference)2809 HConstant::HConstant(ExternalReference reference)
2810   : HTemplateInstruction<0>(HType::Any()),
2811     object_(Unique<Object>(Handle<Object>::null())),
2812     object_map_(Handle<Map>::null()),
2813     has_stable_map_value_(false),
2814     has_smi_value_(false),
2815     has_int32_value_(false),
2816     has_double_value_(false),
2817     has_external_reference_value_(true),
2818     is_not_in_new_space_(true),
2819     boolean_value_(true),
2820     is_undetectable_(false),
2821     external_reference_value_(reference),
2822     instance_type_(kUnknownInstanceType) {
2823   Initialize(Representation::External());
2824 }
2825 
2826 
Initialize(Representation r)2827 void HConstant::Initialize(Representation r) {
2828   if (r.IsNone()) {
2829     if (has_smi_value_ && SmiValuesAre31Bits()) {
2830       r = Representation::Smi();
2831     } else if (has_int32_value_) {
2832       r = Representation::Integer32();
2833     } else if (has_double_value_) {
2834       r = Representation::Double();
2835     } else if (has_external_reference_value_) {
2836       r = Representation::External();
2837     } else {
2838       Handle<Object> object = object_.handle();
2839       if (object->IsJSObject()) {
2840         // Try to eagerly migrate JSObjects that have deprecated maps.
2841         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
2842         if (js_object->map()->is_deprecated()) {
2843           JSObject::TryMigrateInstance(js_object);
2844         }
2845       }
2846       r = Representation::Tagged();
2847     }
2848   }
2849   set_representation(r);
2850   SetFlag(kUseGVN);
2851 }
2852 
2853 
ImmortalImmovable() const2854 bool HConstant::ImmortalImmovable() const {
2855   if (has_int32_value_) {
2856     return false;
2857   }
2858   if (has_double_value_) {
2859     if (IsSpecialDouble()) {
2860       return true;
2861     }
2862     return false;
2863   }
2864   if (has_external_reference_value_) {
2865     return false;
2866   }
2867 
2868   ASSERT(!object_.handle().is_null());
2869   Heap* heap = isolate()->heap();
2870   ASSERT(!object_.IsKnownGlobal(heap->minus_zero_value()));
2871   ASSERT(!object_.IsKnownGlobal(heap->nan_value()));
2872   return
2873 #define IMMORTAL_IMMOVABLE_ROOT(name) \
2874       object_.IsKnownGlobal(heap->name()) ||
2875       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
2876 #undef IMMORTAL_IMMOVABLE_ROOT
2877 #define INTERNALIZED_STRING(name, value) \
2878       object_.IsKnownGlobal(heap->name()) ||
2879       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
2880 #undef INTERNALIZED_STRING
2881 #define STRING_TYPE(NAME, size, name, Name) \
2882       object_.IsKnownGlobal(heap->name##_map()) ||
2883       STRING_TYPE_LIST(STRING_TYPE)
2884 #undef STRING_TYPE
2885       false;
2886 }
2887 
2888 
EmitAtUses()2889 bool HConstant::EmitAtUses() {
2890   ASSERT(IsLinked());
2891   if (block()->graph()->has_osr() &&
2892       block()->graph()->IsStandardConstant(this)) {
2893     // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
2894     return true;
2895   }
2896   if (UseCount() == 0) return true;
2897   if (IsCell()) return false;
2898   if (representation().IsDouble()) return false;
2899   if (representation().IsExternal()) return false;
2900   return true;
2901 }
2902 
2903 
CopyToRepresentation(Representation r,Zone * zone) const2904 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
2905   if (r.IsSmi() && !has_smi_value_) return NULL;
2906   if (r.IsInteger32() && !has_int32_value_) return NULL;
2907   if (r.IsDouble() && !has_double_value_) return NULL;
2908   if (r.IsExternal() && !has_external_reference_value_) return NULL;
2909   if (has_int32_value_) {
2910     return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
2911   }
2912   if (has_double_value_) {
2913     return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
2914   }
2915   if (has_external_reference_value_) {
2916     return new(zone) HConstant(external_reference_value_);
2917   }
2918   ASSERT(!object_.handle().is_null());
2919   return new(zone) HConstant(object_,
2920                              object_map_,
2921                              has_stable_map_value_,
2922                              r,
2923                              type_,
2924                              is_not_in_new_space_,
2925                              boolean_value_,
2926                              is_undetectable_,
2927                              instance_type_);
2928 }
2929 
2930 
CopyToTruncatedInt32(Zone * zone)2931 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
2932   HConstant* res = NULL;
2933   if (has_int32_value_) {
2934     res = new(zone) HConstant(int32_value_,
2935                               Representation::Integer32(),
2936                               is_not_in_new_space_,
2937                               object_);
2938   } else if (has_double_value_) {
2939     res = new(zone) HConstant(DoubleToInt32(double_value_),
2940                               Representation::Integer32(),
2941                               is_not_in_new_space_,
2942                               object_);
2943   }
2944   return Maybe<HConstant*>(res != NULL, res);
2945 }
2946 
2947 
CopyToTruncatedNumber(Zone * zone)2948 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
2949   HConstant* res = NULL;
2950   Handle<Object> handle = this->handle(zone->isolate());
2951   if (handle->IsBoolean()) {
2952     res = handle->BooleanValue() ?
2953       new(zone) HConstant(1) : new(zone) HConstant(0);
2954   } else if (handle->IsUndefined()) {
2955     res = new(zone) HConstant(OS::nan_value());
2956   } else if (handle->IsNull()) {
2957     res = new(zone) HConstant(0);
2958   }
2959   return Maybe<HConstant*>(res != NULL, res);
2960 }
2961 
2962 
PrintDataTo(StringStream * stream)2963 void HConstant::PrintDataTo(StringStream* stream) {
2964   if (has_int32_value_) {
2965     stream->Add("%d ", int32_value_);
2966   } else if (has_double_value_) {
2967     stream->Add("%f ", FmtElm(double_value_));
2968   } else if (has_external_reference_value_) {
2969     stream->Add("%p ", reinterpret_cast<void*>(
2970             external_reference_value_.address()));
2971   } else {
2972     handle(Isolate::Current())->ShortPrint(stream);
2973     stream->Add(" ");
2974     if (HasStableMapValue()) {
2975       stream->Add("[stable-map] ");
2976     }
2977     if (HasObjectMap()) {
2978       stream->Add("[map %p] ", *ObjectMap().handle());
2979     }
2980   }
2981   if (!is_not_in_new_space_) {
2982     stream->Add("[new space] ");
2983   }
2984 }
2985 
2986 
PrintDataTo(StringStream * stream)2987 void HBinaryOperation::PrintDataTo(StringStream* stream) {
2988   left()->PrintNameTo(stream);
2989   stream->Add(" ");
2990   right()->PrintNameTo(stream);
2991   if (CheckFlag(kCanOverflow)) stream->Add(" !");
2992   if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
2993 }
2994 
2995 
InferRepresentation(HInferRepresentationPhase * h_infer)2996 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
2997   ASSERT(CheckFlag(kFlexibleRepresentation));
2998   Representation new_rep = RepresentationFromInputs();
2999   UpdateRepresentation(new_rep, h_infer, "inputs");
3000 
3001   if (representation().IsSmi() && HasNonSmiUse()) {
3002     UpdateRepresentation(
3003         Representation::Integer32(), h_infer, "use requirements");
3004   }
3005 
3006   if (observed_output_representation_.IsNone()) {
3007     new_rep = RepresentationFromUses();
3008     UpdateRepresentation(new_rep, h_infer, "uses");
3009   } else {
3010     new_rep = RepresentationFromOutput();
3011     UpdateRepresentation(new_rep, h_infer, "output");
3012   }
3013 }
3014 
3015 
RepresentationFromInputs()3016 Representation HBinaryOperation::RepresentationFromInputs() {
3017   // Determine the worst case of observed input representations and
3018   // the currently assumed output representation.
3019   Representation rep = representation();
3020   for (int i = 1; i <= 2; ++i) {
3021     rep = rep.generalize(observed_input_representation(i));
3022   }
3023   // If any of the actual input representation is more general than what we
3024   // have so far but not Tagged, use that representation instead.
3025   Representation left_rep = left()->representation();
3026   Representation right_rep = right()->representation();
3027   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3028   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3029 
3030   return rep;
3031 }
3032 
3033 
IgnoreObservedOutputRepresentation(Representation current_rep)3034 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
3035     Representation current_rep) {
3036   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
3037           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
3038          // Mul in Integer32 mode would be too precise.
3039          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
3040 }
3041 
3042 
RepresentationFromOutput()3043 Representation HBinaryOperation::RepresentationFromOutput() {
3044   Representation rep = representation();
3045   // Consider observed output representation, but ignore it if it's Double,
3046   // this instruction is not a division, and all its uses are truncating
3047   // to Integer32.
3048   if (observed_output_representation_.is_more_general_than(rep) &&
3049       !IgnoreObservedOutputRepresentation(rep)) {
3050     return observed_output_representation_;
3051   }
3052   return Representation::None();
3053 }
3054 
3055 
AssumeRepresentation(Representation r)3056 void HBinaryOperation::AssumeRepresentation(Representation r) {
3057   set_observed_input_representation(1, r);
3058   set_observed_input_representation(2, r);
3059   HValue::AssumeRepresentation(r);
3060 }
3061 
3062 
InferRepresentation(HInferRepresentationPhase * h_infer)3063 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
3064   ASSERT(CheckFlag(kFlexibleRepresentation));
3065   Representation new_rep = RepresentationFromInputs();
3066   UpdateRepresentation(new_rep, h_infer, "inputs");
3067   // Do not care about uses.
3068 }
3069 
3070 
InferRange(Zone * zone)3071 Range* HBitwise::InferRange(Zone* zone) {
3072   if (op() == Token::BIT_XOR) {
3073     if (left()->HasRange() && right()->HasRange()) {
3074       // The maximum value has the high bit, and all bits below, set:
3075       // (1 << high) - 1.
3076       // If the range can be negative, the minimum int is a negative number with
3077       // the high bit, and all bits below, unset:
3078       // -(1 << high).
3079       // If it cannot be negative, conservatively choose 0 as minimum int.
3080       int64_t left_upper = left()->range()->upper();
3081       int64_t left_lower = left()->range()->lower();
3082       int64_t right_upper = right()->range()->upper();
3083       int64_t right_lower = right()->range()->lower();
3084 
3085       if (left_upper < 0) left_upper = ~left_upper;
3086       if (left_lower < 0) left_lower = ~left_lower;
3087       if (right_upper < 0) right_upper = ~right_upper;
3088       if (right_lower < 0) right_lower = ~right_lower;
3089 
3090       int high = MostSignificantBit(
3091           static_cast<uint32_t>(
3092               left_upper | left_lower | right_upper | right_lower));
3093 
3094       int64_t limit = 1;
3095       limit <<= high;
3096       int32_t min = (left()->range()->CanBeNegative() ||
3097                      right()->range()->CanBeNegative())
3098                     ? static_cast<int32_t>(-limit) : 0;
3099       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
3100     }
3101     Range* result = HValue::InferRange(zone);
3102     result->set_can_be_minus_zero(false);
3103     return result;
3104   }
3105   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
3106   int32_t left_mask = (left()->range() != NULL)
3107       ? left()->range()->Mask()
3108       : kDefaultMask;
3109   int32_t right_mask = (right()->range() != NULL)
3110       ? right()->range()->Mask()
3111       : kDefaultMask;
3112   int32_t result_mask = (op() == Token::BIT_AND)
3113       ? left_mask & right_mask
3114       : left_mask | right_mask;
3115   if (result_mask >= 0) return new(zone) Range(0, result_mask);
3116 
3117   Range* result = HValue::InferRange(zone);
3118   result->set_can_be_minus_zero(false);
3119   return result;
3120 }
3121 
3122 
InferRange(Zone * zone)3123 Range* HSar::InferRange(Zone* zone) {
3124   if (right()->IsConstant()) {
3125     HConstant* c = HConstant::cast(right());
3126     if (c->HasInteger32Value()) {
3127       Range* result = (left()->range() != NULL)
3128           ? left()->range()->Copy(zone)
3129           : new(zone) Range();
3130       result->Sar(c->Integer32Value());
3131       return result;
3132     }
3133   }
3134   return HValue::InferRange(zone);
3135 }
3136 
3137 
InferRange(Zone * zone)3138 Range* HShr::InferRange(Zone* zone) {
3139   if (right()->IsConstant()) {
3140     HConstant* c = HConstant::cast(right());
3141     if (c->HasInteger32Value()) {
3142       int shift_count = c->Integer32Value() & 0x1f;
3143       if (left()->range()->CanBeNegative()) {
3144         // Only compute bounds if the result always fits into an int32.
3145         return (shift_count >= 1)
3146             ? new(zone) Range(0,
3147                               static_cast<uint32_t>(0xffffffff) >> shift_count)
3148             : new(zone) Range();
3149       } else {
3150         // For positive inputs we can use the >> operator.
3151         Range* result = (left()->range() != NULL)
3152             ? left()->range()->Copy(zone)
3153             : new(zone) Range();
3154         result->Sar(c->Integer32Value());
3155         return result;
3156       }
3157     }
3158   }
3159   return HValue::InferRange(zone);
3160 }
3161 
3162 
InferRange(Zone * zone)3163 Range* HShl::InferRange(Zone* zone) {
3164   if (right()->IsConstant()) {
3165     HConstant* c = HConstant::cast(right());
3166     if (c->HasInteger32Value()) {
3167       Range* result = (left()->range() != NULL)
3168           ? left()->range()->Copy(zone)
3169           : new(zone) Range();
3170       result->Shl(c->Integer32Value());
3171       return result;
3172     }
3173   }
3174   return HValue::InferRange(zone);
3175 }
3176 
3177 
InferRange(Zone * zone)3178 Range* HLoadNamedField::InferRange(Zone* zone) {
3179   if (access().representation().IsInteger8()) {
3180     return new(zone) Range(kMinInt8, kMaxInt8);
3181   }
3182   if (access().representation().IsUInteger8()) {
3183     return new(zone) Range(kMinUInt8, kMaxUInt8);
3184   }
3185   if (access().representation().IsInteger16()) {
3186     return new(zone) Range(kMinInt16, kMaxInt16);
3187   }
3188   if (access().representation().IsUInteger16()) {
3189     return new(zone) Range(kMinUInt16, kMaxUInt16);
3190   }
3191   if (access().IsStringLength()) {
3192     return new(zone) Range(0, String::kMaxLength);
3193   }
3194   return HValue::InferRange(zone);
3195 }
3196 
3197 
InferRange(Zone * zone)3198 Range* HLoadKeyed::InferRange(Zone* zone) {
3199   switch (elements_kind()) {
3200     case EXTERNAL_INT8_ELEMENTS:
3201       return new(zone) Range(kMinInt8, kMaxInt8);
3202     case EXTERNAL_UINT8_ELEMENTS:
3203     case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3204       return new(zone) Range(kMinUInt8, kMaxUInt8);
3205     case EXTERNAL_INT16_ELEMENTS:
3206       return new(zone) Range(kMinInt16, kMaxInt16);
3207     case EXTERNAL_UINT16_ELEMENTS:
3208       return new(zone) Range(kMinUInt16, kMaxUInt16);
3209     default:
3210       return HValue::InferRange(zone);
3211   }
3212 }
3213 
3214 
PrintDataTo(StringStream * stream)3215 void HCompareGeneric::PrintDataTo(StringStream* stream) {
3216   stream->Add(Token::Name(token()));
3217   stream->Add(" ");
3218   HBinaryOperation::PrintDataTo(stream);
3219 }
3220 
3221 
PrintDataTo(StringStream * stream)3222 void HStringCompareAndBranch::PrintDataTo(StringStream* stream) {
3223   stream->Add(Token::Name(token()));
3224   stream->Add(" ");
3225   HControlInstruction::PrintDataTo(stream);
3226 }
3227 
3228 
PrintDataTo(StringStream * stream)3229 void HCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
3230   stream->Add(Token::Name(token()));
3231   stream->Add(" ");
3232   left()->PrintNameTo(stream);
3233   stream->Add(" ");
3234   right()->PrintNameTo(stream);
3235   HControlInstruction::PrintDataTo(stream);
3236 }
3237 
3238 
PrintDataTo(StringStream * stream)3239 void HCompareObjectEqAndBranch::PrintDataTo(StringStream* stream) {
3240   left()->PrintNameTo(stream);
3241   stream->Add(" ");
3242   right()->PrintNameTo(stream);
3243   HControlInstruction::PrintDataTo(stream);
3244 }
3245 
3246 
KnownSuccessorBlock(HBasicBlock ** block)3247 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3248   if (known_successor_index() != kNoKnownSuccessorIndex) {
3249     *block = SuccessorAt(known_successor_index());
3250     return true;
3251   }
3252   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
3253     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
3254         ? FirstSuccessor() : SecondSuccessor();
3255     return true;
3256   }
3257   *block = NULL;
3258   return false;
3259 }
3260 
3261 
ConstantIsObject(HConstant * constant,Isolate * isolate)3262 bool ConstantIsObject(HConstant* constant, Isolate* isolate) {
3263   if (constant->HasNumberValue()) return false;
3264   if (constant->GetUnique().IsKnownGlobal(isolate->heap()->null_value())) {
3265     return true;
3266   }
3267   if (constant->IsUndetectable()) return false;
3268   InstanceType type = constant->GetInstanceType();
3269   return (FIRST_NONCALLABLE_SPEC_OBJECT_TYPE <= type) &&
3270          (type <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
3271 }
3272 
3273 
KnownSuccessorBlock(HBasicBlock ** block)3274 bool HIsObjectAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3275   if (FLAG_fold_constants && value()->IsConstant()) {
3276     *block = ConstantIsObject(HConstant::cast(value()), isolate())
3277         ? FirstSuccessor() : SecondSuccessor();
3278     return true;
3279   }
3280   *block = NULL;
3281   return false;
3282 }
3283 
3284 
KnownSuccessorBlock(HBasicBlock ** block)3285 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3286   if (known_successor_index() != kNoKnownSuccessorIndex) {
3287     *block = SuccessorAt(known_successor_index());
3288     return true;
3289   }
3290   if (FLAG_fold_constants && value()->IsConstant()) {
3291     *block = HConstant::cast(value())->HasStringValue()
3292         ? FirstSuccessor() : SecondSuccessor();
3293     return true;
3294   }
3295   if (value()->type().IsString()) {
3296     *block = FirstSuccessor();
3297     return true;
3298   }
3299   if (value()->type().IsSmi() ||
3300       value()->type().IsNull() ||
3301       value()->type().IsBoolean() ||
3302       value()->type().IsUndefined() ||
3303       value()->type().IsJSObject()) {
3304     *block = SecondSuccessor();
3305     return true;
3306   }
3307   *block = NULL;
3308   return false;
3309 }
3310 
3311 
KnownSuccessorBlock(HBasicBlock ** block)3312 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3313   if (FLAG_fold_constants && value()->IsConstant()) {
3314     *block = HConstant::cast(value())->IsUndetectable()
3315         ? FirstSuccessor() : SecondSuccessor();
3316     return true;
3317   }
3318   *block = NULL;
3319   return false;
3320 }
3321 
3322 
KnownSuccessorBlock(HBasicBlock ** block)3323 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3324   if (FLAG_fold_constants && value()->IsConstant()) {
3325     InstanceType type = HConstant::cast(value())->GetInstanceType();
3326     *block = (from_ <= type) && (type <= to_)
3327         ? FirstSuccessor() : SecondSuccessor();
3328     return true;
3329   }
3330   *block = NULL;
3331   return false;
3332 }
3333 
3334 
InferRepresentation(HInferRepresentationPhase * h_infer)3335 void HCompareHoleAndBranch::InferRepresentation(
3336     HInferRepresentationPhase* h_infer) {
3337   ChangeRepresentation(value()->representation());
3338 }
3339 
3340 
KnownSuccessorBlock(HBasicBlock ** block)3341 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3342   if (left() == right() &&
3343       left()->representation().IsSmiOrInteger32()) {
3344     *block = (token() == Token::EQ ||
3345               token() == Token::EQ_STRICT ||
3346               token() == Token::LTE ||
3347               token() == Token::GTE)
3348         ? FirstSuccessor() : SecondSuccessor();
3349     return true;
3350   }
3351   *block = NULL;
3352   return false;
3353 }
3354 
3355 
KnownSuccessorBlock(HBasicBlock ** block)3356 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3357   if (FLAG_fold_constants && value()->IsConstant()) {
3358     HConstant* constant = HConstant::cast(value());
3359     if (constant->HasDoubleValue()) {
3360       *block = IsMinusZero(constant->DoubleValue())
3361           ? FirstSuccessor() : SecondSuccessor();
3362       return true;
3363     }
3364   }
3365   if (value()->representation().IsSmiOrInteger32()) {
3366     // A Smi or Integer32 cannot contain minus zero.
3367     *block = SecondSuccessor();
3368     return true;
3369   }
3370   *block = NULL;
3371   return false;
3372 }
3373 
3374 
InferRepresentation(HInferRepresentationPhase * h_infer)3375 void HCompareMinusZeroAndBranch::InferRepresentation(
3376     HInferRepresentationPhase* h_infer) {
3377   ChangeRepresentation(value()->representation());
3378 }
3379 
3380 
3381 
PrintDataTo(StringStream * stream)3382 void HGoto::PrintDataTo(StringStream* stream) {
3383   stream->Add("B%d", SuccessorAt(0)->block_id());
3384 }
3385 
3386 
InferRepresentation(HInferRepresentationPhase * h_infer)3387 void HCompareNumericAndBranch::InferRepresentation(
3388     HInferRepresentationPhase* h_infer) {
3389   Representation left_rep = left()->representation();
3390   Representation right_rep = right()->representation();
3391   Representation observed_left = observed_input_representation(0);
3392   Representation observed_right = observed_input_representation(1);
3393 
3394   Representation rep = Representation::None();
3395   rep = rep.generalize(observed_left);
3396   rep = rep.generalize(observed_right);
3397   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
3398     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3399     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3400   } else {
3401     rep = Representation::Double();
3402   }
3403 
3404   if (rep.IsDouble()) {
3405     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
3406     // and !=) have special handling of undefined, e.g. undefined == undefined
3407     // is 'true'. Relational comparisons have a different semantic, first
3408     // calling ToPrimitive() on their arguments.  The standard Crankshaft
3409     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
3410     // inputs are doubles caused 'undefined' to be converted to NaN. That's
3411     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
3412     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
3413     // it is not consistent with the spec. For example, it would cause undefined
3414     // == undefined (should be true) to be evaluated as NaN == NaN
3415     // (false). Therefore, any comparisons other than ordered relational
3416     // comparisons must cause a deopt when one of their arguments is undefined.
3417     // See also v8:1434
3418     if (Token::IsOrderedRelationalCompareOp(token_)) {
3419       SetFlag(kAllowUndefinedAsNaN);
3420     }
3421   }
3422   ChangeRepresentation(rep);
3423 }
3424 
3425 
PrintDataTo(StringStream * stream)3426 void HParameter::PrintDataTo(StringStream* stream) {
3427   stream->Add("%u", index());
3428 }
3429 
3430 
PrintDataTo(StringStream * stream)3431 void HLoadNamedField::PrintDataTo(StringStream* stream) {
3432   object()->PrintNameTo(stream);
3433   access_.PrintTo(stream);
3434 
3435   if (maps() != NULL) {
3436     stream->Add(" [%p", *maps()->at(0).handle());
3437     for (int i = 1; i < maps()->size(); ++i) {
3438       stream->Add(",%p", *maps()->at(i).handle());
3439     }
3440     stream->Add("]");
3441   }
3442 
3443   if (HasDependency()) {
3444     stream->Add(" ");
3445     dependency()->PrintNameTo(stream);
3446   }
3447 }
3448 
3449 
PrintDataTo(StringStream * stream)3450 void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
3451   object()->PrintNameTo(stream);
3452   stream->Add(".");
3453   stream->Add(String::cast(*name())->ToCString().get());
3454 }
3455 
3456 
PrintDataTo(StringStream * stream)3457 void HLoadKeyed::PrintDataTo(StringStream* stream) {
3458   if (!is_external()) {
3459     elements()->PrintNameTo(stream);
3460   } else {
3461     ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3462            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3463     elements()->PrintNameTo(stream);
3464     stream->Add(".");
3465     stream->Add(ElementsKindToString(elements_kind()));
3466   }
3467 
3468   stream->Add("[");
3469   key()->PrintNameTo(stream);
3470   if (IsDehoisted()) {
3471     stream->Add(" + %d]", base_offset());
3472   } else {
3473     stream->Add("]");
3474   }
3475 
3476   if (HasDependency()) {
3477     stream->Add(" ");
3478     dependency()->PrintNameTo(stream);
3479   }
3480 
3481   if (RequiresHoleCheck()) {
3482     stream->Add(" check_hole");
3483   }
3484 }
3485 
3486 
UsesMustHandleHole() const3487 bool HLoadKeyed::UsesMustHandleHole() const {
3488   if (IsFastPackedElementsKind(elements_kind())) {
3489     return false;
3490   }
3491 
3492   if (IsExternalArrayElementsKind(elements_kind())) {
3493     return false;
3494   }
3495 
3496   if (hole_mode() == ALLOW_RETURN_HOLE) {
3497     if (IsFastDoubleElementsKind(elements_kind())) {
3498       return AllUsesCanTreatHoleAsNaN();
3499     }
3500     return true;
3501   }
3502 
3503   if (IsFastDoubleElementsKind(elements_kind())) {
3504     return false;
3505   }
3506 
3507   // Holes are only returned as tagged values.
3508   if (!representation().IsTagged()) {
3509     return false;
3510   }
3511 
3512   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3513     HValue* use = it.value();
3514     if (!use->IsChange()) return false;
3515   }
3516 
3517   return true;
3518 }
3519 
3520 
AllUsesCanTreatHoleAsNaN() const3521 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
3522   return IsFastDoubleElementsKind(elements_kind()) &&
3523       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
3524 }
3525 
3526 
RequiresHoleCheck() const3527 bool HLoadKeyed::RequiresHoleCheck() const {
3528   if (IsFastPackedElementsKind(elements_kind())) {
3529     return false;
3530   }
3531 
3532   if (IsExternalArrayElementsKind(elements_kind())) {
3533     return false;
3534   }
3535 
3536   return !UsesMustHandleHole();
3537 }
3538 
3539 
PrintDataTo(StringStream * stream)3540 void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
3541   object()->PrintNameTo(stream);
3542   stream->Add("[");
3543   key()->PrintNameTo(stream);
3544   stream->Add("]");
3545 }
3546 
3547 
Canonicalize()3548 HValue* HLoadKeyedGeneric::Canonicalize() {
3549   // Recognize generic keyed loads that use property name generated
3550   // by for-in statement as a key and rewrite them into fast property load
3551   // by index.
3552   if (key()->IsLoadKeyed()) {
3553     HLoadKeyed* key_load = HLoadKeyed::cast(key());
3554     if (key_load->elements()->IsForInCacheArray()) {
3555       HForInCacheArray* names_cache =
3556           HForInCacheArray::cast(key_load->elements());
3557 
3558       if (names_cache->enumerable() == object()) {
3559         HForInCacheArray* index_cache =
3560             names_cache->index_cache();
3561         HCheckMapValue* map_check =
3562             HCheckMapValue::New(block()->graph()->zone(),
3563                                 block()->graph()->GetInvalidContext(),
3564                                 object(),
3565                                 names_cache->map());
3566         HInstruction* index = HLoadKeyed::New(
3567             block()->graph()->zone(),
3568             block()->graph()->GetInvalidContext(),
3569             index_cache,
3570             key_load->key(),
3571             key_load->key(),
3572             key_load->elements_kind());
3573         map_check->InsertBefore(this);
3574         index->InsertBefore(this);
3575         return Prepend(new(block()->zone()) HLoadFieldByIndex(
3576             object(), index));
3577       }
3578     }
3579   }
3580 
3581   return this;
3582 }
3583 
3584 
PrintDataTo(StringStream * stream)3585 void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
3586   object()->PrintNameTo(stream);
3587   stream->Add(".");
3588   ASSERT(name()->IsString());
3589   stream->Add(String::cast(*name())->ToCString().get());
3590   stream->Add(" = ");
3591   value()->PrintNameTo(stream);
3592 }
3593 
3594 
PrintDataTo(StringStream * stream)3595 void HStoreNamedField::PrintDataTo(StringStream* stream) {
3596   object()->PrintNameTo(stream);
3597   access_.PrintTo(stream);
3598   stream->Add(" = ");
3599   value()->PrintNameTo(stream);
3600   if (NeedsWriteBarrier()) {
3601     stream->Add(" (write-barrier)");
3602   }
3603   if (has_transition()) {
3604     stream->Add(" (transition map %p)", *transition_map());
3605   }
3606 }
3607 
3608 
PrintDataTo(StringStream * stream)3609 void HStoreKeyed::PrintDataTo(StringStream* stream) {
3610   if (!is_external()) {
3611     elements()->PrintNameTo(stream);
3612   } else {
3613     elements()->PrintNameTo(stream);
3614     stream->Add(".");
3615     stream->Add(ElementsKindToString(elements_kind()));
3616     ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3617            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3618   }
3619 
3620   stream->Add("[");
3621   key()->PrintNameTo(stream);
3622   if (IsDehoisted()) {
3623     stream->Add(" + %d] = ", base_offset());
3624   } else {
3625     stream->Add("] = ");
3626   }
3627 
3628   value()->PrintNameTo(stream);
3629 }
3630 
3631 
PrintDataTo(StringStream * stream)3632 void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
3633   object()->PrintNameTo(stream);
3634   stream->Add("[");
3635   key()->PrintNameTo(stream);
3636   stream->Add("] = ");
3637   value()->PrintNameTo(stream);
3638 }
3639 
3640 
PrintDataTo(StringStream * stream)3641 void HTransitionElementsKind::PrintDataTo(StringStream* stream) {
3642   object()->PrintNameTo(stream);
3643   ElementsKind from_kind = original_map().handle()->elements_kind();
3644   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
3645   stream->Add(" %p [%s] -> %p [%s]",
3646               *original_map().handle(),
3647               ElementsAccessor::ForKind(from_kind)->name(),
3648               *transitioned_map().handle(),
3649               ElementsAccessor::ForKind(to_kind)->name());
3650   if (IsSimpleMapChangeTransition(from_kind, to_kind)) stream->Add(" (simple)");
3651 }
3652 
3653 
PrintDataTo(StringStream * stream)3654 void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
3655   stream->Add("[%p]", *cell().handle());
3656   if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
3657   if (details_.IsReadOnly()) stream->Add(" (read-only)");
3658 }
3659 
3660 
RequiresHoleCheck() const3661 bool HLoadGlobalCell::RequiresHoleCheck() const {
3662   if (details_.IsDontDelete() && !details_.IsReadOnly()) return false;
3663   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3664     HValue* use = it.value();
3665     if (!use->IsChange()) return true;
3666   }
3667   return false;
3668 }
3669 
3670 
PrintDataTo(StringStream * stream)3671 void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
3672   stream->Add("%o ", *name());
3673 }
3674 
3675 
PrintDataTo(StringStream * stream)3676 void HInnerAllocatedObject::PrintDataTo(StringStream* stream) {
3677   base_object()->PrintNameTo(stream);
3678   stream->Add(" offset ");
3679   offset()->PrintTo(stream);
3680 }
3681 
3682 
PrintDataTo(StringStream * stream)3683 void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
3684   stream->Add("[%p] = ", *cell().handle());
3685   value()->PrintNameTo(stream);
3686   if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
3687   if (details_.IsReadOnly()) stream->Add(" (read-only)");
3688 }
3689 
3690 
PrintDataTo(StringStream * stream)3691 void HLoadContextSlot::PrintDataTo(StringStream* stream) {
3692   value()->PrintNameTo(stream);
3693   stream->Add("[%d]", slot_index());
3694 }
3695 
3696 
PrintDataTo(StringStream * stream)3697 void HStoreContextSlot::PrintDataTo(StringStream* stream) {
3698   context()->PrintNameTo(stream);
3699   stream->Add("[%d] = ", slot_index());
3700   value()->PrintNameTo(stream);
3701 }
3702 
3703 
3704 // Implementation of type inference and type conversions. Calculates
3705 // the inferred type of this instruction based on the input operands.
3706 
CalculateInferredType()3707 HType HValue::CalculateInferredType() {
3708   return type_;
3709 }
3710 
3711 
CalculateInferredType()3712 HType HPhi::CalculateInferredType() {
3713   if (OperandCount() == 0) return HType::Tagged();
3714   HType result = OperandAt(0)->type();
3715   for (int i = 1; i < OperandCount(); ++i) {
3716     HType current = OperandAt(i)->type();
3717     result = result.Combine(current);
3718   }
3719   return result;
3720 }
3721 
3722 
CalculateInferredType()3723 HType HChange::CalculateInferredType() {
3724   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
3725   return type();
3726 }
3727 
3728 
RepresentationFromInputs()3729 Representation HUnaryMathOperation::RepresentationFromInputs() {
3730   if (SupportsFlexibleFloorAndRound() &&
3731       (op_ == kMathFloor || op_ == kMathRound)) {
3732     // Floor and Round always take a double input. The integral result can be
3733     // used as an integer or a double. Infer the representation from the uses.
3734     return Representation::None();
3735   }
3736   Representation rep = representation();
3737   // If any of the actual input representation is more general than what we
3738   // have so far but not Tagged, use that representation instead.
3739   Representation input_rep = value()->representation();
3740   if (!input_rep.IsTagged()) {
3741     rep = rep.generalize(input_rep);
3742   }
3743   return rep;
3744 }
3745 
3746 
HandleSideEffectDominator(GVNFlag side_effect,HValue * dominator)3747 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
3748                                           HValue* dominator) {
3749   ASSERT(side_effect == kNewSpacePromotion);
3750   Zone* zone = block()->zone();
3751   if (!FLAG_use_allocation_folding) return false;
3752 
3753   // Try to fold allocations together with their dominating allocations.
3754   if (!dominator->IsAllocate()) {
3755     if (FLAG_trace_allocation_folding) {
3756       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
3757           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3758     }
3759     return false;
3760   }
3761 
3762   // Check whether we are folding within the same block for local folding.
3763   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
3764     if (FLAG_trace_allocation_folding) {
3765       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
3766           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3767     }
3768     return false;
3769   }
3770 
3771   HAllocate* dominator_allocate = HAllocate::cast(dominator);
3772   HValue* dominator_size = dominator_allocate->size();
3773   HValue* current_size = size();
3774 
3775   // TODO(hpayer): Add support for non-constant allocation in dominator.
3776   if (!dominator_size->IsInteger32Constant()) {
3777     if (FLAG_trace_allocation_folding) {
3778       PrintF("#%d (%s) cannot fold into #%d (%s), "
3779              "dynamic allocation size in dominator\n",
3780           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3781     }
3782     return false;
3783   }
3784 
3785   dominator_allocate = GetFoldableDominator(dominator_allocate);
3786   if (dominator_allocate == NULL) {
3787     return false;
3788   }
3789 
3790   if (!has_size_upper_bound()) {
3791     if (FLAG_trace_allocation_folding) {
3792       PrintF("#%d (%s) cannot fold into #%d (%s), "
3793              "can't estimate total allocation size\n",
3794           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3795     }
3796     return false;
3797   }
3798 
3799   if (!current_size->IsInteger32Constant()) {
3800     // If it's not constant then it is a size_in_bytes calculation graph
3801     // like this: (const_header_size + const_element_size * size).
3802     ASSERT(current_size->IsInstruction());
3803 
3804     HInstruction* current_instr = HInstruction::cast(current_size);
3805     if (!current_instr->Dominates(dominator_allocate)) {
3806       if (FLAG_trace_allocation_folding) {
3807         PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
3808                "value does not dominate target allocation\n",
3809             id(), Mnemonic(), dominator_allocate->id(),
3810             dominator_allocate->Mnemonic());
3811       }
3812       return false;
3813     }
3814   }
3815 
3816   ASSERT((IsNewSpaceAllocation() &&
3817          dominator_allocate->IsNewSpaceAllocation()) ||
3818          (IsOldDataSpaceAllocation() &&
3819          dominator_allocate->IsOldDataSpaceAllocation()) ||
3820          (IsOldPointerSpaceAllocation() &&
3821          dominator_allocate->IsOldPointerSpaceAllocation()));
3822 
3823   // First update the size of the dominator allocate instruction.
3824   dominator_size = dominator_allocate->size();
3825   int32_t original_object_size =
3826       HConstant::cast(dominator_size)->GetInteger32Constant();
3827   int32_t dominator_size_constant = original_object_size;
3828 
3829   if (MustAllocateDoubleAligned()) {
3830     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
3831       dominator_size_constant += kDoubleSize / 2;
3832     }
3833   }
3834 
3835   int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
3836   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
3837 
3838   // Since we clear the first word after folded memory, we cannot use the
3839   // whole Page::kMaxRegularHeapObjectSize memory.
3840   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
3841     if (FLAG_trace_allocation_folding) {
3842       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
3843           id(), Mnemonic(), dominator_allocate->id(),
3844           dominator_allocate->Mnemonic(), new_dominator_size);
3845     }
3846     return false;
3847   }
3848 
3849   HInstruction* new_dominator_size_value;
3850 
3851   if (current_size->IsInteger32Constant()) {
3852     new_dominator_size_value =
3853         HConstant::CreateAndInsertBefore(zone,
3854                                          context(),
3855                                          new_dominator_size,
3856                                          Representation::None(),
3857                                          dominator_allocate);
3858   } else {
3859     HValue* new_dominator_size_constant =
3860         HConstant::CreateAndInsertBefore(zone,
3861                                          context(),
3862                                          dominator_size_constant,
3863                                          Representation::Integer32(),
3864                                          dominator_allocate);
3865 
3866     // Add old and new size together and insert.
3867     current_size->ChangeRepresentation(Representation::Integer32());
3868 
3869     new_dominator_size_value = HAdd::New(zone, context(),
3870         new_dominator_size_constant, current_size);
3871     new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
3872     new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
3873 
3874     new_dominator_size_value->InsertBefore(dominator_allocate);
3875   }
3876 
3877   dominator_allocate->UpdateSize(new_dominator_size_value);
3878 
3879   if (MustAllocateDoubleAligned()) {
3880     if (!dominator_allocate->MustAllocateDoubleAligned()) {
3881       dominator_allocate->MakeDoubleAligned();
3882     }
3883   }
3884 
3885   bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
3886 #ifdef VERIFY_HEAP
3887   keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
3888 #endif
3889 
3890   if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
3891     dominator_allocate->MakePrefillWithFiller();
3892   } else {
3893     // TODO(hpayer): This is a short-term hack to make allocation mementos
3894     // work again in new space.
3895     dominator_allocate->ClearNextMapWord(original_object_size);
3896   }
3897 
3898   dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
3899 
3900   // After that replace the dominated allocate instruction.
3901   HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
3902       zone,
3903       context(),
3904       dominator_size_constant,
3905       Representation::None(),
3906       this);
3907 
3908   HInstruction* dominated_allocate_instr =
3909       HInnerAllocatedObject::New(zone,
3910                                  context(),
3911                                  dominator_allocate,
3912                                  inner_offset,
3913                                  type());
3914   dominated_allocate_instr->InsertBefore(this);
3915   DeleteAndReplaceWith(dominated_allocate_instr);
3916   if (FLAG_trace_allocation_folding) {
3917     PrintF("#%d (%s) folded into #%d (%s)\n",
3918         id(), Mnemonic(), dominator_allocate->id(),
3919         dominator_allocate->Mnemonic());
3920   }
3921   return true;
3922 }
3923 
3924 
GetFoldableDominator(HAllocate * dominator)3925 HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
3926   if (!IsFoldable(dominator)) {
3927     // We cannot hoist old space allocations over new space allocations.
3928     if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
3929       if (FLAG_trace_allocation_folding) {
3930         PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
3931             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3932       }
3933       return NULL;
3934     }
3935 
3936     HAllocate* dominator_dominator = dominator->dominating_allocate_;
3937 
3938     // We can hoist old data space allocations over an old pointer space
3939     // allocation and vice versa. For that we have to check the dominator
3940     // of the dominator allocate instruction.
3941     if (dominator_dominator == NULL) {
3942       dominating_allocate_ = dominator;
3943       if (FLAG_trace_allocation_folding) {
3944         PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
3945             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3946       }
3947       return NULL;
3948     }
3949 
3950     // We can just fold old space allocations that are in the same basic block,
3951     // since it is not guaranteed that we fill up the whole allocated old
3952     // space memory.
3953     // TODO(hpayer): Remove this limitation and add filler maps for each each
3954     // allocation as soon as we have store elimination.
3955     if (block()->block_id() != dominator_dominator->block()->block_id()) {
3956       if (FLAG_trace_allocation_folding) {
3957         PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
3958             id(), Mnemonic(), dominator_dominator->id(),
3959             dominator_dominator->Mnemonic());
3960       }
3961       return NULL;
3962     }
3963 
3964     ASSERT((IsOldDataSpaceAllocation() &&
3965            dominator_dominator->IsOldDataSpaceAllocation()) ||
3966            (IsOldPointerSpaceAllocation() &&
3967            dominator_dominator->IsOldPointerSpaceAllocation()));
3968 
3969     int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
3970     HStoreNamedField* dominator_free_space_size =
3971         dominator->filler_free_space_size_;
3972     if (dominator_free_space_size != NULL) {
3973       // We already hoisted one old space allocation, i.e., we already installed
3974       // a filler map. Hence, we just have to update the free space size.
3975       dominator->UpdateFreeSpaceFiller(current_size);
3976     } else {
3977       // This is the first old space allocation that gets hoisted. We have to
3978       // install a filler map since the follwing allocation may cause a GC.
3979       dominator->CreateFreeSpaceFiller(current_size);
3980     }
3981 
3982     // We can hoist the old space allocation over the actual dominator.
3983     return dominator_dominator;
3984   }
3985   return dominator;
3986 }
3987 
3988 
UpdateFreeSpaceFiller(int32_t free_space_size)3989 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
3990   ASSERT(filler_free_space_size_ != NULL);
3991   Zone* zone = block()->zone();
3992   // We must explicitly force Smi representation here because on x64 we
3993   // would otherwise automatically choose int32, but the actual store
3994   // requires a Smi-tagged value.
3995   HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
3996       zone,
3997       context(),
3998       filler_free_space_size_->value()->GetInteger32Constant() +
3999           free_space_size,
4000       Representation::Smi(),
4001       filler_free_space_size_);
4002   filler_free_space_size_->UpdateValue(new_free_space_size);
4003 }
4004 
4005 
CreateFreeSpaceFiller(int32_t free_space_size)4006 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
4007   ASSERT(filler_free_space_size_ == NULL);
4008   Zone* zone = block()->zone();
4009   HInstruction* free_space_instr =
4010       HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
4011       dominating_allocate_->size(), type());
4012   free_space_instr->InsertBefore(this);
4013   HConstant* filler_map = HConstant::CreateAndInsertAfter(
4014       zone, Unique<Map>::CreateImmovable(
4015           isolate()->factory()->free_space_map()), true, free_space_instr);
4016   HInstruction* store_map = HStoreNamedField::New(zone, context(),
4017       free_space_instr, HObjectAccess::ForMap(), filler_map);
4018   store_map->SetFlag(HValue::kHasNoObservableSideEffects);
4019   store_map->InsertAfter(filler_map);
4020 
4021   // We must explicitly force Smi representation here because on x64 we
4022   // would otherwise automatically choose int32, but the actual store
4023   // requires a Smi-tagged value.
4024   HConstant* filler_size = HConstant::CreateAndInsertAfter(
4025       zone, context(), free_space_size, Representation::Smi(), store_map);
4026   // Must force Smi representation for x64 (see comment above).
4027   HObjectAccess access =
4028       HObjectAccess::ForMapAndOffset(isolate()->factory()->free_space_map(),
4029                                      FreeSpace::kSizeOffset,
4030                                      Representation::Smi());
4031   HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
4032       free_space_instr, access, filler_size);
4033   store_size->SetFlag(HValue::kHasNoObservableSideEffects);
4034   store_size->InsertAfter(filler_size);
4035   filler_free_space_size_ = store_size;
4036 }
4037 
4038 
ClearNextMapWord(int offset)4039 void HAllocate::ClearNextMapWord(int offset) {
4040   if (MustClearNextMapWord()) {
4041     Zone* zone = block()->zone();
4042     HObjectAccess access =
4043         HObjectAccess::ForObservableJSObjectOffset(offset);
4044     HStoreNamedField* clear_next_map =
4045         HStoreNamedField::New(zone, context(), this, access,
4046             block()->graph()->GetConstant0());
4047     clear_next_map->ClearAllSideEffects();
4048     clear_next_map->InsertAfter(this);
4049   }
4050 }
4051 
4052 
PrintDataTo(StringStream * stream)4053 void HAllocate::PrintDataTo(StringStream* stream) {
4054   size()->PrintNameTo(stream);
4055   stream->Add(" (");
4056   if (IsNewSpaceAllocation()) stream->Add("N");
4057   if (IsOldPointerSpaceAllocation()) stream->Add("P");
4058   if (IsOldDataSpaceAllocation()) stream->Add("D");
4059   if (MustAllocateDoubleAligned()) stream->Add("A");
4060   if (MustPrefillWithFiller()) stream->Add("F");
4061   stream->Add(")");
4062 }
4063 
4064 
NeedsCanonicalization()4065 bool HStoreKeyed::NeedsCanonicalization() {
4066   // If value is an integer or smi or comes from the result of a keyed load or
4067   // constant then it is either be a non-hole value or in the case of a constant
4068   // the hole is only being stored explicitly: no need for canonicalization.
4069   //
4070   // The exception to that is keyed loads from external float or double arrays:
4071   // these can load arbitrary representation of NaN.
4072 
4073   if (value()->IsConstant()) {
4074     return false;
4075   }
4076 
4077   if (value()->IsLoadKeyed()) {
4078     return IsExternalFloatOrDoubleElementsKind(
4079         HLoadKeyed::cast(value())->elements_kind());
4080   }
4081 
4082   if (value()->IsChange()) {
4083     if (HChange::cast(value())->from().IsSmiOrInteger32()) {
4084       return false;
4085     }
4086     if (HChange::cast(value())->value()->type().IsSmi()) {
4087       return false;
4088     }
4089   }
4090   return true;
4091 }
4092 
4093 
4094 #define H_CONSTANT_INT(val)                                                    \
4095 HConstant::New(zone, context, static_cast<int32_t>(val))
4096 #define H_CONSTANT_DOUBLE(val)                                                 \
4097 HConstant::New(zone, context, static_cast<double>(val))
4098 
4099 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                       \
4100 HInstruction* HInstr::New(                                                     \
4101     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
4102   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
4103     HConstant* c_left = HConstant::cast(left);                                 \
4104     HConstant* c_right = HConstant::cast(right);                               \
4105     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
4106       double double_res = c_left->DoubleValue() op c_right->DoubleValue();     \
4107       if (IsInt32Double(double_res)) {                                         \
4108         return H_CONSTANT_INT(double_res);                                     \
4109       }                                                                        \
4110       return H_CONSTANT_DOUBLE(double_res);                                    \
4111     }                                                                          \
4112   }                                                                            \
4113   return new(zone) HInstr(context, left, right);                               \
4114 }
4115 
4116 
4117 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
4118 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
4119 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
4120 
4121 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
4122 
4123 
New(Zone * zone,HValue * context,HValue * left,HValue * right,PretenureFlag pretenure_flag,StringAddFlags flags,Handle<AllocationSite> allocation_site)4124 HInstruction* HStringAdd::New(Zone* zone,
4125                               HValue* context,
4126                               HValue* left,
4127                               HValue* right,
4128                               PretenureFlag pretenure_flag,
4129                               StringAddFlags flags,
4130                               Handle<AllocationSite> allocation_site) {
4131   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4132     HConstant* c_right = HConstant::cast(right);
4133     HConstant* c_left = HConstant::cast(left);
4134     if (c_left->HasStringValue() && c_right->HasStringValue()) {
4135       Handle<String> left_string = c_left->StringValue();
4136       Handle<String> right_string = c_right->StringValue();
4137       // Prevent possible exception by invalid string length.
4138       if (left_string->length() + right_string->length() < String::kMaxLength) {
4139         Handle<String> concat = zone->isolate()->factory()->NewFlatConcatString(
4140             c_left->StringValue(), c_right->StringValue());
4141         ASSERT(!concat.is_null());
4142         return HConstant::New(zone, context, concat);
4143       }
4144     }
4145   }
4146   return new(zone) HStringAdd(
4147       context, left, right, pretenure_flag, flags, allocation_site);
4148 }
4149 
4150 
PrintDataTo(StringStream * stream)4151 void HStringAdd::PrintDataTo(StringStream* stream) {
4152   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4153     stream->Add("_CheckBoth");
4154   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
4155     stream->Add("_CheckLeft");
4156   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
4157     stream->Add("_CheckRight");
4158   }
4159   HBinaryOperation::PrintDataTo(stream);
4160   stream->Add(" (");
4161   if (pretenure_flag() == NOT_TENURED) stream->Add("N");
4162   else if (pretenure_flag() == TENURED) stream->Add("D");
4163   stream->Add(")");
4164 }
4165 
4166 
New(Zone * zone,HValue * context,HValue * char_code)4167 HInstruction* HStringCharFromCode::New(
4168     Zone* zone, HValue* context, HValue* char_code) {
4169   if (FLAG_fold_constants && char_code->IsConstant()) {
4170     HConstant* c_code = HConstant::cast(char_code);
4171     Isolate* isolate = zone->isolate();
4172     if (c_code->HasNumberValue()) {
4173       if (std::isfinite(c_code->DoubleValue())) {
4174         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
4175         return HConstant::New(zone, context,
4176             isolate->factory()->LookupSingleCharacterStringFromCode(code));
4177       }
4178       return HConstant::New(zone, context, isolate->factory()->empty_string());
4179     }
4180   }
4181   return new(zone) HStringCharFromCode(context, char_code);
4182 }
4183 
4184 
New(Zone * zone,HValue * context,HValue * value,BuiltinFunctionId op)4185 HInstruction* HUnaryMathOperation::New(
4186     Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
4187   do {
4188     if (!FLAG_fold_constants) break;
4189     if (!value->IsConstant()) break;
4190     HConstant* constant = HConstant::cast(value);
4191     if (!constant->HasNumberValue()) break;
4192     double d = constant->DoubleValue();
4193     if (std::isnan(d)) {  // NaN poisons everything.
4194       return H_CONSTANT_DOUBLE(OS::nan_value());
4195     }
4196     if (std::isinf(d)) {  // +Infinity and -Infinity.
4197       switch (op) {
4198         case kMathExp:
4199           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
4200         case kMathLog:
4201         case kMathSqrt:
4202           return H_CONSTANT_DOUBLE((d > 0.0) ? d : OS::nan_value());
4203         case kMathPowHalf:
4204         case kMathAbs:
4205           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
4206         case kMathRound:
4207         case kMathFloor:
4208           return H_CONSTANT_DOUBLE(d);
4209         case kMathClz32:
4210           return H_CONSTANT_INT(32);
4211         default:
4212           UNREACHABLE();
4213           break;
4214       }
4215     }
4216     switch (op) {
4217       case kMathExp:
4218         return H_CONSTANT_DOUBLE(fast_exp(d));
4219       case kMathLog:
4220         return H_CONSTANT_DOUBLE(std::log(d));
4221       case kMathSqrt:
4222         return H_CONSTANT_DOUBLE(fast_sqrt(d));
4223       case kMathPowHalf:
4224         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
4225       case kMathAbs:
4226         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
4227       case kMathRound:
4228         // -0.5 .. -0.0 round to -0.0.
4229         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
4230         // Doubles are represented as Significant * 2 ^ Exponent. If the
4231         // Exponent is not negative, the double value is already an integer.
4232         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
4233         return H_CONSTANT_DOUBLE(std::floor(d + 0.5));
4234       case kMathFloor:
4235         return H_CONSTANT_DOUBLE(std::floor(d));
4236       case kMathClz32: {
4237         uint32_t i = DoubleToUint32(d);
4238         return H_CONSTANT_INT(
4239             (i == 0) ? 32 : CompilerIntrinsics::CountLeadingZeros(i));
4240       }
4241       default:
4242         UNREACHABLE();
4243         break;
4244     }
4245   } while (false);
4246   return new(zone) HUnaryMathOperation(context, value, op);
4247 }
4248 
4249 
RepresentationFromUses()4250 Representation HUnaryMathOperation::RepresentationFromUses() {
4251   if (op_ != kMathFloor && op_ != kMathRound) {
4252     return HValue::RepresentationFromUses();
4253   }
4254 
4255   // The instruction can have an int32 or double output. Prefer a double
4256   // representation if there are double uses.
4257   bool use_double = false;
4258 
4259   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4260     HValue* use = it.value();
4261     int use_index = it.index();
4262     Representation rep_observed = use->observed_input_representation(use_index);
4263     Representation rep_required = use->RequiredInputRepresentation(use_index);
4264     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
4265     if (use_double && !FLAG_trace_representation) {
4266       // Having seen one double is enough.
4267       break;
4268     }
4269     if (FLAG_trace_representation) {
4270       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
4271         PrintF("#%d %s is used by #%d %s as %s%s\n",
4272                id(), Mnemonic(), use->id(),
4273                use->Mnemonic(), rep_observed.Mnemonic(),
4274                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4275       } else {
4276         PrintF("#%d %s is required by #%d %s as %s%s\n",
4277                id(), Mnemonic(), use->id(),
4278                use->Mnemonic(), rep_required.Mnemonic(),
4279                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4280       }
4281     }
4282   }
4283   return use_double ? Representation::Double() : Representation::Integer32();
4284 }
4285 
4286 
New(Zone * zone,HValue * context,HValue * left,HValue * right)4287 HInstruction* HPower::New(Zone* zone,
4288                           HValue* context,
4289                           HValue* left,
4290                           HValue* right) {
4291   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4292     HConstant* c_left = HConstant::cast(left);
4293     HConstant* c_right = HConstant::cast(right);
4294     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4295       double result = power_helper(c_left->DoubleValue(),
4296                                    c_right->DoubleValue());
4297       return H_CONSTANT_DOUBLE(std::isnan(result) ?  OS::nan_value() : result);
4298     }
4299   }
4300   return new(zone) HPower(left, right);
4301 }
4302 
4303 
New(Zone * zone,HValue * context,HValue * left,HValue * right,Operation op)4304 HInstruction* HMathMinMax::New(
4305     Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
4306   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4307     HConstant* c_left = HConstant::cast(left);
4308     HConstant* c_right = HConstant::cast(right);
4309     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4310       double d_left = c_left->DoubleValue();
4311       double d_right = c_right->DoubleValue();
4312       if (op == kMathMin) {
4313         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
4314         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
4315         if (d_left == d_right) {
4316           // Handle +0 and -0.
4317           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
4318                                                                  : d_right);
4319         }
4320       } else {
4321         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
4322         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
4323         if (d_left == d_right) {
4324           // Handle +0 and -0.
4325           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
4326                                                                  : d_left);
4327         }
4328       }
4329       // All comparisons failed, must be NaN.
4330       return H_CONSTANT_DOUBLE(OS::nan_value());
4331     }
4332   }
4333   return new(zone) HMathMinMax(context, left, right, op);
4334 }
4335 
4336 
New(Zone * zone,HValue * context,HValue * left,HValue * right)4337 HInstruction* HMod::New(Zone* zone,
4338                         HValue* context,
4339                         HValue* left,
4340                         HValue* right) {
4341   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4342     HConstant* c_left = HConstant::cast(left);
4343     HConstant* c_right = HConstant::cast(right);
4344     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
4345       int32_t dividend = c_left->Integer32Value();
4346       int32_t divisor = c_right->Integer32Value();
4347       if (dividend == kMinInt && divisor == -1) {
4348         return H_CONSTANT_DOUBLE(-0.0);
4349       }
4350       if (divisor != 0) {
4351         int32_t res = dividend % divisor;
4352         if ((res == 0) && (dividend < 0)) {
4353           return H_CONSTANT_DOUBLE(-0.0);
4354         }
4355         return H_CONSTANT_INT(res);
4356       }
4357     }
4358   }
4359   return new(zone) HMod(context, left, right);
4360 }
4361 
4362 
New(Zone * zone,HValue * context,HValue * left,HValue * right)4363 HInstruction* HDiv::New(
4364     Zone* zone, HValue* context, HValue* left, HValue* right) {
4365   // If left and right are constant values, try to return a constant value.
4366   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4367     HConstant* c_left = HConstant::cast(left);
4368     HConstant* c_right = HConstant::cast(right);
4369     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4370       if (c_right->DoubleValue() != 0) {
4371         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
4372         if (IsInt32Double(double_res)) {
4373           return H_CONSTANT_INT(double_res);
4374         }
4375         return H_CONSTANT_DOUBLE(double_res);
4376       } else {
4377         int sign = Double(c_left->DoubleValue()).Sign() *
4378                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
4379         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
4380       }
4381     }
4382   }
4383   return new(zone) HDiv(context, left, right);
4384 }
4385 
4386 
New(Zone * zone,HValue * context,Token::Value op,HValue * left,HValue * right)4387 HInstruction* HBitwise::New(
4388     Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
4389   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4390     HConstant* c_left = HConstant::cast(left);
4391     HConstant* c_right = HConstant::cast(right);
4392     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4393       int32_t result;
4394       int32_t v_left = c_left->NumberValueAsInteger32();
4395       int32_t v_right = c_right->NumberValueAsInteger32();
4396       switch (op) {
4397         case Token::BIT_XOR:
4398           result = v_left ^ v_right;
4399           break;
4400         case Token::BIT_AND:
4401           result = v_left & v_right;
4402           break;
4403         case Token::BIT_OR:
4404           result = v_left | v_right;
4405           break;
4406         default:
4407           result = 0;  // Please the compiler.
4408           UNREACHABLE();
4409       }
4410       return H_CONSTANT_INT(result);
4411     }
4412   }
4413   return new(zone) HBitwise(context, op, left, right);
4414 }
4415 
4416 
4417 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                             \
4418 HInstruction* HInstr::New(                                                     \
4419     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
4420   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
4421     HConstant* c_left = HConstant::cast(left);                                 \
4422     HConstant* c_right = HConstant::cast(right);                               \
4423     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
4424       return H_CONSTANT_INT(result);                                           \
4425     }                                                                          \
4426   }                                                                            \
4427   return new(zone) HInstr(context, left, right);                               \
4428 }
4429 
4430 
4431 DEFINE_NEW_H_BITWISE_INSTR(HSar,
4432 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
4433 DEFINE_NEW_H_BITWISE_INSTR(HShl,
4434 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
4435 
4436 #undef DEFINE_NEW_H_BITWISE_INSTR
4437 
4438 
New(Zone * zone,HValue * context,HValue * left,HValue * right)4439 HInstruction* HShr::New(
4440     Zone* zone, HValue* context, HValue* left, HValue* right) {
4441   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4442     HConstant* c_left = HConstant::cast(left);
4443     HConstant* c_right = HConstant::cast(right);
4444     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4445       int32_t left_val = c_left->NumberValueAsInteger32();
4446       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
4447       if ((right_val == 0) && (left_val < 0)) {
4448         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
4449       }
4450       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
4451     }
4452   }
4453   return new(zone) HShr(context, left, right);
4454 }
4455 
4456 
New(Zone * zone,HValue * context,String::Encoding encoding,HValue * string,HValue * index)4457 HInstruction* HSeqStringGetChar::New(Zone* zone,
4458                                      HValue* context,
4459                                      String::Encoding encoding,
4460                                      HValue* string,
4461                                      HValue* index) {
4462   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
4463     HConstant* c_string = HConstant::cast(string);
4464     HConstant* c_index = HConstant::cast(index);
4465     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
4466       Handle<String> s = c_string->StringValue();
4467       int32_t i = c_index->Integer32Value();
4468       ASSERT_LE(0, i);
4469       ASSERT_LT(i, s->length());
4470       return H_CONSTANT_INT(s->Get(i));
4471     }
4472   }
4473   return new(zone) HSeqStringGetChar(encoding, string, index);
4474 }
4475 
4476 
4477 #undef H_CONSTANT_INT
4478 #undef H_CONSTANT_DOUBLE
4479 
4480 
PrintDataTo(StringStream * stream)4481 void HBitwise::PrintDataTo(StringStream* stream) {
4482   stream->Add(Token::Name(op_));
4483   stream->Add(" ");
4484   HBitwiseBinaryOperation::PrintDataTo(stream);
4485 }
4486 
4487 
SimplifyConstantInputs()4488 void HPhi::SimplifyConstantInputs() {
4489   // Convert constant inputs to integers when all uses are truncating.
4490   // This must happen before representation inference takes place.
4491   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
4492   for (int i = 0; i < OperandCount(); ++i) {
4493     if (!OperandAt(i)->IsConstant()) return;
4494   }
4495   HGraph* graph = block()->graph();
4496   for (int i = 0; i < OperandCount(); ++i) {
4497     HConstant* operand = HConstant::cast(OperandAt(i));
4498     if (operand->HasInteger32Value()) {
4499       continue;
4500     } else if (operand->HasDoubleValue()) {
4501       HConstant* integer_input =
4502           HConstant::New(graph->zone(), graph->GetInvalidContext(),
4503                          DoubleToInt32(operand->DoubleValue()));
4504       integer_input->InsertAfter(operand);
4505       SetOperandAt(i, integer_input);
4506     } else if (operand->HasBooleanValue()) {
4507       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
4508                                               : graph->GetConstant0());
4509     } else if (operand->ImmortalImmovable()) {
4510       SetOperandAt(i, graph->GetConstant0());
4511     }
4512   }
4513   // Overwrite observed input representations because they are likely Tagged.
4514   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4515     HValue* use = it.value();
4516     if (use->IsBinaryOperation()) {
4517       HBinaryOperation::cast(use)->set_observed_input_representation(
4518           it.index(), Representation::Smi());
4519     }
4520   }
4521 }
4522 
4523 
InferRepresentation(HInferRepresentationPhase * h_infer)4524 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
4525   ASSERT(CheckFlag(kFlexibleRepresentation));
4526   Representation new_rep = RepresentationFromInputs();
4527   UpdateRepresentation(new_rep, h_infer, "inputs");
4528   new_rep = RepresentationFromUses();
4529   UpdateRepresentation(new_rep, h_infer, "uses");
4530   new_rep = RepresentationFromUseRequirements();
4531   UpdateRepresentation(new_rep, h_infer, "use requirements");
4532 }
4533 
4534 
RepresentationFromInputs()4535 Representation HPhi::RepresentationFromInputs() {
4536   Representation r = Representation::None();
4537   for (int i = 0; i < OperandCount(); ++i) {
4538     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
4539   }
4540   return r;
4541 }
4542 
4543 
4544 // Returns a representation if all uses agree on the same representation.
4545 // Integer32 is also returned when some uses are Smi but others are Integer32.
RepresentationFromUseRequirements()4546 Representation HValue::RepresentationFromUseRequirements() {
4547   Representation rep = Representation::None();
4548   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4549     // Ignore the use requirement from never run code
4550     if (it.value()->block()->IsUnreachable()) continue;
4551 
4552     // We check for observed_input_representation elsewhere.
4553     Representation use_rep =
4554         it.value()->RequiredInputRepresentation(it.index());
4555     if (rep.IsNone()) {
4556       rep = use_rep;
4557       continue;
4558     }
4559     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
4560     if (rep.generalize(use_rep).IsInteger32()) {
4561       rep = Representation::Integer32();
4562       continue;
4563     }
4564     return Representation::None();
4565   }
4566   return rep;
4567 }
4568 
4569 
HasNonSmiUse()4570 bool HValue::HasNonSmiUse() {
4571   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4572     // We check for observed_input_representation elsewhere.
4573     Representation use_rep =
4574         it.value()->RequiredInputRepresentation(it.index());
4575     if (!use_rep.IsNone() &&
4576         !use_rep.IsSmi() &&
4577         !use_rep.IsTagged()) {
4578       return true;
4579     }
4580   }
4581   return false;
4582 }
4583 
4584 
4585 // Node-specific verification code is only included in debug mode.
4586 #ifdef DEBUG
4587 
Verify()4588 void HPhi::Verify() {
4589   ASSERT(OperandCount() == block()->predecessors()->length());
4590   for (int i = 0; i < OperandCount(); ++i) {
4591     HValue* value = OperandAt(i);
4592     HBasicBlock* defining_block = value->block();
4593     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
4594     ASSERT(defining_block == predecessor_block ||
4595            defining_block->Dominates(predecessor_block));
4596   }
4597 }
4598 
4599 
Verify()4600 void HSimulate::Verify() {
4601   HInstruction::Verify();
4602   ASSERT(HasAstId() || next()->IsEnterInlined());
4603 }
4604 
4605 
Verify()4606 void HCheckHeapObject::Verify() {
4607   HInstruction::Verify();
4608   ASSERT(HasNoUses());
4609 }
4610 
4611 
Verify()4612 void HCheckValue::Verify() {
4613   HInstruction::Verify();
4614   ASSERT(HasNoUses());
4615 }
4616 
4617 #endif
4618 
4619 
ForFixedArrayHeader(int offset)4620 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
4621   ASSERT(offset >= 0);
4622   ASSERT(offset < FixedArray::kHeaderSize);
4623   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
4624   return HObjectAccess(kInobject, offset);
4625 }
4626 
4627 
ForMapAndOffset(Handle<Map> map,int offset,Representation representation)4628 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
4629     Representation representation) {
4630   ASSERT(offset >= 0);
4631   Portion portion = kInobject;
4632 
4633   if (offset == JSObject::kElementsOffset) {
4634     portion = kElementsPointer;
4635   } else if (offset == JSObject::kMapOffset) {
4636     portion = kMaps;
4637   }
4638   bool existing_inobject_property = true;
4639   if (!map.is_null()) {
4640     existing_inobject_property = (offset <
4641         map->instance_size() - map->unused_property_fields() * kPointerSize);
4642   }
4643   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
4644                        false, existing_inobject_property);
4645 }
4646 
4647 
ForAllocationSiteOffset(int offset)4648 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
4649   switch (offset) {
4650     case AllocationSite::kTransitionInfoOffset:
4651       return HObjectAccess(kInobject, offset, Representation::Tagged());
4652     case AllocationSite::kNestedSiteOffset:
4653       return HObjectAccess(kInobject, offset, Representation::Tagged());
4654     case AllocationSite::kPretenureDataOffset:
4655       return HObjectAccess(kInobject, offset, Representation::Smi());
4656     case AllocationSite::kPretenureCreateCountOffset:
4657       return HObjectAccess(kInobject, offset, Representation::Smi());
4658     case AllocationSite::kDependentCodeOffset:
4659       return HObjectAccess(kInobject, offset, Representation::Tagged());
4660     case AllocationSite::kWeakNextOffset:
4661       return HObjectAccess(kInobject, offset, Representation::Tagged());
4662     default:
4663       UNREACHABLE();
4664   }
4665   return HObjectAccess(kInobject, offset);
4666 }
4667 
4668 
ForContextSlot(int index)4669 HObjectAccess HObjectAccess::ForContextSlot(int index) {
4670   ASSERT(index >= 0);
4671   Portion portion = kInobject;
4672   int offset = Context::kHeaderSize + index * kPointerSize;
4673   ASSERT_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
4674   return HObjectAccess(portion, offset, Representation::Tagged());
4675 }
4676 
4677 
ForJSArrayOffset(int offset)4678 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
4679   ASSERT(offset >= 0);
4680   Portion portion = kInobject;
4681 
4682   if (offset == JSObject::kElementsOffset) {
4683     portion = kElementsPointer;
4684   } else if (offset == JSArray::kLengthOffset) {
4685     portion = kArrayLengths;
4686   } else if (offset == JSObject::kMapOffset) {
4687     portion = kMaps;
4688   }
4689   return HObjectAccess(portion, offset);
4690 }
4691 
4692 
ForBackingStoreOffset(int offset,Representation representation)4693 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
4694     Representation representation) {
4695   ASSERT(offset >= 0);
4696   return HObjectAccess(kBackingStore, offset, representation,
4697                        Handle<String>::null(), false, false);
4698 }
4699 
4700 
ForField(Handle<Map> map,LookupResult * lookup,Handle<String> name)4701 HObjectAccess HObjectAccess::ForField(Handle<Map> map,
4702                                       LookupResult* lookup,
4703                                       Handle<String> name) {
4704   ASSERT(lookup->IsField() || lookup->IsTransitionToField());
4705   int index;
4706   Representation representation;
4707   if (lookup->IsField()) {
4708     index = lookup->GetLocalFieldIndexFromMap(*map);
4709     representation = lookup->representation();
4710   } else {
4711     Map* transition = lookup->GetTransitionTarget();
4712     int descriptor = transition->LastAdded();
4713     index = transition->instance_descriptors()->GetFieldIndex(descriptor) -
4714         map->inobject_properties();
4715     PropertyDetails details =
4716         transition->instance_descriptors()->GetDetails(descriptor);
4717     representation = details.representation();
4718   }
4719   if (index < 0) {
4720     // Negative property indices are in-object properties, indexed
4721     // from the end of the fixed part of the object.
4722     int offset = (index * kPointerSize) + map->instance_size();
4723     return HObjectAccess(kInobject, offset, representation, name, false, true);
4724   } else {
4725     // Non-negative property indices are in the properties array.
4726     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
4727     return HObjectAccess(kBackingStore, offset, representation, name,
4728                          false, false);
4729   }
4730 }
4731 
4732 
ForCellPayload(Isolate * isolate)4733 HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
4734   return HObjectAccess(
4735       kInobject, Cell::kValueOffset, Representation::Tagged(),
4736       Handle<String>(isolate->heap()->cell_value_string()));
4737 }
4738 
4739 
SetGVNFlags(HValue * instr,PropertyAccessType access_type)4740 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
4741   // set the appropriate GVN flags for a given load or store instruction
4742   if (access_type == STORE) {
4743     // track dominating allocations in order to eliminate write barriers
4744     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
4745     instr->SetFlag(HValue::kTrackSideEffectDominators);
4746   } else {
4747     // try to GVN loads, but don't hoist above map changes
4748     instr->SetFlag(HValue::kUseGVN);
4749     instr->SetDependsOnFlag(::v8::internal::kMaps);
4750   }
4751 
4752   switch (portion()) {
4753     case kArrayLengths:
4754       if (access_type == STORE) {
4755         instr->SetChangesFlag(::v8::internal::kArrayLengths);
4756       } else {
4757         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
4758       }
4759       break;
4760     case kStringLengths:
4761       if (access_type == STORE) {
4762         instr->SetChangesFlag(::v8::internal::kStringLengths);
4763       } else {
4764         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
4765       }
4766       break;
4767     case kInobject:
4768       if (access_type == STORE) {
4769         instr->SetChangesFlag(::v8::internal::kInobjectFields);
4770       } else {
4771         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
4772       }
4773       break;
4774     case kDouble:
4775       if (access_type == STORE) {
4776         instr->SetChangesFlag(::v8::internal::kDoubleFields);
4777       } else {
4778         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
4779       }
4780       break;
4781     case kBackingStore:
4782       if (access_type == STORE) {
4783         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
4784       } else {
4785         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
4786       }
4787       break;
4788     case kElementsPointer:
4789       if (access_type == STORE) {
4790         instr->SetChangesFlag(::v8::internal::kElementsPointer);
4791       } else {
4792         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
4793       }
4794       break;
4795     case kMaps:
4796       if (access_type == STORE) {
4797         instr->SetChangesFlag(::v8::internal::kMaps);
4798       } else {
4799         instr->SetDependsOnFlag(::v8::internal::kMaps);
4800       }
4801       break;
4802     case kExternalMemory:
4803       if (access_type == STORE) {
4804         instr->SetChangesFlag(::v8::internal::kExternalMemory);
4805       } else {
4806         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
4807       }
4808       break;
4809   }
4810 }
4811 
4812 
PrintTo(StringStream * stream) const4813 void HObjectAccess::PrintTo(StringStream* stream) const {
4814   stream->Add(".");
4815 
4816   switch (portion()) {
4817     case kArrayLengths:
4818     case kStringLengths:
4819       stream->Add("%length");
4820       break;
4821     case kElementsPointer:
4822       stream->Add("%elements");
4823       break;
4824     case kMaps:
4825       stream->Add("%map");
4826       break;
4827     case kDouble:  // fall through
4828     case kInobject:
4829       if (!name_.is_null()) {
4830         stream->Add(String::cast(*name_)->ToCString().get());
4831       }
4832       stream->Add("[in-object]");
4833       break;
4834     case kBackingStore:
4835       if (!name_.is_null()) {
4836         stream->Add(String::cast(*name_)->ToCString().get());
4837       }
4838       stream->Add("[backing-store]");
4839       break;
4840     case kExternalMemory:
4841       stream->Add("[external-memory]");
4842       break;
4843   }
4844 
4845   stream->Add("@%d", offset());
4846 }
4847 
4848 } }  // namespace v8::internal
4849