• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/strings/safe_sprintf.h"
6 
7 #include <limits>
8 
9 #if !defined(NDEBUG)
10 // In debug builds, we use RAW_CHECK() to print useful error messages, if
11 // SafeSPrintf() is called with broken arguments.
12 // As our contract promises that SafeSPrintf() can be called from any
13 // restricted run-time context, it is not actually safe to call logging
14 // functions from it; and we only ever do so for debug builds and hope for the
15 // best. We should _never_ call any logging function other than RAW_CHECK(),
16 // and we should _never_ include any logging code that is active in production
17 // builds. Most notably, we should not include these logging functions in
18 // unofficial release builds, even though those builds would otherwise have
19 // DCHECKS() enabled.
20 // In other words; please do not remove the #ifdef around this #include.
21 // Instead, in production builds we opt for returning a degraded result,
22 // whenever an error is encountered.
23 // E.g. The broken function call
24 //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
25 //      will print something like
26 //        errno = 13, (%x)
27 //      instead of
28 //        errno = 13 (Access denied)
29 //      In most of the anticipated use cases, that's probably the preferred
30 //      behavior.
31 #include "base/logging.h"
32 #define DEBUG_CHECK RAW_CHECK
33 #else
34 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
35 #endif
36 
37 namespace base {
38 namespace strings {
39 
40 // The code in this file is extremely careful to be async-signal-safe.
41 //
42 // Most obviously, we avoid calling any code that could dynamically allocate
43 // memory. Doing so would almost certainly result in bugs and dead-locks.
44 // We also avoid calling any other STL functions that could have unintended
45 // side-effects involving memory allocation or access to other shared
46 // resources.
47 //
48 // But on top of that, we also avoid calling other library functions, as many
49 // of them have the side-effect of calling getenv() (in order to deal with
50 // localization) or accessing errno. The latter sounds benign, but there are
51 // several execution contexts where it isn't even possible to safely read let
52 // alone write errno.
53 //
54 // The stated design goal of the SafeSPrintf() function is that it can be
55 // called from any context that can safely call C or C++ code (i.e. anything
56 // that doesn't require assembly code).
57 //
58 // For a brief overview of some but not all of the issues with async-signal-
59 // safety, refer to:
60 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
61 
62 namespace {
63 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
64 
65 const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
66 const char kDownCaseHexDigits[] = "0123456789abcdef";
67 }
68 
69 #if defined(NDEBUG)
70 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
71 // but C++ doesn't allow us to do that for constants. Instead, we have to
72 // use careful casting and shifting. We later use a COMPILE_ASSERT to
73 // verify that this worked correctly.
74 namespace {
75 const size_t kSSizeMax = kSSizeMaxConst;
76 }
77 #else  // defined(NDEBUG)
78 // For efficiency, we really need kSSizeMax to be a constant. But for unit
79 // tests, it should be adjustable. This allows us to verify edge cases without
80 // having to fill the entire available address space. As a compromise, we make
81 // kSSizeMax adjustable in debug builds, and then only compile that particular
82 // part of the unit test in debug builds.
83 namespace {
84 static size_t kSSizeMax = kSSizeMaxConst;
85 }
86 
87 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)88 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
89   kSSizeMax = max;
90 }
91 
GetSafeSPrintfSSizeMaxForTest()92 size_t GetSafeSPrintfSSizeMaxForTest() {
93   return kSSizeMax;
94 }
95 }
96 #endif  // defined(NDEBUG)
97 
98 namespace {
99 class Buffer {
100  public:
101   // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
102   // has |size| bytes of writable storage. It is the caller's responsibility
103   // to ensure that the buffer is at least one byte in size, so that it fits
104   // the trailing NUL that will be added by the destructor. The buffer also
105   // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)106   Buffer(char* buffer, size_t size)
107       : buffer_(buffer),
108         size_(size - 1),  // Account for trailing NUL byte
109         count_(0) {
110 // The following assertion does not build on Mac and Android. This is because
111 // static_assert only works with compile-time constants, but mac uses
112 // libstdc++4.2 and android uses stlport, which both don't mark
113 // numeric_limits::max() as constexp.
114 #if __cplusplus >= 201103 && !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_IOS)
115     COMPILE_ASSERT(kSSizeMaxConst == \
116                    static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
117                    kSSizeMax_is_the_max_value_of_an_ssize_t);
118 #endif
119     DEBUG_CHECK(size > 0);
120     DEBUG_CHECK(size <= kSSizeMax);
121   }
122 
~Buffer()123   ~Buffer() {
124     // The code calling the constructor guaranteed that there was enough space
125     // to store a trailing NUL -- and in debug builds, we are actually
126     // verifying this with DEBUG_CHECK()s in the constructor. So, we can
127     // always unconditionally write the NUL byte in the destructor.  We do not
128     // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
129     // including the NUL byte in its return code.
130     *GetInsertionPoint() = '\000';
131   }
132 
133   // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
134   // caller can now stop adding more data, as GetCount() has reached its
135   // maximum possible value.
OutOfAddressableSpace() const136   inline bool OutOfAddressableSpace() const {
137     return count_ == static_cast<size_t>(kSSizeMax - 1);
138   }
139 
140   // Returns the number of bytes that would have been emitted to |buffer_|
141   // if it was sized sufficiently large. This number can be larger than
142   // |size_|, if the caller provided an insufficiently large output buffer.
143   // But it will never be bigger than |kSSizeMax-1|.
GetCount() const144   inline ssize_t GetCount() const {
145     DEBUG_CHECK(count_ < kSSizeMax);
146     return static_cast<ssize_t>(count_);
147   }
148 
149   // Emits one |ch| character into the |buffer_| and updates the |count_| of
150   // characters that are currently supposed to be in the buffer.
151   // Returns "false", iff the buffer was already full.
152   // N.B. |count_| increases even if no characters have been written. This is
153   // needed so that GetCount() can return the number of bytes that should
154   // have been allocated for the |buffer_|.
Out(char ch)155   inline bool Out(char ch) {
156     if (size_ >= 1 && count_ < size_) {
157       buffer_[count_] = ch;
158       return IncrementCountByOne();
159     }
160     // |count_| still needs to be updated, even if the buffer has been
161     // filled completely. This allows SafeSPrintf() to return the number of
162     // bytes that should have been emitted.
163     IncrementCountByOne();
164     return false;
165   }
166 
167   // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
168   // |count_| will also be incremented by the number of bytes that were meant
169   // to be emitted. The |pad| character is typically either a ' ' space
170   // or a '0' zero, but other non-NUL values are legal.
171   // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
172   // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)173   inline bool Pad(char pad, size_t padding, size_t len) {
174     DEBUG_CHECK(pad);
175     DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
176     DEBUG_CHECK(len >= 0);
177     for (; padding > len; --padding) {
178       if (!Out(pad)) {
179         if (--padding) {
180           IncrementCount(padding-len);
181         }
182         return false;
183       }
184     }
185     return true;
186   }
187 
188   // POSIX doesn't define any async-signal-safe function for converting
189   // an integer to ASCII. Define our own version.
190   //
191   // This also gives us the ability to make the function a little more
192   // powerful and have it deal with |padding|, with truncation, and with
193   // predicting the length of the untruncated output.
194   //
195   // IToASCII() converts an integer |i| to ASCII.
196   //
197   // Unlike similar functions in the standard C library, it never appends a
198   // NUL character. This is left for the caller to do.
199   //
200   // While the function signature takes a signed int64_t, the code decides at
201   // run-time whether to treat the argument as signed (int64_t) or as unsigned
202   // (uint64_t) based on the value of |sign|.
203   //
204   // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
205   // a |sign|. Otherwise, |i| is treated as unsigned.
206   //
207   // For bases larger than 10, |upcase| decides whether lower-case or upper-
208   // case letters should be used to designate digits greater than 10.
209   //
210   // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
211   // be positive and will always be applied to the left of the output.
212   //
213   // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
214   // the left of |padding|, if |pad| is '0'; and to the right of |padding|
215   // if |pad| is ' '.
216   //
217   // Returns "false", if the |buffer_| overflowed at any time.
218   bool IToASCII(bool sign, bool upcase, int64_t i, int base,
219                 char pad, size_t padding, const char* prefix);
220 
221  private:
222   // Increments |count_| by |inc| unless this would cause |count_| to
223   // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
224   // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)225   inline bool IncrementCount(size_t inc) {
226     // "inc" is either 1 or a "padding" value. Padding is clamped at
227     // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
228     // the range 1..kSSizeMax-1.
229     // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
230     // integer overflows.
231     DEBUG_CHECK(inc <= kSSizeMax - 1);
232     if (count_ > kSSizeMax - 1 - inc) {
233       count_ = kSSizeMax - 1;
234       return false;
235     } else {
236       count_ += inc;
237       return true;
238     }
239   }
240 
241   // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()242   inline bool IncrementCountByOne() {
243     return IncrementCount(1);
244   }
245 
246   // Return the current insertion point into the buffer. This is typically
247   // at |buffer_| + |count_|, but could be before that if truncation
248   // happened. It always points to one byte past the last byte that was
249   // successfully placed into the |buffer_|.
GetInsertionPoint() const250   inline char* GetInsertionPoint() const {
251     size_t idx = count_;
252     if (idx > size_) {
253       idx = size_;
254     }
255     return buffer_ + idx;
256   }
257 
258   // User-provided buffer that will receive the fully formatted output string.
259   char* buffer_;
260 
261   // Number of bytes that are available in the buffer excluding the trailing
262   // NUL byte that will be added by the destructor.
263   const size_t size_;
264 
265   // Number of bytes that would have been emitted to the buffer, if the buffer
266   // was sufficiently big. This number always excludes the trailing NUL byte
267   // and it is guaranteed to never grow bigger than kSSizeMax-1.
268   size_t count_;
269 
270   DISALLOW_COPY_AND_ASSIGN(Buffer);
271 };
272 
273 
IToASCII(bool sign,bool upcase,int64_t i,int base,char pad,size_t padding,const char * prefix)274 bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
275                       char pad, size_t padding, const char* prefix) {
276   // Sanity check for parameters. None of these should ever fail, but see
277   // above for the rationale why we can't call CHECK().
278   DEBUG_CHECK(base >= 2);
279   DEBUG_CHECK(base <= 16);
280   DEBUG_CHECK(!sign || base == 10);
281   DEBUG_CHECK(pad == '0' || pad == ' ');
282   DEBUG_CHECK(padding >= 0);
283   DEBUG_CHECK(padding <= kSSizeMax);
284   DEBUG_CHECK(!(sign && prefix && *prefix));
285 
286   // Handle negative numbers, if the caller indicated that |i| should be
287   // treated as a signed number; otherwise treat |i| as unsigned (even if the
288   // MSB is set!)
289   // Details are tricky, because of limited data-types, but equivalent pseudo-
290   // code would look like:
291   //   if (sign && i < 0)
292   //     prefix = "-";
293   //   num = abs(i);
294   int minint = 0;
295   uint64_t num;
296   if (sign && i < 0) {
297     prefix = "-";
298 
299     // Turn our number positive.
300     if (i == std::numeric_limits<int64_t>::min()) {
301       // The most negative integer needs special treatment.
302       minint = 1;
303       num = static_cast<uint64_t>(-(i + 1));
304     } else {
305       // "Normal" negative numbers are easy.
306       num = static_cast<uint64_t>(-i);
307     }
308   } else {
309     num = static_cast<uint64_t>(i);
310   }
311 
312   // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
313   // make the prefix accessible in reverse order, so that we can later output
314   // it right between padding and the number.
315   // We cannot choose the easier approach of just reversing the number, as that
316   // fails in situations where we need to truncate numbers that have padding
317   // and/or prefixes.
318   const char* reverse_prefix = NULL;
319   if (prefix && *prefix) {
320     if (pad == '0') {
321       while (*prefix) {
322         if (padding) {
323           --padding;
324         }
325         Out(*prefix++);
326       }
327       prefix = NULL;
328     } else {
329       for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
330       }
331     }
332   } else
333     prefix = NULL;
334   const size_t prefix_length = reverse_prefix - prefix;
335 
336   // Loop until we have converted the entire number. Output at least one
337   // character (i.e. '0').
338   size_t start = count_;
339   size_t discarded = 0;
340   bool started = false;
341   do {
342     // Make sure there is still enough space left in our output buffer.
343     if (count_ >= size_) {
344       if (start < size_) {
345         // It is rare that we need to output a partial number. But if asked
346         // to do so, we will still make sure we output the correct number of
347         // leading digits.
348         // Since we are generating the digits in reverse order, we actually
349         // have to discard digits in the order that we have already emitted
350         // them. This is essentially equivalent to:
351         //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
352         for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
353              move < end;
354              ++move) {
355           *move = move[1];
356         }
357         ++discarded;
358         --count_;
359       } else if (count_ - size_ > 1) {
360         // Need to increment either |count_| or |discarded| to make progress.
361         // The latter is more efficient, as it eventually triggers fast
362         // handling of padding. But we have to ensure we don't accidentally
363         // change the overall state (i.e. switch the state-machine from
364         // discarding to non-discarding). |count_| needs to always stay
365         // bigger than |size_|.
366         --count_;
367         ++discarded;
368       }
369     }
370 
371     // Output the next digit and (if necessary) compensate for the most
372     // negative integer needing special treatment. This works because,
373     // no matter the bit width of the integer, the lowest-most decimal
374     // integer always ends in 2, 4, 6, or 8.
375     if (!num && started) {
376       if (reverse_prefix > prefix) {
377         Out(*--reverse_prefix);
378       } else {
379         Out(pad);
380       }
381     } else {
382       started = true;
383       Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
384     }
385 
386     minint = 0;
387     num /= base;
388 
389     // Add padding, if requested.
390     if (padding > 0) {
391       --padding;
392 
393       // Performance optimization for when we are asked to output excessive
394       // padding, but our output buffer is limited in size.  Even if we output
395       // a 64bit number in binary, we would never write more than 64 plus
396       // prefix non-padding characters. So, once this limit has been passed,
397       // any further state change can be computed arithmetically; we know that
398       // by this time, our entire final output consists of padding characters
399       // that have all already been output.
400       if (discarded > 8*sizeof(num) + prefix_length) {
401         IncrementCount(padding);
402         padding = 0;
403       }
404     }
405   } while (num || padding || (reverse_prefix > prefix));
406 
407   // Conversion to ASCII actually resulted in the digits being in reverse
408   // order. We can't easily generate them in forward order, as we can't tell
409   // the number of characters needed until we are done converting.
410   // So, now, we reverse the string (except for the possible '-' sign).
411   char* front = buffer_ + start;
412   char* back = GetInsertionPoint();
413   while (--back > front) {
414     char ch = *back;
415     *back = *front;
416     *front++ = ch;
417   }
418 
419   IncrementCount(discarded);
420   return !discarded;
421 }
422 
423 }  // anonymous namespace
424 
425 namespace internal {
426 
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)427 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
428                      const size_t max_args) {
429   // Make sure that at least one NUL byte can be written, and that the buffer
430   // never overflows kSSizeMax. Not only does that use up most or all of the
431   // address space, it also would result in a return code that cannot be
432   // represented.
433   if (static_cast<ssize_t>(sz) < 1) {
434     return -1;
435   } else if (sz > kSSizeMax) {
436     sz = kSSizeMax;
437   }
438 
439   // Iterate over format string and interpret '%' arguments as they are
440   // encountered.
441   Buffer buffer(buf, sz);
442   size_t padding;
443   char pad;
444   for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
445     if (*fmt++ == '%') {
446       padding = 0;
447       pad = ' ';
448       char ch = *fmt++;
449     format_character_found:
450       switch (ch) {
451       case '0': case '1': case '2': case '3': case '4':
452       case '5': case '6': case '7': case '8': case '9':
453         // Found a width parameter. Convert to an integer value and store in
454         // "padding". If the leading digit is a zero, change the padding
455         // character from a space ' ' to a zero '0'.
456         pad = ch == '0' ? '0' : ' ';
457         for (;;) {
458           // The maximum allowed padding fills all the available address
459           // space and leaves just enough space to insert the trailing NUL.
460           const size_t max_padding = kSSizeMax - 1;
461           if (padding > max_padding/10 ||
462               10*padding > max_padding - (ch - '0')) {
463             DEBUG_CHECK(padding <= max_padding/10 &&
464                         10*padding <= max_padding - (ch - '0'));
465             // Integer overflow detected. Skip the rest of the width until
466             // we find the format character, then do the normal error handling.
467           padding_overflow:
468             padding = max_padding;
469             while ((ch = *fmt++) >= '0' && ch <= '9') {
470             }
471             if (cur_arg < max_args) {
472               ++cur_arg;
473             }
474             goto fail_to_expand;
475           }
476           padding = 10*padding + ch - '0';
477           if (padding > max_padding) {
478             // This doesn't happen for "sane" values of kSSizeMax. But once
479             // kSSizeMax gets smaller than about 10, our earlier range checks
480             // are incomplete. Unittests do trigger this artificial corner
481             // case.
482             DEBUG_CHECK(padding <= max_padding);
483             goto padding_overflow;
484           }
485           ch = *fmt++;
486           if (ch < '0' || ch > '9') {
487             // Reached the end of the width parameter. This is where the format
488             // character is found.
489             goto format_character_found;
490           }
491         }
492         break;
493       case 'c': {  // Output an ASCII character.
494         // Check that there are arguments left to be inserted.
495         if (cur_arg >= max_args) {
496           DEBUG_CHECK(cur_arg < max_args);
497           goto fail_to_expand;
498         }
499 
500         // Check that the argument has the expected type.
501         const Arg& arg = args[cur_arg++];
502         if (arg.type != Arg::INT && arg.type != Arg::UINT) {
503           DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
504           goto fail_to_expand;
505         }
506 
507         // Apply padding, if needed.
508         buffer.Pad(' ', padding, 1);
509 
510         // Convert the argument to an ASCII character and output it.
511         char ch = static_cast<char>(arg.i);
512         if (!ch) {
513           goto end_of_output_buffer;
514         }
515         buffer.Out(ch);
516         break; }
517       case 'd':    // Output a possibly signed decimal value.
518       case 'o':    // Output an unsigned octal value.
519       case 'x':    // Output an unsigned hexadecimal value.
520       case 'X':
521       case 'p': {  // Output a pointer value.
522         // Check that there are arguments left to be inserted.
523         if (cur_arg >= max_args) {
524           DEBUG_CHECK(cur_arg < max_args);
525           goto fail_to_expand;
526         }
527 
528         const Arg& arg = args[cur_arg++];
529         int64_t i;
530         const char* prefix = NULL;
531         if (ch != 'p') {
532           // Check that the argument has the expected type.
533           if (arg.type != Arg::INT && arg.type != Arg::UINT) {
534             DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
535             goto fail_to_expand;
536           }
537           i = arg.i;
538 
539           if (ch != 'd') {
540             // The Arg() constructor automatically performed sign expansion on
541             // signed parameters. This is great when outputting a %d decimal
542             // number, but can result in unexpected leading 0xFF bytes when
543             // outputting a %x hexadecimal number. Mask bits, if necessary.
544             // We have to do this here, instead of in the Arg() constructor, as
545             // the Arg() constructor cannot tell whether we will output a %d
546             // or a %x. Only the latter should experience masking.
547             if (arg.width < sizeof(int64_t)) {
548               i &= (1LL << (8*arg.width)) - 1;
549             }
550           }
551         } else {
552           // Pointer values require an actual pointer or a string.
553           if (arg.type == Arg::POINTER) {
554             i = reinterpret_cast<uintptr_t>(arg.ptr);
555           } else if (arg.type == Arg::STRING) {
556             i = reinterpret_cast<uintptr_t>(arg.str);
557           } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
558                      arg.i == 0) {  // Allow C++'s version of NULL
559             i = 0;
560           } else {
561             DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
562             goto fail_to_expand;
563           }
564 
565           // Pointers always include the "0x" prefix.
566           prefix = "0x";
567         }
568 
569         // Use IToASCII() to convert to ASCII representation. For decimal
570         // numbers, optionally print a sign. For hexadecimal numbers,
571         // distinguish between upper and lower case. %p addresses are always
572         // printed as upcase. Supports base 8, 10, and 16. Prints padding
573         // and/or prefixes, if so requested.
574         buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
575                         ch != 'x', i,
576                         ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
577                         pad, padding, prefix);
578         break; }
579       case 's': {
580         // Check that there are arguments left to be inserted.
581         if (cur_arg >= max_args) {
582           DEBUG_CHECK(cur_arg < max_args);
583           goto fail_to_expand;
584         }
585 
586         // Check that the argument has the expected type.
587         const Arg& arg = args[cur_arg++];
588         const char *s;
589         if (arg.type == Arg::STRING) {
590           s = arg.str ? arg.str : "<NULL>";
591         } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
592                    arg.i == 0) {  // Allow C++'s version of NULL
593           s = "<NULL>";
594         } else {
595           DEBUG_CHECK(arg.type == Arg::STRING);
596           goto fail_to_expand;
597         }
598 
599         // Apply padding, if needed. This requires us to first check the
600         // length of the string that we are outputting.
601         if (padding) {
602           size_t len = 0;
603           for (const char* src = s; *src++; ) {
604             ++len;
605           }
606           buffer.Pad(' ', padding, len);
607         }
608 
609         // Printing a string involves nothing more than copying it into the
610         // output buffer and making sure we don't output more bytes than
611         // available space; Out() takes care of doing that.
612         for (const char* src = s; *src; ) {
613           buffer.Out(*src++);
614         }
615         break; }
616       case '%':
617         // Quoted percent '%' character.
618         goto copy_verbatim;
619       fail_to_expand:
620         // C++ gives us tools to do type checking -- something that snprintf()
621         // could never really do. So, whenever we see arguments that don't
622         // match up with the format string, we refuse to output them. But
623         // since we have to be extremely conservative about being async-
624         // signal-safe, we are limited in the type of error handling that we
625         // can do in production builds (in debug builds we can use
626         // DEBUG_CHECK() and hope for the best). So, all we do is pass the
627         // format string unchanged. That should eventually get the user's
628         // attention; and in the meantime, it hopefully doesn't lose too much
629         // data.
630       default:
631         // Unknown or unsupported format character. Just copy verbatim to
632         // output.
633         buffer.Out('%');
634         DEBUG_CHECK(ch);
635         if (!ch) {
636           goto end_of_format_string;
637         }
638         buffer.Out(ch);
639         break;
640       }
641     } else {
642   copy_verbatim:
643     buffer.Out(fmt[-1]);
644     }
645   }
646  end_of_format_string:
647  end_of_output_buffer:
648   return buffer.GetCount();
649 }
650 
651 }  // namespace internal
652 
SafeSNPrintf(char * buf,size_t sz,const char * fmt)653 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
654   // Make sure that at least one NUL byte can be written, and that the buffer
655   // never overflows kSSizeMax. Not only does that use up most or all of the
656   // address space, it also would result in a return code that cannot be
657   // represented.
658   if (static_cast<ssize_t>(sz) < 1) {
659     return -1;
660   } else if (sz > kSSizeMax) {
661     sz = kSSizeMax;
662   }
663 
664   Buffer buffer(buf, sz);
665 
666   // In the slow-path, we deal with errors by copying the contents of
667   // "fmt" unexpanded. This means, if there are no arguments passed, the
668   // SafeSPrintf() function always degenerates to a version of strncpy() that
669   // de-duplicates '%' characters.
670   const char* src = fmt;
671   for (; *src; ++src) {
672     buffer.Out(*src);
673     DEBUG_CHECK(src[0] != '%' || src[1] == '%');
674     if (src[0] == '%' && src[1] == '%') {
675       ++src;
676     }
677   }
678   return buffer.GetCount();
679 }
680 
681 }  // namespace strings
682 }  // namespace base
683