1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/strings/safe_sprintf.h"
6
7 #include <limits>
8
9 #if !defined(NDEBUG)
10 // In debug builds, we use RAW_CHECK() to print useful error messages, if
11 // SafeSPrintf() is called with broken arguments.
12 // As our contract promises that SafeSPrintf() can be called from any
13 // restricted run-time context, it is not actually safe to call logging
14 // functions from it; and we only ever do so for debug builds and hope for the
15 // best. We should _never_ call any logging function other than RAW_CHECK(),
16 // and we should _never_ include any logging code that is active in production
17 // builds. Most notably, we should not include these logging functions in
18 // unofficial release builds, even though those builds would otherwise have
19 // DCHECKS() enabled.
20 // In other words; please do not remove the #ifdef around this #include.
21 // Instead, in production builds we opt for returning a degraded result,
22 // whenever an error is encountered.
23 // E.g. The broken function call
24 // SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
25 // will print something like
26 // errno = 13, (%x)
27 // instead of
28 // errno = 13 (Access denied)
29 // In most of the anticipated use cases, that's probably the preferred
30 // behavior.
31 #include "base/logging.h"
32 #define DEBUG_CHECK RAW_CHECK
33 #else
34 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
35 #endif
36
37 namespace base {
38 namespace strings {
39
40 // The code in this file is extremely careful to be async-signal-safe.
41 //
42 // Most obviously, we avoid calling any code that could dynamically allocate
43 // memory. Doing so would almost certainly result in bugs and dead-locks.
44 // We also avoid calling any other STL functions that could have unintended
45 // side-effects involving memory allocation or access to other shared
46 // resources.
47 //
48 // But on top of that, we also avoid calling other library functions, as many
49 // of them have the side-effect of calling getenv() (in order to deal with
50 // localization) or accessing errno. The latter sounds benign, but there are
51 // several execution contexts where it isn't even possible to safely read let
52 // alone write errno.
53 //
54 // The stated design goal of the SafeSPrintf() function is that it can be
55 // called from any context that can safely call C or C++ code (i.e. anything
56 // that doesn't require assembly code).
57 //
58 // For a brief overview of some but not all of the issues with async-signal-
59 // safety, refer to:
60 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
61
62 namespace {
63 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
64
65 const char kUpCaseHexDigits[] = "0123456789ABCDEF";
66 const char kDownCaseHexDigits[] = "0123456789abcdef";
67 }
68
69 #if defined(NDEBUG)
70 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
71 // but C++ doesn't allow us to do that for constants. Instead, we have to
72 // use careful casting and shifting. We later use a COMPILE_ASSERT to
73 // verify that this worked correctly.
74 namespace {
75 const size_t kSSizeMax = kSSizeMaxConst;
76 }
77 #else // defined(NDEBUG)
78 // For efficiency, we really need kSSizeMax to be a constant. But for unit
79 // tests, it should be adjustable. This allows us to verify edge cases without
80 // having to fill the entire available address space. As a compromise, we make
81 // kSSizeMax adjustable in debug builds, and then only compile that particular
82 // part of the unit test in debug builds.
83 namespace {
84 static size_t kSSizeMax = kSSizeMaxConst;
85 }
86
87 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)88 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
89 kSSizeMax = max;
90 }
91
GetSafeSPrintfSSizeMaxForTest()92 size_t GetSafeSPrintfSSizeMaxForTest() {
93 return kSSizeMax;
94 }
95 }
96 #endif // defined(NDEBUG)
97
98 namespace {
99 class Buffer {
100 public:
101 // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
102 // has |size| bytes of writable storage. It is the caller's responsibility
103 // to ensure that the buffer is at least one byte in size, so that it fits
104 // the trailing NUL that will be added by the destructor. The buffer also
105 // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)106 Buffer(char* buffer, size_t size)
107 : buffer_(buffer),
108 size_(size - 1), // Account for trailing NUL byte
109 count_(0) {
110 // The following assertion does not build on Mac and Android. This is because
111 // static_assert only works with compile-time constants, but mac uses
112 // libstdc++4.2 and android uses stlport, which both don't mark
113 // numeric_limits::max() as constexp.
114 #if __cplusplus >= 201103 && !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_IOS)
115 COMPILE_ASSERT(kSSizeMaxConst == \
116 static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
117 kSSizeMax_is_the_max_value_of_an_ssize_t);
118 #endif
119 DEBUG_CHECK(size > 0);
120 DEBUG_CHECK(size <= kSSizeMax);
121 }
122
~Buffer()123 ~Buffer() {
124 // The code calling the constructor guaranteed that there was enough space
125 // to store a trailing NUL -- and in debug builds, we are actually
126 // verifying this with DEBUG_CHECK()s in the constructor. So, we can
127 // always unconditionally write the NUL byte in the destructor. We do not
128 // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
129 // including the NUL byte in its return code.
130 *GetInsertionPoint() = '\000';
131 }
132
133 // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
134 // caller can now stop adding more data, as GetCount() has reached its
135 // maximum possible value.
OutOfAddressableSpace() const136 inline bool OutOfAddressableSpace() const {
137 return count_ == static_cast<size_t>(kSSizeMax - 1);
138 }
139
140 // Returns the number of bytes that would have been emitted to |buffer_|
141 // if it was sized sufficiently large. This number can be larger than
142 // |size_|, if the caller provided an insufficiently large output buffer.
143 // But it will never be bigger than |kSSizeMax-1|.
GetCount() const144 inline ssize_t GetCount() const {
145 DEBUG_CHECK(count_ < kSSizeMax);
146 return static_cast<ssize_t>(count_);
147 }
148
149 // Emits one |ch| character into the |buffer_| and updates the |count_| of
150 // characters that are currently supposed to be in the buffer.
151 // Returns "false", iff the buffer was already full.
152 // N.B. |count_| increases even if no characters have been written. This is
153 // needed so that GetCount() can return the number of bytes that should
154 // have been allocated for the |buffer_|.
Out(char ch)155 inline bool Out(char ch) {
156 if (size_ >= 1 && count_ < size_) {
157 buffer_[count_] = ch;
158 return IncrementCountByOne();
159 }
160 // |count_| still needs to be updated, even if the buffer has been
161 // filled completely. This allows SafeSPrintf() to return the number of
162 // bytes that should have been emitted.
163 IncrementCountByOne();
164 return false;
165 }
166
167 // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
168 // |count_| will also be incremented by the number of bytes that were meant
169 // to be emitted. The |pad| character is typically either a ' ' space
170 // or a '0' zero, but other non-NUL values are legal.
171 // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
172 // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)173 inline bool Pad(char pad, size_t padding, size_t len) {
174 DEBUG_CHECK(pad);
175 DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
176 DEBUG_CHECK(len >= 0);
177 for (; padding > len; --padding) {
178 if (!Out(pad)) {
179 if (--padding) {
180 IncrementCount(padding-len);
181 }
182 return false;
183 }
184 }
185 return true;
186 }
187
188 // POSIX doesn't define any async-signal-safe function for converting
189 // an integer to ASCII. Define our own version.
190 //
191 // This also gives us the ability to make the function a little more
192 // powerful and have it deal with |padding|, with truncation, and with
193 // predicting the length of the untruncated output.
194 //
195 // IToASCII() converts an integer |i| to ASCII.
196 //
197 // Unlike similar functions in the standard C library, it never appends a
198 // NUL character. This is left for the caller to do.
199 //
200 // While the function signature takes a signed int64_t, the code decides at
201 // run-time whether to treat the argument as signed (int64_t) or as unsigned
202 // (uint64_t) based on the value of |sign|.
203 //
204 // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
205 // a |sign|. Otherwise, |i| is treated as unsigned.
206 //
207 // For bases larger than 10, |upcase| decides whether lower-case or upper-
208 // case letters should be used to designate digits greater than 10.
209 //
210 // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
211 // be positive and will always be applied to the left of the output.
212 //
213 // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
214 // the left of |padding|, if |pad| is '0'; and to the right of |padding|
215 // if |pad| is ' '.
216 //
217 // Returns "false", if the |buffer_| overflowed at any time.
218 bool IToASCII(bool sign, bool upcase, int64_t i, int base,
219 char pad, size_t padding, const char* prefix);
220
221 private:
222 // Increments |count_| by |inc| unless this would cause |count_| to
223 // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
224 // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)225 inline bool IncrementCount(size_t inc) {
226 // "inc" is either 1 or a "padding" value. Padding is clamped at
227 // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
228 // the range 1..kSSizeMax-1.
229 // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
230 // integer overflows.
231 DEBUG_CHECK(inc <= kSSizeMax - 1);
232 if (count_ > kSSizeMax - 1 - inc) {
233 count_ = kSSizeMax - 1;
234 return false;
235 } else {
236 count_ += inc;
237 return true;
238 }
239 }
240
241 // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()242 inline bool IncrementCountByOne() {
243 return IncrementCount(1);
244 }
245
246 // Return the current insertion point into the buffer. This is typically
247 // at |buffer_| + |count_|, but could be before that if truncation
248 // happened. It always points to one byte past the last byte that was
249 // successfully placed into the |buffer_|.
GetInsertionPoint() const250 inline char* GetInsertionPoint() const {
251 size_t idx = count_;
252 if (idx > size_) {
253 idx = size_;
254 }
255 return buffer_ + idx;
256 }
257
258 // User-provided buffer that will receive the fully formatted output string.
259 char* buffer_;
260
261 // Number of bytes that are available in the buffer excluding the trailing
262 // NUL byte that will be added by the destructor.
263 const size_t size_;
264
265 // Number of bytes that would have been emitted to the buffer, if the buffer
266 // was sufficiently big. This number always excludes the trailing NUL byte
267 // and it is guaranteed to never grow bigger than kSSizeMax-1.
268 size_t count_;
269
270 DISALLOW_COPY_AND_ASSIGN(Buffer);
271 };
272
273
IToASCII(bool sign,bool upcase,int64_t i,int base,char pad,size_t padding,const char * prefix)274 bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
275 char pad, size_t padding, const char* prefix) {
276 // Sanity check for parameters. None of these should ever fail, but see
277 // above for the rationale why we can't call CHECK().
278 DEBUG_CHECK(base >= 2);
279 DEBUG_CHECK(base <= 16);
280 DEBUG_CHECK(!sign || base == 10);
281 DEBUG_CHECK(pad == '0' || pad == ' ');
282 DEBUG_CHECK(padding >= 0);
283 DEBUG_CHECK(padding <= kSSizeMax);
284 DEBUG_CHECK(!(sign && prefix && *prefix));
285
286 // Handle negative numbers, if the caller indicated that |i| should be
287 // treated as a signed number; otherwise treat |i| as unsigned (even if the
288 // MSB is set!)
289 // Details are tricky, because of limited data-types, but equivalent pseudo-
290 // code would look like:
291 // if (sign && i < 0)
292 // prefix = "-";
293 // num = abs(i);
294 int minint = 0;
295 uint64_t num;
296 if (sign && i < 0) {
297 prefix = "-";
298
299 // Turn our number positive.
300 if (i == std::numeric_limits<int64_t>::min()) {
301 // The most negative integer needs special treatment.
302 minint = 1;
303 num = static_cast<uint64_t>(-(i + 1));
304 } else {
305 // "Normal" negative numbers are easy.
306 num = static_cast<uint64_t>(-i);
307 }
308 } else {
309 num = static_cast<uint64_t>(i);
310 }
311
312 // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
313 // make the prefix accessible in reverse order, so that we can later output
314 // it right between padding and the number.
315 // We cannot choose the easier approach of just reversing the number, as that
316 // fails in situations where we need to truncate numbers that have padding
317 // and/or prefixes.
318 const char* reverse_prefix = NULL;
319 if (prefix && *prefix) {
320 if (pad == '0') {
321 while (*prefix) {
322 if (padding) {
323 --padding;
324 }
325 Out(*prefix++);
326 }
327 prefix = NULL;
328 } else {
329 for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
330 }
331 }
332 } else
333 prefix = NULL;
334 const size_t prefix_length = reverse_prefix - prefix;
335
336 // Loop until we have converted the entire number. Output at least one
337 // character (i.e. '0').
338 size_t start = count_;
339 size_t discarded = 0;
340 bool started = false;
341 do {
342 // Make sure there is still enough space left in our output buffer.
343 if (count_ >= size_) {
344 if (start < size_) {
345 // It is rare that we need to output a partial number. But if asked
346 // to do so, we will still make sure we output the correct number of
347 // leading digits.
348 // Since we are generating the digits in reverse order, we actually
349 // have to discard digits in the order that we have already emitted
350 // them. This is essentially equivalent to:
351 // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
352 for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
353 move < end;
354 ++move) {
355 *move = move[1];
356 }
357 ++discarded;
358 --count_;
359 } else if (count_ - size_ > 1) {
360 // Need to increment either |count_| or |discarded| to make progress.
361 // The latter is more efficient, as it eventually triggers fast
362 // handling of padding. But we have to ensure we don't accidentally
363 // change the overall state (i.e. switch the state-machine from
364 // discarding to non-discarding). |count_| needs to always stay
365 // bigger than |size_|.
366 --count_;
367 ++discarded;
368 }
369 }
370
371 // Output the next digit and (if necessary) compensate for the most
372 // negative integer needing special treatment. This works because,
373 // no matter the bit width of the integer, the lowest-most decimal
374 // integer always ends in 2, 4, 6, or 8.
375 if (!num && started) {
376 if (reverse_prefix > prefix) {
377 Out(*--reverse_prefix);
378 } else {
379 Out(pad);
380 }
381 } else {
382 started = true;
383 Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
384 }
385
386 minint = 0;
387 num /= base;
388
389 // Add padding, if requested.
390 if (padding > 0) {
391 --padding;
392
393 // Performance optimization for when we are asked to output excessive
394 // padding, but our output buffer is limited in size. Even if we output
395 // a 64bit number in binary, we would never write more than 64 plus
396 // prefix non-padding characters. So, once this limit has been passed,
397 // any further state change can be computed arithmetically; we know that
398 // by this time, our entire final output consists of padding characters
399 // that have all already been output.
400 if (discarded > 8*sizeof(num) + prefix_length) {
401 IncrementCount(padding);
402 padding = 0;
403 }
404 }
405 } while (num || padding || (reverse_prefix > prefix));
406
407 // Conversion to ASCII actually resulted in the digits being in reverse
408 // order. We can't easily generate them in forward order, as we can't tell
409 // the number of characters needed until we are done converting.
410 // So, now, we reverse the string (except for the possible '-' sign).
411 char* front = buffer_ + start;
412 char* back = GetInsertionPoint();
413 while (--back > front) {
414 char ch = *back;
415 *back = *front;
416 *front++ = ch;
417 }
418
419 IncrementCount(discarded);
420 return !discarded;
421 }
422
423 } // anonymous namespace
424
425 namespace internal {
426
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)427 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
428 const size_t max_args) {
429 // Make sure that at least one NUL byte can be written, and that the buffer
430 // never overflows kSSizeMax. Not only does that use up most or all of the
431 // address space, it also would result in a return code that cannot be
432 // represented.
433 if (static_cast<ssize_t>(sz) < 1) {
434 return -1;
435 } else if (sz > kSSizeMax) {
436 sz = kSSizeMax;
437 }
438
439 // Iterate over format string and interpret '%' arguments as they are
440 // encountered.
441 Buffer buffer(buf, sz);
442 size_t padding;
443 char pad;
444 for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
445 if (*fmt++ == '%') {
446 padding = 0;
447 pad = ' ';
448 char ch = *fmt++;
449 format_character_found:
450 switch (ch) {
451 case '0': case '1': case '2': case '3': case '4':
452 case '5': case '6': case '7': case '8': case '9':
453 // Found a width parameter. Convert to an integer value and store in
454 // "padding". If the leading digit is a zero, change the padding
455 // character from a space ' ' to a zero '0'.
456 pad = ch == '0' ? '0' : ' ';
457 for (;;) {
458 // The maximum allowed padding fills all the available address
459 // space and leaves just enough space to insert the trailing NUL.
460 const size_t max_padding = kSSizeMax - 1;
461 if (padding > max_padding/10 ||
462 10*padding > max_padding - (ch - '0')) {
463 DEBUG_CHECK(padding <= max_padding/10 &&
464 10*padding <= max_padding - (ch - '0'));
465 // Integer overflow detected. Skip the rest of the width until
466 // we find the format character, then do the normal error handling.
467 padding_overflow:
468 padding = max_padding;
469 while ((ch = *fmt++) >= '0' && ch <= '9') {
470 }
471 if (cur_arg < max_args) {
472 ++cur_arg;
473 }
474 goto fail_to_expand;
475 }
476 padding = 10*padding + ch - '0';
477 if (padding > max_padding) {
478 // This doesn't happen for "sane" values of kSSizeMax. But once
479 // kSSizeMax gets smaller than about 10, our earlier range checks
480 // are incomplete. Unittests do trigger this artificial corner
481 // case.
482 DEBUG_CHECK(padding <= max_padding);
483 goto padding_overflow;
484 }
485 ch = *fmt++;
486 if (ch < '0' || ch > '9') {
487 // Reached the end of the width parameter. This is where the format
488 // character is found.
489 goto format_character_found;
490 }
491 }
492 break;
493 case 'c': { // Output an ASCII character.
494 // Check that there are arguments left to be inserted.
495 if (cur_arg >= max_args) {
496 DEBUG_CHECK(cur_arg < max_args);
497 goto fail_to_expand;
498 }
499
500 // Check that the argument has the expected type.
501 const Arg& arg = args[cur_arg++];
502 if (arg.type != Arg::INT && arg.type != Arg::UINT) {
503 DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
504 goto fail_to_expand;
505 }
506
507 // Apply padding, if needed.
508 buffer.Pad(' ', padding, 1);
509
510 // Convert the argument to an ASCII character and output it.
511 char ch = static_cast<char>(arg.i);
512 if (!ch) {
513 goto end_of_output_buffer;
514 }
515 buffer.Out(ch);
516 break; }
517 case 'd': // Output a possibly signed decimal value.
518 case 'o': // Output an unsigned octal value.
519 case 'x': // Output an unsigned hexadecimal value.
520 case 'X':
521 case 'p': { // Output a pointer value.
522 // Check that there are arguments left to be inserted.
523 if (cur_arg >= max_args) {
524 DEBUG_CHECK(cur_arg < max_args);
525 goto fail_to_expand;
526 }
527
528 const Arg& arg = args[cur_arg++];
529 int64_t i;
530 const char* prefix = NULL;
531 if (ch != 'p') {
532 // Check that the argument has the expected type.
533 if (arg.type != Arg::INT && arg.type != Arg::UINT) {
534 DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
535 goto fail_to_expand;
536 }
537 i = arg.i;
538
539 if (ch != 'd') {
540 // The Arg() constructor automatically performed sign expansion on
541 // signed parameters. This is great when outputting a %d decimal
542 // number, but can result in unexpected leading 0xFF bytes when
543 // outputting a %x hexadecimal number. Mask bits, if necessary.
544 // We have to do this here, instead of in the Arg() constructor, as
545 // the Arg() constructor cannot tell whether we will output a %d
546 // or a %x. Only the latter should experience masking.
547 if (arg.width < sizeof(int64_t)) {
548 i &= (1LL << (8*arg.width)) - 1;
549 }
550 }
551 } else {
552 // Pointer values require an actual pointer or a string.
553 if (arg.type == Arg::POINTER) {
554 i = reinterpret_cast<uintptr_t>(arg.ptr);
555 } else if (arg.type == Arg::STRING) {
556 i = reinterpret_cast<uintptr_t>(arg.str);
557 } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
558 arg.i == 0) { // Allow C++'s version of NULL
559 i = 0;
560 } else {
561 DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
562 goto fail_to_expand;
563 }
564
565 // Pointers always include the "0x" prefix.
566 prefix = "0x";
567 }
568
569 // Use IToASCII() to convert to ASCII representation. For decimal
570 // numbers, optionally print a sign. For hexadecimal numbers,
571 // distinguish between upper and lower case. %p addresses are always
572 // printed as upcase. Supports base 8, 10, and 16. Prints padding
573 // and/or prefixes, if so requested.
574 buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
575 ch != 'x', i,
576 ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
577 pad, padding, prefix);
578 break; }
579 case 's': {
580 // Check that there are arguments left to be inserted.
581 if (cur_arg >= max_args) {
582 DEBUG_CHECK(cur_arg < max_args);
583 goto fail_to_expand;
584 }
585
586 // Check that the argument has the expected type.
587 const Arg& arg = args[cur_arg++];
588 const char *s;
589 if (arg.type == Arg::STRING) {
590 s = arg.str ? arg.str : "<NULL>";
591 } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
592 arg.i == 0) { // Allow C++'s version of NULL
593 s = "<NULL>";
594 } else {
595 DEBUG_CHECK(arg.type == Arg::STRING);
596 goto fail_to_expand;
597 }
598
599 // Apply padding, if needed. This requires us to first check the
600 // length of the string that we are outputting.
601 if (padding) {
602 size_t len = 0;
603 for (const char* src = s; *src++; ) {
604 ++len;
605 }
606 buffer.Pad(' ', padding, len);
607 }
608
609 // Printing a string involves nothing more than copying it into the
610 // output buffer and making sure we don't output more bytes than
611 // available space; Out() takes care of doing that.
612 for (const char* src = s; *src; ) {
613 buffer.Out(*src++);
614 }
615 break; }
616 case '%':
617 // Quoted percent '%' character.
618 goto copy_verbatim;
619 fail_to_expand:
620 // C++ gives us tools to do type checking -- something that snprintf()
621 // could never really do. So, whenever we see arguments that don't
622 // match up with the format string, we refuse to output them. But
623 // since we have to be extremely conservative about being async-
624 // signal-safe, we are limited in the type of error handling that we
625 // can do in production builds (in debug builds we can use
626 // DEBUG_CHECK() and hope for the best). So, all we do is pass the
627 // format string unchanged. That should eventually get the user's
628 // attention; and in the meantime, it hopefully doesn't lose too much
629 // data.
630 default:
631 // Unknown or unsupported format character. Just copy verbatim to
632 // output.
633 buffer.Out('%');
634 DEBUG_CHECK(ch);
635 if (!ch) {
636 goto end_of_format_string;
637 }
638 buffer.Out(ch);
639 break;
640 }
641 } else {
642 copy_verbatim:
643 buffer.Out(fmt[-1]);
644 }
645 }
646 end_of_format_string:
647 end_of_output_buffer:
648 return buffer.GetCount();
649 }
650
651 } // namespace internal
652
SafeSNPrintf(char * buf,size_t sz,const char * fmt)653 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
654 // Make sure that at least one NUL byte can be written, and that the buffer
655 // never overflows kSSizeMax. Not only does that use up most or all of the
656 // address space, it also would result in a return code that cannot be
657 // represented.
658 if (static_cast<ssize_t>(sz) < 1) {
659 return -1;
660 } else if (sz > kSSizeMax) {
661 sz = kSSizeMax;
662 }
663
664 Buffer buffer(buf, sz);
665
666 // In the slow-path, we deal with errors by copying the contents of
667 // "fmt" unexpanded. This means, if there are no arguments passed, the
668 // SafeSPrintf() function always degenerates to a version of strncpy() that
669 // de-duplicates '%' characters.
670 const char* src = fmt;
671 for (; *src; ++src) {
672 buffer.Out(*src);
673 DEBUG_CHECK(src[0] != '%' || src[1] == '%');
674 if (src[0] == '%' && src[1] == '%') {
675 ++src;
676 }
677 }
678 return buffer.GetCount();
679 }
680
681 } // namespace strings
682 } // namespace base
683