1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 #include "thread.h"
20
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32
33 #include "arch/context.h"
34 #include "base/mutex.h"
35 #include "class_linker-inl.h"
36 #include "class_linker.h"
37 #include "debugger.h"
38 #include "dex_file-inl.h"
39 #include "entrypoints/entrypoint_utils.h"
40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
41 #include "gc_map.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/allocator/rosalloc.h"
44 #include "gc/heap.h"
45 #include "gc/space/space.h"
46 #include "handle_scope-inl.h"
47 #include "handle_scope.h"
48 #include "indirect_reference_table-inl.h"
49 #include "jni_internal.h"
50 #include "mirror/art_field-inl.h"
51 #include "mirror/art_method-inl.h"
52 #include "mirror/class_loader.h"
53 #include "mirror/class-inl.h"
54 #include "mirror/object_array-inl.h"
55 #include "mirror/stack_trace_element.h"
56 #include "monitor.h"
57 #include "object_lock.h"
58 #include "quick_exception_handler.h"
59 #include "quick/quick_method_frame_info.h"
60 #include "reflection.h"
61 #include "runtime.h"
62 #include "scoped_thread_state_change.h"
63 #include "ScopedLocalRef.h"
64 #include "ScopedUtfChars.h"
65 #include "stack.h"
66 #include "thread_list.h"
67 #include "thread-inl.h"
68 #include "utils.h"
69 #include "verifier/dex_gc_map.h"
70 #include "verify_object-inl.h"
71 #include "vmap_table.h"
72 #include "well_known_classes.h"
73
74 namespace art {
75
76 bool Thread::is_started_ = false;
77 pthread_key_t Thread::pthread_key_self_;
78 ConditionVariable* Thread::resume_cond_ = nullptr;
79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
InitCardTable()83 void Thread::InitCardTable() {
84 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85 }
86
UnimplementedEntryPoint()87 static void UnimplementedEntryPoint() {
88 UNIMPLEMENTED(FATAL);
89 }
90
91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
InitTlsEntryPoints()94 void Thread::InitTlsEntryPoints() {
95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98 sizeof(tlsPtr_.quick_entrypoints));
99 for (uintptr_t* it = begin; it != end; ++it) {
100 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101 }
102 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103 &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104 }
105
ResetQuickAllocEntryPointsForThread()106 void Thread::ResetQuickAllocEntryPointsForThread() {
107 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108 }
109
SetDeoptimizationShadowFrame(ShadowFrame * sf)110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111 tlsPtr_.deoptimization_shadow_frame = sf;
112 }
113
SetDeoptimizationReturnValue(const JValue & ret_val)114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115 tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116 }
117
GetAndClearDeoptimizationShadowFrame(JValue * ret_val)118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119 ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120 tlsPtr_.deoptimization_shadow_frame = nullptr;
121 ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122 return sf;
123 }
124
SetShadowFrameUnderConstruction(ShadowFrame * sf)125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126 sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127 tlsPtr_.shadow_frame_under_construction = sf;
128 }
129
ClearShadowFrameUnderConstruction()130 void Thread::ClearShadowFrameUnderConstruction() {
131 CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132 tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133 }
134
InitTid()135 void Thread::InitTid() {
136 tls32_.tid = ::art::GetTid();
137 }
138
InitAfterFork()139 void Thread::InitAfterFork() {
140 // One thread (us) survived the fork, but we have a new tid so we need to
141 // update the value stashed in this Thread*.
142 InitTid();
143 }
144
CreateCallback(void * arg)145 void* Thread::CreateCallback(void* arg) {
146 Thread* self = reinterpret_cast<Thread*>(arg);
147 Runtime* runtime = Runtime::Current();
148 if (runtime == nullptr) {
149 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150 return nullptr;
151 }
152 {
153 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154 // after self->Init().
155 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156 // Check that if we got here we cannot be shutting down (as shutdown should never have started
157 // while threads are being born).
158 CHECK(!runtime->IsShuttingDownLocked());
159 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160 Runtime::Current()->EndThreadBirth();
161 }
162 {
163 ScopedObjectAccess soa(self);
164
165 // Copy peer into self, deleting global reference when done.
166 CHECK(self->tlsPtr_.jpeer != nullptr);
167 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169 self->tlsPtr_.jpeer = nullptr;
170 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171 Dbg::PostThreadStart(self);
172
173 // Invoke the 'run' method of our java.lang.Thread.
174 mirror::Object* receiver = self->tlsPtr_.opeer;
175 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176 InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177 }
178 // Detach and delete self.
179 Runtime::Current()->GetThreadList()->Unregister(self);
180
181 return nullptr;
182 }
183
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)184 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185 mirror::Object* thread_peer) {
186 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189 // to stop it from going away.
190 if (kIsDebugBuild) {
191 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192 if (result != nullptr && !result->IsSuspended()) {
193 Locks::thread_list_lock_->AssertHeld(soa.Self());
194 }
195 }
196 return result;
197 }
198
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)199 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200 jobject java_thread) {
201 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202 }
203
FixStackSize(size_t stack_size)204 static size_t FixStackSize(size_t stack_size) {
205 // A stack size of zero means "use the default".
206 if (stack_size == 0) {
207 stack_size = Runtime::Current()->GetDefaultStackSize();
208 }
209
210 // Dalvik used the bionic pthread default stack size for native threads,
211 // so include that here to support apps that expect large native stacks.
212 stack_size += 1 * MB;
213
214 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215 if (stack_size < PTHREAD_STACK_MIN) {
216 stack_size = PTHREAD_STACK_MIN;
217 }
218
219 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220 // It's likely that callers are trying to ensure they have at least a certain amount of
221 // stack space, so we should add our reserved space on top of what they requested, rather
222 // than implicitly take it away from them.
223 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224 } else {
225 // If we are going to use implicit stack checks, allocate space for the protected
226 // region at the bottom of the stack.
227 stack_size += Thread::kStackOverflowImplicitCheckSize +
228 GetStackOverflowReservedBytes(kRuntimeISA);
229 }
230
231 // Some systems require the stack size to be a multiple of the system page size, so round up.
232 stack_size = RoundUp(stack_size, kPageSize);
233
234 return stack_size;
235 }
236
237 // Global variable to prevent the compiler optimizing away the page reads for the stack.
238 byte dont_optimize_this;
239
240 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
241 // overflow is detected. It is located right below the stack_begin_.
242 //
243 // There is a little complexity here that deserves a special mention. On some
244 // architectures, the stack created using a VM_GROWSDOWN flag
245 // to prevent memory being allocated when it's not needed. This flag makes the
246 // kernel only allocate memory for the stack by growing down in memory. Because we
247 // want to put an mprotected region far away from that at the stack top, we need
248 // to make sure the pages for the stack are mapped in before we call mprotect. We do
249 // this by reading every page from the stack bottom (highest address) to the stack top.
250 // We then madvise this away.
InstallImplicitProtection()251 void Thread::InstallImplicitProtection() {
252 byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253 byte* stack_himem = tlsPtr_.stack_end;
254 byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255 ~(kPageSize - 1)); // Page containing current top of stack.
256
257 // First remove the protection on the protected region as will want to read and
258 // write it. This may fail (on the first attempt when the stack is not mapped)
259 // but we ignore that.
260 UnprotectStack();
261
262 // Map in the stack. This must be done by reading from the
263 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264 // in the kernel. Any access more than a page below the current SP might cause
265 // a segv.
266
267 // Read every page from the high address to the low.
268 for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269 dont_optimize_this = *p;
270 }
271
272 VLOG(threads) << "installing stack protected region at " << std::hex <<
273 static_cast<void*>(pregion) << " to " <<
274 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276 // Protect the bottom of the stack to prevent read/write to it.
277 ProtectStack();
278
279 // Tell the kernel that we won't be needing these pages any more.
280 // NB. madvise will probably write zeroes into the memory (on linux it does).
281 uint32_t unwanted_size = stack_top - pregion - kPageSize;
282 madvise(pregion, unwanted_size, MADV_DONTNEED);
283 }
284
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)285 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286 CHECK(java_peer != nullptr);
287 Thread* self = static_cast<JNIEnvExt*>(env)->self;
288 Runtime* runtime = Runtime::Current();
289
290 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291 bool thread_start_during_shutdown = false;
292 {
293 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294 if (runtime->IsShuttingDownLocked()) {
295 thread_start_during_shutdown = true;
296 } else {
297 runtime->StartThreadBirth();
298 }
299 }
300 if (thread_start_during_shutdown) {
301 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303 return;
304 }
305
306 Thread* child_thread = new Thread(is_daemon);
307 // Use global JNI ref to hold peer live while child thread starts.
308 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309 stack_size = FixStackSize(stack_size);
310
311 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312 // assign it.
313 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314 reinterpret_cast<jlong>(child_thread));
315
316 pthread_t new_pthread;
317 pthread_attr_t attr;
318 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324 if (pthread_create_result != 0) {
325 // pthread_create(3) failed, so clean up.
326 {
327 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328 runtime->EndThreadBirth();
329 }
330 // Manually delete the global reference since Thread::Init will not have been run.
331 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332 child_thread->tlsPtr_.jpeer = nullptr;
333 delete child_thread;
334 child_thread = nullptr;
335 // TODO: remove from thread group?
336 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337 {
338 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340 ScopedObjectAccess soa(env);
341 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342 }
343 }
344 }
345
Init(ThreadList * thread_list,JavaVMExt * java_vm)346 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347 // This function does all the initialization that must be run by the native thread it applies to.
348 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349 // we can handshake with the corresponding native thread when it's ready.) Check this native
350 // thread hasn't been through here already...
351 CHECK(Thread::Current() == nullptr);
352 SetUpAlternateSignalStack();
353 InitCpu();
354 InitTlsEntryPoints();
355 RemoveSuspendTrigger();
356 InitCardTable();
357 InitTid();
358 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360 tlsPtr_.pthread_self = pthread_self();
361 CHECK(is_started_);
362 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363 DCHECK_EQ(Thread::Current(), this);
364
365 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366 InitStackHwm();
367
368 tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369 thread_list->Register(this);
370 }
371
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)372 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373 bool create_peer) {
374 Thread* self;
375 Runtime* runtime = Runtime::Current();
376 if (runtime == nullptr) {
377 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378 return nullptr;
379 }
380 {
381 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382 if (runtime->IsShuttingDownLocked()) {
383 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384 return nullptr;
385 } else {
386 Runtime::Current()->StartThreadBirth();
387 self = new Thread(as_daemon);
388 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389 Runtime::Current()->EndThreadBirth();
390 }
391 }
392
393 CHECK_NE(self->GetState(), kRunnable);
394 self->SetState(kNative);
395
396 // If we're the main thread, ClassLinker won't be created until after we're attached,
397 // so that thread needs a two-stage attach. Regular threads don't need this hack.
398 // In the compiler, all threads need this hack, because no-one's going to be getting
399 // a native peer!
400 if (create_peer) {
401 self->CreatePeer(thread_name, as_daemon, thread_group);
402 } else {
403 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404 if (thread_name != nullptr) {
405 self->tlsPtr_.name->assign(thread_name);
406 ::art::SetThreadName(thread_name);
407 } else if (self->GetJniEnv()->check_jni) {
408 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
409 }
410 }
411
412 return self;
413 }
414
CreatePeer(const char * name,bool as_daemon,jobject thread_group)415 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
416 Runtime* runtime = Runtime::Current();
417 CHECK(runtime->IsStarted());
418 JNIEnv* env = tlsPtr_.jni_env;
419
420 if (thread_group == nullptr) {
421 thread_group = runtime->GetMainThreadGroup();
422 }
423 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
424 jint thread_priority = GetNativePriority();
425 jboolean thread_is_daemon = as_daemon;
426
427 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
428 if (peer.get() == nullptr) {
429 CHECK(IsExceptionPending());
430 return;
431 }
432 {
433 ScopedObjectAccess soa(this);
434 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
435 }
436 env->CallNonvirtualVoidMethod(peer.get(),
437 WellKnownClasses::java_lang_Thread,
438 WellKnownClasses::java_lang_Thread_init,
439 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
440 AssertNoPendingException();
441
442 Thread* self = this;
443 DCHECK_EQ(self, Thread::Current());
444 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
445 reinterpret_cast<jlong>(self));
446
447 ScopedObjectAccess soa(self);
448 StackHandleScope<1> hs(self);
449 Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
450 if (peer_thread_name.Get() == nullptr) {
451 // The Thread constructor should have set the Thread.name to a
452 // non-null value. However, because we can run without code
453 // available (in the compiler, in tests), we manually assign the
454 // fields the constructor should have set.
455 if (runtime->IsActiveTransaction()) {
456 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457 } else {
458 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
459 }
460 peer_thread_name.Assign(GetThreadName(soa));
461 }
462 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
463 if (peer_thread_name.Get() != nullptr) {
464 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
465 }
466 }
467
468 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)469 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
470 jobject thread_name, jint thread_priority) {
471 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
472 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
473 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
474 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
475 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
476 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
477 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
478 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
479 }
480
SetThreadName(const char * name)481 void Thread::SetThreadName(const char* name) {
482 tlsPtr_.name->assign(name);
483 ::art::SetThreadName(name);
484 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
485 }
486
InitStackHwm()487 void Thread::InitStackHwm() {
488 void* read_stack_base;
489 size_t read_stack_size;
490 size_t read_guard_size;
491 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
492
493 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
494 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
495 read_stack_base,
496 PrettySize(read_stack_size).c_str(),
497 PrettySize(read_guard_size).c_str());
498
499 tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
500 tlsPtr_.stack_size = read_stack_size;
501
502 // The minimum stack size we can cope with is the overflow reserved bytes (typically
503 // 8K) + the protected region size (4K) + another page (4K). Typically this will
504 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
505 // between 8K and 12K.
506 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
507 + 4 * KB;
508 if (read_stack_size <= min_stack) {
509 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
510 << " bytes)";
511 }
512
513 // TODO: move this into the Linux GetThreadStack implementation.
514 #if !defined(__APPLE__)
515 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
516 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
517 // will be broken because we'll die long before we get close to 2GB.
518 bool is_main_thread = (::art::GetTid() == getpid());
519 if (is_main_thread) {
520 rlimit stack_limit;
521 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
522 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
523 }
524 if (stack_limit.rlim_cur == RLIM_INFINITY) {
525 // Find the default stack size for new threads...
526 pthread_attr_t default_attributes;
527 size_t default_stack_size;
528 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
529 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
530 "default stack size query");
531 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
532
533 // ...and use that as our limit.
534 size_t old_stack_size = read_stack_size;
535 tlsPtr_.stack_size = default_stack_size;
536 tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
537 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
538 << " to " << PrettySize(default_stack_size)
539 << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
540 }
541 }
542 #endif
543
544 // Set stack_end_ to the bottom of the stack saving space of stack overflows
545
546 Runtime* runtime = Runtime::Current();
547 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
548 ResetDefaultStackEnd();
549
550 // Install the protected region if we are doing implicit overflow checks.
551 if (implicit_stack_check) {
552 // The thread might have protected region at the bottom. We need
553 // to install our own region so we need to move the limits
554 // of the stack to make room for it.
555
556 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
557 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
558 tlsPtr_.stack_size -= read_guard_size;
559
560 InstallImplicitProtection();
561 }
562
563 // Sanity check.
564 int stack_variable;
565 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
566 }
567
ShortDump(std::ostream & os) const568 void Thread::ShortDump(std::ostream& os) const {
569 os << "Thread[";
570 if (GetThreadId() != 0) {
571 // If we're in kStarting, we won't have a thin lock id or tid yet.
572 os << GetThreadId()
573 << ",tid=" << GetTid() << ',';
574 }
575 os << GetState()
576 << ",Thread*=" << this
577 << ",peer=" << tlsPtr_.opeer
578 << ",\"" << *tlsPtr_.name << "\""
579 << "]";
580 }
581
Dump(std::ostream & os) const582 void Thread::Dump(std::ostream& os) const {
583 DumpState(os);
584 DumpStack(os);
585 }
586
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const587 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
588 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
589 return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
590 }
591
GetThreadName(std::string & name) const592 void Thread::GetThreadName(std::string& name) const {
593 name.assign(*tlsPtr_.name);
594 }
595
GetCpuMicroTime() const596 uint64_t Thread::GetCpuMicroTime() const {
597 #if defined(HAVE_POSIX_CLOCKS)
598 clockid_t cpu_clock_id;
599 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
600 timespec now;
601 clock_gettime(cpu_clock_id, &now);
602 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
603 #else
604 UNIMPLEMENTED(WARNING);
605 return -1;
606 #endif
607 }
608
609 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)610 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
611 LOG(ERROR) << *thread << " suspend count already zero.";
612 Locks::thread_suspend_count_lock_->Unlock(self);
613 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
614 Locks::mutator_lock_->SharedTryLock(self);
615 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
616 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
617 }
618 }
619 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
620 Locks::thread_list_lock_->TryLock(self);
621 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
622 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
623 }
624 }
625 std::ostringstream ss;
626 Runtime::Current()->GetThreadList()->DumpLocked(ss);
627 LOG(FATAL) << ss.str();
628 }
629
ModifySuspendCount(Thread * self,int delta,bool for_debugger)630 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
631 if (kIsDebugBuild) {
632 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
633 << delta << " " << tls32_.debug_suspend_count << " " << this;
634 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
635 Locks::thread_suspend_count_lock_->AssertHeld(self);
636 if (this != self && !IsSuspended()) {
637 Locks::thread_list_lock_->AssertHeld(self);
638 }
639 }
640 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
641 UnsafeLogFatalForSuspendCount(self, this);
642 return;
643 }
644
645 tls32_.suspend_count += delta;
646 if (for_debugger) {
647 tls32_.debug_suspend_count += delta;
648 }
649
650 if (tls32_.suspend_count == 0) {
651 AtomicClearFlag(kSuspendRequest);
652 } else {
653 AtomicSetFlag(kSuspendRequest);
654 TriggerSuspend();
655 }
656 }
657
RunCheckpointFunction()658 void Thread::RunCheckpointFunction() {
659 Closure *checkpoints[kMaxCheckpoints];
660
661 // Grab the suspend_count lock and copy the current set of
662 // checkpoints. Then clear the list and the flag. The RequestCheckpoint
663 // function will also grab this lock so we prevent a race between setting
664 // the kCheckpointRequest flag and clearing it.
665 {
666 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
667 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
668 checkpoints[i] = tlsPtr_.checkpoint_functions[i];
669 tlsPtr_.checkpoint_functions[i] = nullptr;
670 }
671 AtomicClearFlag(kCheckpointRequest);
672 }
673
674 // Outside the lock, run all the checkpoint functions that
675 // we collected.
676 bool found_checkpoint = false;
677 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
678 if (checkpoints[i] != nullptr) {
679 ATRACE_BEGIN("Checkpoint function");
680 checkpoints[i]->Run(this);
681 ATRACE_END();
682 found_checkpoint = true;
683 }
684 }
685 CHECK(found_checkpoint);
686 }
687
RequestCheckpoint(Closure * function)688 bool Thread::RequestCheckpoint(Closure* function) {
689 union StateAndFlags old_state_and_flags;
690 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
691 if (old_state_and_flags.as_struct.state != kRunnable) {
692 return false; // Fail, thread is suspended and so can't run a checkpoint.
693 }
694
695 uint32_t available_checkpoint = kMaxCheckpoints;
696 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
697 if (tlsPtr_.checkpoint_functions[i] == nullptr) {
698 available_checkpoint = i;
699 break;
700 }
701 }
702 if (available_checkpoint == kMaxCheckpoints) {
703 // No checkpoint functions available, we can't run a checkpoint
704 return false;
705 }
706 tlsPtr_.checkpoint_functions[available_checkpoint] = function;
707
708 // Checkpoint function installed now install flag bit.
709 // We must be runnable to request a checkpoint.
710 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
711 union StateAndFlags new_state_and_flags;
712 new_state_and_flags.as_int = old_state_and_flags.as_int;
713 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
714 bool success =
715 tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
716 new_state_and_flags.as_int);
717 if (UNLIKELY(!success)) {
718 // The thread changed state before the checkpoint was installed.
719 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
720 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
721 } else {
722 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
723 TriggerSuspend();
724 }
725 return success;
726 }
727
FullSuspendCheck()728 void Thread::FullSuspendCheck() {
729 VLOG(threads) << this << " self-suspending";
730 ATRACE_BEGIN("Full suspend check");
731 // Make thread appear suspended to other threads, release mutator_lock_.
732 TransitionFromRunnableToSuspended(kSuspended);
733 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
734 TransitionFromSuspendedToRunnable();
735 ATRACE_END();
736 VLOG(threads) << this << " self-reviving";
737 }
738
DumpState(std::ostream & os,const Thread * thread,pid_t tid)739 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
740 std::string group_name;
741 int priority;
742 bool is_daemon = false;
743 Thread* self = Thread::Current();
744
745 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
746 // cause ScopedObjectAccessUnchecked to deadlock.
747 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
748 ScopedObjectAccessUnchecked soa(self);
749 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
750 ->GetInt(thread->tlsPtr_.opeer);
751 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
752 ->GetBoolean(thread->tlsPtr_.opeer);
753
754 mirror::Object* thread_group =
755 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
756
757 if (thread_group != nullptr) {
758 mirror::ArtField* group_name_field =
759 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
760 mirror::String* group_name_string =
761 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
762 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
763 }
764 } else {
765 priority = GetNativePriority();
766 }
767
768 std::string scheduler_group_name(GetSchedulerGroupName(tid));
769 if (scheduler_group_name.empty()) {
770 scheduler_group_name = "default";
771 }
772
773 if (thread != nullptr) {
774 os << '"' << *thread->tlsPtr_.name << '"';
775 if (is_daemon) {
776 os << " daemon";
777 }
778 os << " prio=" << priority
779 << " tid=" << thread->GetThreadId()
780 << " " << thread->GetState();
781 if (thread->IsStillStarting()) {
782 os << " (still starting up)";
783 }
784 os << "\n";
785 } else {
786 os << '"' << ::art::GetThreadName(tid) << '"'
787 << " prio=" << priority
788 << " (not attached)\n";
789 }
790
791 if (thread != nullptr) {
792 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
793 os << " | group=\"" << group_name << "\""
794 << " sCount=" << thread->tls32_.suspend_count
795 << " dsCount=" << thread->tls32_.debug_suspend_count
796 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
797 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
798 }
799
800 os << " | sysTid=" << tid
801 << " nice=" << getpriority(PRIO_PROCESS, tid)
802 << " cgrp=" << scheduler_group_name;
803 if (thread != nullptr) {
804 int policy;
805 sched_param sp;
806 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
807 __FUNCTION__);
808 os << " sched=" << policy << "/" << sp.sched_priority
809 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
810 }
811 os << "\n";
812
813 // Grab the scheduler stats for this thread.
814 std::string scheduler_stats;
815 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
816 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
817 } else {
818 scheduler_stats = "0 0 0";
819 }
820
821 char native_thread_state = '?';
822 int utime = 0;
823 int stime = 0;
824 int task_cpu = 0;
825 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
826
827 os << " | state=" << native_thread_state
828 << " schedstat=( " << scheduler_stats << " )"
829 << " utm=" << utime
830 << " stm=" << stime
831 << " core=" << task_cpu
832 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
833 if (thread != nullptr) {
834 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
835 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
836 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
837 // Dump the held mutexes.
838 os << " | held mutexes=";
839 for (size_t i = 0; i < kLockLevelCount; ++i) {
840 if (i != kMonitorLock) {
841 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
842 if (mutex != nullptr) {
843 os << " \"" << mutex->GetName() << "\"";
844 if (mutex->IsReaderWriterMutex()) {
845 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
846 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
847 os << "(exclusive held)";
848 } else {
849 os << "(shared held)";
850 }
851 }
852 }
853 }
854 }
855 os << "\n";
856 }
857 }
858
DumpState(std::ostream & os) const859 void Thread::DumpState(std::ostream& os) const {
860 Thread::DumpState(os, this, GetTid());
861 }
862
863 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor864 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
865 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
866 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
867 last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
868 }
869
~StackDumpVisitorart::StackDumpVisitor870 virtual ~StackDumpVisitor() {
871 if (frame_count == 0) {
872 os << " (no managed stack frames)\n";
873 }
874 }
875
VisitFrameart::StackDumpVisitor876 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
877 mirror::ArtMethod* m = GetMethod();
878 if (m->IsRuntimeMethod()) {
879 return true;
880 }
881 const int kMaxRepetition = 3;
882 mirror::Class* c = m->GetDeclaringClass();
883 mirror::DexCache* dex_cache = c->GetDexCache();
884 int line_number = -1;
885 if (dex_cache != nullptr) { // be tolerant of bad input
886 const DexFile& dex_file = *dex_cache->GetDexFile();
887 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
888 }
889 if (line_number == last_line_number && last_method == m) {
890 ++repetition_count;
891 } else {
892 if (repetition_count >= kMaxRepetition) {
893 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
894 }
895 repetition_count = 0;
896 last_line_number = line_number;
897 last_method = m;
898 }
899 if (repetition_count < kMaxRepetition) {
900 os << " at " << PrettyMethod(m, false);
901 if (m->IsNative()) {
902 os << "(Native method)";
903 } else {
904 const char* source_file(m->GetDeclaringClassSourceFile());
905 os << "(" << (source_file != nullptr ? source_file : "unavailable")
906 << ":" << line_number << ")";
907 }
908 os << "\n";
909 if (frame_count == 0) {
910 Monitor::DescribeWait(os, thread);
911 }
912 if (can_allocate) {
913 // Visit locks, but do not abort on errors. This would trigger a nested abort.
914 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
915 }
916 }
917
918 ++frame_count;
919 return true;
920 }
921
DumpLockedObjectart::StackDumpVisitor922 static void DumpLockedObject(mirror::Object* o, void* context)
923 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
924 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
925 os << " - locked ";
926 if (o == nullptr) {
927 os << "an unknown object";
928 } else {
929 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
930 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
931 // Getting the identity hashcode here would result in lock inflation and suspension of the
932 // current thread, which isn't safe if this is the only runnable thread.
933 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
934 PrettyTypeOf(o).c_str());
935 } else {
936 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
937 }
938 }
939 os << "\n";
940 }
941
942 std::ostream& os;
943 const Thread* thread;
944 const bool can_allocate;
945 mirror::ArtMethod* last_method;
946 int last_line_number;
947 int repetition_count;
948 int frame_count;
949 };
950
ShouldShowNativeStack(const Thread * thread)951 static bool ShouldShowNativeStack(const Thread* thread)
952 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
953 ThreadState state = thread->GetState();
954
955 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
956 if (state > kWaiting && state < kStarting) {
957 return true;
958 }
959
960 // In an Object.wait variant or Thread.sleep? That's not interesting.
961 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
962 return false;
963 }
964
965 // Threads with no managed stack frames should be shown.
966 const ManagedStack* managed_stack = thread->GetManagedStack();
967 if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
968 managed_stack->GetTopShadowFrame() == NULL)) {
969 return true;
970 }
971
972 // In some other native method? That's interesting.
973 // We don't just check kNative because native methods will be in state kSuspended if they're
974 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
975 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
976 mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
977 return current_method != nullptr && current_method->IsNative();
978 }
979
DumpJavaStack(std::ostream & os) const980 void Thread::DumpJavaStack(std::ostream& os) const {
981 std::unique_ptr<Context> context(Context::Create());
982 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
983 !tls32_.throwing_OutOfMemoryError);
984 dumper.WalkStack();
985 }
986
DumpStack(std::ostream & os) const987 void Thread::DumpStack(std::ostream& os) const {
988 // TODO: we call this code when dying but may not have suspended the thread ourself. The
989 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
990 // the race with the thread_suspend_count_lock_).
991 bool dump_for_abort = (gAborting > 0);
992 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
993 if (!kIsDebugBuild) {
994 // We always want to dump the stack for an abort, however, there is no point dumping another
995 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
996 safe_to_dump = (safe_to_dump || dump_for_abort);
997 }
998 if (safe_to_dump) {
999 // If we're currently in native code, dump that stack before dumping the managed stack.
1000 if (dump_for_abort || ShouldShowNativeStack(this)) {
1001 DumpKernelStack(os, GetTid(), " kernel: ", false);
1002 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1003 }
1004 DumpJavaStack(os);
1005 } else {
1006 os << "Not able to dump stack of thread that isn't suspended";
1007 }
1008 }
1009
ThreadExitCallback(void * arg)1010 void Thread::ThreadExitCallback(void* arg) {
1011 Thread* self = reinterpret_cast<Thread*>(arg);
1012 if (self->tls32_.thread_exit_check_count == 0) {
1013 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1014 "going to use a pthread_key_create destructor?): " << *self;
1015 CHECK(is_started_);
1016 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1017 self->tls32_.thread_exit_check_count = 1;
1018 } else {
1019 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1020 }
1021 }
1022
Startup()1023 void Thread::Startup() {
1024 CHECK(!is_started_);
1025 is_started_ = true;
1026 {
1027 // MutexLock to keep annotalysis happy.
1028 //
1029 // Note we use nullptr for the thread because Thread::Current can
1030 // return garbage since (is_started_ == true) and
1031 // Thread::pthread_key_self_ is not yet initialized.
1032 // This was seen on glibc.
1033 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1034 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1035 *Locks::thread_suspend_count_lock_);
1036 }
1037
1038 // Allocate a TLS slot.
1039 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1040
1041 // Double-check the TLS slot allocation.
1042 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1043 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1044 }
1045 }
1046
FinishStartup()1047 void Thread::FinishStartup() {
1048 Runtime* runtime = Runtime::Current();
1049 CHECK(runtime->IsStarted());
1050
1051 // Finish attaching the main thread.
1052 ScopedObjectAccess soa(Thread::Current());
1053 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1054
1055 Runtime::Current()->GetClassLinker()->RunRootClinits();
1056 }
1057
Shutdown()1058 void Thread::Shutdown() {
1059 CHECK(is_started_);
1060 is_started_ = false;
1061 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1062 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1063 if (resume_cond_ != nullptr) {
1064 delete resume_cond_;
1065 resume_cond_ = nullptr;
1066 }
1067 }
1068
Thread(bool daemon)1069 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1070 wait_mutex_ = new Mutex("a thread wait mutex");
1071 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1072 tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1073 tlsPtr_.single_step_control = new SingleStepControl;
1074 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1075 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1076 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1077
1078 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1079 tls32_.state_and_flags.as_struct.flags = 0;
1080 tls32_.state_and_flags.as_struct.state = kNative;
1081 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1082 std::fill(tlsPtr_.rosalloc_runs,
1083 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1084 gc::allocator::RosAlloc::GetDedicatedFullRun());
1085 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1086 tlsPtr_.checkpoint_functions[i] = nullptr;
1087 }
1088 }
1089
IsStillStarting() const1090 bool Thread::IsStillStarting() const {
1091 // You might think you can check whether the state is kStarting, but for much of thread startup,
1092 // the thread is in kNative; it might also be in kVmWait.
1093 // You might think you can check whether the peer is nullptr, but the peer is actually created and
1094 // assigned fairly early on, and needs to be.
1095 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1096 // this thread _ever_ entered kRunnable".
1097 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1098 (*tlsPtr_.name == kThreadNameDuringStartup);
1099 }
1100
AssertNoPendingException() const1101 void Thread::AssertNoPendingException() const {
1102 if (UNLIKELY(IsExceptionPending())) {
1103 ScopedObjectAccess soa(Thread::Current());
1104 mirror::Throwable* exception = GetException(nullptr);
1105 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1106 }
1107 }
1108
AssertNoPendingExceptionForNewException(const char * msg) const1109 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1110 if (UNLIKELY(IsExceptionPending())) {
1111 ScopedObjectAccess soa(Thread::Current());
1112 mirror::Throwable* exception = GetException(nullptr);
1113 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1114 << exception->Dump();
1115 }
1116 }
1117
MonitorExitVisitor(mirror::Object ** object,void * arg,uint32_t,RootType)1118 static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1119 RootType /*root_type*/)
1120 NO_THREAD_SAFETY_ANALYSIS {
1121 Thread* self = reinterpret_cast<Thread*>(arg);
1122 mirror::Object* entered_monitor = *object;
1123 if (self->HoldsLock(entered_monitor)) {
1124 LOG(WARNING) << "Calling MonitorExit on object "
1125 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1126 << " left locked by native thread "
1127 << *Thread::Current() << " which is detaching";
1128 entered_monitor->MonitorExit(self);
1129 }
1130 }
1131
Destroy()1132 void Thread::Destroy() {
1133 Thread* self = this;
1134 DCHECK_EQ(self, Thread::Current());
1135
1136 if (tlsPtr_.opeer != nullptr) {
1137 ScopedObjectAccess soa(self);
1138 // We may need to call user-supplied managed code, do this before final clean-up.
1139 HandleUncaughtExceptions(soa);
1140 RemoveFromThreadGroup(soa);
1141
1142 // this.nativePeer = 0;
1143 if (Runtime::Current()->IsActiveTransaction()) {
1144 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1145 ->SetLong<true>(tlsPtr_.opeer, 0);
1146 } else {
1147 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1148 ->SetLong<false>(tlsPtr_.opeer, 0);
1149 }
1150 Dbg::PostThreadDeath(self);
1151
1152 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1153 // who is waiting.
1154 mirror::Object* lock =
1155 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1156 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1157 if (lock != nullptr) {
1158 StackHandleScope<1> hs(self);
1159 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1160 ObjectLock<mirror::Object> locker(self, h_obj);
1161 locker.NotifyAll();
1162 }
1163 }
1164
1165 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1166 if (tlsPtr_.jni_env != nullptr) {
1167 tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1168 }
1169 }
1170
~Thread()1171 Thread::~Thread() {
1172 if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1173 // If pthread_create fails we don't have a jni env here.
1174 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1175 tlsPtr_.jpeer = nullptr;
1176 }
1177 tlsPtr_.opeer = nullptr;
1178
1179 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
1180 if (initialized) {
1181 delete tlsPtr_.jni_env;
1182 tlsPtr_.jni_env = nullptr;
1183 }
1184 CHECK_NE(GetState(), kRunnable);
1185 CHECK_NE(ReadFlag(kCheckpointRequest), true);
1186 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1187 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1188 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1189
1190 // We may be deleting a still born thread.
1191 SetStateUnsafe(kTerminated);
1192
1193 delete wait_cond_;
1194 delete wait_mutex_;
1195
1196 if (tlsPtr_.long_jump_context != nullptr) {
1197 delete tlsPtr_.long_jump_context;
1198 }
1199
1200 if (initialized) {
1201 CleanupCpu();
1202 }
1203
1204 delete tlsPtr_.debug_invoke_req;
1205 delete tlsPtr_.single_step_control;
1206 delete tlsPtr_.instrumentation_stack;
1207 delete tlsPtr_.name;
1208 delete tlsPtr_.stack_trace_sample;
1209 free(tlsPtr_.nested_signal_state);
1210
1211 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1212
1213 TearDownAlternateSignalStack();
1214 }
1215
HandleUncaughtExceptions(ScopedObjectAccess & soa)1216 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1217 if (!IsExceptionPending()) {
1218 return;
1219 }
1220 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1221 ScopedThreadStateChange tsc(this, kNative);
1222
1223 // Get and clear the exception.
1224 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1225 tlsPtr_.jni_env->ExceptionClear();
1226
1227 // If the thread has its own handler, use that.
1228 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1229 tlsPtr_.jni_env->GetObjectField(peer.get(),
1230 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1231 if (handler.get() == nullptr) {
1232 // Otherwise use the thread group's default handler.
1233 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1234 WellKnownClasses::java_lang_Thread_group));
1235 }
1236
1237 // Call the handler.
1238 tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1239 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1240 peer.get(), exception.get());
1241
1242 // If the handler threw, clear that exception too.
1243 tlsPtr_.jni_env->ExceptionClear();
1244 }
1245
RemoveFromThreadGroup(ScopedObjectAccess & soa)1246 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1247 // this.group.removeThread(this);
1248 // group can be null if we're in the compiler or a test.
1249 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1250 ->GetObject(tlsPtr_.opeer);
1251 if (ogroup != nullptr) {
1252 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1253 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1254 ScopedThreadStateChange tsc(soa.Self(), kNative);
1255 tlsPtr_.jni_env->CallVoidMethod(group.get(),
1256 WellKnownClasses::java_lang_ThreadGroup_removeThread,
1257 peer.get());
1258 }
1259 }
1260
NumHandleReferences()1261 size_t Thread::NumHandleReferences() {
1262 size_t count = 0;
1263 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1264 count += cur->NumberOfReferences();
1265 }
1266 return count;
1267 }
1268
HandleScopeContains(jobject obj) const1269 bool Thread::HandleScopeContains(jobject obj) const {
1270 StackReference<mirror::Object>* hs_entry =
1271 reinterpret_cast<StackReference<mirror::Object>*>(obj);
1272 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1273 if (cur->Contains(hs_entry)) {
1274 return true;
1275 }
1276 }
1277 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1278 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1279 }
1280
HandleScopeVisitRoots(RootCallback * visitor,void * arg,uint32_t thread_id)1281 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1282 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1283 size_t num_refs = cur->NumberOfReferences();
1284 for (size_t j = 0; j < num_refs; ++j) {
1285 mirror::Object* object = cur->GetReference(j);
1286 if (object != nullptr) {
1287 mirror::Object* old_obj = object;
1288 visitor(&object, arg, thread_id, kRootNativeStack);
1289 if (old_obj != object) {
1290 cur->SetReference(j, object);
1291 }
1292 }
1293 }
1294 }
1295 }
1296
DecodeJObject(jobject obj) const1297 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1298 Locks::mutator_lock_->AssertSharedHeld(this);
1299 if (obj == nullptr) {
1300 return nullptr;
1301 }
1302 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1303 IndirectRefKind kind = GetIndirectRefKind(ref);
1304 mirror::Object* result;
1305 // The "kinds" below are sorted by the frequency we expect to encounter them.
1306 if (kind == kLocal) {
1307 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1308 // Local references do not need a read barrier.
1309 result = locals.Get<kWithoutReadBarrier>(ref);
1310 } else if (kind == kHandleScopeOrInvalid) {
1311 // TODO: make stack indirect reference table lookup more efficient.
1312 // Check if this is a local reference in the handle scope.
1313 if (LIKELY(HandleScopeContains(obj))) {
1314 // Read from handle scope.
1315 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1316 VerifyObject(result);
1317 } else {
1318 result = kInvalidIndirectRefObject;
1319 }
1320 } else if (kind == kGlobal) {
1321 JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1322 result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1323 } else {
1324 DCHECK_EQ(kind, kWeakGlobal);
1325 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1326 if (result == kClearedJniWeakGlobal) {
1327 // This is a special case where it's okay to return nullptr.
1328 return nullptr;
1329 }
1330 }
1331
1332 if (UNLIKELY(result == nullptr)) {
1333 JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1334 }
1335 return result;
1336 }
1337
1338 // Implements java.lang.Thread.interrupted.
Interrupted()1339 bool Thread::Interrupted() {
1340 MutexLock mu(Thread::Current(), *wait_mutex_);
1341 bool interrupted = IsInterruptedLocked();
1342 SetInterruptedLocked(false);
1343 return interrupted;
1344 }
1345
1346 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1347 bool Thread::IsInterrupted() {
1348 MutexLock mu(Thread::Current(), *wait_mutex_);
1349 return IsInterruptedLocked();
1350 }
1351
Interrupt(Thread * self)1352 void Thread::Interrupt(Thread* self) {
1353 MutexLock mu(self, *wait_mutex_);
1354 if (interrupted_) {
1355 return;
1356 }
1357 interrupted_ = true;
1358 NotifyLocked(self);
1359 }
1360
Notify()1361 void Thread::Notify() {
1362 Thread* self = Thread::Current();
1363 MutexLock mu(self, *wait_mutex_);
1364 NotifyLocked(self);
1365 }
1366
NotifyLocked(Thread * self)1367 void Thread::NotifyLocked(Thread* self) {
1368 if (wait_monitor_ != nullptr) {
1369 wait_cond_->Signal(self);
1370 }
1371 }
1372
1373 class CountStackDepthVisitor : public StackVisitor {
1374 public:
1375 explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1376 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1377 : StackVisitor(thread, nullptr),
1378 depth_(0), skip_depth_(0), skipping_(true) {}
1379
VisitFrame()1380 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1381 // We want to skip frames up to and including the exception's constructor.
1382 // Note we also skip the frame if it doesn't have a method (namely the callee
1383 // save frame)
1384 mirror::ArtMethod* m = GetMethod();
1385 if (skipping_ && !m->IsRuntimeMethod() &&
1386 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1387 skipping_ = false;
1388 }
1389 if (!skipping_) {
1390 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1391 ++depth_;
1392 }
1393 } else {
1394 ++skip_depth_;
1395 }
1396 return true;
1397 }
1398
GetDepth() const1399 int GetDepth() const {
1400 return depth_;
1401 }
1402
GetSkipDepth() const1403 int GetSkipDepth() const {
1404 return skip_depth_;
1405 }
1406
1407 private:
1408 uint32_t depth_;
1409 uint32_t skip_depth_;
1410 bool skipping_;
1411 };
1412
1413 template<bool kTransactionActive>
1414 class BuildInternalStackTraceVisitor : public StackVisitor {
1415 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1416 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1417 : StackVisitor(thread, nullptr), self_(self),
1418 skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1419
Init(int depth)1420 bool Init(int depth)
1421 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1422 // Allocate method trace with an extra slot that will hold the PC trace
1423 StackHandleScope<1> hs(self_);
1424 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1425 Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1426 hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1427 if (method_trace.Get() == nullptr) {
1428 return false;
1429 }
1430 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1431 if (dex_pc_trace == nullptr) {
1432 return false;
1433 }
1434 // Save PC trace in last element of method trace, also places it into the
1435 // object graph.
1436 // We are called from native: use non-transactional mode.
1437 method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1438 // Set the Object*s and assert that no thread suspension is now possible.
1439 const char* last_no_suspend_cause =
1440 self_->StartAssertNoThreadSuspension("Building internal stack trace");
1441 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1442 method_trace_ = method_trace.Get();
1443 dex_pc_trace_ = dex_pc_trace;
1444 return true;
1445 }
1446
~BuildInternalStackTraceVisitor()1447 virtual ~BuildInternalStackTraceVisitor() {
1448 if (method_trace_ != nullptr) {
1449 self_->EndAssertNoThreadSuspension(nullptr);
1450 }
1451 }
1452
VisitFrame()1453 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1454 if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1455 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1456 }
1457 if (skip_depth_ > 0) {
1458 skip_depth_--;
1459 return true;
1460 }
1461 mirror::ArtMethod* m = GetMethod();
1462 if (m->IsRuntimeMethod()) {
1463 return true; // Ignore runtime frames (in particular callee save).
1464 }
1465 method_trace_->Set<kTransactionActive>(count_, m);
1466 dex_pc_trace_->Set<kTransactionActive>(count_,
1467 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1468 ++count_;
1469 return true;
1470 }
1471
GetInternalStackTrace() const1472 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1473 return method_trace_;
1474 }
1475
1476 private:
1477 Thread* const self_;
1478 // How many more frames to skip.
1479 int32_t skip_depth_;
1480 // Current position down stack trace.
1481 uint32_t count_;
1482 // Array of dex PC values.
1483 mirror::IntArray* dex_pc_trace_;
1484 // An array of the methods on the stack, the last entry is a reference to the PC trace.
1485 mirror::ObjectArray<mirror::Object>* method_trace_;
1486 };
1487
1488 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1489 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1490 // Compute depth of stack
1491 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1492 count_visitor.WalkStack();
1493 int32_t depth = count_visitor.GetDepth();
1494 int32_t skip_depth = count_visitor.GetSkipDepth();
1495
1496 // Build internal stack trace.
1497 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1498 const_cast<Thread*>(this),
1499 skip_depth);
1500 if (!build_trace_visitor.Init(depth)) {
1501 return nullptr; // Allocation failed.
1502 }
1503 build_trace_visitor.WalkStack();
1504 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1505 if (kIsDebugBuild) {
1506 for (int32_t i = 0; i < trace->GetLength(); ++i) {
1507 CHECK(trace->Get(i) != nullptr);
1508 }
1509 }
1510 return soa.AddLocalReference<jobjectArray>(trace);
1511 }
1512 template jobject Thread::CreateInternalStackTrace<false>(
1513 const ScopedObjectAccessAlreadyRunnable& soa) const;
1514 template jobject Thread::CreateInternalStackTrace<true>(
1515 const ScopedObjectAccessAlreadyRunnable& soa) const;
1516
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1517 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1518 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1519 int* stack_depth) {
1520 // Decode the internal stack trace into the depth, method trace and PC trace
1521 int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1522
1523 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1524
1525 jobjectArray result;
1526
1527 if (output_array != nullptr) {
1528 // Reuse the array we were given.
1529 result = output_array;
1530 // ...adjusting the number of frames we'll write to not exceed the array length.
1531 const int32_t traces_length =
1532 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1533 depth = std::min(depth, traces_length);
1534 } else {
1535 // Create java_trace array and place in local reference table
1536 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1537 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1538 if (java_traces == nullptr) {
1539 return nullptr;
1540 }
1541 result = soa.AddLocalReference<jobjectArray>(java_traces);
1542 }
1543
1544 if (stack_depth != nullptr) {
1545 *stack_depth = depth;
1546 }
1547
1548 for (int32_t i = 0; i < depth; ++i) {
1549 mirror::ObjectArray<mirror::Object>* method_trace =
1550 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1551 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1552 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1553 int32_t line_number;
1554 StackHandleScope<3> hs(soa.Self());
1555 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1556 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1557 if (method->IsProxyMethod()) {
1558 line_number = -1;
1559 class_name_object.Assign(method->GetDeclaringClass()->GetName());
1560 // source_name_object intentionally left null for proxy methods
1561 } else {
1562 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1563 uint32_t dex_pc = pc_trace->Get(i);
1564 line_number = method->GetLineNumFromDexPC(dex_pc);
1565 // Allocate element, potentially triggering GC
1566 // TODO: reuse class_name_object via Class::name_?
1567 const char* descriptor = method->GetDeclaringClassDescriptor();
1568 CHECK(descriptor != nullptr);
1569 std::string class_name(PrettyDescriptor(descriptor));
1570 class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1571 if (class_name_object.Get() == nullptr) {
1572 return nullptr;
1573 }
1574 const char* source_file = method->GetDeclaringClassSourceFile();
1575 if (source_file != nullptr) {
1576 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1577 if (source_name_object.Get() == nullptr) {
1578 return nullptr;
1579 }
1580 }
1581 }
1582 const char* method_name = method->GetName();
1583 CHECK(method_name != nullptr);
1584 Handle<mirror::String> method_name_object(
1585 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1586 if (method_name_object.Get() == nullptr) {
1587 return nullptr;
1588 }
1589 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1590 soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1591 if (obj == nullptr) {
1592 return nullptr;
1593 }
1594 // We are called from native: use non-transactional mode.
1595 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1596 }
1597 return result;
1598 }
1599
ThrowNewExceptionF(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,...)1600 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1601 const char* exception_class_descriptor, const char* fmt, ...) {
1602 va_list args;
1603 va_start(args, fmt);
1604 ThrowNewExceptionV(throw_location, exception_class_descriptor,
1605 fmt, args);
1606 va_end(args);
1607 }
1608
ThrowNewExceptionV(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,va_list ap)1609 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1610 const char* exception_class_descriptor,
1611 const char* fmt, va_list ap) {
1612 std::string msg;
1613 StringAppendV(&msg, fmt, ap);
1614 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1615 }
1616
ThrowNewException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1617 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1618 const char* msg) {
1619 // Callers should either clear or call ThrowNewWrappedException.
1620 AssertNoPendingExceptionForNewException(msg);
1621 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1622 }
1623
ThrowNewWrappedException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1624 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1625 const char* exception_class_descriptor,
1626 const char* msg) {
1627 DCHECK_EQ(this, Thread::Current());
1628 ScopedObjectAccessUnchecked soa(this);
1629 StackHandleScope<5> hs(soa.Self());
1630 // Ensure we don't forget arguments over object allocation.
1631 Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1632 Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1633 // Ignore the cause throw location. TODO: should we report this as a re-throw?
1634 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1635 bool is_exception_reported = IsExceptionReportedToInstrumentation();
1636 ClearException();
1637 Runtime* runtime = Runtime::Current();
1638
1639 mirror::ClassLoader* cl = nullptr;
1640 if (saved_throw_method.Get() != nullptr) {
1641 cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1642 }
1643 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1644 Handle<mirror::Class> exception_class(
1645 hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1646 class_loader)));
1647 if (UNLIKELY(exception_class.Get() == nullptr)) {
1648 CHECK(IsExceptionPending());
1649 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1650 return;
1651 }
1652
1653 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1654 DCHECK(IsExceptionPending());
1655 return;
1656 }
1657 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1658 Handle<mirror::Throwable> exception(
1659 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1660
1661 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1662 if (exception.Get() == nullptr) {
1663 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1664 throw_location.GetDexPc());
1665 SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1666 SetExceptionReportedToInstrumentation(is_exception_reported);
1667 return;
1668 }
1669
1670 // Choose an appropriate constructor and set up the arguments.
1671 const char* signature;
1672 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1673 if (msg != nullptr) {
1674 // Ensure we remember this and the method over the String allocation.
1675 msg_string.reset(
1676 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1677 if (UNLIKELY(msg_string.get() == nullptr)) {
1678 CHECK(IsExceptionPending()); // OOME.
1679 return;
1680 }
1681 if (cause.get() == nullptr) {
1682 signature = "(Ljava/lang/String;)V";
1683 } else {
1684 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1685 }
1686 } else {
1687 if (cause.get() == nullptr) {
1688 signature = "()V";
1689 } else {
1690 signature = "(Ljava/lang/Throwable;)V";
1691 }
1692 }
1693 mirror::ArtMethod* exception_init_method =
1694 exception_class->FindDeclaredDirectMethod("<init>", signature);
1695
1696 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1697 << PrettyDescriptor(exception_class_descriptor);
1698
1699 if (UNLIKELY(!runtime->IsStarted())) {
1700 // Something is trying to throw an exception without a started runtime, which is the common
1701 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1702 // the exception fields directly.
1703 if (msg != nullptr) {
1704 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1705 }
1706 if (cause.get() != nullptr) {
1707 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1708 }
1709 ScopedLocalRef<jobject> trace(GetJniEnv(),
1710 Runtime::Current()->IsActiveTransaction()
1711 ? CreateInternalStackTrace<true>(soa)
1712 : CreateInternalStackTrace<false>(soa));
1713 if (trace.get() != nullptr) {
1714 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1715 }
1716 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1717 throw_location.GetDexPc());
1718 SetException(gc_safe_throw_location, exception.Get());
1719 SetExceptionReportedToInstrumentation(is_exception_reported);
1720 } else {
1721 jvalue jv_args[2];
1722 size_t i = 0;
1723
1724 if (msg != nullptr) {
1725 jv_args[i].l = msg_string.get();
1726 ++i;
1727 }
1728 if (cause.get() != nullptr) {
1729 jv_args[i].l = cause.get();
1730 ++i;
1731 }
1732 InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1733 if (LIKELY(!IsExceptionPending())) {
1734 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1735 throw_location.GetDexPc());
1736 SetException(gc_safe_throw_location, exception.Get());
1737 SetExceptionReportedToInstrumentation(is_exception_reported);
1738 }
1739 }
1740 }
1741
ThrowOutOfMemoryError(const char * msg)1742 void Thread::ThrowOutOfMemoryError(const char* msg) {
1743 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1744 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1745 ThrowLocation throw_location = GetCurrentLocationForThrow();
1746 if (!tls32_.throwing_OutOfMemoryError) {
1747 tls32_.throwing_OutOfMemoryError = true;
1748 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1749 tls32_.throwing_OutOfMemoryError = false;
1750 } else {
1751 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one.
1752 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1753 }
1754 }
1755
CurrentFromGdb()1756 Thread* Thread::CurrentFromGdb() {
1757 return Thread::Current();
1758 }
1759
DumpFromGdb() const1760 void Thread::DumpFromGdb() const {
1761 std::ostringstream ss;
1762 Dump(ss);
1763 std::string str(ss.str());
1764 // log to stderr for debugging command line processes
1765 std::cerr << str;
1766 #ifdef HAVE_ANDROID_OS
1767 // log to logcat for debugging frameworks processes
1768 LOG(INFO) << str;
1769 #endif
1770 }
1771
1772 // Explicitly instantiate 32 and 64bit thread offset dumping support.
1773 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1774 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1775
1776 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)1777 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1778 #define DO_THREAD_OFFSET(x, y) \
1779 if (offset == x.Uint32Value()) { \
1780 os << y; \
1781 return; \
1782 }
1783 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1784 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1785 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1786 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1787 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1788 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1789 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1790 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1791 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1792 DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1793 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1794 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1795 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1796 #undef DO_THREAD_OFFSET
1797
1798 #define INTERPRETER_ENTRY_POINT_INFO(x) \
1799 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1800 os << #x; \
1801 return; \
1802 }
1803 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1804 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1805 #undef INTERPRETER_ENTRY_POINT_INFO
1806
1807 #define JNI_ENTRY_POINT_INFO(x) \
1808 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1809 os << #x; \
1810 return; \
1811 }
1812 JNI_ENTRY_POINT_INFO(pDlsymLookup)
1813 #undef JNI_ENTRY_POINT_INFO
1814
1815 #define PORTABLE_ENTRY_POINT_INFO(x) \
1816 if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1817 os << #x; \
1818 return; \
1819 }
1820 PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1821 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1822 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1823 #undef PORTABLE_ENTRY_POINT_INFO
1824
1825 #define QUICK_ENTRY_POINT_INFO(x) \
1826 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1827 os << #x; \
1828 return; \
1829 }
1830 QUICK_ENTRY_POINT_INFO(pAllocArray)
1831 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1832 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1833 QUICK_ENTRY_POINT_INFO(pAllocObject)
1834 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1835 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1836 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1837 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1838 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1839 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1840 QUICK_ENTRY_POINT_INFO(pCheckCast)
1841 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1842 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1843 QUICK_ENTRY_POINT_INFO(pInitializeType)
1844 QUICK_ENTRY_POINT_INFO(pResolveString)
1845 QUICK_ENTRY_POINT_INFO(pSet32Instance)
1846 QUICK_ENTRY_POINT_INFO(pSet32Static)
1847 QUICK_ENTRY_POINT_INFO(pSet64Instance)
1848 QUICK_ENTRY_POINT_INFO(pSet64Static)
1849 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1850 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1851 QUICK_ENTRY_POINT_INFO(pGet32Instance)
1852 QUICK_ENTRY_POINT_INFO(pGet32Static)
1853 QUICK_ENTRY_POINT_INFO(pGet64Instance)
1854 QUICK_ENTRY_POINT_INFO(pGet64Static)
1855 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1856 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1857 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1858 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1859 QUICK_ENTRY_POINT_INFO(pAputObject)
1860 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1861 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1862 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1863 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1864 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1865 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1866 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1867 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1868 QUICK_ENTRY_POINT_INFO(pLockObject)
1869 QUICK_ENTRY_POINT_INFO(pUnlockObject)
1870 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1871 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1872 QUICK_ENTRY_POINT_INFO(pCmplDouble)
1873 QUICK_ENTRY_POINT_INFO(pCmplFloat)
1874 QUICK_ENTRY_POINT_INFO(pFmod)
1875 QUICK_ENTRY_POINT_INFO(pL2d)
1876 QUICK_ENTRY_POINT_INFO(pFmodf)
1877 QUICK_ENTRY_POINT_INFO(pL2f)
1878 QUICK_ENTRY_POINT_INFO(pD2iz)
1879 QUICK_ENTRY_POINT_INFO(pF2iz)
1880 QUICK_ENTRY_POINT_INFO(pIdivmod)
1881 QUICK_ENTRY_POINT_INFO(pD2l)
1882 QUICK_ENTRY_POINT_INFO(pF2l)
1883 QUICK_ENTRY_POINT_INFO(pLdiv)
1884 QUICK_ENTRY_POINT_INFO(pLmod)
1885 QUICK_ENTRY_POINT_INFO(pLmul)
1886 QUICK_ENTRY_POINT_INFO(pShlLong)
1887 QUICK_ENTRY_POINT_INFO(pShrLong)
1888 QUICK_ENTRY_POINT_INFO(pUshrLong)
1889 QUICK_ENTRY_POINT_INFO(pIndexOf)
1890 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1891 QUICK_ENTRY_POINT_INFO(pMemcpy)
1892 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1893 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1894 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1895 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1896 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1897 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1898 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1899 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1900 QUICK_ENTRY_POINT_INFO(pTestSuspend)
1901 QUICK_ENTRY_POINT_INFO(pDeliverException)
1902 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1903 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1904 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1905 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1906 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1907 QUICK_ENTRY_POINT_INFO(pA64Load)
1908 QUICK_ENTRY_POINT_INFO(pA64Store)
1909 #undef QUICK_ENTRY_POINT_INFO
1910
1911 os << offset;
1912 }
1913
QuickDeliverException()1914 void Thread::QuickDeliverException() {
1915 // Get exception from thread.
1916 ThrowLocation throw_location;
1917 mirror::Throwable* exception = GetException(&throw_location);
1918 CHECK(exception != nullptr);
1919 // Don't leave exception visible while we try to find the handler, which may cause class
1920 // resolution.
1921 bool is_exception_reported = IsExceptionReportedToInstrumentation();
1922 ClearException();
1923 bool is_deoptimization = (exception == GetDeoptimizationException());
1924 QuickExceptionHandler exception_handler(this, is_deoptimization);
1925 if (is_deoptimization) {
1926 exception_handler.DeoptimizeStack();
1927 } else {
1928 exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1929 }
1930 exception_handler.UpdateInstrumentationStack();
1931 exception_handler.DoLongJump();
1932 LOG(FATAL) << "UNREACHABLE";
1933 }
1934
GetLongJumpContext()1935 Context* Thread::GetLongJumpContext() {
1936 Context* result = tlsPtr_.long_jump_context;
1937 if (result == nullptr) {
1938 result = Context::Create();
1939 } else {
1940 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
1941 result->Reset();
1942 }
1943 return result;
1944 }
1945
1946 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1947 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1948 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL1949 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1950 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1951 : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1952 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL1953 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1954 mirror::ArtMethod* m = GetMethod();
1955 if (m->IsRuntimeMethod()) {
1956 // Continue if this is a runtime method.
1957 return true;
1958 }
1959 if (context_ != nullptr) {
1960 this_object_ = GetThisObject();
1961 }
1962 method_ = m;
1963 dex_pc_ = GetDexPc(abort_on_error_);
1964 return false;
1965 }
1966 mirror::Object* this_object_;
1967 mirror::ArtMethod* method_;
1968 uint32_t dex_pc_;
1969 const bool abort_on_error_;
1970 };
1971
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const1972 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1973 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1974 visitor.WalkStack(false);
1975 if (dex_pc != nullptr) {
1976 *dex_pc = visitor.dex_pc_;
1977 }
1978 return visitor.method_;
1979 }
1980
GetCurrentLocationForThrow()1981 ThrowLocation Thread::GetCurrentLocationForThrow() {
1982 Context* context = GetLongJumpContext();
1983 CurrentMethodVisitor visitor(this, context, true);
1984 visitor.WalkStack(false);
1985 ReleaseLongJumpContext(context);
1986 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1987 }
1988
HoldsLock(mirror::Object * object) const1989 bool Thread::HoldsLock(mirror::Object* object) const {
1990 if (object == nullptr) {
1991 return false;
1992 }
1993 return object->GetLockOwnerThreadId() == GetThreadId();
1994 }
1995
1996 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1997 template <typename RootVisitor>
1998 class ReferenceMapVisitor : public StackVisitor {
1999 public:
ReferenceMapVisitor(Thread * thread,Context * context,const RootVisitor & visitor)2000 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2001 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2002 : StackVisitor(thread, context), visitor_(visitor) {}
2003
VisitFrame()2004 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2005 if (false) {
2006 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2007 << StringPrintf("@ PC:%04x", GetDexPc());
2008 }
2009 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2010 if (shadow_frame != nullptr) {
2011 VisitShadowFrame(shadow_frame);
2012 } else {
2013 VisitQuickFrame();
2014 }
2015 return true;
2016 }
2017
VisitShadowFrame(ShadowFrame * shadow_frame)2018 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2019 mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2020 visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2021 mirror::ArtMethod* m = *method_addr;
2022 DCHECK(m != nullptr);
2023 size_t num_regs = shadow_frame->NumberOfVRegs();
2024 if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2025 // handle scope for JNI or References for interpreter.
2026 for (size_t reg = 0; reg < num_regs; ++reg) {
2027 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2028 if (ref != nullptr) {
2029 mirror::Object* new_ref = ref;
2030 visitor_(&new_ref, reg, this);
2031 if (new_ref != ref) {
2032 shadow_frame->SetVRegReference(reg, new_ref);
2033 }
2034 }
2035 }
2036 } else {
2037 // Java method.
2038 // Portable path use DexGcMap and store in Method.native_gc_map_.
2039 const uint8_t* gc_map = m->GetNativeGcMap();
2040 CHECK(gc_map != nullptr) << PrettyMethod(m);
2041 verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2042 uint32_t dex_pc = shadow_frame->GetDexPC();
2043 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2044 DCHECK(reg_bitmap != nullptr);
2045 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2046 for (size_t reg = 0; reg < num_regs; ++reg) {
2047 if (TestBitmap(reg, reg_bitmap)) {
2048 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2049 if (ref != nullptr) {
2050 mirror::Object* new_ref = ref;
2051 visitor_(&new_ref, reg, this);
2052 if (new_ref != ref) {
2053 shadow_frame->SetVRegReference(reg, new_ref);
2054 }
2055 }
2056 }
2057 }
2058 }
2059 }
2060
2061 private:
VisitQuickFrame()2062 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2063 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2064 mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2065 mirror::ArtMethod* old_method = m;
2066 visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2067 if (m != old_method) {
2068 cur_quick_frame->Assign(m);
2069 }
2070
2071 // Process register map (which native and runtime methods don't have)
2072 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2073 const uint8_t* native_gc_map = m->GetNativeGcMap();
2074 CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2075 const DexFile::CodeItem* code_item = m->GetCodeItem();
2076 DCHECK(code_item != nullptr) << PrettyMethod(m); // Can't be nullptr or how would we compile its instructions?
2077 NativePcOffsetToReferenceMap map(native_gc_map);
2078 size_t num_regs = std::min(map.RegWidth() * 8,
2079 static_cast<size_t>(code_item->registers_size_));
2080 if (num_regs > 0) {
2081 Runtime* runtime = Runtime::Current();
2082 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2083 uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2084 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2085 DCHECK(reg_bitmap != nullptr);
2086 const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2087 const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2088 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2089 // For all dex registers in the bitmap
2090 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2091 DCHECK(cur_quick_frame != nullptr);
2092 for (size_t reg = 0; reg < num_regs; ++reg) {
2093 // Does this register hold a reference?
2094 if (TestBitmap(reg, reg_bitmap)) {
2095 uint32_t vmap_offset;
2096 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2097 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2098 kReferenceVReg);
2099 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2100 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2101 if (*ref_addr != nullptr) {
2102 visitor_(ref_addr, reg, this);
2103 }
2104 } else {
2105 StackReference<mirror::Object>* ref_addr =
2106 reinterpret_cast<StackReference<mirror::Object>*>(
2107 GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2108 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2109 mirror::Object* ref = ref_addr->AsMirrorPtr();
2110 if (ref != nullptr) {
2111 mirror::Object* new_ref = ref;
2112 visitor_(&new_ref, reg, this);
2113 if (ref != new_ref) {
2114 ref_addr->Assign(new_ref);
2115 }
2116 }
2117 }
2118 }
2119 }
2120 }
2121 }
2122 }
2123
TestBitmap(size_t reg,const uint8_t * reg_vector)2124 static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2125 return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2126 }
2127
2128 // Visitor for when we visit a root.
2129 const RootVisitor& visitor_;
2130 };
2131
2132 class RootCallbackVisitor {
2133 public:
RootCallbackVisitor(RootCallback * callback,void * arg,uint32_t tid)2134 RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2135 : callback_(callback), arg_(arg), tid_(tid) {}
2136
operator ()(mirror::Object ** obj,size_t,const StackVisitor *) const2137 void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2138 callback_(obj, arg_, tid_, kRootJavaFrame);
2139 }
2140
2141 private:
2142 RootCallback* const callback_;
2143 void* const arg_;
2144 const uint32_t tid_;
2145 };
2146
SetClassLoaderOverride(mirror::ClassLoader * class_loader_override)2147 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2148 VerifyObject(class_loader_override);
2149 tlsPtr_.class_loader_override = class_loader_override;
2150 }
2151
VisitRoots(RootCallback * visitor,void * arg)2152 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2153 uint32_t thread_id = GetThreadId();
2154 if (tlsPtr_.opeer != nullptr) {
2155 visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2156 }
2157 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2158 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2159 }
2160 tlsPtr_.throw_location.VisitRoots(visitor, arg);
2161 if (tlsPtr_.class_loader_override != nullptr) {
2162 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2163 kRootNativeStack);
2164 }
2165 if (tlsPtr_.monitor_enter_object != nullptr) {
2166 visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2167 }
2168 tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2169 tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2170 HandleScopeVisitRoots(visitor, arg, thread_id);
2171 if (tlsPtr_.debug_invoke_req != nullptr) {
2172 tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2173 }
2174 if (tlsPtr_.single_step_control != nullptr) {
2175 tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2176 }
2177 if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2178 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2179 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2180 for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2181 shadow_frame = shadow_frame->GetLink()) {
2182 mapper.VisitShadowFrame(shadow_frame);
2183 }
2184 }
2185 if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2186 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2187 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2188 for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2189 shadow_frame != nullptr;
2190 shadow_frame = shadow_frame->GetLink()) {
2191 mapper.VisitShadowFrame(shadow_frame);
2192 }
2193 }
2194 // Visit roots on this thread's stack
2195 Context* context = GetLongJumpContext();
2196 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2197 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2198 mapper.WalkStack();
2199 ReleaseLongJumpContext(context);
2200 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2201 if (frame.this_object_ != nullptr) {
2202 visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2203 }
2204 DCHECK(frame.method_ != nullptr);
2205 visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2206 }
2207 }
2208
VerifyRoot(mirror::Object ** root,void *,uint32_t,RootType)2209 static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2210 RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2211 VerifyObject(*root);
2212 }
2213
VerifyStackImpl()2214 void Thread::VerifyStackImpl() {
2215 std::unique_ptr<Context> context(Context::Create());
2216 RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2217 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2218 mapper.WalkStack();
2219 }
2220
2221 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2222 void Thread::SetStackEndForStackOverflow() {
2223 // During stack overflow we allow use of the full stack.
2224 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2225 // However, we seem to have already extended to use the full stack.
2226 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2227 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2228 DumpStack(LOG(ERROR));
2229 LOG(FATAL) << "Recursive stack overflow.";
2230 }
2231
2232 tlsPtr_.stack_end = tlsPtr_.stack_begin;
2233
2234 // Remove the stack overflow protection if is it set up.
2235 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2236 if (implicit_stack_check) {
2237 if (!UnprotectStack()) {
2238 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2239 }
2240 }
2241 }
2242
SetTlab(byte * start,byte * end)2243 void Thread::SetTlab(byte* start, byte* end) {
2244 DCHECK_LE(start, end);
2245 tlsPtr_.thread_local_start = start;
2246 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
2247 tlsPtr_.thread_local_end = end;
2248 tlsPtr_.thread_local_objects = 0;
2249 }
2250
HasTlab() const2251 bool Thread::HasTlab() const {
2252 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2253 if (has_tlab) {
2254 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2255 } else {
2256 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2257 }
2258 return has_tlab;
2259 }
2260
operator <<(std::ostream & os,const Thread & thread)2261 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2262 thread.ShortDump(os);
2263 return os;
2264 }
2265
ProtectStack()2266 void Thread::ProtectStack() {
2267 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2268 VLOG(threads) << "Protecting stack at " << pregion;
2269 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2270 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2271 "Reason: "
2272 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
2273 }
2274 }
2275
UnprotectStack()2276 bool Thread::UnprotectStack() {
2277 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2278 VLOG(threads) << "Unprotecting stack at " << pregion;
2279 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2280 }
2281
2282
2283 } // namespace art
2284