• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18 
19 #include "thread.h"
20 
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26 
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 
33 #include "arch/context.h"
34 #include "base/mutex.h"
35 #include "class_linker-inl.h"
36 #include "class_linker.h"
37 #include "debugger.h"
38 #include "dex_file-inl.h"
39 #include "entrypoints/entrypoint_utils.h"
40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
41 #include "gc_map.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/allocator/rosalloc.h"
44 #include "gc/heap.h"
45 #include "gc/space/space.h"
46 #include "handle_scope-inl.h"
47 #include "handle_scope.h"
48 #include "indirect_reference_table-inl.h"
49 #include "jni_internal.h"
50 #include "mirror/art_field-inl.h"
51 #include "mirror/art_method-inl.h"
52 #include "mirror/class_loader.h"
53 #include "mirror/class-inl.h"
54 #include "mirror/object_array-inl.h"
55 #include "mirror/stack_trace_element.h"
56 #include "monitor.h"
57 #include "object_lock.h"
58 #include "quick_exception_handler.h"
59 #include "quick/quick_method_frame_info.h"
60 #include "reflection.h"
61 #include "runtime.h"
62 #include "scoped_thread_state_change.h"
63 #include "ScopedLocalRef.h"
64 #include "ScopedUtfChars.h"
65 #include "stack.h"
66 #include "thread_list.h"
67 #include "thread-inl.h"
68 #include "utils.h"
69 #include "verifier/dex_gc_map.h"
70 #include "verify_object-inl.h"
71 #include "vmap_table.h"
72 #include "well_known_classes.h"
73 
74 namespace art {
75 
76 bool Thread::is_started_ = false;
77 pthread_key_t Thread::pthread_key_self_;
78 ConditionVariable* Thread::resume_cond_ = nullptr;
79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80 
81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82 
InitCardTable()83 void Thread::InitCardTable() {
84   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85 }
86 
UnimplementedEntryPoint()87 static void UnimplementedEntryPoint() {
88   UNIMPLEMENTED(FATAL);
89 }
90 
91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                      PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93 
InitTlsEntryPoints()94 void Thread::InitTlsEntryPoints() {
95   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                 sizeof(tlsPtr_.quick_entrypoints));
99   for (uintptr_t* it = begin; it != end; ++it) {
100     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101   }
102   InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                   &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104 }
105 
ResetQuickAllocEntryPointsForThread()106 void Thread::ResetQuickAllocEntryPointsForThread() {
107   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108 }
109 
SetDeoptimizationShadowFrame(ShadowFrame * sf)110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111   tlsPtr_.deoptimization_shadow_frame = sf;
112 }
113 
SetDeoptimizationReturnValue(const JValue & ret_val)114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115   tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116 }
117 
GetAndClearDeoptimizationShadowFrame(JValue * ret_val)118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119   ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120   tlsPtr_.deoptimization_shadow_frame = nullptr;
121   ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122   return sf;
123 }
124 
SetShadowFrameUnderConstruction(ShadowFrame * sf)125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126   sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127   tlsPtr_.shadow_frame_under_construction = sf;
128 }
129 
ClearShadowFrameUnderConstruction()130 void Thread::ClearShadowFrameUnderConstruction() {
131   CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132   tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133 }
134 
InitTid()135 void Thread::InitTid() {
136   tls32_.tid = ::art::GetTid();
137 }
138 
InitAfterFork()139 void Thread::InitAfterFork() {
140   // One thread (us) survived the fork, but we have a new tid so we need to
141   // update the value stashed in this Thread*.
142   InitTid();
143 }
144 
CreateCallback(void * arg)145 void* Thread::CreateCallback(void* arg) {
146   Thread* self = reinterpret_cast<Thread*>(arg);
147   Runtime* runtime = Runtime::Current();
148   if (runtime == nullptr) {
149     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150     return nullptr;
151   }
152   {
153     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154     //       after self->Init().
155     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156     // Check that if we got here we cannot be shutting down (as shutdown should never have started
157     // while threads are being born).
158     CHECK(!runtime->IsShuttingDownLocked());
159     self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160     Runtime::Current()->EndThreadBirth();
161   }
162   {
163     ScopedObjectAccess soa(self);
164 
165     // Copy peer into self, deleting global reference when done.
166     CHECK(self->tlsPtr_.jpeer != nullptr);
167     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169     self->tlsPtr_.jpeer = nullptr;
170     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171     Dbg::PostThreadStart(self);
172 
173     // Invoke the 'run' method of our java.lang.Thread.
174     mirror::Object* receiver = self->tlsPtr_.opeer;
175     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176     InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177   }
178   // Detach and delete self.
179   Runtime::Current()->GetThreadList()->Unregister(self);
180 
181   return nullptr;
182 }
183 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)184 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                   mirror::Object* thread_peer) {
186   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189   // to stop it from going away.
190   if (kIsDebugBuild) {
191     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192     if (result != nullptr && !result->IsSuspended()) {
193       Locks::thread_list_lock_->AssertHeld(soa.Self());
194     }
195   }
196   return result;
197 }
198 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)199 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                   jobject java_thread) {
201   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202 }
203 
FixStackSize(size_t stack_size)204 static size_t FixStackSize(size_t stack_size) {
205   // A stack size of zero means "use the default".
206   if (stack_size == 0) {
207     stack_size = Runtime::Current()->GetDefaultStackSize();
208   }
209 
210   // Dalvik used the bionic pthread default stack size for native threads,
211   // so include that here to support apps that expect large native stacks.
212   stack_size += 1 * MB;
213 
214   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215   if (stack_size < PTHREAD_STACK_MIN) {
216     stack_size = PTHREAD_STACK_MIN;
217   }
218 
219   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220     // It's likely that callers are trying to ensure they have at least a certain amount of
221     // stack space, so we should add our reserved space on top of what they requested, rather
222     // than implicitly take it away from them.
223     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224   } else {
225     // If we are going to use implicit stack checks, allocate space for the protected
226     // region at the bottom of the stack.
227     stack_size += Thread::kStackOverflowImplicitCheckSize +
228         GetStackOverflowReservedBytes(kRuntimeISA);
229   }
230 
231   // Some systems require the stack size to be a multiple of the system page size, so round up.
232   stack_size = RoundUp(stack_size, kPageSize);
233 
234   return stack_size;
235 }
236 
237 // Global variable to prevent the compiler optimizing away the page reads for the stack.
238 byte dont_optimize_this;
239 
240 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241 // overflow is detected.  It is located right below the stack_begin_.
242 //
243 // There is a little complexity here that deserves a special mention.  On some
244 // architectures, the stack created using a VM_GROWSDOWN flag
245 // to prevent memory being allocated when it's not needed.  This flag makes the
246 // kernel only allocate memory for the stack by growing down in memory.  Because we
247 // want to put an mprotected region far away from that at the stack top, we need
248 // to make sure the pages for the stack are mapped in before we call mprotect.  We do
249 // this by reading every page from the stack bottom (highest address) to the stack top.
250 // We then madvise this away.
InstallImplicitProtection()251 void Thread::InstallImplicitProtection() {
252   byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253   byte* stack_himem = tlsPtr_.stack_end;
254   byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255       ~(kPageSize - 1));    // Page containing current top of stack.
256 
257   // First remove the protection on the protected region as will want to read and
258   // write it.  This may fail (on the first attempt when the stack is not mapped)
259   // but we ignore that.
260   UnprotectStack();
261 
262   // Map in the stack.  This must be done by reading from the
263   // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264   // in the kernel.  Any access more than a page below the current SP might cause
265   // a segv.
266 
267   // Read every page from the high address to the low.
268   for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269     dont_optimize_this = *p;
270   }
271 
272   VLOG(threads) << "installing stack protected region at " << std::hex <<
273       static_cast<void*>(pregion) << " to " <<
274       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275 
276   // Protect the bottom of the stack to prevent read/write to it.
277   ProtectStack();
278 
279   // Tell the kernel that we won't be needing these pages any more.
280   // NB. madvise will probably write zeroes into the memory (on linux it does).
281   uint32_t unwanted_size = stack_top - pregion - kPageSize;
282   madvise(pregion, unwanted_size, MADV_DONTNEED);
283 }
284 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)285 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286   CHECK(java_peer != nullptr);
287   Thread* self = static_cast<JNIEnvExt*>(env)->self;
288   Runtime* runtime = Runtime::Current();
289 
290   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291   bool thread_start_during_shutdown = false;
292   {
293     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294     if (runtime->IsShuttingDownLocked()) {
295       thread_start_during_shutdown = true;
296     } else {
297       runtime->StartThreadBirth();
298     }
299   }
300   if (thread_start_during_shutdown) {
301     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303     return;
304   }
305 
306   Thread* child_thread = new Thread(is_daemon);
307   // Use global JNI ref to hold peer live while child thread starts.
308   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309   stack_size = FixStackSize(stack_size);
310 
311   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312   // assign it.
313   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                     reinterpret_cast<jlong>(child_thread));
315 
316   pthread_t new_pthread;
317   pthread_attr_t attr;
318   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319   CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320   CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321   int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323 
324   if (pthread_create_result != 0) {
325     // pthread_create(3) failed, so clean up.
326     {
327       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328       runtime->EndThreadBirth();
329     }
330     // Manually delete the global reference since Thread::Init will not have been run.
331     env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332     child_thread->tlsPtr_.jpeer = nullptr;
333     delete child_thread;
334     child_thread = nullptr;
335     // TODO: remove from thread group?
336     env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337     {
338       std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                    PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340       ScopedObjectAccess soa(env);
341       soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342     }
343   }
344 }
345 
Init(ThreadList * thread_list,JavaVMExt * java_vm)346 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347   // This function does all the initialization that must be run by the native thread it applies to.
348   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349   // we can handshake with the corresponding native thread when it's ready.) Check this native
350   // thread hasn't been through here already...
351   CHECK(Thread::Current() == nullptr);
352   SetUpAlternateSignalStack();
353   InitCpu();
354   InitTlsEntryPoints();
355   RemoveSuspendTrigger();
356   InitCardTable();
357   InitTid();
358   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360   tlsPtr_.pthread_self = pthread_self();
361   CHECK(is_started_);
362   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363   DCHECK_EQ(Thread::Current(), this);
364 
365   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366   InitStackHwm();
367 
368   tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369   thread_list->Register(this);
370 }
371 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)372 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                        bool create_peer) {
374   Thread* self;
375   Runtime* runtime = Runtime::Current();
376   if (runtime == nullptr) {
377     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378     return nullptr;
379   }
380   {
381     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382     if (runtime->IsShuttingDownLocked()) {
383       LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384       return nullptr;
385     } else {
386       Runtime::Current()->StartThreadBirth();
387       self = new Thread(as_daemon);
388       self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389       Runtime::Current()->EndThreadBirth();
390     }
391   }
392 
393   CHECK_NE(self->GetState(), kRunnable);
394   self->SetState(kNative);
395 
396   // If we're the main thread, ClassLinker won't be created until after we're attached,
397   // so that thread needs a two-stage attach. Regular threads don't need this hack.
398   // In the compiler, all threads need this hack, because no-one's going to be getting
399   // a native peer!
400   if (create_peer) {
401     self->CreatePeer(thread_name, as_daemon, thread_group);
402   } else {
403     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404     if (thread_name != nullptr) {
405       self->tlsPtr_.name->assign(thread_name);
406       ::art::SetThreadName(thread_name);
407     } else if (self->GetJniEnv()->check_jni) {
408       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
409     }
410   }
411 
412   return self;
413 }
414 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)415 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
416   Runtime* runtime = Runtime::Current();
417   CHECK(runtime->IsStarted());
418   JNIEnv* env = tlsPtr_.jni_env;
419 
420   if (thread_group == nullptr) {
421     thread_group = runtime->GetMainThreadGroup();
422   }
423   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
424   jint thread_priority = GetNativePriority();
425   jboolean thread_is_daemon = as_daemon;
426 
427   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
428   if (peer.get() == nullptr) {
429     CHECK(IsExceptionPending());
430     return;
431   }
432   {
433     ScopedObjectAccess soa(this);
434     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
435   }
436   env->CallNonvirtualVoidMethod(peer.get(),
437                                 WellKnownClasses::java_lang_Thread,
438                                 WellKnownClasses::java_lang_Thread_init,
439                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
440   AssertNoPendingException();
441 
442   Thread* self = this;
443   DCHECK_EQ(self, Thread::Current());
444   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
445                     reinterpret_cast<jlong>(self));
446 
447   ScopedObjectAccess soa(self);
448   StackHandleScope<1> hs(self);
449   Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
450   if (peer_thread_name.Get() == nullptr) {
451     // The Thread constructor should have set the Thread.name to a
452     // non-null value. However, because we can run without code
453     // available (in the compiler, in tests), we manually assign the
454     // fields the constructor should have set.
455     if (runtime->IsActiveTransaction()) {
456       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457     } else {
458       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
459     }
460     peer_thread_name.Assign(GetThreadName(soa));
461   }
462   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
463   if (peer_thread_name.Get() != nullptr) {
464     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
465   }
466 }
467 
468 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)469 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
470                       jobject thread_name, jint thread_priority) {
471   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
472       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
473   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
474       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
475   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
476       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
477   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
478       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
479 }
480 
SetThreadName(const char * name)481 void Thread::SetThreadName(const char* name) {
482   tlsPtr_.name->assign(name);
483   ::art::SetThreadName(name);
484   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
485 }
486 
InitStackHwm()487 void Thread::InitStackHwm() {
488   void* read_stack_base;
489   size_t read_stack_size;
490   size_t read_guard_size;
491   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
492 
493   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
494   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
495                                 read_stack_base,
496                                 PrettySize(read_stack_size).c_str(),
497                                 PrettySize(read_guard_size).c_str());
498 
499   tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
500   tlsPtr_.stack_size = read_stack_size;
501 
502   // The minimum stack size we can cope with is the overflow reserved bytes (typically
503   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
504   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
505   // between 8K and 12K.
506   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
507     + 4 * KB;
508   if (read_stack_size <= min_stack) {
509     LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
510         << " bytes)";
511   }
512 
513   // TODO: move this into the Linux GetThreadStack implementation.
514 #if !defined(__APPLE__)
515   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
516   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
517   // will be broken because we'll die long before we get close to 2GB.
518   bool is_main_thread = (::art::GetTid() == getpid());
519   if (is_main_thread) {
520     rlimit stack_limit;
521     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
522       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
523     }
524     if (stack_limit.rlim_cur == RLIM_INFINITY) {
525       // Find the default stack size for new threads...
526       pthread_attr_t default_attributes;
527       size_t default_stack_size;
528       CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
529       CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
530                          "default stack size query");
531       CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
532 
533       // ...and use that as our limit.
534       size_t old_stack_size = read_stack_size;
535       tlsPtr_.stack_size = default_stack_size;
536       tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
537       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
538                     << " to " << PrettySize(default_stack_size)
539                     << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
540     }
541   }
542 #endif
543 
544   // Set stack_end_ to the bottom of the stack saving space of stack overflows
545 
546   Runtime* runtime = Runtime::Current();
547   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
548   ResetDefaultStackEnd();
549 
550   // Install the protected region if we are doing implicit overflow checks.
551   if (implicit_stack_check) {
552     // The thread might have protected region at the bottom.  We need
553     // to install our own region so we need to move the limits
554     // of the stack to make room for it.
555 
556     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
557     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
558     tlsPtr_.stack_size -= read_guard_size;
559 
560     InstallImplicitProtection();
561   }
562 
563   // Sanity check.
564   int stack_variable;
565   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
566 }
567 
ShortDump(std::ostream & os) const568 void Thread::ShortDump(std::ostream& os) const {
569   os << "Thread[";
570   if (GetThreadId() != 0) {
571     // If we're in kStarting, we won't have a thin lock id or tid yet.
572     os << GetThreadId()
573              << ",tid=" << GetTid() << ',';
574   }
575   os << GetState()
576            << ",Thread*=" << this
577            << ",peer=" << tlsPtr_.opeer
578            << ",\"" << *tlsPtr_.name << "\""
579            << "]";
580 }
581 
Dump(std::ostream & os) const582 void Thread::Dump(std::ostream& os) const {
583   DumpState(os);
584   DumpStack(os);
585 }
586 
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const587 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
588   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
589   return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
590 }
591 
GetThreadName(std::string & name) const592 void Thread::GetThreadName(std::string& name) const {
593   name.assign(*tlsPtr_.name);
594 }
595 
GetCpuMicroTime() const596 uint64_t Thread::GetCpuMicroTime() const {
597 #if defined(HAVE_POSIX_CLOCKS)
598   clockid_t cpu_clock_id;
599   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
600   timespec now;
601   clock_gettime(cpu_clock_id, &now);
602   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
603 #else
604   UNIMPLEMENTED(WARNING);
605   return -1;
606 #endif
607 }
608 
609 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)610 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
611   LOG(ERROR) << *thread << " suspend count already zero.";
612   Locks::thread_suspend_count_lock_->Unlock(self);
613   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
614     Locks::mutator_lock_->SharedTryLock(self);
615     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
616       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
617     }
618   }
619   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
620     Locks::thread_list_lock_->TryLock(self);
621     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
622       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
623     }
624   }
625   std::ostringstream ss;
626   Runtime::Current()->GetThreadList()->DumpLocked(ss);
627   LOG(FATAL) << ss.str();
628 }
629 
ModifySuspendCount(Thread * self,int delta,bool for_debugger)630 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
631   if (kIsDebugBuild) {
632     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
633           << delta << " " << tls32_.debug_suspend_count << " " << this;
634     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
635     Locks::thread_suspend_count_lock_->AssertHeld(self);
636     if (this != self && !IsSuspended()) {
637       Locks::thread_list_lock_->AssertHeld(self);
638     }
639   }
640   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
641     UnsafeLogFatalForSuspendCount(self, this);
642     return;
643   }
644 
645   tls32_.suspend_count += delta;
646   if (for_debugger) {
647     tls32_.debug_suspend_count += delta;
648   }
649 
650   if (tls32_.suspend_count == 0) {
651     AtomicClearFlag(kSuspendRequest);
652   } else {
653     AtomicSetFlag(kSuspendRequest);
654     TriggerSuspend();
655   }
656 }
657 
RunCheckpointFunction()658 void Thread::RunCheckpointFunction() {
659   Closure *checkpoints[kMaxCheckpoints];
660 
661   // Grab the suspend_count lock and copy the current set of
662   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
663   // function will also grab this lock so we prevent a race between setting
664   // the kCheckpointRequest flag and clearing it.
665   {
666     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
667     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
668       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
669       tlsPtr_.checkpoint_functions[i] = nullptr;
670     }
671     AtomicClearFlag(kCheckpointRequest);
672   }
673 
674   // Outside the lock, run all the checkpoint functions that
675   // we collected.
676   bool found_checkpoint = false;
677   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
678     if (checkpoints[i] != nullptr) {
679       ATRACE_BEGIN("Checkpoint function");
680       checkpoints[i]->Run(this);
681       ATRACE_END();
682       found_checkpoint = true;
683     }
684   }
685   CHECK(found_checkpoint);
686 }
687 
RequestCheckpoint(Closure * function)688 bool Thread::RequestCheckpoint(Closure* function) {
689   union StateAndFlags old_state_and_flags;
690   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
691   if (old_state_and_flags.as_struct.state != kRunnable) {
692     return false;  // Fail, thread is suspended and so can't run a checkpoint.
693   }
694 
695   uint32_t available_checkpoint = kMaxCheckpoints;
696   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
697     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
698       available_checkpoint = i;
699       break;
700     }
701   }
702   if (available_checkpoint == kMaxCheckpoints) {
703     // No checkpoint functions available, we can't run a checkpoint
704     return false;
705   }
706   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
707 
708   // Checkpoint function installed now install flag bit.
709   // We must be runnable to request a checkpoint.
710   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
711   union StateAndFlags new_state_and_flags;
712   new_state_and_flags.as_int = old_state_and_flags.as_int;
713   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
714   bool success =
715       tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
716                                                                                        new_state_and_flags.as_int);
717   if (UNLIKELY(!success)) {
718     // The thread changed state before the checkpoint was installed.
719     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
720     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
721   } else {
722     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
723     TriggerSuspend();
724   }
725   return success;
726 }
727 
FullSuspendCheck()728 void Thread::FullSuspendCheck() {
729   VLOG(threads) << this << " self-suspending";
730   ATRACE_BEGIN("Full suspend check");
731   // Make thread appear suspended to other threads, release mutator_lock_.
732   TransitionFromRunnableToSuspended(kSuspended);
733   // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
734   TransitionFromSuspendedToRunnable();
735   ATRACE_END();
736   VLOG(threads) << this << " self-reviving";
737 }
738 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)739 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
740   std::string group_name;
741   int priority;
742   bool is_daemon = false;
743   Thread* self = Thread::Current();
744 
745   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
746   // cause ScopedObjectAccessUnchecked to deadlock.
747   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
748     ScopedObjectAccessUnchecked soa(self);
749     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
750         ->GetInt(thread->tlsPtr_.opeer);
751     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
752         ->GetBoolean(thread->tlsPtr_.opeer);
753 
754     mirror::Object* thread_group =
755         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
756 
757     if (thread_group != nullptr) {
758       mirror::ArtField* group_name_field =
759           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
760       mirror::String* group_name_string =
761           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
762       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
763     }
764   } else {
765     priority = GetNativePriority();
766   }
767 
768   std::string scheduler_group_name(GetSchedulerGroupName(tid));
769   if (scheduler_group_name.empty()) {
770     scheduler_group_name = "default";
771   }
772 
773   if (thread != nullptr) {
774     os << '"' << *thread->tlsPtr_.name << '"';
775     if (is_daemon) {
776       os << " daemon";
777     }
778     os << " prio=" << priority
779        << " tid=" << thread->GetThreadId()
780        << " " << thread->GetState();
781     if (thread->IsStillStarting()) {
782       os << " (still starting up)";
783     }
784     os << "\n";
785   } else {
786     os << '"' << ::art::GetThreadName(tid) << '"'
787        << " prio=" << priority
788        << " (not attached)\n";
789   }
790 
791   if (thread != nullptr) {
792     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
793     os << "  | group=\"" << group_name << "\""
794        << " sCount=" << thread->tls32_.suspend_count
795        << " dsCount=" << thread->tls32_.debug_suspend_count
796        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
797        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
798   }
799 
800   os << "  | sysTid=" << tid
801      << " nice=" << getpriority(PRIO_PROCESS, tid)
802      << " cgrp=" << scheduler_group_name;
803   if (thread != nullptr) {
804     int policy;
805     sched_param sp;
806     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
807                        __FUNCTION__);
808     os << " sched=" << policy << "/" << sp.sched_priority
809        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
810   }
811   os << "\n";
812 
813   // Grab the scheduler stats for this thread.
814   std::string scheduler_stats;
815   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
816     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
817   } else {
818     scheduler_stats = "0 0 0";
819   }
820 
821   char native_thread_state = '?';
822   int utime = 0;
823   int stime = 0;
824   int task_cpu = 0;
825   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
826 
827   os << "  | state=" << native_thread_state
828      << " schedstat=( " << scheduler_stats << " )"
829      << " utm=" << utime
830      << " stm=" << stime
831      << " core=" << task_cpu
832      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
833   if (thread != nullptr) {
834     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
835         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
836         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
837     // Dump the held mutexes.
838     os << "  | held mutexes=";
839     for (size_t i = 0; i < kLockLevelCount; ++i) {
840       if (i != kMonitorLock) {
841         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
842         if (mutex != nullptr) {
843           os << " \"" << mutex->GetName() << "\"";
844           if (mutex->IsReaderWriterMutex()) {
845             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
846             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
847               os << "(exclusive held)";
848             } else {
849               os << "(shared held)";
850             }
851           }
852         }
853       }
854     }
855     os << "\n";
856   }
857 }
858 
DumpState(std::ostream & os) const859 void Thread::DumpState(std::ostream& os) const {
860   Thread::DumpState(os, this, GetTid());
861 }
862 
863 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor864   StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
865       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
866       : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
867         last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
868   }
869 
~StackDumpVisitorart::StackDumpVisitor870   virtual ~StackDumpVisitor() {
871     if (frame_count == 0) {
872       os << "  (no managed stack frames)\n";
873     }
874   }
875 
VisitFrameart::StackDumpVisitor876   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
877     mirror::ArtMethod* m = GetMethod();
878     if (m->IsRuntimeMethod()) {
879       return true;
880     }
881     const int kMaxRepetition = 3;
882     mirror::Class* c = m->GetDeclaringClass();
883     mirror::DexCache* dex_cache = c->GetDexCache();
884     int line_number = -1;
885     if (dex_cache != nullptr) {  // be tolerant of bad input
886       const DexFile& dex_file = *dex_cache->GetDexFile();
887       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
888     }
889     if (line_number == last_line_number && last_method == m) {
890       ++repetition_count;
891     } else {
892       if (repetition_count >= kMaxRepetition) {
893         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
894       }
895       repetition_count = 0;
896       last_line_number = line_number;
897       last_method = m;
898     }
899     if (repetition_count < kMaxRepetition) {
900       os << "  at " << PrettyMethod(m, false);
901       if (m->IsNative()) {
902         os << "(Native method)";
903       } else {
904         const char* source_file(m->GetDeclaringClassSourceFile());
905         os << "(" << (source_file != nullptr ? source_file : "unavailable")
906            << ":" << line_number << ")";
907       }
908       os << "\n";
909       if (frame_count == 0) {
910         Monitor::DescribeWait(os, thread);
911       }
912       if (can_allocate) {
913         // Visit locks, but do not abort on errors. This would trigger a nested abort.
914         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
915       }
916     }
917 
918     ++frame_count;
919     return true;
920   }
921 
DumpLockedObjectart::StackDumpVisitor922   static void DumpLockedObject(mirror::Object* o, void* context)
923       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
924     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
925     os << "  - locked ";
926     if (o == nullptr) {
927       os << "an unknown object";
928     } else {
929       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
930           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
931         // Getting the identity hashcode here would result in lock inflation and suspension of the
932         // current thread, which isn't safe if this is the only runnable thread.
933         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
934                            PrettyTypeOf(o).c_str());
935       } else {
936         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
937       }
938     }
939     os << "\n";
940   }
941 
942   std::ostream& os;
943   const Thread* thread;
944   const bool can_allocate;
945   mirror::ArtMethod* last_method;
946   int last_line_number;
947   int repetition_count;
948   int frame_count;
949 };
950 
ShouldShowNativeStack(const Thread * thread)951 static bool ShouldShowNativeStack(const Thread* thread)
952     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
953   ThreadState state = thread->GetState();
954 
955   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
956   if (state > kWaiting && state < kStarting) {
957     return true;
958   }
959 
960   // In an Object.wait variant or Thread.sleep? That's not interesting.
961   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
962     return false;
963   }
964 
965   // Threads with no managed stack frames should be shown.
966   const ManagedStack* managed_stack = thread->GetManagedStack();
967   if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
968       managed_stack->GetTopShadowFrame() == NULL)) {
969     return true;
970   }
971 
972   // In some other native method? That's interesting.
973   // We don't just check kNative because native methods will be in state kSuspended if they're
974   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
975   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
976   mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
977   return current_method != nullptr && current_method->IsNative();
978 }
979 
DumpJavaStack(std::ostream & os) const980 void Thread::DumpJavaStack(std::ostream& os) const {
981   std::unique_ptr<Context> context(Context::Create());
982   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
983                           !tls32_.throwing_OutOfMemoryError);
984   dumper.WalkStack();
985 }
986 
DumpStack(std::ostream & os) const987 void Thread::DumpStack(std::ostream& os) const {
988   // TODO: we call this code when dying but may not have suspended the thread ourself. The
989   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
990   //       the race with the thread_suspend_count_lock_).
991   bool dump_for_abort = (gAborting > 0);
992   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
993   if (!kIsDebugBuild) {
994     // We always want to dump the stack for an abort, however, there is no point dumping another
995     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
996     safe_to_dump = (safe_to_dump || dump_for_abort);
997   }
998   if (safe_to_dump) {
999     // If we're currently in native code, dump that stack before dumping the managed stack.
1000     if (dump_for_abort || ShouldShowNativeStack(this)) {
1001       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1002       DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1003     }
1004     DumpJavaStack(os);
1005   } else {
1006     os << "Not able to dump stack of thread that isn't suspended";
1007   }
1008 }
1009 
ThreadExitCallback(void * arg)1010 void Thread::ThreadExitCallback(void* arg) {
1011   Thread* self = reinterpret_cast<Thread*>(arg);
1012   if (self->tls32_.thread_exit_check_count == 0) {
1013     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1014         "going to use a pthread_key_create destructor?): " << *self;
1015     CHECK(is_started_);
1016     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1017     self->tls32_.thread_exit_check_count = 1;
1018   } else {
1019     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1020   }
1021 }
1022 
Startup()1023 void Thread::Startup() {
1024   CHECK(!is_started_);
1025   is_started_ = true;
1026   {
1027     // MutexLock to keep annotalysis happy.
1028     //
1029     // Note we use nullptr for the thread because Thread::Current can
1030     // return garbage since (is_started_ == true) and
1031     // Thread::pthread_key_self_ is not yet initialized.
1032     // This was seen on glibc.
1033     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1034     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1035                                          *Locks::thread_suspend_count_lock_);
1036   }
1037 
1038   // Allocate a TLS slot.
1039   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1040 
1041   // Double-check the TLS slot allocation.
1042   if (pthread_getspecific(pthread_key_self_) != nullptr) {
1043     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1044   }
1045 }
1046 
FinishStartup()1047 void Thread::FinishStartup() {
1048   Runtime* runtime = Runtime::Current();
1049   CHECK(runtime->IsStarted());
1050 
1051   // Finish attaching the main thread.
1052   ScopedObjectAccess soa(Thread::Current());
1053   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1054 
1055   Runtime::Current()->GetClassLinker()->RunRootClinits();
1056 }
1057 
Shutdown()1058 void Thread::Shutdown() {
1059   CHECK(is_started_);
1060   is_started_ = false;
1061   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1062   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1063   if (resume_cond_ != nullptr) {
1064     delete resume_cond_;
1065     resume_cond_ = nullptr;
1066   }
1067 }
1068 
Thread(bool daemon)1069 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1070   wait_mutex_ = new Mutex("a thread wait mutex");
1071   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1072   tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1073   tlsPtr_.single_step_control = new SingleStepControl;
1074   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1075   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1076   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1077 
1078   CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1079   tls32_.state_and_flags.as_struct.flags = 0;
1080   tls32_.state_and_flags.as_struct.state = kNative;
1081   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1082   std::fill(tlsPtr_.rosalloc_runs,
1083             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1084             gc::allocator::RosAlloc::GetDedicatedFullRun());
1085   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1086     tlsPtr_.checkpoint_functions[i] = nullptr;
1087   }
1088 }
1089 
IsStillStarting() const1090 bool Thread::IsStillStarting() const {
1091   // You might think you can check whether the state is kStarting, but for much of thread startup,
1092   // the thread is in kNative; it might also be in kVmWait.
1093   // You might think you can check whether the peer is nullptr, but the peer is actually created and
1094   // assigned fairly early on, and needs to be.
1095   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1096   // this thread _ever_ entered kRunnable".
1097   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1098       (*tlsPtr_.name == kThreadNameDuringStartup);
1099 }
1100 
AssertNoPendingException() const1101 void Thread::AssertNoPendingException() const {
1102   if (UNLIKELY(IsExceptionPending())) {
1103     ScopedObjectAccess soa(Thread::Current());
1104     mirror::Throwable* exception = GetException(nullptr);
1105     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1106   }
1107 }
1108 
AssertNoPendingExceptionForNewException(const char * msg) const1109 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1110   if (UNLIKELY(IsExceptionPending())) {
1111     ScopedObjectAccess soa(Thread::Current());
1112     mirror::Throwable* exception = GetException(nullptr);
1113     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1114         << exception->Dump();
1115   }
1116 }
1117 
MonitorExitVisitor(mirror::Object ** object,void * arg,uint32_t,RootType)1118 static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1119                                RootType /*root_type*/)
1120     NO_THREAD_SAFETY_ANALYSIS {
1121   Thread* self = reinterpret_cast<Thread*>(arg);
1122   mirror::Object* entered_monitor = *object;
1123   if (self->HoldsLock(entered_monitor)) {
1124     LOG(WARNING) << "Calling MonitorExit on object "
1125                  << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1126                  << " left locked by native thread "
1127                  << *Thread::Current() << " which is detaching";
1128     entered_monitor->MonitorExit(self);
1129   }
1130 }
1131 
Destroy()1132 void Thread::Destroy() {
1133   Thread* self = this;
1134   DCHECK_EQ(self, Thread::Current());
1135 
1136   if (tlsPtr_.opeer != nullptr) {
1137     ScopedObjectAccess soa(self);
1138     // We may need to call user-supplied managed code, do this before final clean-up.
1139     HandleUncaughtExceptions(soa);
1140     RemoveFromThreadGroup(soa);
1141 
1142     // this.nativePeer = 0;
1143     if (Runtime::Current()->IsActiveTransaction()) {
1144       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1145           ->SetLong<true>(tlsPtr_.opeer, 0);
1146     } else {
1147       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1148           ->SetLong<false>(tlsPtr_.opeer, 0);
1149     }
1150     Dbg::PostThreadDeath(self);
1151 
1152     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1153     // who is waiting.
1154     mirror::Object* lock =
1155         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1156     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1157     if (lock != nullptr) {
1158       StackHandleScope<1> hs(self);
1159       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1160       ObjectLock<mirror::Object> locker(self, h_obj);
1161       locker.NotifyAll();
1162     }
1163   }
1164 
1165   // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1166   if (tlsPtr_.jni_env != nullptr) {
1167     tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1168   }
1169 }
1170 
~Thread()1171 Thread::~Thread() {
1172   if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1173     // If pthread_create fails we don't have a jni env here.
1174     tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1175     tlsPtr_.jpeer = nullptr;
1176   }
1177   tlsPtr_.opeer = nullptr;
1178 
1179   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1180   if (initialized) {
1181     delete tlsPtr_.jni_env;
1182     tlsPtr_.jni_env = nullptr;
1183   }
1184   CHECK_NE(GetState(), kRunnable);
1185   CHECK_NE(ReadFlag(kCheckpointRequest), true);
1186   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1187   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1188   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1189 
1190   // We may be deleting a still born thread.
1191   SetStateUnsafe(kTerminated);
1192 
1193   delete wait_cond_;
1194   delete wait_mutex_;
1195 
1196   if (tlsPtr_.long_jump_context != nullptr) {
1197     delete tlsPtr_.long_jump_context;
1198   }
1199 
1200   if (initialized) {
1201     CleanupCpu();
1202   }
1203 
1204   delete tlsPtr_.debug_invoke_req;
1205   delete tlsPtr_.single_step_control;
1206   delete tlsPtr_.instrumentation_stack;
1207   delete tlsPtr_.name;
1208   delete tlsPtr_.stack_trace_sample;
1209   free(tlsPtr_.nested_signal_state);
1210 
1211   Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1212 
1213   TearDownAlternateSignalStack();
1214 }
1215 
HandleUncaughtExceptions(ScopedObjectAccess & soa)1216 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1217   if (!IsExceptionPending()) {
1218     return;
1219   }
1220   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1221   ScopedThreadStateChange tsc(this, kNative);
1222 
1223   // Get and clear the exception.
1224   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1225   tlsPtr_.jni_env->ExceptionClear();
1226 
1227   // If the thread has its own handler, use that.
1228   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1229                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
1230                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
1231   if (handler.get() == nullptr) {
1232     // Otherwise use the thread group's default handler.
1233     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1234                                                   WellKnownClasses::java_lang_Thread_group));
1235   }
1236 
1237   // Call the handler.
1238   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1239       WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1240       peer.get(), exception.get());
1241 
1242   // If the handler threw, clear that exception too.
1243   tlsPtr_.jni_env->ExceptionClear();
1244 }
1245 
RemoveFromThreadGroup(ScopedObjectAccess & soa)1246 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1247   // this.group.removeThread(this);
1248   // group can be null if we're in the compiler or a test.
1249   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1250       ->GetObject(tlsPtr_.opeer);
1251   if (ogroup != nullptr) {
1252     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1253     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1254     ScopedThreadStateChange tsc(soa.Self(), kNative);
1255     tlsPtr_.jni_env->CallVoidMethod(group.get(),
1256                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
1257                                     peer.get());
1258   }
1259 }
1260 
NumHandleReferences()1261 size_t Thread::NumHandleReferences() {
1262   size_t count = 0;
1263   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1264     count += cur->NumberOfReferences();
1265   }
1266   return count;
1267 }
1268 
HandleScopeContains(jobject obj) const1269 bool Thread::HandleScopeContains(jobject obj) const {
1270   StackReference<mirror::Object>* hs_entry =
1271       reinterpret_cast<StackReference<mirror::Object>*>(obj);
1272   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1273     if (cur->Contains(hs_entry)) {
1274       return true;
1275     }
1276   }
1277   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1278   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1279 }
1280 
HandleScopeVisitRoots(RootCallback * visitor,void * arg,uint32_t thread_id)1281 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1282   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1283     size_t num_refs = cur->NumberOfReferences();
1284     for (size_t j = 0; j < num_refs; ++j) {
1285       mirror::Object* object = cur->GetReference(j);
1286       if (object != nullptr) {
1287         mirror::Object* old_obj = object;
1288         visitor(&object, arg, thread_id, kRootNativeStack);
1289         if (old_obj != object) {
1290           cur->SetReference(j, object);
1291         }
1292       }
1293     }
1294   }
1295 }
1296 
DecodeJObject(jobject obj) const1297 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1298   Locks::mutator_lock_->AssertSharedHeld(this);
1299   if (obj == nullptr) {
1300     return nullptr;
1301   }
1302   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1303   IndirectRefKind kind = GetIndirectRefKind(ref);
1304   mirror::Object* result;
1305   // The "kinds" below are sorted by the frequency we expect to encounter them.
1306   if (kind == kLocal) {
1307     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1308     // Local references do not need a read barrier.
1309     result = locals.Get<kWithoutReadBarrier>(ref);
1310   } else if (kind == kHandleScopeOrInvalid) {
1311     // TODO: make stack indirect reference table lookup more efficient.
1312     // Check if this is a local reference in the handle scope.
1313     if (LIKELY(HandleScopeContains(obj))) {
1314       // Read from handle scope.
1315       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1316       VerifyObject(result);
1317     } else {
1318       result = kInvalidIndirectRefObject;
1319     }
1320   } else if (kind == kGlobal) {
1321     JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1322     result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1323   } else {
1324     DCHECK_EQ(kind, kWeakGlobal);
1325     result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1326     if (result == kClearedJniWeakGlobal) {
1327       // This is a special case where it's okay to return nullptr.
1328       return nullptr;
1329     }
1330   }
1331 
1332   if (UNLIKELY(result == nullptr)) {
1333     JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1334   }
1335   return result;
1336 }
1337 
1338 // Implements java.lang.Thread.interrupted.
Interrupted()1339 bool Thread::Interrupted() {
1340   MutexLock mu(Thread::Current(), *wait_mutex_);
1341   bool interrupted = IsInterruptedLocked();
1342   SetInterruptedLocked(false);
1343   return interrupted;
1344 }
1345 
1346 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1347 bool Thread::IsInterrupted() {
1348   MutexLock mu(Thread::Current(), *wait_mutex_);
1349   return IsInterruptedLocked();
1350 }
1351 
Interrupt(Thread * self)1352 void Thread::Interrupt(Thread* self) {
1353   MutexLock mu(self, *wait_mutex_);
1354   if (interrupted_) {
1355     return;
1356   }
1357   interrupted_ = true;
1358   NotifyLocked(self);
1359 }
1360 
Notify()1361 void Thread::Notify() {
1362   Thread* self = Thread::Current();
1363   MutexLock mu(self, *wait_mutex_);
1364   NotifyLocked(self);
1365 }
1366 
NotifyLocked(Thread * self)1367 void Thread::NotifyLocked(Thread* self) {
1368   if (wait_monitor_ != nullptr) {
1369     wait_cond_->Signal(self);
1370   }
1371 }
1372 
1373 class CountStackDepthVisitor : public StackVisitor {
1374  public:
1375   explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1376       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1377       : StackVisitor(thread, nullptr),
1378         depth_(0), skip_depth_(0), skipping_(true) {}
1379 
VisitFrame()1380   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1381     // We want to skip frames up to and including the exception's constructor.
1382     // Note we also skip the frame if it doesn't have a method (namely the callee
1383     // save frame)
1384     mirror::ArtMethod* m = GetMethod();
1385     if (skipping_ && !m->IsRuntimeMethod() &&
1386         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1387       skipping_ = false;
1388     }
1389     if (!skipping_) {
1390       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1391         ++depth_;
1392       }
1393     } else {
1394       ++skip_depth_;
1395     }
1396     return true;
1397   }
1398 
GetDepth() const1399   int GetDepth() const {
1400     return depth_;
1401   }
1402 
GetSkipDepth() const1403   int GetSkipDepth() const {
1404     return skip_depth_;
1405   }
1406 
1407  private:
1408   uint32_t depth_;
1409   uint32_t skip_depth_;
1410   bool skipping_;
1411 };
1412 
1413 template<bool kTransactionActive>
1414 class BuildInternalStackTraceVisitor : public StackVisitor {
1415  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1416   explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1417       : StackVisitor(thread, nullptr), self_(self),
1418         skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1419 
Init(int depth)1420   bool Init(int depth)
1421       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1422     // Allocate method trace with an extra slot that will hold the PC trace
1423     StackHandleScope<1> hs(self_);
1424     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1425     Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1426         hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1427     if (method_trace.Get() == nullptr) {
1428       return false;
1429     }
1430     mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1431     if (dex_pc_trace == nullptr) {
1432       return false;
1433     }
1434     // Save PC trace in last element of method trace, also places it into the
1435     // object graph.
1436     // We are called from native: use non-transactional mode.
1437     method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1438     // Set the Object*s and assert that no thread suspension is now possible.
1439     const char* last_no_suspend_cause =
1440         self_->StartAssertNoThreadSuspension("Building internal stack trace");
1441     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1442     method_trace_ = method_trace.Get();
1443     dex_pc_trace_ = dex_pc_trace;
1444     return true;
1445   }
1446 
~BuildInternalStackTraceVisitor()1447   virtual ~BuildInternalStackTraceVisitor() {
1448     if (method_trace_ != nullptr) {
1449       self_->EndAssertNoThreadSuspension(nullptr);
1450     }
1451   }
1452 
VisitFrame()1453   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1454     if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1455       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1456     }
1457     if (skip_depth_ > 0) {
1458       skip_depth_--;
1459       return true;
1460     }
1461     mirror::ArtMethod* m = GetMethod();
1462     if (m->IsRuntimeMethod()) {
1463       return true;  // Ignore runtime frames (in particular callee save).
1464     }
1465     method_trace_->Set<kTransactionActive>(count_, m);
1466     dex_pc_trace_->Set<kTransactionActive>(count_,
1467         m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1468     ++count_;
1469     return true;
1470   }
1471 
GetInternalStackTrace() const1472   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1473     return method_trace_;
1474   }
1475 
1476  private:
1477   Thread* const self_;
1478   // How many more frames to skip.
1479   int32_t skip_depth_;
1480   // Current position down stack trace.
1481   uint32_t count_;
1482   // Array of dex PC values.
1483   mirror::IntArray* dex_pc_trace_;
1484   // An array of the methods on the stack, the last entry is a reference to the PC trace.
1485   mirror::ObjectArray<mirror::Object>* method_trace_;
1486 };
1487 
1488 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1489 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1490   // Compute depth of stack
1491   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1492   count_visitor.WalkStack();
1493   int32_t depth = count_visitor.GetDepth();
1494   int32_t skip_depth = count_visitor.GetSkipDepth();
1495 
1496   // Build internal stack trace.
1497   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1498                                                                          const_cast<Thread*>(this),
1499                                                                          skip_depth);
1500   if (!build_trace_visitor.Init(depth)) {
1501     return nullptr;  // Allocation failed.
1502   }
1503   build_trace_visitor.WalkStack();
1504   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1505   if (kIsDebugBuild) {
1506     for (int32_t i = 0; i < trace->GetLength(); ++i) {
1507       CHECK(trace->Get(i) != nullptr);
1508     }
1509   }
1510   return soa.AddLocalReference<jobjectArray>(trace);
1511 }
1512 template jobject Thread::CreateInternalStackTrace<false>(
1513     const ScopedObjectAccessAlreadyRunnable& soa) const;
1514 template jobject Thread::CreateInternalStackTrace<true>(
1515     const ScopedObjectAccessAlreadyRunnable& soa) const;
1516 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1517 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1518     const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1519     int* stack_depth) {
1520   // Decode the internal stack trace into the depth, method trace and PC trace
1521   int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1522 
1523   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1524 
1525   jobjectArray result;
1526 
1527   if (output_array != nullptr) {
1528     // Reuse the array we were given.
1529     result = output_array;
1530     // ...adjusting the number of frames we'll write to not exceed the array length.
1531     const int32_t traces_length =
1532         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1533     depth = std::min(depth, traces_length);
1534   } else {
1535     // Create java_trace array and place in local reference table
1536     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1537         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1538     if (java_traces == nullptr) {
1539       return nullptr;
1540     }
1541     result = soa.AddLocalReference<jobjectArray>(java_traces);
1542   }
1543 
1544   if (stack_depth != nullptr) {
1545     *stack_depth = depth;
1546   }
1547 
1548   for (int32_t i = 0; i < depth; ++i) {
1549     mirror::ObjectArray<mirror::Object>* method_trace =
1550           soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1551     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1552     mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1553     int32_t line_number;
1554     StackHandleScope<3> hs(soa.Self());
1555     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1556     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1557     if (method->IsProxyMethod()) {
1558       line_number = -1;
1559       class_name_object.Assign(method->GetDeclaringClass()->GetName());
1560       // source_name_object intentionally left null for proxy methods
1561     } else {
1562       mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1563       uint32_t dex_pc = pc_trace->Get(i);
1564       line_number = method->GetLineNumFromDexPC(dex_pc);
1565       // Allocate element, potentially triggering GC
1566       // TODO: reuse class_name_object via Class::name_?
1567       const char* descriptor = method->GetDeclaringClassDescriptor();
1568       CHECK(descriptor != nullptr);
1569       std::string class_name(PrettyDescriptor(descriptor));
1570       class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1571       if (class_name_object.Get() == nullptr) {
1572         return nullptr;
1573       }
1574       const char* source_file = method->GetDeclaringClassSourceFile();
1575       if (source_file != nullptr) {
1576         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1577         if (source_name_object.Get() == nullptr) {
1578           return nullptr;
1579         }
1580       }
1581     }
1582     const char* method_name = method->GetName();
1583     CHECK(method_name != nullptr);
1584     Handle<mirror::String> method_name_object(
1585         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1586     if (method_name_object.Get() == nullptr) {
1587       return nullptr;
1588     }
1589     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1590         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1591     if (obj == nullptr) {
1592       return nullptr;
1593     }
1594     // We are called from native: use non-transactional mode.
1595     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1596   }
1597   return result;
1598 }
1599 
ThrowNewExceptionF(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,...)1600 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1601                                 const char* exception_class_descriptor, const char* fmt, ...) {
1602   va_list args;
1603   va_start(args, fmt);
1604   ThrowNewExceptionV(throw_location, exception_class_descriptor,
1605                      fmt, args);
1606   va_end(args);
1607 }
1608 
ThrowNewExceptionV(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,va_list ap)1609 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1610                                 const char* exception_class_descriptor,
1611                                 const char* fmt, va_list ap) {
1612   std::string msg;
1613   StringAppendV(&msg, fmt, ap);
1614   ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1615 }
1616 
ThrowNewException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1617 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1618                                const char* msg) {
1619   // Callers should either clear or call ThrowNewWrappedException.
1620   AssertNoPendingExceptionForNewException(msg);
1621   ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1622 }
1623 
ThrowNewWrappedException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1624 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1625                                       const char* exception_class_descriptor,
1626                                       const char* msg) {
1627   DCHECK_EQ(this, Thread::Current());
1628   ScopedObjectAccessUnchecked soa(this);
1629   StackHandleScope<5> hs(soa.Self());
1630   // Ensure we don't forget arguments over object allocation.
1631   Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1632   Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1633   // Ignore the cause throw location. TODO: should we report this as a re-throw?
1634   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1635   bool is_exception_reported = IsExceptionReportedToInstrumentation();
1636   ClearException();
1637   Runtime* runtime = Runtime::Current();
1638 
1639   mirror::ClassLoader* cl = nullptr;
1640   if (saved_throw_method.Get() != nullptr) {
1641     cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1642   }
1643   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1644   Handle<mirror::Class> exception_class(
1645       hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1646                                                         class_loader)));
1647   if (UNLIKELY(exception_class.Get() == nullptr)) {
1648     CHECK(IsExceptionPending());
1649     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1650     return;
1651   }
1652 
1653   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1654     DCHECK(IsExceptionPending());
1655     return;
1656   }
1657   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1658   Handle<mirror::Throwable> exception(
1659       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1660 
1661   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1662   if (exception.Get() == nullptr) {
1663     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1664                                          throw_location.GetDexPc());
1665     SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1666     SetExceptionReportedToInstrumentation(is_exception_reported);
1667     return;
1668   }
1669 
1670   // Choose an appropriate constructor and set up the arguments.
1671   const char* signature;
1672   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1673   if (msg != nullptr) {
1674     // Ensure we remember this and the method over the String allocation.
1675     msg_string.reset(
1676         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1677     if (UNLIKELY(msg_string.get() == nullptr)) {
1678       CHECK(IsExceptionPending());  // OOME.
1679       return;
1680     }
1681     if (cause.get() == nullptr) {
1682       signature = "(Ljava/lang/String;)V";
1683     } else {
1684       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1685     }
1686   } else {
1687     if (cause.get() == nullptr) {
1688       signature = "()V";
1689     } else {
1690       signature = "(Ljava/lang/Throwable;)V";
1691     }
1692   }
1693   mirror::ArtMethod* exception_init_method =
1694       exception_class->FindDeclaredDirectMethod("<init>", signature);
1695 
1696   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1697       << PrettyDescriptor(exception_class_descriptor);
1698 
1699   if (UNLIKELY(!runtime->IsStarted())) {
1700     // Something is trying to throw an exception without a started runtime, which is the common
1701     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1702     // the exception fields directly.
1703     if (msg != nullptr) {
1704       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1705     }
1706     if (cause.get() != nullptr) {
1707       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1708     }
1709     ScopedLocalRef<jobject> trace(GetJniEnv(),
1710                                   Runtime::Current()->IsActiveTransaction()
1711                                       ? CreateInternalStackTrace<true>(soa)
1712                                       : CreateInternalStackTrace<false>(soa));
1713     if (trace.get() != nullptr) {
1714       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1715     }
1716     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1717                                          throw_location.GetDexPc());
1718     SetException(gc_safe_throw_location, exception.Get());
1719     SetExceptionReportedToInstrumentation(is_exception_reported);
1720   } else {
1721     jvalue jv_args[2];
1722     size_t i = 0;
1723 
1724     if (msg != nullptr) {
1725       jv_args[i].l = msg_string.get();
1726       ++i;
1727     }
1728     if (cause.get() != nullptr) {
1729       jv_args[i].l = cause.get();
1730       ++i;
1731     }
1732     InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1733     if (LIKELY(!IsExceptionPending())) {
1734       ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1735                                            throw_location.GetDexPc());
1736       SetException(gc_safe_throw_location, exception.Get());
1737       SetExceptionReportedToInstrumentation(is_exception_reported);
1738     }
1739   }
1740 }
1741 
ThrowOutOfMemoryError(const char * msg)1742 void Thread::ThrowOutOfMemoryError(const char* msg) {
1743   LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1744       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1745   ThrowLocation throw_location = GetCurrentLocationForThrow();
1746   if (!tls32_.throwing_OutOfMemoryError) {
1747     tls32_.throwing_OutOfMemoryError = true;
1748     ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1749     tls32_.throwing_OutOfMemoryError = false;
1750   } else {
1751     Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1752     SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1753   }
1754 }
1755 
CurrentFromGdb()1756 Thread* Thread::CurrentFromGdb() {
1757   return Thread::Current();
1758 }
1759 
DumpFromGdb() const1760 void Thread::DumpFromGdb() const {
1761   std::ostringstream ss;
1762   Dump(ss);
1763   std::string str(ss.str());
1764   // log to stderr for debugging command line processes
1765   std::cerr << str;
1766 #ifdef HAVE_ANDROID_OS
1767   // log to logcat for debugging frameworks processes
1768   LOG(INFO) << str;
1769 #endif
1770 }
1771 
1772 // Explicitly instantiate 32 and 64bit thread offset dumping support.
1773 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1774 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1775 
1776 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)1777 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1778 #define DO_THREAD_OFFSET(x, y) \
1779     if (offset == x.Uint32Value()) { \
1780       os << y; \
1781       return; \
1782     }
1783   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1784   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1785   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1786   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1787   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1788   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1789   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1790   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1791   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1792   DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1793   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1794   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1795   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1796 #undef DO_THREAD_OFFSET
1797 
1798 #define INTERPRETER_ENTRY_POINT_INFO(x) \
1799     if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1800       os << #x; \
1801       return; \
1802     }
1803   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1804   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1805 #undef INTERPRETER_ENTRY_POINT_INFO
1806 
1807 #define JNI_ENTRY_POINT_INFO(x) \
1808     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1809       os << #x; \
1810       return; \
1811     }
1812   JNI_ENTRY_POINT_INFO(pDlsymLookup)
1813 #undef JNI_ENTRY_POINT_INFO
1814 
1815 #define PORTABLE_ENTRY_POINT_INFO(x) \
1816     if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1817       os << #x; \
1818       return; \
1819     }
1820   PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1821   PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1822   PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1823 #undef PORTABLE_ENTRY_POINT_INFO
1824 
1825 #define QUICK_ENTRY_POINT_INFO(x) \
1826     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1827       os << #x; \
1828       return; \
1829     }
1830   QUICK_ENTRY_POINT_INFO(pAllocArray)
1831   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1832   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1833   QUICK_ENTRY_POINT_INFO(pAllocObject)
1834   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1835   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1836   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1837   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1838   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1839   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1840   QUICK_ENTRY_POINT_INFO(pCheckCast)
1841   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1842   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1843   QUICK_ENTRY_POINT_INFO(pInitializeType)
1844   QUICK_ENTRY_POINT_INFO(pResolveString)
1845   QUICK_ENTRY_POINT_INFO(pSet32Instance)
1846   QUICK_ENTRY_POINT_INFO(pSet32Static)
1847   QUICK_ENTRY_POINT_INFO(pSet64Instance)
1848   QUICK_ENTRY_POINT_INFO(pSet64Static)
1849   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1850   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1851   QUICK_ENTRY_POINT_INFO(pGet32Instance)
1852   QUICK_ENTRY_POINT_INFO(pGet32Static)
1853   QUICK_ENTRY_POINT_INFO(pGet64Instance)
1854   QUICK_ENTRY_POINT_INFO(pGet64Static)
1855   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1856   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1857   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1858   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1859   QUICK_ENTRY_POINT_INFO(pAputObject)
1860   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1861   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1862   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1863   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1864   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1865   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1866   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1867   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1868   QUICK_ENTRY_POINT_INFO(pLockObject)
1869   QUICK_ENTRY_POINT_INFO(pUnlockObject)
1870   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1871   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1872   QUICK_ENTRY_POINT_INFO(pCmplDouble)
1873   QUICK_ENTRY_POINT_INFO(pCmplFloat)
1874   QUICK_ENTRY_POINT_INFO(pFmod)
1875   QUICK_ENTRY_POINT_INFO(pL2d)
1876   QUICK_ENTRY_POINT_INFO(pFmodf)
1877   QUICK_ENTRY_POINT_INFO(pL2f)
1878   QUICK_ENTRY_POINT_INFO(pD2iz)
1879   QUICK_ENTRY_POINT_INFO(pF2iz)
1880   QUICK_ENTRY_POINT_INFO(pIdivmod)
1881   QUICK_ENTRY_POINT_INFO(pD2l)
1882   QUICK_ENTRY_POINT_INFO(pF2l)
1883   QUICK_ENTRY_POINT_INFO(pLdiv)
1884   QUICK_ENTRY_POINT_INFO(pLmod)
1885   QUICK_ENTRY_POINT_INFO(pLmul)
1886   QUICK_ENTRY_POINT_INFO(pShlLong)
1887   QUICK_ENTRY_POINT_INFO(pShrLong)
1888   QUICK_ENTRY_POINT_INFO(pUshrLong)
1889   QUICK_ENTRY_POINT_INFO(pIndexOf)
1890   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1891   QUICK_ENTRY_POINT_INFO(pMemcpy)
1892   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1893   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1894   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1895   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1896   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1897   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1898   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1899   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1900   QUICK_ENTRY_POINT_INFO(pTestSuspend)
1901   QUICK_ENTRY_POINT_INFO(pDeliverException)
1902   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1903   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1904   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1905   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1906   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1907   QUICK_ENTRY_POINT_INFO(pA64Load)
1908   QUICK_ENTRY_POINT_INFO(pA64Store)
1909 #undef QUICK_ENTRY_POINT_INFO
1910 
1911   os << offset;
1912 }
1913 
QuickDeliverException()1914 void Thread::QuickDeliverException() {
1915   // Get exception from thread.
1916   ThrowLocation throw_location;
1917   mirror::Throwable* exception = GetException(&throw_location);
1918   CHECK(exception != nullptr);
1919   // Don't leave exception visible while we try to find the handler, which may cause class
1920   // resolution.
1921   bool is_exception_reported = IsExceptionReportedToInstrumentation();
1922   ClearException();
1923   bool is_deoptimization = (exception == GetDeoptimizationException());
1924   QuickExceptionHandler exception_handler(this, is_deoptimization);
1925   if (is_deoptimization) {
1926     exception_handler.DeoptimizeStack();
1927   } else {
1928     exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1929   }
1930   exception_handler.UpdateInstrumentationStack();
1931   exception_handler.DoLongJump();
1932   LOG(FATAL) << "UNREACHABLE";
1933 }
1934 
GetLongJumpContext()1935 Context* Thread::GetLongJumpContext() {
1936   Context* result = tlsPtr_.long_jump_context;
1937   if (result == nullptr) {
1938     result = Context::Create();
1939   } else {
1940     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1941     result->Reset();
1942   }
1943   return result;
1944 }
1945 
1946 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1947 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1948 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL1949   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1950       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1951       : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1952         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL1953   bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1954     mirror::ArtMethod* m = GetMethod();
1955     if (m->IsRuntimeMethod()) {
1956       // Continue if this is a runtime method.
1957       return true;
1958     }
1959     if (context_ != nullptr) {
1960       this_object_ = GetThisObject();
1961     }
1962     method_ = m;
1963     dex_pc_ = GetDexPc(abort_on_error_);
1964     return false;
1965   }
1966   mirror::Object* this_object_;
1967   mirror::ArtMethod* method_;
1968   uint32_t dex_pc_;
1969   const bool abort_on_error_;
1970 };
1971 
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const1972 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1973   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1974   visitor.WalkStack(false);
1975   if (dex_pc != nullptr) {
1976     *dex_pc = visitor.dex_pc_;
1977   }
1978   return visitor.method_;
1979 }
1980 
GetCurrentLocationForThrow()1981 ThrowLocation Thread::GetCurrentLocationForThrow() {
1982   Context* context = GetLongJumpContext();
1983   CurrentMethodVisitor visitor(this, context, true);
1984   visitor.WalkStack(false);
1985   ReleaseLongJumpContext(context);
1986   return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1987 }
1988 
HoldsLock(mirror::Object * object) const1989 bool Thread::HoldsLock(mirror::Object* object) const {
1990   if (object == nullptr) {
1991     return false;
1992   }
1993   return object->GetLockOwnerThreadId() == GetThreadId();
1994 }
1995 
1996 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1997 template <typename RootVisitor>
1998 class ReferenceMapVisitor : public StackVisitor {
1999  public:
ReferenceMapVisitor(Thread * thread,Context * context,const RootVisitor & visitor)2000   ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2001       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2002       : StackVisitor(thread, context), visitor_(visitor) {}
2003 
VisitFrame()2004   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2005     if (false) {
2006       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2007                 << StringPrintf("@ PC:%04x", GetDexPc());
2008     }
2009     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2010     if (shadow_frame != nullptr) {
2011       VisitShadowFrame(shadow_frame);
2012     } else {
2013       VisitQuickFrame();
2014     }
2015     return true;
2016   }
2017 
VisitShadowFrame(ShadowFrame * shadow_frame)2018   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2019     mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2020     visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2021     mirror::ArtMethod* m = *method_addr;
2022     DCHECK(m != nullptr);
2023     size_t num_regs = shadow_frame->NumberOfVRegs();
2024     if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2025       // handle scope for JNI or References for interpreter.
2026       for (size_t reg = 0; reg < num_regs; ++reg) {
2027         mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2028         if (ref != nullptr) {
2029           mirror::Object* new_ref = ref;
2030           visitor_(&new_ref, reg, this);
2031           if (new_ref != ref) {
2032             shadow_frame->SetVRegReference(reg, new_ref);
2033           }
2034         }
2035       }
2036     } else {
2037       // Java method.
2038       // Portable path use DexGcMap and store in Method.native_gc_map_.
2039       const uint8_t* gc_map = m->GetNativeGcMap();
2040       CHECK(gc_map != nullptr) << PrettyMethod(m);
2041       verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2042       uint32_t dex_pc = shadow_frame->GetDexPC();
2043       const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2044       DCHECK(reg_bitmap != nullptr);
2045       num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2046       for (size_t reg = 0; reg < num_regs; ++reg) {
2047         if (TestBitmap(reg, reg_bitmap)) {
2048           mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2049           if (ref != nullptr) {
2050             mirror::Object* new_ref = ref;
2051             visitor_(&new_ref, reg, this);
2052             if (new_ref != ref) {
2053               shadow_frame->SetVRegReference(reg, new_ref);
2054             }
2055           }
2056         }
2057       }
2058     }
2059   }
2060 
2061  private:
VisitQuickFrame()2062   void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2063     StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2064     mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2065     mirror::ArtMethod* old_method = m;
2066     visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2067     if (m != old_method) {
2068       cur_quick_frame->Assign(m);
2069     }
2070 
2071     // Process register map (which native and runtime methods don't have)
2072     if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2073       const uint8_t* native_gc_map = m->GetNativeGcMap();
2074       CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2075       const DexFile::CodeItem* code_item = m->GetCodeItem();
2076       DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2077       NativePcOffsetToReferenceMap map(native_gc_map);
2078       size_t num_regs = std::min(map.RegWidth() * 8,
2079                                  static_cast<size_t>(code_item->registers_size_));
2080       if (num_regs > 0) {
2081         Runtime* runtime = Runtime::Current();
2082         const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2083         uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2084         const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2085         DCHECK(reg_bitmap != nullptr);
2086         const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2087         const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2088         QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2089         // For all dex registers in the bitmap
2090         StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2091         DCHECK(cur_quick_frame != nullptr);
2092         for (size_t reg = 0; reg < num_regs; ++reg) {
2093           // Does this register hold a reference?
2094           if (TestBitmap(reg, reg_bitmap)) {
2095             uint32_t vmap_offset;
2096             if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2097               int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2098                                                         kReferenceVReg);
2099               // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2100               mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2101               if (*ref_addr != nullptr) {
2102                 visitor_(ref_addr, reg, this);
2103               }
2104             } else {
2105               StackReference<mirror::Object>* ref_addr =
2106                   reinterpret_cast<StackReference<mirror::Object>*>(
2107                       GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2108                                   frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2109               mirror::Object* ref = ref_addr->AsMirrorPtr();
2110               if (ref != nullptr) {
2111                 mirror::Object* new_ref = ref;
2112                 visitor_(&new_ref, reg, this);
2113                 if (ref != new_ref) {
2114                   ref_addr->Assign(new_ref);
2115                 }
2116               }
2117             }
2118           }
2119         }
2120       }
2121     }
2122   }
2123 
TestBitmap(size_t reg,const uint8_t * reg_vector)2124   static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2125     return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2126   }
2127 
2128   // Visitor for when we visit a root.
2129   const RootVisitor& visitor_;
2130 };
2131 
2132 class RootCallbackVisitor {
2133  public:
RootCallbackVisitor(RootCallback * callback,void * arg,uint32_t tid)2134   RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2135      : callback_(callback), arg_(arg), tid_(tid) {}
2136 
operator ()(mirror::Object ** obj,size_t,const StackVisitor *) const2137   void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2138     callback_(obj, arg_, tid_, kRootJavaFrame);
2139   }
2140 
2141  private:
2142   RootCallback* const callback_;
2143   void* const arg_;
2144   const uint32_t tid_;
2145 };
2146 
SetClassLoaderOverride(mirror::ClassLoader * class_loader_override)2147 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2148   VerifyObject(class_loader_override);
2149   tlsPtr_.class_loader_override = class_loader_override;
2150 }
2151 
VisitRoots(RootCallback * visitor,void * arg)2152 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2153   uint32_t thread_id = GetThreadId();
2154   if (tlsPtr_.opeer != nullptr) {
2155     visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2156   }
2157   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2158     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2159   }
2160   tlsPtr_.throw_location.VisitRoots(visitor, arg);
2161   if (tlsPtr_.class_loader_override != nullptr) {
2162     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2163             kRootNativeStack);
2164   }
2165   if (tlsPtr_.monitor_enter_object != nullptr) {
2166     visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2167   }
2168   tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2169   tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2170   HandleScopeVisitRoots(visitor, arg, thread_id);
2171   if (tlsPtr_.debug_invoke_req != nullptr) {
2172     tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2173   }
2174   if (tlsPtr_.single_step_control != nullptr) {
2175     tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2176   }
2177   if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2178     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2179     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2180     for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2181         shadow_frame = shadow_frame->GetLink()) {
2182       mapper.VisitShadowFrame(shadow_frame);
2183     }
2184   }
2185   if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2186     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2187     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2188     for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2189         shadow_frame != nullptr;
2190         shadow_frame = shadow_frame->GetLink()) {
2191       mapper.VisitShadowFrame(shadow_frame);
2192     }
2193   }
2194   // Visit roots on this thread's stack
2195   Context* context = GetLongJumpContext();
2196   RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2197   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2198   mapper.WalkStack();
2199   ReleaseLongJumpContext(context);
2200   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2201     if (frame.this_object_ != nullptr) {
2202       visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2203     }
2204     DCHECK(frame.method_ != nullptr);
2205     visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2206   }
2207 }
2208 
VerifyRoot(mirror::Object ** root,void *,uint32_t,RootType)2209 static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2210                        RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2211   VerifyObject(*root);
2212 }
2213 
VerifyStackImpl()2214 void Thread::VerifyStackImpl() {
2215   std::unique_ptr<Context> context(Context::Create());
2216   RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2217   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2218   mapper.WalkStack();
2219 }
2220 
2221 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2222 void Thread::SetStackEndForStackOverflow() {
2223   // During stack overflow we allow use of the full stack.
2224   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2225     // However, we seem to have already extended to use the full stack.
2226     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2227                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2228     DumpStack(LOG(ERROR));
2229     LOG(FATAL) << "Recursive stack overflow.";
2230   }
2231 
2232   tlsPtr_.stack_end = tlsPtr_.stack_begin;
2233 
2234   // Remove the stack overflow protection if is it set up.
2235   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2236   if (implicit_stack_check) {
2237     if (!UnprotectStack()) {
2238       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2239     }
2240   }
2241 }
2242 
SetTlab(byte * start,byte * end)2243 void Thread::SetTlab(byte* start, byte* end) {
2244   DCHECK_LE(start, end);
2245   tlsPtr_.thread_local_start = start;
2246   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2247   tlsPtr_.thread_local_end = end;
2248   tlsPtr_.thread_local_objects = 0;
2249 }
2250 
HasTlab() const2251 bool Thread::HasTlab() const {
2252   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2253   if (has_tlab) {
2254     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2255   } else {
2256     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2257   }
2258   return has_tlab;
2259 }
2260 
operator <<(std::ostream & os,const Thread & thread)2261 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2262   thread.ShortDump(os);
2263   return os;
2264 }
2265 
ProtectStack()2266 void Thread::ProtectStack() {
2267   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2268   VLOG(threads) << "Protecting stack at " << pregion;
2269   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2270     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2271         "Reason: "
2272         << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2273   }
2274 }
2275 
UnprotectStack()2276 bool Thread::UnprotectStack() {
2277   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2278   VLOG(threads) << "Unprotecting stack at " << pregion;
2279   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2280 }
2281 
2282 
2283 }  // namespace art
2284