1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/arguments.h"
10 #include "src/codegen.h"
11 #include "src/conversions.h"
12 #include "src/execution.h"
13 #include "src/ic-inl.h"
14 #include "src/runtime.h"
15 #include "src/stub-cache.h"
16
17 namespace v8 {
18 namespace internal {
19
20 #ifdef DEBUG
TransitionMarkFromState(IC::State state)21 char IC::TransitionMarkFromState(IC::State state) {
22 switch (state) {
23 case UNINITIALIZED: return '0';
24 case PREMONOMORPHIC: return '.';
25 case MONOMORPHIC: return '1';
26 case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
27 case POLYMORPHIC: return 'P';
28 case MEGAMORPHIC: return 'N';
29 case GENERIC: return 'G';
30
31 // We never see the debugger states here, because the state is
32 // computed from the original code - not the patched code. Let
33 // these cases fall through to the unreachable code below.
34 case DEBUG_STUB: break;
35 }
36 UNREACHABLE();
37 return 0;
38 }
39
40
GetTransitionMarkModifier(KeyedAccessStoreMode mode)41 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
42 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
43 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
44 return ".IGNORE_OOB";
45 }
46 if (IsGrowStoreMode(mode)) return ".GROW";
47 return "";
48 }
49
50
TraceIC(const char * type,Handle<Object> name)51 void IC::TraceIC(const char* type,
52 Handle<Object> name) {
53 if (FLAG_trace_ic) {
54 Code* new_target = raw_target();
55 State new_state = new_target->ic_state();
56 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
57 StackFrameIterator it(isolate());
58 while (it.frame()->fp() != this->fp()) it.Advance();
59 StackFrame* raw_frame = it.frame();
60 if (raw_frame->is_internal()) {
61 Code* apply_builtin = isolate()->builtins()->builtin(
62 Builtins::kFunctionApply);
63 if (raw_frame->unchecked_code() == apply_builtin) {
64 PrintF("apply from ");
65 it.Advance();
66 raw_frame = it.frame();
67 }
68 }
69 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
70 ExtraICState extra_state = new_target->extra_ic_state();
71 const char* modifier = "";
72 if (new_target->kind() == Code::KEYED_STORE_IC) {
73 modifier = GetTransitionMarkModifier(
74 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
75 }
76 PrintF(" (%c->%c%s)",
77 TransitionMarkFromState(state()),
78 TransitionMarkFromState(new_state),
79 modifier);
80 name->Print();
81 PrintF("]\n");
82 }
83 }
84
85 #define TRACE_GENERIC_IC(isolate, type, reason) \
86 do { \
87 if (FLAG_trace_ic) { \
88 PrintF("[%s patching generic stub in ", type); \
89 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
90 PrintF(" (%s)]\n", reason); \
91 } \
92 } while (false)
93
94 #else
95 #define TRACE_GENERIC_IC(isolate, type, reason)
96 #endif // DEBUG
97
98 #define TRACE_IC(type, name) \
99 ASSERT((TraceIC(type, name), true))
100
IC(FrameDepth depth,Isolate * isolate)101 IC::IC(FrameDepth depth, Isolate* isolate)
102 : isolate_(isolate),
103 target_set_(false),
104 target_maps_set_(false) {
105 // To improve the performance of the (much used) IC code, we unfold a few
106 // levels of the stack frame iteration code. This yields a ~35% speedup when
107 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
108 const Address entry =
109 Isolate::c_entry_fp(isolate->thread_local_top());
110 Address constant_pool = NULL;
111 if (FLAG_enable_ool_constant_pool) {
112 constant_pool = Memory::Address_at(
113 entry + ExitFrameConstants::kConstantPoolOffset);
114 }
115 Address* pc_address =
116 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
117 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
118 // If there's another JavaScript frame on the stack or a
119 // StubFailureTrampoline, we need to look one frame further down the stack to
120 // find the frame pointer and the return address stack slot.
121 if (depth == EXTRA_CALL_FRAME) {
122 if (FLAG_enable_ool_constant_pool) {
123 constant_pool = Memory::Address_at(
124 fp + StandardFrameConstants::kConstantPoolOffset);
125 }
126 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
127 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
128 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
129 }
130 #ifdef DEBUG
131 StackFrameIterator it(isolate);
132 for (int i = 0; i < depth + 1; i++) it.Advance();
133 StackFrame* frame = it.frame();
134 ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
135 #endif
136 fp_ = fp;
137 if (FLAG_enable_ool_constant_pool) {
138 raw_constant_pool_ = handle(
139 ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
140 isolate);
141 }
142 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
143 target_ = handle(raw_target(), isolate);
144 state_ = target_->ic_state();
145 extra_ic_state_ = target_->extra_ic_state();
146 }
147
148
GetSharedFunctionInfo() const149 SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
150 // Compute the JavaScript frame for the frame pointer of this IC
151 // structure. We need this to be able to find the function
152 // corresponding to the frame.
153 StackFrameIterator it(isolate());
154 while (it.frame()->fp() != this->fp()) it.Advance();
155 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
156 // Find the function on the stack and both the active code for the
157 // function and the original code.
158 JSFunction* function = frame->function();
159 return function->shared();
160 }
161
162
GetCode() const163 Code* IC::GetCode() const {
164 HandleScope scope(isolate());
165 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
166 Code* code = shared->code();
167 return code;
168 }
169
170
GetOriginalCode() const171 Code* IC::GetOriginalCode() const {
172 HandleScope scope(isolate());
173 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
174 ASSERT(Debug::HasDebugInfo(shared));
175 Code* original_code = Debug::GetDebugInfo(shared)->original_code();
176 ASSERT(original_code->IsCode());
177 return original_code;
178 }
179
180
HasInterceptorGetter(JSObject * object)181 static bool HasInterceptorGetter(JSObject* object) {
182 return !object->GetNamedInterceptor()->getter()->IsUndefined();
183 }
184
185
HasInterceptorSetter(JSObject * object)186 static bool HasInterceptorSetter(JSObject* object) {
187 return !object->GetNamedInterceptor()->setter()->IsUndefined();
188 }
189
190
LookupForRead(Handle<Object> object,Handle<String> name,LookupResult * lookup)191 static void LookupForRead(Handle<Object> object,
192 Handle<String> name,
193 LookupResult* lookup) {
194 // Skip all the objects with named interceptors, but
195 // without actual getter.
196 while (true) {
197 object->Lookup(name, lookup);
198 // Besides normal conditions (property not found or it's not
199 // an interceptor), bail out if lookup is not cacheable: we won't
200 // be able to IC it anyway and regular lookup should work fine.
201 if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
202 return;
203 }
204
205 Handle<JSObject> holder(lookup->holder(), lookup->isolate());
206 if (HasInterceptorGetter(*holder)) {
207 return;
208 }
209
210 holder->LookupOwnRealNamedProperty(name, lookup);
211 if (lookup->IsFound()) {
212 ASSERT(!lookup->IsInterceptor());
213 return;
214 }
215
216 Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
217 if (proto->IsNull()) {
218 ASSERT(!lookup->IsFound());
219 return;
220 }
221
222 object = proto;
223 }
224 }
225
226
TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,Handle<String> name)227 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
228 Handle<String> name) {
229 if (!IsNameCompatibleWithMonomorphicPrototypeFailure(name)) return false;
230
231 InlineCacheHolderFlag cache_holder =
232 Code::ExtractCacheHolderFromFlags(target()->flags());
233
234 switch (cache_holder) {
235 case OWN_MAP:
236 // The stub was generated for JSObject but called for non-JSObject.
237 // IC::GetCodeCacheHolder is not applicable.
238 if (!receiver->IsJSObject()) return false;
239 break;
240 case PROTOTYPE_MAP:
241 // IC::GetCodeCacheHolder is not applicable.
242 if (receiver->GetPrototype(isolate())->IsNull()) return false;
243 break;
244 }
245
246 Handle<Map> map(
247 IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
248
249 // Decide whether the inline cache failed because of changes to the
250 // receiver itself or changes to one of its prototypes.
251 //
252 // If there are changes to the receiver itself, the map of the
253 // receiver will have changed and the current target will not be in
254 // the receiver map's code cache. Therefore, if the current target
255 // is in the receiver map's code cache, the inline cache failed due
256 // to prototype check failure.
257 int index = map->IndexInCodeCache(*name, *target());
258 if (index >= 0) {
259 map->RemoveFromCodeCache(*name, *target(), index);
260 // Handlers are stored in addition to the ICs on the map. Remove those, too.
261 TryRemoveInvalidHandlers(map, name);
262 return true;
263 }
264
265 // The stub is not in the cache. We've ruled out all other kinds of failure
266 // except for proptotype chain changes, a deprecated map, a map that's
267 // different from the one that the stub expects, elements kind changes, or a
268 // constant global property that will become mutable. Threat all those
269 // situations as prototype failures (stay monomorphic if possible).
270
271 // If the IC is shared between multiple receivers (slow dictionary mode), then
272 // the map cannot be deprecated and the stub invalidated.
273 if (cache_holder == OWN_MAP) {
274 Map* old_map = FirstTargetMap();
275 if (old_map == *map) return true;
276 if (old_map != NULL) {
277 if (old_map->is_deprecated()) return true;
278 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
279 map->elements_kind())) {
280 return true;
281 }
282 }
283 }
284
285 if (receiver->IsGlobalObject()) {
286 LookupResult lookup(isolate());
287 GlobalObject* global = GlobalObject::cast(*receiver);
288 global->LookupOwnRealNamedProperty(name, &lookup);
289 if (!lookup.IsFound()) return false;
290 PropertyCell* cell = global->GetPropertyCell(&lookup);
291 return cell->type()->IsConstant();
292 }
293
294 return false;
295 }
296
297
TryRemoveInvalidHandlers(Handle<Map> map,Handle<String> name)298 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
299 CodeHandleList handlers;
300 target()->FindHandlers(&handlers);
301 for (int i = 0; i < handlers.length(); i++) {
302 Handle<Code> handler = handlers.at(i);
303 int index = map->IndexInCodeCache(*name, *handler);
304 if (index >= 0) {
305 map->RemoveFromCodeCache(*name, *handler, index);
306 return;
307 }
308 }
309 }
310
311
IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name)312 bool IC::IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name) {
313 if (target()->is_keyed_stub()) {
314 // Determine whether the failure is due to a name failure.
315 if (!name->IsName()) return false;
316 Name* stub_name = target()->FindFirstName();
317 if (*name != stub_name) return false;
318 }
319
320 return true;
321 }
322
323
UpdateState(Handle<Object> receiver,Handle<Object> name)324 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
325 if (!name->IsString()) return;
326 if (state() != MONOMORPHIC) {
327 if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
328 TryRemoveInvalidHandlers(
329 handle(Handle<HeapObject>::cast(receiver)->map()),
330 Handle<String>::cast(name));
331 }
332 return;
333 }
334 if (receiver->IsUndefined() || receiver->IsNull()) return;
335
336 // Remove the target from the code cache if it became invalid
337 // because of changes in the prototype chain to avoid hitting it
338 // again.
339 if (TryRemoveInvalidPrototypeDependentStub(
340 receiver, Handle<String>::cast(name)) &&
341 TryMarkMonomorphicPrototypeFailure(name)) {
342 return;
343 }
344
345 // The builtins object is special. It only changes when JavaScript
346 // builtins are loaded lazily. It is important to keep inline
347 // caches for the builtins object monomorphic. Therefore, if we get
348 // an inline cache miss for the builtins object after lazily loading
349 // JavaScript builtins, we return uninitialized as the state to
350 // force the inline cache back to monomorphic state.
351 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
352 }
353
354
TypeError(const char * type,Handle<Object> object,Handle<Object> key)355 MaybeHandle<Object> IC::TypeError(const char* type,
356 Handle<Object> object,
357 Handle<Object> key) {
358 HandleScope scope(isolate());
359 Handle<Object> args[2] = { key, object };
360 Handle<Object> error = isolate()->factory()->NewTypeError(
361 type, HandleVector(args, 2));
362 return isolate()->Throw<Object>(error);
363 }
364
365
ReferenceError(const char * type,Handle<String> name)366 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<String> name) {
367 HandleScope scope(isolate());
368 Handle<Object> error = isolate()->factory()->NewReferenceError(
369 type, HandleVector(&name, 1));
370 return isolate()->Throw<Object>(error);
371 }
372
373
ComputeTypeInfoCountDelta(IC::State old_state,IC::State new_state)374 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
375 bool was_uninitialized =
376 old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
377 bool is_uninitialized =
378 new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
379 return (was_uninitialized && !is_uninitialized) ? 1 :
380 (!was_uninitialized && is_uninitialized) ? -1 : 0;
381 }
382
383
PostPatching(Address address,Code * target,Code * old_target)384 void IC::PostPatching(Address address, Code* target, Code* old_target) {
385 Isolate* isolate = target->GetHeap()->isolate();
386 Code* host = isolate->
387 inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
388 if (host->kind() != Code::FUNCTION) return;
389
390 if (FLAG_type_info_threshold > 0 &&
391 old_target->is_inline_cache_stub() &&
392 target->is_inline_cache_stub()) {
393 int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
394 target->ic_state());
395 // Call ICs don't have interesting state changes from this point
396 // of view.
397 ASSERT(target->kind() != Code::CALL_IC || delta == 0);
398
399 // Not all Code objects have TypeFeedbackInfo.
400 if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
401 TypeFeedbackInfo* info =
402 TypeFeedbackInfo::cast(host->type_feedback_info());
403 info->change_ic_with_type_info_count(delta);
404 }
405 }
406 if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
407 TypeFeedbackInfo* info =
408 TypeFeedbackInfo::cast(host->type_feedback_info());
409 info->change_own_type_change_checksum();
410 }
411 host->set_profiler_ticks(0);
412 isolate->runtime_profiler()->NotifyICChanged();
413 // TODO(2029): When an optimized function is patched, it would
414 // be nice to propagate the corresponding type information to its
415 // unoptimized version for the benefit of later inlining.
416 }
417
418
RegisterWeakMapDependency(Handle<Code> stub)419 void IC::RegisterWeakMapDependency(Handle<Code> stub) {
420 if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
421 stub->CanBeWeakStub()) {
422 ASSERT(!stub->is_weak_stub());
423 MapHandleList maps;
424 stub->FindAllMaps(&maps);
425 if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
426 Map::AddDependentIC(maps.at(0), stub);
427 stub->mark_as_weak_stub();
428 if (FLAG_enable_ool_constant_pool) {
429 stub->constant_pool()->set_weak_object_state(
430 ConstantPoolArray::WEAK_OBJECTS_IN_IC);
431 }
432 }
433 }
434 }
435
436
InvalidateMaps(Code * stub)437 void IC::InvalidateMaps(Code* stub) {
438 ASSERT(stub->is_weak_stub());
439 stub->mark_as_invalidated_weak_stub();
440 Isolate* isolate = stub->GetIsolate();
441 Heap* heap = isolate->heap();
442 Object* undefined = heap->undefined_value();
443 int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
444 for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
445 RelocInfo::Mode mode = it.rinfo()->rmode();
446 if (mode == RelocInfo::EMBEDDED_OBJECT &&
447 it.rinfo()->target_object()->IsMap()) {
448 it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
449 }
450 }
451 CPU::FlushICache(stub->instruction_start(), stub->instruction_size());
452 }
453
454
Clear(Isolate * isolate,Address address,ConstantPoolArray * constant_pool)455 void IC::Clear(Isolate* isolate, Address address,
456 ConstantPoolArray* constant_pool) {
457 Code* target = GetTargetAtAddress(address, constant_pool);
458
459 // Don't clear debug break inline cache as it will remove the break point.
460 if (target->is_debug_stub()) return;
461
462 switch (target->kind()) {
463 case Code::LOAD_IC:
464 return LoadIC::Clear(isolate, address, target, constant_pool);
465 case Code::KEYED_LOAD_IC:
466 return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
467 case Code::STORE_IC:
468 return StoreIC::Clear(isolate, address, target, constant_pool);
469 case Code::KEYED_STORE_IC:
470 return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
471 case Code::CALL_IC:
472 return CallIC::Clear(isolate, address, target, constant_pool);
473 case Code::COMPARE_IC:
474 return CompareIC::Clear(isolate, address, target, constant_pool);
475 case Code::COMPARE_NIL_IC:
476 return CompareNilIC::Clear(address, target, constant_pool);
477 case Code::BINARY_OP_IC:
478 case Code::TO_BOOLEAN_IC:
479 // Clearing these is tricky and does not
480 // make any performance difference.
481 return;
482 default: UNREACHABLE();
483 }
484 }
485
486
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)487 void KeyedLoadIC::Clear(Isolate* isolate,
488 Address address,
489 Code* target,
490 ConstantPoolArray* constant_pool) {
491 if (IsCleared(target)) return;
492 // Make sure to also clear the map used in inline fast cases. If we
493 // do not clear these maps, cached code can keep objects alive
494 // through the embedded maps.
495 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
496 }
497
498
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)499 void CallIC::Clear(Isolate* isolate,
500 Address address,
501 Code* target,
502 ConstantPoolArray* constant_pool) {
503 // Currently, CallIC doesn't have state changes.
504 }
505
506
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)507 void LoadIC::Clear(Isolate* isolate,
508 Address address,
509 Code* target,
510 ConstantPoolArray* constant_pool) {
511 if (IsCleared(target)) return;
512 Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
513 Code::LOAD_IC, target->extra_ic_state());
514 SetTargetAtAddress(address, code, constant_pool);
515 }
516
517
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)518 void StoreIC::Clear(Isolate* isolate,
519 Address address,
520 Code* target,
521 ConstantPoolArray* constant_pool) {
522 if (IsCleared(target)) return;
523 Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
524 Code::STORE_IC, target->extra_ic_state());
525 SetTargetAtAddress(address, code, constant_pool);
526 }
527
528
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)529 void KeyedStoreIC::Clear(Isolate* isolate,
530 Address address,
531 Code* target,
532 ConstantPoolArray* constant_pool) {
533 if (IsCleared(target)) return;
534 SetTargetAtAddress(address,
535 *pre_monomorphic_stub(
536 isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
537 constant_pool);
538 }
539
540
Clear(Isolate * isolate,Address address,Code * target,ConstantPoolArray * constant_pool)541 void CompareIC::Clear(Isolate* isolate,
542 Address address,
543 Code* target,
544 ConstantPoolArray* constant_pool) {
545 ASSERT(target->major_key() == CodeStub::CompareIC);
546 CompareIC::State handler_state;
547 Token::Value op;
548 ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
549 &handler_state, &op);
550 // Only clear CompareICs that can retain objects.
551 if (handler_state != KNOWN_OBJECT) return;
552 SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
553 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
554 }
555
556
megamorphic_stub()557 Handle<Code> KeyedLoadIC::megamorphic_stub() {
558 if (FLAG_compiled_keyed_generic_loads) {
559 return KeyedLoadGenericElementStub(isolate()).GetCode();
560 } else {
561 return isolate()->builtins()->KeyedLoadIC_Generic();
562 }
563 }
564
generic_stub() const565 Handle<Code> KeyedLoadIC::generic_stub() const {
566 if (FLAG_compiled_keyed_generic_loads) {
567 return KeyedLoadGenericElementStub(isolate()).GetCode();
568 } else {
569 return isolate()->builtins()->KeyedLoadIC_Generic();
570 }
571 }
572
573
MigrateDeprecated(Handle<Object> object)574 static bool MigrateDeprecated(Handle<Object> object) {
575 if (!object->IsJSObject()) return false;
576 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
577 if (!receiver->map()->is_deprecated()) return false;
578 JSObject::MigrateInstance(Handle<JSObject>::cast(object));
579 return true;
580 }
581
582
Load(Handle<Object> object,Handle<String> name)583 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<String> name) {
584 // If the object is undefined or null it's illegal to try to get any
585 // of its properties; throw a TypeError in that case.
586 if (object->IsUndefined() || object->IsNull()) {
587 return TypeError("non_object_property_load", object, name);
588 }
589
590 if (FLAG_use_ic) {
591 // Use specialized code for getting prototype of functions.
592 if (object->IsJSFunction() &&
593 String::Equals(isolate()->factory()->prototype_string(), name) &&
594 Handle<JSFunction>::cast(object)->should_have_prototype()) {
595 Handle<Code> stub;
596 if (state() == UNINITIALIZED) {
597 stub = pre_monomorphic_stub();
598 } else if (state() == PREMONOMORPHIC) {
599 FunctionPrototypeStub function_prototype_stub(isolate(), kind());
600 stub = function_prototype_stub.GetCode();
601 } else if (state() != MEGAMORPHIC) {
602 ASSERT(state() != GENERIC);
603 stub = megamorphic_stub();
604 }
605 if (!stub.is_null()) {
606 set_target(*stub);
607 if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
608 }
609 return Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
610 }
611 }
612
613 // Check if the name is trivially convertible to an index and get
614 // the element or char if so.
615 uint32_t index;
616 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
617 // Rewrite to the generic keyed load stub.
618 if (FLAG_use_ic) set_target(*generic_stub());
619 Handle<Object> result;
620 ASSIGN_RETURN_ON_EXCEPTION(
621 isolate(),
622 result,
623 Runtime::GetElementOrCharAt(isolate(), object, index),
624 Object);
625 return result;
626 }
627
628 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
629
630 // Named lookup in the object.
631 LookupResult lookup(isolate());
632 LookupForRead(object, name, &lookup);
633
634 // If we did not find a property, check if we need to throw an exception.
635 if (!lookup.IsFound()) {
636 if (IsUndeclaredGlobal(object)) {
637 return ReferenceError("not_defined", name);
638 }
639 LOG(isolate(), SuspectReadEvent(*name, *object));
640 }
641
642 // Update inline cache and stub cache.
643 if (use_ic) UpdateCaches(&lookup, object, name);
644
645 // Get the property.
646 LookupIterator it(object, name);
647 Handle<Object> result;
648 ASSIGN_RETURN_ON_EXCEPTION(
649 isolate(), result, Object::GetProperty(&it), Object);
650 // If the property is not present, check if we need to throw an exception.
651 if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
652 !it.IsFound() && IsUndeclaredGlobal(object)) {
653 return ReferenceError("not_defined", name);
654 }
655
656 return result;
657 }
658
659
AddOneReceiverMapIfMissing(MapHandleList * receiver_maps,Handle<Map> new_receiver_map)660 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
661 Handle<Map> new_receiver_map) {
662 ASSERT(!new_receiver_map.is_null());
663 for (int current = 0; current < receiver_maps->length(); ++current) {
664 if (!receiver_maps->at(current).is_null() &&
665 receiver_maps->at(current).is_identical_to(new_receiver_map)) {
666 return false;
667 }
668 }
669 receiver_maps->Add(new_receiver_map);
670 return true;
671 }
672
673
UpdatePolymorphicIC(Handle<HeapType> type,Handle<String> name,Handle<Code> code)674 bool IC::UpdatePolymorphicIC(Handle<HeapType> type,
675 Handle<String> name,
676 Handle<Code> code) {
677 if (!code->is_handler()) return false;
678 TypeHandleList types;
679 CodeHandleList handlers;
680
681 TargetTypes(&types);
682 int number_of_types = types.length();
683 int deprecated_types = 0;
684 int handler_to_overwrite = -1;
685
686 for (int i = 0; i < number_of_types; i++) {
687 Handle<HeapType> current_type = types.at(i);
688 if (current_type->IsClass() &&
689 current_type->AsClass()->Map()->is_deprecated()) {
690 // Filter out deprecated maps to ensure their instances get migrated.
691 ++deprecated_types;
692 } else if (type->NowIs(current_type)) {
693 // If the receiver type is already in the polymorphic IC, this indicates
694 // there was a prototoype chain failure. In that case, just overwrite the
695 // handler.
696 handler_to_overwrite = i;
697 } else if (handler_to_overwrite == -1 &&
698 current_type->IsClass() &&
699 type->IsClass() &&
700 IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
701 *type->AsClass()->Map())) {
702 handler_to_overwrite = i;
703 }
704 }
705
706 int number_of_valid_types =
707 number_of_types - deprecated_types - (handler_to_overwrite != -1);
708
709 if (number_of_valid_types >= 4) return false;
710 if (number_of_types == 0) return false;
711 if (!target()->FindHandlers(&handlers, types.length())) return false;
712
713 number_of_valid_types++;
714 if (handler_to_overwrite >= 0) {
715 handlers.Set(handler_to_overwrite, code);
716 if (!type->NowIs(types.at(handler_to_overwrite))) {
717 types.Set(handler_to_overwrite, type);
718 }
719 } else {
720 types.Add(type);
721 handlers.Add(code);
722 }
723
724 Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
725 kind(), &types, &handlers, number_of_valid_types, name, extra_ic_state());
726 set_target(*ic);
727 return true;
728 }
729
730
CurrentTypeOf(Handle<Object> object,Isolate * isolate)731 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
732 return object->IsJSGlobalObject()
733 ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
734 : HeapType::NowOf(object, isolate);
735 }
736
737
TypeToMap(HeapType * type,Isolate * isolate)738 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
739 if (type->Is(HeapType::Number()))
740 return isolate->factory()->heap_number_map();
741 if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
742 if (type->IsConstant()) {
743 return handle(
744 Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
745 }
746 ASSERT(type->IsClass());
747 return type->AsClass()->Map();
748 }
749
750
751 template <class T>
MapToType(Handle<Map> map,typename T::Region * region)752 typename T::TypeHandle IC::MapToType(Handle<Map> map,
753 typename T::Region* region) {
754 if (map->instance_type() == HEAP_NUMBER_TYPE) {
755 return T::Number(region);
756 } else if (map->instance_type() == ODDBALL_TYPE) {
757 // The only oddballs that can be recorded in ICs are booleans.
758 return T::Boolean(region);
759 } else {
760 return T::Class(map, region);
761 }
762 }
763
764
765 template
766 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
767
768
769 template
770 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region);
771
772
UpdateMonomorphicIC(Handle<HeapType> type,Handle<Code> handler,Handle<String> name)773 void IC::UpdateMonomorphicIC(Handle<HeapType> type,
774 Handle<Code> handler,
775 Handle<String> name) {
776 if (!handler->is_handler()) return set_target(*handler);
777 Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
778 kind(), name, type, handler, extra_ic_state());
779 set_target(*ic);
780 }
781
782
CopyICToMegamorphicCache(Handle<String> name)783 void IC::CopyICToMegamorphicCache(Handle<String> name) {
784 TypeHandleList types;
785 CodeHandleList handlers;
786 TargetTypes(&types);
787 if (!target()->FindHandlers(&handlers, types.length())) return;
788 for (int i = 0; i < types.length(); i++) {
789 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
790 }
791 }
792
793
IsTransitionOfMonomorphicTarget(Map * source_map,Map * target_map)794 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
795 if (source_map == NULL) return true;
796 if (target_map == NULL) return false;
797 ElementsKind target_elements_kind = target_map->elements_kind();
798 bool more_general_transition =
799 IsMoreGeneralElementsKindTransition(
800 source_map->elements_kind(), target_elements_kind);
801 Map* transitioned_map = more_general_transition
802 ? source_map->LookupElementsTransitionMap(target_elements_kind)
803 : NULL;
804
805 return transitioned_map == target_map;
806 }
807
808
PatchCache(Handle<HeapType> type,Handle<String> name,Handle<Code> code)809 void IC::PatchCache(Handle<HeapType> type,
810 Handle<String> name,
811 Handle<Code> code) {
812 switch (state()) {
813 case UNINITIALIZED:
814 case PREMONOMORPHIC:
815 case MONOMORPHIC_PROTOTYPE_FAILURE:
816 UpdateMonomorphicIC(type, code, name);
817 break;
818 case MONOMORPHIC: // Fall through.
819 case POLYMORPHIC:
820 if (!target()->is_keyed_stub()) {
821 if (UpdatePolymorphicIC(type, name, code)) break;
822 CopyICToMegamorphicCache(name);
823 }
824 set_target(*megamorphic_stub());
825 // Fall through.
826 case MEGAMORPHIC:
827 UpdateMegamorphicCache(*type, *name, *code);
828 break;
829 case DEBUG_STUB:
830 break;
831 case GENERIC:
832 UNREACHABLE();
833 break;
834 }
835 }
836
837
initialize_stub(Isolate * isolate,ExtraICState extra_state)838 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
839 ExtraICState extra_state) {
840 return isolate->stub_cache()->ComputeLoad(UNINITIALIZED, extra_state);
841 }
842
843
pre_monomorphic_stub(Isolate * isolate,ExtraICState extra_state)844 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
845 ExtraICState extra_state) {
846 return isolate->stub_cache()->ComputeLoad(PREMONOMORPHIC, extra_state);
847 }
848
849
megamorphic_stub()850 Handle<Code> LoadIC::megamorphic_stub() {
851 return isolate()->stub_cache()->ComputeLoad(MEGAMORPHIC, extra_ic_state());
852 }
853
854
SimpleFieldLoad(FieldIndex index)855 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
856 if (kind() == Code::LOAD_IC) {
857 LoadFieldStub stub(isolate(), index);
858 return stub.GetCode();
859 } else {
860 KeyedLoadFieldStub stub(isolate(), index);
861 return stub.GetCode();
862 }
863 }
864
865
UpdateCaches(LookupResult * lookup,Handle<Object> object,Handle<String> name)866 void LoadIC::UpdateCaches(LookupResult* lookup,
867 Handle<Object> object,
868 Handle<String> name) {
869 if (state() == UNINITIALIZED) {
870 // This is the first time we execute this inline cache.
871 // Set the target to the pre monomorphic stub to delay
872 // setting the monomorphic state.
873 set_target(*pre_monomorphic_stub());
874 TRACE_IC("LoadIC", name);
875 return;
876 }
877
878 Handle<HeapType> type = CurrentTypeOf(object, isolate());
879 Handle<Code> code;
880 if (!lookup->IsCacheable()) {
881 // Bail out if the result is not cacheable.
882 code = slow_stub();
883 } else if (!lookup->IsProperty()) {
884 if (kind() == Code::LOAD_IC) {
885 code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
886 } else {
887 code = slow_stub();
888 }
889 } else {
890 code = ComputeHandler(lookup, object, name);
891 }
892
893 PatchCache(type, name, code);
894 TRACE_IC("LoadIC", name);
895 }
896
897
UpdateMegamorphicCache(HeapType * type,Name * name,Code * code)898 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
899 // Cache code holding map should be consistent with
900 // GenerateMonomorphicCacheProbe.
901 Map* map = *TypeToMap(type, isolate());
902 isolate()->stub_cache()->Set(name, map, code);
903 }
904
905
ComputeHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value)906 Handle<Code> IC::ComputeHandler(LookupResult* lookup,
907 Handle<Object> object,
908 Handle<String> name,
909 Handle<Object> value) {
910 InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
911 Handle<HeapObject> stub_holder(GetCodeCacheHolder(
912 isolate(), *object, cache_holder));
913
914 Handle<Code> code = isolate()->stub_cache()->FindHandler(
915 name, handle(stub_holder->map()), kind(), cache_holder,
916 lookup->holder()->HasFastProperties() ? Code::FAST : Code::NORMAL);
917 if (!code.is_null()) {
918 return code;
919 }
920
921 code = CompileHandler(lookup, object, name, value, cache_holder);
922 ASSERT(code->is_handler());
923
924 if (code->type() != Code::NORMAL) {
925 HeapObject::UpdateMapCodeCache(stub_holder, name, code);
926 }
927
928 return code;
929 }
930
931
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> unused,InlineCacheHolderFlag cache_holder)932 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
933 Handle<Object> object,
934 Handle<String> name,
935 Handle<Object> unused,
936 InlineCacheHolderFlag cache_holder) {
937 if (object->IsString() &&
938 String::Equals(isolate()->factory()->length_string(), name)) {
939 FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
940 return SimpleFieldLoad(index);
941 }
942
943 if (object->IsStringWrapper() &&
944 String::Equals(isolate()->factory()->length_string(), name)) {
945 if (kind() == Code::LOAD_IC) {
946 StringLengthStub string_length_stub(isolate());
947 return string_length_stub.GetCode();
948 } else {
949 KeyedStringLengthStub string_length_stub(isolate());
950 return string_length_stub.GetCode();
951 }
952 }
953
954 Handle<HeapType> type = CurrentTypeOf(object, isolate());
955 Handle<JSObject> holder(lookup->holder());
956 LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
957
958 switch (lookup->type()) {
959 case FIELD: {
960 FieldIndex field = lookup->GetFieldIndex();
961 if (object.is_identical_to(holder)) {
962 return SimpleFieldLoad(field);
963 }
964 return compiler.CompileLoadField(
965 type, holder, name, field, lookup->representation());
966 }
967 case CONSTANT: {
968 Handle<Object> constant(lookup->GetConstant(), isolate());
969 // TODO(2803): Don't compute a stub for cons strings because they cannot
970 // be embedded into code.
971 if (constant->IsConsString()) break;
972 return compiler.CompileLoadConstant(type, holder, name, constant);
973 }
974 case NORMAL:
975 if (kind() != Code::LOAD_IC) break;
976 if (holder->IsGlobalObject()) {
977 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
978 Handle<PropertyCell> cell(
979 global->GetPropertyCell(lookup), isolate());
980 Handle<Code> code = compiler.CompileLoadGlobal(
981 type, global, cell, name, lookup->IsDontDelete());
982 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
983 Handle<HeapObject> stub_holder(GetCodeCacheHolder(
984 isolate(), *object, cache_holder));
985 HeapObject::UpdateMapCodeCache(stub_holder, name, code);
986 return code;
987 }
988 // There is only one shared stub for loading normalized
989 // properties. It does not traverse the prototype chain, so the
990 // property must be found in the object for the stub to be
991 // applicable.
992 if (!object.is_identical_to(holder)) break;
993 return isolate()->builtins()->LoadIC_Normal();
994 case CALLBACKS: {
995 // Use simple field loads for some well-known callback properties.
996 if (object->IsJSObject()) {
997 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
998 Handle<Map> map(receiver->map());
999 Handle<HeapType> type = IC::MapToType<HeapType>(
1000 handle(receiver->map()), isolate());
1001 int object_offset;
1002 if (Accessors::IsJSObjectFieldAccessor<HeapType>(
1003 type, name, &object_offset)) {
1004 FieldIndex index = FieldIndex::ForInObjectOffset(
1005 object_offset, receiver->map());
1006 return SimpleFieldLoad(index);
1007 }
1008 }
1009
1010 Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1011 if (callback->IsExecutableAccessorInfo()) {
1012 Handle<ExecutableAccessorInfo> info =
1013 Handle<ExecutableAccessorInfo>::cast(callback);
1014 if (v8::ToCData<Address>(info->getter()) == 0) break;
1015 if (!info->IsCompatibleReceiver(*object)) break;
1016 return compiler.CompileLoadCallback(type, holder, name, info);
1017 } else if (callback->IsAccessorPair()) {
1018 Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
1019 isolate());
1020 if (!getter->IsJSFunction()) break;
1021 if (holder->IsGlobalObject()) break;
1022 if (!holder->HasFastProperties()) break;
1023 Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1024 if (!object->IsJSObject() &&
1025 !function->IsBuiltin() &&
1026 function->shared()->strict_mode() == SLOPPY) {
1027 // Calling sloppy non-builtins with a value as the receiver
1028 // requires boxing.
1029 break;
1030 }
1031 CallOptimization call_optimization(function);
1032 if (call_optimization.is_simple_api_call() &&
1033 call_optimization.IsCompatibleReceiver(object, holder)) {
1034 return compiler.CompileLoadCallback(
1035 type, holder, name, call_optimization);
1036 }
1037 return compiler.CompileLoadViaGetter(type, holder, name, function);
1038 }
1039 // TODO(dcarney): Handle correctly.
1040 ASSERT(callback->IsDeclaredAccessorInfo());
1041 break;
1042 }
1043 case INTERCEPTOR:
1044 ASSERT(HasInterceptorGetter(*holder));
1045 return compiler.CompileLoadInterceptor(type, holder, name);
1046 default:
1047 break;
1048 }
1049
1050 return slow_stub();
1051 }
1052
1053
TryConvertKey(Handle<Object> key,Isolate * isolate)1054 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1055 // This helper implements a few common fast cases for converting
1056 // non-smi keys of keyed loads/stores to a smi or a string.
1057 if (key->IsHeapNumber()) {
1058 double value = Handle<HeapNumber>::cast(key)->value();
1059 if (std::isnan(value)) {
1060 key = isolate->factory()->nan_string();
1061 } else {
1062 int int_value = FastD2I(value);
1063 if (value == int_value && Smi::IsValid(int_value)) {
1064 key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1065 }
1066 }
1067 } else if (key->IsUndefined()) {
1068 key = isolate->factory()->undefined_string();
1069 }
1070 return key;
1071 }
1072
1073
LoadElementStub(Handle<JSObject> receiver)1074 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1075 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1076 // via megamorphic stubs, since they don't have a map in their relocation info
1077 // and so the stubs can't be harvested for the object needed for a map check.
1078 if (target()->type() != Code::NORMAL) {
1079 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1080 return generic_stub();
1081 }
1082
1083 Handle<Map> receiver_map(receiver->map(), isolate());
1084 MapHandleList target_receiver_maps;
1085 if (target().is_identical_to(string_stub())) {
1086 target_receiver_maps.Add(isolate()->factory()->string_map());
1087 } else {
1088 TargetMaps(&target_receiver_maps);
1089 }
1090 if (target_receiver_maps.length() == 0) {
1091 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1092 }
1093
1094 // The first time a receiver is seen that is a transitioned version of the
1095 // previous monomorphic receiver type, assume the new ElementsKind is the
1096 // monomorphic type. This benefits global arrays that only transition
1097 // once, and all call sites accessing them are faster if they remain
1098 // monomorphic. If this optimistic assumption is not true, the IC will
1099 // miss again and it will become polymorphic and support both the
1100 // untransitioned and transitioned maps.
1101 if (state() == MONOMORPHIC &&
1102 IsMoreGeneralElementsKindTransition(
1103 target_receiver_maps.at(0)->elements_kind(),
1104 receiver->GetElementsKind())) {
1105 return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1106 }
1107
1108 ASSERT(state() != GENERIC);
1109
1110 // Determine the list of receiver maps that this call site has seen,
1111 // adding the map that was just encountered.
1112 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1113 // If the miss wasn't due to an unseen map, a polymorphic stub
1114 // won't help, use the generic stub.
1115 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1116 return generic_stub();
1117 }
1118
1119 // If the maximum number of receiver maps has been exceeded, use the generic
1120 // version of the IC.
1121 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1122 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1123 return generic_stub();
1124 }
1125
1126 return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
1127 &target_receiver_maps);
1128 }
1129
1130
Load(Handle<Object> object,Handle<Object> key)1131 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
1132 Handle<Object> key) {
1133 if (MigrateDeprecated(object)) {
1134 Handle<Object> result;
1135 ASSIGN_RETURN_ON_EXCEPTION(
1136 isolate(),
1137 result,
1138 Runtime::GetObjectProperty(isolate(), object, key),
1139 Object);
1140 return result;
1141 }
1142
1143 Handle<Object> load_handle;
1144 Handle<Code> stub = generic_stub();
1145
1146 // Check for non-string values that can be converted into an
1147 // internalized string directly or is representable as a smi.
1148 key = TryConvertKey(key, isolate());
1149
1150 if (key->IsInternalizedString()) {
1151 ASSIGN_RETURN_ON_EXCEPTION(
1152 isolate(),
1153 load_handle,
1154 LoadIC::Load(object, Handle<String>::cast(key)),
1155 Object);
1156 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1157 if (object->IsString() && key->IsNumber()) {
1158 if (state() == UNINITIALIZED) stub = string_stub();
1159 } else if (object->IsJSObject()) {
1160 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1161 if (receiver->elements()->map() ==
1162 isolate()->heap()->sloppy_arguments_elements_map()) {
1163 stub = sloppy_arguments_stub();
1164 } else if (receiver->HasIndexedInterceptor()) {
1165 stub = indexed_interceptor_stub();
1166 } else if (!Object::ToSmi(isolate(), key).is_null() &&
1167 (!target().is_identical_to(sloppy_arguments_stub()))) {
1168 stub = LoadElementStub(receiver);
1169 }
1170 }
1171 }
1172
1173 if (!is_target_set()) {
1174 Code* generic = *generic_stub();
1175 if (*stub == generic) {
1176 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1177 }
1178 set_target(*stub);
1179 TRACE_IC("LoadIC", key);
1180 }
1181
1182 if (!load_handle.is_null()) return load_handle;
1183 Handle<Object> result;
1184 ASSIGN_RETURN_ON_EXCEPTION(
1185 isolate(),
1186 result,
1187 Runtime::GetObjectProperty(isolate(), object, key),
1188 Object);
1189 return result;
1190 }
1191
1192
LookupForWrite(Handle<JSObject> receiver,Handle<String> name,Handle<Object> value,LookupResult * lookup,IC * ic)1193 static bool LookupForWrite(Handle<JSObject> receiver,
1194 Handle<String> name,
1195 Handle<Object> value,
1196 LookupResult* lookup,
1197 IC* ic) {
1198 Handle<JSObject> holder = receiver;
1199 receiver->Lookup(name, lookup);
1200 if (lookup->IsFound()) {
1201 if (lookup->IsInterceptor() && !HasInterceptorSetter(lookup->holder())) {
1202 receiver->LookupOwnRealNamedProperty(name, lookup);
1203 if (!lookup->IsFound()) return false;
1204 }
1205
1206 if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
1207 if (lookup->holder() == *receiver) return lookup->CanHoldValue(value);
1208 if (lookup->IsPropertyCallbacks()) return true;
1209 // JSGlobalProxy either stores on the global object in the prototype, or
1210 // goes into the runtime if access checks are needed, so this is always
1211 // safe.
1212 if (receiver->IsJSGlobalProxy()) {
1213 return lookup->holder() == receiver->GetPrototype();
1214 }
1215 // Currently normal holders in the prototype chain are not supported. They
1216 // would require a runtime positive lookup and verification that the details
1217 // have not changed.
1218 if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
1219 holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
1220 }
1221
1222 // While normally LookupTransition gets passed the receiver, in this case we
1223 // pass the holder of the property that we overwrite. This keeps the holder in
1224 // the LookupResult intact so we can later use it to generate a prototype
1225 // chain check. This avoids a double lookup, but requires us to pass in the
1226 // receiver when trying to fetch extra information from the transition.
1227 receiver->map()->LookupTransition(*holder, *name, lookup);
1228 if (!lookup->IsTransition() || lookup->IsReadOnly()) return false;
1229
1230 // If the value that's being stored does not fit in the field that the
1231 // instance would transition to, create a new transition that fits the value.
1232 // This has to be done before generating the IC, since that IC will embed the
1233 // transition target.
1234 // Ensure the instance and its map were migrated before trying to update the
1235 // transition target.
1236 ASSERT(!receiver->map()->is_deprecated());
1237 if (!lookup->CanHoldValue(value)) {
1238 Handle<Map> target(lookup->GetTransitionTarget());
1239 Representation field_representation = value->OptimalRepresentation();
1240 Handle<HeapType> field_type = value->OptimalType(
1241 lookup->isolate(), field_representation);
1242 Map::GeneralizeRepresentation(
1243 target, target->LastAdded(),
1244 field_representation, field_type, FORCE_FIELD);
1245 // Lookup the transition again since the transition tree may have changed
1246 // entirely by the migration above.
1247 receiver->map()->LookupTransition(*holder, *name, lookup);
1248 if (!lookup->IsTransition()) return false;
1249 return ic->TryMarkMonomorphicPrototypeFailure(name);
1250 }
1251
1252 return true;
1253 }
1254
1255
Store(Handle<Object> object,Handle<String> name,Handle<Object> value,JSReceiver::StoreFromKeyed store_mode)1256 MaybeHandle<Object> StoreIC::Store(Handle<Object> object,
1257 Handle<String> name,
1258 Handle<Object> value,
1259 JSReceiver::StoreFromKeyed store_mode) {
1260 if (MigrateDeprecated(object) || object->IsJSProxy()) {
1261 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
1262 Handle<Object> result;
1263 ASSIGN_RETURN_ON_EXCEPTION(
1264 isolate(),
1265 result,
1266 JSReceiver::SetProperty(receiver, name, value, NONE, strict_mode()),
1267 Object);
1268 return result;
1269 }
1270
1271 // If the object is undefined or null it's illegal to try to set any
1272 // properties on it; throw a TypeError in that case.
1273 if (object->IsUndefined() || object->IsNull()) {
1274 return TypeError("non_object_property_store", object, name);
1275 }
1276
1277 // The length property of string values is read-only. Throw in strict mode.
1278 if (strict_mode() == STRICT && object->IsString() &&
1279 String::Equals(isolate()->factory()->length_string(), name)) {
1280 return TypeError("strict_read_only_property", object, name);
1281 }
1282
1283 // Ignore other stores where the receiver is not a JSObject.
1284 // TODO(1475): Must check prototype chains of object wrappers.
1285 if (!object->IsJSObject()) return value;
1286
1287 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1288
1289 // Check if the given name is an array index.
1290 uint32_t index;
1291 if (name->AsArrayIndex(&index)) {
1292 Handle<Object> result;
1293 ASSIGN_RETURN_ON_EXCEPTION(
1294 isolate(),
1295 result,
1296 JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
1297 Object);
1298 return value;
1299 }
1300
1301 // Observed objects are always modified through the runtime.
1302 if (receiver->map()->is_observed()) {
1303 Handle<Object> result;
1304 ASSIGN_RETURN_ON_EXCEPTION(
1305 isolate(),
1306 result,
1307 JSReceiver::SetProperty(
1308 receiver, name, value, NONE, strict_mode(), store_mode),
1309 Object);
1310 return result;
1311 }
1312
1313 LookupResult lookup(isolate());
1314 bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
1315 if (!can_store &&
1316 strict_mode() == STRICT &&
1317 !(lookup.IsProperty() && lookup.IsReadOnly()) &&
1318 object->IsGlobalObject()) {
1319 // Strict mode doesn't allow setting non-existent global property.
1320 return ReferenceError("not_defined", name);
1321 }
1322 if (FLAG_use_ic) {
1323 if (state() == UNINITIALIZED) {
1324 Handle<Code> stub = pre_monomorphic_stub();
1325 set_target(*stub);
1326 TRACE_IC("StoreIC", name);
1327 } else if (can_store) {
1328 UpdateCaches(&lookup, receiver, name, value);
1329 } else if (lookup.IsNormal() ||
1330 (lookup.IsField() && lookup.CanHoldValue(value))) {
1331 Handle<Code> stub = generic_stub();
1332 set_target(*stub);
1333 }
1334 }
1335
1336 // Set the property.
1337 Handle<Object> result;
1338 ASSIGN_RETURN_ON_EXCEPTION(
1339 isolate(),
1340 result,
1341 JSReceiver::SetProperty(
1342 receiver, name, value, NONE, strict_mode(), store_mode),
1343 Object);
1344 return result;
1345 }
1346
1347
Print(StringStream * stream) const1348 void CallIC::State::Print(StringStream* stream) const {
1349 stream->Add("(args(%d), ",
1350 argc_);
1351 stream->Add("%s, ",
1352 call_type_ == CallIC::METHOD ? "METHOD" : "FUNCTION");
1353 }
1354
1355
initialize_stub(Isolate * isolate,int argc,CallType call_type)1356 Handle<Code> CallIC::initialize_stub(Isolate* isolate,
1357 int argc,
1358 CallType call_type) {
1359 CallICStub stub(isolate, State(argc, call_type));
1360 Handle<Code> code = stub.GetCode();
1361 return code;
1362 }
1363
1364
initialize_stub(Isolate * isolate,StrictMode strict_mode)1365 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
1366 StrictMode strict_mode) {
1367 ExtraICState extra_state = ComputeExtraICState(strict_mode);
1368 Handle<Code> ic = isolate->stub_cache()->ComputeStore(
1369 UNINITIALIZED, extra_state);
1370 return ic;
1371 }
1372
1373
megamorphic_stub()1374 Handle<Code> StoreIC::megamorphic_stub() {
1375 return isolate()->stub_cache()->ComputeStore(MEGAMORPHIC, extra_ic_state());
1376 }
1377
1378
generic_stub() const1379 Handle<Code> StoreIC::generic_stub() const {
1380 return isolate()->stub_cache()->ComputeStore(GENERIC, extra_ic_state());
1381 }
1382
1383
pre_monomorphic_stub(Isolate * isolate,StrictMode strict_mode)1384 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
1385 StrictMode strict_mode) {
1386 ExtraICState state = ComputeExtraICState(strict_mode);
1387 return isolate->stub_cache()->ComputeStore(PREMONOMORPHIC, state);
1388 }
1389
1390
UpdateCaches(LookupResult * lookup,Handle<JSObject> receiver,Handle<String> name,Handle<Object> value)1391 void StoreIC::UpdateCaches(LookupResult* lookup,
1392 Handle<JSObject> receiver,
1393 Handle<String> name,
1394 Handle<Object> value) {
1395 ASSERT(lookup->IsFound());
1396
1397 // These are not cacheable, so we never see such LookupResults here.
1398 ASSERT(!lookup->IsHandler());
1399
1400 Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
1401
1402 PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
1403 TRACE_IC("StoreIC", name);
1404 }
1405
1406
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value,InlineCacheHolderFlag cache_holder)1407 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
1408 Handle<Object> object,
1409 Handle<String> name,
1410 Handle<Object> value,
1411 InlineCacheHolderFlag cache_holder) {
1412 if (object->IsAccessCheckNeeded()) return slow_stub();
1413 ASSERT(cache_holder == OWN_MAP);
1414 // This is currently guaranteed by checks in StoreIC::Store.
1415 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1416
1417 Handle<JSObject> holder(lookup->holder());
1418 // Handlers do not use strict mode.
1419 StoreStubCompiler compiler(isolate(), SLOPPY, kind());
1420 if (lookup->IsTransition()) {
1421 // Explicitly pass in the receiver map since LookupForWrite may have
1422 // stored something else than the receiver in the holder.
1423 Handle<Map> transition(lookup->GetTransitionTarget());
1424 PropertyDetails details = lookup->GetPropertyDetails();
1425
1426 if (details.type() != CALLBACKS && details.attributes() == NONE) {
1427 return compiler.CompileStoreTransition(
1428 receiver, lookup, transition, name);
1429 }
1430 } else {
1431 switch (lookup->type()) {
1432 case FIELD:
1433 return compiler.CompileStoreField(receiver, lookup, name);
1434 case NORMAL:
1435 if (kind() == Code::KEYED_STORE_IC) break;
1436 if (receiver->IsJSGlobalProxy() || receiver->IsGlobalObject()) {
1437 // The stub generated for the global object picks the value directly
1438 // from the property cell. So the property must be directly on the
1439 // global object.
1440 Handle<GlobalObject> global = receiver->IsJSGlobalProxy()
1441 ? handle(GlobalObject::cast(receiver->GetPrototype()))
1442 : Handle<GlobalObject>::cast(receiver);
1443 Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
1444 Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
1445 StoreGlobalStub stub(
1446 isolate(), union_type->IsConstant(), receiver->IsJSGlobalProxy());
1447 Handle<Code> code = stub.GetCodeCopyFromTemplate(global, cell);
1448 // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1449 HeapObject::UpdateMapCodeCache(receiver, name, code);
1450 return code;
1451 }
1452 ASSERT(holder.is_identical_to(receiver));
1453 return isolate()->builtins()->StoreIC_Normal();
1454 case CALLBACKS: {
1455 Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1456 if (callback->IsExecutableAccessorInfo()) {
1457 Handle<ExecutableAccessorInfo> info =
1458 Handle<ExecutableAccessorInfo>::cast(callback);
1459 if (v8::ToCData<Address>(info->setter()) == 0) break;
1460 if (!holder->HasFastProperties()) break;
1461 if (!info->IsCompatibleReceiver(*receiver)) break;
1462 return compiler.CompileStoreCallback(receiver, holder, name, info);
1463 } else if (callback->IsAccessorPair()) {
1464 Handle<Object> setter(
1465 Handle<AccessorPair>::cast(callback)->setter(), isolate());
1466 if (!setter->IsJSFunction()) break;
1467 if (holder->IsGlobalObject()) break;
1468 if (!holder->HasFastProperties()) break;
1469 Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1470 CallOptimization call_optimization(function);
1471 if (call_optimization.is_simple_api_call() &&
1472 call_optimization.IsCompatibleReceiver(receiver, holder)) {
1473 return compiler.CompileStoreCallback(
1474 receiver, holder, name, call_optimization);
1475 }
1476 return compiler.CompileStoreViaSetter(
1477 receiver, holder, name, Handle<JSFunction>::cast(setter));
1478 }
1479 // TODO(dcarney): Handle correctly.
1480 ASSERT(callback->IsDeclaredAccessorInfo());
1481 break;
1482 }
1483 case INTERCEPTOR:
1484 if (kind() == Code::KEYED_STORE_IC) break;
1485 ASSERT(HasInterceptorSetter(*holder));
1486 return compiler.CompileStoreInterceptor(receiver, name);
1487 case CONSTANT:
1488 break;
1489 case NONEXISTENT:
1490 case HANDLER:
1491 UNREACHABLE();
1492 break;
1493 }
1494 }
1495 return slow_stub();
1496 }
1497
1498
StoreElementStub(Handle<JSObject> receiver,KeyedAccessStoreMode store_mode)1499 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1500 KeyedAccessStoreMode store_mode) {
1501 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1502 // via megamorphic stubs, since they don't have a map in their relocation info
1503 // and so the stubs can't be harvested for the object needed for a map check.
1504 if (target()->type() != Code::NORMAL) {
1505 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1506 return generic_stub();
1507 }
1508
1509 Handle<Map> receiver_map(receiver->map(), isolate());
1510 MapHandleList target_receiver_maps;
1511 TargetMaps(&target_receiver_maps);
1512 if (target_receiver_maps.length() == 0) {
1513 Handle<Map> monomorphic_map =
1514 ComputeTransitionedMap(receiver_map, store_mode);
1515 store_mode = GetNonTransitioningStoreMode(store_mode);
1516 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1517 monomorphic_map, strict_mode(), store_mode);
1518 }
1519
1520 // There are several special cases where an IC that is MONOMORPHIC can still
1521 // transition to a different GetNonTransitioningStoreMode IC that handles a
1522 // superset of the original IC. Handle those here if the receiver map hasn't
1523 // changed or it has transitioned to a more general kind.
1524 KeyedAccessStoreMode old_store_mode =
1525 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1526 Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1527 if (state() == MONOMORPHIC) {
1528 Handle<Map> transitioned_receiver_map = receiver_map;
1529 if (IsTransitionStoreMode(store_mode)) {
1530 transitioned_receiver_map =
1531 ComputeTransitionedMap(receiver_map, store_mode);
1532 }
1533 if ((receiver_map.is_identical_to(previous_receiver_map) &&
1534 IsTransitionStoreMode(store_mode)) ||
1535 IsTransitionOfMonomorphicTarget(*previous_receiver_map,
1536 *transitioned_receiver_map)) {
1537 // If the "old" and "new" maps are in the same elements map family, or
1538 // if they at least come from the same origin for a transitioning store,
1539 // stay MONOMORPHIC and use the map for the most generic ElementsKind.
1540 store_mode = GetNonTransitioningStoreMode(store_mode);
1541 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1542 transitioned_receiver_map, strict_mode(), store_mode);
1543 } else if (*previous_receiver_map == receiver->map() &&
1544 old_store_mode == STANDARD_STORE &&
1545 (store_mode == STORE_AND_GROW_NO_TRANSITION ||
1546 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1547 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1548 // A "normal" IC that handles stores can switch to a version that can
1549 // grow at the end of the array, handle OOB accesses or copy COW arrays
1550 // and still stay MONOMORPHIC.
1551 return isolate()->stub_cache()->ComputeKeyedStoreElement(
1552 receiver_map, strict_mode(), store_mode);
1553 }
1554 }
1555
1556 ASSERT(state() != GENERIC);
1557
1558 bool map_added =
1559 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1560
1561 if (IsTransitionStoreMode(store_mode)) {
1562 Handle<Map> transitioned_receiver_map =
1563 ComputeTransitionedMap(receiver_map, store_mode);
1564 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1565 transitioned_receiver_map);
1566 }
1567
1568 if (!map_added) {
1569 // If the miss wasn't due to an unseen map, a polymorphic stub
1570 // won't help, use the generic stub.
1571 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1572 return generic_stub();
1573 }
1574
1575 // If the maximum number of receiver maps has been exceeded, use the generic
1576 // version of the IC.
1577 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1578 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1579 return generic_stub();
1580 }
1581
1582 // Make sure all polymorphic handlers have the same store mode, otherwise the
1583 // generic stub must be used.
1584 store_mode = GetNonTransitioningStoreMode(store_mode);
1585 if (old_store_mode != STANDARD_STORE) {
1586 if (store_mode == STANDARD_STORE) {
1587 store_mode = old_store_mode;
1588 } else if (store_mode != old_store_mode) {
1589 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1590 return generic_stub();
1591 }
1592 }
1593
1594 // If the store mode isn't the standard mode, make sure that all polymorphic
1595 // receivers are either external arrays, or all "normal" arrays. Otherwise,
1596 // use the generic stub.
1597 if (store_mode != STANDARD_STORE) {
1598 int external_arrays = 0;
1599 for (int i = 0; i < target_receiver_maps.length(); ++i) {
1600 if (target_receiver_maps[i]->has_external_array_elements() ||
1601 target_receiver_maps[i]->has_fixed_typed_array_elements()) {
1602 external_arrays++;
1603 }
1604 }
1605 if (external_arrays != 0 &&
1606 external_arrays != target_receiver_maps.length()) {
1607 TRACE_GENERIC_IC(isolate(), "KeyedIC",
1608 "unsupported combination of external and normal arrays");
1609 return generic_stub();
1610 }
1611 }
1612
1613 return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
1614 &target_receiver_maps, store_mode, strict_mode());
1615 }
1616
1617
ComputeTransitionedMap(Handle<Map> map,KeyedAccessStoreMode store_mode)1618 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1619 Handle<Map> map,
1620 KeyedAccessStoreMode store_mode) {
1621 switch (store_mode) {
1622 case STORE_TRANSITION_SMI_TO_OBJECT:
1623 case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1624 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1625 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1626 return Map::TransitionElementsTo(map, FAST_ELEMENTS);
1627 case STORE_TRANSITION_SMI_TO_DOUBLE:
1628 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1629 return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
1630 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1631 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1632 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1633 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1634 return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
1635 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1636 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1637 return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
1638 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1639 ASSERT(map->has_external_array_elements());
1640 // Fall through
1641 case STORE_NO_TRANSITION_HANDLE_COW:
1642 case STANDARD_STORE:
1643 case STORE_AND_GROW_NO_TRANSITION:
1644 return map;
1645 }
1646 UNREACHABLE();
1647 return MaybeHandle<Map>().ToHandleChecked();
1648 }
1649
1650
IsOutOfBoundsAccess(Handle<JSObject> receiver,int index)1651 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1652 int index) {
1653 if (receiver->IsJSArray()) {
1654 return JSArray::cast(*receiver)->length()->IsSmi() &&
1655 index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1656 }
1657 return index >= receiver->elements()->length();
1658 }
1659
1660
GetStoreMode(Handle<JSObject> receiver,Handle<Object> key,Handle<Object> value)1661 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1662 Handle<Object> key,
1663 Handle<Object> value) {
1664 Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
1665 int index = smi_key->value();
1666 bool oob_access = IsOutOfBoundsAccess(receiver, index);
1667 // Don't consider this a growing store if the store would send the receiver to
1668 // dictionary mode.
1669 bool allow_growth = receiver->IsJSArray() && oob_access &&
1670 !receiver->WouldConvertToSlowElements(key);
1671 if (allow_growth) {
1672 // Handle growing array in stub if necessary.
1673 if (receiver->HasFastSmiElements()) {
1674 if (value->IsHeapNumber()) {
1675 if (receiver->HasFastHoleyElements()) {
1676 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1677 } else {
1678 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1679 }
1680 }
1681 if (value->IsHeapObject()) {
1682 if (receiver->HasFastHoleyElements()) {
1683 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1684 } else {
1685 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1686 }
1687 }
1688 } else if (receiver->HasFastDoubleElements()) {
1689 if (!value->IsSmi() && !value->IsHeapNumber()) {
1690 if (receiver->HasFastHoleyElements()) {
1691 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1692 } else {
1693 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1694 }
1695 }
1696 }
1697 return STORE_AND_GROW_NO_TRANSITION;
1698 } else {
1699 // Handle only in-bounds elements accesses.
1700 if (receiver->HasFastSmiElements()) {
1701 if (value->IsHeapNumber()) {
1702 if (receiver->HasFastHoleyElements()) {
1703 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1704 } else {
1705 return STORE_TRANSITION_SMI_TO_DOUBLE;
1706 }
1707 } else if (value->IsHeapObject()) {
1708 if (receiver->HasFastHoleyElements()) {
1709 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1710 } else {
1711 return STORE_TRANSITION_SMI_TO_OBJECT;
1712 }
1713 }
1714 } else if (receiver->HasFastDoubleElements()) {
1715 if (!value->IsSmi() && !value->IsHeapNumber()) {
1716 if (receiver->HasFastHoleyElements()) {
1717 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1718 } else {
1719 return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1720 }
1721 }
1722 }
1723 if (!FLAG_trace_external_array_abuse &&
1724 receiver->map()->has_external_array_elements() && oob_access) {
1725 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1726 }
1727 Heap* heap = receiver->GetHeap();
1728 if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1729 return STORE_NO_TRANSITION_HANDLE_COW;
1730 } else {
1731 return STANDARD_STORE;
1732 }
1733 }
1734 }
1735
1736
Store(Handle<Object> object,Handle<Object> key,Handle<Object> value)1737 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
1738 Handle<Object> key,
1739 Handle<Object> value) {
1740 if (MigrateDeprecated(object)) {
1741 Handle<Object> result;
1742 ASSIGN_RETURN_ON_EXCEPTION(
1743 isolate(),
1744 result,
1745 Runtime::SetObjectProperty(
1746 isolate(), object, key, value, NONE, strict_mode()),
1747 Object);
1748 return result;
1749 }
1750
1751 // Check for non-string values that can be converted into an
1752 // internalized string directly or is representable as a smi.
1753 key = TryConvertKey(key, isolate());
1754
1755 Handle<Object> store_handle;
1756 Handle<Code> stub = generic_stub();
1757
1758 if (key->IsInternalizedString()) {
1759 ASSIGN_RETURN_ON_EXCEPTION(
1760 isolate(),
1761 store_handle,
1762 StoreIC::Store(object,
1763 Handle<String>::cast(key),
1764 value,
1765 JSReceiver::MAY_BE_STORE_FROM_KEYED),
1766 Object);
1767 } else {
1768 bool use_ic = FLAG_use_ic &&
1769 !object->IsStringWrapper() &&
1770 !object->IsAccessCheckNeeded() &&
1771 !object->IsJSGlobalProxy() &&
1772 !(object->IsJSObject() &&
1773 JSObject::cast(*object)->map()->is_observed());
1774 if (use_ic && !object->IsSmi()) {
1775 // Don't use ICs for maps of the objects in Array's prototype chain. We
1776 // expect to be able to trap element sets to objects with those maps in
1777 // the runtime to enable optimization of element hole access.
1778 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1779 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1780 }
1781
1782 if (use_ic) {
1783 ASSERT(!object->IsAccessCheckNeeded());
1784
1785 if (object->IsJSObject()) {
1786 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1787 bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
1788 if (receiver->elements()->map() ==
1789 isolate()->heap()->sloppy_arguments_elements_map()) {
1790 if (strict_mode() == SLOPPY) {
1791 stub = sloppy_arguments_stub();
1792 }
1793 } else if (key_is_smi_like &&
1794 !(target().is_identical_to(sloppy_arguments_stub()))) {
1795 // We should go generic if receiver isn't a dictionary, but our
1796 // prototype chain does have dictionary elements. This ensures that
1797 // other non-dictionary receivers in the polymorphic case benefit
1798 // from fast path keyed stores.
1799 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
1800 KeyedAccessStoreMode store_mode =
1801 GetStoreMode(receiver, key, value);
1802 stub = StoreElementStub(receiver, store_mode);
1803 }
1804 }
1805 }
1806 }
1807 }
1808
1809 if (store_handle.is_null()) {
1810 ASSIGN_RETURN_ON_EXCEPTION(
1811 isolate(),
1812 store_handle,
1813 Runtime::SetObjectProperty(
1814 isolate(), object, key, value, NONE, strict_mode()),
1815 Object);
1816 }
1817
1818 if (!is_target_set()) {
1819 Code* generic = *generic_stub();
1820 if (*stub == generic) {
1821 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1822 }
1823 ASSERT(!stub.is_null());
1824 set_target(*stub);
1825 TRACE_IC("StoreIC", key);
1826 }
1827
1828 return store_handle;
1829 }
1830
1831
State(ExtraICState extra_ic_state)1832 CallIC::State::State(ExtraICState extra_ic_state)
1833 : argc_(ArgcBits::decode(extra_ic_state)),
1834 call_type_(CallTypeBits::decode(extra_ic_state)) {
1835 }
1836
1837
GetExtraICState() const1838 ExtraICState CallIC::State::GetExtraICState() const {
1839 ExtraICState extra_ic_state =
1840 ArgcBits::encode(argc_) |
1841 CallTypeBits::encode(call_type_);
1842 return extra_ic_state;
1843 }
1844
1845
DoCustomHandler(Handle<Object> receiver,Handle<Object> function,Handle<FixedArray> vector,Handle<Smi> slot,const State & state)1846 bool CallIC::DoCustomHandler(Handle<Object> receiver,
1847 Handle<Object> function,
1848 Handle<FixedArray> vector,
1849 Handle<Smi> slot,
1850 const State& state) {
1851 ASSERT(FLAG_use_ic && function->IsJSFunction());
1852
1853 // Are we the array function?
1854 Handle<JSFunction> array_function = Handle<JSFunction>(
1855 isolate()->context()->native_context()->array_function(), isolate());
1856 if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
1857 // Alter the slot.
1858 Object* feedback = vector->get(slot->value());
1859 if (!feedback->IsAllocationSite()) {
1860 Handle<AllocationSite> new_site =
1861 isolate()->factory()->NewAllocationSite();
1862 vector->set(slot->value(), *new_site);
1863 }
1864
1865 CallIC_ArrayStub stub(isolate(), state);
1866 set_target(*stub.GetCode());
1867 Handle<String> name;
1868 if (array_function->shared()->name()->IsString()) {
1869 name = Handle<String>(String::cast(array_function->shared()->name()),
1870 isolate());
1871 }
1872
1873 TRACE_IC("CallIC (Array call)", name);
1874 return true;
1875 }
1876 return false;
1877 }
1878
1879
PatchMegamorphic(Handle<FixedArray> vector,Handle<Smi> slot)1880 void CallIC::PatchMegamorphic(Handle<FixedArray> vector,
1881 Handle<Smi> slot) {
1882 State state(target()->extra_ic_state());
1883
1884 // We are going generic.
1885 vector->set(slot->value(),
1886 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1887 SKIP_WRITE_BARRIER);
1888
1889 CallICStub stub(isolate(), state);
1890 Handle<Code> code = stub.GetCode();
1891 set_target(*code);
1892
1893 TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
1894 }
1895
1896
HandleMiss(Handle<Object> receiver,Handle<Object> function,Handle<FixedArray> vector,Handle<Smi> slot)1897 void CallIC::HandleMiss(Handle<Object> receiver,
1898 Handle<Object> function,
1899 Handle<FixedArray> vector,
1900 Handle<Smi> slot) {
1901 State state(target()->extra_ic_state());
1902 Object* feedback = vector->get(slot->value());
1903
1904 // Hand-coded MISS handling is easier if CallIC slots don't contain smis.
1905 ASSERT(!feedback->IsSmi());
1906
1907 if (feedback->IsJSFunction() || !function->IsJSFunction()) {
1908 // We are going generic.
1909 vector->set(slot->value(),
1910 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
1911 SKIP_WRITE_BARRIER);
1912
1913 TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
1914 } else {
1915 // The feedback is either uninitialized or an allocation site.
1916 // It might be an allocation site because if we re-compile the full code
1917 // to add deoptimization support, we call with the default call-ic, and
1918 // merely need to patch the target to match the feedback.
1919 // TODO(mvstanton): the better approach is to dispense with patching
1920 // altogether, which is in progress.
1921 ASSERT(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) ||
1922 feedback->IsAllocationSite());
1923
1924 // Do we want to install a custom handler?
1925 if (FLAG_use_ic &&
1926 DoCustomHandler(receiver, function, vector, slot, state)) {
1927 return;
1928 }
1929
1930 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
1931 Handle<Object> name(js_function->shared()->name(), isolate());
1932 TRACE_IC("CallIC", name);
1933 vector->set(slot->value(), *function);
1934 }
1935 }
1936
1937
1938 #undef TRACE_IC
1939
1940
1941 // ----------------------------------------------------------------------------
1942 // Static IC stub generators.
1943 //
1944
1945 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(CallIC_Miss)1946 RUNTIME_FUNCTION(CallIC_Miss) {
1947 Logger::TimerEventScope timer(
1948 isolate, Logger::TimerEventScope::v8_ic_miss);
1949 HandleScope scope(isolate);
1950 ASSERT(args.length() == 4);
1951 CallIC ic(isolate);
1952 Handle<Object> receiver = args.at<Object>(0);
1953 Handle<Object> function = args.at<Object>(1);
1954 Handle<FixedArray> vector = args.at<FixedArray>(2);
1955 Handle<Smi> slot = args.at<Smi>(3);
1956 ic.HandleMiss(receiver, function, vector, slot);
1957 return *function;
1958 }
1959
1960
RUNTIME_FUNCTION(CallIC_Customization_Miss)1961 RUNTIME_FUNCTION(CallIC_Customization_Miss) {
1962 Logger::TimerEventScope timer(
1963 isolate, Logger::TimerEventScope::v8_ic_miss);
1964 HandleScope scope(isolate);
1965 ASSERT(args.length() == 4);
1966 // A miss on a custom call ic always results in going megamorphic.
1967 CallIC ic(isolate);
1968 Handle<Object> function = args.at<Object>(1);
1969 Handle<FixedArray> vector = args.at<FixedArray>(2);
1970 Handle<Smi> slot = args.at<Smi>(3);
1971 ic.PatchMegamorphic(vector, slot);
1972 return *function;
1973 }
1974
1975
1976 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(LoadIC_Miss)1977 RUNTIME_FUNCTION(LoadIC_Miss) {
1978 Logger::TimerEventScope timer(
1979 isolate, Logger::TimerEventScope::v8_ic_miss);
1980 HandleScope scope(isolate);
1981 ASSERT(args.length() == 2);
1982 LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1983 Handle<Object> receiver = args.at<Object>(0);
1984 Handle<String> key = args.at<String>(1);
1985 ic.UpdateState(receiver, key);
1986 Handle<Object> result;
1987 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
1988 return *result;
1989 }
1990
1991
1992 // Used from ic-<arch>.cc
RUNTIME_FUNCTION(KeyedLoadIC_Miss)1993 RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
1994 Logger::TimerEventScope timer(
1995 isolate, Logger::TimerEventScope::v8_ic_miss);
1996 HandleScope scope(isolate);
1997 ASSERT(args.length() == 2);
1998 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1999 Handle<Object> receiver = args.at<Object>(0);
2000 Handle<Object> key = args.at<Object>(1);
2001 ic.UpdateState(receiver, key);
2002 Handle<Object> result;
2003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2004 return *result;
2005 }
2006
2007
RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure)2008 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
2009 Logger::TimerEventScope timer(
2010 isolate, Logger::TimerEventScope::v8_ic_miss);
2011 HandleScope scope(isolate);
2012 ASSERT(args.length() == 2);
2013 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2014 Handle<Object> receiver = args.at<Object>(0);
2015 Handle<Object> key = args.at<Object>(1);
2016 ic.UpdateState(receiver, key);
2017 Handle<Object> result;
2018 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
2019 return *result;
2020 }
2021
2022
2023 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(StoreIC_Miss)2024 RUNTIME_FUNCTION(StoreIC_Miss) {
2025 Logger::TimerEventScope timer(
2026 isolate, Logger::TimerEventScope::v8_ic_miss);
2027 HandleScope scope(isolate);
2028 ASSERT(args.length() == 3);
2029 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2030 Handle<Object> receiver = args.at<Object>(0);
2031 Handle<String> key = args.at<String>(1);
2032 ic.UpdateState(receiver, key);
2033 Handle<Object> result;
2034 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2035 isolate,
2036 result,
2037 ic.Store(receiver, key, args.at<Object>(2)));
2038 return *result;
2039 }
2040
2041
RUNTIME_FUNCTION(StoreIC_MissFromStubFailure)2042 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
2043 Logger::TimerEventScope timer(
2044 isolate, Logger::TimerEventScope::v8_ic_miss);
2045 HandleScope scope(isolate);
2046 ASSERT(args.length() == 3);
2047 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2048 Handle<Object> receiver = args.at<Object>(0);
2049 Handle<String> key = args.at<String>(1);
2050 ic.UpdateState(receiver, key);
2051 Handle<Object> result;
2052 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2053 isolate,
2054 result,
2055 ic.Store(receiver, key, args.at<Object>(2)));
2056 return *result;
2057 }
2058
2059
RUNTIME_FUNCTION(StoreIC_ArrayLength)2060 RUNTIME_FUNCTION(StoreIC_ArrayLength) {
2061 Logger::TimerEventScope timer(
2062 isolate, Logger::TimerEventScope::v8_ic_miss);
2063 HandleScope scope(isolate);
2064
2065 ASSERT(args.length() == 2);
2066 Handle<JSArray> receiver = args.at<JSArray>(0);
2067 Handle<Object> len = args.at<Object>(1);
2068
2069 // The generated code should filter out non-Smis before we get here.
2070 ASSERT(len->IsSmi());
2071
2072 #ifdef DEBUG
2073 // The length property has to be a writable callback property.
2074 LookupResult debug_lookup(isolate);
2075 receiver->LookupOwn(isolate->factory()->length_string(), &debug_lookup);
2076 ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
2077 #endif
2078
2079 RETURN_FAILURE_ON_EXCEPTION(
2080 isolate, JSArray::SetElementsLength(receiver, len));
2081 return *len;
2082 }
2083
2084
2085 // Extend storage is called in a store inline cache when
2086 // it is necessary to extend the properties array of a
2087 // JSObject.
RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage)2088 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
2089 Logger::TimerEventScope timer(
2090 isolate, Logger::TimerEventScope::v8_ic_miss);
2091 HandleScope shs(isolate);
2092 ASSERT(args.length() == 3);
2093
2094 // Convert the parameters
2095 Handle<JSObject> object = args.at<JSObject>(0);
2096 Handle<Map> transition = args.at<Map>(1);
2097 Handle<Object> value = args.at<Object>(2);
2098
2099 // Check the object has run out out property space.
2100 ASSERT(object->HasFastProperties());
2101 ASSERT(object->map()->unused_property_fields() == 0);
2102
2103 // Expand the properties array.
2104 Handle<FixedArray> old_storage = handle(object->properties(), isolate);
2105 int new_unused = transition->unused_property_fields();
2106 int new_size = old_storage->length() + new_unused + 1;
2107
2108 Handle<FixedArray> new_storage = FixedArray::CopySize(old_storage, new_size);
2109
2110 Handle<Object> to_store = value;
2111
2112 PropertyDetails details = transition->instance_descriptors()->GetDetails(
2113 transition->LastAdded());
2114 if (details.representation().IsDouble()) {
2115 to_store = isolate->factory()->NewHeapNumber(value->Number());
2116 }
2117
2118 new_storage->set(old_storage->length(), *to_store);
2119
2120 // Set the new property value and do the map transition.
2121 object->set_properties(*new_storage);
2122 object->set_map(*transition);
2123
2124 // Return the stored value.
2125 return *value;
2126 }
2127
2128
2129 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(KeyedStoreIC_Miss)2130 RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
2131 Logger::TimerEventScope timer(
2132 isolate, Logger::TimerEventScope::v8_ic_miss);
2133 HandleScope scope(isolate);
2134 ASSERT(args.length() == 3);
2135 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2136 Handle<Object> receiver = args.at<Object>(0);
2137 Handle<Object> key = args.at<Object>(1);
2138 ic.UpdateState(receiver, key);
2139 Handle<Object> result;
2140 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2141 isolate,
2142 result,
2143 ic.Store(receiver, key, args.at<Object>(2)));
2144 return *result;
2145 }
2146
2147
RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure)2148 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
2149 Logger::TimerEventScope timer(
2150 isolate, Logger::TimerEventScope::v8_ic_miss);
2151 HandleScope scope(isolate);
2152 ASSERT(args.length() == 3);
2153 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2154 Handle<Object> receiver = args.at<Object>(0);
2155 Handle<Object> key = args.at<Object>(1);
2156 ic.UpdateState(receiver, key);
2157 Handle<Object> result;
2158 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2159 isolate,
2160 result,
2161 ic.Store(receiver, key, args.at<Object>(2)));
2162 return *result;
2163 }
2164
2165
RUNTIME_FUNCTION(StoreIC_Slow)2166 RUNTIME_FUNCTION(StoreIC_Slow) {
2167 HandleScope scope(isolate);
2168 ASSERT(args.length() == 3);
2169 StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2170 Handle<Object> object = args.at<Object>(0);
2171 Handle<Object> key = args.at<Object>(1);
2172 Handle<Object> value = args.at<Object>(2);
2173 StrictMode strict_mode = ic.strict_mode();
2174 Handle<Object> result;
2175 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2176 isolate, result,
2177 Runtime::SetObjectProperty(
2178 isolate, object, key, value, NONE, strict_mode));
2179 return *result;
2180 }
2181
2182
RUNTIME_FUNCTION(KeyedStoreIC_Slow)2183 RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
2184 HandleScope scope(isolate);
2185 ASSERT(args.length() == 3);
2186 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2187 Handle<Object> object = args.at<Object>(0);
2188 Handle<Object> key = args.at<Object>(1);
2189 Handle<Object> value = args.at<Object>(2);
2190 StrictMode strict_mode = ic.strict_mode();
2191 Handle<Object> result;
2192 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2193 isolate, result,
2194 Runtime::SetObjectProperty(
2195 isolate, object, key, value, NONE, strict_mode));
2196 return *result;
2197 }
2198
2199
RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss)2200 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
2201 Logger::TimerEventScope timer(
2202 isolate, Logger::TimerEventScope::v8_ic_miss);
2203 HandleScope scope(isolate);
2204 ASSERT(args.length() == 4);
2205 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2206 Handle<Object> value = args.at<Object>(0);
2207 Handle<Map> map = args.at<Map>(1);
2208 Handle<Object> key = args.at<Object>(2);
2209 Handle<Object> object = args.at<Object>(3);
2210 StrictMode strict_mode = ic.strict_mode();
2211 if (object->IsJSObject()) {
2212 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2213 map->elements_kind());
2214 }
2215 Handle<Object> result;
2216 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2217 isolate, result,
2218 Runtime::SetObjectProperty(
2219 isolate, object, key, value, NONE, strict_mode));
2220 return *result;
2221 }
2222
2223
State(Isolate * isolate,ExtraICState extra_ic_state)2224 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
2225 : isolate_(isolate) {
2226 op_ = static_cast<Token::Value>(
2227 FIRST_TOKEN + OpField::decode(extra_ic_state));
2228 mode_ = OverwriteModeField::decode(extra_ic_state);
2229 fixed_right_arg_ = Maybe<int>(
2230 HasFixedRightArgField::decode(extra_ic_state),
2231 1 << FixedRightArgValueField::decode(extra_ic_state));
2232 left_kind_ = LeftKindField::decode(extra_ic_state);
2233 if (fixed_right_arg_.has_value) {
2234 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2235 } else {
2236 right_kind_ = RightKindField::decode(extra_ic_state);
2237 }
2238 result_kind_ = ResultKindField::decode(extra_ic_state);
2239 ASSERT_LE(FIRST_TOKEN, op_);
2240 ASSERT_LE(op_, LAST_TOKEN);
2241 }
2242
2243
GetExtraICState() const2244 ExtraICState BinaryOpIC::State::GetExtraICState() const {
2245 ExtraICState extra_ic_state =
2246 OpField::encode(op_ - FIRST_TOKEN) |
2247 OverwriteModeField::encode(mode_) |
2248 LeftKindField::encode(left_kind_) |
2249 ResultKindField::encode(result_kind_) |
2250 HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2251 if (fixed_right_arg_.has_value) {
2252 extra_ic_state = FixedRightArgValueField::update(
2253 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2254 } else {
2255 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2256 }
2257 return extra_ic_state;
2258 }
2259
2260
2261 // static
GenerateAheadOfTime(Isolate * isolate,void (* Generate)(Isolate *,const State &))2262 void BinaryOpIC::State::GenerateAheadOfTime(
2263 Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
2264 // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2265 // expensive at runtime. When solved we should be able to add most binops to
2266 // the snapshot instead of hand-picking them.
2267 // Generated list of commonly used stubs
2268 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \
2269 do { \
2270 State state(isolate, op, mode); \
2271 state.left_kind_ = left_kind; \
2272 state.fixed_right_arg_.has_value = false; \
2273 state.right_kind_ = right_kind; \
2274 state.result_kind_ = result_kind; \
2275 Generate(isolate, state); \
2276 } while (false)
2277 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2278 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2279 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2280 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2281 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2282 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2283 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2284 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2285 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2286 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2287 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2288 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2289 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2290 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2291 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2292 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2293 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2294 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2295 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2296 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2297 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2298 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2299 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2300 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2301 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2302 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2303 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2304 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2305 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2306 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2307 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2308 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2309 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2310 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2311 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2312 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2313 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2314 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2315 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2316 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2317 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2318 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2319 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2320 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2321 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2322 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2323 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2324 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2325 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2326 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2327 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2328 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2329 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2330 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2331 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2332 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2333 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2334 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2335 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2336 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2337 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2338 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2339 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2340 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2341 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2342 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2343 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2344 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2345 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2346 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2347 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2348 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2349 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2350 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2351 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2352 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2353 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2354 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2355 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2356 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2357 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2358 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2359 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2360 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2361 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2362 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2363 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2364 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2365 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2366 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2367 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2368 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2369 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2370 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2371 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2372 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2373 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2374 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2375 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2376 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2377 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2378 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2379 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2380 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2381 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2382 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2383 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2384 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2385 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2386 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2387 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2388 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2389 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2390 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2391 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2392 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2393 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2394 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2395 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2396 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2397 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2398 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2399 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2400 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2401 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2402 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2403 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2404 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2405 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2406 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2407 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2408 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2409 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2410 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2411 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2412 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2413 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2414 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2415 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2416 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2417 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2418 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2419 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2420 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2421 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2422 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2423 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2424 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2425 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2426 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2427 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2428 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2429 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2430 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2431 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2432 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2433 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2434 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2435 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2436 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2437 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2438 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2439 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2440 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2441 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2442 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2443 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2444 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2445 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2446 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2447 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2448 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2449 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2450 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2451 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2452 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2453 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2454 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2455 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2456 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2457 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2458 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2459 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2460 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2461 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2462 #undef GENERATE
2463 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2464 do { \
2465 State state(isolate, op, mode); \
2466 state.left_kind_ = left_kind; \
2467 state.fixed_right_arg_.has_value = true; \
2468 state.fixed_right_arg_.value = fixed_right_arg_value; \
2469 state.right_kind_ = SMI; \
2470 state.result_kind_ = result_kind; \
2471 Generate(isolate, state); \
2472 } while (false)
2473 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2474 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2475 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2476 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2477 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2478 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2479 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2480 #undef GENERATE
2481 }
2482
2483
GetResultType(Zone * zone) const2484 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
2485 Kind result_kind = result_kind_;
2486 if (HasSideEffects()) {
2487 result_kind = NONE;
2488 } else if (result_kind == GENERIC && op_ == Token::ADD) {
2489 return Type::Union(Type::Number(zone), Type::String(zone), zone);
2490 } else if (result_kind == NUMBER && op_ == Token::SHR) {
2491 return Type::Unsigned32(zone);
2492 }
2493 ASSERT_NE(GENERIC, result_kind);
2494 return KindToType(result_kind, zone);
2495 }
2496
2497
Print(StringStream * stream) const2498 void BinaryOpIC::State::Print(StringStream* stream) const {
2499 stream->Add("(%s", Token::Name(op_));
2500 if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
2501 else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
2502 if (CouldCreateAllocationMementos()) stream->Add("_CreateAllocationMementos");
2503 stream->Add(":%s*", KindToString(left_kind_));
2504 if (fixed_right_arg_.has_value) {
2505 stream->Add("%d", fixed_right_arg_.value);
2506 } else {
2507 stream->Add("%s", KindToString(right_kind_));
2508 }
2509 stream->Add("->%s)", KindToString(result_kind_));
2510 }
2511
2512
Update(Handle<Object> left,Handle<Object> right,Handle<Object> result)2513 void BinaryOpIC::State::Update(Handle<Object> left,
2514 Handle<Object> right,
2515 Handle<Object> result) {
2516 ExtraICState old_extra_ic_state = GetExtraICState();
2517
2518 left_kind_ = UpdateKind(left, left_kind_);
2519 right_kind_ = UpdateKind(right, right_kind_);
2520
2521 int32_t fixed_right_arg_value = 0;
2522 bool has_fixed_right_arg =
2523 op_ == Token::MOD &&
2524 right->ToInt32(&fixed_right_arg_value) &&
2525 fixed_right_arg_value > 0 &&
2526 IsPowerOf2(fixed_right_arg_value) &&
2527 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2528 (left_kind_ == SMI || left_kind_ == INT32) &&
2529 (result_kind_ == NONE || !fixed_right_arg_.has_value);
2530 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2531 fixed_right_arg_value);
2532
2533 result_kind_ = UpdateKind(result, result_kind_);
2534
2535 if (!Token::IsTruncatingBinaryOp(op_)) {
2536 Kind input_kind = Max(left_kind_, right_kind_);
2537 if (result_kind_ < input_kind && input_kind <= NUMBER) {
2538 result_kind_ = input_kind;
2539 }
2540 }
2541
2542 // We don't want to distinguish INT32 and NUMBER for string add (because
2543 // NumberToString can't make use of this anyway).
2544 if (left_kind_ == STRING && right_kind_ == INT32) {
2545 ASSERT_EQ(STRING, result_kind_);
2546 ASSERT_EQ(Token::ADD, op_);
2547 right_kind_ = NUMBER;
2548 } else if (right_kind_ == STRING && left_kind_ == INT32) {
2549 ASSERT_EQ(STRING, result_kind_);
2550 ASSERT_EQ(Token::ADD, op_);
2551 left_kind_ = NUMBER;
2552 }
2553
2554 // Reset overwrite mode unless we can actually make use of it, or may be able
2555 // to make use of it at some point in the future.
2556 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2557 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2558 result_kind_ > NUMBER) {
2559 mode_ = NO_OVERWRITE;
2560 }
2561
2562 if (old_extra_ic_state == GetExtraICState()) {
2563 // Tagged operations can lead to non-truncating HChanges
2564 if (left->IsUndefined() || left->IsBoolean()) {
2565 left_kind_ = GENERIC;
2566 } else {
2567 ASSERT(right->IsUndefined() || right->IsBoolean());
2568 right_kind_ = GENERIC;
2569 }
2570 }
2571 }
2572
2573
UpdateKind(Handle<Object> object,Kind kind) const2574 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2575 Kind kind) const {
2576 Kind new_kind = GENERIC;
2577 bool is_truncating = Token::IsTruncatingBinaryOp(op());
2578 if (object->IsBoolean() && is_truncating) {
2579 // Booleans will be automatically truncated by HChange.
2580 new_kind = INT32;
2581 } else if (object->IsUndefined()) {
2582 // Undefined will be automatically truncated by HChange.
2583 new_kind = is_truncating ? INT32 : NUMBER;
2584 } else if (object->IsSmi()) {
2585 new_kind = SMI;
2586 } else if (object->IsHeapNumber()) {
2587 double value = Handle<HeapNumber>::cast(object)->value();
2588 new_kind = IsInt32Double(value) ? INT32 : NUMBER;
2589 } else if (object->IsString() && op() == Token::ADD) {
2590 new_kind = STRING;
2591 }
2592 if (new_kind == INT32 && SmiValuesAre32Bits()) {
2593 new_kind = NUMBER;
2594 }
2595 if (kind != NONE &&
2596 ((new_kind <= NUMBER && kind > NUMBER) ||
2597 (new_kind > NUMBER && kind <= NUMBER))) {
2598 new_kind = GENERIC;
2599 }
2600 return Max(kind, new_kind);
2601 }
2602
2603
2604 // static
KindToString(Kind kind)2605 const char* BinaryOpIC::State::KindToString(Kind kind) {
2606 switch (kind) {
2607 case NONE: return "None";
2608 case SMI: return "Smi";
2609 case INT32: return "Int32";
2610 case NUMBER: return "Number";
2611 case STRING: return "String";
2612 case GENERIC: return "Generic";
2613 }
2614 UNREACHABLE();
2615 return NULL;
2616 }
2617
2618
2619 // static
KindToType(Kind kind,Zone * zone)2620 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
2621 switch (kind) {
2622 case NONE: return Type::None(zone);
2623 case SMI: return Type::SignedSmall(zone);
2624 case INT32: return Type::Signed32(zone);
2625 case NUMBER: return Type::Number(zone);
2626 case STRING: return Type::String(zone);
2627 case GENERIC: return Type::Any(zone);
2628 }
2629 UNREACHABLE();
2630 return NULL;
2631 }
2632
2633
Transition(Handle<AllocationSite> allocation_site,Handle<Object> left,Handle<Object> right)2634 MaybeHandle<Object> BinaryOpIC::Transition(
2635 Handle<AllocationSite> allocation_site,
2636 Handle<Object> left,
2637 Handle<Object> right) {
2638 State state(isolate(), target()->extra_ic_state());
2639
2640 // Compute the actual result using the builtin for the binary operation.
2641 Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2642 TokenToJSBuiltin(state.op()));
2643 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2644 Handle<Object> result;
2645 ASSIGN_RETURN_ON_EXCEPTION(
2646 isolate(),
2647 result,
2648 Execution::Call(isolate(), function, left, 1, &right),
2649 Object);
2650
2651 // Execution::Call can execute arbitrary JavaScript, hence potentially
2652 // update the state of this very IC, so we must update the stored state.
2653 UpdateTarget();
2654 // Compute the new state.
2655 State old_state(isolate(), target()->extra_ic_state());
2656 state.Update(left, right, result);
2657
2658 // Check if we have a string operation here.
2659 Handle<Code> target;
2660 if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
2661 // Setup the allocation site on-demand.
2662 if (allocation_site.is_null()) {
2663 allocation_site = isolate()->factory()->NewAllocationSite();
2664 }
2665
2666 // Install the stub with an allocation site.
2667 BinaryOpICWithAllocationSiteStub stub(isolate(), state);
2668 target = stub.GetCodeCopyFromTemplate(allocation_site);
2669
2670 // Sanity check the trampoline stub.
2671 ASSERT_EQ(*allocation_site, target->FindFirstAllocationSite());
2672 } else {
2673 // Install the generic stub.
2674 BinaryOpICStub stub(isolate(), state);
2675 target = stub.GetCode();
2676
2677 // Sanity check the generic stub.
2678 ASSERT_EQ(NULL, target->FindFirstAllocationSite());
2679 }
2680 set_target(*target);
2681
2682 if (FLAG_trace_ic) {
2683 char buffer[150];
2684 NoAllocationStringAllocator allocator(
2685 buffer, static_cast<unsigned>(sizeof(buffer)));
2686 StringStream stream(&allocator);
2687 stream.Add("[BinaryOpIC");
2688 old_state.Print(&stream);
2689 stream.Add(" => ");
2690 state.Print(&stream);
2691 stream.Add(" @ %p <- ", static_cast<void*>(*target));
2692 stream.OutputToStdOut();
2693 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2694 if (!allocation_site.is_null()) {
2695 PrintF(" using allocation site %p", static_cast<void*>(*allocation_site));
2696 }
2697 PrintF("]\n");
2698 }
2699
2700 // Patch the inlined smi code as necessary.
2701 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2702 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2703 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2704 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2705 }
2706
2707 return result;
2708 }
2709
2710
RUNTIME_FUNCTION(BinaryOpIC_Miss)2711 RUNTIME_FUNCTION(BinaryOpIC_Miss) {
2712 Logger::TimerEventScope timer(
2713 isolate, Logger::TimerEventScope::v8_ic_miss);
2714 HandleScope scope(isolate);
2715 ASSERT_EQ(2, args.length());
2716 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2717 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2718 BinaryOpIC ic(isolate);
2719 Handle<Object> result;
2720 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2721 isolate,
2722 result,
2723 ic.Transition(Handle<AllocationSite>::null(), left, right));
2724 return *result;
2725 }
2726
2727
RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite)2728 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) {
2729 Logger::TimerEventScope timer(
2730 isolate, Logger::TimerEventScope::v8_ic_miss);
2731 HandleScope scope(isolate);
2732 ASSERT_EQ(3, args.length());
2733 Handle<AllocationSite> allocation_site = args.at<AllocationSite>(
2734 BinaryOpWithAllocationSiteStub::kAllocationSite);
2735 Handle<Object> left = args.at<Object>(
2736 BinaryOpWithAllocationSiteStub::kLeft);
2737 Handle<Object> right = args.at<Object>(
2738 BinaryOpWithAllocationSiteStub::kRight);
2739 BinaryOpIC ic(isolate);
2740 Handle<Object> result;
2741 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2742 isolate,
2743 result,
2744 ic.Transition(allocation_site, left, right));
2745 return *result;
2746 }
2747
2748
GetRawUninitialized(Isolate * isolate,Token::Value op)2749 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2750 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2751 Code* code = NULL;
2752 CHECK(stub.FindCodeInCache(&code));
2753 return code;
2754 }
2755
2756
GetUninitialized(Isolate * isolate,Token::Value op)2757 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2758 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2759 return stub.GetCode();
2760 }
2761
2762
GetStateName(State state)2763 const char* CompareIC::GetStateName(State state) {
2764 switch (state) {
2765 case UNINITIALIZED: return "UNINITIALIZED";
2766 case SMI: return "SMI";
2767 case NUMBER: return "NUMBER";
2768 case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2769 case STRING: return "STRING";
2770 case UNIQUE_NAME: return "UNIQUE_NAME";
2771 case OBJECT: return "OBJECT";
2772 case KNOWN_OBJECT: return "KNOWN_OBJECT";
2773 case GENERIC: return "GENERIC";
2774 }
2775 UNREACHABLE();
2776 return NULL;
2777 }
2778
2779
StateToType(Zone * zone,CompareIC::State state,Handle<Map> map)2780 Type* CompareIC::StateToType(
2781 Zone* zone,
2782 CompareIC::State state,
2783 Handle<Map> map) {
2784 switch (state) {
2785 case CompareIC::UNINITIALIZED: return Type::None(zone);
2786 case CompareIC::SMI: return Type::SignedSmall(zone);
2787 case CompareIC::NUMBER: return Type::Number(zone);
2788 case CompareIC::STRING: return Type::String(zone);
2789 case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone);
2790 case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone);
2791 case CompareIC::OBJECT: return Type::Receiver(zone);
2792 case CompareIC::KNOWN_OBJECT:
2793 return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
2794 case CompareIC::GENERIC: return Type::Any(zone);
2795 }
2796 UNREACHABLE();
2797 return NULL;
2798 }
2799
2800
StubInfoToType(int stub_minor_key,Type ** left_type,Type ** right_type,Type ** overall_type,Handle<Map> map,Zone * zone)2801 void CompareIC::StubInfoToType(int stub_minor_key,
2802 Type** left_type,
2803 Type** right_type,
2804 Type** overall_type,
2805 Handle<Map> map,
2806 Zone* zone) {
2807 State left_state, right_state, handler_state;
2808 ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
2809 &handler_state, NULL);
2810 *left_type = StateToType(zone, left_state);
2811 *right_type = StateToType(zone, right_state);
2812 *overall_type = StateToType(zone, handler_state, map);
2813 }
2814
2815
NewInputState(State old_state,Handle<Object> value)2816 CompareIC::State CompareIC::NewInputState(State old_state,
2817 Handle<Object> value) {
2818 switch (old_state) {
2819 case UNINITIALIZED:
2820 if (value->IsSmi()) return SMI;
2821 if (value->IsHeapNumber()) return NUMBER;
2822 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2823 if (value->IsString()) return STRING;
2824 if (value->IsSymbol()) return UNIQUE_NAME;
2825 if (value->IsJSObject()) return OBJECT;
2826 break;
2827 case SMI:
2828 if (value->IsSmi()) return SMI;
2829 if (value->IsHeapNumber()) return NUMBER;
2830 break;
2831 case NUMBER:
2832 if (value->IsNumber()) return NUMBER;
2833 break;
2834 case INTERNALIZED_STRING:
2835 if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2836 if (value->IsString()) return STRING;
2837 if (value->IsSymbol()) return UNIQUE_NAME;
2838 break;
2839 case STRING:
2840 if (value->IsString()) return STRING;
2841 break;
2842 case UNIQUE_NAME:
2843 if (value->IsUniqueName()) return UNIQUE_NAME;
2844 break;
2845 case OBJECT:
2846 if (value->IsJSObject()) return OBJECT;
2847 break;
2848 case GENERIC:
2849 break;
2850 case KNOWN_OBJECT:
2851 UNREACHABLE();
2852 break;
2853 }
2854 return GENERIC;
2855 }
2856
2857
TargetState(State old_state,State old_left,State old_right,bool has_inlined_smi_code,Handle<Object> x,Handle<Object> y)2858 CompareIC::State CompareIC::TargetState(State old_state,
2859 State old_left,
2860 State old_right,
2861 bool has_inlined_smi_code,
2862 Handle<Object> x,
2863 Handle<Object> y) {
2864 switch (old_state) {
2865 case UNINITIALIZED:
2866 if (x->IsSmi() && y->IsSmi()) return SMI;
2867 if (x->IsNumber() && y->IsNumber()) return NUMBER;
2868 if (Token::IsOrderedRelationalCompareOp(op_)) {
2869 // Ordered comparisons treat undefined as NaN, so the
2870 // NUMBER stub will do the right thing.
2871 if ((x->IsNumber() && y->IsUndefined()) ||
2872 (y->IsNumber() && x->IsUndefined())) {
2873 return NUMBER;
2874 }
2875 }
2876 if (x->IsInternalizedString() && y->IsInternalizedString()) {
2877 // We compare internalized strings as plain ones if we need to determine
2878 // the order in a non-equality compare.
2879 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2880 }
2881 if (x->IsString() && y->IsString()) return STRING;
2882 if (!Token::IsEqualityOp(op_)) return GENERIC;
2883 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2884 if (x->IsJSObject() && y->IsJSObject()) {
2885 if (Handle<JSObject>::cast(x)->map() ==
2886 Handle<JSObject>::cast(y)->map()) {
2887 return KNOWN_OBJECT;
2888 } else {
2889 return OBJECT;
2890 }
2891 }
2892 return GENERIC;
2893 case SMI:
2894 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2895 case INTERNALIZED_STRING:
2896 ASSERT(Token::IsEqualityOp(op_));
2897 if (x->IsString() && y->IsString()) return STRING;
2898 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2899 return GENERIC;
2900 case NUMBER:
2901 // If the failure was due to one side changing from smi to heap number,
2902 // then keep the state (if other changed at the same time, we will get
2903 // a second miss and then go to generic).
2904 if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2905 if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2906 return GENERIC;
2907 case KNOWN_OBJECT:
2908 ASSERT(Token::IsEqualityOp(op_));
2909 if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2910 return GENERIC;
2911 case STRING:
2912 case UNIQUE_NAME:
2913 case OBJECT:
2914 case GENERIC:
2915 return GENERIC;
2916 }
2917 UNREACHABLE();
2918 return GENERIC; // Make the compiler happy.
2919 }
2920
2921
UpdateCaches(Handle<Object> x,Handle<Object> y)2922 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2923 HandleScope scope(isolate());
2924 State previous_left, previous_right, previous_state;
2925 ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
2926 &previous_right, &previous_state, NULL);
2927 State new_left = NewInputState(previous_left, x);
2928 State new_right = NewInputState(previous_right, y);
2929 State state = TargetState(previous_state, previous_left, previous_right,
2930 HasInlinedSmiCode(address()), x, y);
2931 ICCompareStub stub(isolate(), op_, new_left, new_right, state);
2932 if (state == KNOWN_OBJECT) {
2933 stub.set_known_map(
2934 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2935 }
2936 Handle<Code> new_target = stub.GetCode();
2937 set_target(*new_target);
2938
2939 if (FLAG_trace_ic) {
2940 PrintF("[CompareIC in ");
2941 JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2942 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2943 GetStateName(previous_left),
2944 GetStateName(previous_right),
2945 GetStateName(previous_state),
2946 GetStateName(new_left),
2947 GetStateName(new_right),
2948 GetStateName(state),
2949 Token::Name(op_),
2950 static_cast<void*>(*stub.GetCode()));
2951 }
2952
2953 // Activate inlined smi code.
2954 if (previous_state == UNINITIALIZED) {
2955 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2956 }
2957
2958 return *new_target;
2959 }
2960
2961
2962 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(CompareIC_Miss)2963 RUNTIME_FUNCTION(CompareIC_Miss) {
2964 Logger::TimerEventScope timer(
2965 isolate, Logger::TimerEventScope::v8_ic_miss);
2966 HandleScope scope(isolate);
2967 ASSERT(args.length() == 3);
2968 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2969 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2970 }
2971
2972
Clear(Address address,Code * target,ConstantPoolArray * constant_pool)2973 void CompareNilIC::Clear(Address address,
2974 Code* target,
2975 ConstantPoolArray* constant_pool) {
2976 if (IsCleared(target)) return;
2977 ExtraICState state = target->extra_ic_state();
2978
2979 CompareNilICStub stub(target->GetIsolate(),
2980 state,
2981 HydrogenCodeStub::UNINITIALIZED);
2982 stub.ClearState();
2983
2984 Code* code = NULL;
2985 CHECK(stub.FindCodeInCache(&code));
2986
2987 SetTargetAtAddress(address, code, constant_pool);
2988 }
2989
2990
DoCompareNilSlow(Isolate * isolate,NilValue nil,Handle<Object> object)2991 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate,
2992 NilValue nil,
2993 Handle<Object> object) {
2994 if (object->IsNull() || object->IsUndefined()) {
2995 return handle(Smi::FromInt(true), isolate);
2996 }
2997 return handle(Smi::FromInt(object->IsUndetectableObject()), isolate);
2998 }
2999
3000
CompareNil(Handle<Object> object)3001 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) {
3002 ExtraICState extra_ic_state = target()->extra_ic_state();
3003
3004 CompareNilICStub stub(isolate(), extra_ic_state);
3005
3006 // Extract the current supported types from the patched IC and calculate what
3007 // types must be supported as a result of the miss.
3008 bool already_monomorphic = stub.IsMonomorphic();
3009
3010 stub.UpdateStatus(object);
3011
3012 NilValue nil = stub.GetNilValue();
3013
3014 // Find or create the specialized stub to support the new set of types.
3015 Handle<Code> code;
3016 if (stub.IsMonomorphic()) {
3017 Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL
3018 ? FirstTargetMap()
3019 : HeapObject::cast(*object)->map());
3020 code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, &stub);
3021 } else {
3022 code = stub.GetCode();
3023 }
3024 set_target(*code);
3025 return DoCompareNilSlow(isolate(), nil, object);
3026 }
3027
3028
RUNTIME_FUNCTION(CompareNilIC_Miss)3029 RUNTIME_FUNCTION(CompareNilIC_Miss) {
3030 Logger::TimerEventScope timer(
3031 isolate, Logger::TimerEventScope::v8_ic_miss);
3032 HandleScope scope(isolate);
3033 Handle<Object> object = args.at<Object>(0);
3034 CompareNilIC ic(isolate);
3035 return *ic.CompareNil(object);
3036 }
3037
3038
RUNTIME_FUNCTION(Unreachable)3039 RUNTIME_FUNCTION(Unreachable) {
3040 UNREACHABLE();
3041 CHECK(false);
3042 return isolate->heap()->undefined_value();
3043 }
3044
3045
TokenToJSBuiltin(Token::Value op)3046 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
3047 switch (op) {
3048 default:
3049 UNREACHABLE();
3050 case Token::ADD:
3051 return Builtins::ADD;
3052 break;
3053 case Token::SUB:
3054 return Builtins::SUB;
3055 break;
3056 case Token::MUL:
3057 return Builtins::MUL;
3058 break;
3059 case Token::DIV:
3060 return Builtins::DIV;
3061 break;
3062 case Token::MOD:
3063 return Builtins::MOD;
3064 break;
3065 case Token::BIT_OR:
3066 return Builtins::BIT_OR;
3067 break;
3068 case Token::BIT_AND:
3069 return Builtins::BIT_AND;
3070 break;
3071 case Token::BIT_XOR:
3072 return Builtins::BIT_XOR;
3073 break;
3074 case Token::SAR:
3075 return Builtins::SAR;
3076 break;
3077 case Token::SHR:
3078 return Builtins::SHR;
3079 break;
3080 case Token::SHL:
3081 return Builtins::SHL;
3082 break;
3083 }
3084 }
3085
3086
ToBoolean(Handle<Object> object)3087 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
3088 ToBooleanStub stub(isolate(), target()->extra_ic_state());
3089 bool to_boolean_value = stub.UpdateStatus(object);
3090 Handle<Code> code = stub.GetCode();
3091 set_target(*code);
3092 return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate());
3093 }
3094
3095
RUNTIME_FUNCTION(ToBooleanIC_Miss)3096 RUNTIME_FUNCTION(ToBooleanIC_Miss) {
3097 Logger::TimerEventScope timer(
3098 isolate, Logger::TimerEventScope::v8_ic_miss);
3099 ASSERT(args.length() == 1);
3100 HandleScope scope(isolate);
3101 Handle<Object> object = args.at<Object>(0);
3102 ToBooleanIC ic(isolate);
3103 return *ic.ToBoolean(object);
3104 }
3105
3106
3107 static const Address IC_utilities[] = {
3108 #define ADDR(name) FUNCTION_ADDR(name),
3109 IC_UTIL_LIST(ADDR)
3110 NULL
3111 #undef ADDR
3112 };
3113
3114
AddressFromUtilityId(IC::UtilityId id)3115 Address IC::AddressFromUtilityId(IC::UtilityId id) {
3116 return IC_utilities[id];
3117 }
3118
3119
3120 } } // namespace v8::internal
3121