• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "bit_vector.h"
18 
19 namespace art {
20 
21 // TODO: profile to make sure this is still a win relative to just using shifted masks.
22 static uint32_t check_masks[32] = {
23   0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
24   0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200,
25   0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
26   0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000,
27   0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000,
28   0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
29   0x40000000, 0x80000000 };
30 
BitsToWords(uint32_t bits)31 static inline uint32_t BitsToWords(uint32_t bits) {
32   return (bits + 31) >> 5;
33 }
34 
35 // TODO: replace excessive argument defaulting when we are at gcc 4.7
36 // or later on host with delegating constructor support. Specifically,
37 // starts_bits and storage_size/storage are mutually exclusive.
BitVector(uint32_t start_bits,bool expandable,Allocator * allocator,uint32_t storage_size,uint32_t * storage)38 BitVector::BitVector(uint32_t start_bits,
39                      bool expandable,
40                      Allocator* allocator,
41                      uint32_t storage_size,
42                      uint32_t* storage)
43   : allocator_(allocator),
44     expandable_(expandable),
45     storage_size_(storage_size),
46     storage_(storage) {
47   COMPILE_ASSERT(sizeof(*storage_) == kWordBytes, check_word_bytes);
48   COMPILE_ASSERT(sizeof(*storage_) * 8u == kWordBits, check_word_bits);
49   if (storage_ == nullptr) {
50     storage_size_ = BitsToWords(start_bits);
51     storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * kWordBytes));
52   }
53 }
54 
~BitVector()55 BitVector::~BitVector() {
56   allocator_->Free(storage_);
57 }
58 
59 /*
60  * Determine whether or not the specified bit is set.
61  */
IsBitSet(uint32_t num) const62 bool BitVector::IsBitSet(uint32_t num) const {
63   // If the index is over the size:
64   if (num >= storage_size_ * kWordBits) {
65     // Whether it is expandable or not, this bit does not exist: thus it is not set.
66     return false;
67   }
68 
69   return IsBitSet(storage_, num);
70 }
71 
72 // Mark all bits bit as "clear".
ClearAllBits()73 void BitVector::ClearAllBits() {
74   memset(storage_, 0, storage_size_ * kWordBytes);
75 }
76 
77 // Mark the specified bit as "set".
78 /*
79  * TUNING: this could have pathologically bad growth/expand behavior.  Make sure we're
80  * not using it badly or change resize mechanism.
81  */
SetBit(uint32_t num)82 void BitVector::SetBit(uint32_t num) {
83   if (num >= storage_size_ * kWordBits) {
84     DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num;
85 
86     /* Round up to word boundaries for "num+1" bits */
87     uint32_t new_size = BitsToWords(num + 1);
88     DCHECK_GT(new_size, storage_size_);
89     uint32_t *new_storage =
90         static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes));
91     memcpy(new_storage, storage_, storage_size_ * kWordBytes);
92     // Zero out the new storage words.
93     memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes);
94     // TOTO: collect stats on space wasted because of resize.
95     storage_ = new_storage;
96     storage_size_ = new_size;
97   }
98 
99   storage_[num >> 5] |= check_masks[num & 0x1f];
100 }
101 
102 // Mark the specified bit as "unset".
ClearBit(uint32_t num)103 void BitVector::ClearBit(uint32_t num) {
104   // If the index is over the size, we don't have to do anything, it is cleared.
105   if (num < storage_size_ * kWordBits) {
106     // Otherwise, go ahead and clear it.
107     storage_[num >> 5] &= ~check_masks[num & 0x1f];
108   }
109 }
110 
SameBitsSet(const BitVector * src)111 bool BitVector::SameBitsSet(const BitVector *src) {
112   int our_highest = GetHighestBitSet();
113   int src_highest = src->GetHighestBitSet();
114 
115   // If the highest bit set is different, we are different.
116   if (our_highest != src_highest) {
117     return false;
118   }
119 
120   // If the highest bit set is -1, both are cleared, we are the same.
121   // If the highest bit set is 0, both have a unique bit set, we are the same.
122   if (our_highest <= 0) {
123     return true;
124   }
125 
126   // Get the highest bit set's cell's index
127   // No need of highest + 1 here because it can't be 0 so BitsToWords will work here.
128   int our_highest_index = BitsToWords(our_highest);
129 
130   // This memcmp is enough: we know that the highest bit set is the same for both:
131   //   - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less.
132   //      ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index,
133   //          they are automatically at 0.
134   return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0);
135 }
136 
137 // Intersect with another bit vector.
Intersect(const BitVector * src)138 void BitVector::Intersect(const BitVector* src) {
139   uint32_t src_storage_size = src->storage_size_;
140 
141   // Get the minimum size between us and source.
142   uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size;
143 
144   uint32_t idx;
145   for (idx = 0; idx < min_size; idx++) {
146     storage_[idx] &= src->GetRawStorageWord(idx);
147   }
148 
149   // Now, due to this being an intersection, there are two possibilities:
150   //   - Either src was larger than us: we don't care, all upper bits would thus be 0.
151   //   - Either we are larger than src: we don't care, all upper bits would have been 0 too.
152   // So all we need to do is set all remaining bits to 0.
153   for (; idx < storage_size_; idx++) {
154     storage_[idx] = 0;
155   }
156 }
157 
158 /*
159  * Union with another bit vector.
160  */
Union(const BitVector * src)161 bool BitVector::Union(const BitVector* src) {
162   // Get the highest bit to determine how much we need to expand.
163   int highest_bit = src->GetHighestBitSet();
164   bool changed = false;
165 
166   // If src has no bit set, we are done: there is no need for a union with src.
167   if (highest_bit == -1) {
168     return changed;
169   }
170 
171   // Update src_size to how many cells we actually care about: where the bit is + 1.
172   uint32_t src_size = BitsToWords(highest_bit + 1);
173 
174   // Is the storage size smaller than src's?
175   if (storage_size_ < src_size) {
176     changed = true;
177 
178     // Set it to reallocate.
179     SetBit(highest_bit);
180 
181     // Paranoid: storage size should be big enough to hold this bit now.
182     DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
183   }
184 
185   for (uint32_t idx = 0; idx < src_size; idx++) {
186     uint32_t existing = storage_[idx];
187     uint32_t update = existing | src->GetRawStorageWord(idx);
188     if (existing != update) {
189       changed = true;
190       storage_[idx] = update;
191     }
192   }
193   return changed;
194 }
195 
UnionIfNotIn(const BitVector * union_with,const BitVector * not_in)196 bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) {
197   // Get the highest bit to determine how much we need to expand.
198   int highest_bit = union_with->GetHighestBitSet();
199   bool changed = false;
200 
201   // If src has no bit set, we are done: there is no need for a union with src.
202   if (highest_bit == -1) {
203     return changed;
204   }
205 
206   // Update union_with_size to how many cells we actually care about: where the bit is + 1.
207   uint32_t union_with_size = BitsToWords(highest_bit + 1);
208 
209   // Is the storage size smaller than src's?
210   if (storage_size_ < union_with_size) {
211     changed = true;
212 
213     // Set it to reallocate.
214     SetBit(highest_bit);
215 
216     // Paranoid: storage size should be big enough to hold this bit now.
217     DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
218   }
219 
220   uint32_t not_in_size = not_in->GetStorageSize();
221 
222   uint32_t idx = 0;
223   for (; idx < std::min(not_in_size, union_with_size); idx++) {
224     uint32_t existing = storage_[idx];
225     uint32_t update = existing |
226         (union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx));
227     if (existing != update) {
228       changed = true;
229       storage_[idx] = update;
230     }
231   }
232 
233   for (; idx < union_with_size; idx++) {
234     uint32_t existing = storage_[idx];
235     uint32_t update = existing | union_with->GetRawStorageWord(idx);
236     if (existing != update) {
237       changed = true;
238       storage_[idx] = update;
239     }
240   }
241   return changed;
242 }
243 
Subtract(const BitVector * src)244 void BitVector::Subtract(const BitVector *src) {
245     uint32_t src_size = src->storage_size_;
246 
247     // We only need to operate on bytes up to the smaller of the sizes of the two operands.
248     unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_;
249 
250     // Difference until max, we know both accept it:
251     //   There is no need to do more:
252     //     If we are bigger than src, the upper bits are unchanged.
253     //     If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted.
254     for (uint32_t idx = 0; idx < min_size; idx++) {
255         storage_[idx] &= (~(src->GetRawStorageWord(idx)));
256     }
257 }
258 
259 // Count the number of bits that are set.
NumSetBits() const260 uint32_t BitVector::NumSetBits() const {
261   uint32_t count = 0;
262   for (uint32_t word = 0; word < storage_size_; word++) {
263     count += POPCOUNT(storage_[word]);
264   }
265   return count;
266 }
267 
268 // Count the number of bits that are set in range [0, end).
NumSetBits(uint32_t end) const269 uint32_t BitVector::NumSetBits(uint32_t end) const {
270   DCHECK_LE(end, storage_size_ * kWordBits);
271   return NumSetBits(storage_, end);
272 }
273 
274 /*
275  * Mark specified number of bits as "set". Cannot set all bits like ClearAll
276  * since there might be unused bits - setting those to one will confuse the
277  * iterator.
278  */
SetInitialBits(uint32_t num_bits)279 void BitVector::SetInitialBits(uint32_t num_bits) {
280   // If num_bits is 0, clear everything.
281   if (num_bits == 0) {
282     ClearAllBits();
283     return;
284   }
285 
286   // Set the highest bit we want to set to get the BitVector allocated if need be.
287   SetBit(num_bits - 1);
288 
289   uint32_t idx;
290   // We can set every storage element with -1.
291   for (idx = 0; idx < (num_bits >> 5); idx++) {
292     storage_[idx] = -1;
293   }
294 
295   // Handle the potentially last few bits.
296   uint32_t rem_num_bits = num_bits & 0x1f;
297   if (rem_num_bits != 0) {
298     storage_[idx] = (1 << rem_num_bits) - 1;
299     ++idx;
300   }
301 
302   // Now set the upper ones to 0.
303   for (; idx < storage_size_; idx++) {
304     storage_[idx] = 0;
305   }
306 }
307 
GetHighestBitSet() const308 int BitVector::GetHighestBitSet() const {
309   unsigned int max = storage_size_;
310   for (int idx = max - 1; idx >= 0; idx--) {
311     // If not 0, we have more work: check the bits.
312     uint32_t value = storage_[idx];
313 
314     if (value != 0) {
315       // Shift right for the counting.
316       value /= 2;
317 
318       int cnt = 0;
319 
320       // Count the bits.
321       while (value > 0) {
322         value /= 2;
323         cnt++;
324       }
325 
326       // Return cnt + how many storage units still remain * the number of bits per unit.
327       int res = cnt + (idx * kWordBits);
328       return res;
329     }
330   }
331 
332   // All zero, therefore return -1.
333   return -1;
334 }
335 
EnsureSizeAndClear(unsigned int num)336 bool BitVector::EnsureSizeAndClear(unsigned int num) {
337   // Check if the bitvector is expandable.
338   if (IsExpandable() == false) {
339     return false;
340   }
341 
342   if (num > 0) {
343     // Now try to expand by setting the last bit.
344     SetBit(num - 1);
345   }
346 
347   // We must clear all bits as per our specification.
348   ClearAllBits();
349 
350   return true;
351 }
352 
Copy(const BitVector * src)353 void BitVector::Copy(const BitVector *src) {
354   // Get highest bit set, we only need to copy till then.
355   int highest_bit = src->GetHighestBitSet();
356 
357   // If nothing is set, clear everything.
358   if (highest_bit == -1) {
359     ClearAllBits();
360     return;
361   }
362 
363   // Set upper bit to ensure right size before copy.
364   SetBit(highest_bit);
365 
366   // Now set until highest bit's storage.
367   uint32_t size = 1 + (highest_bit / kWordBits);
368   memcpy(storage_, src->GetRawStorage(), kWordBytes * size);
369 
370   // Set upper bits to 0.
371   uint32_t left = storage_size_ - size;
372 
373   if (left > 0) {
374     memset(storage_ + size, 0, kWordBytes * left);
375   }
376 }
377 
IsBitSet(const uint32_t * storage,uint32_t num)378 bool BitVector::IsBitSet(const uint32_t* storage, uint32_t num) {
379   uint32_t val = storage[num >> 5] & check_masks[num & 0x1f];
380   return (val != 0);
381 }
382 
NumSetBits(const uint32_t * storage,uint32_t end)383 uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) {
384   uint32_t word_end = end >> 5;
385   uint32_t partial_word_bits = end & 0x1f;
386 
387   uint32_t count = 0u;
388   for (uint32_t word = 0u; word < word_end; word++) {
389     count += POPCOUNT(storage[word]);
390   }
391   if (partial_word_bits != 0u) {
392     count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits));
393   }
394   return count;
395 }
396 
Dump(std::ostream & os,const char * prefix) const397 void BitVector::Dump(std::ostream& os, const char *prefix) const {
398   std::ostringstream buffer;
399   DumpHelper(prefix, buffer);
400   os << buffer.str() << std::endl;
401 }
402 
403 
DumpDotHelper(bool last_entry,FILE * file,std::ostringstream & buffer) const404 void BitVector::DumpDotHelper(bool last_entry, FILE* file, std::ostringstream& buffer) const {
405   // Now print it to the file.
406   fprintf(file, "    {%s}", buffer.str().c_str());
407 
408   // If it isn't the last entry, add a |.
409   if (last_entry == false) {
410     fprintf(file, "|");
411   }
412 
413   // Add the \n.
414   fprintf(file, "\\\n");
415 }
416 
DumpDot(FILE * file,const char * prefix,bool last_entry) const417 void BitVector::DumpDot(FILE* file, const char* prefix, bool last_entry) const {
418   std::ostringstream buffer;
419   DumpHelper(prefix, buffer);
420   DumpDotHelper(last_entry, file, buffer);
421 }
422 
DumpIndicesDot(FILE * file,const char * prefix,bool last_entry) const423 void BitVector::DumpIndicesDot(FILE* file, const char* prefix, bool last_entry) const {
424   std::ostringstream buffer;
425   DumpIndicesHelper(prefix, buffer);
426   DumpDotHelper(last_entry, file, buffer);
427 }
428 
DumpIndicesHelper(const char * prefix,std::ostringstream & buffer) const429 void BitVector::DumpIndicesHelper(const char* prefix, std::ostringstream& buffer) const {
430   // Initialize it.
431   if (prefix != nullptr) {
432     buffer << prefix;
433   }
434 
435   for (size_t i = 0; i < storage_size_ * kWordBits; i++) {
436     if (IsBitSet(i)) {
437       buffer << i << " ";
438     }
439   }
440 }
441 
DumpHelper(const char * prefix,std::ostringstream & buffer) const442 void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const {
443   // Initialize it.
444   if (prefix != nullptr) {
445     buffer << prefix;
446   }
447 
448   buffer << '(';
449   for (size_t i = 0; i < storage_size_ * kWordBits; i++) {
450     buffer << IsBitSet(i);
451   }
452   buffer << ')';
453 }
454 
455 }  // namespace art
456