• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ThreadSafetyUtil.h --------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines some basic utility classes for use by ThreadSafetyTIL.h
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_THREAD_SAFETY_UTIL_H
15 #define LLVM_CLANG_THREAD_SAFETY_UTIL_H
16 
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/Compiler.h"
21 #include "clang/AST/ExprCXX.h"
22 
23 #include <cassert>
24 #include <cstddef>
25 #include <vector>
26 #include <utility>
27 
28 namespace clang {
29 namespace threadSafety {
30 namespace til {
31 
32 // Simple wrapper class to abstract away from the details of memory management.
33 // SExprs are allocated in pools, and deallocated all at once.
34 class MemRegionRef {
35 private:
36   union AlignmentType {
37     double d;
38     void *p;
39     long double dd;
40     long long ii;
41   };
42 
43 public:
MemRegionRef()44   MemRegionRef() : Allocator(nullptr) {}
MemRegionRef(llvm::BumpPtrAllocator * A)45   MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {}
46 
allocate(size_t Sz)47   void *allocate(size_t Sz) {
48     return Allocator->Allocate(Sz, llvm::AlignOf<AlignmentType>::Alignment);
49   }
50 
allocateT()51   template <typename T> T *allocateT() { return Allocator->Allocate<T>(); }
52 
allocateT(size_t NumElems)53   template <typename T> T *allocateT(size_t NumElems) {
54     return Allocator->Allocate<T>(NumElems);
55   }
56 
57 private:
58   llvm::BumpPtrAllocator *Allocator;
59 };
60 
61 
62 } // end namespace til
63 } // end namespace threadSafety
64 } // end namespace clang
65 
66 
new(size_t Sz,clang::threadSafety::til::MemRegionRef & R)67 inline void *operator new(size_t Sz,
68                           clang::threadSafety::til::MemRegionRef &R) {
69   return R.allocate(Sz);
70 }
71 
72 
73 namespace clang {
74 namespace threadSafety {
75 
76 std::string getSourceLiteralString(const clang::Expr *CE);
77 
78 using llvm::StringRef;
79 using clang::SourceLocation;
80 
81 namespace til {
82 
83 
84 // A simple fixed size array class that does not manage its own memory,
85 // suitable for use with bump pointer allocation.
86 template <class T> class SimpleArray {
87 public:
SimpleArray()88   SimpleArray() : Data(nullptr), Size(0), Capacity(0) {}
89   SimpleArray(T *Dat, size_t Cp, size_t Sz = 0)
Data(Dat)90       : Data(Dat), Size(Sz), Capacity(Cp) {}
SimpleArray(MemRegionRef A,size_t Cp)91   SimpleArray(MemRegionRef A, size_t Cp)
92       : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Size(0), Capacity(Cp) {}
SimpleArray(SimpleArray<T> && A)93   SimpleArray(SimpleArray<T> &&A)
94       : Data(A.Data), Size(A.Size), Capacity(A.Capacity) {
95     A.Data = nullptr;
96     A.Size = 0;
97     A.Capacity = 0;
98   }
99 
100   SimpleArray &operator=(SimpleArray &&RHS) {
101     if (this != &RHS) {
102       Data = RHS.Data;
103       Size = RHS.Size;
104       Capacity = RHS.Capacity;
105 
106       RHS.Data = nullptr;
107       RHS.Size = RHS.Capacity = 0;
108     }
109     return *this;
110   }
111 
112   // Reserve space for at least Ncp items, reallocating if necessary.
reserve(size_t Ncp,MemRegionRef A)113   void reserve(size_t Ncp, MemRegionRef A) {
114     if (Ncp <= Capacity)
115       return;
116     T *Odata = Data;
117     Data = A.allocateT<T>(Ncp);
118     Capacity = Ncp;
119     memcpy(Data, Odata, sizeof(T) * Size);
120     return;
121   }
122 
123   // Reserve space for at least N more items.
reserveCheck(size_t N,MemRegionRef A)124   void reserveCheck(size_t N, MemRegionRef A) {
125     if (Capacity == 0)
126       reserve(u_max(InitialCapacity, N), A);
127     else if (Size + N < Capacity)
128       reserve(u_max(Size + N, Capacity * 2), A);
129   }
130 
131   typedef T *iterator;
132   typedef const T *const_iterator;
133 
size()134   size_t size() const { return Size; }
capacity()135   size_t capacity() const { return Capacity; }
136 
137   T &operator[](unsigned i) {
138     assert(i < Size && "Array index out of bounds.");
139     return Data[i];
140   }
141   const T &operator[](unsigned i) const {
142     assert(i < Size && "Array index out of bounds.");
143     return Data[i];
144   }
145 
begin()146   iterator begin() { return Data; }
end()147   iterator end() { return Data + Size; }
148 
cbegin()149   const_iterator cbegin() const { return Data; }
cend()150   const_iterator cend() const { return Data + Size; }
151 
push_back(const T & Elem)152   void push_back(const T &Elem) {
153     assert(Size < Capacity);
154     Data[Size++] = Elem;
155   }
156 
setValues(unsigned Sz,const T & C)157   void setValues(unsigned Sz, const T& C) {
158     assert(Sz <= Capacity);
159     Size = Sz;
160     for (unsigned i = 0; i < Sz; ++i) {
161       Data[i] = C;
162     }
163   }
164 
append(Iter I,Iter E)165   template <class Iter> unsigned append(Iter I, Iter E) {
166     size_t Osz = Size;
167     size_t J = Osz;
168     for (; J < Capacity && I != E; ++J, ++I)
169       Data[J] = *I;
170     Size = J;
171     return J - Osz;
172   }
173 
174 private:
175   // std::max is annoying here, because it requires a reference,
176   // thus forcing InitialCapacity to be initialized outside the .h file.
u_max(size_t i,size_t j)177   size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; }
178 
179   static const size_t InitialCapacity = 4;
180 
181   SimpleArray(const SimpleArray<T> &A) LLVM_DELETED_FUNCTION;
182 
183   T *Data;
184   size_t Size;
185   size_t Capacity;
186 };
187 
188 }  // end namespace til
189 
190 
191 // A copy on write vector.
192 // The vector can be in one of three states:
193 // * invalid -- no operations are permitted.
194 // * read-only -- read operations are permitted.
195 // * writable -- read and write operations are permitted.
196 // The init(), destroy(), and makeWritable() methods will change state.
197 template<typename T>
198 class CopyOnWriteVector {
199   class VectorData {
200   public:
VectorData()201     VectorData() : NumRefs(1) { }
VectorData(const VectorData & VD)202     VectorData(const VectorData &VD) : NumRefs(1), Vect(VD.Vect) { }
203 
204     unsigned NumRefs;
205     std::vector<T> Vect;
206   };
207 
208   // No copy constructor or copy assignment.  Use clone() with move assignment.
209   CopyOnWriteVector(const CopyOnWriteVector &V) LLVM_DELETED_FUNCTION;
210   void operator=(const CopyOnWriteVector &V) LLVM_DELETED_FUNCTION;
211 
212 public:
CopyOnWriteVector()213   CopyOnWriteVector() : Data(nullptr) {}
CopyOnWriteVector(CopyOnWriteVector && V)214   CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; }
~CopyOnWriteVector()215   ~CopyOnWriteVector() { destroy(); }
216 
217   // Returns true if this holds a valid vector.
valid()218   bool valid() const  { return Data; }
219 
220   // Returns true if this vector is writable.
writable()221   bool writable() const { return Data && Data->NumRefs == 1; }
222 
223   // If this vector is not valid, initialize it to a valid vector.
init()224   void init() {
225     if (!Data) {
226       Data = new VectorData();
227     }
228   }
229 
230   // Destroy this vector; thus making it invalid.
destroy()231   void destroy() {
232     if (!Data)
233       return;
234     if (Data->NumRefs <= 1)
235       delete Data;
236     else
237       --Data->NumRefs;
238     Data = nullptr;
239   }
240 
241   // Make this vector writable, creating a copy if needed.
makeWritable()242   void makeWritable() {
243     if (!Data) {
244       Data = new VectorData();
245       return;
246     }
247     if (Data->NumRefs == 1)
248       return;   // already writeable.
249     --Data->NumRefs;
250     Data = new VectorData(*Data);
251   }
252 
253   // Create a lazy copy of this vector.
clone()254   CopyOnWriteVector clone() { return CopyOnWriteVector(Data); }
255 
256   CopyOnWriteVector &operator=(CopyOnWriteVector &&V) {
257     destroy();
258     Data = V.Data;
259     V.Data = nullptr;
260     return *this;
261   }
262 
263   typedef typename std::vector<T>::const_iterator const_iterator;
264 
elements()265   const std::vector<T> &elements() const { return Data->Vect; }
266 
begin()267   const_iterator begin() const { return elements().cbegin(); }
end()268   const_iterator end() const { return elements().cend(); }
269 
270   const T& operator[](unsigned i) const { return elements()[i]; }
271 
size()272   unsigned size() const { return Data ? elements().size() : 0; }
273 
274   // Return true if V and this vector refer to the same data.
sameAs(const CopyOnWriteVector & V)275   bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; }
276 
277   // Clear vector.  The vector must be writable.
clear()278   void clear() {
279     assert(writable() && "Vector is not writable!");
280     Data->Vect.clear();
281   }
282 
283   // Push a new element onto the end.  The vector must be writable.
push_back(const T & Elem)284   void push_back(const T &Elem) {
285     assert(writable() && "Vector is not writable!");
286     Data->Vect.push_back(Elem);
287   }
288 
289   // Gets a mutable reference to the element at index(i).
290   // The vector must be writable.
elem(unsigned i)291   T& elem(unsigned i) {
292     assert(writable() && "Vector is not writable!");
293     return Data->Vect[i];
294   }
295 
296   // Drops elements from the back until the vector has size i.
downsize(unsigned i)297   void downsize(unsigned i) {
298     assert(writable() && "Vector is not writable!");
299     Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end());
300   }
301 
302 private:
CopyOnWriteVector(VectorData * D)303   CopyOnWriteVector(VectorData *D) : Data(D) {
304     if (!Data)
305       return;
306     ++Data->NumRefs;
307   }
308 
309   VectorData *Data;
310 };
311 
312 
313 } // end namespace threadSafety
314 } // end namespace clang
315 
316 #endif  // LLVM_CLANG_THREAD_SAFETY_UTIL_H
317