1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/Consumed.h"
29 #include "clang/Analysis/Analyses/ReachableCode.h"
30 #include "clang/Analysis/Analyses/ThreadSafety.h"
31 #include "clang/Analysis/Analyses/UninitializedValues.h"
32 #include "clang/Analysis/AnalysisContext.h"
33 #include "clang/Analysis/CFG.h"
34 #include "clang/Analysis/CFGStmtMap.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Lex/Lexer.h"
38 #include "clang/Lex/Preprocessor.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaInternal.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/FoldingSet.h"
44 #include "llvm/ADT/ImmutableMap.h"
45 #include "llvm/ADT/MapVector.h"
46 #include "llvm/ADT/PostOrderIterator.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/StringRef.h"
50 #include "llvm/Support/Casting.h"
51 #include <algorithm>
52 #include <deque>
53 #include <iterator>
54 #include <vector>
55
56 using namespace clang;
57
58 //===----------------------------------------------------------------------===//
59 // Unreachable code analysis.
60 //===----------------------------------------------------------------------===//
61
62 namespace {
63 class UnreachableCodeHandler : public reachable_code::Callback {
64 Sema &S;
65 public:
UnreachableCodeHandler(Sema & s)66 UnreachableCodeHandler(Sema &s) : S(s) {}
67
HandleUnreachable(reachable_code::UnreachableKind UK,SourceLocation L,SourceRange SilenceableCondVal,SourceRange R1,SourceRange R2)68 void HandleUnreachable(reachable_code::UnreachableKind UK,
69 SourceLocation L,
70 SourceRange SilenceableCondVal,
71 SourceRange R1,
72 SourceRange R2) override {
73 unsigned diag = diag::warn_unreachable;
74 switch (UK) {
75 case reachable_code::UK_Break:
76 diag = diag::warn_unreachable_break;
77 break;
78 case reachable_code::UK_Return:
79 diag = diag::warn_unreachable_return;
80 break;
81 case reachable_code::UK_Loop_Increment:
82 diag = diag::warn_unreachable_loop_increment;
83 break;
84 case reachable_code::UK_Other:
85 break;
86 }
87
88 S.Diag(L, diag) << R1 << R2;
89
90 SourceLocation Open = SilenceableCondVal.getBegin();
91 if (Open.isValid()) {
92 SourceLocation Close = SilenceableCondVal.getEnd();
93 Close = S.getLocForEndOfToken(Close);
94 if (Close.isValid()) {
95 S.Diag(Open, diag::note_unreachable_silence)
96 << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
97 << FixItHint::CreateInsertion(Close, ")");
98 }
99 }
100 }
101 };
102 }
103
104 /// CheckUnreachable - Check for unreachable code.
CheckUnreachable(Sema & S,AnalysisDeclContext & AC)105 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
106 // As a heuristic prune all diagnostics not in the main file. Currently
107 // the majority of warnings in headers are false positives. These
108 // are largely caused by configuration state, e.g. preprocessor
109 // defined code, etc.
110 //
111 // Note that this is also a performance optimization. Analyzing
112 // headers many times can be expensive.
113 if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
114 return;
115
116 UnreachableCodeHandler UC(S);
117 reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
118 }
119
120 /// \brief Warn on logical operator errors in CFGBuilder
121 class LogicalErrorHandler : public CFGCallback {
122 Sema &S;
123
124 public:
LogicalErrorHandler(Sema & S)125 LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
126
HasMacroID(const Expr * E)127 static bool HasMacroID(const Expr *E) {
128 if (E->getExprLoc().isMacroID())
129 return true;
130
131 // Recurse to children.
132 for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
133 if (*SubStmts)
134 if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
135 if (HasMacroID(SubExpr))
136 return true;
137
138 return false;
139 }
140
compareAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)141 void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {
142 if (HasMacroID(B))
143 return;
144
145 SourceRange DiagRange = B->getSourceRange();
146 S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
147 << DiagRange << isAlwaysTrue;
148 }
149
compareBitwiseEquality(const BinaryOperator * B,bool isAlwaysTrue)150 void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) {
151 if (HasMacroID(B))
152 return;
153
154 SourceRange DiagRange = B->getSourceRange();
155 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
156 << DiagRange << isAlwaysTrue;
157 }
158 };
159
160
161 //===----------------------------------------------------------------------===//
162 // Check for infinite self-recursion in functions
163 //===----------------------------------------------------------------------===//
164
165 // All blocks are in one of three states. States are ordered so that blocks
166 // can only move to higher states.
167 enum RecursiveState {
168 FoundNoPath,
169 FoundPath,
170 FoundPathWithNoRecursiveCall
171 };
172
checkForFunctionCall(Sema & S,const FunctionDecl * FD,CFGBlock & Block,unsigned ExitID,llvm::SmallVectorImpl<RecursiveState> & States,RecursiveState State)173 static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
174 CFGBlock &Block, unsigned ExitID,
175 llvm::SmallVectorImpl<RecursiveState> &States,
176 RecursiveState State) {
177 unsigned ID = Block.getBlockID();
178
179 // A block's state can only move to a higher state.
180 if (States[ID] >= State)
181 return;
182
183 States[ID] = State;
184
185 // Found a path to the exit node without a recursive call.
186 if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
187 return;
188
189 if (State == FoundPathWithNoRecursiveCall) {
190 // If the current state is FoundPathWithNoRecursiveCall, the successors
191 // will be either FoundPathWithNoRecursiveCall or FoundPath. To determine
192 // which, process all the Stmt's in this block to find any recursive calls.
193 for (const auto &B : Block) {
194 if (B.getKind() != CFGElement::Statement)
195 continue;
196
197 const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
198 if (CE && CE->getCalleeDecl() &&
199 CE->getCalleeDecl()->getCanonicalDecl() == FD) {
200
201 // Skip function calls which are qualified with a templated class.
202 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
203 CE->getCallee()->IgnoreParenImpCasts())) {
204 if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
205 if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
206 isa<TemplateSpecializationType>(NNS->getAsType())) {
207 continue;
208 }
209 }
210 }
211
212 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
213 if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
214 !MCE->getMethodDecl()->isVirtual()) {
215 State = FoundPath;
216 break;
217 }
218 } else {
219 State = FoundPath;
220 break;
221 }
222 }
223 }
224 }
225
226 for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
227 I != E; ++I)
228 if (*I)
229 checkForFunctionCall(S, FD, **I, ExitID, States, State);
230 }
231
checkRecursiveFunction(Sema & S,const FunctionDecl * FD,const Stmt * Body,AnalysisDeclContext & AC)232 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
233 const Stmt *Body,
234 AnalysisDeclContext &AC) {
235 FD = FD->getCanonicalDecl();
236
237 // Only run on non-templated functions and non-templated members of
238 // templated classes.
239 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
240 FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
241 return;
242
243 CFG *cfg = AC.getCFG();
244 if (!cfg) return;
245
246 // If the exit block is unreachable, skip processing the function.
247 if (cfg->getExit().pred_empty())
248 return;
249
250 // Mark all nodes as FoundNoPath, then begin processing the entry block.
251 llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
252 FoundNoPath);
253 checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
254 states, FoundPathWithNoRecursiveCall);
255
256 // Check that the exit block is reachable. This prevents triggering the
257 // warning on functions that do not terminate.
258 if (states[cfg->getExit().getBlockID()] == FoundPath)
259 S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
260 }
261
262 //===----------------------------------------------------------------------===//
263 // Check for missing return value.
264 //===----------------------------------------------------------------------===//
265
266 enum ControlFlowKind {
267 UnknownFallThrough,
268 NeverFallThrough,
269 MaybeFallThrough,
270 AlwaysFallThrough,
271 NeverFallThroughOrReturn
272 };
273
274 /// CheckFallThrough - Check that we don't fall off the end of a
275 /// Statement that should return a value.
276 ///
277 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
278 /// MaybeFallThrough iff we might or might not fall off the end,
279 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
280 /// return. We assume NeverFallThrough iff we never fall off the end of the
281 /// statement but we may return. We assume that functions not marked noreturn
282 /// will return.
CheckFallThrough(AnalysisDeclContext & AC)283 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
284 CFG *cfg = AC.getCFG();
285 if (!cfg) return UnknownFallThrough;
286
287 // The CFG leaves in dead things, and we don't want the dead code paths to
288 // confuse us, so we mark all live things first.
289 llvm::BitVector live(cfg->getNumBlockIDs());
290 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
291 live);
292
293 bool AddEHEdges = AC.getAddEHEdges();
294 if (!AddEHEdges && count != cfg->getNumBlockIDs())
295 // When there are things remaining dead, and we didn't add EH edges
296 // from CallExprs to the catch clauses, we have to go back and
297 // mark them as live.
298 for (const auto *B : *cfg) {
299 if (!live[B->getBlockID()]) {
300 if (B->pred_begin() == B->pred_end()) {
301 if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
302 // When not adding EH edges from calls, catch clauses
303 // can otherwise seem dead. Avoid noting them as dead.
304 count += reachable_code::ScanReachableFromBlock(B, live);
305 continue;
306 }
307 }
308 }
309
310 // Now we know what is live, we check the live precessors of the exit block
311 // and look for fall through paths, being careful to ignore normal returns,
312 // and exceptional paths.
313 bool HasLiveReturn = false;
314 bool HasFakeEdge = false;
315 bool HasPlainEdge = false;
316 bool HasAbnormalEdge = false;
317
318 // Ignore default cases that aren't likely to be reachable because all
319 // enums in a switch(X) have explicit case statements.
320 CFGBlock::FilterOptions FO;
321 FO.IgnoreDefaultsWithCoveredEnums = 1;
322
323 for (CFGBlock::filtered_pred_iterator
324 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
325 const CFGBlock& B = **I;
326 if (!live[B.getBlockID()])
327 continue;
328
329 // Skip blocks which contain an element marked as no-return. They don't
330 // represent actually viable edges into the exit block, so mark them as
331 // abnormal.
332 if (B.hasNoReturnElement()) {
333 HasAbnormalEdge = true;
334 continue;
335 }
336
337 // Destructors can appear after the 'return' in the CFG. This is
338 // normal. We need to look pass the destructors for the return
339 // statement (if it exists).
340 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
341
342 for ( ; ri != re ; ++ri)
343 if (ri->getAs<CFGStmt>())
344 break;
345
346 // No more CFGElements in the block?
347 if (ri == re) {
348 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
349 HasAbnormalEdge = true;
350 continue;
351 }
352 // A labeled empty statement, or the entry block...
353 HasPlainEdge = true;
354 continue;
355 }
356
357 CFGStmt CS = ri->castAs<CFGStmt>();
358 const Stmt *S = CS.getStmt();
359 if (isa<ReturnStmt>(S)) {
360 HasLiveReturn = true;
361 continue;
362 }
363 if (isa<ObjCAtThrowStmt>(S)) {
364 HasFakeEdge = true;
365 continue;
366 }
367 if (isa<CXXThrowExpr>(S)) {
368 HasFakeEdge = true;
369 continue;
370 }
371 if (isa<MSAsmStmt>(S)) {
372 // TODO: Verify this is correct.
373 HasFakeEdge = true;
374 HasLiveReturn = true;
375 continue;
376 }
377 if (isa<CXXTryStmt>(S)) {
378 HasAbnormalEdge = true;
379 continue;
380 }
381 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
382 == B.succ_end()) {
383 HasAbnormalEdge = true;
384 continue;
385 }
386
387 HasPlainEdge = true;
388 }
389 if (!HasPlainEdge) {
390 if (HasLiveReturn)
391 return NeverFallThrough;
392 return NeverFallThroughOrReturn;
393 }
394 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
395 return MaybeFallThrough;
396 // This says AlwaysFallThrough for calls to functions that are not marked
397 // noreturn, that don't return. If people would like this warning to be more
398 // accurate, such functions should be marked as noreturn.
399 return AlwaysFallThrough;
400 }
401
402 namespace {
403
404 struct CheckFallThroughDiagnostics {
405 unsigned diag_MaybeFallThrough_HasNoReturn;
406 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
407 unsigned diag_AlwaysFallThrough_HasNoReturn;
408 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
409 unsigned diag_NeverFallThroughOrReturn;
410 enum { Function, Block, Lambda } funMode;
411 SourceLocation FuncLoc;
412
MakeForFunction__anon94e2d5210211::CheckFallThroughDiagnostics413 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
414 CheckFallThroughDiagnostics D;
415 D.FuncLoc = Func->getLocation();
416 D.diag_MaybeFallThrough_HasNoReturn =
417 diag::warn_falloff_noreturn_function;
418 D.diag_MaybeFallThrough_ReturnsNonVoid =
419 diag::warn_maybe_falloff_nonvoid_function;
420 D.diag_AlwaysFallThrough_HasNoReturn =
421 diag::warn_falloff_noreturn_function;
422 D.diag_AlwaysFallThrough_ReturnsNonVoid =
423 diag::warn_falloff_nonvoid_function;
424
425 // Don't suggest that virtual functions be marked "noreturn", since they
426 // might be overridden by non-noreturn functions.
427 bool isVirtualMethod = false;
428 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
429 isVirtualMethod = Method->isVirtual();
430
431 // Don't suggest that template instantiations be marked "noreturn"
432 bool isTemplateInstantiation = false;
433 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
434 isTemplateInstantiation = Function->isTemplateInstantiation();
435
436 if (!isVirtualMethod && !isTemplateInstantiation)
437 D.diag_NeverFallThroughOrReturn =
438 diag::warn_suggest_noreturn_function;
439 else
440 D.diag_NeverFallThroughOrReturn = 0;
441
442 D.funMode = Function;
443 return D;
444 }
445
MakeForBlock__anon94e2d5210211::CheckFallThroughDiagnostics446 static CheckFallThroughDiagnostics MakeForBlock() {
447 CheckFallThroughDiagnostics D;
448 D.diag_MaybeFallThrough_HasNoReturn =
449 diag::err_noreturn_block_has_return_expr;
450 D.diag_MaybeFallThrough_ReturnsNonVoid =
451 diag::err_maybe_falloff_nonvoid_block;
452 D.diag_AlwaysFallThrough_HasNoReturn =
453 diag::err_noreturn_block_has_return_expr;
454 D.diag_AlwaysFallThrough_ReturnsNonVoid =
455 diag::err_falloff_nonvoid_block;
456 D.diag_NeverFallThroughOrReturn = 0;
457 D.funMode = Block;
458 return D;
459 }
460
MakeForLambda__anon94e2d5210211::CheckFallThroughDiagnostics461 static CheckFallThroughDiagnostics MakeForLambda() {
462 CheckFallThroughDiagnostics D;
463 D.diag_MaybeFallThrough_HasNoReturn =
464 diag::err_noreturn_lambda_has_return_expr;
465 D.diag_MaybeFallThrough_ReturnsNonVoid =
466 diag::warn_maybe_falloff_nonvoid_lambda;
467 D.diag_AlwaysFallThrough_HasNoReturn =
468 diag::err_noreturn_lambda_has_return_expr;
469 D.diag_AlwaysFallThrough_ReturnsNonVoid =
470 diag::warn_falloff_nonvoid_lambda;
471 D.diag_NeverFallThroughOrReturn = 0;
472 D.funMode = Lambda;
473 return D;
474 }
475
checkDiagnostics__anon94e2d5210211::CheckFallThroughDiagnostics476 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
477 bool HasNoReturn) const {
478 if (funMode == Function) {
479 return (ReturnsVoid ||
480 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
481 FuncLoc)) &&
482 (!HasNoReturn ||
483 D.isIgnored(diag::warn_noreturn_function_has_return_expr,
484 FuncLoc)) &&
485 (!ReturnsVoid ||
486 D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
487 }
488
489 // For blocks / lambdas.
490 return ReturnsVoid && !HasNoReturn;
491 }
492 };
493
494 }
495
496 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
497 /// function that should return a value. Check that we don't fall off the end
498 /// of a noreturn function. We assume that functions and blocks not marked
499 /// noreturn will return.
CheckFallThroughForBody(Sema & S,const Decl * D,const Stmt * Body,const BlockExpr * blkExpr,const CheckFallThroughDiagnostics & CD,AnalysisDeclContext & AC)500 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
501 const BlockExpr *blkExpr,
502 const CheckFallThroughDiagnostics& CD,
503 AnalysisDeclContext &AC) {
504
505 bool ReturnsVoid = false;
506 bool HasNoReturn = false;
507
508 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
509 ReturnsVoid = FD->getReturnType()->isVoidType();
510 HasNoReturn = FD->isNoReturn();
511 }
512 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
513 ReturnsVoid = MD->getReturnType()->isVoidType();
514 HasNoReturn = MD->hasAttr<NoReturnAttr>();
515 }
516 else if (isa<BlockDecl>(D)) {
517 QualType BlockTy = blkExpr->getType();
518 if (const FunctionType *FT =
519 BlockTy->getPointeeType()->getAs<FunctionType>()) {
520 if (FT->getReturnType()->isVoidType())
521 ReturnsVoid = true;
522 if (FT->getNoReturnAttr())
523 HasNoReturn = true;
524 }
525 }
526
527 DiagnosticsEngine &Diags = S.getDiagnostics();
528
529 // Short circuit for compilation speed.
530 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
531 return;
532
533 // FIXME: Function try block
534 if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
535 switch (CheckFallThrough(AC)) {
536 case UnknownFallThrough:
537 break;
538
539 case MaybeFallThrough:
540 if (HasNoReturn)
541 S.Diag(Compound->getRBracLoc(),
542 CD.diag_MaybeFallThrough_HasNoReturn);
543 else if (!ReturnsVoid)
544 S.Diag(Compound->getRBracLoc(),
545 CD.diag_MaybeFallThrough_ReturnsNonVoid);
546 break;
547 case AlwaysFallThrough:
548 if (HasNoReturn)
549 S.Diag(Compound->getRBracLoc(),
550 CD.diag_AlwaysFallThrough_HasNoReturn);
551 else if (!ReturnsVoid)
552 S.Diag(Compound->getRBracLoc(),
553 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
554 break;
555 case NeverFallThroughOrReturn:
556 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
558 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
559 << 0 << FD;
560 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
561 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
562 << 1 << MD;
563 } else {
564 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
565 }
566 }
567 break;
568 case NeverFallThrough:
569 break;
570 }
571 }
572 }
573
574 //===----------------------------------------------------------------------===//
575 // -Wuninitialized
576 //===----------------------------------------------------------------------===//
577
578 namespace {
579 /// ContainsReference - A visitor class to search for references to
580 /// a particular declaration (the needle) within any evaluated component of an
581 /// expression (recursively).
582 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
583 bool FoundReference;
584 const DeclRefExpr *Needle;
585
586 public:
ContainsReference(ASTContext & Context,const DeclRefExpr * Needle)587 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
588 : EvaluatedExprVisitor<ContainsReference>(Context),
589 FoundReference(false), Needle(Needle) {}
590
VisitExpr(Expr * E)591 void VisitExpr(Expr *E) {
592 // Stop evaluating if we already have a reference.
593 if (FoundReference)
594 return;
595
596 EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
597 }
598
VisitDeclRefExpr(DeclRefExpr * E)599 void VisitDeclRefExpr(DeclRefExpr *E) {
600 if (E == Needle)
601 FoundReference = true;
602 else
603 EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
604 }
605
doesContainReference() const606 bool doesContainReference() const { return FoundReference; }
607 };
608 }
609
SuggestInitializationFixit(Sema & S,const VarDecl * VD)610 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
611 QualType VariableTy = VD->getType().getCanonicalType();
612 if (VariableTy->isBlockPointerType() &&
613 !VD->hasAttr<BlocksAttr>()) {
614 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
615 << VD->getDeclName()
616 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
617 return true;
618 }
619
620 // Don't issue a fixit if there is already an initializer.
621 if (VD->getInit())
622 return false;
623
624 // Don't suggest a fixit inside macros.
625 if (VD->getLocEnd().isMacroID())
626 return false;
627
628 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
629
630 // Suggest possible initialization (if any).
631 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
632 if (Init.empty())
633 return false;
634
635 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
636 << FixItHint::CreateInsertion(Loc, Init);
637 return true;
638 }
639
640 /// Create a fixit to remove an if-like statement, on the assumption that its
641 /// condition is CondVal.
CreateIfFixit(Sema & S,const Stmt * If,const Stmt * Then,const Stmt * Else,bool CondVal,FixItHint & Fixit1,FixItHint & Fixit2)642 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
643 const Stmt *Else, bool CondVal,
644 FixItHint &Fixit1, FixItHint &Fixit2) {
645 if (CondVal) {
646 // If condition is always true, remove all but the 'then'.
647 Fixit1 = FixItHint::CreateRemoval(
648 CharSourceRange::getCharRange(If->getLocStart(),
649 Then->getLocStart()));
650 if (Else) {
651 SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
652 Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
653 Fixit2 = FixItHint::CreateRemoval(
654 SourceRange(ElseKwLoc, Else->getLocEnd()));
655 }
656 } else {
657 // If condition is always false, remove all but the 'else'.
658 if (Else)
659 Fixit1 = FixItHint::CreateRemoval(
660 CharSourceRange::getCharRange(If->getLocStart(),
661 Else->getLocStart()));
662 else
663 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
664 }
665 }
666
667 /// DiagUninitUse -- Helper function to produce a diagnostic for an
668 /// uninitialized use of a variable.
DiagUninitUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool IsCapturedByBlock)669 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
670 bool IsCapturedByBlock) {
671 bool Diagnosed = false;
672
673 switch (Use.getKind()) {
674 case UninitUse::Always:
675 S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
676 << VD->getDeclName() << IsCapturedByBlock
677 << Use.getUser()->getSourceRange();
678 return;
679
680 case UninitUse::AfterDecl:
681 case UninitUse::AfterCall:
682 S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
683 << VD->getDeclName() << IsCapturedByBlock
684 << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
685 << const_cast<DeclContext*>(VD->getLexicalDeclContext())
686 << VD->getSourceRange();
687 S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
688 << IsCapturedByBlock << Use.getUser()->getSourceRange();
689 return;
690
691 case UninitUse::Maybe:
692 case UninitUse::Sometimes:
693 // Carry on to report sometimes-uninitialized branches, if possible,
694 // or a 'may be used uninitialized' diagnostic otherwise.
695 break;
696 }
697
698 // Diagnose each branch which leads to a sometimes-uninitialized use.
699 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
700 I != E; ++I) {
701 assert(Use.getKind() == UninitUse::Sometimes);
702
703 const Expr *User = Use.getUser();
704 const Stmt *Term = I->Terminator;
705
706 // Information used when building the diagnostic.
707 unsigned DiagKind;
708 StringRef Str;
709 SourceRange Range;
710
711 // FixIts to suppress the diagnostic by removing the dead condition.
712 // For all binary terminators, branch 0 is taken if the condition is true,
713 // and branch 1 is taken if the condition is false.
714 int RemoveDiagKind = -1;
715 const char *FixitStr =
716 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
717 : (I->Output ? "1" : "0");
718 FixItHint Fixit1, Fixit2;
719
720 switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
721 default:
722 // Don't know how to report this. Just fall back to 'may be used
723 // uninitialized'. FIXME: Can this happen?
724 continue;
725
726 // "condition is true / condition is false".
727 case Stmt::IfStmtClass: {
728 const IfStmt *IS = cast<IfStmt>(Term);
729 DiagKind = 0;
730 Str = "if";
731 Range = IS->getCond()->getSourceRange();
732 RemoveDiagKind = 0;
733 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
734 I->Output, Fixit1, Fixit2);
735 break;
736 }
737 case Stmt::ConditionalOperatorClass: {
738 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
739 DiagKind = 0;
740 Str = "?:";
741 Range = CO->getCond()->getSourceRange();
742 RemoveDiagKind = 0;
743 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
744 I->Output, Fixit1, Fixit2);
745 break;
746 }
747 case Stmt::BinaryOperatorClass: {
748 const BinaryOperator *BO = cast<BinaryOperator>(Term);
749 if (!BO->isLogicalOp())
750 continue;
751 DiagKind = 0;
752 Str = BO->getOpcodeStr();
753 Range = BO->getLHS()->getSourceRange();
754 RemoveDiagKind = 0;
755 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
756 (BO->getOpcode() == BO_LOr && !I->Output))
757 // true && y -> y, false || y -> y.
758 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
759 BO->getOperatorLoc()));
760 else
761 // false && y -> false, true || y -> true.
762 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
763 break;
764 }
765
766 // "loop is entered / loop is exited".
767 case Stmt::WhileStmtClass:
768 DiagKind = 1;
769 Str = "while";
770 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
771 RemoveDiagKind = 1;
772 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
773 break;
774 case Stmt::ForStmtClass:
775 DiagKind = 1;
776 Str = "for";
777 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
778 RemoveDiagKind = 1;
779 if (I->Output)
780 Fixit1 = FixItHint::CreateRemoval(Range);
781 else
782 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
783 break;
784 case Stmt::CXXForRangeStmtClass:
785 if (I->Output == 1) {
786 // The use occurs if a range-based for loop's body never executes.
787 // That may be impossible, and there's no syntactic fix for this,
788 // so treat it as a 'may be uninitialized' case.
789 continue;
790 }
791 DiagKind = 1;
792 Str = "for";
793 Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
794 break;
795
796 // "condition is true / loop is exited".
797 case Stmt::DoStmtClass:
798 DiagKind = 2;
799 Str = "do";
800 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
801 RemoveDiagKind = 1;
802 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
803 break;
804
805 // "switch case is taken".
806 case Stmt::CaseStmtClass:
807 DiagKind = 3;
808 Str = "case";
809 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
810 break;
811 case Stmt::DefaultStmtClass:
812 DiagKind = 3;
813 Str = "default";
814 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
815 break;
816 }
817
818 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
819 << VD->getDeclName() << IsCapturedByBlock << DiagKind
820 << Str << I->Output << Range;
821 S.Diag(User->getLocStart(), diag::note_uninit_var_use)
822 << IsCapturedByBlock << User->getSourceRange();
823 if (RemoveDiagKind != -1)
824 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
825 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
826
827 Diagnosed = true;
828 }
829
830 if (!Diagnosed)
831 S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
832 << VD->getDeclName() << IsCapturedByBlock
833 << Use.getUser()->getSourceRange();
834 }
835
836 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
837 /// uninitialized variable. This manages the different forms of diagnostic
838 /// emitted for particular types of uses. Returns true if the use was diagnosed
839 /// as a warning. If a particular use is one we omit warnings for, returns
840 /// false.
DiagnoseUninitializedUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool alwaysReportSelfInit=false)841 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
842 const UninitUse &Use,
843 bool alwaysReportSelfInit = false) {
844
845 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
846 // Inspect the initializer of the variable declaration which is
847 // being referenced prior to its initialization. We emit
848 // specialized diagnostics for self-initialization, and we
849 // specifically avoid warning about self references which take the
850 // form of:
851 //
852 // int x = x;
853 //
854 // This is used to indicate to GCC that 'x' is intentionally left
855 // uninitialized. Proven code paths which access 'x' in
856 // an uninitialized state after this will still warn.
857 if (const Expr *Initializer = VD->getInit()) {
858 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
859 return false;
860
861 ContainsReference CR(S.Context, DRE);
862 CR.Visit(const_cast<Expr*>(Initializer));
863 if (CR.doesContainReference()) {
864 S.Diag(DRE->getLocStart(),
865 diag::warn_uninit_self_reference_in_init)
866 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
867 return true;
868 }
869 }
870
871 DiagUninitUse(S, VD, Use, false);
872 } else {
873 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
874 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
875 S.Diag(BE->getLocStart(),
876 diag::warn_uninit_byref_blockvar_captured_by_block)
877 << VD->getDeclName();
878 else
879 DiagUninitUse(S, VD, Use, true);
880 }
881
882 // Report where the variable was declared when the use wasn't within
883 // the initializer of that declaration & we didn't already suggest
884 // an initialization fixit.
885 if (!SuggestInitializationFixit(S, VD))
886 S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
887 << VD->getDeclName();
888
889 return true;
890 }
891
892 namespace {
893 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
894 public:
FallthroughMapper(Sema & S)895 FallthroughMapper(Sema &S)
896 : FoundSwitchStatements(false),
897 S(S) {
898 }
899
foundSwitchStatements() const900 bool foundSwitchStatements() const { return FoundSwitchStatements; }
901
markFallthroughVisited(const AttributedStmt * Stmt)902 void markFallthroughVisited(const AttributedStmt *Stmt) {
903 bool Found = FallthroughStmts.erase(Stmt);
904 assert(Found);
905 (void)Found;
906 }
907
908 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
909
getFallthroughStmts() const910 const AttrStmts &getFallthroughStmts() const {
911 return FallthroughStmts;
912 }
913
fillReachableBlocks(CFG * Cfg)914 void fillReachableBlocks(CFG *Cfg) {
915 assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
916 std::deque<const CFGBlock *> BlockQueue;
917
918 ReachableBlocks.insert(&Cfg->getEntry());
919 BlockQueue.push_back(&Cfg->getEntry());
920 // Mark all case blocks reachable to avoid problems with switching on
921 // constants, covered enums, etc.
922 // These blocks can contain fall-through annotations, and we don't want to
923 // issue a warn_fallthrough_attr_unreachable for them.
924 for (const auto *B : *Cfg) {
925 const Stmt *L = B->getLabel();
926 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B))
927 BlockQueue.push_back(B);
928 }
929
930 while (!BlockQueue.empty()) {
931 const CFGBlock *P = BlockQueue.front();
932 BlockQueue.pop_front();
933 for (CFGBlock::const_succ_iterator I = P->succ_begin(),
934 E = P->succ_end();
935 I != E; ++I) {
936 if (*I && ReachableBlocks.insert(*I))
937 BlockQueue.push_back(*I);
938 }
939 }
940 }
941
checkFallThroughIntoBlock(const CFGBlock & B,int & AnnotatedCnt)942 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
943 assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
944
945 int UnannotatedCnt = 0;
946 AnnotatedCnt = 0;
947
948 std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
949 while (!BlockQueue.empty()) {
950 const CFGBlock *P = BlockQueue.front();
951 BlockQueue.pop_front();
952 if (!P) continue;
953
954 const Stmt *Term = P->getTerminator();
955 if (Term && isa<SwitchStmt>(Term))
956 continue; // Switch statement, good.
957
958 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
959 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
960 continue; // Previous case label has no statements, good.
961
962 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
963 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
964 continue; // Case label is preceded with a normal label, good.
965
966 if (!ReachableBlocks.count(P)) {
967 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
968 ElemEnd = P->rend();
969 ElemIt != ElemEnd; ++ElemIt) {
970 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
971 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
972 S.Diag(AS->getLocStart(),
973 diag::warn_fallthrough_attr_unreachable);
974 markFallthroughVisited(AS);
975 ++AnnotatedCnt;
976 break;
977 }
978 // Don't care about other unreachable statements.
979 }
980 }
981 // If there are no unreachable statements, this may be a special
982 // case in CFG:
983 // case X: {
984 // A a; // A has a destructor.
985 // break;
986 // }
987 // // <<<< This place is represented by a 'hanging' CFG block.
988 // case Y:
989 continue;
990 }
991
992 const Stmt *LastStmt = getLastStmt(*P);
993 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
994 markFallthroughVisited(AS);
995 ++AnnotatedCnt;
996 continue; // Fallthrough annotation, good.
997 }
998
999 if (!LastStmt) { // This block contains no executable statements.
1000 // Traverse its predecessors.
1001 std::copy(P->pred_begin(), P->pred_end(),
1002 std::back_inserter(BlockQueue));
1003 continue;
1004 }
1005
1006 ++UnannotatedCnt;
1007 }
1008 return !!UnannotatedCnt;
1009 }
1010
1011 // RecursiveASTVisitor setup.
shouldWalkTypesOfTypeLocs() const1012 bool shouldWalkTypesOfTypeLocs() const { return false; }
1013
VisitAttributedStmt(AttributedStmt * S)1014 bool VisitAttributedStmt(AttributedStmt *S) {
1015 if (asFallThroughAttr(S))
1016 FallthroughStmts.insert(S);
1017 return true;
1018 }
1019
VisitSwitchStmt(SwitchStmt * S)1020 bool VisitSwitchStmt(SwitchStmt *S) {
1021 FoundSwitchStatements = true;
1022 return true;
1023 }
1024
1025 // We don't want to traverse local type declarations. We analyze their
1026 // methods separately.
TraverseDecl(Decl * D)1027 bool TraverseDecl(Decl *D) { return true; }
1028
1029 // We analyze lambda bodies separately. Skip them here.
TraverseLambdaBody(LambdaExpr * LE)1030 bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1031
1032 private:
1033
asFallThroughAttr(const Stmt * S)1034 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1035 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1036 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1037 return AS;
1038 }
1039 return nullptr;
1040 }
1041
getLastStmt(const CFGBlock & B)1042 static const Stmt *getLastStmt(const CFGBlock &B) {
1043 if (const Stmt *Term = B.getTerminator())
1044 return Term;
1045 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1046 ElemEnd = B.rend();
1047 ElemIt != ElemEnd; ++ElemIt) {
1048 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1049 return CS->getStmt();
1050 }
1051 // Workaround to detect a statement thrown out by CFGBuilder:
1052 // case X: {} case Y:
1053 // case X: ; case Y:
1054 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1055 if (!isa<SwitchCase>(SW->getSubStmt()))
1056 return SW->getSubStmt();
1057
1058 return nullptr;
1059 }
1060
1061 bool FoundSwitchStatements;
1062 AttrStmts FallthroughStmts;
1063 Sema &S;
1064 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1065 };
1066 }
1067
DiagnoseSwitchLabelsFallthrough(Sema & S,AnalysisDeclContext & AC,bool PerFunction)1068 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1069 bool PerFunction) {
1070 // Only perform this analysis when using C++11. There is no good workflow
1071 // for this warning when not using C++11. There is no good way to silence
1072 // the warning (no attribute is available) unless we are using C++11's support
1073 // for generalized attributes. Once could use pragmas to silence the warning,
1074 // but as a general solution that is gross and not in the spirit of this
1075 // warning.
1076 //
1077 // NOTE: This an intermediate solution. There are on-going discussions on
1078 // how to properly support this warning outside of C++11 with an annotation.
1079 if (!AC.getASTContext().getLangOpts().CPlusPlus11)
1080 return;
1081
1082 FallthroughMapper FM(S);
1083 FM.TraverseStmt(AC.getBody());
1084
1085 if (!FM.foundSwitchStatements())
1086 return;
1087
1088 if (PerFunction && FM.getFallthroughStmts().empty())
1089 return;
1090
1091 CFG *Cfg = AC.getCFG();
1092
1093 if (!Cfg)
1094 return;
1095
1096 FM.fillReachableBlocks(Cfg);
1097
1098 for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
1099 const CFGBlock *B = *I;
1100 const Stmt *Label = B->getLabel();
1101
1102 if (!Label || !isa<SwitchCase>(Label))
1103 continue;
1104
1105 int AnnotatedCnt;
1106
1107 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
1108 continue;
1109
1110 S.Diag(Label->getLocStart(),
1111 PerFunction ? diag::warn_unannotated_fallthrough_per_function
1112 : diag::warn_unannotated_fallthrough);
1113
1114 if (!AnnotatedCnt) {
1115 SourceLocation L = Label->getLocStart();
1116 if (L.isMacroID())
1117 continue;
1118 if (S.getLangOpts().CPlusPlus11) {
1119 const Stmt *Term = B->getTerminator();
1120 // Skip empty cases.
1121 while (B->empty() && !Term && B->succ_size() == 1) {
1122 B = *B->succ_begin();
1123 Term = B->getTerminator();
1124 }
1125 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1126 Preprocessor &PP = S.getPreprocessor();
1127 TokenValue Tokens[] = {
1128 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1129 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1130 tok::r_square, tok::r_square
1131 };
1132 StringRef AnnotationSpelling = "[[clang::fallthrough]]";
1133 StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
1134 if (!MacroName.empty())
1135 AnnotationSpelling = MacroName;
1136 SmallString<64> TextToInsert(AnnotationSpelling);
1137 TextToInsert += "; ";
1138 S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1139 AnnotationSpelling <<
1140 FixItHint::CreateInsertion(L, TextToInsert);
1141 }
1142 }
1143 S.Diag(L, diag::note_insert_break_fixit) <<
1144 FixItHint::CreateInsertion(L, "break; ");
1145 }
1146 }
1147
1148 for (const auto *F : FM.getFallthroughStmts())
1149 S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
1150 }
1151
isInLoop(const ASTContext & Ctx,const ParentMap & PM,const Stmt * S)1152 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1153 const Stmt *S) {
1154 assert(S);
1155
1156 do {
1157 switch (S->getStmtClass()) {
1158 case Stmt::ForStmtClass:
1159 case Stmt::WhileStmtClass:
1160 case Stmt::CXXForRangeStmtClass:
1161 case Stmt::ObjCForCollectionStmtClass:
1162 return true;
1163 case Stmt::DoStmtClass: {
1164 const Expr *Cond = cast<DoStmt>(S)->getCond();
1165 llvm::APSInt Val;
1166 if (!Cond->EvaluateAsInt(Val, Ctx))
1167 return true;
1168 return Val.getBoolValue();
1169 }
1170 default:
1171 break;
1172 }
1173 } while ((S = PM.getParent(S)));
1174
1175 return false;
1176 }
1177
1178
diagnoseRepeatedUseOfWeak(Sema & S,const sema::FunctionScopeInfo * CurFn,const Decl * D,const ParentMap & PM)1179 static void diagnoseRepeatedUseOfWeak(Sema &S,
1180 const sema::FunctionScopeInfo *CurFn,
1181 const Decl *D,
1182 const ParentMap &PM) {
1183 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1184 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1185 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1186 typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1187 StmtUsesPair;
1188
1189 ASTContext &Ctx = S.getASTContext();
1190
1191 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1192
1193 // Extract all weak objects that are referenced more than once.
1194 SmallVector<StmtUsesPair, 8> UsesByStmt;
1195 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1196 I != E; ++I) {
1197 const WeakUseVector &Uses = I->second;
1198
1199 // Find the first read of the weak object.
1200 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1201 for ( ; UI != UE; ++UI) {
1202 if (UI->isUnsafe())
1203 break;
1204 }
1205
1206 // If there were only writes to this object, don't warn.
1207 if (UI == UE)
1208 continue;
1209
1210 // If there was only one read, followed by any number of writes, and the
1211 // read is not within a loop, don't warn. Additionally, don't warn in a
1212 // loop if the base object is a local variable -- local variables are often
1213 // changed in loops.
1214 if (UI == Uses.begin()) {
1215 WeakUseVector::const_iterator UI2 = UI;
1216 for (++UI2; UI2 != UE; ++UI2)
1217 if (UI2->isUnsafe())
1218 break;
1219
1220 if (UI2 == UE) {
1221 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1222 continue;
1223
1224 const WeakObjectProfileTy &Profile = I->first;
1225 if (!Profile.isExactProfile())
1226 continue;
1227
1228 const NamedDecl *Base = Profile.getBase();
1229 if (!Base)
1230 Base = Profile.getProperty();
1231 assert(Base && "A profile always has a base or property.");
1232
1233 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1234 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1235 continue;
1236 }
1237 }
1238
1239 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1240 }
1241
1242 if (UsesByStmt.empty())
1243 return;
1244
1245 // Sort by first use so that we emit the warnings in a deterministic order.
1246 SourceManager &SM = S.getSourceManager();
1247 std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1248 [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1249 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1250 RHS.first->getLocStart());
1251 });
1252
1253 // Classify the current code body for better warning text.
1254 // This enum should stay in sync with the cases in
1255 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1256 // FIXME: Should we use a common classification enum and the same set of
1257 // possibilities all throughout Sema?
1258 enum {
1259 Function,
1260 Method,
1261 Block,
1262 Lambda
1263 } FunctionKind;
1264
1265 if (isa<sema::BlockScopeInfo>(CurFn))
1266 FunctionKind = Block;
1267 else if (isa<sema::LambdaScopeInfo>(CurFn))
1268 FunctionKind = Lambda;
1269 else if (isa<ObjCMethodDecl>(D))
1270 FunctionKind = Method;
1271 else
1272 FunctionKind = Function;
1273
1274 // Iterate through the sorted problems and emit warnings for each.
1275 for (const auto &P : UsesByStmt) {
1276 const Stmt *FirstRead = P.first;
1277 const WeakObjectProfileTy &Key = P.second->first;
1278 const WeakUseVector &Uses = P.second->second;
1279
1280 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1281 // may not contain enough information to determine that these are different
1282 // properties. We can only be 100% sure of a repeated use in certain cases,
1283 // and we adjust the diagnostic kind accordingly so that the less certain
1284 // case can be turned off if it is too noisy.
1285 unsigned DiagKind;
1286 if (Key.isExactProfile())
1287 DiagKind = diag::warn_arc_repeated_use_of_weak;
1288 else
1289 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1290
1291 // Classify the weak object being accessed for better warning text.
1292 // This enum should stay in sync with the cases in
1293 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1294 enum {
1295 Variable,
1296 Property,
1297 ImplicitProperty,
1298 Ivar
1299 } ObjectKind;
1300
1301 const NamedDecl *D = Key.getProperty();
1302 if (isa<VarDecl>(D))
1303 ObjectKind = Variable;
1304 else if (isa<ObjCPropertyDecl>(D))
1305 ObjectKind = Property;
1306 else if (isa<ObjCMethodDecl>(D))
1307 ObjectKind = ImplicitProperty;
1308 else if (isa<ObjCIvarDecl>(D))
1309 ObjectKind = Ivar;
1310 else
1311 llvm_unreachable("Unexpected weak object kind!");
1312
1313 // Show the first time the object was read.
1314 S.Diag(FirstRead->getLocStart(), DiagKind)
1315 << int(ObjectKind) << D << int(FunctionKind)
1316 << FirstRead->getSourceRange();
1317
1318 // Print all the other accesses as notes.
1319 for (const auto &Use : Uses) {
1320 if (Use.getUseExpr() == FirstRead)
1321 continue;
1322 S.Diag(Use.getUseExpr()->getLocStart(),
1323 diag::note_arc_weak_also_accessed_here)
1324 << Use.getUseExpr()->getSourceRange();
1325 }
1326 }
1327 }
1328
1329 namespace {
1330 class UninitValsDiagReporter : public UninitVariablesHandler {
1331 Sema &S;
1332 typedef SmallVector<UninitUse, 2> UsesVec;
1333 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1334 // Prefer using MapVector to DenseMap, so that iteration order will be
1335 // the same as insertion order. This is needed to obtain a deterministic
1336 // order of diagnostics when calling flushDiagnostics().
1337 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1338 UsesMap *uses;
1339
1340 public:
UninitValsDiagReporter(Sema & S)1341 UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
~UninitValsDiagReporter()1342 ~UninitValsDiagReporter() {
1343 flushDiagnostics();
1344 }
1345
getUses(const VarDecl * vd)1346 MappedType &getUses(const VarDecl *vd) {
1347 if (!uses)
1348 uses = new UsesMap();
1349
1350 MappedType &V = (*uses)[vd];
1351 if (!V.getPointer())
1352 V.setPointer(new UsesVec());
1353
1354 return V;
1355 }
1356
handleUseOfUninitVariable(const VarDecl * vd,const UninitUse & use)1357 void handleUseOfUninitVariable(const VarDecl *vd,
1358 const UninitUse &use) override {
1359 getUses(vd).getPointer()->push_back(use);
1360 }
1361
handleSelfInit(const VarDecl * vd)1362 void handleSelfInit(const VarDecl *vd) override {
1363 getUses(vd).setInt(true);
1364 }
1365
flushDiagnostics()1366 void flushDiagnostics() {
1367 if (!uses)
1368 return;
1369
1370 for (const auto &P : *uses) {
1371 const VarDecl *vd = P.first;
1372 const MappedType &V = P.second;
1373
1374 UsesVec *vec = V.getPointer();
1375 bool hasSelfInit = V.getInt();
1376
1377 // Specially handle the case where we have uses of an uninitialized
1378 // variable, but the root cause is an idiomatic self-init. We want
1379 // to report the diagnostic at the self-init since that is the root cause.
1380 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1381 DiagnoseUninitializedUse(S, vd,
1382 UninitUse(vd->getInit()->IgnoreParenCasts(),
1383 /* isAlwaysUninit */ true),
1384 /* alwaysReportSelfInit */ true);
1385 else {
1386 // Sort the uses by their SourceLocations. While not strictly
1387 // guaranteed to produce them in line/column order, this will provide
1388 // a stable ordering.
1389 std::sort(vec->begin(), vec->end(),
1390 [](const UninitUse &a, const UninitUse &b) {
1391 // Prefer a more confident report over a less confident one.
1392 if (a.getKind() != b.getKind())
1393 return a.getKind() > b.getKind();
1394 return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1395 });
1396
1397 for (const auto &U : *vec) {
1398 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1399 UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1400
1401 if (DiagnoseUninitializedUse(S, vd, Use))
1402 // Skip further diagnostics for this variable. We try to warn only
1403 // on the first point at which a variable is used uninitialized.
1404 break;
1405 }
1406 }
1407
1408 // Release the uses vector.
1409 delete vec;
1410 }
1411 delete uses;
1412 }
1413
1414 private:
hasAlwaysUninitializedUse(const UsesVec * vec)1415 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1416 return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1417 return U.getKind() == UninitUse::Always ||
1418 U.getKind() == UninitUse::AfterCall ||
1419 U.getKind() == UninitUse::AfterDecl;
1420 });
1421 }
1422 };
1423 }
1424
1425 namespace clang {
1426 namespace {
1427 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1428 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1429 typedef std::list<DelayedDiag> DiagList;
1430
1431 struct SortDiagBySourceLocation {
1432 SourceManager &SM;
SortDiagBySourceLocationclang::__anon94e2d5210c11::SortDiagBySourceLocation1433 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1434
operator ()clang::__anon94e2d5210c11::SortDiagBySourceLocation1435 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1436 // Although this call will be slow, this is only called when outputting
1437 // multiple warnings.
1438 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1439 }
1440 };
1441 }}
1442
1443 //===----------------------------------------------------------------------===//
1444 // -Wthread-safety
1445 //===----------------------------------------------------------------------===//
1446 namespace clang {
1447 namespace thread_safety {
1448 namespace {
1449 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
1450 Sema &S;
1451 DiagList Warnings;
1452 SourceLocation FunLocation, FunEndLocation;
1453
1454 // Helper functions
warnLockMismatch(unsigned DiagID,StringRef Kind,Name LockName,SourceLocation Loc)1455 void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1456 SourceLocation Loc) {
1457 // Gracefully handle rare cases when the analysis can't get a more
1458 // precise source location.
1459 if (!Loc.isValid())
1460 Loc = FunLocation;
1461 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1462 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1463 }
1464
1465 public:
ThreadSafetyReporter(Sema & S,SourceLocation FL,SourceLocation FEL)1466 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1467 : S(S), FunLocation(FL), FunEndLocation(FEL) {}
1468
1469 /// \brief Emit all buffered diagnostics in order of sourcelocation.
1470 /// We need to output diagnostics produced while iterating through
1471 /// the lockset in deterministic order, so this function orders diagnostics
1472 /// and outputs them.
emitDiagnostics()1473 void emitDiagnostics() {
1474 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1475 for (const auto &Diag : Warnings) {
1476 S.Diag(Diag.first.first, Diag.first.second);
1477 for (const auto &Note : Diag.second)
1478 S.Diag(Note.first, Note.second);
1479 }
1480 }
1481
handleInvalidLockExp(StringRef Kind,SourceLocation Loc)1482 void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1483 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1484 << Loc);
1485 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1486 }
handleUnmatchedUnlock(StringRef Kind,Name LockName,SourceLocation Loc)1487 void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1488 SourceLocation Loc) override {
1489 warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1490 }
handleIncorrectUnlockKind(StringRef Kind,Name LockName,LockKind Expected,LockKind Received,SourceLocation Loc)1491 void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1492 LockKind Expected, LockKind Received,
1493 SourceLocation Loc) override {
1494 if (Loc.isInvalid())
1495 Loc = FunLocation;
1496 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1497 << Kind << LockName << Received
1498 << Expected);
1499 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1500 }
handleDoubleLock(StringRef Kind,Name LockName,SourceLocation Loc)1501 void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1502 warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1503 }
1504
handleMutexHeldEndOfScope(StringRef Kind,Name LockName,SourceLocation LocLocked,SourceLocation LocEndOfScope,LockErrorKind LEK)1505 void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1506 SourceLocation LocLocked,
1507 SourceLocation LocEndOfScope,
1508 LockErrorKind LEK) override {
1509 unsigned DiagID = 0;
1510 switch (LEK) {
1511 case LEK_LockedSomePredecessors:
1512 DiagID = diag::warn_lock_some_predecessors;
1513 break;
1514 case LEK_LockedSomeLoopIterations:
1515 DiagID = diag::warn_expecting_lock_held_on_loop;
1516 break;
1517 case LEK_LockedAtEndOfFunction:
1518 DiagID = diag::warn_no_unlock;
1519 break;
1520 case LEK_NotLockedAtEndOfFunction:
1521 DiagID = diag::warn_expecting_locked;
1522 break;
1523 }
1524 if (LocEndOfScope.isInvalid())
1525 LocEndOfScope = FunEndLocation;
1526
1527 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1528 << LockName);
1529 if (LocLocked.isValid()) {
1530 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1531 << Kind);
1532 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1533 return;
1534 }
1535 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1536 }
1537
handleExclusiveAndShared(StringRef Kind,Name LockName,SourceLocation Loc1,SourceLocation Loc2)1538 void handleExclusiveAndShared(StringRef Kind, Name LockName,
1539 SourceLocation Loc1,
1540 SourceLocation Loc2) override {
1541 PartialDiagnosticAt Warning(Loc1,
1542 S.PDiag(diag::warn_lock_exclusive_and_shared)
1543 << Kind << LockName);
1544 PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1545 << Kind << LockName);
1546 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1547 }
1548
handleNoMutexHeld(StringRef Kind,const NamedDecl * D,ProtectedOperationKind POK,AccessKind AK,SourceLocation Loc)1549 void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1550 ProtectedOperationKind POK, AccessKind AK,
1551 SourceLocation Loc) override {
1552 assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1553 "Only works for variables");
1554 unsigned DiagID = POK == POK_VarAccess?
1555 diag::warn_variable_requires_any_lock:
1556 diag::warn_var_deref_requires_any_lock;
1557 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1558 << D->getNameAsString() << getLockKindFromAccessKind(AK));
1559 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1560 }
1561
handleMutexNotHeld(StringRef Kind,const NamedDecl * D,ProtectedOperationKind POK,Name LockName,LockKind LK,SourceLocation Loc,Name * PossibleMatch)1562 void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1563 ProtectedOperationKind POK, Name LockName,
1564 LockKind LK, SourceLocation Loc,
1565 Name *PossibleMatch) override {
1566 unsigned DiagID = 0;
1567 if (PossibleMatch) {
1568 switch (POK) {
1569 case POK_VarAccess:
1570 DiagID = diag::warn_variable_requires_lock_precise;
1571 break;
1572 case POK_VarDereference:
1573 DiagID = diag::warn_var_deref_requires_lock_precise;
1574 break;
1575 case POK_FunctionCall:
1576 DiagID = diag::warn_fun_requires_lock_precise;
1577 break;
1578 }
1579 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1580 << D->getNameAsString()
1581 << LockName << LK);
1582 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1583 << *PossibleMatch);
1584 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
1585 } else {
1586 switch (POK) {
1587 case POK_VarAccess:
1588 DiagID = diag::warn_variable_requires_lock;
1589 break;
1590 case POK_VarDereference:
1591 DiagID = diag::warn_var_deref_requires_lock;
1592 break;
1593 case POK_FunctionCall:
1594 DiagID = diag::warn_fun_requires_lock;
1595 break;
1596 }
1597 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1598 << D->getNameAsString()
1599 << LockName << LK);
1600 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1601 }
1602 }
1603
handleFunExcludesLock(StringRef Kind,Name FunName,Name LockName,SourceLocation Loc)1604 void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1605 SourceLocation Loc) override {
1606 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1607 << Kind << FunName << LockName);
1608 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1609 }
1610 };
1611 }
1612 }
1613 }
1614
1615 //===----------------------------------------------------------------------===//
1616 // -Wconsumed
1617 //===----------------------------------------------------------------------===//
1618
1619 namespace clang {
1620 namespace consumed {
1621 namespace {
1622 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1623
1624 Sema &S;
1625 DiagList Warnings;
1626
1627 public:
1628
ConsumedWarningsHandler(Sema & S)1629 ConsumedWarningsHandler(Sema &S) : S(S) {}
1630
emitDiagnostics()1631 void emitDiagnostics() override {
1632 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1633 for (const auto &Diag : Warnings) {
1634 S.Diag(Diag.first.first, Diag.first.second);
1635 for (const auto &Note : Diag.second)
1636 S.Diag(Note.first, Note.second);
1637 }
1638 }
1639
warnLoopStateMismatch(SourceLocation Loc,StringRef VariableName)1640 void warnLoopStateMismatch(SourceLocation Loc,
1641 StringRef VariableName) override {
1642 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1643 VariableName);
1644
1645 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1646 }
1647
warnParamReturnTypestateMismatch(SourceLocation Loc,StringRef VariableName,StringRef ExpectedState,StringRef ObservedState)1648 void warnParamReturnTypestateMismatch(SourceLocation Loc,
1649 StringRef VariableName,
1650 StringRef ExpectedState,
1651 StringRef ObservedState) override {
1652
1653 PartialDiagnosticAt Warning(Loc, S.PDiag(
1654 diag::warn_param_return_typestate_mismatch) << VariableName <<
1655 ExpectedState << ObservedState);
1656
1657 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1658 }
1659
warnParamTypestateMismatch(SourceLocation Loc,StringRef ExpectedState,StringRef ObservedState)1660 void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1661 StringRef ObservedState) override {
1662
1663 PartialDiagnosticAt Warning(Loc, S.PDiag(
1664 diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1665
1666 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1667 }
1668
warnReturnTypestateForUnconsumableType(SourceLocation Loc,StringRef TypeName)1669 void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1670 StringRef TypeName) override {
1671 PartialDiagnosticAt Warning(Loc, S.PDiag(
1672 diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1673
1674 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1675 }
1676
warnReturnTypestateMismatch(SourceLocation Loc,StringRef ExpectedState,StringRef ObservedState)1677 void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1678 StringRef ObservedState) override {
1679
1680 PartialDiagnosticAt Warning(Loc, S.PDiag(
1681 diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1682
1683 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1684 }
1685
warnUseOfTempInInvalidState(StringRef MethodName,StringRef State,SourceLocation Loc)1686 void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1687 SourceLocation Loc) override {
1688
1689 PartialDiagnosticAt Warning(Loc, S.PDiag(
1690 diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1691
1692 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1693 }
1694
warnUseInInvalidState(StringRef MethodName,StringRef VariableName,StringRef State,SourceLocation Loc)1695 void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1696 StringRef State, SourceLocation Loc) override {
1697
1698 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1699 MethodName << VariableName << State);
1700
1701 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1702 }
1703 };
1704 }}}
1705
1706 //===----------------------------------------------------------------------===//
1707 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1708 // warnings on a function, method, or block.
1709 //===----------------------------------------------------------------------===//
1710
Policy()1711 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1712 enableCheckFallThrough = 1;
1713 enableCheckUnreachable = 0;
1714 enableThreadSafetyAnalysis = 0;
1715 enableConsumedAnalysis = 0;
1716 }
1717
isEnabled(DiagnosticsEngine & D,unsigned diag)1718 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1719 return (unsigned)!D.isIgnored(diag, SourceLocation());
1720 }
1721
AnalysisBasedWarnings(Sema & s)1722 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1723 : S(s),
1724 NumFunctionsAnalyzed(0),
1725 NumFunctionsWithBadCFGs(0),
1726 NumCFGBlocks(0),
1727 MaxCFGBlocksPerFunction(0),
1728 NumUninitAnalysisFunctions(0),
1729 NumUninitAnalysisVariables(0),
1730 MaxUninitAnalysisVariablesPerFunction(0),
1731 NumUninitAnalysisBlockVisits(0),
1732 MaxUninitAnalysisBlockVisitsPerFunction(0) {
1733
1734 using namespace diag;
1735 DiagnosticsEngine &D = S.getDiagnostics();
1736
1737 DefaultPolicy.enableCheckUnreachable =
1738 isEnabled(D, warn_unreachable) ||
1739 isEnabled(D, warn_unreachable_break) ||
1740 isEnabled(D, warn_unreachable_return) ||
1741 isEnabled(D, warn_unreachable_loop_increment);
1742
1743 DefaultPolicy.enableThreadSafetyAnalysis =
1744 isEnabled(D, warn_double_lock);
1745
1746 DefaultPolicy.enableConsumedAnalysis =
1747 isEnabled(D, warn_use_in_invalid_state);
1748 }
1749
flushDiagnostics(Sema & S,const sema::FunctionScopeInfo * fscope)1750 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
1751 for (const auto &D : fscope->PossiblyUnreachableDiags)
1752 S.Diag(D.Loc, D.PD);
1753 }
1754
1755 void clang::sema::
IssueWarnings(sema::AnalysisBasedWarnings::Policy P,sema::FunctionScopeInfo * fscope,const Decl * D,const BlockExpr * blkExpr)1756 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1757 sema::FunctionScopeInfo *fscope,
1758 const Decl *D, const BlockExpr *blkExpr) {
1759
1760 // We avoid doing analysis-based warnings when there are errors for
1761 // two reasons:
1762 // (1) The CFGs often can't be constructed (if the body is invalid), so
1763 // don't bother trying.
1764 // (2) The code already has problems; running the analysis just takes more
1765 // time.
1766 DiagnosticsEngine &Diags = S.getDiagnostics();
1767
1768 // Do not do any analysis for declarations in system headers if we are
1769 // going to just ignore them.
1770 if (Diags.getSuppressSystemWarnings() &&
1771 S.SourceMgr.isInSystemHeader(D->getLocation()))
1772 return;
1773
1774 // For code in dependent contexts, we'll do this at instantiation time.
1775 if (cast<DeclContext>(D)->isDependentContext())
1776 return;
1777
1778 if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1779 // Flush out any possibly unreachable diagnostics.
1780 flushDiagnostics(S, fscope);
1781 return;
1782 }
1783
1784 const Stmt *Body = D->getBody();
1785 assert(Body);
1786
1787 // Construct the analysis context with the specified CFG build options.
1788 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
1789
1790 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1791 // explosion for destructors that can result and the compile time hit.
1792 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1793 AC.getCFGBuildOptions().AddEHEdges = false;
1794 AC.getCFGBuildOptions().AddInitializers = true;
1795 AC.getCFGBuildOptions().AddImplicitDtors = true;
1796 AC.getCFGBuildOptions().AddTemporaryDtors = true;
1797 AC.getCFGBuildOptions().AddCXXNewAllocator = false;
1798
1799 // Force that certain expressions appear as CFGElements in the CFG. This
1800 // is used to speed up various analyses.
1801 // FIXME: This isn't the right factoring. This is here for initial
1802 // prototyping, but we need a way for analyses to say what expressions they
1803 // expect to always be CFGElements and then fill in the BuildOptions
1804 // appropriately. This is essentially a layering violation.
1805 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
1806 P.enableConsumedAnalysis) {
1807 // Unreachable code analysis and thread safety require a linearized CFG.
1808 AC.getCFGBuildOptions().setAllAlwaysAdd();
1809 }
1810 else {
1811 AC.getCFGBuildOptions()
1812 .setAlwaysAdd(Stmt::BinaryOperatorClass)
1813 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1814 .setAlwaysAdd(Stmt::BlockExprClass)
1815 .setAlwaysAdd(Stmt::CStyleCastExprClass)
1816 .setAlwaysAdd(Stmt::DeclRefExprClass)
1817 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1818 .setAlwaysAdd(Stmt::UnaryOperatorClass)
1819 .setAlwaysAdd(Stmt::AttributedStmtClass);
1820 }
1821
1822 // Install the logical handler for -Wtautological-overlap-compare
1823 std::unique_ptr<LogicalErrorHandler> LEH;
1824 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1825 D->getLocStart())) {
1826 LEH.reset(new LogicalErrorHandler(S));
1827 AC.getCFGBuildOptions().Observer = LEH.get();
1828 }
1829
1830 // Emit delayed diagnostics.
1831 if (!fscope->PossiblyUnreachableDiags.empty()) {
1832 bool analyzed = false;
1833
1834 // Register the expressions with the CFGBuilder.
1835 for (const auto &D : fscope->PossiblyUnreachableDiags) {
1836 if (D.stmt)
1837 AC.registerForcedBlockExpression(D.stmt);
1838 }
1839
1840 if (AC.getCFG()) {
1841 analyzed = true;
1842 for (const auto &D : fscope->PossiblyUnreachableDiags) {
1843 bool processed = false;
1844 if (D.stmt) {
1845 const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
1846 CFGReverseBlockReachabilityAnalysis *cra =
1847 AC.getCFGReachablityAnalysis();
1848 // FIXME: We should be able to assert that block is non-null, but
1849 // the CFG analysis can skip potentially-evaluated expressions in
1850 // edge cases; see test/Sema/vla-2.c.
1851 if (block && cra) {
1852 // Can this block be reached from the entrance?
1853 if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1854 S.Diag(D.Loc, D.PD);
1855 processed = true;
1856 }
1857 }
1858 if (!processed) {
1859 // Emit the warning anyway if we cannot map to a basic block.
1860 S.Diag(D.Loc, D.PD);
1861 }
1862 }
1863 }
1864
1865 if (!analyzed)
1866 flushDiagnostics(S, fscope);
1867 }
1868
1869
1870 // Warning: check missing 'return'
1871 if (P.enableCheckFallThrough) {
1872 const CheckFallThroughDiagnostics &CD =
1873 (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1874 : (isa<CXXMethodDecl>(D) &&
1875 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1876 cast<CXXMethodDecl>(D)->getParent()->isLambda())
1877 ? CheckFallThroughDiagnostics::MakeForLambda()
1878 : CheckFallThroughDiagnostics::MakeForFunction(D));
1879 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1880 }
1881
1882 // Warning: check for unreachable code
1883 if (P.enableCheckUnreachable) {
1884 // Only check for unreachable code on non-template instantiations.
1885 // Different template instantiations can effectively change the control-flow
1886 // and it is very difficult to prove that a snippet of code in a template
1887 // is unreachable for all instantiations.
1888 bool isTemplateInstantiation = false;
1889 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1890 isTemplateInstantiation = Function->isTemplateInstantiation();
1891 if (!isTemplateInstantiation)
1892 CheckUnreachable(S, AC);
1893 }
1894
1895 // Check for thread safety violations
1896 if (P.enableThreadSafetyAnalysis) {
1897 SourceLocation FL = AC.getDecl()->getLocation();
1898 SourceLocation FEL = AC.getDecl()->getLocEnd();
1899 thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
1900 if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
1901 Reporter.setIssueBetaWarnings(true);
1902
1903 thread_safety::runThreadSafetyAnalysis(AC, Reporter);
1904 Reporter.emitDiagnostics();
1905 }
1906
1907 // Check for violations of consumed properties.
1908 if (P.enableConsumedAnalysis) {
1909 consumed::ConsumedWarningsHandler WarningHandler(S);
1910 consumed::ConsumedAnalyzer Analyzer(WarningHandler);
1911 Analyzer.run(AC);
1912 }
1913
1914 if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
1915 !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
1916 !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
1917 if (CFG *cfg = AC.getCFG()) {
1918 UninitValsDiagReporter reporter(S);
1919 UninitVariablesAnalysisStats stats;
1920 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
1921 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
1922 reporter, stats);
1923
1924 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
1925 ++NumUninitAnalysisFunctions;
1926 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
1927 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
1928 MaxUninitAnalysisVariablesPerFunction =
1929 std::max(MaxUninitAnalysisVariablesPerFunction,
1930 stats.NumVariablesAnalyzed);
1931 MaxUninitAnalysisBlockVisitsPerFunction =
1932 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
1933 stats.NumBlockVisits);
1934 }
1935 }
1936 }
1937
1938 bool FallThroughDiagFull =
1939 !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
1940 bool FallThroughDiagPerFunction = !Diags.isIgnored(
1941 diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
1942 if (FallThroughDiagFull || FallThroughDiagPerFunction) {
1943 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
1944 }
1945
1946 if (S.getLangOpts().ObjCARCWeak &&
1947 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
1948 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
1949
1950
1951 // Check for infinite self-recursion in functions
1952 if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
1953 D->getLocStart())) {
1954 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1955 checkRecursiveFunction(S, FD, Body, AC);
1956 }
1957 }
1958
1959 // If none of the previous checks caused a CFG build, trigger one here
1960 // for -Wtautological-overlap-compare
1961 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1962 D->getLocStart())) {
1963 AC.getCFG();
1964 }
1965
1966 // Collect statistics about the CFG if it was built.
1967 if (S.CollectStats && AC.isCFGBuilt()) {
1968 ++NumFunctionsAnalyzed;
1969 if (CFG *cfg = AC.getCFG()) {
1970 // If we successfully built a CFG for this context, record some more
1971 // detail information about it.
1972 NumCFGBlocks += cfg->getNumBlockIDs();
1973 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
1974 cfg->getNumBlockIDs());
1975 } else {
1976 ++NumFunctionsWithBadCFGs;
1977 }
1978 }
1979 }
1980
PrintStats() const1981 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
1982 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
1983
1984 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
1985 unsigned AvgCFGBlocksPerFunction =
1986 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
1987 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
1988 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
1989 << " " << NumCFGBlocks << " CFG blocks built.\n"
1990 << " " << AvgCFGBlocksPerFunction
1991 << " average CFG blocks per function.\n"
1992 << " " << MaxCFGBlocksPerFunction
1993 << " max CFG blocks per function.\n";
1994
1995 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
1996 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
1997 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
1998 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
1999 llvm::errs() << NumUninitAnalysisFunctions
2000 << " functions analyzed for uninitialiazed variables\n"
2001 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
2002 << " " << AvgUninitVariablesPerFunction
2003 << " average variables per function.\n"
2004 << " " << MaxUninitAnalysisVariablesPerFunction
2005 << " max variables per function.\n"
2006 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
2007 << " " << AvgUninitBlockVisitsPerFunction
2008 << " average block visits per function.\n"
2009 << " " << MaxUninitAnalysisBlockVisitsPerFunction
2010 << " max block visits per function.\n";
2011 }
2012