1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/utility/delay_estimator.h"
12
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
16
17 // Number of right shifts for scaling is linearly depending on number of bits in
18 // the far-end binary spectrum.
19 static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
20 static const int kShiftsLinearSlope = 3;
21
22 static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
23 static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
24 static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
25
26 // Robust validation settings
27 static const float kHistogramMax = 3000.f;
28 static const float kLastHistogramMax = 250.f;
29 static const float kMinHistogramThreshold = 1.5f;
30 static const int kMinRequiredHits = 10;
31 static const int kMaxHitsWhenPossiblyNonCausal = 10;
32 static const int kMaxHitsWhenPossiblyCausal = 1000;
33 static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
34 static const float kFractionSlope = 0.05f;
35 static const float kMinFractionWhenPossiblyCausal = 0.5f;
36 static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
37
38 // Counts and returns number of bits of a 32-bit word.
BitCount(uint32_t u32)39 static int BitCount(uint32_t u32) {
40 uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
41 ((u32 >> 2) & 011111111111);
42 tmp = ((tmp + (tmp >> 3)) & 030707070707);
43 tmp = (tmp + (tmp >> 6));
44 tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
45
46 return ((int) tmp);
47 }
48
49 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts
50 // per row the number of times they have the same value.
51 //
52 // Inputs:
53 // - binary_vector : binary "vector" stored in a long
54 // - binary_matrix : binary "matrix" stored as a vector of long
55 // - matrix_size : size of binary "matrix"
56 //
57 // Output:
58 // - bit_counts : "Vector" stored as a long, containing for each
59 // row the number of times the matrix row and the
60 // input vector have the same value
61 //
BitCountComparison(uint32_t binary_vector,const uint32_t * binary_matrix,int matrix_size,int32_t * bit_counts)62 static void BitCountComparison(uint32_t binary_vector,
63 const uint32_t* binary_matrix,
64 int matrix_size,
65 int32_t* bit_counts) {
66 int n = 0;
67
68 // Compare |binary_vector| with all rows of the |binary_matrix|
69 for (; n < matrix_size; n++) {
70 bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
71 }
72 }
73
74 // Collects necessary statistics for the HistogramBasedValidation(). This
75 // function has to be called prior to calling HistogramBasedValidation(). The
76 // statistics updated and used by the HistogramBasedValidation() are:
77 // 1. the number of |candidate_hits|, which states for how long we have had the
78 // same |candidate_delay|
79 // 2. the |histogram| of candidate delays over time. This histogram is
80 // weighted with respect to a reliability measure and time-varying to cope
81 // with possible delay shifts.
82 // For further description see commented code.
83 //
84 // Inputs:
85 // - candidate_delay : The delay to validate.
86 // - valley_depth_q14 : The cost function has a valley/minimum at the
87 // |candidate_delay| location. |valley_depth_q14| is the
88 // cost function difference between the minimum and
89 // maximum locations. The value is in the Q14 domain.
90 // - valley_level_q14 : Is the cost function value at the minimum, in Q14.
UpdateRobustValidationStatistics(BinaryDelayEstimator * self,int candidate_delay,int32_t valley_depth_q14,int32_t valley_level_q14)91 static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
92 int candidate_delay,
93 int32_t valley_depth_q14,
94 int32_t valley_level_q14) {
95 const float valley_depth = valley_depth_q14 * kQ14Scaling;
96 float decrease_in_last_set = valley_depth;
97 const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ?
98 kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal;
99 int i = 0;
100
101 // Reset |candidate_hits| if we have a new candidate.
102 if (candidate_delay != self->last_candidate_delay) {
103 self->candidate_hits = 0;
104 self->last_candidate_delay = candidate_delay;
105 }
106 self->candidate_hits++;
107
108 // The |histogram| is updated differently across the bins.
109 // 1. The |candidate_delay| histogram bin is increased with the
110 // |valley_depth|, which is a simple measure of how reliable the
111 // |candidate_delay| is. The histogram is not increased above
112 // |kHistogramMax|.
113 self->histogram[candidate_delay] += valley_depth;
114 if (self->histogram[candidate_delay] > kHistogramMax) {
115 self->histogram[candidate_delay] = kHistogramMax;
116 }
117 // 2. The histogram bins in the neighborhood of |candidate_delay| are
118 // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
119 // 3. The histogram bins in the neighborhood of |last_delay| are decreased
120 // with |decrease_in_last_set|. This value equals the difference between
121 // the cost function values at the locations |candidate_delay| and
122 // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits
123 // at the |candidate_delay|. If we exceed this amount of hits the
124 // |candidate_delay| is a "potential" candidate and we start decreasing
125 // these histogram bins more rapidly with |valley_depth|.
126 if (self->candidate_hits < max_hits_for_slow_change) {
127 decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] -
128 valley_level_q14) * kQ14Scaling;
129 }
130 // 4. All other bins are decreased with |valley_depth|.
131 // TODO(bjornv): Investigate how to make this loop more efficient. Split up
132 // the loop? Remove parts that doesn't add too much.
133 for (i = 0; i < self->farend->history_size; ++i) {
134 int is_in_last_set = (i >= self->last_delay - 2) &&
135 (i <= self->last_delay + 1) && (i != candidate_delay);
136 int is_in_candidate_set = (i >= candidate_delay - 2) &&
137 (i <= candidate_delay + 1);
138 self->histogram[i] -= decrease_in_last_set * is_in_last_set +
139 valley_depth * (!is_in_last_set && !is_in_candidate_set);
140 // 5. No histogram bin can go below 0.
141 if (self->histogram[i] < 0) {
142 self->histogram[i] = 0;
143 }
144 }
145 }
146
147 // Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(),
148 // based on a mix of counting concurring hits with a modified histogram
149 // of recent delay estimates. In brief a candidate is valid (returns 1) if it
150 // is the most likely according to the histogram. There are a couple of
151 // exceptions that are worth mentioning:
152 // 1. If the |candidate_delay| < |last_delay| it can be that we are in a
153 // non-causal state, breaking a possible echo control algorithm. Hence, we
154 // open up for a quicker change by allowing the change even if the
155 // |candidate_delay| is not the most likely one according to the histogram.
156 // 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
157 // value has to reached a minimum (kMinHistogramThreshold) to be valid.
158 // 3. The action is also depending on the filter length used for echo control.
159 // If the delay difference is larger than what the filter can capture, we
160 // also move quicker towards a change.
161 // For further description see commented code.
162 //
163 // Input:
164 // - candidate_delay : The delay to validate.
165 //
166 // Return value:
167 // - is_histogram_valid : 1 - The |candidate_delay| is valid.
168 // 0 - Otherwise.
HistogramBasedValidation(const BinaryDelayEstimator * self,int candidate_delay)169 static int HistogramBasedValidation(const BinaryDelayEstimator* self,
170 int candidate_delay) {
171 float fraction = 1.f;
172 float histogram_threshold = self->histogram[self->compare_delay];
173 const int delay_difference = candidate_delay - self->last_delay;
174 int is_histogram_valid = 0;
175
176 // The histogram based validation of |candidate_delay| is done by comparing
177 // the |histogram| at bin |candidate_delay| with a |histogram_threshold|.
178 // This |histogram_threshold| equals a |fraction| of the |histogram| at bin
179 // |last_delay|. The |fraction| is a piecewise linear function of the
180 // |delay_difference| between the |candidate_delay| and the |last_delay|
181 // allowing for a quicker move if
182 // i) a potential echo control filter can not handle these large differences.
183 // ii) keeping |last_delay| instead of updating to |candidate_delay| could
184 // force an echo control into a non-causal state.
185 // We further require the histogram to have reached a minimum value of
186 // |kMinHistogramThreshold|. In addition, we also require the number of
187 // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious
188 // values.
189
190 // Calculate a comparison histogram value (|histogram_threshold|) that is
191 // depending on the distance between the |candidate_delay| and |last_delay|.
192 // TODO(bjornv): How much can we gain by turning the fraction calculation
193 // into tables?
194 if (delay_difference > self->allowed_offset) {
195 fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
196 fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction :
197 kMinFractionWhenPossiblyCausal);
198 } else if (delay_difference < 0) {
199 fraction = kMinFractionWhenPossiblyNonCausal -
200 kFractionSlope * delay_difference;
201 fraction = (fraction > 1.f ? 1.f : fraction);
202 }
203 histogram_threshold *= fraction;
204 histogram_threshold = (histogram_threshold > kMinHistogramThreshold ?
205 histogram_threshold : kMinHistogramThreshold);
206
207 is_histogram_valid =
208 (self->histogram[candidate_delay] >= histogram_threshold) &&
209 (self->candidate_hits > kMinRequiredHits);
210
211 return is_histogram_valid;
212 }
213
214 // Performs a robust validation of the |candidate_delay| estimated in
215 // WebRtc_ProcessBinarySpectrum(). The algorithm takes the
216 // |is_instantaneous_valid| and the |is_histogram_valid| and combines them
217 // into a robust validation. The HistogramBasedValidation() has to be called
218 // prior to this call.
219 // For further description on how the combination is done, see commented code.
220 //
221 // Inputs:
222 // - candidate_delay : The delay to validate.
223 // - is_instantaneous_valid : The instantaneous validation performed in
224 // WebRtc_ProcessBinarySpectrum().
225 // - is_histogram_valid : The histogram based validation.
226 //
227 // Return value:
228 // - is_robust : 1 - The candidate_delay is valid according to a
229 // combination of the two inputs.
230 // : 0 - Otherwise.
RobustValidation(const BinaryDelayEstimator * self,int candidate_delay,int is_instantaneous_valid,int is_histogram_valid)231 static int RobustValidation(const BinaryDelayEstimator* self,
232 int candidate_delay,
233 int is_instantaneous_valid,
234 int is_histogram_valid) {
235 int is_robust = 0;
236
237 // The final robust validation is based on the two algorithms; 1) the
238 // |is_instantaneous_valid| and 2) the histogram based with result stored in
239 // |is_histogram_valid|.
240 // i) Before we actually have a valid estimate (|last_delay| == -2), we say
241 // a candidate is valid if either algorithm states so
242 // (|is_instantaneous_valid| OR |is_histogram_valid|).
243 is_robust = (self->last_delay < 0) &&
244 (is_instantaneous_valid || is_histogram_valid);
245 // ii) Otherwise, we need both algorithms to be certain
246 // (|is_instantaneous_valid| AND |is_histogram_valid|)
247 is_robust |= is_instantaneous_valid && is_histogram_valid;
248 // iii) With one exception, i.e., the histogram based algorithm can overrule
249 // the instantaneous one if |is_histogram_valid| = 1 and the histogram
250 // is significantly strong.
251 is_robust |= is_histogram_valid &&
252 (self->histogram[candidate_delay] > self->last_delay_histogram);
253
254 return is_robust;
255 }
256
WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend * self)257 void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
258
259 if (self == NULL) {
260 return;
261 }
262
263 free(self->binary_far_history);
264 self->binary_far_history = NULL;
265
266 free(self->far_bit_counts);
267 self->far_bit_counts = NULL;
268
269 free(self);
270 }
271
WebRtc_CreateBinaryDelayEstimatorFarend(int history_size)272 BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
273 int history_size) {
274 BinaryDelayEstimatorFarend* self = NULL;
275
276 if (history_size > 1) {
277 // Sanity conditions fulfilled.
278 self = malloc(sizeof(BinaryDelayEstimatorFarend));
279 }
280 if (self != NULL) {
281 int malloc_fail = 0;
282
283 self->history_size = history_size;
284
285 // Allocate memory for history buffers.
286 self->binary_far_history = malloc(history_size * sizeof(uint32_t));
287 malloc_fail |= (self->binary_far_history == NULL);
288
289 self->far_bit_counts = malloc(history_size * sizeof(int));
290 malloc_fail |= (self->far_bit_counts == NULL);
291
292 if (malloc_fail) {
293 WebRtc_FreeBinaryDelayEstimatorFarend(self);
294 self = NULL;
295 }
296 }
297
298 return self;
299 }
300
WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend * self)301 void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
302 assert(self != NULL);
303 memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
304 memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
305 }
306
WebRtc_SoftResetBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend * self,int delay_shift)307 void WebRtc_SoftResetBinaryDelayEstimatorFarend(
308 BinaryDelayEstimatorFarend* self, int delay_shift) {
309 int abs_shift = abs(delay_shift);
310 int shift_size = 0;
311 int dest_index = 0;
312 int src_index = 0;
313 int padding_index = 0;
314
315 assert(self != NULL);
316 shift_size = self->history_size - abs_shift;
317 assert(shift_size > 0);
318 if (delay_shift == 0) {
319 return;
320 } else if (delay_shift > 0) {
321 dest_index = abs_shift;
322 } else if (delay_shift < 0) {
323 src_index = abs_shift;
324 padding_index = shift_size;
325 }
326
327 // Shift and zero pad buffers.
328 memmove(&self->binary_far_history[dest_index],
329 &self->binary_far_history[src_index],
330 sizeof(*self->binary_far_history) * shift_size);
331 memset(&self->binary_far_history[padding_index], 0,
332 sizeof(*self->binary_far_history) * abs_shift);
333 memmove(&self->far_bit_counts[dest_index],
334 &self->far_bit_counts[src_index],
335 sizeof(*self->far_bit_counts) * shift_size);
336 memset(&self->far_bit_counts[padding_index], 0,
337 sizeof(*self->far_bit_counts) * abs_shift);
338 }
339
WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend * handle,uint32_t binary_far_spectrum)340 void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
341 uint32_t binary_far_spectrum) {
342 assert(handle != NULL);
343 // Shift binary spectrum history and insert current |binary_far_spectrum|.
344 memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
345 (handle->history_size - 1) * sizeof(uint32_t));
346 handle->binary_far_history[0] = binary_far_spectrum;
347
348 // Shift history of far-end binary spectrum bit counts and insert bit count
349 // of current |binary_far_spectrum|.
350 memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
351 (handle->history_size - 1) * sizeof(int));
352 handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
353 }
354
WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator * self)355 void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
356
357 if (self == NULL) {
358 return;
359 }
360
361 free(self->mean_bit_counts);
362 self->mean_bit_counts = NULL;
363
364 free(self->bit_counts);
365 self->bit_counts = NULL;
366
367 free(self->binary_near_history);
368 self->binary_near_history = NULL;
369
370 free(self->histogram);
371 self->histogram = NULL;
372
373 // BinaryDelayEstimator does not have ownership of |farend|, hence we do not
374 // free the memory here. That should be handled separately by the user.
375 self->farend = NULL;
376
377 free(self);
378 }
379
WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimatorFarend * farend,int max_lookahead)380 BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
381 BinaryDelayEstimatorFarend* farend, int max_lookahead) {
382 BinaryDelayEstimator* self = NULL;
383
384 if ((farend != NULL) && (max_lookahead >= 0)) {
385 // Sanity conditions fulfilled.
386 self = malloc(sizeof(BinaryDelayEstimator));
387 }
388
389 if (self != NULL) {
390 int malloc_fail = 0;
391
392 self->farend = farend;
393 self->near_history_size = max_lookahead + 1;
394 self->robust_validation_enabled = 0; // Disabled by default.
395 self->allowed_offset = 0;
396
397 self->lookahead = max_lookahead;
398
399 // Allocate memory for spectrum buffers. The extra array element in
400 // |mean_bit_counts| and |histogram| is a dummy element only used while
401 // |last_delay| == -2, i.e., before we have a valid estimate.
402 self->mean_bit_counts =
403 malloc((farend->history_size + 1) * sizeof(int32_t));
404 malloc_fail |= (self->mean_bit_counts == NULL);
405
406 self->bit_counts = malloc(farend->history_size * sizeof(int32_t));
407 malloc_fail |= (self->bit_counts == NULL);
408
409 // Allocate memory for history buffers.
410 self->binary_near_history = malloc((max_lookahead + 1) * sizeof(uint32_t));
411 malloc_fail |= (self->binary_near_history == NULL);
412
413 self->histogram = malloc((farend->history_size + 1) * sizeof(float));
414 malloc_fail |= (self->histogram == NULL);
415
416 if (malloc_fail) {
417 WebRtc_FreeBinaryDelayEstimator(self);
418 self = NULL;
419 }
420 }
421
422 return self;
423 }
424
WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator * self)425 void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
426 int i = 0;
427 assert(self != NULL);
428
429 memset(self->bit_counts, 0, sizeof(int32_t) * self->farend->history_size);
430 memset(self->binary_near_history, 0,
431 sizeof(uint32_t) * self->near_history_size);
432 for (i = 0; i <= self->farend->history_size; ++i) {
433 self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
434 self->histogram[i] = 0.f;
435 }
436 self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9.
437 self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9.
438
439 // Default return value if we're unable to estimate. -1 is used for errors.
440 self->last_delay = -2;
441
442 self->last_candidate_delay = -2;
443 self->compare_delay = self->farend->history_size;
444 self->candidate_hits = 0;
445 self->last_delay_histogram = 0.f;
446 }
447
WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator * self,int delay_shift)448 int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
449 int delay_shift) {
450 int lookahead = 0;
451 assert(self != NULL);
452 lookahead = self->lookahead;
453 self->lookahead -= delay_shift;
454 if (self->lookahead < 0) {
455 self->lookahead = 0;
456 }
457 if (self->lookahead > self->near_history_size - 1) {
458 self->lookahead = self->near_history_size - 1;
459 }
460 return lookahead - self->lookahead;
461 }
462
WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator * self,uint32_t binary_near_spectrum)463 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
464 uint32_t binary_near_spectrum) {
465 int i = 0;
466 int candidate_delay = -1;
467 int valid_candidate = 0;
468
469 int32_t value_best_candidate = kMaxBitCountsQ9;
470 int32_t value_worst_candidate = 0;
471 int32_t valley_depth = 0;
472
473 assert(self != NULL);
474 if (self->near_history_size > 1) {
475 // If we apply lookahead, shift near-end binary spectrum history. Insert
476 // current |binary_near_spectrum| and pull out the delayed one.
477 memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
478 (self->near_history_size - 1) * sizeof(uint32_t));
479 self->binary_near_history[0] = binary_near_spectrum;
480 binary_near_spectrum = self->binary_near_history[self->lookahead];
481 }
482
483 // Compare with delayed spectra and store the |bit_counts| for each delay.
484 BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
485 self->farend->history_size, self->bit_counts);
486
487 // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
488 for (i = 0; i < self->farend->history_size; i++) {
489 // |bit_counts| is constrained to [0, 32], meaning we can smooth with a
490 // factor up to 2^26. We use Q9.
491 int32_t bit_count = (self->bit_counts[i] << 9); // Q9.
492
493 // Update |mean_bit_counts| only when far-end signal has something to
494 // contribute. If |far_bit_counts| is zero the far-end signal is weak and
495 // we likely have a poor echo condition, hence don't update.
496 if (self->farend->far_bit_counts[i] > 0) {
497 // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
498 int shifts = kShiftsAtZero;
499 shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
500 WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
501 }
502 }
503
504 // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
505 // of |mean_bit_counts|.
506 for (i = 0; i < self->farend->history_size; i++) {
507 if (self->mean_bit_counts[i] < value_best_candidate) {
508 value_best_candidate = self->mean_bit_counts[i];
509 candidate_delay = i;
510 }
511 if (self->mean_bit_counts[i] > value_worst_candidate) {
512 value_worst_candidate = self->mean_bit_counts[i];
513 }
514 }
515 valley_depth = value_worst_candidate - value_best_candidate;
516
517 // The |value_best_candidate| is a good indicator on the probability of
518 // |candidate_delay| being an accurate delay (a small |value_best_candidate|
519 // means a good binary match). In the following sections we make a decision
520 // whether to update |last_delay| or not.
521 // 1) If the difference bit counts between the best and the worst delay
522 // candidates is too small we consider the situation to be unreliable and
523 // don't update |last_delay|.
524 // 2) If the situation is reliable we update |last_delay| if the value of the
525 // best candidate delay has a value less than
526 // i) an adaptive threshold |minimum_probability|, or
527 // ii) this corresponding value |last_delay_probability|, but updated at
528 // this time instant.
529
530 // Update |minimum_probability|.
531 if ((self->minimum_probability > kProbabilityLowerLimit) &&
532 (valley_depth > kProbabilityMinSpread)) {
533 // The "hard" threshold can't be lower than 17 (in Q9).
534 // The valley in the curve also has to be distinct, i.e., the
535 // difference between |value_worst_candidate| and |value_best_candidate| has
536 // to be large enough.
537 int32_t threshold = value_best_candidate + kProbabilityOffset;
538 if (threshold < kProbabilityLowerLimit) {
539 threshold = kProbabilityLowerLimit;
540 }
541 if (self->minimum_probability > threshold) {
542 self->minimum_probability = threshold;
543 }
544 }
545 // Update |last_delay_probability|.
546 // We use a Markov type model, i.e., a slowly increasing level over time.
547 self->last_delay_probability++;
548 // Validate |candidate_delay|. We have a reliable instantaneous delay
549 // estimate if
550 // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|)
551 // and
552 // 2) The depth of the valley is deep enough
553 // (|value_best_candidate| < |minimum_probability|)
554 // and deeper than the best estimate so far
555 // (|value_best_candidate| < |last_delay_probability|)
556 valid_candidate = ((valley_depth > kProbabilityOffset) &&
557 ((value_best_candidate < self->minimum_probability) ||
558 (value_best_candidate < self->last_delay_probability)));
559
560 if (self->robust_validation_enabled) {
561 int is_histogram_valid = 0;
562 UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
563 value_best_candidate);
564 is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
565 valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
566 is_histogram_valid);
567
568 }
569 if (valid_candidate) {
570 if (candidate_delay != self->last_delay) {
571 self->last_delay_histogram =
572 (self->histogram[candidate_delay] > kLastHistogramMax ?
573 kLastHistogramMax : self->histogram[candidate_delay]);
574 // Adjust the histogram if we made a change to |last_delay|, though it was
575 // not the most likely one according to the histogram.
576 if (self->histogram[candidate_delay] <
577 self->histogram[self->compare_delay]) {
578 self->histogram[self->compare_delay] = self->histogram[candidate_delay];
579 }
580 }
581 self->last_delay = candidate_delay;
582 if (value_best_candidate < self->last_delay_probability) {
583 self->last_delay_probability = value_best_candidate;
584 }
585 self->compare_delay = self->last_delay;
586 }
587
588 return self->last_delay;
589 }
590
WebRtc_binary_last_delay(BinaryDelayEstimator * self)591 int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
592 assert(self != NULL);
593 return self->last_delay;
594 }
595
WebRtc_binary_last_delay_quality(BinaryDelayEstimator * self)596 float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
597 float quality = 0;
598 assert(self != NULL);
599
600 if (self->robust_validation_enabled) {
601 // Simply a linear function of the histogram height at delay estimate.
602 quality = self->histogram[self->compare_delay] / kHistogramMax;
603 } else {
604 // Note that |last_delay_probability| states how deep the minimum of the
605 // cost function is, so it is rather an error probability.
606 quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) /
607 kMaxBitCountsQ9;
608 if (quality < 0) {
609 quality = 0;
610 }
611 }
612 return quality;
613 }
614
WebRtc_MeanEstimatorFix(int32_t new_value,int factor,int32_t * mean_value)615 void WebRtc_MeanEstimatorFix(int32_t new_value,
616 int factor,
617 int32_t* mean_value) {
618 int32_t diff = new_value - *mean_value;
619
620 // mean_new = mean_value + ((new_value - mean_value) >> factor);
621 if (diff < 0) {
622 diff = -((-diff) >> factor);
623 } else {
624 diff = (diff >> factor);
625 }
626 *mean_value += diff;
627 }
628