• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "courgette/encoded_program.h"
6 
7 #include <algorithm>
8 #include <map>
9 #include <string>
10 #include <vector>
11 
12 #include "base/environment.h"
13 #include "base/logging.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/strings/string_util.h"
16 #include "base/strings/utf_string_conversions.h"
17 #include "courgette/courgette.h"
18 #include "courgette/disassembler_elf_32_arm.h"
19 #include "courgette/streams.h"
20 #include "courgette/types_elf.h"
21 
22 namespace courgette {
23 
24 // Stream indexes.
25 const int kStreamMisc    = 0;
26 const int kStreamOps     = 1;
27 const int kStreamBytes   = 2;
28 const int kStreamAbs32Indexes = 3;
29 const int kStreamRel32Indexes = 4;
30 const int kStreamAbs32Addresses = 5;
31 const int kStreamRel32Addresses = 6;
32 const int kStreamCopyCounts = 7;
33 const int kStreamOriginAddresses = kStreamMisc;
34 
35 const int kStreamLimit = 9;
36 
37 // Constructor is here rather than in the header.  Although the constructor
38 // appears to do nothing it is fact quite large because of the implicit calls to
39 // field constructors.  Ditto for the destructor.
EncodedProgram()40 EncodedProgram::EncodedProgram() : image_base_(0) {}
~EncodedProgram()41 EncodedProgram::~EncodedProgram() {}
42 
43 // Serializes a vector of integral values using Varint32 coding.
44 template<typename V>
WriteVector(const V & items,SinkStream * buffer)45 CheckBool WriteVector(const V& items, SinkStream* buffer) {
46   size_t count = items.size();
47   bool ok = buffer->WriteSizeVarint32(count);
48   for (size_t i = 0; ok && i < count;  ++i) {
49     COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32),  // NOLINT
50                    T_must_fit_in_uint32);
51     ok = buffer->WriteSizeVarint32(items[i]);
52   }
53   return ok;
54 }
55 
56 template<typename V>
ReadVector(V * items,SourceStream * buffer)57 bool ReadVector(V* items, SourceStream* buffer) {
58   uint32 count;
59   if (!buffer->ReadVarint32(&count))
60     return false;
61 
62   items->clear();
63 
64   bool ok = items->reserve(count);
65   for (size_t i = 0;  ok && i < count;  ++i) {
66     uint32 item;
67     ok = buffer->ReadVarint32(&item);
68     if (ok)
69       ok = items->push_back(static_cast<typename V::value_type>(item));
70   }
71 
72   return ok;
73 }
74 
75 // Serializes a vector, using delta coding followed by Varint32 coding.
76 template<typename V>
WriteU32Delta(const V & set,SinkStream * buffer)77 CheckBool WriteU32Delta(const V& set, SinkStream* buffer) {
78   size_t count = set.size();
79   bool ok = buffer->WriteSizeVarint32(count);
80   uint32 prev = 0;
81   for (size_t i = 0;  ok && i < count;  ++i) {
82     uint32 current = set[i];
83     uint32 delta = current - prev;
84     ok = buffer->WriteVarint32(delta);
85     prev = current;
86   }
87   return ok;
88 }
89 
90 template <typename V>
ReadU32Delta(V * set,SourceStream * buffer)91 static CheckBool ReadU32Delta(V* set, SourceStream* buffer) {
92   uint32 count;
93 
94   if (!buffer->ReadVarint32(&count))
95     return false;
96 
97   set->clear();
98   bool ok = set->reserve(count);
99   uint32 prev = 0;
100 
101   for (size_t i = 0; ok && i < count;  ++i) {
102     uint32 delta;
103     ok = buffer->ReadVarint32(&delta);
104     if (ok) {
105       uint32 current = prev + delta;
106       ok = set->push_back(current);
107       prev = current;
108     }
109   }
110 
111   return ok;
112 }
113 
114 // Write a vector as the byte representation of the contents.
115 //
116 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
117 // serialized representation is not endian-agnostic.  But it is useful to keep
118 // the possibility of a greater size for experiments comparing Varint32 encoding
119 // of a vector of larger integrals vs a plain form.)
120 //
121 template<typename V>
WriteVectorU8(const V & items,SinkStream * buffer)122 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
123   size_t count = items.size();
124   bool ok = buffer->WriteSizeVarint32(count);
125   if (count != 0 && ok) {
126     size_t byte_count = count * sizeof(typename V::value_type);
127     ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
128   }
129   return ok;
130 }
131 
132 template<typename V>
ReadVectorU8(V * items,SourceStream * buffer)133 bool ReadVectorU8(V* items, SourceStream* buffer) {
134   uint32 count;
135   if (!buffer->ReadVarint32(&count))
136     return false;
137 
138   items->clear();
139   bool ok = items->resize(count, 0);
140   if (ok && count != 0) {
141     size_t byte_count = count * sizeof(typename V::value_type);
142     return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
143   }
144   return ok;
145 }
146 
147 ////////////////////////////////////////////////////////////////////////////////
148 
DefineRel32Label(int index,RVA value)149 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
150   return DefineLabelCommon(&rel32_rva_, index, value);
151 }
152 
DefineAbs32Label(int index,RVA value)153 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
154   return DefineLabelCommon(&abs32_rva_, index, value);
155 }
156 
157 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
158 
DefineLabelCommon(RvaVector * rvas,int index,RVA rva)159 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
160                                             int index,
161                                             RVA rva) {
162   bool ok = true;
163   if (static_cast<int>(rvas->size()) <= index)
164     ok = rvas->resize(index + 1, kUnassignedRVA);
165 
166   if (ok) {
167     DCHECK_EQ((*rvas)[index], kUnassignedRVA)
168         << "DefineLabel double assigned " << index;
169     (*rvas)[index] = rva;
170   }
171 
172   return ok;
173 }
174 
EndLabels()175 void EncodedProgram::EndLabels() {
176   FinishLabelsCommon(&abs32_rva_);
177   FinishLabelsCommon(&rel32_rva_);
178 }
179 
FinishLabelsCommon(RvaVector * rvas)180 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
181   // Replace all unassigned slots with the value at the previous index so they
182   // delta-encode to zero.  (There might be better values than zero.  The way to
183   // get that is have the higher level assembly program assign the unassigned
184   // slots.)
185   RVA previous = 0;
186   size_t size = rvas->size();
187   for (size_t i = 0;  i < size;  ++i) {
188     if ((*rvas)[i] == kUnassignedRVA)
189       (*rvas)[i] = previous;
190     else
191       previous = (*rvas)[i];
192   }
193 }
194 
AddOrigin(RVA origin)195 CheckBool EncodedProgram::AddOrigin(RVA origin) {
196   return ops_.push_back(ORIGIN) && origins_.push_back(origin);
197 }
198 
AddCopy(uint32 count,const void * bytes)199 CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) {
200   const uint8* source = static_cast<const uint8*>(bytes);
201 
202   bool ok = true;
203 
204   // Fold adjacent COPY instructions into one.  This nearly halves the size of
205   // an EncodedProgram with only COPY1 instructions since there are approx plain
206   // 16 bytes per reloc.  This has a working-set benefit during decompression.
207   // For compression of files with large differences this makes a small (4%)
208   // improvement in size.  For files with small differences this degrades the
209   // compressed size by 1.3%
210   if (!ops_.empty()) {
211     if (ops_.back() == COPY1) {
212       ops_.back() = COPY;
213       ok = copy_counts_.push_back(1);
214     }
215     if (ok && ops_.back() == COPY) {
216       copy_counts_.back() += count;
217       for (uint32 i = 0; ok && i < count; ++i) {
218         ok = copy_bytes_.push_back(source[i]);
219       }
220       return ok;
221     }
222   }
223 
224   if (ok) {
225     if (count == 1) {
226       ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
227     } else {
228       ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
229       for (uint32 i = 0; ok && i < count; ++i) {
230         ok = copy_bytes_.push_back(source[i]);
231       }
232     }
233   }
234 
235   return ok;
236 }
237 
AddAbs32(int label_index)238 CheckBool EncodedProgram::AddAbs32(int label_index) {
239   return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
240 }
241 
AddRel32(int label_index)242 CheckBool EncodedProgram::AddRel32(int label_index) {
243   return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
244 }
245 
AddRel32ARM(uint16 op,int label_index)246 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
247   return ops_.push_back(static_cast<OP>(op)) &&
248       rel32_ix_.push_back(label_index);
249 }
250 
AddPeMakeRelocs(ExecutableType kind)251 CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
252   if (kind == EXE_WIN_32_X86)
253     return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
254   return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
255 }
256 
AddElfMakeRelocs()257 CheckBool EncodedProgram::AddElfMakeRelocs() {
258   return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
259 }
260 
AddElfARMMakeRelocs()261 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
262   return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
263 }
264 
DebuggingSummary()265 void EncodedProgram::DebuggingSummary() {
266   VLOG(1) << "EncodedProgram Summary"
267           << "\n  image base  " << image_base_
268           << "\n  abs32 rvas  " << abs32_rva_.size()
269           << "\n  rel32 rvas  " << rel32_rva_.size()
270           << "\n  ops         " << ops_.size()
271           << "\n  origins     " << origins_.size()
272           << "\n  copy_counts " << copy_counts_.size()
273           << "\n  copy_bytes  " << copy_bytes_.size()
274           << "\n  abs32_ix    " << abs32_ix_.size()
275           << "\n  rel32_ix    " << rel32_ix_.size();
276 }
277 
278 ////////////////////////////////////////////////////////////////////////////////
279 
280 // For algorithm refinement purposes it is useful to write subsets of the file
281 // format.  This gives us the ability to estimate the entropy of the
282 // differential compression of the individual streams, which can provide
283 // invaluable insights.  The default, of course, is to include all the streams.
284 //
285 enum FieldSelect {
286   INCLUDE_ABS32_ADDRESSES = 0x0001,
287   INCLUDE_REL32_ADDRESSES = 0x0002,
288   INCLUDE_ABS32_INDEXES   = 0x0010,
289   INCLUDE_REL32_INDEXES   = 0x0020,
290   INCLUDE_OPS             = 0x0100,
291   INCLUDE_BYTES           = 0x0200,
292   INCLUDE_COPY_COUNTS     = 0x0400,
293   INCLUDE_MISC            = 0x1000
294 };
295 
GetFieldSelect()296 static FieldSelect GetFieldSelect() {
297 #if 1
298   // TODO(sra): Use better configuration.
299   scoped_ptr<base::Environment> env(base::Environment::Create());
300   std::string s;
301   env->GetVar("A_FIELDS", &s);
302   if (!s.empty()) {
303     return static_cast<FieldSelect>(
304         wcstoul(base::ASCIIToWide(s).c_str(), 0, 0));
305   }
306 #endif
307   return  static_cast<FieldSelect>(~0);
308 }
309 
WriteTo(SinkStreamSet * streams)310 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
311   FieldSelect select = GetFieldSelect();
312 
313   // The order of fields must be consistent in WriteTo and ReadFrom, regardless
314   // of the streams used.  The code can be configured with all kStreamXXX
315   // constants the same.
316   //
317   // If we change the code to pipeline reading with assembly (to avoid temporary
318   // storage vectors by consuming operands directly from the stream) then we
319   // need to read the base address and the random access address tables first,
320   // the rest can be interleaved.
321 
322   if (select & INCLUDE_MISC) {
323     // TODO(sra): write 64 bits.
324     if (!streams->stream(kStreamMisc)->WriteVarint32(
325             static_cast<uint32>(image_base_))) {
326       return false;
327     }
328   }
329 
330   bool success = true;
331 
332   if (select & INCLUDE_ABS32_ADDRESSES) {
333     success &= WriteU32Delta(abs32_rva_,
334                              streams->stream(kStreamAbs32Addresses));
335   }
336 
337   if (select & INCLUDE_REL32_ADDRESSES) {
338     success &= WriteU32Delta(rel32_rva_,
339                              streams->stream(kStreamRel32Addresses));
340   }
341 
342   if (select & INCLUDE_MISC)
343     success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
344 
345   if (select & INCLUDE_OPS) {
346     // 5 for length.
347     success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
348     success &= WriteVector(ops_, streams->stream(kStreamOps));
349   }
350 
351   if (select & INCLUDE_COPY_COUNTS)
352     success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
353 
354   if (select & INCLUDE_BYTES)
355     success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
356 
357   if (select & INCLUDE_ABS32_INDEXES)
358     success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
359 
360   if (select & INCLUDE_REL32_INDEXES)
361     success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
362 
363   return success;
364 }
365 
ReadFrom(SourceStreamSet * streams)366 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
367   // TODO(sra): read 64 bits.
368   uint32 temp;
369   if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
370     return false;
371   image_base_ = temp;
372 
373   if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
374     return false;
375   if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
376     return false;
377   if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
378     return false;
379   if (!ReadVector(&ops_, streams->stream(kStreamOps)))
380     return false;
381   if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
382     return false;
383   if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
384     return false;
385   if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
386     return false;
387   if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
388     return false;
389 
390   // Check that streams have been completely consumed.
391   for (int i = 0;  i < kStreamLimit;  ++i) {
392     if (streams->stream(i)->Remaining() > 0)
393       return false;
394   }
395 
396   return true;
397 }
398 
399 // Safe, non-throwing version of std::vector::at().  Returns 'true' for success,
400 // 'false' for out-of-bounds index error.
401 template<typename V, typename T>
VectorAt(const V & v,size_t index,T * output)402 bool VectorAt(const V& v, size_t index, T* output) {
403   if (index >= v.size())
404     return false;
405   *output = v[index];
406   return true;
407 }
408 
EvaluateRel32ARM(OP op,size_t & ix_rel32_ix,RVA & current_rva,SinkStream * output)409 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
410                                            size_t& ix_rel32_ix,
411                                            RVA& current_rva,
412                                            SinkStream* output) {
413   switch (op & 0x0000F000) {
414     case REL32ARM8: {
415       uint32 index;
416       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
417         return false;
418       ++ix_rel32_ix;
419       RVA rva;
420       if (!VectorAt(rel32_rva_, index, &rva))
421         return false;
422       uint32 decompressed_op;
423       if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
424                                             static_cast<uint16>(op),
425                                             static_cast<uint32>(rva -
426                                                                 current_rva),
427                                             &decompressed_op)) {
428         return false;
429       }
430       uint16 op16 = decompressed_op;
431       if (!output->Write(&op16, 2))
432         return false;
433       current_rva += 2;
434       break;
435     }
436     case REL32ARM11: {
437       uint32 index;
438       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
439         return false;
440       ++ix_rel32_ix;
441       RVA rva;
442       if (!VectorAt(rel32_rva_, index, &rva))
443         return false;
444       uint32 decompressed_op;
445       if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
446                                             (uint32) (rva - current_rva),
447                                             &decompressed_op)) {
448         return false;
449       }
450       uint16 op16 = decompressed_op;
451       if (!output->Write(&op16, 2))
452         return false;
453       current_rva += 2;
454       break;
455     }
456     case REL32ARM24: {
457       uint32 index;
458       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
459         return false;
460       ++ix_rel32_ix;
461       RVA rva;
462       if (!VectorAt(rel32_rva_, index, &rva))
463         return false;
464       uint32 decompressed_op;
465       if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
466                                             (uint32) (rva - current_rva),
467                                             &decompressed_op)) {
468         return false;
469       }
470       if (!output->Write(&decompressed_op, 4))
471         return false;
472       current_rva += 4;
473       break;
474     }
475     case REL32ARM25: {
476       uint32 index;
477       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
478         return false;
479       ++ix_rel32_ix;
480       RVA rva;
481       if (!VectorAt(rel32_rva_, index, &rva))
482         return false;
483       uint32 decompressed_op;
484       if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
485                                             (uint32) (rva - current_rva),
486                                             &decompressed_op)) {
487         return false;
488       }
489       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
490       if (!output->Write(&words, 4))
491         return false;
492       current_rva += 4;
493       break;
494     }
495     case REL32ARM21: {
496       uint32 index;
497       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
498         return false;
499       ++ix_rel32_ix;
500       RVA rva;
501       if (!VectorAt(rel32_rva_, index, &rva))
502         return false;
503       uint32 decompressed_op;
504       if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
505                                             (uint32) (rva - current_rva),
506                                             &decompressed_op)) {
507         return false;
508       }
509       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
510       if (!output->Write(&words, 4))
511         return false;
512       current_rva += 4;
513       break;
514     }
515     default:
516       return false;
517   }
518 
519   return true;
520 }
521 
AssembleTo(SinkStream * final_buffer)522 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
523   // For the most part, the assembly process walks the various tables.
524   // ix_mumble is the index into the mumble table.
525   size_t ix_origins = 0;
526   size_t ix_copy_counts = 0;
527   size_t ix_copy_bytes = 0;
528   size_t ix_abs32_ix = 0;
529   size_t ix_rel32_ix = 0;
530 
531   RVA current_rva = 0;
532 
533   bool pending_pe_relocation_table = false;
534   uint8 pending_pe_relocation_table_type = 0x03;  // IMAGE_REL_BASED_HIGHLOW
535   Elf32_Word pending_elf_relocation_table_type = 0;
536   SinkStream bytes_following_relocation_table;
537 
538   SinkStream* output = final_buffer;
539 
540   for (size_t ix_ops = 0;  ix_ops < ops_.size();  ++ix_ops) {
541     OP op = ops_[ix_ops];
542 
543     switch (op) {
544       default:
545         if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
546           return false;
547         break;
548 
549       case ORIGIN: {
550         RVA section_rva;
551         if (!VectorAt(origins_, ix_origins, &section_rva))
552           return false;
553         ++ix_origins;
554         current_rva = section_rva;
555         break;
556       }
557 
558       case COPY: {
559         uint32 count;
560         if (!VectorAt(copy_counts_, ix_copy_counts, &count))
561           return false;
562         ++ix_copy_counts;
563         for (uint32 i = 0;  i < count;  ++i) {
564           uint8 b;
565           if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
566             return false;
567           ++ix_copy_bytes;
568           if (!output->Write(&b, 1))
569             return false;
570         }
571         current_rva += count;
572         break;
573       }
574 
575       case COPY1: {
576         uint8 b;
577         if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
578           return false;
579         ++ix_copy_bytes;
580         if (!output->Write(&b, 1))
581           return false;
582         current_rva += 1;
583         break;
584       }
585 
586       case REL32: {
587         uint32 index;
588         if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
589           return false;
590         ++ix_rel32_ix;
591         RVA rva;
592         if (!VectorAt(rel32_rva_, index, &rva))
593           return false;
594         uint32 offset = (rva - (current_rva + 4));
595         if (!output->Write(&offset, 4))
596           return false;
597         current_rva += 4;
598         break;
599       }
600 
601       case ABS32: {
602         uint32 index;
603         if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
604           return false;
605         ++ix_abs32_ix;
606         RVA rva;
607         if (!VectorAt(abs32_rva_, index, &rva))
608           return false;
609         uint32 abs32 = static_cast<uint32>(rva + image_base_);
610         if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4))
611           return false;
612         current_rva += 4;
613         break;
614       }
615 
616       case MAKE_PE_RELOCATION_TABLE: {
617         // We can see the base relocation anywhere, but we only have the
618         // information to generate it at the very end.  So we divert the bytes
619         // we are generating to a temporary stream.
620         if (pending_pe_relocation_table)
621           return false;  // Can't have two base relocation tables.
622 
623         pending_pe_relocation_table = true;
624         output = &bytes_following_relocation_table;
625         break;
626         // There is a potential problem *if* the instruction stream contains
627         // some REL32 relocations following the base relocation and in the same
628         // section.  We don't know the size of the table, so 'current_rva' will
629         // be wrong, causing REL32 offsets to be miscalculated.  This never
630         // happens; the base relocation table is usually in a section of its
631         // own, a data-only section, and following everything else in the
632         // executable except some padding zero bytes.  We could fix this by
633         // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
634       }
635 
636       case MAKE_PE64_RELOCATION_TABLE: {
637         if (pending_pe_relocation_table)
638           return false;  // Can't have two base relocation tables.
639 
640         pending_pe_relocation_table = true;
641         pending_pe_relocation_table_type = 0x0A;  // IMAGE_REL_BASED_DIR64
642         output = &bytes_following_relocation_table;
643         break;
644       }
645 
646       case MAKE_ELF_ARM_RELOCATION_TABLE: {
647         // We can see the base relocation anywhere, but we only have the
648         // information to generate it at the very end.  So we divert the bytes
649         // we are generating to a temporary stream.
650         if (pending_elf_relocation_table_type)
651           return false;  // Can't have two base relocation tables.
652 
653         pending_elf_relocation_table_type = R_ARM_RELATIVE;
654         output = &bytes_following_relocation_table;
655         break;
656       }
657 
658       case MAKE_ELF_RELOCATION_TABLE: {
659         // We can see the base relocation anywhere, but we only have the
660         // information to generate it at the very end.  So we divert the bytes
661         // we are generating to a temporary stream.
662         if (pending_elf_relocation_table_type)
663           return false;  // Can't have two base relocation tables.
664 
665         pending_elf_relocation_table_type = R_386_RELATIVE;
666         output = &bytes_following_relocation_table;
667         break;
668       }
669     }
670   }
671 
672   if (pending_pe_relocation_table) {
673     if (!GeneratePeRelocations(final_buffer,
674                                pending_pe_relocation_table_type) ||
675         !final_buffer->Append(&bytes_following_relocation_table))
676       return false;
677   }
678 
679   if (pending_elf_relocation_table_type) {
680     if (!GenerateElfRelocations(pending_elf_relocation_table_type,
681                                 final_buffer) ||
682         !final_buffer->Append(&bytes_following_relocation_table))
683       return false;
684   }
685 
686   // Final verification check: did we consume all lists?
687   if (ix_copy_counts != copy_counts_.size())
688     return false;
689   if (ix_copy_bytes != copy_bytes_.size())
690     return false;
691   if (ix_abs32_ix != abs32_ix_.size())
692     return false;
693   if (ix_rel32_ix != rel32_ix_.size())
694     return false;
695 
696   return true;
697 }
698 
699 // RelocBlock has the layout of a block of relocations in the base relocation
700 // table file format.
701 //
702 struct RelocBlockPOD {
703   uint32 page_rva;
704   uint32 block_size;
705   uint16 relocs[4096];  // Allow up to one relocation per byte of a 4k page.
706 };
707 
708 COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size);
709 
710 class RelocBlock {
711  public:
RelocBlock()712   RelocBlock() {
713     pod.page_rva = ~0;
714     pod.block_size = 8;
715   }
716 
Add(uint16 item)717   void Add(uint16 item) {
718     pod.relocs[(pod.block_size-8)/2] = item;
719     pod.block_size += 2;
720   }
721 
Flush(SinkStream * buffer)722   CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
723     bool ok = true;
724     if (pod.block_size != 8) {
725       if (pod.block_size % 4 != 0) {  // Pad to make size multiple of 4 bytes.
726         Add(0);
727       }
728       ok = buffer->Write(&pod, pod.block_size);
729       pod.block_size = 8;
730     }
731     return ok;
732   }
733   RelocBlockPOD pod;
734 };
735 
GeneratePeRelocations(SinkStream * buffer,uint8 type)736 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
737                                                 uint8 type) {
738   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
739 
740   RelocBlock block;
741 
742   bool ok = true;
743   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
744     uint32 rva = abs32_relocs_[i];
745     uint32 page_rva = rva & ~0xFFF;
746     if (page_rva != block.pod.page_rva) {
747       ok &= block.Flush(buffer);
748       block.pod.page_rva = page_rva;
749     }
750     if (ok)
751       block.Add(((static_cast<uint16>(type)) << 12 ) | (rva & 0xFFF));
752   }
753   ok &= block.Flush(buffer);
754   return ok;
755 }
756 
GenerateElfRelocations(Elf32_Word r_info,SinkStream * buffer)757 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
758                                                  SinkStream* buffer) {
759   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
760 
761   Elf32_Rel relocation_block;
762 
763   relocation_block.r_info = r_info;
764 
765   bool ok = true;
766   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
767     relocation_block.r_offset = abs32_relocs_[i];
768     ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
769   }
770 
771   return ok;
772 }
773 ////////////////////////////////////////////////////////////////////////////////
774 
WriteEncodedProgram(EncodedProgram * encoded,SinkStreamSet * sink)775 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
776   if (!encoded->WriteTo(sink))
777     return C_STREAM_ERROR;
778   return C_OK;
779 }
780 
ReadEncodedProgram(SourceStreamSet * streams,EncodedProgram ** output)781 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
782   EncodedProgram* encoded = new EncodedProgram();
783   if (encoded->ReadFrom(streams)) {
784     *output = encoded;
785     return C_OK;
786   }
787   delete encoded;
788   return C_DESERIALIZATION_FAILED;
789 }
790 
Assemble(EncodedProgram * encoded,SinkStream * buffer)791 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
792   bool assembled = encoded->AssembleTo(buffer);
793   if (assembled)
794     return C_OK;
795   return C_ASSEMBLY_FAILED;
796 }
797 
DeleteEncodedProgram(EncodedProgram * encoded)798 void DeleteEncodedProgram(EncodedProgram* encoded) {
799   delete encoded;
800 }
801 
802 }  // end namespace
803