1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <string>
18 #include <inttypes.h>
19
20 #include "codegen_x86.h"
21 #include "dex/compiler_internals.h"
22 #include "dex/quick/mir_to_lir-inl.h"
23 #include "dex/reg_storage_eq.h"
24 #include "mirror/array.h"
25 #include "mirror/string.h"
26 #include "x86_lir.h"
27
28 namespace art {
29
30 static constexpr RegStorage core_regs_arr_32[] = {
31 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32 };
33 static constexpr RegStorage core_regs_arr_64[] = {
34 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36 };
37 static constexpr RegStorage core_regs_arr_64q[] = {
38 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40 };
41 static constexpr RegStorage sp_regs_arr_32[] = {
42 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43 };
44 static constexpr RegStorage sp_regs_arr_64[] = {
45 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47 };
48 static constexpr RegStorage dp_regs_arr_32[] = {
49 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50 };
51 static constexpr RegStorage dp_regs_arr_64[] = {
52 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54 };
55 static constexpr RegStorage xp_regs_arr_32[] = {
56 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57 };
58 static constexpr RegStorage xp_regs_arr_64[] = {
59 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61 };
62 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66 static constexpr RegStorage core_temps_arr_64[] = {
67 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68 rs_r8, rs_r9, rs_r10, rs_r11
69 };
70
71 // How to add register to be available for promotion:
72 // 1) Remove register from array defining temp
73 // 2) Update ClobberCallerSave
74 // 3) Update JNI compiler ABI:
75 // 3.1) add reg in JniCallingConvention method
76 // 3.2) update CoreSpillMask/FpSpillMask
77 // 4) Update entrypoints
78 // 4.1) Update constants in asm_support_x86_64.h for new frame size
79 // 4.2) Remove entry in SmashCallerSaves
80 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82 // 5) Update runtime ABI
83 // 5.1) Update quick_method_frame_info with new required spills
84 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85 // Note that you cannot use register corresponding to incoming args
86 // according to ABI and QCG needs one additional XMM temp for
87 // bulk copy in preparation to call.
88 static constexpr RegStorage core_temps_arr_64q[] = {
89 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90 rs_r8q, rs_r9q, rs_r10q, rs_r11q
91 };
92 static constexpr RegStorage sp_temps_arr_32[] = {
93 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94 };
95 static constexpr RegStorage sp_temps_arr_64[] = {
96 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97 rs_fr8, rs_fr9, rs_fr10, rs_fr11
98 };
99 static constexpr RegStorage dp_temps_arr_32[] = {
100 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101 };
102 static constexpr RegStorage dp_temps_arr_64[] = {
103 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104 rs_dr8, rs_dr9, rs_dr10, rs_dr11
105 };
106
107 static constexpr RegStorage xp_temps_arr_32[] = {
108 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109 };
110 static constexpr RegStorage xp_temps_arr_64[] = {
111 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112 rs_xr8, rs_xr9, rs_xr10, rs_xr11
113 };
114
115 static constexpr ArrayRef<const RegStorage> empty_pool;
116 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135
136 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138
139 RegStorage rs_rX86_SP;
140
141 X86NativeRegisterPool rX86_ARG0;
142 X86NativeRegisterPool rX86_ARG1;
143 X86NativeRegisterPool rX86_ARG2;
144 X86NativeRegisterPool rX86_ARG3;
145 X86NativeRegisterPool rX86_ARG4;
146 X86NativeRegisterPool rX86_ARG5;
147 X86NativeRegisterPool rX86_FARG0;
148 X86NativeRegisterPool rX86_FARG1;
149 X86NativeRegisterPool rX86_FARG2;
150 X86NativeRegisterPool rX86_FARG3;
151 X86NativeRegisterPool rX86_FARG4;
152 X86NativeRegisterPool rX86_FARG5;
153 X86NativeRegisterPool rX86_FARG6;
154 X86NativeRegisterPool rX86_FARG7;
155 X86NativeRegisterPool rX86_RET0;
156 X86NativeRegisterPool rX86_RET1;
157 X86NativeRegisterPool rX86_INVOKE_TGT;
158 X86NativeRegisterPool rX86_COUNT;
159
160 RegStorage rs_rX86_ARG0;
161 RegStorage rs_rX86_ARG1;
162 RegStorage rs_rX86_ARG2;
163 RegStorage rs_rX86_ARG3;
164 RegStorage rs_rX86_ARG4;
165 RegStorage rs_rX86_ARG5;
166 RegStorage rs_rX86_FARG0;
167 RegStorage rs_rX86_FARG1;
168 RegStorage rs_rX86_FARG2;
169 RegStorage rs_rX86_FARG3;
170 RegStorage rs_rX86_FARG4;
171 RegStorage rs_rX86_FARG5;
172 RegStorage rs_rX86_FARG6;
173 RegStorage rs_rX86_FARG7;
174 RegStorage rs_rX86_RET0;
175 RegStorage rs_rX86_RET1;
176 RegStorage rs_rX86_INVOKE_TGT;
177 RegStorage rs_rX86_COUNT;
178
LocCReturn()179 RegLocation X86Mir2Lir::LocCReturn() {
180 return x86_loc_c_return;
181 }
182
LocCReturnRef()183 RegLocation X86Mir2Lir::LocCReturnRef() {
184 return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185 }
186
LocCReturnWide()187 RegLocation X86Mir2Lir::LocCReturnWide() {
188 return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189 }
190
LocCReturnFloat()191 RegLocation X86Mir2Lir::LocCReturnFloat() {
192 return x86_loc_c_return_float;
193 }
194
LocCReturnDouble()195 RegLocation X86Mir2Lir::LocCReturnDouble() {
196 return x86_loc_c_return_double;
197 }
198
199 // Return a target-dependent special register for 32-bit.
TargetReg32(SpecialTargetRegister reg)200 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201 RegStorage res_reg = RegStorage::InvalidReg();
202 switch (reg) {
203 case kSelf: res_reg = RegStorage::InvalidReg(); break;
204 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
205 case kLr: res_reg = RegStorage::InvalidReg(); break;
206 case kPc: res_reg = RegStorage::InvalidReg(); break;
207 case kSp: res_reg = rs_rX86_SP_32; break; // This must be the concrete one, as _SP is target-
208 // specific size.
209 case kArg0: res_reg = rs_rX86_ARG0; break;
210 case kArg1: res_reg = rs_rX86_ARG1; break;
211 case kArg2: res_reg = rs_rX86_ARG2; break;
212 case kArg3: res_reg = rs_rX86_ARG3; break;
213 case kArg4: res_reg = rs_rX86_ARG4; break;
214 case kArg5: res_reg = rs_rX86_ARG5; break;
215 case kFArg0: res_reg = rs_rX86_FARG0; break;
216 case kFArg1: res_reg = rs_rX86_FARG1; break;
217 case kFArg2: res_reg = rs_rX86_FARG2; break;
218 case kFArg3: res_reg = rs_rX86_FARG3; break;
219 case kFArg4: res_reg = rs_rX86_FARG4; break;
220 case kFArg5: res_reg = rs_rX86_FARG5; break;
221 case kFArg6: res_reg = rs_rX86_FARG6; break;
222 case kFArg7: res_reg = rs_rX86_FARG7; break;
223 case kRet0: res_reg = rs_rX86_RET0; break;
224 case kRet1: res_reg = rs_rX86_RET1; break;
225 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
226 case kHiddenArg: res_reg = rs_rAX; break;
227 case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
228 case kCount: res_reg = rs_rX86_COUNT; break;
229 default: res_reg = RegStorage::InvalidReg();
230 }
231 return res_reg;
232 }
233
TargetReg(SpecialTargetRegister reg)234 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
235 LOG(FATAL) << "Do not use this function!!!";
236 return RegStorage::InvalidReg();
237 }
238
239 /*
240 * Decode the register id.
241 */
GetRegMaskCommon(const RegStorage & reg) const242 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
243 /* Double registers in x86 are just a single FP register. This is always just a single bit. */
244 return ResourceMask::Bit(
245 /* FP register starts at bit position 16 */
246 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
247 }
248
GetPCUseDefEncoding() const249 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
250 return kEncodeNone;
251 }
252
SetupTargetResourceMasks(LIR * lir,uint64_t flags,ResourceMask * use_mask,ResourceMask * def_mask)253 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
254 ResourceMask* use_mask, ResourceMask* def_mask) {
255 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
256 DCHECK(!lir->flags.use_def_invalid);
257
258 // X86-specific resource map setup here.
259 if (flags & REG_USE_SP) {
260 use_mask->SetBit(kX86RegSP);
261 }
262
263 if (flags & REG_DEF_SP) {
264 def_mask->SetBit(kX86RegSP);
265 }
266
267 if (flags & REG_DEFA) {
268 SetupRegMask(def_mask, rs_rAX.GetReg());
269 }
270
271 if (flags & REG_DEFD) {
272 SetupRegMask(def_mask, rs_rDX.GetReg());
273 }
274 if (flags & REG_USEA) {
275 SetupRegMask(use_mask, rs_rAX.GetReg());
276 }
277
278 if (flags & REG_USEC) {
279 SetupRegMask(use_mask, rs_rCX.GetReg());
280 }
281
282 if (flags & REG_USED) {
283 SetupRegMask(use_mask, rs_rDX.GetReg());
284 }
285
286 if (flags & REG_USEB) {
287 SetupRegMask(use_mask, rs_rBX.GetReg());
288 }
289
290 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
291 if (lir->opcode == kX86RepneScasw) {
292 SetupRegMask(use_mask, rs_rAX.GetReg());
293 SetupRegMask(use_mask, rs_rCX.GetReg());
294 SetupRegMask(use_mask, rs_rDI.GetReg());
295 SetupRegMask(def_mask, rs_rDI.GetReg());
296 }
297
298 if (flags & USE_FP_STACK) {
299 use_mask->SetBit(kX86FPStack);
300 def_mask->SetBit(kX86FPStack);
301 }
302 }
303
304 /* For dumping instructions */
305 static const char* x86RegName[] = {
306 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
308 };
309
310 static const char* x86CondName[] = {
311 "O",
312 "NO",
313 "B/NAE/C",
314 "NB/AE/NC",
315 "Z/EQ",
316 "NZ/NE",
317 "BE/NA",
318 "NBE/A",
319 "S",
320 "NS",
321 "P/PE",
322 "NP/PO",
323 "L/NGE",
324 "NL/GE",
325 "LE/NG",
326 "NLE/G"
327 };
328
329 /*
330 * Interpret a format string and build a string no longer than size
331 * See format key in Assemble.cc.
332 */
BuildInsnString(const char * fmt,LIR * lir,unsigned char * base_addr)333 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
334 std::string buf;
335 size_t i = 0;
336 size_t fmt_len = strlen(fmt);
337 while (i < fmt_len) {
338 if (fmt[i] != '!') {
339 buf += fmt[i];
340 i++;
341 } else {
342 i++;
343 DCHECK_LT(i, fmt_len);
344 char operand_number_ch = fmt[i];
345 i++;
346 if (operand_number_ch == '!') {
347 buf += "!";
348 } else {
349 int operand_number = operand_number_ch - '0';
350 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
351 DCHECK_LT(i, fmt_len);
352 int operand = lir->operands[operand_number];
353 switch (fmt[i]) {
354 case 'c':
355 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
356 buf += x86CondName[operand];
357 break;
358 case 'd':
359 buf += StringPrintf("%d", operand);
360 break;
361 case 'q': {
362 int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
363 static_cast<uint32_t>(lir->operands[operand_number+1]));
364 buf +=StringPrintf("%" PRId64, value);
365 }
366 case 'p': {
367 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
368 buf += StringPrintf("0x%08x", tab_rec->offset);
369 break;
370 }
371 case 'r':
372 if (RegStorage::IsFloat(operand)) {
373 int fp_reg = RegStorage::RegNum(operand);
374 buf += StringPrintf("xmm%d", fp_reg);
375 } else {
376 int reg_num = RegStorage::RegNum(operand);
377 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
378 buf += x86RegName[reg_num];
379 }
380 break;
381 case 't':
382 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
383 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
384 lir->target);
385 break;
386 default:
387 buf += StringPrintf("DecodeError '%c'", fmt[i]);
388 break;
389 }
390 i++;
391 }
392 }
393 }
394 return buf;
395 }
396
DumpResourceMask(LIR * x86LIR,const ResourceMask & mask,const char * prefix)397 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
398 char buf[256];
399 buf[0] = 0;
400
401 if (mask.Equals(kEncodeAll)) {
402 strcpy(buf, "all");
403 } else {
404 char num[8];
405 int i;
406
407 for (i = 0; i < kX86RegEnd; i++) {
408 if (mask.HasBit(i)) {
409 snprintf(num, arraysize(num), "%d ", i);
410 strcat(buf, num);
411 }
412 }
413
414 if (mask.HasBit(ResourceMask::kCCode)) {
415 strcat(buf, "cc ");
416 }
417 /* Memory bits */
418 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
419 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
420 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
421 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
422 }
423 if (mask.HasBit(ResourceMask::kLiteral)) {
424 strcat(buf, "lit ");
425 }
426
427 if (mask.HasBit(ResourceMask::kHeapRef)) {
428 strcat(buf, "heap ");
429 }
430 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
431 strcat(buf, "noalias ");
432 }
433 }
434 if (buf[0]) {
435 LOG(INFO) << prefix << ": " << buf;
436 }
437 }
438
AdjustSpillMask()439 void X86Mir2Lir::AdjustSpillMask() {
440 // Adjustment for LR spilling, x86 has no LR so nothing to do here
441 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
442 num_core_spills_++;
443 }
444
AllocateByteRegister()445 RegStorage X86Mir2Lir::AllocateByteRegister() {
446 RegStorage reg = AllocTypedTemp(false, kCoreReg);
447 if (!cu_->target64) {
448 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
449 }
450 return reg;
451 }
452
Get128BitRegister(RegStorage reg)453 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
454 return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
455 }
456
IsByteRegister(RegStorage reg)457 bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
458 return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
459 }
460
461 /* Clobber all regs that might be used by an external C call */
ClobberCallerSave()462 void X86Mir2Lir::ClobberCallerSave() {
463 if (cu_->target64) {
464 Clobber(rs_rAX);
465 Clobber(rs_rCX);
466 Clobber(rs_rDX);
467 Clobber(rs_rSI);
468 Clobber(rs_rDI);
469
470 Clobber(rs_r8);
471 Clobber(rs_r9);
472 Clobber(rs_r10);
473 Clobber(rs_r11);
474
475 Clobber(rs_fr8);
476 Clobber(rs_fr9);
477 Clobber(rs_fr10);
478 Clobber(rs_fr11);
479 } else {
480 Clobber(rs_rAX);
481 Clobber(rs_rCX);
482 Clobber(rs_rDX);
483 Clobber(rs_rBX);
484 }
485
486 Clobber(rs_fr0);
487 Clobber(rs_fr1);
488 Clobber(rs_fr2);
489 Clobber(rs_fr3);
490 Clobber(rs_fr4);
491 Clobber(rs_fr5);
492 Clobber(rs_fr6);
493 Clobber(rs_fr7);
494 }
495
GetReturnWideAlt()496 RegLocation X86Mir2Lir::GetReturnWideAlt() {
497 RegLocation res = LocCReturnWide();
498 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
499 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
500 Clobber(rs_rAX);
501 Clobber(rs_rDX);
502 MarkInUse(rs_rAX);
503 MarkInUse(rs_rDX);
504 MarkWide(res.reg);
505 return res;
506 }
507
GetReturnAlt()508 RegLocation X86Mir2Lir::GetReturnAlt() {
509 RegLocation res = LocCReturn();
510 res.reg.SetReg(rs_rDX.GetReg());
511 Clobber(rs_rDX);
512 MarkInUse(rs_rDX);
513 return res;
514 }
515
516 /* To be used when explicitly managing register use */
LockCallTemps()517 void X86Mir2Lir::LockCallTemps() {
518 LockTemp(rs_rX86_ARG0);
519 LockTemp(rs_rX86_ARG1);
520 LockTemp(rs_rX86_ARG2);
521 LockTemp(rs_rX86_ARG3);
522 if (cu_->target64) {
523 LockTemp(rs_rX86_ARG4);
524 LockTemp(rs_rX86_ARG5);
525 LockTemp(rs_rX86_FARG0);
526 LockTemp(rs_rX86_FARG1);
527 LockTemp(rs_rX86_FARG2);
528 LockTemp(rs_rX86_FARG3);
529 LockTemp(rs_rX86_FARG4);
530 LockTemp(rs_rX86_FARG5);
531 LockTemp(rs_rX86_FARG6);
532 LockTemp(rs_rX86_FARG7);
533 }
534 }
535
536 /* To be used when explicitly managing register use */
FreeCallTemps()537 void X86Mir2Lir::FreeCallTemps() {
538 FreeTemp(rs_rX86_ARG0);
539 FreeTemp(rs_rX86_ARG1);
540 FreeTemp(rs_rX86_ARG2);
541 FreeTemp(rs_rX86_ARG3);
542 if (cu_->target64) {
543 FreeTemp(rs_rX86_ARG4);
544 FreeTemp(rs_rX86_ARG5);
545 FreeTemp(rs_rX86_FARG0);
546 FreeTemp(rs_rX86_FARG1);
547 FreeTemp(rs_rX86_FARG2);
548 FreeTemp(rs_rX86_FARG3);
549 FreeTemp(rs_rX86_FARG4);
550 FreeTemp(rs_rX86_FARG5);
551 FreeTemp(rs_rX86_FARG6);
552 FreeTemp(rs_rX86_FARG7);
553 }
554 }
555
ProvidesFullMemoryBarrier(X86OpCode opcode)556 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
557 switch (opcode) {
558 case kX86LockCmpxchgMR:
559 case kX86LockCmpxchgAR:
560 case kX86LockCmpxchg64M:
561 case kX86LockCmpxchg64A:
562 case kX86XchgMR:
563 case kX86Mfence:
564 // Atomic memory instructions provide full barrier.
565 return true;
566 default:
567 break;
568 }
569
570 // Conservative if cannot prove it provides full barrier.
571 return false;
572 }
573
GenMemBarrier(MemBarrierKind barrier_kind)574 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
575 #if ANDROID_SMP != 0
576 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
577 LIR* mem_barrier = last_lir_insn_;
578
579 bool ret = false;
580 /*
581 * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
582 * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
583 * For those cases, all we need to ensure is that there is a scheduling barrier in place.
584 */
585 if (barrier_kind == kAnyAny) {
586 // If no LIR exists already that can be used a barrier, then generate an mfence.
587 if (mem_barrier == nullptr) {
588 mem_barrier = NewLIR0(kX86Mfence);
589 ret = true;
590 }
591
592 // If last instruction does not provide full barrier, then insert an mfence.
593 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
594 mem_barrier = NewLIR0(kX86Mfence);
595 ret = true;
596 }
597 }
598
599 // Now ensure that a scheduling barrier is in place.
600 if (mem_barrier == nullptr) {
601 GenBarrier();
602 } else {
603 // Mark as a scheduling barrier.
604 DCHECK(!mem_barrier->flags.use_def_invalid);
605 mem_barrier->u.m.def_mask = &kEncodeAll;
606 }
607 return ret;
608 #else
609 return false;
610 #endif
611 }
612
CompilerInitializeRegAlloc()613 void X86Mir2Lir::CompilerInitializeRegAlloc() {
614 if (cu_->target64) {
615 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
616 dp_regs_64, reserved_regs_64, reserved_regs_64q,
617 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
618 } else {
619 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
620 dp_regs_32, reserved_regs_32, empty_pool,
621 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
622 }
623
624 // Target-specific adjustments.
625
626 // Add in XMM registers.
627 const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
628 for (RegStorage reg : *xp_regs) {
629 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
630 reginfo_map_.Put(reg.GetReg(), info);
631 }
632 const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
633 for (RegStorage reg : *xp_temps) {
634 RegisterInfo* xp_reg_info = GetRegInfo(reg);
635 xp_reg_info->SetIsTemp(true);
636 }
637
638 // Alias single precision xmm to double xmms.
639 // TODO: as needed, add larger vector sizes - alias all to the largest.
640 GrowableArray<RegisterInfo*>::Iterator it(®_pool_->sp_regs_);
641 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
642 int sp_reg_num = info->GetReg().GetRegNum();
643 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
644 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
645 // 128-bit xmm vector register's master storage should refer to itself.
646 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
647
648 // Redirect 32-bit vector's master storage to 128-bit vector.
649 info->SetMaster(xp_reg_info);
650
651 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
652 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
653 // Redirect 64-bit vector's master storage to 128-bit vector.
654 dp_reg_info->SetMaster(xp_reg_info);
655 // Singles should show a single 32-bit mask bit, at first referring to the low half.
656 DCHECK_EQ(info->StorageMask(), 0x1U);
657 }
658
659 if (cu_->target64) {
660 // Alias 32bit W registers to corresponding 64bit X registers.
661 GrowableArray<RegisterInfo*>::Iterator w_it(®_pool_->core_regs_);
662 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
663 int x_reg_num = info->GetReg().GetRegNum();
664 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
665 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
666 // 64bit X register's master storage should refer to itself.
667 DCHECK_EQ(x_reg_info, x_reg_info->Master());
668 // Redirect 32bit W master storage to 64bit X.
669 info->SetMaster(x_reg_info);
670 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
671 DCHECK_EQ(info->StorageMask(), 0x1U);
672 }
673 }
674
675 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
676 // TODO: adjust for x86/hard float calling convention.
677 reg_pool_->next_core_reg_ = 2;
678 reg_pool_->next_sp_reg_ = 2;
679 reg_pool_->next_dp_reg_ = 1;
680 }
681
VectorRegisterSize()682 int X86Mir2Lir::VectorRegisterSize() {
683 return 128;
684 }
685
NumReservableVectorRegisters(bool fp_used)686 int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
687 return fp_used ? 5 : 7;
688 }
689
SpillCoreRegs()690 void X86Mir2Lir::SpillCoreRegs() {
691 if (num_core_spills_ == 0) {
692 return;
693 }
694 // Spill mask not including fake return address register
695 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
696 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
697 OpSize size = cu_->target64 ? k64 : k32;
698 for (int reg = 0; mask; mask >>= 1, reg++) {
699 if (mask & 0x1) {
700 StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg),
701 size, kNotVolatile);
702 offset += GetInstructionSetPointerSize(cu_->instruction_set);
703 }
704 }
705 }
706
UnSpillCoreRegs()707 void X86Mir2Lir::UnSpillCoreRegs() {
708 if (num_core_spills_ == 0) {
709 return;
710 }
711 // Spill mask not including fake return address register
712 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
713 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
714 OpSize size = cu_->target64 ? k64 : k32;
715 for (int reg = 0; mask; mask >>= 1, reg++) {
716 if (mask & 0x1) {
717 LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg),
718 size, kNotVolatile);
719 offset += GetInstructionSetPointerSize(cu_->instruction_set);
720 }
721 }
722 }
723
SpillFPRegs()724 void X86Mir2Lir::SpillFPRegs() {
725 if (num_fp_spills_ == 0) {
726 return;
727 }
728 uint32_t mask = fp_spill_mask_;
729 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
730 for (int reg = 0; mask; mask >>= 1, reg++) {
731 if (mask & 0x1) {
732 StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
733 k64, kNotVolatile);
734 offset += sizeof(double);
735 }
736 }
737 }
UnSpillFPRegs()738 void X86Mir2Lir::UnSpillFPRegs() {
739 if (num_fp_spills_ == 0) {
740 return;
741 }
742 uint32_t mask = fp_spill_mask_;
743 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
744 for (int reg = 0; mask; mask >>= 1, reg++) {
745 if (mask & 0x1) {
746 LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
747 k64, kNotVolatile);
748 offset += sizeof(double);
749 }
750 }
751 }
752
753
IsUnconditionalBranch(LIR * lir)754 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
755 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
756 }
757
RegClassForFieldLoadStore(OpSize size,bool is_volatile)758 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
759 // X86_64 can handle any size.
760 if (cu_->target64) {
761 if (size == kReference) {
762 return kRefReg;
763 }
764 return kCoreReg;
765 }
766
767 if (UNLIKELY(is_volatile)) {
768 // On x86, atomic 64-bit load/store requires an fp register.
769 // Smaller aligned load/store is atomic for both core and fp registers.
770 if (size == k64 || size == kDouble) {
771 return kFPReg;
772 }
773 }
774 return RegClassBySize(size);
775 }
776
X86Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)777 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
778 : Mir2Lir(cu, mir_graph, arena),
779 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
780 method_address_insns_(arena, 100, kGrowableArrayMisc),
781 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
782 call_method_insns_(arena, 100, kGrowableArrayMisc),
783 stack_decrement_(nullptr), stack_increment_(nullptr),
784 const_vectors_(nullptr) {
785 store_method_addr_used_ = false;
786 if (kIsDebugBuild) {
787 for (int i = 0; i < kX86Last; i++) {
788 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
789 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
790 << " is wrong: expecting " << i << ", seeing "
791 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
792 }
793 }
794 }
795 if (cu_->target64) {
796 rs_rX86_SP = rs_rX86_SP_64;
797
798 rs_rX86_ARG0 = rs_rDI;
799 rs_rX86_ARG1 = rs_rSI;
800 rs_rX86_ARG2 = rs_rDX;
801 rs_rX86_ARG3 = rs_rCX;
802 rs_rX86_ARG4 = rs_r8;
803 rs_rX86_ARG5 = rs_r9;
804 rs_rX86_FARG0 = rs_fr0;
805 rs_rX86_FARG1 = rs_fr1;
806 rs_rX86_FARG2 = rs_fr2;
807 rs_rX86_FARG3 = rs_fr3;
808 rs_rX86_FARG4 = rs_fr4;
809 rs_rX86_FARG5 = rs_fr5;
810 rs_rX86_FARG6 = rs_fr6;
811 rs_rX86_FARG7 = rs_fr7;
812 rX86_ARG0 = rDI;
813 rX86_ARG1 = rSI;
814 rX86_ARG2 = rDX;
815 rX86_ARG3 = rCX;
816 rX86_ARG4 = r8;
817 rX86_ARG5 = r9;
818 rX86_FARG0 = fr0;
819 rX86_FARG1 = fr1;
820 rX86_FARG2 = fr2;
821 rX86_FARG3 = fr3;
822 rX86_FARG4 = fr4;
823 rX86_FARG5 = fr5;
824 rX86_FARG6 = fr6;
825 rX86_FARG7 = fr7;
826 rs_rX86_INVOKE_TGT = rs_rDI;
827 } else {
828 rs_rX86_SP = rs_rX86_SP_32;
829
830 rs_rX86_ARG0 = rs_rAX;
831 rs_rX86_ARG1 = rs_rCX;
832 rs_rX86_ARG2 = rs_rDX;
833 rs_rX86_ARG3 = rs_rBX;
834 rs_rX86_ARG4 = RegStorage::InvalidReg();
835 rs_rX86_ARG5 = RegStorage::InvalidReg();
836 rs_rX86_FARG0 = rs_rAX;
837 rs_rX86_FARG1 = rs_rCX;
838 rs_rX86_FARG2 = rs_rDX;
839 rs_rX86_FARG3 = rs_rBX;
840 rs_rX86_FARG4 = RegStorage::InvalidReg();
841 rs_rX86_FARG5 = RegStorage::InvalidReg();
842 rs_rX86_FARG6 = RegStorage::InvalidReg();
843 rs_rX86_FARG7 = RegStorage::InvalidReg();
844 rX86_ARG0 = rAX;
845 rX86_ARG1 = rCX;
846 rX86_ARG2 = rDX;
847 rX86_ARG3 = rBX;
848 rX86_FARG0 = rAX;
849 rX86_FARG1 = rCX;
850 rX86_FARG2 = rDX;
851 rX86_FARG3 = rBX;
852 rs_rX86_INVOKE_TGT = rs_rAX;
853 // TODO(64): Initialize with invalid reg
854 // rX86_ARG4 = RegStorage::InvalidReg();
855 // rX86_ARG5 = RegStorage::InvalidReg();
856 }
857 rs_rX86_RET0 = rs_rAX;
858 rs_rX86_RET1 = rs_rDX;
859 rs_rX86_COUNT = rs_rCX;
860 rX86_RET0 = rAX;
861 rX86_RET1 = rDX;
862 rX86_INVOKE_TGT = rAX;
863 rX86_COUNT = rCX;
864
865 // Initialize the number of reserved vector registers
866 num_reserved_vector_regs_ = -1;
867 }
868
X86CodeGenerator(CompilationUnit * const cu,MIRGraph * const mir_graph,ArenaAllocator * const arena)869 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
870 ArenaAllocator* const arena) {
871 return new X86Mir2Lir(cu, mir_graph, arena);
872 }
873
874 // Not used in x86(-64)
LoadHelper(QuickEntrypointEnum trampoline)875 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
876 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
877 return RegStorage::InvalidReg();
878 }
879
CheckSuspendUsingLoad()880 LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
881 // First load the pointer in fs:[suspend-trigger] into eax
882 // Then use a test instruction to indirect via that address.
883 if (cu_->target64) {
884 NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
885 Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
886 } else {
887 NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
888 Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
889 }
890 return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
891 }
892
GetTargetInstFlags(int opcode)893 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
894 DCHECK(!IsPseudoLirOp(opcode));
895 return X86Mir2Lir::EncodingMap[opcode].flags;
896 }
897
GetTargetInstName(int opcode)898 const char* X86Mir2Lir::GetTargetInstName(int opcode) {
899 DCHECK(!IsPseudoLirOp(opcode));
900 return X86Mir2Lir::EncodingMap[opcode].name;
901 }
902
GetTargetInstFmt(int opcode)903 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
904 DCHECK(!IsPseudoLirOp(opcode));
905 return X86Mir2Lir::EncodingMap[opcode].fmt;
906 }
907
GenConstWide(RegLocation rl_dest,int64_t value)908 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
909 // Can we do this directly to memory?
910 rl_dest = UpdateLocWide(rl_dest);
911 if ((rl_dest.location == kLocDalvikFrame) ||
912 (rl_dest.location == kLocCompilerTemp)) {
913 int32_t val_lo = Low32Bits(value);
914 int32_t val_hi = High32Bits(value);
915 int r_base = rs_rX86_SP.GetReg();
916 int displacement = SRegOffset(rl_dest.s_reg_low);
917
918 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
919 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
920 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
921 false /* is_load */, true /* is64bit */);
922 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
923 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
924 false /* is_load */, true /* is64bit */);
925 return;
926 }
927
928 // Just use the standard code to do the generation.
929 Mir2Lir::GenConstWide(rl_dest, value);
930 }
931
932 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
DumpRegLocation(RegLocation loc)933 void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
934 LOG(INFO) << "location: " << loc.location << ','
935 << (loc.wide ? " w" : " ")
936 << (loc.defined ? " D" : " ")
937 << (loc.is_const ? " c" : " ")
938 << (loc.fp ? " F" : " ")
939 << (loc.core ? " C" : " ")
940 << (loc.ref ? " r" : " ")
941 << (loc.high_word ? " h" : " ")
942 << (loc.home ? " H" : " ")
943 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
944 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
945 << ", s_reg: " << loc.s_reg_low
946 << ", orig: " << loc.orig_sreg;
947 }
948
Materialize()949 void X86Mir2Lir::Materialize() {
950 // A good place to put the analysis before starting.
951 AnalyzeMIR();
952
953 // Now continue with regular code generation.
954 Mir2Lir::Materialize();
955 }
956
LoadMethodAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)957 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
958 SpecialTargetRegister symbolic_reg) {
959 /*
960 * For x86, just generate a 32 bit move immediate instruction, that will be filled
961 * in at 'link time'. For now, put a unique value based on target to ensure that
962 * code deduplication works.
963 */
964 int target_method_idx = target_method.dex_method_index;
965 const DexFile* target_dex_file = target_method.dex_file;
966 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
967 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
968
969 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
970 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
971 TargetReg(symbolic_reg, kNotWide).GetReg(),
972 static_cast<int>(target_method_id_ptr), target_method_idx,
973 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
974 AppendLIR(move);
975 method_address_insns_.Insert(move);
976 }
977
LoadClassType(uint32_t type_idx,SpecialTargetRegister symbolic_reg)978 void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
979 /*
980 * For x86, just generate a 32 bit move immediate instruction, that will be filled
981 * in at 'link time'. For now, put a unique value based on target to ensure that
982 * code deduplication works.
983 */
984 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
985 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
986
987 // Generate the move instruction with the unique pointer and save index and type.
988 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
989 TargetReg(symbolic_reg, kNotWide).GetReg(),
990 static_cast<int>(ptr), type_idx);
991 AppendLIR(move);
992 class_type_address_insns_.Insert(move);
993 }
994
CallWithLinkerFixup(const MethodReference & target_method,InvokeType type)995 LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
996 /*
997 * For x86, just generate a 32 bit call relative instruction, that will be filled
998 * in at 'link time'. For now, put a unique value based on target to ensure that
999 * code deduplication works.
1000 */
1001 int target_method_idx = target_method.dex_method_index;
1002 const DexFile* target_dex_file = target_method.dex_file;
1003 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1004 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1005
1006 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1007 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1008 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1009 AppendLIR(call);
1010 call_method_insns_.Insert(call);
1011 return call;
1012 }
1013
1014 /*
1015 * @brief Enter a 32 bit quantity into a buffer
1016 * @param buf buffer.
1017 * @param data Data value.
1018 */
1019
PushWord(std::vector<uint8_t> & buf,int32_t data)1020 static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1021 buf.push_back(data & 0xff);
1022 buf.push_back((data >> 8) & 0xff);
1023 buf.push_back((data >> 16) & 0xff);
1024 buf.push_back((data >> 24) & 0xff);
1025 }
1026
InstallLiteralPools()1027 void X86Mir2Lir::InstallLiteralPools() {
1028 // These are handled differently for x86.
1029 DCHECK(code_literal_list_ == nullptr);
1030 DCHECK(method_literal_list_ == nullptr);
1031 DCHECK(class_literal_list_ == nullptr);
1032
1033 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
1034 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
1035 // will fail at runtime)?
1036 if (const_vectors_ != nullptr) {
1037 int align_size = (16-4) - (code_buffer_.size() & 0xF);
1038 if (align_size < 0) {
1039 align_size += 16;
1040 }
1041
1042 while (align_size > 0) {
1043 code_buffer_.push_back(0);
1044 align_size--;
1045 }
1046 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1047 PushWord(code_buffer_, p->operands[0]);
1048 PushWord(code_buffer_, p->operands[1]);
1049 PushWord(code_buffer_, p->operands[2]);
1050 PushWord(code_buffer_, p->operands[3]);
1051 }
1052 }
1053
1054 // Handle the fixups for methods.
1055 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1056 LIR* p = method_address_insns_.Get(i);
1057 DCHECK_EQ(p->opcode, kX86Mov32RI);
1058 uint32_t target_method_idx = p->operands[2];
1059 const DexFile* target_dex_file =
1060 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1061
1062 // The offset to patch is the last 4 bytes of the instruction.
1063 int patch_offset = p->offset + p->flags.size - 4;
1064 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1065 cu_->method_idx, cu_->invoke_type,
1066 target_method_idx, target_dex_file,
1067 static_cast<InvokeType>(p->operands[4]),
1068 patch_offset);
1069 }
1070
1071 // Handle the fixups for class types.
1072 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1073 LIR* p = class_type_address_insns_.Get(i);
1074 DCHECK_EQ(p->opcode, kX86Mov32RI);
1075 uint32_t target_method_idx = p->operands[2];
1076
1077 // The offset to patch is the last 4 bytes of the instruction.
1078 int patch_offset = p->offset + p->flags.size - 4;
1079 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1080 cu_->method_idx, target_method_idx, patch_offset);
1081 }
1082
1083 // And now the PC-relative calls to methods.
1084 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1085 LIR* p = call_method_insns_.Get(i);
1086 DCHECK_EQ(p->opcode, kX86CallI);
1087 uint32_t target_method_idx = p->operands[1];
1088 const DexFile* target_dex_file =
1089 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1090
1091 // The offset to patch is the last 4 bytes of the instruction.
1092 int patch_offset = p->offset + p->flags.size - 4;
1093 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1094 cu_->method_idx, cu_->invoke_type,
1095 target_method_idx, target_dex_file,
1096 static_cast<InvokeType>(p->operands[3]),
1097 patch_offset, -4 /* offset */);
1098 }
1099
1100 // And do the normal processing.
1101 Mir2Lir::InstallLiteralPools();
1102 }
1103
GenInlinedArrayCopyCharArray(CallInfo * info)1104 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1105 RegLocation rl_src = info->args[0];
1106 RegLocation rl_srcPos = info->args[1];
1107 RegLocation rl_dst = info->args[2];
1108 RegLocation rl_dstPos = info->args[3];
1109 RegLocation rl_length = info->args[4];
1110 if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1111 return false;
1112 }
1113 if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1114 return false;
1115 }
1116 ClobberCallerSave();
1117 LockCallTemps(); // Using fixed registers.
1118 RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
1119 LoadValueDirectFixed(rl_src, rs_rAX);
1120 LoadValueDirectFixed(rl_dst, rs_rCX);
1121 LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
1122 LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
1123 LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1124 LoadValueDirectFixed(rl_length, rs_rDX);
1125 // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
1126 LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
1127 LoadValueDirectFixed(rl_src, rs_rAX);
1128 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1129 LIR* src_bad_len = nullptr;
1130 LIR* src_bad_off = nullptr;
1131 LIR* srcPos_negative = nullptr;
1132 if (!rl_srcPos.is_const) {
1133 LoadValueDirectFixed(rl_srcPos, tmp_reg);
1134 srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1135 // src_pos < src_len
1136 src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1137 // src_len - src_pos < copy_len
1138 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1139 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1140 } else {
1141 int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1142 if (pos_val == 0) {
1143 src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1144 } else {
1145 // src_pos < src_len
1146 src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1147 // src_len - src_pos < copy_len
1148 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1149 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1150 }
1151 }
1152 LIR* dstPos_negative = nullptr;
1153 LIR* dst_bad_len = nullptr;
1154 LIR* dst_bad_off = nullptr;
1155 LoadValueDirectFixed(rl_dst, rs_rAX);
1156 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1157 if (!rl_dstPos.is_const) {
1158 LoadValueDirectFixed(rl_dstPos, tmp_reg);
1159 dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1160 // dst_pos < dst_len
1161 dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1162 // dst_len - dst_pos < copy_len
1163 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1164 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1165 } else {
1166 int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1167 if (pos_val == 0) {
1168 dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1169 } else {
1170 // dst_pos < dst_len
1171 dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1172 // dst_len - dst_pos < copy_len
1173 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1174 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1175 }
1176 }
1177 // Everything is checked now.
1178 LoadValueDirectFixed(rl_src, rs_rAX);
1179 LoadValueDirectFixed(rl_dst, tmp_reg);
1180 LoadValueDirectFixed(rl_srcPos, rs_rCX);
1181 NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1182 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
1183 // RAX now holds the address of the first src element to be copied.
1184
1185 LoadValueDirectFixed(rl_dstPos, rs_rCX);
1186 NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
1187 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
1188 // RBX now holds the address of the first dst element to be copied.
1189
1190 // Check if the number of elements to be copied is odd or even. If odd
1191 // then copy the first element (so that the remaining number of elements
1192 // is even).
1193 LoadValueDirectFixed(rl_length, rs_rCX);
1194 OpRegImm(kOpAnd, rs_rCX, 1);
1195 LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1196 OpRegImm(kOpSub, rs_rDX, 1);
1197 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1198 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1199
1200 // Since the remaining number of elements is even, we will copy by
1201 // two elements at a time.
1202 LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
1203 LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
1204 OpRegImm(kOpSub, rs_rDX, 2);
1205 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1206 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
1207 OpUnconditionalBranch(beginLoop);
1208 LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1209 LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
1210 LIR *return_point = NewLIR0(kPseudoTargetLabel);
1211 jmp_to_ret->target = return_point;
1212 jmp_to_begin_loop->target = beginLoop;
1213 src_dst_same->target = check_failed;
1214 len_too_big->target = check_failed;
1215 src_null_branch->target = check_failed;
1216 if (srcPos_negative != nullptr)
1217 srcPos_negative ->target = check_failed;
1218 if (src_bad_off != nullptr)
1219 src_bad_off->target = check_failed;
1220 if (src_bad_len != nullptr)
1221 src_bad_len->target = check_failed;
1222 dst_null_branch->target = check_failed;
1223 if (dstPos_negative != nullptr)
1224 dstPos_negative->target = check_failed;
1225 if (dst_bad_off != nullptr)
1226 dst_bad_off->target = check_failed;
1227 if (dst_bad_len != nullptr)
1228 dst_bad_len->target = check_failed;
1229 AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1230 ClobberCallerSave(); // We must clobber everything because slow path will return here
1231 return true;
1232 }
1233
1234
1235 /*
1236 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1237 * otherwise bails to standard library code.
1238 */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1239 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1240 RegLocation rl_obj = info->args[0];
1241 RegLocation rl_char = info->args[1];
1242 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
1243 // RBX is callee-save register in 64-bit mode.
1244 RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
1245 int start_value = -1;
1246
1247 uint32_t char_value =
1248 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1249
1250 if (char_value > 0xFFFF) {
1251 // We have to punt to the real String.indexOf.
1252 return false;
1253 }
1254
1255 // Okay, we are commited to inlining this.
1256 // EAX: 16 bit character being searched.
1257 // ECX: count: number of words to be searched.
1258 // EDI: String being searched.
1259 // EDX: temporary during execution.
1260 // EBX or R11: temporary during execution (depending on mode).
1261 // REP SCASW: search instruction.
1262
1263 FlushReg(rs_rAX);
1264 Clobber(rs_rAX);
1265 LockTemp(rs_rAX);
1266 FlushReg(rs_rCX);
1267 Clobber(rs_rCX);
1268 LockTemp(rs_rCX);
1269 FlushReg(rs_rDX);
1270 Clobber(rs_rDX);
1271 LockTemp(rs_rDX);
1272 FlushReg(rs_tmp);
1273 Clobber(rs_tmp);
1274 LockTemp(rs_tmp);
1275 if (cu_->target64) {
1276 FlushReg(rs_rDI);
1277 Clobber(rs_rDI);
1278 LockTemp(rs_rDI);
1279 }
1280
1281 RegLocation rl_return = GetReturn(kCoreReg);
1282 RegLocation rl_dest = InlineTarget(info);
1283
1284 // Is the string non-NULL?
1285 LoadValueDirectFixed(rl_obj, rs_rDX);
1286 GenNullCheck(rs_rDX, info->opt_flags);
1287 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1288
1289 LIR *slowpath_branch = nullptr, *length_compare = nullptr;
1290
1291 // We need the value in EAX.
1292 if (rl_char.is_const) {
1293 LoadConstantNoClobber(rs_rAX, char_value);
1294 } else {
1295 // Does the character fit in 16 bits? Compare it at runtime.
1296 LoadValueDirectFixed(rl_char, rs_rAX);
1297 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1298 }
1299
1300 // From here down, we know that we are looking for a char that fits in 16 bits.
1301 // Location of reference to data array within the String object.
1302 int value_offset = mirror::String::ValueOffset().Int32Value();
1303 // Location of count within the String object.
1304 int count_offset = mirror::String::CountOffset().Int32Value();
1305 // Starting offset within data array.
1306 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1307 // Start of char data with array_.
1308 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1309
1310 // Compute the number of words to search in to rCX.
1311 Load32Disp(rs_rDX, count_offset, rs_rCX);
1312
1313 // Possible signal here due to null pointer dereference.
1314 // Note that the signal handler will expect the top word of
1315 // the stack to be the ArtMethod*. If the PUSH edi instruction
1316 // below is ahead of the load above then this will not be true
1317 // and the signal handler will not work.
1318 MarkPossibleNullPointerException(0);
1319
1320 if (!cu_->target64) {
1321 // EDI is callee-save register in 32-bit mode.
1322 NewLIR1(kX86Push32R, rs_rDI.GetReg());
1323 }
1324
1325 if (zero_based) {
1326 // Start index is not present.
1327 // We have to handle an empty string. Use special instruction JECXZ.
1328 length_compare = NewLIR0(kX86Jecxz8);
1329
1330 // Copy the number of words to search in a temporary register.
1331 // We will use the register at the end to calculate result.
1332 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1333 } else {
1334 // Start index is present.
1335 rl_start = info->args[2];
1336
1337 // We have to offset by the start index.
1338 if (rl_start.is_const) {
1339 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1340 start_value = std::max(start_value, 0);
1341
1342 // Is the start > count?
1343 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1344 OpRegImm(kOpMov, rs_rDI, start_value);
1345
1346 // Copy the number of words to search in a temporary register.
1347 // We will use the register at the end to calculate result.
1348 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1349
1350 if (start_value != 0) {
1351 // Decrease the number of words to search by the start index.
1352 OpRegImm(kOpSub, rs_rCX, start_value);
1353 }
1354 } else {
1355 // Handle "start index < 0" case.
1356 if (!cu_->target64 && rl_start.location != kLocPhysReg) {
1357 // Load the start index from stack, remembering that we pushed EDI.
1358 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1359 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1360 Load32Disp(rs_rX86_SP, displacement, rs_rDI);
1361 // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
1362 DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
1363 int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
1364 AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
1365 } else {
1366 LoadValueDirectFixed(rl_start, rs_rDI);
1367 }
1368 OpRegReg(kOpXor, rs_tmp, rs_tmp);
1369 OpRegReg(kOpCmp, rs_rDI, rs_tmp);
1370 OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
1371
1372 // The length of the string should be greater than the start index.
1373 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
1374
1375 // Copy the number of words to search in a temporary register.
1376 // We will use the register at the end to calculate result.
1377 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1378
1379 // Decrease the number of words to search by the start index.
1380 OpRegReg(kOpSub, rs_rCX, rs_rDI);
1381 }
1382 }
1383
1384 // Load the address of the string into EDI.
1385 // In case of start index we have to add the address to existing value in EDI.
1386 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1387 if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
1388 Load32Disp(rs_rDX, offset_offset, rs_rDI);
1389 } else {
1390 OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset);
1391 }
1392 OpRegImm(kOpLsl, rs_rDI, 1);
1393 OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset);
1394 OpRegImm(kOpAdd, rs_rDI, data_offset);
1395
1396 // EDI now contains the start of the string to be searched.
1397 // We are all prepared to do the search for the character.
1398 NewLIR0(kX86RepneScasw);
1399
1400 // Did we find a match?
1401 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1402
1403 // yes, we matched. Compute the index of the result.
1404 OpRegReg(kOpSub, rs_tmp, rs_rCX);
1405 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
1406
1407 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1408
1409 // Failed to match; return -1.
1410 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1411 length_compare->target = not_found;
1412 failed_branch->target = not_found;
1413 LoadConstantNoClobber(rl_return.reg, -1);
1414
1415 // And join up at the end.
1416 all_done->target = NewLIR0(kPseudoTargetLabel);
1417
1418 if (!cu_->target64)
1419 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1420
1421 // Out of line code returns here.
1422 if (slowpath_branch != nullptr) {
1423 LIR *return_point = NewLIR0(kPseudoTargetLabel);
1424 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1425 ClobberCallerSave(); // We must clobber everything because slow path will return here
1426 }
1427
1428 StoreValue(rl_dest, rl_return);
1429
1430 FreeTemp(rs_rAX);
1431 FreeTemp(rs_rCX);
1432 FreeTemp(rs_rDX);
1433 FreeTemp(rs_tmp);
1434 if (cu_->target64) {
1435 FreeTemp(rs_rDI);
1436 }
1437
1438 return true;
1439 }
1440
1441 /*
1442 * @brief Enter an 'advance LOC' into the FDE buffer
1443 * @param buf FDE buffer.
1444 * @param increment Amount by which to increase the current location.
1445 */
AdvanceLoc(std::vector<uint8_t> & buf,uint32_t increment)1446 static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1447 if (increment < 64) {
1448 // Encoding in opcode.
1449 buf.push_back(0x1 << 6 | increment);
1450 } else if (increment < 256) {
1451 // Single byte delta.
1452 buf.push_back(0x02);
1453 buf.push_back(increment);
1454 } else if (increment < 256 * 256) {
1455 // Two byte delta.
1456 buf.push_back(0x03);
1457 buf.push_back(increment & 0xff);
1458 buf.push_back((increment >> 8) & 0xff);
1459 } else {
1460 // Four byte delta.
1461 buf.push_back(0x04);
1462 PushWord(buf, increment);
1463 }
1464 }
1465
1466
X86CFIInitialization(bool is_x86_64)1467 std::vector<uint8_t>* X86CFIInitialization(bool is_x86_64) {
1468 return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64);
1469 }
1470
EncodeUnsignedLeb128(std::vector<uint8_t> & buf,uint32_t value)1471 static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1472 uint8_t buffer[12];
1473 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1474 for (uint8_t *p = buffer; p < ptr; p++) {
1475 buf.push_back(*p);
1476 }
1477 }
1478
EncodeSignedLeb128(std::vector<uint8_t> & buf,int32_t value)1479 static void EncodeSignedLeb128(std::vector<uint8_t>& buf, int32_t value) {
1480 uint8_t buffer[12];
1481 uint8_t *ptr = EncodeSignedLeb128(buffer, value);
1482 for (uint8_t *p = buffer; p < ptr; p++) {
1483 buf.push_back(*p);
1484 }
1485 }
1486
ReturnCommonCallFrameInformation(bool is_x86_64)1487 std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) {
1488 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1489
1490 // Length (will be filled in later in this routine).
1491 PushWord(*cfi_info, 0);
1492
1493 // CIE id: always 0.
1494 PushWord(*cfi_info, 0);
1495
1496 // Version: always 1.
1497 cfi_info->push_back(0x01);
1498
1499 // Augmentation: 'zR\0'
1500 cfi_info->push_back(0x7a);
1501 cfi_info->push_back(0x52);
1502 cfi_info->push_back(0x0);
1503
1504 // Code alignment: 1.
1505 EncodeUnsignedLeb128(*cfi_info, 1);
1506
1507 // Data alignment.
1508 if (is_x86_64) {
1509 EncodeSignedLeb128(*cfi_info, -8);
1510 } else {
1511 EncodeSignedLeb128(*cfi_info, -4);
1512 }
1513
1514 // Return address register.
1515 if (is_x86_64) {
1516 // R16(RIP)
1517 cfi_info->push_back(0x10);
1518 } else {
1519 // R8(EIP)
1520 cfi_info->push_back(0x08);
1521 }
1522
1523 // Augmentation length: 1.
1524 cfi_info->push_back(1);
1525
1526 // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4).
1527 cfi_info->push_back(0x03);
1528
1529 // Initial instructions.
1530 if (is_x86_64) {
1531 // DW_CFA_def_cfa R7(RSP) 8.
1532 cfi_info->push_back(0x0c);
1533 cfi_info->push_back(0x07);
1534 cfi_info->push_back(0x08);
1535
1536 // DW_CFA_offset R16(RIP) 1 (* -8).
1537 cfi_info->push_back(0x90);
1538 cfi_info->push_back(0x01);
1539 } else {
1540 // DW_CFA_def_cfa R4(ESP) 4.
1541 cfi_info->push_back(0x0c);
1542 cfi_info->push_back(0x04);
1543 cfi_info->push_back(0x04);
1544
1545 // DW_CFA_offset R8(EIP) 1 (* -4).
1546 cfi_info->push_back(0x88);
1547 cfi_info->push_back(0x01);
1548 }
1549
1550 // Padding to a multiple of 4
1551 while ((cfi_info->size() & 3) != 0) {
1552 // DW_CFA_nop is encoded as 0.
1553 cfi_info->push_back(0);
1554 }
1555
1556 // Set the length of the CIE inside the generated bytes.
1557 uint32_t length = cfi_info->size() - 4;
1558 (*cfi_info)[0] = length;
1559 (*cfi_info)[1] = length >> 8;
1560 (*cfi_info)[2] = length >> 16;
1561 (*cfi_info)[3] = length >> 24;
1562 return cfi_info;
1563 }
1564
ARTRegIDToDWARFRegID(bool is_x86_64,int art_reg_id,int * dwarf_reg_id)1565 static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) {
1566 if (is_x86_64) {
1567 switch (art_reg_id) {
1568 case 3 : *dwarf_reg_id = 3; return true; // %rbx
1569 // This is the only discrepancy between ART & DWARF register numbering.
1570 case 5 : *dwarf_reg_id = 6; return true; // %rbp
1571 case 12: *dwarf_reg_id = 12; return true; // %r12
1572 case 13: *dwarf_reg_id = 13; return true; // %r13
1573 case 14: *dwarf_reg_id = 14; return true; // %r14
1574 case 15: *dwarf_reg_id = 15; return true; // %r15
1575 default: return false; // Should not get here
1576 }
1577 } else {
1578 switch (art_reg_id) {
1579 case 5: *dwarf_reg_id = 5; return true; // %ebp
1580 case 6: *dwarf_reg_id = 6; return true; // %esi
1581 case 7: *dwarf_reg_id = 7; return true; // %edi
1582 default: return false; // Should not get here
1583 }
1584 }
1585 }
1586
ReturnCallFrameInformation()1587 std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1588 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1589
1590 // Generate the FDE for the method.
1591 DCHECK_NE(data_offset_, 0U);
1592
1593 // Length (will be filled in later in this routine).
1594 PushWord(*cfi_info, 0);
1595
1596 // 'CIE_pointer' (filled in by linker).
1597 PushWord(*cfi_info, 0);
1598
1599 // 'initial_location' (filled in by linker).
1600 PushWord(*cfi_info, 0);
1601
1602 // 'address_range' (number of bytes in the method).
1603 PushWord(*cfi_info, data_offset_);
1604
1605 // Augmentation length: 0
1606 cfi_info->push_back(0);
1607
1608 // The instructions in the FDE.
1609 if (stack_decrement_ != nullptr) {
1610 // Advance LOC to just past the stack decrement.
1611 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1612 AdvanceLoc(*cfi_info, pc);
1613
1614 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1615 cfi_info->push_back(0x0e);
1616 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1617
1618 // Handle register spills
1619 const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4;
1620 const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4;
1621 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
1622 int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
1623 for (int reg = 0; mask; mask >>= 1, reg++) {
1624 if (mask & 0x1) {
1625 pc += kSpillInstLen;
1626
1627 // Advance LOC to pass this instruction
1628 AdvanceLoc(*cfi_info, kSpillInstLen);
1629
1630 int dwarf_reg_id;
1631 if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) {
1632 // DW_CFA_offset_extended_sf reg_no offset
1633 cfi_info->push_back(0x11);
1634 EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id);
1635 EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor);
1636 }
1637
1638 offset += GetInstructionSetPointerSize(cu_->instruction_set);
1639 }
1640 }
1641
1642 // We continue with that stack until the epilogue.
1643 if (stack_increment_ != nullptr) {
1644 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1645 AdvanceLoc(*cfi_info, new_pc - pc);
1646
1647 // We probably have code snippets after the epilogue, so save the
1648 // current state: DW_CFA_remember_state.
1649 cfi_info->push_back(0x0a);
1650
1651 // We have now popped the stack: DW_CFA_def_cfa_offset 4/8.
1652 // There is only the return PC on the stack now.
1653 cfi_info->push_back(0x0e);
1654 EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set));
1655
1656 // Everything after that is the same as before the epilogue.
1657 // Stack bump was followed by RET instruction.
1658 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1659 if (post_ret_insn != nullptr) {
1660 pc = new_pc;
1661 new_pc = post_ret_insn->offset;
1662 AdvanceLoc(*cfi_info, new_pc - pc);
1663 // Restore the state: DW_CFA_restore_state.
1664 cfi_info->push_back(0x0b);
1665 }
1666 }
1667 }
1668
1669 // Padding to a multiple of 4
1670 while ((cfi_info->size() & 3) != 0) {
1671 // DW_CFA_nop is encoded as 0.
1672 cfi_info->push_back(0);
1673 }
1674
1675 // Set the length of the FDE inside the generated bytes.
1676 uint32_t length = cfi_info->size() - 4;
1677 (*cfi_info)[0] = length;
1678 (*cfi_info)[1] = length >> 8;
1679 (*cfi_info)[2] = length >> 16;
1680 (*cfi_info)[3] = length >> 24;
1681 return cfi_info;
1682 }
1683
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)1684 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1685 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1686 case kMirOpReserveVectorRegisters:
1687 ReserveVectorRegisters(mir);
1688 break;
1689 case kMirOpReturnVectorRegisters:
1690 ReturnVectorRegisters();
1691 break;
1692 case kMirOpConstVector:
1693 GenConst128(bb, mir);
1694 break;
1695 case kMirOpMoveVector:
1696 GenMoveVector(bb, mir);
1697 break;
1698 case kMirOpPackedMultiply:
1699 GenMultiplyVector(bb, mir);
1700 break;
1701 case kMirOpPackedAddition:
1702 GenAddVector(bb, mir);
1703 break;
1704 case kMirOpPackedSubtract:
1705 GenSubtractVector(bb, mir);
1706 break;
1707 case kMirOpPackedShiftLeft:
1708 GenShiftLeftVector(bb, mir);
1709 break;
1710 case kMirOpPackedSignedShiftRight:
1711 GenSignedShiftRightVector(bb, mir);
1712 break;
1713 case kMirOpPackedUnsignedShiftRight:
1714 GenUnsignedShiftRightVector(bb, mir);
1715 break;
1716 case kMirOpPackedAnd:
1717 GenAndVector(bb, mir);
1718 break;
1719 case kMirOpPackedOr:
1720 GenOrVector(bb, mir);
1721 break;
1722 case kMirOpPackedXor:
1723 GenXorVector(bb, mir);
1724 break;
1725 case kMirOpPackedAddReduce:
1726 GenAddReduceVector(bb, mir);
1727 break;
1728 case kMirOpPackedReduce:
1729 GenReduceVector(bb, mir);
1730 break;
1731 case kMirOpPackedSet:
1732 GenSetVector(bb, mir);
1733 break;
1734 default:
1735 break;
1736 }
1737 }
1738
ReserveVectorRegisters(MIR * mir)1739 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1740 // We should not try to reserve twice without returning the registers
1741 DCHECK_NE(num_reserved_vector_regs_, -1);
1742
1743 int num_vector_reg = mir->dalvikInsn.vA;
1744 for (int i = 0; i < num_vector_reg; i++) {
1745 RegStorage xp_reg = RegStorage::Solo128(i);
1746 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1747 Clobber(xp_reg);
1748
1749 for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1750 info != nullptr;
1751 info = info->GetAliasChain()) {
1752 if (info->GetReg().IsSingle()) {
1753 reg_pool_->sp_regs_.Delete(info);
1754 } else {
1755 reg_pool_->dp_regs_.Delete(info);
1756 }
1757 }
1758 }
1759
1760 num_reserved_vector_regs_ = num_vector_reg;
1761 }
1762
ReturnVectorRegisters()1763 void X86Mir2Lir::ReturnVectorRegisters() {
1764 // Return all the reserved registers
1765 for (int i = 0; i < num_reserved_vector_regs_; i++) {
1766 RegStorage xp_reg = RegStorage::Solo128(i);
1767 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1768
1769 for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1770 info != nullptr;
1771 info = info->GetAliasChain()) {
1772 if (info->GetReg().IsSingle()) {
1773 reg_pool_->sp_regs_.Insert(info);
1774 } else {
1775 reg_pool_->dp_regs_.Insert(info);
1776 }
1777 }
1778 }
1779
1780 // We don't have anymore reserved vector registers
1781 num_reserved_vector_regs_ = -1;
1782 }
1783
GenConst128(BasicBlock * bb,MIR * mir)1784 void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1785 store_method_addr_used_ = true;
1786 int type_size = mir->dalvikInsn.vB;
1787 // We support 128 bit vectors.
1788 DCHECK_EQ(type_size & 0xFFFF, 128);
1789 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1790 uint32_t *args = mir->dalvikInsn.arg;
1791 int reg = rs_dest.GetReg();
1792 // Check for all 0 case.
1793 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1794 NewLIR2(kX86XorpsRR, reg, reg);
1795 return;
1796 }
1797
1798 // Append the mov const vector to reg opcode.
1799 AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1800 }
1801
AppendOpcodeWithConst(X86OpCode opcode,int reg,MIR * mir)1802 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1803 // Okay, load it from the constant vector area.
1804 LIR *data_target = ScanVectorLiteral(mir);
1805 if (data_target == nullptr) {
1806 data_target = AddVectorLiteral(mir);
1807 }
1808
1809 // Address the start of the method.
1810 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1811 if (rl_method.wide) {
1812 rl_method = LoadValueWide(rl_method, kCoreReg);
1813 } else {
1814 rl_method = LoadValue(rl_method, kCoreReg);
1815 }
1816
1817 // Load the proper value from the literal area.
1818 // We don't know the proper offset for the value, so pick one that will force
1819 // 4 byte offset. We will fix this up in the assembler later to have the right
1820 // value.
1821 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1822 LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1823 load->flags.fixup = kFixupLoad;
1824 load->target = data_target;
1825 }
1826
GenMoveVector(BasicBlock * bb,MIR * mir)1827 void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1828 // We only support 128 bit registers.
1829 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1830 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1831 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1832 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1833 }
1834
GenMultiplyVectorSignedByte(BasicBlock * bb,MIR * mir)1835 void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1836 const int BYTE_SIZE = 8;
1837 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1838 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1839 RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1840
1841 /*
1842 * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1843 * and multiplying 8 at a time before recombining back into one XMM register.
1844 *
1845 * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1846 * xmm3 is tmp (operate on high bits of 16bit lanes)
1847 *
1848 * xmm3 = xmm1
1849 * xmm1 = xmm1 .* xmm2
1850 * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits
1851 * xmm3 = xmm3 .>> 8
1852 * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1853 * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits
1854 * xmm1 = xmm1 | xmm2 // combine results
1855 */
1856
1857 // Copy xmm1.
1858 NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1859
1860 // Multiply low bits.
1861 NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1862
1863 // xmm1 now has low bits.
1864 AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1865
1866 // Prepare high bits for multiplication.
1867 NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1868 AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1869
1870 // Multiply high bits and xmm2 now has high bits.
1871 NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1872
1873 // Combine back into dest XMM register.
1874 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1875 }
1876
GenMultiplyVector(BasicBlock * bb,MIR * mir)1877 void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1878 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1879 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1880 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1881 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1882 int opcode = 0;
1883 switch (opsize) {
1884 case k32:
1885 opcode = kX86PmulldRR;
1886 break;
1887 case kSignedHalf:
1888 opcode = kX86PmullwRR;
1889 break;
1890 case kSingle:
1891 opcode = kX86MulpsRR;
1892 break;
1893 case kDouble:
1894 opcode = kX86MulpdRR;
1895 break;
1896 case kSignedByte:
1897 // HW doesn't support 16x16 byte multiplication so emulate it.
1898 GenMultiplyVectorSignedByte(bb, mir);
1899 return;
1900 default:
1901 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1902 break;
1903 }
1904 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1905 }
1906
GenAddVector(BasicBlock * bb,MIR * mir)1907 void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1908 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1909 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1910 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1911 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1912 int opcode = 0;
1913 switch (opsize) {
1914 case k32:
1915 opcode = kX86PadddRR;
1916 break;
1917 case kSignedHalf:
1918 case kUnsignedHalf:
1919 opcode = kX86PaddwRR;
1920 break;
1921 case kUnsignedByte:
1922 case kSignedByte:
1923 opcode = kX86PaddbRR;
1924 break;
1925 case kSingle:
1926 opcode = kX86AddpsRR;
1927 break;
1928 case kDouble:
1929 opcode = kX86AddpdRR;
1930 break;
1931 default:
1932 LOG(FATAL) << "Unsupported vector addition " << opsize;
1933 break;
1934 }
1935 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1936 }
1937
GenSubtractVector(BasicBlock * bb,MIR * mir)1938 void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1939 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1940 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1941 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1942 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1943 int opcode = 0;
1944 switch (opsize) {
1945 case k32:
1946 opcode = kX86PsubdRR;
1947 break;
1948 case kSignedHalf:
1949 case kUnsignedHalf:
1950 opcode = kX86PsubwRR;
1951 break;
1952 case kUnsignedByte:
1953 case kSignedByte:
1954 opcode = kX86PsubbRR;
1955 break;
1956 case kSingle:
1957 opcode = kX86SubpsRR;
1958 break;
1959 case kDouble:
1960 opcode = kX86SubpdRR;
1961 break;
1962 default:
1963 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1964 break;
1965 }
1966 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1967 }
1968
GenShiftByteVector(BasicBlock * bb,MIR * mir)1969 void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1970 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1971 RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1972
1973 int opcode = 0;
1974 int imm = mir->dalvikInsn.vB;
1975
1976 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1977 case kMirOpPackedShiftLeft:
1978 opcode = kX86PsllwRI;
1979 break;
1980 case kMirOpPackedSignedShiftRight:
1981 opcode = kX86PsrawRI;
1982 break;
1983 case kMirOpPackedUnsignedShiftRight:
1984 opcode = kX86PsrlwRI;
1985 break;
1986 default:
1987 LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1988 break;
1989 }
1990
1991 /*
1992 * xmm1 will have low bits
1993 * xmm2 will have high bits
1994 *
1995 * xmm2 = xmm1
1996 * xmm1 = xmm1 .<< N
1997 * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1998 * xmm2 = xmm2 .<< N
1999 * xmm1 = xmm1 | xmm2
2000 */
2001
2002 // Copy xmm1.
2003 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
2004
2005 // Shift lower values.
2006 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2007
2008 // Mask bottom bits.
2009 AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
2010
2011 // Shift higher values.
2012 NewLIR2(opcode, rs_tmp.GetReg(), imm);
2013
2014 // Combine back into dest XMM register.
2015 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
2016 }
2017
GenShiftLeftVector(BasicBlock * bb,MIR * mir)2018 void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
2019 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2020 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2021 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2022 int imm = mir->dalvikInsn.vB;
2023 int opcode = 0;
2024 switch (opsize) {
2025 case k32:
2026 opcode = kX86PslldRI;
2027 break;
2028 case k64:
2029 opcode = kX86PsllqRI;
2030 break;
2031 case kSignedHalf:
2032 case kUnsignedHalf:
2033 opcode = kX86PsllwRI;
2034 break;
2035 case kSignedByte:
2036 case kUnsignedByte:
2037 GenShiftByteVector(bb, mir);
2038 return;
2039 default:
2040 LOG(FATAL) << "Unsupported vector shift left " << opsize;
2041 break;
2042 }
2043 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2044 }
2045
GenSignedShiftRightVector(BasicBlock * bb,MIR * mir)2046 void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2047 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2048 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2049 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2050 int imm = mir->dalvikInsn.vB;
2051 int opcode = 0;
2052 switch (opsize) {
2053 case k32:
2054 opcode = kX86PsradRI;
2055 break;
2056 case kSignedHalf:
2057 case kUnsignedHalf:
2058 opcode = kX86PsrawRI;
2059 break;
2060 case kSignedByte:
2061 case kUnsignedByte:
2062 GenShiftByteVector(bb, mir);
2063 return;
2064 default:
2065 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
2066 break;
2067 }
2068 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2069 }
2070
GenUnsignedShiftRightVector(BasicBlock * bb,MIR * mir)2071 void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2072 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2073 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2074 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2075 int imm = mir->dalvikInsn.vB;
2076 int opcode = 0;
2077 switch (opsize) {
2078 case k32:
2079 opcode = kX86PsrldRI;
2080 break;
2081 case k64:
2082 opcode = kX86PsrlqRI;
2083 break;
2084 case kSignedHalf:
2085 case kUnsignedHalf:
2086 opcode = kX86PsrlwRI;
2087 break;
2088 case kSignedByte:
2089 case kUnsignedByte:
2090 GenShiftByteVector(bb, mir);
2091 return;
2092 default:
2093 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
2094 break;
2095 }
2096 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2097 }
2098
GenAndVector(BasicBlock * bb,MIR * mir)2099 void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
2100 // We only support 128 bit registers.
2101 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2102 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2103 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2104 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2105 }
2106
GenOrVector(BasicBlock * bb,MIR * mir)2107 void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
2108 // We only support 128 bit registers.
2109 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2110 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2111 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2112 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2113 }
2114
GenXorVector(BasicBlock * bb,MIR * mir)2115 void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
2116 // We only support 128 bit registers.
2117 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2118 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2119 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2120 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2121 }
2122
AndMaskVectorRegister(RegStorage rs_src1,uint32_t m1,uint32_t m2,uint32_t m3,uint32_t m4)2123 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
2124 MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
2125 }
2126
MaskVectorRegister(X86OpCode opcode,RegStorage rs_src1,uint32_t m0,uint32_t m1,uint32_t m2,uint32_t m3)2127 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
2128 // Create temporary MIR as container for 128-bit binary mask.
2129 MIR const_mir;
2130 MIR* const_mirp = &const_mir;
2131 const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2132 const_mirp->dalvikInsn.arg[0] = m0;
2133 const_mirp->dalvikInsn.arg[1] = m1;
2134 const_mirp->dalvikInsn.arg[2] = m2;
2135 const_mirp->dalvikInsn.arg[3] = m3;
2136
2137 // Mask vector with const from literal pool.
2138 AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2139 }
2140
GenAddReduceVector(BasicBlock * bb,MIR * mir)2141 void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2142 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2143 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2144 RegLocation rl_dest = mir_graph_->GetDest(mir);
2145 RegStorage rs_tmp;
2146
2147 int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2148 int vec_unit_size = 0;
2149 int opcode = 0;
2150 int extr_opcode = 0;
2151 RegLocation rl_result;
2152
2153 switch (opsize) {
2154 case k32:
2155 extr_opcode = kX86PextrdRRI;
2156 opcode = kX86PhadddRR;
2157 vec_unit_size = 4;
2158 break;
2159 case kSignedByte:
2160 case kUnsignedByte:
2161 extr_opcode = kX86PextrbRRI;
2162 opcode = kX86PhaddwRR;
2163 vec_unit_size = 2;
2164 break;
2165 case kSignedHalf:
2166 case kUnsignedHalf:
2167 extr_opcode = kX86PextrwRRI;
2168 opcode = kX86PhaddwRR;
2169 vec_unit_size = 2;
2170 break;
2171 case kSingle:
2172 rl_result = EvalLoc(rl_dest, kFPReg, true);
2173 vec_unit_size = 4;
2174 for (int i = 0; i < 3; i++) {
2175 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2176 NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2177 }
2178 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2179 StoreValue(rl_dest, rl_result);
2180
2181 // For single-precision floats, we are done here
2182 return;
2183 default:
2184 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2185 break;
2186 }
2187
2188 int elems = vec_bytes / vec_unit_size;
2189
2190 // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2191 // TODO is overflow handled correctly?
2192 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2193 rs_tmp = Get128BitRegister(AllocTempWide());
2194
2195 // tmp = xmm1 .>> 8.
2196 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2197 NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2198
2199 // Zero extend low bits in xmm1.
2200 AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2201 }
2202
2203 while (elems > 1) {
2204 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2205 NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2206 }
2207 NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2208 elems >>= 1;
2209 }
2210
2211 // Combine the results if we separated them.
2212 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2213 NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2214 }
2215
2216 // We need to extract to a GPR.
2217 RegStorage temp = AllocTemp();
2218 NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2219
2220 // Can we do this directly into memory?
2221 rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2222 if (rl_result.location == kLocPhysReg) {
2223 // Ensure res is in a core reg
2224 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2225 OpRegReg(kOpAdd, rl_result.reg, temp);
2226 StoreFinalValue(rl_dest, rl_result);
2227 } else {
2228 OpMemReg(kOpAdd, rl_result, temp.GetReg());
2229 }
2230
2231 FreeTemp(temp);
2232 }
2233
GenReduceVector(BasicBlock * bb,MIR * mir)2234 void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2235 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2236 RegLocation rl_dest = mir_graph_->GetDest(mir);
2237 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2238 int extract_index = mir->dalvikInsn.arg[0];
2239 int extr_opcode = 0;
2240 RegLocation rl_result;
2241 bool is_wide = false;
2242
2243 switch (opsize) {
2244 case k32:
2245 rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2246 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2247 break;
2248 case kSignedHalf:
2249 case kUnsignedHalf:
2250 rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2251 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2252 break;
2253 default:
2254 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2255 return;
2256 break;
2257 }
2258
2259 if (rl_result.location == kLocPhysReg) {
2260 NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2261 if (is_wide == true) {
2262 StoreFinalValue(rl_dest, rl_result);
2263 } else {
2264 StoreFinalValueWide(rl_dest, rl_result);
2265 }
2266 } else {
2267 int displacement = SRegOffset(rl_result.s_reg_low);
2268 LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2269 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2270 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2271 }
2272 }
2273
GenSetVector(BasicBlock * bb,MIR * mir)2274 void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2275 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2276 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2277 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2278 int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2279 RegisterClass reg_type = kCoreReg;
2280
2281 switch (opsize) {
2282 case k32:
2283 op_low = kX86PshufdRRI;
2284 break;
2285 case kSingle:
2286 op_low = kX86PshufdRRI;
2287 op_mov = kX86Mova128RR;
2288 reg_type = kFPReg;
2289 break;
2290 case k64:
2291 op_low = kX86PshufdRRI;
2292 imm = 0x44;
2293 break;
2294 case kDouble:
2295 op_low = kX86PshufdRRI;
2296 op_mov = kX86Mova128RR;
2297 reg_type = kFPReg;
2298 imm = 0x44;
2299 break;
2300 case kSignedByte:
2301 case kUnsignedByte:
2302 // Shuffle 8 bit value into 16 bit word.
2303 // We set val = val + (val << 8) below and use 16 bit shuffle.
2304 case kSignedHalf:
2305 case kUnsignedHalf:
2306 // Handles low quadword.
2307 op_low = kX86PshuflwRRI;
2308 // Handles upper quadword.
2309 op_high = kX86PshufdRRI;
2310 break;
2311 default:
2312 LOG(FATAL) << "Unsupported vector set " << opsize;
2313 break;
2314 }
2315
2316 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2317
2318 // Load the value from the VR into the reg.
2319 if (rl_src.wide == 0) {
2320 rl_src = LoadValue(rl_src, reg_type);
2321 } else {
2322 rl_src = LoadValueWide(rl_src, reg_type);
2323 }
2324
2325 // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2326 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2327 RegStorage temp = AllocTemp();
2328 // val = val + (val << 8).
2329 NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2330 NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2331 NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2332 FreeTemp(temp);
2333 }
2334
2335 // Load the value into the XMM register.
2336 NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2337
2338 // Now shuffle the value across the destination.
2339 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2340
2341 // And then repeat as needed.
2342 if (op_high != 0) {
2343 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2344 }
2345 }
2346
ScanVectorLiteral(MIR * mir)2347 LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2348 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2349 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2350 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2351 args[2] == p->operands[2] && args[3] == p->operands[3]) {
2352 return p;
2353 }
2354 }
2355 return nullptr;
2356 }
2357
AddVectorLiteral(MIR * mir)2358 LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2359 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2360 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2361 new_value->operands[0] = args[0];
2362 new_value->operands[1] = args[1];
2363 new_value->operands[2] = args[2];
2364 new_value->operands[3] = args[3];
2365 new_value->next = const_vectors_;
2366 if (const_vectors_ == nullptr) {
2367 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
2368 }
2369 estimated_native_code_size_ += 16; // Space for one vector.
2370 const_vectors_ = new_value;
2371 return new_value;
2372 }
2373
2374 // ------------ ABI support: mapping of args to physical registers -------------
GetNextReg(bool is_double_or_float,bool is_wide,bool is_ref)2375 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide,
2376 bool is_ref) {
2377 const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2378 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) /
2379 sizeof(SpecialTargetRegister);
2380 const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2381 kFArg4, kFArg5, kFArg6, kFArg7};
2382 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) /
2383 sizeof(SpecialTargetRegister);
2384
2385 if (is_double_or_float) {
2386 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2387 return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide);
2388 }
2389 } else {
2390 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2391 return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2392 is_ref ? kRef : (is_wide ? kWide : kNotWide));
2393 }
2394 }
2395 return RegStorage::InvalidReg();
2396 }
2397
Get(int in_position)2398 RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2399 DCHECK(IsInitialized());
2400 auto res = mapping_.find(in_position);
2401 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2402 }
2403
Initialize(RegLocation * arg_locs,int count,InToRegStorageMapper * mapper)2404 void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
2405 InToRegStorageMapper* mapper) {
2406 DCHECK(mapper != nullptr);
2407 max_mapped_in_ = -1;
2408 is_there_stack_mapped_ = false;
2409 for (int in_position = 0; in_position < count; in_position++) {
2410 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2411 arg_locs[in_position].wide, arg_locs[in_position].ref);
2412 if (reg.Valid()) {
2413 mapping_[in_position] = reg;
2414 max_mapped_in_ = std::max(max_mapped_in_, in_position);
2415 if (arg_locs[in_position].wide) {
2416 // We covered 2 args, so skip the next one
2417 in_position++;
2418 }
2419 } else {
2420 is_there_stack_mapped_ = true;
2421 }
2422 }
2423 initialized_ = true;
2424 }
2425
GetArgMappingToPhysicalReg(int arg_num)2426 RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2427 if (!cu_->target64) {
2428 return GetCoreArgMappingToPhysicalReg(arg_num);
2429 }
2430
2431 if (!in_to_reg_storage_mapping_.IsInitialized()) {
2432 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2433 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2434
2435 InToRegStorageX86_64Mapper mapper(this);
2436 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2437 }
2438 return in_to_reg_storage_mapping_.Get(arg_num);
2439 }
2440
GetCoreArgMappingToPhysicalReg(int core_arg_num)2441 RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2442 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2443 // Not used for 64-bit, TODO: Move X86_32 to the same framework
2444 switch (core_arg_num) {
2445 case 0:
2446 return rs_rX86_ARG1;
2447 case 1:
2448 return rs_rX86_ARG2;
2449 case 2:
2450 return rs_rX86_ARG3;
2451 default:
2452 return RegStorage::InvalidReg();
2453 }
2454 }
2455
2456 // ---------End of ABI support: mapping of args to physical registers -------------
2457
2458 /*
2459 * If there are any ins passed in registers that have not been promoted
2460 * to a callee-save register, flush them to the frame. Perform initial
2461 * assignment of promoted arguments.
2462 *
2463 * ArgLocs is an array of location records describing the incoming arguments
2464 * with one location record per word of argument.
2465 */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)2466 void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2467 if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2468 /*
2469 * Dummy up a RegLocation for the incoming Method*
2470 * It will attempt to keep kArg0 live (or copy it to home location
2471 * if promoted).
2472 */
2473
2474 RegLocation rl_src = rl_method;
2475 rl_src.location = kLocPhysReg;
2476 rl_src.reg = TargetReg(kArg0, kRef);
2477 rl_src.home = false;
2478 MarkLive(rl_src);
2479 StoreValue(rl_method, rl_src);
2480 // If Method* has been promoted, explicitly flush
2481 if (rl_method.location == kLocPhysReg) {
2482 StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile);
2483 }
2484
2485 if (cu_->num_ins == 0) {
2486 return;
2487 }
2488
2489 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2490 /*
2491 * Copy incoming arguments to their proper home locations.
2492 * NOTE: an older version of dx had an issue in which
2493 * it would reuse static method argument registers.
2494 * This could result in the same Dalvik virtual register
2495 * being promoted to both core and fp regs. To account for this,
2496 * we only copy to the corresponding promoted physical register
2497 * if it matches the type of the SSA name for the incoming
2498 * argument. It is also possible that long and double arguments
2499 * end up half-promoted. In those cases, we must flush the promoted
2500 * half to memory as well.
2501 */
2502 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2503 for (int i = 0; i < cu_->num_ins; i++) {
2504 // get reg corresponding to input
2505 RegStorage reg = GetArgMappingToPhysicalReg(i);
2506
2507 RegLocation* t_loc = &ArgLocs[i];
2508 if (reg.Valid()) {
2509 // If arriving in register.
2510
2511 // We have already updated the arg location with promoted info
2512 // so we can be based on it.
2513 if (t_loc->location == kLocPhysReg) {
2514 // Just copy it.
2515 OpRegCopy(t_loc->reg, reg);
2516 } else {
2517 // Needs flush.
2518 if (t_loc->ref) {
2519 StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2520 } else {
2521 StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2522 kNotVolatile);
2523 }
2524 }
2525 } else {
2526 // If arriving in frame & promoted.
2527 if (t_loc->location == kLocPhysReg) {
2528 if (t_loc->ref) {
2529 LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2530 } else {
2531 LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2532 t_loc->wide ? k64 : k32, kNotVolatile);
2533 }
2534 }
2535 }
2536 if (t_loc->wide) {
2537 // Increment i to skip the next one.
2538 i++;
2539 }
2540 }
2541 }
2542
2543 /*
2544 * Load up to 5 arguments, the first three of which will be in
2545 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
2546 * and as part of the load sequence, it must be replaced with
2547 * the target method pointer. Note, this may also be called
2548 * for "range" variants if the number of arguments is 5 or fewer.
2549 */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2550 int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2551 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2552 const MethodReference& target_method,
2553 uint32_t vtable_idx, uintptr_t direct_code,
2554 uintptr_t direct_method, InvokeType type, bool skip_this) {
2555 if (!cu_->target64) {
2556 return Mir2Lir::GenDalvikArgsNoRange(info,
2557 call_state, pcrLabel, next_call_insn,
2558 target_method,
2559 vtable_idx, direct_code,
2560 direct_method, type, skip_this);
2561 }
2562 return GenDalvikArgsRange(info,
2563 call_state, pcrLabel, next_call_insn,
2564 target_method,
2565 vtable_idx, direct_code,
2566 direct_method, type, skip_this);
2567 }
2568
2569 /*
2570 * May have 0+ arguments (also used for jumbo). Note that
2571 * source virtual registers may be in physical registers, so may
2572 * need to be flushed to home location before copying. This
2573 * applies to arg3 and above (see below).
2574 *
2575 * Two general strategies:
2576 * If < 20 arguments
2577 * Pass args 3-18 using vldm/vstm block copy
2578 * Pass arg0, arg1 & arg2 in kArg1-kArg3
2579 * If 20+ arguments
2580 * Pass args arg19+ using memcpy block copy
2581 * Pass arg0, arg1 & arg2 in kArg1-kArg3
2582 *
2583 */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2584 int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2585 LIR** pcrLabel, NextCallInsn next_call_insn,
2586 const MethodReference& target_method,
2587 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2588 InvokeType type, bool skip_this) {
2589 if (!cu_->target64) {
2590 return Mir2Lir::GenDalvikArgsRange(info, call_state,
2591 pcrLabel, next_call_insn,
2592 target_method,
2593 vtable_idx, direct_code, direct_method,
2594 type, skip_this);
2595 }
2596
2597 /* If no arguments, just return */
2598 if (info->num_arg_words == 0)
2599 return call_state;
2600
2601 const int start_index = skip_this ? 1 : 0;
2602
2603 InToRegStorageX86_64Mapper mapper(this);
2604 InToRegStorageMapping in_to_reg_storage_mapping;
2605 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2606 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2607 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2608 info->args[last_mapped_in].wide ? 2 : 1;
2609 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2610
2611 // Fisrt of all, check whether it make sense to use bulk copying
2612 // Optimization is aplicable only for range case
2613 // TODO: make a constant instead of 2
2614 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2615 // Scan the rest of the args - if in phys_reg flush to memory
2616 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2617 RegLocation loc = info->args[next_arg];
2618 if (loc.wide) {
2619 loc = UpdateLocWide(loc);
2620 if (loc.location == kLocPhysReg) {
2621 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2622 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2623 }
2624 next_arg += 2;
2625 } else {
2626 loc = UpdateLoc(loc);
2627 if (loc.location == kLocPhysReg) {
2628 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2629 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2630 }
2631 next_arg++;
2632 }
2633 }
2634
2635 // Logic below assumes that Method pointer is at offset zero from SP.
2636 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2637
2638 // The rest can be copied together
2639 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2640 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped,
2641 cu_->instruction_set);
2642
2643 int current_src_offset = start_offset;
2644 int current_dest_offset = outs_offset;
2645
2646 // Only davik regs are accessed in this loop; no next_call_insn() calls.
2647 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2648 while (regs_left_to_pass_via_stack > 0) {
2649 // This is based on the knowledge that the stack itself is 16-byte aligned.
2650 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2651 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2652 size_t bytes_to_move;
2653
2654 /*
2655 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2656 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2657 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2658 * We do this because we could potentially do a smaller move to align.
2659 */
2660 if (regs_left_to_pass_via_stack == 4 ||
2661 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2662 // Moving 128-bits via xmm register.
2663 bytes_to_move = sizeof(uint32_t) * 4;
2664
2665 // Allocate a free xmm temp. Since we are working through the calling sequence,
2666 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2667 // there are no free registers.
2668 RegStorage temp = AllocTempDouble();
2669
2670 LIR* ld1 = nullptr;
2671 LIR* ld2 = nullptr;
2672 LIR* st1 = nullptr;
2673 LIR* st2 = nullptr;
2674
2675 /*
2676 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2677 * do an aligned move. If we have 8-byte alignment, then do the move in two
2678 * parts. This approach prevents possible cache line splits. Finally, fall back
2679 * to doing an unaligned move. In most cases we likely won't split the cache
2680 * line but we cannot prove it and thus take a conservative approach.
2681 */
2682 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2683 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2684
2685 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2686 if (src_is_16b_aligned) {
2687 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2688 } else if (src_is_8b_aligned) {
2689 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2690 ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2691 kMovHi128FP);
2692 } else {
2693 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2694 }
2695
2696 if (dest_is_16b_aligned) {
2697 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2698 } else if (dest_is_8b_aligned) {
2699 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2700 st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2701 temp, kMovHi128FP);
2702 } else {
2703 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2704 }
2705
2706 // TODO If we could keep track of aliasing information for memory accesses that are wider
2707 // than 64-bit, we wouldn't need to set up a barrier.
2708 if (ld1 != nullptr) {
2709 if (ld2 != nullptr) {
2710 // For 64-bit load we can actually set up the aliasing information.
2711 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2712 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2713 } else {
2714 // Set barrier for 128-bit load.
2715 ld1->u.m.def_mask = &kEncodeAll;
2716 }
2717 }
2718 if (st1 != nullptr) {
2719 if (st2 != nullptr) {
2720 // For 64-bit store we can actually set up the aliasing information.
2721 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2722 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2723 } else {
2724 // Set barrier for 128-bit store.
2725 st1->u.m.def_mask = &kEncodeAll;
2726 }
2727 }
2728
2729 // Free the temporary used for the data movement.
2730 FreeTemp(temp);
2731 } else {
2732 // Moving 32-bits via general purpose register.
2733 bytes_to_move = sizeof(uint32_t);
2734
2735 // Instead of allocating a new temp, simply reuse one of the registers being used
2736 // for argument passing.
2737 RegStorage temp = TargetReg(kArg3, kNotWide);
2738
2739 // Now load the argument VR and store to the outs.
2740 Load32Disp(rs_rX86_SP, current_src_offset, temp);
2741 Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2742 }
2743
2744 current_src_offset += bytes_to_move;
2745 current_dest_offset += bytes_to_move;
2746 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2747 }
2748 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2749 }
2750
2751 // Now handle rest not registers if they are
2752 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2753 RegStorage regSingle = TargetReg(kArg2, kNotWide);
2754 RegStorage regWide = TargetReg(kArg3, kWide);
2755 for (int i = start_index;
2756 i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2757 RegLocation rl_arg = info->args[i];
2758 rl_arg = UpdateRawLoc(rl_arg);
2759 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2760 if (!reg.Valid()) {
2761 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2762
2763 {
2764 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2765 if (rl_arg.wide) {
2766 if (rl_arg.location == kLocPhysReg) {
2767 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2768 } else {
2769 LoadValueDirectWideFixed(rl_arg, regWide);
2770 StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2771 }
2772 } else {
2773 if (rl_arg.location == kLocPhysReg) {
2774 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2775 } else {
2776 LoadValueDirectFixed(rl_arg, regSingle);
2777 StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2778 }
2779 }
2780 }
2781 call_state = next_call_insn(cu_, info, call_state, target_method,
2782 vtable_idx, direct_code, direct_method, type);
2783 }
2784 if (rl_arg.wide) {
2785 i++;
2786 }
2787 }
2788 }
2789
2790 // Finish with mapped registers
2791 for (int i = start_index; i <= last_mapped_in; i++) {
2792 RegLocation rl_arg = info->args[i];
2793 rl_arg = UpdateRawLoc(rl_arg);
2794 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2795 if (reg.Valid()) {
2796 if (rl_arg.wide) {
2797 LoadValueDirectWideFixed(rl_arg, reg);
2798 } else {
2799 LoadValueDirectFixed(rl_arg, reg);
2800 }
2801 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2802 direct_code, direct_method, type);
2803 }
2804 if (rl_arg.wide) {
2805 i++;
2806 }
2807 }
2808
2809 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2810 direct_code, direct_method, type);
2811 if (pcrLabel) {
2812 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
2813 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
2814 } else {
2815 *pcrLabel = nullptr;
2816 // In lieu of generating a check for kArg1 being null, we need to
2817 // perform a load when doing implicit checks.
2818 RegStorage tmp = AllocTemp();
2819 Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
2820 MarkPossibleNullPointerException(info->opt_flags);
2821 FreeTemp(tmp);
2822 }
2823 }
2824 return call_state;
2825 }
2826
GenInlinedCharAt(CallInfo * info)2827 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
2828 // Location of reference to data array
2829 int value_offset = mirror::String::ValueOffset().Int32Value();
2830 // Location of count
2831 int count_offset = mirror::String::CountOffset().Int32Value();
2832 // Starting offset within data array
2833 int offset_offset = mirror::String::OffsetOffset().Int32Value();
2834 // Start of char data with array_
2835 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
2836
2837 RegLocation rl_obj = info->args[0];
2838 RegLocation rl_idx = info->args[1];
2839 rl_obj = LoadValue(rl_obj, kRefReg);
2840 // X86 wants to avoid putting a constant index into a register.
2841 if (!rl_idx.is_const) {
2842 rl_idx = LoadValue(rl_idx, kCoreReg);
2843 }
2844 RegStorage reg_max;
2845 GenNullCheck(rl_obj.reg, info->opt_flags);
2846 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
2847 LIR* range_check_branch = nullptr;
2848 RegStorage reg_off;
2849 RegStorage reg_ptr;
2850 if (range_check) {
2851 // On x86, we can compare to memory directly
2852 // Set up a launch pad to allow retry in case of bounds violation */
2853 if (rl_idx.is_const) {
2854 LIR* comparison;
2855 range_check_branch = OpCmpMemImmBranch(
2856 kCondUlt, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
2857 mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
2858 MarkPossibleNullPointerExceptionAfter(0, comparison);
2859 } else {
2860 OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
2861 MarkPossibleNullPointerException(0);
2862 range_check_branch = OpCondBranch(kCondUge, nullptr);
2863 }
2864 }
2865 reg_off = AllocTemp();
2866 reg_ptr = AllocTempRef();
2867 Load32Disp(rl_obj.reg, offset_offset, reg_off);
2868 LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
2869 if (rl_idx.is_const) {
2870 OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
2871 } else {
2872 OpRegReg(kOpAdd, reg_off, rl_idx.reg);
2873 }
2874 FreeTemp(rl_obj.reg);
2875 if (rl_idx.location == kLocPhysReg) {
2876 FreeTemp(rl_idx.reg);
2877 }
2878 RegLocation rl_dest = InlineTarget(info);
2879 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2880 LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf);
2881 FreeTemp(reg_off);
2882 FreeTemp(reg_ptr);
2883 StoreValue(rl_dest, rl_result);
2884 if (range_check) {
2885 DCHECK(range_check_branch != nullptr);
2886 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
2887 AddIntrinsicSlowPath(info, range_check_branch);
2888 }
2889 return true;
2890 }
2891
GenInlinedCurrentThread(CallInfo * info)2892 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
2893 RegLocation rl_dest = InlineTarget(info);
2894
2895 // Early exit if the result is unused.
2896 if (rl_dest.orig_sreg < 0) {
2897 return true;
2898 }
2899
2900 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
2901
2902 if (cu_->target64) {
2903 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
2904 } else {
2905 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
2906 }
2907
2908 StoreValue(rl_dest, rl_result);
2909 return true;
2910 }
2911
2912 } // namespace art
2913