• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <string>
18 #include <inttypes.h>
19 
20 #include "codegen_x86.h"
21 #include "dex/compiler_internals.h"
22 #include "dex/quick/mir_to_lir-inl.h"
23 #include "dex/reg_storage_eq.h"
24 #include "mirror/array.h"
25 #include "mirror/string.h"
26 #include "x86_lir.h"
27 
28 namespace art {
29 
30 static constexpr RegStorage core_regs_arr_32[] = {
31     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32 };
33 static constexpr RegStorage core_regs_arr_64[] = {
34     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35     rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36 };
37 static constexpr RegStorage core_regs_arr_64q[] = {
38     rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39     rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40 };
41 static constexpr RegStorage sp_regs_arr_32[] = {
42     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43 };
44 static constexpr RegStorage sp_regs_arr_64[] = {
45     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46     rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47 };
48 static constexpr RegStorage dp_regs_arr_32[] = {
49     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50 };
51 static constexpr RegStorage dp_regs_arr_64[] = {
52     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53     rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54 };
55 static constexpr RegStorage xp_regs_arr_32[] = {
56     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57 };
58 static constexpr RegStorage xp_regs_arr_64[] = {
59     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60     rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61 };
62 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66 static constexpr RegStorage core_temps_arr_64[] = {
67     rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68     rs_r8, rs_r9, rs_r10, rs_r11
69 };
70 
71 // How to add register to be available for promotion:
72 // 1) Remove register from array defining temp
73 // 2) Update ClobberCallerSave
74 // 3) Update JNI compiler ABI:
75 // 3.1) add reg in JniCallingConvention method
76 // 3.2) update CoreSpillMask/FpSpillMask
77 // 4) Update entrypoints
78 // 4.1) Update constants in asm_support_x86_64.h for new frame size
79 // 4.2) Remove entry in SmashCallerSaves
80 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82 // 5) Update runtime ABI
83 // 5.1) Update quick_method_frame_info with new required spills
84 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85 // Note that you cannot use register corresponding to incoming args
86 // according to ABI and QCG needs one additional XMM temp for
87 // bulk copy in preparation to call.
88 static constexpr RegStorage core_temps_arr_64q[] = {
89     rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90     rs_r8q, rs_r9q, rs_r10q, rs_r11q
91 };
92 static constexpr RegStorage sp_temps_arr_32[] = {
93     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94 };
95 static constexpr RegStorage sp_temps_arr_64[] = {
96     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97     rs_fr8, rs_fr9, rs_fr10, rs_fr11
98 };
99 static constexpr RegStorage dp_temps_arr_32[] = {
100     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101 };
102 static constexpr RegStorage dp_temps_arr_64[] = {
103     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104     rs_dr8, rs_dr9, rs_dr10, rs_dr11
105 };
106 
107 static constexpr RegStorage xp_temps_arr_32[] = {
108     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109 };
110 static constexpr RegStorage xp_temps_arr_64[] = {
111     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112     rs_xr8, rs_xr9, rs_xr10, rs_xr11
113 };
114 
115 static constexpr ArrayRef<const RegStorage> empty_pool;
116 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135 
136 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138 
139 RegStorage rs_rX86_SP;
140 
141 X86NativeRegisterPool rX86_ARG0;
142 X86NativeRegisterPool rX86_ARG1;
143 X86NativeRegisterPool rX86_ARG2;
144 X86NativeRegisterPool rX86_ARG3;
145 X86NativeRegisterPool rX86_ARG4;
146 X86NativeRegisterPool rX86_ARG5;
147 X86NativeRegisterPool rX86_FARG0;
148 X86NativeRegisterPool rX86_FARG1;
149 X86NativeRegisterPool rX86_FARG2;
150 X86NativeRegisterPool rX86_FARG3;
151 X86NativeRegisterPool rX86_FARG4;
152 X86NativeRegisterPool rX86_FARG5;
153 X86NativeRegisterPool rX86_FARG6;
154 X86NativeRegisterPool rX86_FARG7;
155 X86NativeRegisterPool rX86_RET0;
156 X86NativeRegisterPool rX86_RET1;
157 X86NativeRegisterPool rX86_INVOKE_TGT;
158 X86NativeRegisterPool rX86_COUNT;
159 
160 RegStorage rs_rX86_ARG0;
161 RegStorage rs_rX86_ARG1;
162 RegStorage rs_rX86_ARG2;
163 RegStorage rs_rX86_ARG3;
164 RegStorage rs_rX86_ARG4;
165 RegStorage rs_rX86_ARG5;
166 RegStorage rs_rX86_FARG0;
167 RegStorage rs_rX86_FARG1;
168 RegStorage rs_rX86_FARG2;
169 RegStorage rs_rX86_FARG3;
170 RegStorage rs_rX86_FARG4;
171 RegStorage rs_rX86_FARG5;
172 RegStorage rs_rX86_FARG6;
173 RegStorage rs_rX86_FARG7;
174 RegStorage rs_rX86_RET0;
175 RegStorage rs_rX86_RET1;
176 RegStorage rs_rX86_INVOKE_TGT;
177 RegStorage rs_rX86_COUNT;
178 
LocCReturn()179 RegLocation X86Mir2Lir::LocCReturn() {
180   return x86_loc_c_return;
181 }
182 
LocCReturnRef()183 RegLocation X86Mir2Lir::LocCReturnRef() {
184   return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185 }
186 
LocCReturnWide()187 RegLocation X86Mir2Lir::LocCReturnWide() {
188   return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189 }
190 
LocCReturnFloat()191 RegLocation X86Mir2Lir::LocCReturnFloat() {
192   return x86_loc_c_return_float;
193 }
194 
LocCReturnDouble()195 RegLocation X86Mir2Lir::LocCReturnDouble() {
196   return x86_loc_c_return_double;
197 }
198 
199 // Return a target-dependent special register for 32-bit.
TargetReg32(SpecialTargetRegister reg)200 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201   RegStorage res_reg = RegStorage::InvalidReg();
202   switch (reg) {
203     case kSelf: res_reg = RegStorage::InvalidReg(); break;
204     case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
205     case kLr: res_reg =  RegStorage::InvalidReg(); break;
206     case kPc: res_reg =  RegStorage::InvalidReg(); break;
207     case kSp: res_reg =  rs_rX86_SP_32; break;  // This must be the concrete one, as _SP is target-
208                                                 // specific size.
209     case kArg0: res_reg = rs_rX86_ARG0; break;
210     case kArg1: res_reg = rs_rX86_ARG1; break;
211     case kArg2: res_reg = rs_rX86_ARG2; break;
212     case kArg3: res_reg = rs_rX86_ARG3; break;
213     case kArg4: res_reg = rs_rX86_ARG4; break;
214     case kArg5: res_reg = rs_rX86_ARG5; break;
215     case kFArg0: res_reg = rs_rX86_FARG0; break;
216     case kFArg1: res_reg = rs_rX86_FARG1; break;
217     case kFArg2: res_reg = rs_rX86_FARG2; break;
218     case kFArg3: res_reg = rs_rX86_FARG3; break;
219     case kFArg4: res_reg = rs_rX86_FARG4; break;
220     case kFArg5: res_reg = rs_rX86_FARG5; break;
221     case kFArg6: res_reg = rs_rX86_FARG6; break;
222     case kFArg7: res_reg = rs_rX86_FARG7; break;
223     case kRet0: res_reg = rs_rX86_RET0; break;
224     case kRet1: res_reg = rs_rX86_RET1; break;
225     case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
226     case kHiddenArg: res_reg = rs_rAX; break;
227     case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
228     case kCount: res_reg = rs_rX86_COUNT; break;
229     default: res_reg = RegStorage::InvalidReg();
230   }
231   return res_reg;
232 }
233 
TargetReg(SpecialTargetRegister reg)234 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
235   LOG(FATAL) << "Do not use this function!!!";
236   return RegStorage::InvalidReg();
237 }
238 
239 /*
240  * Decode the register id.
241  */
GetRegMaskCommon(const RegStorage & reg) const242 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
243   /* Double registers in x86 are just a single FP register. This is always just a single bit. */
244   return ResourceMask::Bit(
245       /* FP register starts at bit position 16 */
246       ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
247 }
248 
GetPCUseDefEncoding() const249 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
250   return kEncodeNone;
251 }
252 
SetupTargetResourceMasks(LIR * lir,uint64_t flags,ResourceMask * use_mask,ResourceMask * def_mask)253 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
254                                           ResourceMask* use_mask, ResourceMask* def_mask) {
255   DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
256   DCHECK(!lir->flags.use_def_invalid);
257 
258   // X86-specific resource map setup here.
259   if (flags & REG_USE_SP) {
260     use_mask->SetBit(kX86RegSP);
261   }
262 
263   if (flags & REG_DEF_SP) {
264     def_mask->SetBit(kX86RegSP);
265   }
266 
267   if (flags & REG_DEFA) {
268     SetupRegMask(def_mask, rs_rAX.GetReg());
269   }
270 
271   if (flags & REG_DEFD) {
272     SetupRegMask(def_mask, rs_rDX.GetReg());
273   }
274   if (flags & REG_USEA) {
275     SetupRegMask(use_mask, rs_rAX.GetReg());
276   }
277 
278   if (flags & REG_USEC) {
279     SetupRegMask(use_mask, rs_rCX.GetReg());
280   }
281 
282   if (flags & REG_USED) {
283     SetupRegMask(use_mask, rs_rDX.GetReg());
284   }
285 
286   if (flags & REG_USEB) {
287     SetupRegMask(use_mask, rs_rBX.GetReg());
288   }
289 
290   // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
291   if (lir->opcode == kX86RepneScasw) {
292     SetupRegMask(use_mask, rs_rAX.GetReg());
293     SetupRegMask(use_mask, rs_rCX.GetReg());
294     SetupRegMask(use_mask, rs_rDI.GetReg());
295     SetupRegMask(def_mask, rs_rDI.GetReg());
296   }
297 
298   if (flags & USE_FP_STACK) {
299     use_mask->SetBit(kX86FPStack);
300     def_mask->SetBit(kX86FPStack);
301   }
302 }
303 
304 /* For dumping instructions */
305 static const char* x86RegName[] = {
306   "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
307   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
308 };
309 
310 static const char* x86CondName[] = {
311   "O",
312   "NO",
313   "B/NAE/C",
314   "NB/AE/NC",
315   "Z/EQ",
316   "NZ/NE",
317   "BE/NA",
318   "NBE/A",
319   "S",
320   "NS",
321   "P/PE",
322   "NP/PO",
323   "L/NGE",
324   "NL/GE",
325   "LE/NG",
326   "NLE/G"
327 };
328 
329 /*
330  * Interpret a format string and build a string no longer than size
331  * See format key in Assemble.cc.
332  */
BuildInsnString(const char * fmt,LIR * lir,unsigned char * base_addr)333 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
334   std::string buf;
335   size_t i = 0;
336   size_t fmt_len = strlen(fmt);
337   while (i < fmt_len) {
338     if (fmt[i] != '!') {
339       buf += fmt[i];
340       i++;
341     } else {
342       i++;
343       DCHECK_LT(i, fmt_len);
344       char operand_number_ch = fmt[i];
345       i++;
346       if (operand_number_ch == '!') {
347         buf += "!";
348       } else {
349         int operand_number = operand_number_ch - '0';
350         DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
351         DCHECK_LT(i, fmt_len);
352         int operand = lir->operands[operand_number];
353         switch (fmt[i]) {
354           case 'c':
355             DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
356             buf += x86CondName[operand];
357             break;
358           case 'd':
359             buf += StringPrintf("%d", operand);
360             break;
361           case 'q': {
362              int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
363                              static_cast<uint32_t>(lir->operands[operand_number+1]));
364              buf +=StringPrintf("%" PRId64, value);
365           }
366           case 'p': {
367             EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
368             buf += StringPrintf("0x%08x", tab_rec->offset);
369             break;
370           }
371           case 'r':
372             if (RegStorage::IsFloat(operand)) {
373               int fp_reg = RegStorage::RegNum(operand);
374               buf += StringPrintf("xmm%d", fp_reg);
375             } else {
376               int reg_num = RegStorage::RegNum(operand);
377               DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
378               buf += x86RegName[reg_num];
379             }
380             break;
381           case 't':
382             buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
383                                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
384                                 lir->target);
385             break;
386           default:
387             buf += StringPrintf("DecodeError '%c'", fmt[i]);
388             break;
389         }
390         i++;
391       }
392     }
393   }
394   return buf;
395 }
396 
DumpResourceMask(LIR * x86LIR,const ResourceMask & mask,const char * prefix)397 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
398   char buf[256];
399   buf[0] = 0;
400 
401   if (mask.Equals(kEncodeAll)) {
402     strcpy(buf, "all");
403   } else {
404     char num[8];
405     int i;
406 
407     for (i = 0; i < kX86RegEnd; i++) {
408       if (mask.HasBit(i)) {
409         snprintf(num, arraysize(num), "%d ", i);
410         strcat(buf, num);
411       }
412     }
413 
414     if (mask.HasBit(ResourceMask::kCCode)) {
415       strcat(buf, "cc ");
416     }
417     /* Memory bits */
418     if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
419       snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
420                DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
421                (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
422     }
423     if (mask.HasBit(ResourceMask::kLiteral)) {
424       strcat(buf, "lit ");
425     }
426 
427     if (mask.HasBit(ResourceMask::kHeapRef)) {
428       strcat(buf, "heap ");
429     }
430     if (mask.HasBit(ResourceMask::kMustNotAlias)) {
431       strcat(buf, "noalias ");
432     }
433   }
434   if (buf[0]) {
435     LOG(INFO) << prefix << ": " <<  buf;
436   }
437 }
438 
AdjustSpillMask()439 void X86Mir2Lir::AdjustSpillMask() {
440   // Adjustment for LR spilling, x86 has no LR so nothing to do here
441   core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
442   num_core_spills_++;
443 }
444 
AllocateByteRegister()445 RegStorage X86Mir2Lir::AllocateByteRegister() {
446   RegStorage reg = AllocTypedTemp(false, kCoreReg);
447   if (!cu_->target64) {
448     DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
449   }
450   return reg;
451 }
452 
Get128BitRegister(RegStorage reg)453 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
454   return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
455 }
456 
IsByteRegister(RegStorage reg)457 bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
458   return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
459 }
460 
461 /* Clobber all regs that might be used by an external C call */
ClobberCallerSave()462 void X86Mir2Lir::ClobberCallerSave() {
463   if (cu_->target64) {
464     Clobber(rs_rAX);
465     Clobber(rs_rCX);
466     Clobber(rs_rDX);
467     Clobber(rs_rSI);
468     Clobber(rs_rDI);
469 
470     Clobber(rs_r8);
471     Clobber(rs_r9);
472     Clobber(rs_r10);
473     Clobber(rs_r11);
474 
475     Clobber(rs_fr8);
476     Clobber(rs_fr9);
477     Clobber(rs_fr10);
478     Clobber(rs_fr11);
479   } else {
480     Clobber(rs_rAX);
481     Clobber(rs_rCX);
482     Clobber(rs_rDX);
483     Clobber(rs_rBX);
484   }
485 
486   Clobber(rs_fr0);
487   Clobber(rs_fr1);
488   Clobber(rs_fr2);
489   Clobber(rs_fr3);
490   Clobber(rs_fr4);
491   Clobber(rs_fr5);
492   Clobber(rs_fr6);
493   Clobber(rs_fr7);
494 }
495 
GetReturnWideAlt()496 RegLocation X86Mir2Lir::GetReturnWideAlt() {
497   RegLocation res = LocCReturnWide();
498   DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
499   DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
500   Clobber(rs_rAX);
501   Clobber(rs_rDX);
502   MarkInUse(rs_rAX);
503   MarkInUse(rs_rDX);
504   MarkWide(res.reg);
505   return res;
506 }
507 
GetReturnAlt()508 RegLocation X86Mir2Lir::GetReturnAlt() {
509   RegLocation res = LocCReturn();
510   res.reg.SetReg(rs_rDX.GetReg());
511   Clobber(rs_rDX);
512   MarkInUse(rs_rDX);
513   return res;
514 }
515 
516 /* To be used when explicitly managing register use */
LockCallTemps()517 void X86Mir2Lir::LockCallTemps() {
518   LockTemp(rs_rX86_ARG0);
519   LockTemp(rs_rX86_ARG1);
520   LockTemp(rs_rX86_ARG2);
521   LockTemp(rs_rX86_ARG3);
522   if (cu_->target64) {
523     LockTemp(rs_rX86_ARG4);
524     LockTemp(rs_rX86_ARG5);
525     LockTemp(rs_rX86_FARG0);
526     LockTemp(rs_rX86_FARG1);
527     LockTemp(rs_rX86_FARG2);
528     LockTemp(rs_rX86_FARG3);
529     LockTemp(rs_rX86_FARG4);
530     LockTemp(rs_rX86_FARG5);
531     LockTemp(rs_rX86_FARG6);
532     LockTemp(rs_rX86_FARG7);
533   }
534 }
535 
536 /* To be used when explicitly managing register use */
FreeCallTemps()537 void X86Mir2Lir::FreeCallTemps() {
538   FreeTemp(rs_rX86_ARG0);
539   FreeTemp(rs_rX86_ARG1);
540   FreeTemp(rs_rX86_ARG2);
541   FreeTemp(rs_rX86_ARG3);
542   if (cu_->target64) {
543     FreeTemp(rs_rX86_ARG4);
544     FreeTemp(rs_rX86_ARG5);
545     FreeTemp(rs_rX86_FARG0);
546     FreeTemp(rs_rX86_FARG1);
547     FreeTemp(rs_rX86_FARG2);
548     FreeTemp(rs_rX86_FARG3);
549     FreeTemp(rs_rX86_FARG4);
550     FreeTemp(rs_rX86_FARG5);
551     FreeTemp(rs_rX86_FARG6);
552     FreeTemp(rs_rX86_FARG7);
553   }
554 }
555 
ProvidesFullMemoryBarrier(X86OpCode opcode)556 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
557     switch (opcode) {
558       case kX86LockCmpxchgMR:
559       case kX86LockCmpxchgAR:
560       case kX86LockCmpxchg64M:
561       case kX86LockCmpxchg64A:
562       case kX86XchgMR:
563       case kX86Mfence:
564         // Atomic memory instructions provide full barrier.
565         return true;
566       default:
567         break;
568     }
569 
570     // Conservative if cannot prove it provides full barrier.
571     return false;
572 }
573 
GenMemBarrier(MemBarrierKind barrier_kind)574 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
575 #if ANDROID_SMP != 0
576   // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
577   LIR* mem_barrier = last_lir_insn_;
578 
579   bool ret = false;
580   /*
581    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
582    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
583    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
584    */
585   if (barrier_kind == kAnyAny) {
586     // If no LIR exists already that can be used a barrier, then generate an mfence.
587     if (mem_barrier == nullptr) {
588       mem_barrier = NewLIR0(kX86Mfence);
589       ret = true;
590     }
591 
592     // If last instruction does not provide full barrier, then insert an mfence.
593     if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
594       mem_barrier = NewLIR0(kX86Mfence);
595       ret = true;
596     }
597   }
598 
599   // Now ensure that a scheduling barrier is in place.
600   if (mem_barrier == nullptr) {
601     GenBarrier();
602   } else {
603     // Mark as a scheduling barrier.
604     DCHECK(!mem_barrier->flags.use_def_invalid);
605     mem_barrier->u.m.def_mask = &kEncodeAll;
606   }
607   return ret;
608 #else
609   return false;
610 #endif
611 }
612 
CompilerInitializeRegAlloc()613 void X86Mir2Lir::CompilerInitializeRegAlloc() {
614   if (cu_->target64) {
615     reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
616                                           dp_regs_64, reserved_regs_64, reserved_regs_64q,
617                                           core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
618   } else {
619     reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
620                                           dp_regs_32, reserved_regs_32, empty_pool,
621                                           core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
622   }
623 
624   // Target-specific adjustments.
625 
626   // Add in XMM registers.
627   const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
628   for (RegStorage reg : *xp_regs) {
629     RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
630     reginfo_map_.Put(reg.GetReg(), info);
631   }
632   const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
633   for (RegStorage reg : *xp_temps) {
634     RegisterInfo* xp_reg_info = GetRegInfo(reg);
635     xp_reg_info->SetIsTemp(true);
636   }
637 
638   // Alias single precision xmm to double xmms.
639   // TODO: as needed, add larger vector sizes - alias all to the largest.
640   GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
641   for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
642     int sp_reg_num = info->GetReg().GetRegNum();
643     RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
644     RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
645     // 128-bit xmm vector register's master storage should refer to itself.
646     DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
647 
648     // Redirect 32-bit vector's master storage to 128-bit vector.
649     info->SetMaster(xp_reg_info);
650 
651     RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
652     RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
653     // Redirect 64-bit vector's master storage to 128-bit vector.
654     dp_reg_info->SetMaster(xp_reg_info);
655     // Singles should show a single 32-bit mask bit, at first referring to the low half.
656     DCHECK_EQ(info->StorageMask(), 0x1U);
657   }
658 
659   if (cu_->target64) {
660     // Alias 32bit W registers to corresponding 64bit X registers.
661     GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
662     for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
663       int x_reg_num = info->GetReg().GetRegNum();
664       RegStorage x_reg = RegStorage::Solo64(x_reg_num);
665       RegisterInfo* x_reg_info = GetRegInfo(x_reg);
666       // 64bit X register's master storage should refer to itself.
667       DCHECK_EQ(x_reg_info, x_reg_info->Master());
668       // Redirect 32bit W master storage to 64bit X.
669       info->SetMaster(x_reg_info);
670       // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
671       DCHECK_EQ(info->StorageMask(), 0x1U);
672     }
673   }
674 
675   // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
676   // TODO: adjust for x86/hard float calling convention.
677   reg_pool_->next_core_reg_ = 2;
678   reg_pool_->next_sp_reg_ = 2;
679   reg_pool_->next_dp_reg_ = 1;
680 }
681 
VectorRegisterSize()682 int X86Mir2Lir::VectorRegisterSize() {
683   return 128;
684 }
685 
NumReservableVectorRegisters(bool fp_used)686 int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
687   return fp_used ? 5 : 7;
688 }
689 
SpillCoreRegs()690 void X86Mir2Lir::SpillCoreRegs() {
691   if (num_core_spills_ == 0) {
692     return;
693   }
694   // Spill mask not including fake return address register
695   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
696   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
697   OpSize size = cu_->target64 ? k64 : k32;
698   for (int reg = 0; mask; mask >>= 1, reg++) {
699     if (mask & 0x1) {
700       StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
701                    size, kNotVolatile);
702       offset += GetInstructionSetPointerSize(cu_->instruction_set);
703     }
704   }
705 }
706 
UnSpillCoreRegs()707 void X86Mir2Lir::UnSpillCoreRegs() {
708   if (num_core_spills_ == 0) {
709     return;
710   }
711   // Spill mask not including fake return address register
712   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
713   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
714   OpSize size = cu_->target64 ? k64 : k32;
715   for (int reg = 0; mask; mask >>= 1, reg++) {
716     if (mask & 0x1) {
717       LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
718                    size, kNotVolatile);
719       offset += GetInstructionSetPointerSize(cu_->instruction_set);
720     }
721   }
722 }
723 
SpillFPRegs()724 void X86Mir2Lir::SpillFPRegs() {
725   if (num_fp_spills_ == 0) {
726     return;
727   }
728   uint32_t mask = fp_spill_mask_;
729   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
730   for (int reg = 0; mask; mask >>= 1, reg++) {
731     if (mask & 0x1) {
732       StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
733                    k64, kNotVolatile);
734       offset += sizeof(double);
735     }
736   }
737 }
UnSpillFPRegs()738 void X86Mir2Lir::UnSpillFPRegs() {
739   if (num_fp_spills_ == 0) {
740     return;
741   }
742   uint32_t mask = fp_spill_mask_;
743   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
744   for (int reg = 0; mask; mask >>= 1, reg++) {
745     if (mask & 0x1) {
746       LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
747                    k64, kNotVolatile);
748       offset += sizeof(double);
749     }
750   }
751 }
752 
753 
IsUnconditionalBranch(LIR * lir)754 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
755   return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
756 }
757 
RegClassForFieldLoadStore(OpSize size,bool is_volatile)758 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
759   // X86_64 can handle any size.
760   if (cu_->target64) {
761     if (size == kReference) {
762       return kRefReg;
763     }
764     return kCoreReg;
765   }
766 
767   if (UNLIKELY(is_volatile)) {
768     // On x86, atomic 64-bit load/store requires an fp register.
769     // Smaller aligned load/store is atomic for both core and fp registers.
770     if (size == k64 || size == kDouble) {
771       return kFPReg;
772     }
773   }
774   return RegClassBySize(size);
775 }
776 
X86Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)777 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
778     : Mir2Lir(cu, mir_graph, arena),
779       base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
780       method_address_insns_(arena, 100, kGrowableArrayMisc),
781       class_type_address_insns_(arena, 100, kGrowableArrayMisc),
782       call_method_insns_(arena, 100, kGrowableArrayMisc),
783       stack_decrement_(nullptr), stack_increment_(nullptr),
784       const_vectors_(nullptr) {
785   store_method_addr_used_ = false;
786   if (kIsDebugBuild) {
787     for (int i = 0; i < kX86Last; i++) {
788       if (X86Mir2Lir::EncodingMap[i].opcode != i) {
789         LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
790                    << " is wrong: expecting " << i << ", seeing "
791                    << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
792       }
793     }
794   }
795   if (cu_->target64) {
796     rs_rX86_SP = rs_rX86_SP_64;
797 
798     rs_rX86_ARG0 = rs_rDI;
799     rs_rX86_ARG1 = rs_rSI;
800     rs_rX86_ARG2 = rs_rDX;
801     rs_rX86_ARG3 = rs_rCX;
802     rs_rX86_ARG4 = rs_r8;
803     rs_rX86_ARG5 = rs_r9;
804     rs_rX86_FARG0 = rs_fr0;
805     rs_rX86_FARG1 = rs_fr1;
806     rs_rX86_FARG2 = rs_fr2;
807     rs_rX86_FARG3 = rs_fr3;
808     rs_rX86_FARG4 = rs_fr4;
809     rs_rX86_FARG5 = rs_fr5;
810     rs_rX86_FARG6 = rs_fr6;
811     rs_rX86_FARG7 = rs_fr7;
812     rX86_ARG0 = rDI;
813     rX86_ARG1 = rSI;
814     rX86_ARG2 = rDX;
815     rX86_ARG3 = rCX;
816     rX86_ARG4 = r8;
817     rX86_ARG5 = r9;
818     rX86_FARG0 = fr0;
819     rX86_FARG1 = fr1;
820     rX86_FARG2 = fr2;
821     rX86_FARG3 = fr3;
822     rX86_FARG4 = fr4;
823     rX86_FARG5 = fr5;
824     rX86_FARG6 = fr6;
825     rX86_FARG7 = fr7;
826     rs_rX86_INVOKE_TGT = rs_rDI;
827   } else {
828     rs_rX86_SP = rs_rX86_SP_32;
829 
830     rs_rX86_ARG0 = rs_rAX;
831     rs_rX86_ARG1 = rs_rCX;
832     rs_rX86_ARG2 = rs_rDX;
833     rs_rX86_ARG3 = rs_rBX;
834     rs_rX86_ARG4 = RegStorage::InvalidReg();
835     rs_rX86_ARG5 = RegStorage::InvalidReg();
836     rs_rX86_FARG0 = rs_rAX;
837     rs_rX86_FARG1 = rs_rCX;
838     rs_rX86_FARG2 = rs_rDX;
839     rs_rX86_FARG3 = rs_rBX;
840     rs_rX86_FARG4 = RegStorage::InvalidReg();
841     rs_rX86_FARG5 = RegStorage::InvalidReg();
842     rs_rX86_FARG6 = RegStorage::InvalidReg();
843     rs_rX86_FARG7 = RegStorage::InvalidReg();
844     rX86_ARG0 = rAX;
845     rX86_ARG1 = rCX;
846     rX86_ARG2 = rDX;
847     rX86_ARG3 = rBX;
848     rX86_FARG0 = rAX;
849     rX86_FARG1 = rCX;
850     rX86_FARG2 = rDX;
851     rX86_FARG3 = rBX;
852     rs_rX86_INVOKE_TGT = rs_rAX;
853     // TODO(64): Initialize with invalid reg
854 //    rX86_ARG4 = RegStorage::InvalidReg();
855 //    rX86_ARG5 = RegStorage::InvalidReg();
856   }
857   rs_rX86_RET0 = rs_rAX;
858   rs_rX86_RET1 = rs_rDX;
859   rs_rX86_COUNT = rs_rCX;
860   rX86_RET0 = rAX;
861   rX86_RET1 = rDX;
862   rX86_INVOKE_TGT = rAX;
863   rX86_COUNT = rCX;
864 
865   // Initialize the number of reserved vector registers
866   num_reserved_vector_regs_ = -1;
867 }
868 
X86CodeGenerator(CompilationUnit * const cu,MIRGraph * const mir_graph,ArenaAllocator * const arena)869 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
870                           ArenaAllocator* const arena) {
871   return new X86Mir2Lir(cu, mir_graph, arena);
872 }
873 
874 // Not used in x86(-64)
LoadHelper(QuickEntrypointEnum trampoline)875 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
876   LOG(FATAL) << "Unexpected use of LoadHelper in x86";
877   return RegStorage::InvalidReg();
878 }
879 
CheckSuspendUsingLoad()880 LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
881   // First load the pointer in fs:[suspend-trigger] into eax
882   // Then use a test instruction to indirect via that address.
883   if (cu_->target64) {
884     NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
885         Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
886   } else {
887     NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
888         Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
889   }
890   return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
891 }
892 
GetTargetInstFlags(int opcode)893 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
894   DCHECK(!IsPseudoLirOp(opcode));
895   return X86Mir2Lir::EncodingMap[opcode].flags;
896 }
897 
GetTargetInstName(int opcode)898 const char* X86Mir2Lir::GetTargetInstName(int opcode) {
899   DCHECK(!IsPseudoLirOp(opcode));
900   return X86Mir2Lir::EncodingMap[opcode].name;
901 }
902 
GetTargetInstFmt(int opcode)903 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
904   DCHECK(!IsPseudoLirOp(opcode));
905   return X86Mir2Lir::EncodingMap[opcode].fmt;
906 }
907 
GenConstWide(RegLocation rl_dest,int64_t value)908 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
909   // Can we do this directly to memory?
910   rl_dest = UpdateLocWide(rl_dest);
911   if ((rl_dest.location == kLocDalvikFrame) ||
912       (rl_dest.location == kLocCompilerTemp)) {
913     int32_t val_lo = Low32Bits(value);
914     int32_t val_hi = High32Bits(value);
915     int r_base = rs_rX86_SP.GetReg();
916     int displacement = SRegOffset(rl_dest.s_reg_low);
917 
918     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
919     LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
920     AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
921                               false /* is_load */, true /* is64bit */);
922     store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
923     AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
924                               false /* is_load */, true /* is64bit */);
925     return;
926   }
927 
928   // Just use the standard code to do the generation.
929   Mir2Lir::GenConstWide(rl_dest, value);
930 }
931 
932 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
DumpRegLocation(RegLocation loc)933 void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
934   LOG(INFO)  << "location: " << loc.location << ','
935              << (loc.wide ? " w" : "  ")
936              << (loc.defined ? " D" : "  ")
937              << (loc.is_const ? " c" : "  ")
938              << (loc.fp ? " F" : "  ")
939              << (loc.core ? " C" : "  ")
940              << (loc.ref ? " r" : "  ")
941              << (loc.high_word ? " h" : "  ")
942              << (loc.home ? " H" : "  ")
943              << ", low: " << static_cast<int>(loc.reg.GetLowReg())
944              << ", high: " << static_cast<int>(loc.reg.GetHighReg())
945              << ", s_reg: " << loc.s_reg_low
946              << ", orig: " << loc.orig_sreg;
947 }
948 
Materialize()949 void X86Mir2Lir::Materialize() {
950   // A good place to put the analysis before starting.
951   AnalyzeMIR();
952 
953   // Now continue with regular code generation.
954   Mir2Lir::Materialize();
955 }
956 
LoadMethodAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)957 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
958                                    SpecialTargetRegister symbolic_reg) {
959   /*
960    * For x86, just generate a 32 bit move immediate instruction, that will be filled
961    * in at 'link time'.  For now, put a unique value based on target to ensure that
962    * code deduplication works.
963    */
964   int target_method_idx = target_method.dex_method_index;
965   const DexFile* target_dex_file = target_method.dex_file;
966   const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
967   uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
968 
969   // Generate the move instruction with the unique pointer and save index, dex_file, and type.
970   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
971                      TargetReg(symbolic_reg, kNotWide).GetReg(),
972                      static_cast<int>(target_method_id_ptr), target_method_idx,
973                      WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
974   AppendLIR(move);
975   method_address_insns_.Insert(move);
976 }
977 
LoadClassType(uint32_t type_idx,SpecialTargetRegister symbolic_reg)978 void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
979   /*
980    * For x86, just generate a 32 bit move immediate instruction, that will be filled
981    * in at 'link time'.  For now, put a unique value based on target to ensure that
982    * code deduplication works.
983    */
984   const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
985   uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
986 
987   // Generate the move instruction with the unique pointer and save index and type.
988   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
989                      TargetReg(symbolic_reg, kNotWide).GetReg(),
990                      static_cast<int>(ptr), type_idx);
991   AppendLIR(move);
992   class_type_address_insns_.Insert(move);
993 }
994 
CallWithLinkerFixup(const MethodReference & target_method,InvokeType type)995 LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
996   /*
997    * For x86, just generate a 32 bit call relative instruction, that will be filled
998    * in at 'link time'.  For now, put a unique value based on target to ensure that
999    * code deduplication works.
1000    */
1001   int target_method_idx = target_method.dex_method_index;
1002   const DexFile* target_dex_file = target_method.dex_file;
1003   const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1004   uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1005 
1006   // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1007   LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1008                      target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1009   AppendLIR(call);
1010   call_method_insns_.Insert(call);
1011   return call;
1012 }
1013 
1014 /*
1015  * @brief Enter a 32 bit quantity into a buffer
1016  * @param buf buffer.
1017  * @param data Data value.
1018  */
1019 
PushWord(std::vector<uint8_t> & buf,int32_t data)1020 static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1021   buf.push_back(data & 0xff);
1022   buf.push_back((data >> 8) & 0xff);
1023   buf.push_back((data >> 16) & 0xff);
1024   buf.push_back((data >> 24) & 0xff);
1025 }
1026 
InstallLiteralPools()1027 void X86Mir2Lir::InstallLiteralPools() {
1028   // These are handled differently for x86.
1029   DCHECK(code_literal_list_ == nullptr);
1030   DCHECK(method_literal_list_ == nullptr);
1031   DCHECK(class_literal_list_ == nullptr);
1032 
1033   // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
1034   // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
1035   // will fail at runtime)?
1036   if (const_vectors_ != nullptr) {
1037     int align_size = (16-4) - (code_buffer_.size() & 0xF);
1038     if (align_size < 0) {
1039       align_size += 16;
1040     }
1041 
1042     while (align_size > 0) {
1043       code_buffer_.push_back(0);
1044       align_size--;
1045     }
1046     for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1047       PushWord(code_buffer_, p->operands[0]);
1048       PushWord(code_buffer_, p->operands[1]);
1049       PushWord(code_buffer_, p->operands[2]);
1050       PushWord(code_buffer_, p->operands[3]);
1051     }
1052   }
1053 
1054   // Handle the fixups for methods.
1055   for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1056       LIR* p = method_address_insns_.Get(i);
1057       DCHECK_EQ(p->opcode, kX86Mov32RI);
1058       uint32_t target_method_idx = p->operands[2];
1059       const DexFile* target_dex_file =
1060           reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1061 
1062       // The offset to patch is the last 4 bytes of the instruction.
1063       int patch_offset = p->offset + p->flags.size - 4;
1064       cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1065                                            cu_->method_idx, cu_->invoke_type,
1066                                            target_method_idx, target_dex_file,
1067                                            static_cast<InvokeType>(p->operands[4]),
1068                                            patch_offset);
1069   }
1070 
1071   // Handle the fixups for class types.
1072   for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1073       LIR* p = class_type_address_insns_.Get(i);
1074       DCHECK_EQ(p->opcode, kX86Mov32RI);
1075       uint32_t target_method_idx = p->operands[2];
1076 
1077       // The offset to patch is the last 4 bytes of the instruction.
1078       int patch_offset = p->offset + p->flags.size - 4;
1079       cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1080                                           cu_->method_idx, target_method_idx, patch_offset);
1081   }
1082 
1083   // And now the PC-relative calls to methods.
1084   for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1085       LIR* p = call_method_insns_.Get(i);
1086       DCHECK_EQ(p->opcode, kX86CallI);
1087       uint32_t target_method_idx = p->operands[1];
1088       const DexFile* target_dex_file =
1089           reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1090 
1091       // The offset to patch is the last 4 bytes of the instruction.
1092       int patch_offset = p->offset + p->flags.size - 4;
1093       cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1094                                                  cu_->method_idx, cu_->invoke_type,
1095                                                  target_method_idx, target_dex_file,
1096                                                  static_cast<InvokeType>(p->operands[3]),
1097                                                  patch_offset, -4 /* offset */);
1098   }
1099 
1100   // And do the normal processing.
1101   Mir2Lir::InstallLiteralPools();
1102 }
1103 
GenInlinedArrayCopyCharArray(CallInfo * info)1104 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1105   RegLocation rl_src = info->args[0];
1106   RegLocation rl_srcPos = info->args[1];
1107   RegLocation rl_dst = info->args[2];
1108   RegLocation rl_dstPos = info->args[3];
1109   RegLocation rl_length = info->args[4];
1110   if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1111     return false;
1112   }
1113   if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1114     return false;
1115   }
1116   ClobberCallerSave();
1117   LockCallTemps();  // Using fixed registers.
1118   RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
1119   LoadValueDirectFixed(rl_src, rs_rAX);
1120   LoadValueDirectFixed(rl_dst, rs_rCX);
1121   LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
1122   LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
1123   LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1124   LoadValueDirectFixed(rl_length, rs_rDX);
1125   // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
1126   LIR* len_too_big  = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
1127   LoadValueDirectFixed(rl_src, rs_rAX);
1128   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1129   LIR* src_bad_len  = nullptr;
1130   LIR* src_bad_off = nullptr;
1131   LIR* srcPos_negative  = nullptr;
1132   if (!rl_srcPos.is_const) {
1133     LoadValueDirectFixed(rl_srcPos, tmp_reg);
1134     srcPos_negative  = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1135     // src_pos < src_len
1136     src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1137     // src_len - src_pos < copy_len
1138     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1139     src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1140   } else {
1141     int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1142     if (pos_val == 0) {
1143       src_bad_len  = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1144     } else {
1145       // src_pos < src_len
1146       src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1147       // src_len - src_pos < copy_len
1148       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1149       src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1150     }
1151   }
1152   LIR* dstPos_negative = nullptr;
1153   LIR* dst_bad_len = nullptr;
1154   LIR* dst_bad_off = nullptr;
1155   LoadValueDirectFixed(rl_dst, rs_rAX);
1156   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1157   if (!rl_dstPos.is_const) {
1158     LoadValueDirectFixed(rl_dstPos, tmp_reg);
1159     dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1160     // dst_pos < dst_len
1161     dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1162     // dst_len - dst_pos < copy_len
1163     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1164     dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1165   } else {
1166     int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1167     if (pos_val == 0) {
1168       dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1169     } else {
1170       // dst_pos < dst_len
1171       dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1172       // dst_len - dst_pos < copy_len
1173       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1174       dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1175     }
1176   }
1177   // Everything is checked now.
1178   LoadValueDirectFixed(rl_src, rs_rAX);
1179   LoadValueDirectFixed(rl_dst, tmp_reg);
1180   LoadValueDirectFixed(rl_srcPos, rs_rCX);
1181   NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1182        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
1183   // RAX now holds the address of the first src element to be copied.
1184 
1185   LoadValueDirectFixed(rl_dstPos, rs_rCX);
1186   NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
1187        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
1188   // RBX now holds the address of the first dst element to be copied.
1189 
1190   // Check if the number of elements to be copied is odd or even. If odd
1191   // then copy the first element (so that the remaining number of elements
1192   // is even).
1193   LoadValueDirectFixed(rl_length, rs_rCX);
1194   OpRegImm(kOpAnd, rs_rCX, 1);
1195   LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1196   OpRegImm(kOpSub, rs_rDX, 1);
1197   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1198   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1199 
1200   // Since the remaining number of elements is even, we will copy by
1201   // two elements at a time.
1202   LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
1203   LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
1204   OpRegImm(kOpSub, rs_rDX, 2);
1205   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1206   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
1207   OpUnconditionalBranch(beginLoop);
1208   LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1209   LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1210   LIR *return_point = NewLIR0(kPseudoTargetLabel);
1211   jmp_to_ret->target = return_point;
1212   jmp_to_begin_loop->target = beginLoop;
1213   src_dst_same->target = check_failed;
1214   len_too_big->target = check_failed;
1215   src_null_branch->target = check_failed;
1216   if (srcPos_negative != nullptr)
1217     srcPos_negative ->target = check_failed;
1218   if (src_bad_off != nullptr)
1219     src_bad_off->target = check_failed;
1220   if (src_bad_len != nullptr)
1221     src_bad_len->target = check_failed;
1222   dst_null_branch->target = check_failed;
1223   if (dstPos_negative != nullptr)
1224     dstPos_negative->target = check_failed;
1225   if (dst_bad_off != nullptr)
1226     dst_bad_off->target = check_failed;
1227   if (dst_bad_len != nullptr)
1228     dst_bad_len->target = check_failed;
1229   AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1230   ClobberCallerSave();  // We must clobber everything because slow path will return here
1231   return true;
1232 }
1233 
1234 
1235 /*
1236  * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1237  * otherwise bails to standard library code.
1238  */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1239 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1240   RegLocation rl_obj = info->args[0];
1241   RegLocation rl_char = info->args[1];
1242   RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1243   // RBX is callee-save register in 64-bit mode.
1244   RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
1245   int start_value = -1;
1246 
1247   uint32_t char_value =
1248     rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1249 
1250   if (char_value > 0xFFFF) {
1251     // We have to punt to the real String.indexOf.
1252     return false;
1253   }
1254 
1255   // Okay, we are commited to inlining this.
1256   // EAX: 16 bit character being searched.
1257   // ECX: count: number of words to be searched.
1258   // EDI: String being searched.
1259   // EDX: temporary during execution.
1260   // EBX or R11: temporary during execution (depending on mode).
1261   // REP SCASW: search instruction.
1262 
1263   FlushReg(rs_rAX);
1264   Clobber(rs_rAX);
1265   LockTemp(rs_rAX);
1266   FlushReg(rs_rCX);
1267   Clobber(rs_rCX);
1268   LockTemp(rs_rCX);
1269   FlushReg(rs_rDX);
1270   Clobber(rs_rDX);
1271   LockTemp(rs_rDX);
1272   FlushReg(rs_tmp);
1273   Clobber(rs_tmp);
1274   LockTemp(rs_tmp);
1275   if (cu_->target64) {
1276     FlushReg(rs_rDI);
1277     Clobber(rs_rDI);
1278     LockTemp(rs_rDI);
1279   }
1280 
1281   RegLocation rl_return = GetReturn(kCoreReg);
1282   RegLocation rl_dest = InlineTarget(info);
1283 
1284   // Is the string non-NULL?
1285   LoadValueDirectFixed(rl_obj, rs_rDX);
1286   GenNullCheck(rs_rDX, info->opt_flags);
1287   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1288 
1289   LIR *slowpath_branch = nullptr, *length_compare = nullptr;
1290 
1291   // We need the value in EAX.
1292   if (rl_char.is_const) {
1293     LoadConstantNoClobber(rs_rAX, char_value);
1294   } else {
1295     // Does the character fit in 16 bits? Compare it at runtime.
1296     LoadValueDirectFixed(rl_char, rs_rAX);
1297     slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1298   }
1299 
1300   // From here down, we know that we are looking for a char that fits in 16 bits.
1301   // Location of reference to data array within the String object.
1302   int value_offset = mirror::String::ValueOffset().Int32Value();
1303   // Location of count within the String object.
1304   int count_offset = mirror::String::CountOffset().Int32Value();
1305   // Starting offset within data array.
1306   int offset_offset = mirror::String::OffsetOffset().Int32Value();
1307   // Start of char data with array_.
1308   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1309 
1310   // Compute the number of words to search in to rCX.
1311   Load32Disp(rs_rDX, count_offset, rs_rCX);
1312 
1313   // Possible signal here due to null pointer dereference.
1314   // Note that the signal handler will expect the top word of
1315   // the stack to be the ArtMethod*.  If the PUSH edi instruction
1316   // below is ahead of the load above then this will not be true
1317   // and the signal handler will not work.
1318   MarkPossibleNullPointerException(0);
1319 
1320   if (!cu_->target64) {
1321     // EDI is callee-save register in 32-bit mode.
1322     NewLIR1(kX86Push32R, rs_rDI.GetReg());
1323   }
1324 
1325   if (zero_based) {
1326     // Start index is not present.
1327     // We have to handle an empty string.  Use special instruction JECXZ.
1328     length_compare = NewLIR0(kX86Jecxz8);
1329 
1330     // Copy the number of words to search in a temporary register.
1331     // We will use the register at the end to calculate result.
1332     OpRegReg(kOpMov, rs_tmp, rs_rCX);
1333   } else {
1334     // Start index is present.
1335     rl_start = info->args[2];
1336 
1337     // We have to offset by the start index.
1338     if (rl_start.is_const) {
1339       start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1340       start_value = std::max(start_value, 0);
1341 
1342       // Is the start > count?
1343       length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1344       OpRegImm(kOpMov, rs_rDI, start_value);
1345 
1346       // Copy the number of words to search in a temporary register.
1347       // We will use the register at the end to calculate result.
1348       OpRegReg(kOpMov, rs_tmp, rs_rCX);
1349 
1350       if (start_value != 0) {
1351         // Decrease the number of words to search by the start index.
1352         OpRegImm(kOpSub, rs_rCX, start_value);
1353       }
1354     } else {
1355       // Handle "start index < 0" case.
1356       if (!cu_->target64 && rl_start.location != kLocPhysReg) {
1357         // Load the start index from stack, remembering that we pushed EDI.
1358         int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1359         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1360         Load32Disp(rs_rX86_SP, displacement, rs_rDI);
1361         // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
1362         DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
1363         int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
1364         AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
1365       } else {
1366         LoadValueDirectFixed(rl_start, rs_rDI);
1367       }
1368       OpRegReg(kOpXor, rs_tmp, rs_tmp);
1369       OpRegReg(kOpCmp, rs_rDI, rs_tmp);
1370       OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
1371 
1372       // The length of the string should be greater than the start index.
1373       length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
1374 
1375       // Copy the number of words to search in a temporary register.
1376       // We will use the register at the end to calculate result.
1377       OpRegReg(kOpMov, rs_tmp, rs_rCX);
1378 
1379       // Decrease the number of words to search by the start index.
1380       OpRegReg(kOpSub, rs_rCX, rs_rDI);
1381     }
1382   }
1383 
1384   // Load the address of the string into EDI.
1385   // In case of start index we have to add the address to existing value in EDI.
1386   // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1387   if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
1388     Load32Disp(rs_rDX, offset_offset, rs_rDI);
1389   } else {
1390     OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset);
1391   }
1392   OpRegImm(kOpLsl, rs_rDI, 1);
1393   OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset);
1394   OpRegImm(kOpAdd, rs_rDI, data_offset);
1395 
1396   // EDI now contains the start of the string to be searched.
1397   // We are all prepared to do the search for the character.
1398   NewLIR0(kX86RepneScasw);
1399 
1400   // Did we find a match?
1401   LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1402 
1403   // yes, we matched.  Compute the index of the result.
1404   OpRegReg(kOpSub, rs_tmp, rs_rCX);
1405   NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
1406 
1407   LIR *all_done = NewLIR1(kX86Jmp8, 0);
1408 
1409   // Failed to match; return -1.
1410   LIR *not_found = NewLIR0(kPseudoTargetLabel);
1411   length_compare->target = not_found;
1412   failed_branch->target = not_found;
1413   LoadConstantNoClobber(rl_return.reg, -1);
1414 
1415   // And join up at the end.
1416   all_done->target = NewLIR0(kPseudoTargetLabel);
1417 
1418   if (!cu_->target64)
1419     NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1420 
1421   // Out of line code returns here.
1422   if (slowpath_branch != nullptr) {
1423     LIR *return_point = NewLIR0(kPseudoTargetLabel);
1424     AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1425     ClobberCallerSave();  // We must clobber everything because slow path will return here
1426   }
1427 
1428   StoreValue(rl_dest, rl_return);
1429 
1430   FreeTemp(rs_rAX);
1431   FreeTemp(rs_rCX);
1432   FreeTemp(rs_rDX);
1433   FreeTemp(rs_tmp);
1434   if (cu_->target64) {
1435     FreeTemp(rs_rDI);
1436   }
1437 
1438   return true;
1439 }
1440 
1441 /*
1442  * @brief Enter an 'advance LOC' into the FDE buffer
1443  * @param buf FDE buffer.
1444  * @param increment Amount by which to increase the current location.
1445  */
AdvanceLoc(std::vector<uint8_t> & buf,uint32_t increment)1446 static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1447   if (increment < 64) {
1448     // Encoding in opcode.
1449     buf.push_back(0x1 << 6 | increment);
1450   } else if (increment < 256) {
1451     // Single byte delta.
1452     buf.push_back(0x02);
1453     buf.push_back(increment);
1454   } else if (increment < 256 * 256) {
1455     // Two byte delta.
1456     buf.push_back(0x03);
1457     buf.push_back(increment & 0xff);
1458     buf.push_back((increment >> 8) & 0xff);
1459   } else {
1460     // Four byte delta.
1461     buf.push_back(0x04);
1462     PushWord(buf, increment);
1463   }
1464 }
1465 
1466 
X86CFIInitialization(bool is_x86_64)1467 std::vector<uint8_t>* X86CFIInitialization(bool is_x86_64) {
1468   return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64);
1469 }
1470 
EncodeUnsignedLeb128(std::vector<uint8_t> & buf,uint32_t value)1471 static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1472   uint8_t buffer[12];
1473   uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1474   for (uint8_t *p = buffer; p < ptr; p++) {
1475     buf.push_back(*p);
1476   }
1477 }
1478 
EncodeSignedLeb128(std::vector<uint8_t> & buf,int32_t value)1479 static void EncodeSignedLeb128(std::vector<uint8_t>& buf, int32_t value) {
1480   uint8_t buffer[12];
1481   uint8_t *ptr = EncodeSignedLeb128(buffer, value);
1482   for (uint8_t *p = buffer; p < ptr; p++) {
1483     buf.push_back(*p);
1484   }
1485 }
1486 
ReturnCommonCallFrameInformation(bool is_x86_64)1487 std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) {
1488   std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1489 
1490   // Length (will be filled in later in this routine).
1491   PushWord(*cfi_info, 0);
1492 
1493   // CIE id: always 0.
1494   PushWord(*cfi_info, 0);
1495 
1496   // Version: always 1.
1497   cfi_info->push_back(0x01);
1498 
1499   // Augmentation: 'zR\0'
1500   cfi_info->push_back(0x7a);
1501   cfi_info->push_back(0x52);
1502   cfi_info->push_back(0x0);
1503 
1504   // Code alignment: 1.
1505   EncodeUnsignedLeb128(*cfi_info, 1);
1506 
1507   // Data alignment.
1508   if (is_x86_64) {
1509     EncodeSignedLeb128(*cfi_info, -8);
1510   } else {
1511     EncodeSignedLeb128(*cfi_info, -4);
1512   }
1513 
1514   // Return address register.
1515   if (is_x86_64) {
1516     // R16(RIP)
1517     cfi_info->push_back(0x10);
1518   } else {
1519     // R8(EIP)
1520     cfi_info->push_back(0x08);
1521   }
1522 
1523   // Augmentation length: 1.
1524   cfi_info->push_back(1);
1525 
1526   // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4).
1527   cfi_info->push_back(0x03);
1528 
1529   // Initial instructions.
1530   if (is_x86_64) {
1531     // DW_CFA_def_cfa R7(RSP) 8.
1532     cfi_info->push_back(0x0c);
1533     cfi_info->push_back(0x07);
1534     cfi_info->push_back(0x08);
1535 
1536     // DW_CFA_offset R16(RIP) 1 (* -8).
1537     cfi_info->push_back(0x90);
1538     cfi_info->push_back(0x01);
1539   } else {
1540     // DW_CFA_def_cfa R4(ESP) 4.
1541     cfi_info->push_back(0x0c);
1542     cfi_info->push_back(0x04);
1543     cfi_info->push_back(0x04);
1544 
1545     // DW_CFA_offset R8(EIP) 1 (* -4).
1546     cfi_info->push_back(0x88);
1547     cfi_info->push_back(0x01);
1548   }
1549 
1550   // Padding to a multiple of 4
1551   while ((cfi_info->size() & 3) != 0) {
1552     // DW_CFA_nop is encoded as 0.
1553     cfi_info->push_back(0);
1554   }
1555 
1556   // Set the length of the CIE inside the generated bytes.
1557   uint32_t length = cfi_info->size() - 4;
1558   (*cfi_info)[0] = length;
1559   (*cfi_info)[1] = length >> 8;
1560   (*cfi_info)[2] = length >> 16;
1561   (*cfi_info)[3] = length >> 24;
1562   return cfi_info;
1563 }
1564 
ARTRegIDToDWARFRegID(bool is_x86_64,int art_reg_id,int * dwarf_reg_id)1565 static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) {
1566   if (is_x86_64) {
1567     switch (art_reg_id) {
1568     case 3 : *dwarf_reg_id =  3; return true;  // %rbx
1569     // This is the only discrepancy between ART & DWARF register numbering.
1570     case 5 : *dwarf_reg_id =  6; return true;  // %rbp
1571     case 12: *dwarf_reg_id = 12; return true;  // %r12
1572     case 13: *dwarf_reg_id = 13; return true;  // %r13
1573     case 14: *dwarf_reg_id = 14; return true;  // %r14
1574     case 15: *dwarf_reg_id = 15; return true;  // %r15
1575     default: return false;  // Should not get here
1576     }
1577   } else {
1578     switch (art_reg_id) {
1579     case 5: *dwarf_reg_id = 5; return true;  // %ebp
1580     case 6: *dwarf_reg_id = 6; return true;  // %esi
1581     case 7: *dwarf_reg_id = 7; return true;  // %edi
1582     default: return false;  // Should not get here
1583     }
1584   }
1585 }
1586 
ReturnCallFrameInformation()1587 std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1588   std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1589 
1590   // Generate the FDE for the method.
1591   DCHECK_NE(data_offset_, 0U);
1592 
1593   // Length (will be filled in later in this routine).
1594   PushWord(*cfi_info, 0);
1595 
1596   // 'CIE_pointer' (filled in by linker).
1597   PushWord(*cfi_info, 0);
1598 
1599   // 'initial_location' (filled in by linker).
1600   PushWord(*cfi_info, 0);
1601 
1602   // 'address_range' (number of bytes in the method).
1603   PushWord(*cfi_info, data_offset_);
1604 
1605   // Augmentation length: 0
1606   cfi_info->push_back(0);
1607 
1608   // The instructions in the FDE.
1609   if (stack_decrement_ != nullptr) {
1610     // Advance LOC to just past the stack decrement.
1611     uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1612     AdvanceLoc(*cfi_info, pc);
1613 
1614     // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1615     cfi_info->push_back(0x0e);
1616     EncodeUnsignedLeb128(*cfi_info, frame_size_);
1617 
1618     // Handle register spills
1619     const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4;
1620     const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4;
1621     uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
1622     int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
1623     for (int reg = 0; mask; mask >>= 1, reg++) {
1624       if (mask & 0x1) {
1625         pc += kSpillInstLen;
1626 
1627         // Advance LOC to pass this instruction
1628         AdvanceLoc(*cfi_info, kSpillInstLen);
1629 
1630         int dwarf_reg_id;
1631         if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) {
1632           // DW_CFA_offset_extended_sf reg_no offset
1633           cfi_info->push_back(0x11);
1634           EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id);
1635           EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor);
1636         }
1637 
1638         offset += GetInstructionSetPointerSize(cu_->instruction_set);
1639       }
1640     }
1641 
1642     // We continue with that stack until the epilogue.
1643     if (stack_increment_ != nullptr) {
1644       uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1645       AdvanceLoc(*cfi_info, new_pc - pc);
1646 
1647       // We probably have code snippets after the epilogue, so save the
1648       // current state: DW_CFA_remember_state.
1649       cfi_info->push_back(0x0a);
1650 
1651       // We have now popped the stack: DW_CFA_def_cfa_offset 4/8.
1652       // There is only the return PC on the stack now.
1653       cfi_info->push_back(0x0e);
1654       EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set));
1655 
1656       // Everything after that is the same as before the epilogue.
1657       // Stack bump was followed by RET instruction.
1658       LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1659       if (post_ret_insn != nullptr) {
1660         pc = new_pc;
1661         new_pc = post_ret_insn->offset;
1662         AdvanceLoc(*cfi_info, new_pc - pc);
1663         // Restore the state: DW_CFA_restore_state.
1664         cfi_info->push_back(0x0b);
1665       }
1666     }
1667   }
1668 
1669   // Padding to a multiple of 4
1670   while ((cfi_info->size() & 3) != 0) {
1671     // DW_CFA_nop is encoded as 0.
1672     cfi_info->push_back(0);
1673   }
1674 
1675   // Set the length of the FDE inside the generated bytes.
1676   uint32_t length = cfi_info->size() - 4;
1677   (*cfi_info)[0] = length;
1678   (*cfi_info)[1] = length >> 8;
1679   (*cfi_info)[2] = length >> 16;
1680   (*cfi_info)[3] = length >> 24;
1681   return cfi_info;
1682 }
1683 
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)1684 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1685   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1686     case kMirOpReserveVectorRegisters:
1687       ReserveVectorRegisters(mir);
1688       break;
1689     case kMirOpReturnVectorRegisters:
1690       ReturnVectorRegisters();
1691       break;
1692     case kMirOpConstVector:
1693       GenConst128(bb, mir);
1694       break;
1695     case kMirOpMoveVector:
1696       GenMoveVector(bb, mir);
1697       break;
1698     case kMirOpPackedMultiply:
1699       GenMultiplyVector(bb, mir);
1700       break;
1701     case kMirOpPackedAddition:
1702       GenAddVector(bb, mir);
1703       break;
1704     case kMirOpPackedSubtract:
1705       GenSubtractVector(bb, mir);
1706       break;
1707     case kMirOpPackedShiftLeft:
1708       GenShiftLeftVector(bb, mir);
1709       break;
1710     case kMirOpPackedSignedShiftRight:
1711       GenSignedShiftRightVector(bb, mir);
1712       break;
1713     case kMirOpPackedUnsignedShiftRight:
1714       GenUnsignedShiftRightVector(bb, mir);
1715       break;
1716     case kMirOpPackedAnd:
1717       GenAndVector(bb, mir);
1718       break;
1719     case kMirOpPackedOr:
1720       GenOrVector(bb, mir);
1721       break;
1722     case kMirOpPackedXor:
1723       GenXorVector(bb, mir);
1724       break;
1725     case kMirOpPackedAddReduce:
1726       GenAddReduceVector(bb, mir);
1727       break;
1728     case kMirOpPackedReduce:
1729       GenReduceVector(bb, mir);
1730       break;
1731     case kMirOpPackedSet:
1732       GenSetVector(bb, mir);
1733       break;
1734     default:
1735       break;
1736   }
1737 }
1738 
ReserveVectorRegisters(MIR * mir)1739 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1740   // We should not try to reserve twice without returning the registers
1741   DCHECK_NE(num_reserved_vector_regs_, -1);
1742 
1743   int num_vector_reg = mir->dalvikInsn.vA;
1744   for (int i = 0; i < num_vector_reg; i++) {
1745     RegStorage xp_reg = RegStorage::Solo128(i);
1746     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1747     Clobber(xp_reg);
1748 
1749     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1750                        info != nullptr;
1751                        info = info->GetAliasChain()) {
1752       if (info->GetReg().IsSingle()) {
1753         reg_pool_->sp_regs_.Delete(info);
1754       } else {
1755         reg_pool_->dp_regs_.Delete(info);
1756       }
1757     }
1758   }
1759 
1760   num_reserved_vector_regs_ = num_vector_reg;
1761 }
1762 
ReturnVectorRegisters()1763 void X86Mir2Lir::ReturnVectorRegisters() {
1764   // Return all the reserved registers
1765   for (int i = 0; i < num_reserved_vector_regs_; i++) {
1766     RegStorage xp_reg = RegStorage::Solo128(i);
1767     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1768 
1769     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1770                        info != nullptr;
1771                        info = info->GetAliasChain()) {
1772       if (info->GetReg().IsSingle()) {
1773         reg_pool_->sp_regs_.Insert(info);
1774       } else {
1775         reg_pool_->dp_regs_.Insert(info);
1776       }
1777     }
1778   }
1779 
1780   // We don't have anymore reserved vector registers
1781   num_reserved_vector_regs_ = -1;
1782 }
1783 
GenConst128(BasicBlock * bb,MIR * mir)1784 void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1785   store_method_addr_used_ = true;
1786   int type_size = mir->dalvikInsn.vB;
1787   // We support 128 bit vectors.
1788   DCHECK_EQ(type_size & 0xFFFF, 128);
1789   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1790   uint32_t *args = mir->dalvikInsn.arg;
1791   int reg = rs_dest.GetReg();
1792   // Check for all 0 case.
1793   if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1794     NewLIR2(kX86XorpsRR, reg, reg);
1795     return;
1796   }
1797 
1798   // Append the mov const vector to reg opcode.
1799   AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1800 }
1801 
AppendOpcodeWithConst(X86OpCode opcode,int reg,MIR * mir)1802 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1803   // Okay, load it from the constant vector area.
1804   LIR *data_target = ScanVectorLiteral(mir);
1805   if (data_target == nullptr) {
1806     data_target = AddVectorLiteral(mir);
1807   }
1808 
1809   // Address the start of the method.
1810   RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1811   if (rl_method.wide) {
1812     rl_method = LoadValueWide(rl_method, kCoreReg);
1813   } else {
1814     rl_method = LoadValue(rl_method, kCoreReg);
1815   }
1816 
1817   // Load the proper value from the literal area.
1818   // We don't know the proper offset for the value, so pick one that will force
1819   // 4 byte offset.  We will fix this up in the assembler later to have the right
1820   // value.
1821   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1822   LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1823   load->flags.fixup = kFixupLoad;
1824   load->target = data_target;
1825 }
1826 
GenMoveVector(BasicBlock * bb,MIR * mir)1827 void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1828   // We only support 128 bit registers.
1829   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1830   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1831   RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1832   NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1833 }
1834 
GenMultiplyVectorSignedByte(BasicBlock * bb,MIR * mir)1835 void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1836   const int BYTE_SIZE = 8;
1837   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1838   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1839   RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1840 
1841   /*
1842    * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1843    * and multiplying 8 at a time before recombining back into one XMM register.
1844    *
1845    *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1846    *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1847    *
1848    *    xmm3 = xmm1
1849    *    xmm1 = xmm1 .* xmm2
1850    *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1851    *    xmm3 = xmm3 .>> 8
1852    *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1853    *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1854    *    xmm1 = xmm1 | xmm2                                // combine results
1855    */
1856 
1857   // Copy xmm1.
1858   NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1859 
1860   // Multiply low bits.
1861   NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1862 
1863   // xmm1 now has low bits.
1864   AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1865 
1866   // Prepare high bits for multiplication.
1867   NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1868   AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1869 
1870   // Multiply high bits and xmm2 now has high bits.
1871   NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1872 
1873   // Combine back into dest XMM register.
1874   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1875 }
1876 
GenMultiplyVector(BasicBlock * bb,MIR * mir)1877 void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1878   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1879   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1880   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1881   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1882   int opcode = 0;
1883   switch (opsize) {
1884     case k32:
1885       opcode = kX86PmulldRR;
1886       break;
1887     case kSignedHalf:
1888       opcode = kX86PmullwRR;
1889       break;
1890     case kSingle:
1891       opcode = kX86MulpsRR;
1892       break;
1893     case kDouble:
1894       opcode = kX86MulpdRR;
1895       break;
1896     case kSignedByte:
1897       // HW doesn't support 16x16 byte multiplication so emulate it.
1898       GenMultiplyVectorSignedByte(bb, mir);
1899       return;
1900     default:
1901       LOG(FATAL) << "Unsupported vector multiply " << opsize;
1902       break;
1903   }
1904   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1905 }
1906 
GenAddVector(BasicBlock * bb,MIR * mir)1907 void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1908   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1909   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1910   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1911   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1912   int opcode = 0;
1913   switch (opsize) {
1914     case k32:
1915       opcode = kX86PadddRR;
1916       break;
1917     case kSignedHalf:
1918     case kUnsignedHalf:
1919       opcode = kX86PaddwRR;
1920       break;
1921     case kUnsignedByte:
1922     case kSignedByte:
1923       opcode = kX86PaddbRR;
1924       break;
1925     case kSingle:
1926       opcode = kX86AddpsRR;
1927       break;
1928     case kDouble:
1929       opcode = kX86AddpdRR;
1930       break;
1931     default:
1932       LOG(FATAL) << "Unsupported vector addition " << opsize;
1933       break;
1934   }
1935   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1936 }
1937 
GenSubtractVector(BasicBlock * bb,MIR * mir)1938 void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1939   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1940   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1941   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1942   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1943   int opcode = 0;
1944   switch (opsize) {
1945     case k32:
1946       opcode = kX86PsubdRR;
1947       break;
1948     case kSignedHalf:
1949     case kUnsignedHalf:
1950       opcode = kX86PsubwRR;
1951       break;
1952     case kUnsignedByte:
1953     case kSignedByte:
1954       opcode = kX86PsubbRR;
1955       break;
1956     case kSingle:
1957       opcode = kX86SubpsRR;
1958       break;
1959     case kDouble:
1960       opcode = kX86SubpdRR;
1961       break;
1962     default:
1963       LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1964       break;
1965   }
1966   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1967 }
1968 
GenShiftByteVector(BasicBlock * bb,MIR * mir)1969 void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1970   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1971   RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1972 
1973   int opcode = 0;
1974   int imm = mir->dalvikInsn.vB;
1975 
1976   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1977     case kMirOpPackedShiftLeft:
1978       opcode = kX86PsllwRI;
1979       break;
1980     case kMirOpPackedSignedShiftRight:
1981       opcode = kX86PsrawRI;
1982       break;
1983     case kMirOpPackedUnsignedShiftRight:
1984       opcode = kX86PsrlwRI;
1985       break;
1986     default:
1987       LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1988       break;
1989   }
1990 
1991   /*
1992    * xmm1 will have low bits
1993    * xmm2 will have high bits
1994    *
1995    * xmm2 = xmm1
1996    * xmm1 = xmm1 .<< N
1997    * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1998    * xmm2 = xmm2 .<< N
1999    * xmm1 = xmm1 | xmm2
2000    */
2001 
2002   // Copy xmm1.
2003   NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
2004 
2005   // Shift lower values.
2006   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2007 
2008   // Mask bottom bits.
2009   AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
2010 
2011   // Shift higher values.
2012   NewLIR2(opcode, rs_tmp.GetReg(), imm);
2013 
2014   // Combine back into dest XMM register.
2015   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
2016 }
2017 
GenShiftLeftVector(BasicBlock * bb,MIR * mir)2018 void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
2019   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2020   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2021   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2022   int imm = mir->dalvikInsn.vB;
2023   int opcode = 0;
2024   switch (opsize) {
2025     case k32:
2026       opcode = kX86PslldRI;
2027       break;
2028     case k64:
2029       opcode = kX86PsllqRI;
2030       break;
2031     case kSignedHalf:
2032     case kUnsignedHalf:
2033       opcode = kX86PsllwRI;
2034       break;
2035     case kSignedByte:
2036     case kUnsignedByte:
2037       GenShiftByteVector(bb, mir);
2038       return;
2039     default:
2040       LOG(FATAL) << "Unsupported vector shift left " << opsize;
2041       break;
2042   }
2043   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2044 }
2045 
GenSignedShiftRightVector(BasicBlock * bb,MIR * mir)2046 void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2047   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2048   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2049   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2050   int imm = mir->dalvikInsn.vB;
2051   int opcode = 0;
2052   switch (opsize) {
2053     case k32:
2054       opcode = kX86PsradRI;
2055       break;
2056     case kSignedHalf:
2057     case kUnsignedHalf:
2058       opcode = kX86PsrawRI;
2059       break;
2060     case kSignedByte:
2061     case kUnsignedByte:
2062       GenShiftByteVector(bb, mir);
2063       return;
2064     default:
2065       LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
2066       break;
2067   }
2068   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2069 }
2070 
GenUnsignedShiftRightVector(BasicBlock * bb,MIR * mir)2071 void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2072   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2073   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2074   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2075   int imm = mir->dalvikInsn.vB;
2076   int opcode = 0;
2077   switch (opsize) {
2078     case k32:
2079       opcode = kX86PsrldRI;
2080       break;
2081     case k64:
2082       opcode = kX86PsrlqRI;
2083       break;
2084     case kSignedHalf:
2085     case kUnsignedHalf:
2086       opcode = kX86PsrlwRI;
2087       break;
2088     case kSignedByte:
2089     case kUnsignedByte:
2090       GenShiftByteVector(bb, mir);
2091       return;
2092     default:
2093       LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
2094       break;
2095   }
2096   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2097 }
2098 
GenAndVector(BasicBlock * bb,MIR * mir)2099 void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
2100   // We only support 128 bit registers.
2101   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2102   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2103   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2104   NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2105 }
2106 
GenOrVector(BasicBlock * bb,MIR * mir)2107 void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
2108   // We only support 128 bit registers.
2109   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2110   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2111   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2112   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2113 }
2114 
GenXorVector(BasicBlock * bb,MIR * mir)2115 void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
2116   // We only support 128 bit registers.
2117   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2118   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2119   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2120   NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2121 }
2122 
AndMaskVectorRegister(RegStorage rs_src1,uint32_t m1,uint32_t m2,uint32_t m3,uint32_t m4)2123 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
2124   MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
2125 }
2126 
MaskVectorRegister(X86OpCode opcode,RegStorage rs_src1,uint32_t m0,uint32_t m1,uint32_t m2,uint32_t m3)2127 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
2128   // Create temporary MIR as container for 128-bit binary mask.
2129   MIR const_mir;
2130   MIR* const_mirp = &const_mir;
2131   const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2132   const_mirp->dalvikInsn.arg[0] = m0;
2133   const_mirp->dalvikInsn.arg[1] = m1;
2134   const_mirp->dalvikInsn.arg[2] = m2;
2135   const_mirp->dalvikInsn.arg[3] = m3;
2136 
2137   // Mask vector with const from literal pool.
2138   AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2139 }
2140 
GenAddReduceVector(BasicBlock * bb,MIR * mir)2141 void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2142   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2143   RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2144   RegLocation rl_dest = mir_graph_->GetDest(mir);
2145   RegStorage rs_tmp;
2146 
2147   int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2148   int vec_unit_size = 0;
2149   int opcode = 0;
2150   int extr_opcode = 0;
2151   RegLocation rl_result;
2152 
2153   switch (opsize) {
2154     case k32:
2155       extr_opcode = kX86PextrdRRI;
2156       opcode = kX86PhadddRR;
2157       vec_unit_size = 4;
2158       break;
2159     case kSignedByte:
2160     case kUnsignedByte:
2161       extr_opcode = kX86PextrbRRI;
2162       opcode = kX86PhaddwRR;
2163       vec_unit_size = 2;
2164       break;
2165     case kSignedHalf:
2166     case kUnsignedHalf:
2167       extr_opcode = kX86PextrwRRI;
2168       opcode = kX86PhaddwRR;
2169       vec_unit_size = 2;
2170       break;
2171     case kSingle:
2172       rl_result = EvalLoc(rl_dest, kFPReg, true);
2173       vec_unit_size = 4;
2174       for (int i = 0; i < 3; i++) {
2175         NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2176         NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2177       }
2178       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2179       StoreValue(rl_dest, rl_result);
2180 
2181       // For single-precision floats, we are done here
2182       return;
2183     default:
2184       LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2185       break;
2186   }
2187 
2188   int elems = vec_bytes / vec_unit_size;
2189 
2190   // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2191   // TODO is overflow handled correctly?
2192   if (opsize == kSignedByte || opsize == kUnsignedByte) {
2193     rs_tmp = Get128BitRegister(AllocTempWide());
2194 
2195     // tmp = xmm1 .>> 8.
2196     NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2197     NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2198 
2199     // Zero extend low bits in xmm1.
2200     AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2201   }
2202 
2203   while (elems > 1) {
2204     if (opsize == kSignedByte || opsize == kUnsignedByte) {
2205       NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2206     }
2207     NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2208     elems >>= 1;
2209   }
2210 
2211   // Combine the results if we separated them.
2212   if (opsize == kSignedByte || opsize == kUnsignedByte) {
2213     NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2214   }
2215 
2216   // We need to extract to a GPR.
2217   RegStorage temp = AllocTemp();
2218   NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2219 
2220   // Can we do this directly into memory?
2221   rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2222   if (rl_result.location == kLocPhysReg) {
2223     // Ensure res is in a core reg
2224     rl_result = EvalLoc(rl_dest, kCoreReg, true);
2225     OpRegReg(kOpAdd, rl_result.reg, temp);
2226     StoreFinalValue(rl_dest, rl_result);
2227   } else {
2228     OpMemReg(kOpAdd, rl_result, temp.GetReg());
2229   }
2230 
2231   FreeTemp(temp);
2232 }
2233 
GenReduceVector(BasicBlock * bb,MIR * mir)2234 void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2235   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2236   RegLocation rl_dest = mir_graph_->GetDest(mir);
2237   RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2238   int extract_index = mir->dalvikInsn.arg[0];
2239   int extr_opcode = 0;
2240   RegLocation rl_result;
2241   bool is_wide = false;
2242 
2243   switch (opsize) {
2244     case k32:
2245       rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2246       extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2247       break;
2248     case kSignedHalf:
2249     case kUnsignedHalf:
2250       rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2251       extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2252       break;
2253     default:
2254       LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2255       return;
2256       break;
2257   }
2258 
2259   if (rl_result.location == kLocPhysReg) {
2260     NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2261     if (is_wide == true) {
2262       StoreFinalValue(rl_dest, rl_result);
2263     } else {
2264       StoreFinalValueWide(rl_dest, rl_result);
2265     }
2266   } else {
2267     int displacement = SRegOffset(rl_result.s_reg_low);
2268     LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2269     AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2270     AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2271   }
2272 }
2273 
GenSetVector(BasicBlock * bb,MIR * mir)2274 void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2275   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2276   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2277   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2278   int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2279   RegisterClass reg_type = kCoreReg;
2280 
2281   switch (opsize) {
2282     case k32:
2283       op_low = kX86PshufdRRI;
2284       break;
2285     case kSingle:
2286       op_low = kX86PshufdRRI;
2287       op_mov = kX86Mova128RR;
2288       reg_type = kFPReg;
2289       break;
2290     case k64:
2291       op_low = kX86PshufdRRI;
2292       imm = 0x44;
2293       break;
2294     case kDouble:
2295       op_low = kX86PshufdRRI;
2296       op_mov = kX86Mova128RR;
2297       reg_type = kFPReg;
2298       imm = 0x44;
2299       break;
2300     case kSignedByte:
2301     case kUnsignedByte:
2302       // Shuffle 8 bit value into 16 bit word.
2303       // We set val = val + (val << 8) below and use 16 bit shuffle.
2304     case kSignedHalf:
2305     case kUnsignedHalf:
2306       // Handles low quadword.
2307       op_low = kX86PshuflwRRI;
2308       // Handles upper quadword.
2309       op_high = kX86PshufdRRI;
2310       break;
2311     default:
2312       LOG(FATAL) << "Unsupported vector set " << opsize;
2313       break;
2314   }
2315 
2316   RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2317 
2318   // Load the value from the VR into the reg.
2319   if (rl_src.wide == 0) {
2320     rl_src = LoadValue(rl_src, reg_type);
2321   } else {
2322     rl_src = LoadValueWide(rl_src, reg_type);
2323   }
2324 
2325   // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2326   if (opsize == kSignedByte || opsize == kUnsignedByte) {
2327     RegStorage temp = AllocTemp();
2328     // val = val + (val << 8).
2329     NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2330     NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2331     NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2332     FreeTemp(temp);
2333   }
2334 
2335   // Load the value into the XMM register.
2336   NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2337 
2338   // Now shuffle the value across the destination.
2339   NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2340 
2341   // And then repeat as needed.
2342   if (op_high != 0) {
2343     NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2344   }
2345 }
2346 
ScanVectorLiteral(MIR * mir)2347 LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2348   int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2349   for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2350     if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2351         args[2] == p->operands[2] && args[3] == p->operands[3]) {
2352       return p;
2353     }
2354   }
2355   return nullptr;
2356 }
2357 
AddVectorLiteral(MIR * mir)2358 LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2359   LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2360   int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2361   new_value->operands[0] = args[0];
2362   new_value->operands[1] = args[1];
2363   new_value->operands[2] = args[2];
2364   new_value->operands[3] = args[3];
2365   new_value->next = const_vectors_;
2366   if (const_vectors_ == nullptr) {
2367     estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
2368   }
2369   estimated_native_code_size_ += 16;  // Space for one vector.
2370   const_vectors_ = new_value;
2371   return new_value;
2372 }
2373 
2374 // ------------ ABI support: mapping of args to physical registers -------------
GetNextReg(bool is_double_or_float,bool is_wide,bool is_ref)2375 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide,
2376                                                               bool is_ref) {
2377   const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2378   const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) /
2379       sizeof(SpecialTargetRegister);
2380   const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2381                                                              kFArg4, kFArg5, kFArg6, kFArg7};
2382   const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) /
2383       sizeof(SpecialTargetRegister);
2384 
2385   if (is_double_or_float) {
2386     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2387       return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide);
2388     }
2389   } else {
2390     if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2391       return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2392                             is_ref ? kRef : (is_wide ? kWide : kNotWide));
2393     }
2394   }
2395   return RegStorage::InvalidReg();
2396 }
2397 
Get(int in_position)2398 RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2399   DCHECK(IsInitialized());
2400   auto res = mapping_.find(in_position);
2401   return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2402 }
2403 
Initialize(RegLocation * arg_locs,int count,InToRegStorageMapper * mapper)2404 void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
2405                                                    InToRegStorageMapper* mapper) {
2406   DCHECK(mapper != nullptr);
2407   max_mapped_in_ = -1;
2408   is_there_stack_mapped_ = false;
2409   for (int in_position = 0; in_position < count; in_position++) {
2410      RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2411              arg_locs[in_position].wide, arg_locs[in_position].ref);
2412      if (reg.Valid()) {
2413        mapping_[in_position] = reg;
2414        max_mapped_in_ = std::max(max_mapped_in_, in_position);
2415        if (arg_locs[in_position].wide) {
2416          // We covered 2 args, so skip the next one
2417          in_position++;
2418        }
2419      } else {
2420        is_there_stack_mapped_ = true;
2421      }
2422   }
2423   initialized_ = true;
2424 }
2425 
GetArgMappingToPhysicalReg(int arg_num)2426 RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2427   if (!cu_->target64) {
2428     return GetCoreArgMappingToPhysicalReg(arg_num);
2429   }
2430 
2431   if (!in_to_reg_storage_mapping_.IsInitialized()) {
2432     int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2433     RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2434 
2435     InToRegStorageX86_64Mapper mapper(this);
2436     in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2437   }
2438   return in_to_reg_storage_mapping_.Get(arg_num);
2439 }
2440 
GetCoreArgMappingToPhysicalReg(int core_arg_num)2441 RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2442   // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2443   // Not used for 64-bit, TODO: Move X86_32 to the same framework
2444   switch (core_arg_num) {
2445     case 0:
2446       return rs_rX86_ARG1;
2447     case 1:
2448       return rs_rX86_ARG2;
2449     case 2:
2450       return rs_rX86_ARG3;
2451     default:
2452       return RegStorage::InvalidReg();
2453   }
2454 }
2455 
2456 // ---------End of ABI support: mapping of args to physical registers -------------
2457 
2458 /*
2459  * If there are any ins passed in registers that have not been promoted
2460  * to a callee-save register, flush them to the frame.  Perform initial
2461  * assignment of promoted arguments.
2462  *
2463  * ArgLocs is an array of location records describing the incoming arguments
2464  * with one location record per word of argument.
2465  */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)2466 void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2467   if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2468   /*
2469    * Dummy up a RegLocation for the incoming Method*
2470    * It will attempt to keep kArg0 live (or copy it to home location
2471    * if promoted).
2472    */
2473 
2474   RegLocation rl_src = rl_method;
2475   rl_src.location = kLocPhysReg;
2476   rl_src.reg = TargetReg(kArg0, kRef);
2477   rl_src.home = false;
2478   MarkLive(rl_src);
2479   StoreValue(rl_method, rl_src);
2480   // If Method* has been promoted, explicitly flush
2481   if (rl_method.location == kLocPhysReg) {
2482     StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile);
2483   }
2484 
2485   if (cu_->num_ins == 0) {
2486     return;
2487   }
2488 
2489   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2490   /*
2491    * Copy incoming arguments to their proper home locations.
2492    * NOTE: an older version of dx had an issue in which
2493    * it would reuse static method argument registers.
2494    * This could result in the same Dalvik virtual register
2495    * being promoted to both core and fp regs. To account for this,
2496    * we only copy to the corresponding promoted physical register
2497    * if it matches the type of the SSA name for the incoming
2498    * argument.  It is also possible that long and double arguments
2499    * end up half-promoted.  In those cases, we must flush the promoted
2500    * half to memory as well.
2501    */
2502   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2503   for (int i = 0; i < cu_->num_ins; i++) {
2504     // get reg corresponding to input
2505     RegStorage reg = GetArgMappingToPhysicalReg(i);
2506 
2507     RegLocation* t_loc = &ArgLocs[i];
2508     if (reg.Valid()) {
2509       // If arriving in register.
2510 
2511       // We have already updated the arg location with promoted info
2512       // so we can be based on it.
2513       if (t_loc->location == kLocPhysReg) {
2514         // Just copy it.
2515         OpRegCopy(t_loc->reg, reg);
2516       } else {
2517         // Needs flush.
2518         if (t_loc->ref) {
2519           StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2520         } else {
2521           StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2522                         kNotVolatile);
2523         }
2524       }
2525     } else {
2526       // If arriving in frame & promoted.
2527       if (t_loc->location == kLocPhysReg) {
2528         if (t_loc->ref) {
2529           LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2530         } else {
2531           LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2532                        t_loc->wide ? k64 : k32, kNotVolatile);
2533         }
2534       }
2535     }
2536     if (t_loc->wide) {
2537       // Increment i to skip the next one.
2538       i++;
2539     }
2540   }
2541 }
2542 
2543 /*
2544  * Load up to 5 arguments, the first three of which will be in
2545  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2546  * and as part of the load sequence, it must be replaced with
2547  * the target method pointer.  Note, this may also be called
2548  * for "range" variants if the number of arguments is 5 or fewer.
2549  */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2550 int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2551                                   int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2552                                   const MethodReference& target_method,
2553                                   uint32_t vtable_idx, uintptr_t direct_code,
2554                                   uintptr_t direct_method, InvokeType type, bool skip_this) {
2555   if (!cu_->target64) {
2556     return Mir2Lir::GenDalvikArgsNoRange(info,
2557                                   call_state, pcrLabel, next_call_insn,
2558                                   target_method,
2559                                   vtable_idx, direct_code,
2560                                   direct_method, type, skip_this);
2561   }
2562   return GenDalvikArgsRange(info,
2563                        call_state, pcrLabel, next_call_insn,
2564                        target_method,
2565                        vtable_idx, direct_code,
2566                        direct_method, type, skip_this);
2567 }
2568 
2569 /*
2570  * May have 0+ arguments (also used for jumbo).  Note that
2571  * source virtual registers may be in physical registers, so may
2572  * need to be flushed to home location before copying.  This
2573  * applies to arg3 and above (see below).
2574  *
2575  * Two general strategies:
2576  *    If < 20 arguments
2577  *       Pass args 3-18 using vldm/vstm block copy
2578  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2579  *    If 20+ arguments
2580  *       Pass args arg19+ using memcpy block copy
2581  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2582  *
2583  */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2584 int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2585                                 LIR** pcrLabel, NextCallInsn next_call_insn,
2586                                 const MethodReference& target_method,
2587                                 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2588                                 InvokeType type, bool skip_this) {
2589   if (!cu_->target64) {
2590     return Mir2Lir::GenDalvikArgsRange(info, call_state,
2591                                 pcrLabel, next_call_insn,
2592                                 target_method,
2593                                 vtable_idx, direct_code, direct_method,
2594                                 type, skip_this);
2595   }
2596 
2597   /* If no arguments, just return */
2598   if (info->num_arg_words == 0)
2599     return call_state;
2600 
2601   const int start_index = skip_this ? 1 : 0;
2602 
2603   InToRegStorageX86_64Mapper mapper(this);
2604   InToRegStorageMapping in_to_reg_storage_mapping;
2605   in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2606   const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2607   const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2608           info->args[last_mapped_in].wide ? 2 : 1;
2609   int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2610 
2611   // Fisrt of all, check whether it make sense to use bulk copying
2612   // Optimization is aplicable only for range case
2613   // TODO: make a constant instead of 2
2614   if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2615     // Scan the rest of the args - if in phys_reg flush to memory
2616     for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2617       RegLocation loc = info->args[next_arg];
2618       if (loc.wide) {
2619         loc = UpdateLocWide(loc);
2620         if (loc.location == kLocPhysReg) {
2621           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2622           StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2623         }
2624         next_arg += 2;
2625       } else {
2626         loc = UpdateLoc(loc);
2627         if (loc.location == kLocPhysReg) {
2628           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2629           StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2630         }
2631         next_arg++;
2632       }
2633     }
2634 
2635     // Logic below assumes that Method pointer is at offset zero from SP.
2636     DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2637 
2638     // The rest can be copied together
2639     int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2640     int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped,
2641                                                    cu_->instruction_set);
2642 
2643     int current_src_offset = start_offset;
2644     int current_dest_offset = outs_offset;
2645 
2646     // Only davik regs are accessed in this loop; no next_call_insn() calls.
2647     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2648     while (regs_left_to_pass_via_stack > 0) {
2649       // This is based on the knowledge that the stack itself is 16-byte aligned.
2650       bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2651       bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2652       size_t bytes_to_move;
2653 
2654       /*
2655        * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2656        * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2657        * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2658        * We do this because we could potentially do a smaller move to align.
2659        */
2660       if (regs_left_to_pass_via_stack == 4 ||
2661           (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2662         // Moving 128-bits via xmm register.
2663         bytes_to_move = sizeof(uint32_t) * 4;
2664 
2665         // Allocate a free xmm temp. Since we are working through the calling sequence,
2666         // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2667         // there are no free registers.
2668         RegStorage temp = AllocTempDouble();
2669 
2670         LIR* ld1 = nullptr;
2671         LIR* ld2 = nullptr;
2672         LIR* st1 = nullptr;
2673         LIR* st2 = nullptr;
2674 
2675         /*
2676          * The logic is similar for both loads and stores. If we have 16-byte alignment,
2677          * do an aligned move. If we have 8-byte alignment, then do the move in two
2678          * parts. This approach prevents possible cache line splits. Finally, fall back
2679          * to doing an unaligned move. In most cases we likely won't split the cache
2680          * line but we cannot prove it and thus take a conservative approach.
2681          */
2682         bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2683         bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2684 
2685         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2686         if (src_is_16b_aligned) {
2687           ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2688         } else if (src_is_8b_aligned) {
2689           ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2690           ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2691                             kMovHi128FP);
2692         } else {
2693           ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2694         }
2695 
2696         if (dest_is_16b_aligned) {
2697           st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2698         } else if (dest_is_8b_aligned) {
2699           st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2700           st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2701                             temp, kMovHi128FP);
2702         } else {
2703           st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2704         }
2705 
2706         // TODO If we could keep track of aliasing information for memory accesses that are wider
2707         // than 64-bit, we wouldn't need to set up a barrier.
2708         if (ld1 != nullptr) {
2709           if (ld2 != nullptr) {
2710             // For 64-bit load we can actually set up the aliasing information.
2711             AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2712             AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2713           } else {
2714             // Set barrier for 128-bit load.
2715             ld1->u.m.def_mask = &kEncodeAll;
2716           }
2717         }
2718         if (st1 != nullptr) {
2719           if (st2 != nullptr) {
2720             // For 64-bit store we can actually set up the aliasing information.
2721             AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2722             AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2723           } else {
2724             // Set barrier for 128-bit store.
2725             st1->u.m.def_mask = &kEncodeAll;
2726           }
2727         }
2728 
2729         // Free the temporary used for the data movement.
2730         FreeTemp(temp);
2731       } else {
2732         // Moving 32-bits via general purpose register.
2733         bytes_to_move = sizeof(uint32_t);
2734 
2735         // Instead of allocating a new temp, simply reuse one of the registers being used
2736         // for argument passing.
2737         RegStorage temp = TargetReg(kArg3, kNotWide);
2738 
2739         // Now load the argument VR and store to the outs.
2740         Load32Disp(rs_rX86_SP, current_src_offset, temp);
2741         Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2742       }
2743 
2744       current_src_offset += bytes_to_move;
2745       current_dest_offset += bytes_to_move;
2746       regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2747     }
2748     DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2749   }
2750 
2751   // Now handle rest not registers if they are
2752   if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2753     RegStorage regSingle = TargetReg(kArg2, kNotWide);
2754     RegStorage regWide = TargetReg(kArg3, kWide);
2755     for (int i = start_index;
2756          i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2757       RegLocation rl_arg = info->args[i];
2758       rl_arg = UpdateRawLoc(rl_arg);
2759       RegStorage reg = in_to_reg_storage_mapping.Get(i);
2760       if (!reg.Valid()) {
2761         int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2762 
2763         {
2764           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2765           if (rl_arg.wide) {
2766             if (rl_arg.location == kLocPhysReg) {
2767               StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2768             } else {
2769               LoadValueDirectWideFixed(rl_arg, regWide);
2770               StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2771             }
2772           } else {
2773             if (rl_arg.location == kLocPhysReg) {
2774               StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2775             } else {
2776               LoadValueDirectFixed(rl_arg, regSingle);
2777               StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2778             }
2779           }
2780         }
2781         call_state = next_call_insn(cu_, info, call_state, target_method,
2782                                     vtable_idx, direct_code, direct_method, type);
2783       }
2784       if (rl_arg.wide) {
2785         i++;
2786       }
2787     }
2788   }
2789 
2790   // Finish with mapped registers
2791   for (int i = start_index; i <= last_mapped_in; i++) {
2792     RegLocation rl_arg = info->args[i];
2793     rl_arg = UpdateRawLoc(rl_arg);
2794     RegStorage reg = in_to_reg_storage_mapping.Get(i);
2795     if (reg.Valid()) {
2796       if (rl_arg.wide) {
2797         LoadValueDirectWideFixed(rl_arg, reg);
2798       } else {
2799         LoadValueDirectFixed(rl_arg, reg);
2800       }
2801       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2802                                direct_code, direct_method, type);
2803     }
2804     if (rl_arg.wide) {
2805       i++;
2806     }
2807   }
2808 
2809   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2810                            direct_code, direct_method, type);
2811   if (pcrLabel) {
2812     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
2813       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
2814     } else {
2815       *pcrLabel = nullptr;
2816       // In lieu of generating a check for kArg1 being null, we need to
2817       // perform a load when doing implicit checks.
2818       RegStorage tmp = AllocTemp();
2819       Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
2820       MarkPossibleNullPointerException(info->opt_flags);
2821       FreeTemp(tmp);
2822     }
2823   }
2824   return call_state;
2825 }
2826 
GenInlinedCharAt(CallInfo * info)2827 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
2828   // Location of reference to data array
2829   int value_offset = mirror::String::ValueOffset().Int32Value();
2830   // Location of count
2831   int count_offset = mirror::String::CountOffset().Int32Value();
2832   // Starting offset within data array
2833   int offset_offset = mirror::String::OffsetOffset().Int32Value();
2834   // Start of char data with array_
2835   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
2836 
2837   RegLocation rl_obj = info->args[0];
2838   RegLocation rl_idx = info->args[1];
2839   rl_obj = LoadValue(rl_obj, kRefReg);
2840   // X86 wants to avoid putting a constant index into a register.
2841   if (!rl_idx.is_const) {
2842     rl_idx = LoadValue(rl_idx, kCoreReg);
2843   }
2844   RegStorage reg_max;
2845   GenNullCheck(rl_obj.reg, info->opt_flags);
2846   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
2847   LIR* range_check_branch = nullptr;
2848   RegStorage reg_off;
2849   RegStorage reg_ptr;
2850   if (range_check) {
2851     // On x86, we can compare to memory directly
2852     // Set up a launch pad to allow retry in case of bounds violation */
2853     if (rl_idx.is_const) {
2854       LIR* comparison;
2855       range_check_branch = OpCmpMemImmBranch(
2856           kCondUlt, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
2857           mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
2858       MarkPossibleNullPointerExceptionAfter(0, comparison);
2859     } else {
2860       OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
2861       MarkPossibleNullPointerException(0);
2862       range_check_branch = OpCondBranch(kCondUge, nullptr);
2863     }
2864   }
2865   reg_off = AllocTemp();
2866   reg_ptr = AllocTempRef();
2867   Load32Disp(rl_obj.reg, offset_offset, reg_off);
2868   LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
2869   if (rl_idx.is_const) {
2870     OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
2871   } else {
2872     OpRegReg(kOpAdd, reg_off, rl_idx.reg);
2873   }
2874   FreeTemp(rl_obj.reg);
2875   if (rl_idx.location == kLocPhysReg) {
2876     FreeTemp(rl_idx.reg);
2877   }
2878   RegLocation rl_dest = InlineTarget(info);
2879   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2880   LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf);
2881   FreeTemp(reg_off);
2882   FreeTemp(reg_ptr);
2883   StoreValue(rl_dest, rl_result);
2884   if (range_check) {
2885     DCHECK(range_check_branch != nullptr);
2886     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
2887     AddIntrinsicSlowPath(info, range_check_branch);
2888   }
2889   return true;
2890 }
2891 
GenInlinedCurrentThread(CallInfo * info)2892 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
2893   RegLocation rl_dest = InlineTarget(info);
2894 
2895   // Early exit if the result is unused.
2896   if (rl_dest.orig_sreg < 0) {
2897     return true;
2898   }
2899 
2900   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
2901 
2902   if (cu_->target64) {
2903     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
2904   } else {
2905     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
2906   }
2907 
2908   StoreValue(rl_dest, rl_result);
2909   return true;
2910 }
2911 
2912 }  // namespace art
2913