1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaInternal.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65 VarDecl *VarToCapture) {
66 // Label failure to capture.
67 const Optional<unsigned> NoLambdaIsCaptureReady;
68
69 assert(
70 isa<clang::sema::LambdaScopeInfo>(
71 FunctionScopes[FunctionScopes.size() - 1]) &&
72 "The function on the top of sema's function-info stack must be a lambda");
73
74 // If VarToCapture is null, we are attempting to capture 'this'.
75 const bool IsCapturingThis = !VarToCapture;
76 const bool IsCapturingVariable = !IsCapturingThis;
77
78 // Start with the current lambda at the top of the stack (highest index).
79 unsigned CurScopeIndex = FunctionScopes.size() - 1;
80 DeclContext *EnclosingDC =
81 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82
83 do {
84 const clang::sema::LambdaScopeInfo *LSI =
85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86 // IF we have climbed down to an intervening enclosing lambda that contains
87 // the variable declaration - it obviously can/must not capture the
88 // variable.
89 // Since its enclosing DC is dependent, all the lambdas between it and the
90 // innermost nested lambda are dependent (otherwise we wouldn't have
91 // arrived here) - so we don't yet have a lambda that can capture the
92 // variable.
93 if (IsCapturingVariable &&
94 VarToCapture->getDeclContext()->Equals(EnclosingDC))
95 return NoLambdaIsCaptureReady;
96
97 // For an enclosing lambda to be capture ready for an entity, all
98 // intervening lambda's have to be able to capture that entity. If even
99 // one of the intervening lambda's is not capable of capturing the entity
100 // then no enclosing lambda can ever capture that entity.
101 // For e.g.
102 // const int x = 10;
103 // [=](auto a) { #1
104 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
105 // [=](auto c) { #3
106 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
107 // }; }; };
108 // If they do not have a default implicit capture, check to see
109 // if the entity has already been explicitly captured.
110 // If even a single dependent enclosing lambda lacks the capability
111 // to ever capture this variable, there is no further enclosing
112 // non-dependent lambda that can capture this variable.
113 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
114 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115 return NoLambdaIsCaptureReady;
116 if (IsCapturingThis && !LSI->isCXXThisCaptured())
117 return NoLambdaIsCaptureReady;
118 }
119 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120
121 assert(CurScopeIndex);
122 --CurScopeIndex;
123 } while (!EnclosingDC->isTranslationUnit() &&
124 EnclosingDC->isDependentContext() &&
125 isLambdaCallOperator(EnclosingDC));
126
127 assert(CurScopeIndex < (FunctionScopes.size() - 1));
128 // If the enclosingDC is not dependent, then the immediately nested lambda
129 // (one index above) is capture-ready.
130 if (!EnclosingDC->isDependentContext())
131 return CurScopeIndex + 1;
132 return NoLambdaIsCaptureReady;
133 }
134
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 /// - climb down the stack (i.e. starting from the innermost and examining
147 /// each outer lambda step by step) checking if each enclosing
148 /// lambda can either implicitly or explicitly capture the variable.
149 /// Record the first such lambda that is enclosed in a non-dependent
150 /// context. If no such lambda currently exists return failure.
151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 /// capture the variable by checking all its enclosing lambdas:
153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
154 /// identified above in 'a' can also capture the variable (this is done
155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
156 /// 'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable. If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
171 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
172 VarDecl *VarToCapture, Sema &S) {
173
174 const Optional<unsigned> NoLambdaIsCaptureCapable;
175
176 const Optional<unsigned> OptionalStackIndex =
177 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
178 VarToCapture);
179 if (!OptionalStackIndex)
180 return NoLambdaIsCaptureCapable;
181
182 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184 S.getCurGenericLambda()) &&
185 "The capture ready lambda for a potential capture can only be the "
186 "current lambda if it is a generic lambda");
187
188 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190
191 // If VarToCapture is null, we are attempting to capture 'this'
192 const bool IsCapturingThis = !VarToCapture;
193 const bool IsCapturingVariable = !IsCapturingThis;
194
195 if (IsCapturingVariable) {
196 // Check if the capture-ready lambda can truly capture the variable, by
197 // checking whether all enclosing lambdas of the capture-ready lambda allow
198 // the capture - i.e. make sure it is capture-capable.
199 QualType CaptureType, DeclRefType;
200 const bool CanCaptureVariable =
201 !S.tryCaptureVariable(VarToCapture,
202 /*ExprVarIsUsedInLoc*/ SourceLocation(),
203 clang::Sema::TryCapture_Implicit,
204 /*EllipsisLoc*/ SourceLocation(),
205 /*BuildAndDiagnose*/ false, CaptureType,
206 DeclRefType, &IndexOfCaptureReadyLambda);
207 if (!CanCaptureVariable)
208 return NoLambdaIsCaptureCapable;
209 } else {
210 // Check if the capture-ready lambda can truly capture 'this' by checking
211 // whether all enclosing lambdas of the capture-ready lambda can capture
212 // 'this'.
213 const bool CanCaptureThis =
214 !S.CheckCXXThisCapture(
215 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217 &IndexOfCaptureReadyLambda);
218 if (!CanCaptureThis)
219 return NoLambdaIsCaptureCapable;
220 }
221 return IndexOfCaptureReadyLambda;
222 }
223
224 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
226 if (LSI->GLTemplateParameterList)
227 return LSI->GLTemplateParameterList;
228
229 if (LSI->AutoTemplateParams.size()) {
230 SourceRange IntroRange = LSI->IntroducerRange;
231 SourceLocation LAngleLoc = IntroRange.getBegin();
232 SourceLocation RAngleLoc = IntroRange.getEnd();
233 LSI->GLTemplateParameterList = TemplateParameterList::Create(
234 SemaRef.Context,
235 /*Template kw loc*/ SourceLocation(), LAngleLoc,
236 (NamedDecl **)LSI->AutoTemplateParams.data(),
237 LSI->AutoTemplateParams.size(), RAngleLoc);
238 }
239 return LSI->GLTemplateParameterList;
240 }
241
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
243 TypeSourceInfo *Info,
244 bool KnownDependent,
245 LambdaCaptureDefault CaptureDefault) {
246 DeclContext *DC = CurContext;
247 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
248 DC = DC->getParent();
249 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
250 *this);
251 // Start constructing the lambda class.
252 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
253 IntroducerRange.getBegin(),
254 KnownDependent,
255 IsGenericLambda,
256 CaptureDefault);
257 DC->addDecl(Class);
258
259 return Class;
260 }
261
262 /// \brief Determine whether the given context is or is enclosed in an inline
263 /// function.
isInInlineFunction(const DeclContext * DC)264 static bool isInInlineFunction(const DeclContext *DC) {
265 while (!DC->isFileContext()) {
266 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267 if (FD->isInlined())
268 return true;
269
270 DC = DC->getLexicalParent();
271 }
272
273 return false;
274 }
275
276 MangleNumberingContext *
getCurrentMangleNumberContext(const DeclContext * DC,Decl * & ManglingContextDecl)277 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
278 Decl *&ManglingContextDecl) {
279 // Compute the context for allocating mangling numbers in the current
280 // expression, if the ABI requires them.
281 ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282
283 enum ContextKind {
284 Normal,
285 DefaultArgument,
286 DataMember,
287 StaticDataMember
288 } Kind = Normal;
289
290 // Default arguments of member function parameters that appear in a class
291 // definition, as well as the initializers of data members, receive special
292 // treatment. Identify them.
293 if (ManglingContextDecl) {
294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295 if (const DeclContext *LexicalDC
296 = Param->getDeclContext()->getLexicalParent())
297 if (LexicalDC->isRecord())
298 Kind = DefaultArgument;
299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300 if (Var->getDeclContext()->isRecord())
301 Kind = StaticDataMember;
302 } else if (isa<FieldDecl>(ManglingContextDecl)) {
303 Kind = DataMember;
304 }
305 }
306
307 // Itanium ABI [5.1.7]:
308 // In the following contexts [...] the one-definition rule requires closure
309 // types in different translation units to "correspond":
310 bool IsInNonspecializedTemplate =
311 !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
312 switch (Kind) {
313 case Normal:
314 // -- the bodies of non-exported nonspecialized template functions
315 // -- the bodies of inline functions
316 if ((IsInNonspecializedTemplate &&
317 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
318 isInInlineFunction(CurContext)) {
319 ManglingContextDecl = nullptr;
320 return &Context.getManglingNumberContext(DC);
321 }
322
323 ManglingContextDecl = nullptr;
324 return nullptr;
325
326 case StaticDataMember:
327 // -- the initializers of nonspecialized static members of template classes
328 if (!IsInNonspecializedTemplate) {
329 ManglingContextDecl = nullptr;
330 return nullptr;
331 }
332 // Fall through to get the current context.
333
334 case DataMember:
335 // -- the in-class initializers of class members
336 case DefaultArgument:
337 // -- default arguments appearing in class definitions
338 return &ExprEvalContexts.back().getMangleNumberingContext(Context);
339 }
340
341 llvm_unreachable("unexpected context");
342 }
343
344 MangleNumberingContext &
getMangleNumberingContext(ASTContext & Ctx)345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
346 ASTContext &Ctx) {
347 assert(ManglingContextDecl && "Need to have a context declaration");
348 if (!MangleNumbering)
349 MangleNumbering = Ctx.createMangleNumberingContext();
350 return *MangleNumbering;
351 }
352
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params)353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
354 SourceRange IntroducerRange,
355 TypeSourceInfo *MethodTypeInfo,
356 SourceLocation EndLoc,
357 ArrayRef<ParmVarDecl *> Params) {
358 QualType MethodType = MethodTypeInfo->getType();
359 TemplateParameterList *TemplateParams =
360 getGenericLambdaTemplateParameterList(getCurLambda(), *this);
361 // If a lambda appears in a dependent context or is a generic lambda (has
362 // template parameters) and has an 'auto' return type, deduce it to a
363 // dependent type.
364 if (Class->isDependentContext() || TemplateParams) {
365 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
366 QualType Result = FPT->getReturnType();
367 if (Result->isUndeducedType()) {
368 Result = SubstAutoType(Result, Context.DependentTy);
369 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
370 FPT->getExtProtoInfo());
371 }
372 }
373
374 // C++11 [expr.prim.lambda]p5:
375 // The closure type for a lambda-expression has a public inline function
376 // call operator (13.5.4) whose parameters and return type are described by
377 // the lambda-expression's parameter-declaration-clause and
378 // trailing-return-type respectively.
379 DeclarationName MethodName
380 = Context.DeclarationNames.getCXXOperatorName(OO_Call);
381 DeclarationNameLoc MethodNameLoc;
382 MethodNameLoc.CXXOperatorName.BeginOpNameLoc
383 = IntroducerRange.getBegin().getRawEncoding();
384 MethodNameLoc.CXXOperatorName.EndOpNameLoc
385 = IntroducerRange.getEnd().getRawEncoding();
386 CXXMethodDecl *Method
387 = CXXMethodDecl::Create(Context, Class, EndLoc,
388 DeclarationNameInfo(MethodName,
389 IntroducerRange.getBegin(),
390 MethodNameLoc),
391 MethodType, MethodTypeInfo,
392 SC_None,
393 /*isInline=*/true,
394 /*isConstExpr=*/false,
395 EndLoc);
396 Method->setAccess(AS_public);
397
398 // Temporarily set the lexical declaration context to the current
399 // context, so that the Scope stack matches the lexical nesting.
400 Method->setLexicalDeclContext(CurContext);
401 // Create a function template if we have a template parameter list
402 FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
403 FunctionTemplateDecl::Create(Context, Class,
404 Method->getLocation(), MethodName,
405 TemplateParams,
406 Method) : nullptr;
407 if (TemplateMethod) {
408 TemplateMethod->setLexicalDeclContext(CurContext);
409 TemplateMethod->setAccess(AS_public);
410 Method->setDescribedFunctionTemplate(TemplateMethod);
411 }
412
413 // Add parameters.
414 if (!Params.empty()) {
415 Method->setParams(Params);
416 CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
417 const_cast<ParmVarDecl **>(Params.end()),
418 /*CheckParameterNames=*/false);
419
420 for (auto P : Method->params())
421 P->setOwningFunction(Method);
422 }
423
424 Decl *ManglingContextDecl;
425 if (MangleNumberingContext *MCtx =
426 getCurrentMangleNumberContext(Class->getDeclContext(),
427 ManglingContextDecl)) {
428 unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430 }
431
432 return Method;
433 }
434
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
436 CXXMethodDecl *CallOperator,
437 SourceRange IntroducerRange,
438 LambdaCaptureDefault CaptureDefault,
439 SourceLocation CaptureDefaultLoc,
440 bool ExplicitParams,
441 bool ExplicitResultType,
442 bool Mutable) {
443 LSI->CallOperator = CallOperator;
444 CXXRecordDecl *LambdaClass = CallOperator->getParent();
445 LSI->Lambda = LambdaClass;
446 if (CaptureDefault == LCD_ByCopy)
447 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
448 else if (CaptureDefault == LCD_ByRef)
449 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
450 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451 LSI->IntroducerRange = IntroducerRange;
452 LSI->ExplicitParams = ExplicitParams;
453 LSI->Mutable = Mutable;
454
455 if (ExplicitResultType) {
456 LSI->ReturnType = CallOperator->getReturnType();
457
458 if (!LSI->ReturnType->isDependentType() &&
459 !LSI->ReturnType->isVoidType()) {
460 if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461 diag::err_lambda_incomplete_result)) {
462 // Do nothing.
463 }
464 }
465 } else {
466 LSI->HasImplicitReturnType = true;
467 }
468 }
469
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
471 LSI->finishedExplicitCaptures();
472 }
473
addLambdaParameters(CXXMethodDecl * CallOperator,Scope * CurScope)474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475 // Introduce our parameters into the function scope
476 for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477 p < NumParams; ++p) {
478 ParmVarDecl *Param = CallOperator->getParamDecl(p);
479
480 // If this has an identifier, add it to the scope stack.
481 if (CurScope && Param->getIdentifier()) {
482 CheckShadow(CurScope, Param);
483
484 PushOnScopeChains(Param, CurScope);
485 }
486 }
487 }
488
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
491 ///
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
497 // An expression is an enumerator-like expression of type T if,
498 // ignoring parens and parens-like expressions:
499 E = E->IgnoreParens();
500
501 // - it is an enumerator whose enum type is T or
502 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503 if (EnumConstantDecl *D
504 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505 return cast<EnumDecl>(D->getDeclContext());
506 }
507 return nullptr;
508 }
509
510 // - it is a comma expression whose RHS is an enumerator-like
511 // expression of type T or
512 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513 if (BO->getOpcode() == BO_Comma)
514 return findEnumForBlockReturn(BO->getRHS());
515 return nullptr;
516 }
517
518 // - it is a statement-expression whose value expression is an
519 // enumerator-like expression of type T or
520 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522 return findEnumForBlockReturn(last);
523 return nullptr;
524 }
525
526 // - it is a ternary conditional operator (not the GNU ?:
527 // extension) whose second and third operands are
528 // enumerator-like expressions of type T or
529 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532 return ED;
533 return nullptr;
534 }
535
536 // (implicitly:)
537 // - it is an implicit integral conversion applied to an
538 // enumerator-like expression of type T or
539 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540 // We can sometimes see integral conversions in valid
541 // enumerator-like expressions.
542 if (ICE->getCastKind() == CK_IntegralCast)
543 return findEnumForBlockReturn(ICE->getSubExpr());
544
545 // Otherwise, just rely on the type.
546 }
547
548 // - it is an expression of that formal enum type.
549 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550 return ET->getDecl();
551 }
552
553 // Otherwise, nope.
554 return nullptr;
555 }
556
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
560 if (Expr *retValue = ret->getRetValue())
561 return findEnumForBlockReturn(retValue);
562 return nullptr;
563 }
564
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
569 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570
571 // Try to find one for the first return.
572 EnumDecl *ED = findEnumForBlockReturn(*i);
573 if (!ED) return nullptr;
574
575 // Check that the rest of the returns have the same enum.
576 for (++i; i != e; ++i) {
577 if (findEnumForBlockReturn(*i) != ED)
578 return nullptr;
579 }
580
581 // Never infer an anonymous enum type.
582 if (!ED->hasNameForLinkage()) return nullptr;
583
584 return ED;
585 }
586
587 /// Adjust the given return statements so that they formally return
588 /// the given type. It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
590 QualType returnType) {
591 for (ArrayRef<ReturnStmt*>::iterator
592 i = returns.begin(), e = returns.end(); i != e; ++i) {
593 ReturnStmt *ret = *i;
594 Expr *retValue = ret->getRetValue();
595 if (S.Context.hasSameType(retValue->getType(), returnType))
596 continue;
597
598 // Right now we only support integral fixup casts.
599 assert(returnType->isIntegralOrUnscopedEnumerationType());
600 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601
602 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603
604 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
606 E, /*base path*/ nullptr, VK_RValue);
607 if (cleanups) {
608 cleanups->setSubExpr(E);
609 } else {
610 ret->setRetValue(E);
611 }
612 }
613 }
614
deduceClosureReturnType(CapturingScopeInfo & CSI)615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
616 assert(CSI.HasImplicitReturnType);
617 // If it was ever a placeholder, it had to been deduced to DependentTy.
618 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619
620 // C++ Core Issue #975, proposed resolution:
621 // If a lambda-expression does not include a trailing-return-type,
622 // it is as if the trailing-return-type denotes the following type:
623 // - if there are no return statements in the compound-statement,
624 // or all return statements return either an expression of type
625 // void or no expression or braced-init-list, the type void;
626 // - otherwise, if all return statements return an expression
627 // and the types of the returned expressions after
628 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
629 // array-to-pointer conversion (4.2 [conv.array]), and
630 // function-to-pointer conversion (4.3 [conv.func]) are the
631 // same, that common type;
632 // - otherwise, the program is ill-formed.
633 //
634 // In addition, in blocks in non-C++ modes, if all of the return
635 // statements are enumerator-like expressions of some type T, where
636 // T has a name for linkage, then we infer the return type of the
637 // block to be that type.
638
639 // First case: no return statements, implicit void return type.
640 ASTContext &Ctx = getASTContext();
641 if (CSI.Returns.empty()) {
642 // It's possible there were simply no /valid/ return statements.
643 // In this case, the first one we found may have at least given us a type.
644 if (CSI.ReturnType.isNull())
645 CSI.ReturnType = Ctx.VoidTy;
646 return;
647 }
648
649 // Second case: at least one return statement has dependent type.
650 // Delay type checking until instantiation.
651 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
652 if (CSI.ReturnType->isDependentType())
653 return;
654
655 // Try to apply the enum-fuzz rule.
656 if (!getLangOpts().CPlusPlus) {
657 assert(isa<BlockScopeInfo>(CSI));
658 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
659 if (ED) {
660 CSI.ReturnType = Context.getTypeDeclType(ED);
661 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
662 return;
663 }
664 }
665
666 // Third case: only one return statement. Don't bother doing extra work!
667 SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
668 E = CSI.Returns.end();
669 if (I+1 == E)
670 return;
671
672 // General case: many return statements.
673 // Check that they all have compatible return types.
674
675 // We require the return types to strictly match here.
676 // Note that we've already done the required promotions as part of
677 // processing the return statement.
678 for (; I != E; ++I) {
679 const ReturnStmt *RS = *I;
680 const Expr *RetE = RS->getRetValue();
681
682 QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy);
683 if (Context.hasSameType(ReturnType, CSI.ReturnType))
684 continue;
685
686 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
687 // TODO: It's possible that the *first* return is the divergent one.
688 Diag(RS->getLocStart(),
689 diag::err_typecheck_missing_return_type_incompatible)
690 << ReturnType << CSI.ReturnType
691 << isa<LambdaScopeInfo>(CSI);
692 // Continue iterating so that we keep emitting diagnostics.
693 }
694 }
695
performLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,IdentifierInfo * Id,Expr * & Init)696 QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
697 bool ByRef,
698 IdentifierInfo *Id,
699 Expr *&Init) {
700
701 // We do not need to distinguish between direct-list-initialization
702 // and copy-list-initialization here, because we will always deduce
703 // std::initializer_list<T>, and direct- and copy-list-initialization
704 // always behave the same for such a type.
705 // FIXME: We should model whether an '=' was present.
706 const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
707
708 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
709 // deduce against.
710 QualType DeductType = Context.getAutoDeductType();
711 TypeLocBuilder TLB;
712 TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
713 if (ByRef) {
714 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
715 assert(!DeductType.isNull() && "can't build reference to auto");
716 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
717 }
718 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
719
720 // Are we a non-list direct initialization?
721 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
722
723 Expr *DeduceInit = Init;
724 // Initializer could be a C++ direct-initializer. Deduction only works if it
725 // contains exactly one expression.
726 if (CXXDirectInit) {
727 if (CXXDirectInit->getNumExprs() == 0) {
728 Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
729 << DeclarationName(Id) << TSI->getType() << Loc;
730 return QualType();
731 } else if (CXXDirectInit->getNumExprs() > 1) {
732 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
733 diag::err_init_capture_multiple_expressions)
734 << DeclarationName(Id) << TSI->getType() << Loc;
735 return QualType();
736 } else {
737 DeduceInit = CXXDirectInit->getExpr(0);
738 if (isa<InitListExpr>(DeduceInit))
739 Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
740 << DeclarationName(Id) << Loc;
741 }
742 }
743
744 // Now deduce against the initialization expression and store the deduced
745 // type below.
746 QualType DeducedType;
747 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
748 if (isa<InitListExpr>(Init))
749 Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
750 << DeclarationName(Id)
751 << (DeduceInit->getType().isNull() ? TSI->getType()
752 : DeduceInit->getType())
753 << DeduceInit->getSourceRange();
754 else
755 Diag(Loc, diag::err_init_capture_deduction_failure)
756 << DeclarationName(Id) << TSI->getType()
757 << (DeduceInit->getType().isNull() ? TSI->getType()
758 : DeduceInit->getType())
759 << DeduceInit->getSourceRange();
760 }
761 if (DeducedType.isNull())
762 return QualType();
763
764 // Perform initialization analysis and ensure any implicit conversions
765 // (such as lvalue-to-rvalue) are enforced.
766 InitializedEntity Entity =
767 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
768 InitializationKind Kind =
769 IsDirectInit
770 ? (CXXDirectInit ? InitializationKind::CreateDirect(
771 Loc, Init->getLocStart(), Init->getLocEnd())
772 : InitializationKind::CreateDirectList(Loc))
773 : InitializationKind::CreateCopy(Loc, Init->getLocStart());
774
775 MultiExprArg Args = Init;
776 if (CXXDirectInit)
777 Args =
778 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
779 QualType DclT;
780 InitializationSequence InitSeq(*this, Entity, Kind, Args);
781 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
782
783 if (Result.isInvalid())
784 return QualType();
785 Init = Result.getAs<Expr>();
786
787 // The init-capture initialization is a full-expression that must be
788 // processed as one before we enter the declcontext of the lambda's
789 // call-operator.
790 Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
791 /*IsConstexpr*/ false,
792 /*IsLambdaInitCaptureInitalizer*/ true);
793 if (Result.isInvalid())
794 return QualType();
795
796 Init = Result.getAs<Expr>();
797 return DeducedType;
798 }
799
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,IdentifierInfo * Id,Expr * Init)800 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
801 QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
802
803 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
804 Loc);
805 // Create a dummy variable representing the init-capture. This is not actually
806 // used as a variable, and only exists as a way to name and refer to the
807 // init-capture.
808 // FIXME: Pass in separate source locations for '&' and identifier.
809 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
810 Loc, Id, InitCaptureType, TSI, SC_Auto);
811 NewVD->setInitCapture(true);
812 NewVD->setReferenced(true);
813 NewVD->markUsed(Context);
814 NewVD->setInit(Init);
815 return NewVD;
816
817 }
818
buildInitCaptureField(LambdaScopeInfo * LSI,VarDecl * Var)819 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
820 FieldDecl *Field = FieldDecl::Create(
821 Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
822 nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
823 ICIS_NoInit);
824 Field->setImplicit(true);
825 Field->setAccess(AS_private);
826 LSI->Lambda->addDecl(Field);
827
828 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
829 /*isNested*/false, Var->getLocation(), SourceLocation(),
830 Var->getType(), Var->getInit());
831 return Field;
832 }
833
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)834 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
835 Declarator &ParamInfo, Scope *CurScope) {
836 // Determine if we're within a context where we know that the lambda will
837 // be dependent, because there are template parameters in scope.
838 bool KnownDependent = false;
839 LambdaScopeInfo *const LSI = getCurLambda();
840 assert(LSI && "LambdaScopeInfo should be on stack!");
841 TemplateParameterList *TemplateParams =
842 getGenericLambdaTemplateParameterList(LSI, *this);
843
844 if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
845 // Since we have our own TemplateParams, so check if an outer scope
846 // has template params, only then are we in a dependent scope.
847 if (TemplateParams) {
848 TmplScope = TmplScope->getParent();
849 TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
850 }
851 if (TmplScope && !TmplScope->decl_empty())
852 KnownDependent = true;
853 }
854 // Determine the signature of the call operator.
855 TypeSourceInfo *MethodTyInfo;
856 bool ExplicitParams = true;
857 bool ExplicitResultType = true;
858 bool ContainsUnexpandedParameterPack = false;
859 SourceLocation EndLoc;
860 SmallVector<ParmVarDecl *, 8> Params;
861 if (ParamInfo.getNumTypeObjects() == 0) {
862 // C++11 [expr.prim.lambda]p4:
863 // If a lambda-expression does not include a lambda-declarator, it is as
864 // if the lambda-declarator were ().
865 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
866 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
867 EPI.HasTrailingReturn = true;
868 EPI.TypeQuals |= DeclSpec::TQ_const;
869 // C++1y [expr.prim.lambda]:
870 // The lambda return type is 'auto', which is replaced by the
871 // trailing-return type if provided and/or deduced from 'return'
872 // statements
873 // We don't do this before C++1y, because we don't support deduced return
874 // types there.
875 QualType DefaultTypeForNoTrailingReturn =
876 getLangOpts().CPlusPlus1y ? Context.getAutoDeductType()
877 : Context.DependentTy;
878 QualType MethodTy =
879 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
880 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
881 ExplicitParams = false;
882 ExplicitResultType = false;
883 EndLoc = Intro.Range.getEnd();
884 } else {
885 assert(ParamInfo.isFunctionDeclarator() &&
886 "lambda-declarator is a function");
887 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
888
889 // C++11 [expr.prim.lambda]p5:
890 // This function call operator is declared const (9.3.1) if and only if
891 // the lambda-expression's parameter-declaration-clause is not followed
892 // by mutable. It is neither virtual nor declared volatile. [...]
893 if (!FTI.hasMutableQualifier())
894 FTI.TypeQuals |= DeclSpec::TQ_const;
895
896 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
897 assert(MethodTyInfo && "no type from lambda-declarator");
898 EndLoc = ParamInfo.getSourceRange().getEnd();
899
900 ExplicitResultType = FTI.hasTrailingReturnType();
901
902 if (FTIHasNonVoidParameters(FTI)) {
903 Params.reserve(FTI.NumParams);
904 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
905 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
906 }
907
908 // Check for unexpanded parameter packs in the method type.
909 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
910 ContainsUnexpandedParameterPack = true;
911 }
912
913 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
914 KnownDependent, Intro.Default);
915
916 CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
917 MethodTyInfo, EndLoc, Params);
918 if (ExplicitParams)
919 CheckCXXDefaultArguments(Method);
920
921 // Attributes on the lambda apply to the method.
922 ProcessDeclAttributes(CurScope, Method, ParamInfo);
923
924 // Introduce the function call operator as the current declaration context.
925 PushDeclContext(CurScope, Method);
926
927 // Build the lambda scope.
928 buildLambdaScope(LSI, Method,
929 Intro.Range,
930 Intro.Default, Intro.DefaultLoc,
931 ExplicitParams,
932 ExplicitResultType,
933 !Method->isConst());
934
935 // C++11 [expr.prim.lambda]p9:
936 // A lambda-expression whose smallest enclosing scope is a block scope is a
937 // local lambda expression; any other lambda expression shall not have a
938 // capture-default or simple-capture in its lambda-introducer.
939 //
940 // For simple-captures, this is covered by the check below that any named
941 // entity is a variable that can be captured.
942 //
943 // For DR1632, we also allow a capture-default in any context where we can
944 // odr-use 'this' (in particular, in a default initializer for a non-static
945 // data member).
946 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
947 (getCurrentThisType().isNull() ||
948 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
949 /*BuildAndDiagnose*/false)))
950 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
951
952 // Distinct capture names, for diagnostics.
953 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
954
955 // Handle explicit captures.
956 SourceLocation PrevCaptureLoc
957 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
958 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
959 PrevCaptureLoc = C->Loc, ++C) {
960 if (C->Kind == LCK_This) {
961 // C++11 [expr.prim.lambda]p8:
962 // An identifier or this shall not appear more than once in a
963 // lambda-capture.
964 if (LSI->isCXXThisCaptured()) {
965 Diag(C->Loc, diag::err_capture_more_than_once)
966 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
967 << FixItHint::CreateRemoval(
968 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
969 continue;
970 }
971
972 // C++11 [expr.prim.lambda]p8:
973 // If a lambda-capture includes a capture-default that is =, the
974 // lambda-capture shall not contain this [...].
975 if (Intro.Default == LCD_ByCopy) {
976 Diag(C->Loc, diag::err_this_capture_with_copy_default)
977 << FixItHint::CreateRemoval(
978 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
979 continue;
980 }
981
982 // C++11 [expr.prim.lambda]p12:
983 // If this is captured by a local lambda expression, its nearest
984 // enclosing function shall be a non-static member function.
985 QualType ThisCaptureType = getCurrentThisType();
986 if (ThisCaptureType.isNull()) {
987 Diag(C->Loc, diag::err_this_capture) << true;
988 continue;
989 }
990
991 CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
992 continue;
993 }
994
995 assert(C->Id && "missing identifier for capture");
996
997 if (C->Init.isInvalid())
998 continue;
999
1000 VarDecl *Var = nullptr;
1001 if (C->Init.isUsable()) {
1002 Diag(C->Loc, getLangOpts().CPlusPlus1y
1003 ? diag::warn_cxx11_compat_init_capture
1004 : diag::ext_init_capture);
1005
1006 if (C->Init.get()->containsUnexpandedParameterPack())
1007 ContainsUnexpandedParameterPack = true;
1008 // If the initializer expression is usable, but the InitCaptureType
1009 // is not, then an error has occurred - so ignore the capture for now.
1010 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1011 // FIXME: we should create the init capture variable and mark it invalid
1012 // in this case.
1013 if (C->InitCaptureType.get().isNull())
1014 continue;
1015 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1016 C->Id, C->Init.get());
1017 // C++1y [expr.prim.lambda]p11:
1018 // An init-capture behaves as if it declares and explicitly
1019 // captures a variable [...] whose declarative region is the
1020 // lambda-expression's compound-statement
1021 if (Var)
1022 PushOnScopeChains(Var, CurScope, false);
1023 } else {
1024 // C++11 [expr.prim.lambda]p8:
1025 // If a lambda-capture includes a capture-default that is &, the
1026 // identifiers in the lambda-capture shall not be preceded by &.
1027 // If a lambda-capture includes a capture-default that is =, [...]
1028 // each identifier it contains shall be preceded by &.
1029 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1030 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1031 << FixItHint::CreateRemoval(
1032 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1033 continue;
1034 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1035 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1036 << FixItHint::CreateRemoval(
1037 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1038 continue;
1039 }
1040
1041 // C++11 [expr.prim.lambda]p10:
1042 // The identifiers in a capture-list are looked up using the usual
1043 // rules for unqualified name lookup (3.4.1)
1044 DeclarationNameInfo Name(C->Id, C->Loc);
1045 LookupResult R(*this, Name, LookupOrdinaryName);
1046 LookupName(R, CurScope);
1047 if (R.isAmbiguous())
1048 continue;
1049 if (R.empty()) {
1050 // FIXME: Disable corrections that would add qualification?
1051 CXXScopeSpec ScopeSpec;
1052 DeclFilterCCC<VarDecl> Validator;
1053 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1054 continue;
1055 }
1056
1057 Var = R.getAsSingle<VarDecl>();
1058 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1059 continue;
1060 }
1061
1062 // C++11 [expr.prim.lambda]p8:
1063 // An identifier or this shall not appear more than once in a
1064 // lambda-capture.
1065 if (!CaptureNames.insert(C->Id)) {
1066 if (Var && LSI->isCaptured(Var)) {
1067 Diag(C->Loc, diag::err_capture_more_than_once)
1068 << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1069 << FixItHint::CreateRemoval(
1070 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1071 } else
1072 // Previous capture captured something different (one or both was
1073 // an init-cpature): no fixit.
1074 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1075 continue;
1076 }
1077
1078 // C++11 [expr.prim.lambda]p10:
1079 // [...] each such lookup shall find a variable with automatic storage
1080 // duration declared in the reaching scope of the local lambda expression.
1081 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1082 if (!Var) {
1083 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1084 continue;
1085 }
1086
1087 // Ignore invalid decls; they'll just confuse the code later.
1088 if (Var->isInvalidDecl())
1089 continue;
1090
1091 if (!Var->hasLocalStorage()) {
1092 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1093 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1094 continue;
1095 }
1096
1097 // C++11 [expr.prim.lambda]p23:
1098 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1099 SourceLocation EllipsisLoc;
1100 if (C->EllipsisLoc.isValid()) {
1101 if (Var->isParameterPack()) {
1102 EllipsisLoc = C->EllipsisLoc;
1103 } else {
1104 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1105 << SourceRange(C->Loc);
1106
1107 // Just ignore the ellipsis.
1108 }
1109 } else if (Var->isParameterPack()) {
1110 ContainsUnexpandedParameterPack = true;
1111 }
1112
1113 if (C->Init.isUsable()) {
1114 buildInitCaptureField(LSI, Var);
1115 } else {
1116 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1117 TryCapture_ExplicitByVal;
1118 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1119 }
1120 }
1121 finishLambdaExplicitCaptures(LSI);
1122
1123 LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1124
1125 // Add lambda parameters into scope.
1126 addLambdaParameters(Method, CurScope);
1127
1128 // Enter a new evaluation context to insulate the lambda from any
1129 // cleanups from the enclosing full-expression.
1130 PushExpressionEvaluationContext(PotentiallyEvaluated);
1131 }
1132
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1133 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1134 bool IsInstantiation) {
1135 LambdaScopeInfo *LSI = getCurLambda();
1136
1137 // Leave the expression-evaluation context.
1138 DiscardCleanupsInEvaluationContext();
1139 PopExpressionEvaluationContext();
1140
1141 // Leave the context of the lambda.
1142 if (!IsInstantiation)
1143 PopDeclContext();
1144
1145 // Finalize the lambda.
1146 CXXRecordDecl *Class = LSI->Lambda;
1147 Class->setInvalidDecl();
1148 SmallVector<Decl*, 4> Fields(Class->fields());
1149 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1150 SourceLocation(), nullptr);
1151 CheckCompletedCXXClass(Class);
1152
1153 PopFunctionScopeInfo();
1154 }
1155
1156 /// \brief Add a lambda's conversion to function pointer, as described in
1157 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1158 static void addFunctionPointerConversion(Sema &S,
1159 SourceRange IntroducerRange,
1160 CXXRecordDecl *Class,
1161 CXXMethodDecl *CallOperator) {
1162 // Add the conversion to function pointer.
1163 const FunctionProtoType *CallOpProto =
1164 CallOperator->getType()->getAs<FunctionProtoType>();
1165 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1166 CallOpProto->getExtProtoInfo();
1167 QualType PtrToFunctionTy;
1168 QualType InvokerFunctionTy;
1169 {
1170 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1171 CallingConv CC = S.Context.getDefaultCallingConvention(
1172 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1173 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1174 InvokerExtInfo.TypeQuals = 0;
1175 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1176 "Lambda's call operator should not have a reference qualifier");
1177 InvokerFunctionTy =
1178 S.Context.getFunctionType(CallOpProto->getReturnType(),
1179 CallOpProto->getParamTypes(), InvokerExtInfo);
1180 PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1181 }
1182
1183 // Create the type of the conversion function.
1184 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1185 S.Context.getDefaultCallingConvention(
1186 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1187 // The conversion function is always const.
1188 ConvExtInfo.TypeQuals = Qualifiers::Const;
1189 QualType ConvTy =
1190 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1191
1192 SourceLocation Loc = IntroducerRange.getBegin();
1193 DeclarationName ConversionName
1194 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1195 S.Context.getCanonicalType(PtrToFunctionTy));
1196 DeclarationNameLoc ConvNameLoc;
1197 // Construct a TypeSourceInfo for the conversion function, and wire
1198 // all the parameters appropriately for the FunctionProtoTypeLoc
1199 // so that everything works during transformation/instantiation of
1200 // generic lambdas.
1201 // The main reason for wiring up the parameters of the conversion
1202 // function with that of the call operator is so that constructs
1203 // like the following work:
1204 // auto L = [](auto b) { <-- 1
1205 // return [](auto a) -> decltype(a) { <-- 2
1206 // return a;
1207 // };
1208 // };
1209 // int (*fp)(int) = L(5);
1210 // Because the trailing return type can contain DeclRefExprs that refer
1211 // to the original call operator's variables, we hijack the call
1212 // operators ParmVarDecls below.
1213 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1214 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1215 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1216
1217 // The conversion function is a conversion to a pointer-to-function.
1218 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1219 FunctionProtoTypeLoc ConvTL =
1220 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1221 // Get the result of the conversion function which is a pointer-to-function.
1222 PointerTypeLoc PtrToFunctionTL =
1223 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1224 // Do the same for the TypeSourceInfo that is used to name the conversion
1225 // operator.
1226 PointerTypeLoc ConvNamePtrToFunctionTL =
1227 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1228
1229 // Get the underlying function types that the conversion function will
1230 // be converting to (should match the type of the call operator).
1231 FunctionProtoTypeLoc CallOpConvTL =
1232 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1233 FunctionProtoTypeLoc CallOpConvNameTL =
1234 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1235
1236 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1237 // These parameter's are essentially used to transform the name and
1238 // the type of the conversion operator. By using the same parameters
1239 // as the call operator's we don't have to fix any back references that
1240 // the trailing return type of the call operator's uses (such as
1241 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1242 // - we can simply use the return type of the call operator, and
1243 // everything should work.
1244 SmallVector<ParmVarDecl *, 4> InvokerParams;
1245 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1246 ParmVarDecl *From = CallOperator->getParamDecl(I);
1247
1248 InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1249 // Temporarily add to the TU. This is set to the invoker below.
1250 S.Context.getTranslationUnitDecl(),
1251 From->getLocStart(),
1252 From->getLocation(),
1253 From->getIdentifier(),
1254 From->getType(),
1255 From->getTypeSourceInfo(),
1256 From->getStorageClass(),
1257 /*DefaultArg=*/nullptr));
1258 CallOpConvTL.setParam(I, From);
1259 CallOpConvNameTL.setParam(I, From);
1260 }
1261
1262 CXXConversionDecl *Conversion
1263 = CXXConversionDecl::Create(S.Context, Class, Loc,
1264 DeclarationNameInfo(ConversionName,
1265 Loc, ConvNameLoc),
1266 ConvTy,
1267 ConvTSI,
1268 /*isInline=*/true, /*isExplicit=*/false,
1269 /*isConstexpr=*/false,
1270 CallOperator->getBody()->getLocEnd());
1271 Conversion->setAccess(AS_public);
1272 Conversion->setImplicit(true);
1273
1274 if (Class->isGenericLambda()) {
1275 // Create a template version of the conversion operator, using the template
1276 // parameter list of the function call operator.
1277 FunctionTemplateDecl *TemplateCallOperator =
1278 CallOperator->getDescribedFunctionTemplate();
1279 FunctionTemplateDecl *ConversionTemplate =
1280 FunctionTemplateDecl::Create(S.Context, Class,
1281 Loc, ConversionName,
1282 TemplateCallOperator->getTemplateParameters(),
1283 Conversion);
1284 ConversionTemplate->setAccess(AS_public);
1285 ConversionTemplate->setImplicit(true);
1286 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1287 Class->addDecl(ConversionTemplate);
1288 } else
1289 Class->addDecl(Conversion);
1290 // Add a non-static member function that will be the result of
1291 // the conversion with a certain unique ID.
1292 DeclarationName InvokerName = &S.Context.Idents.get(
1293 getLambdaStaticInvokerName());
1294 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1295 // we should get a prebuilt TrivialTypeSourceInfo from Context
1296 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1297 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1298 // loop below and then use its Params to set Invoke->setParams(...) below.
1299 // This would avoid the 'const' qualifier of the calloperator from
1300 // contaminating the type of the invoker, which is currently adjusted
1301 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1302 // trailing return type of the invoker would require a visitor to rebuild
1303 // the trailing return type and adjusting all back DeclRefExpr's to refer
1304 // to the new static invoker parameters - not the call operator's.
1305 CXXMethodDecl *Invoke
1306 = CXXMethodDecl::Create(S.Context, Class, Loc,
1307 DeclarationNameInfo(InvokerName, Loc),
1308 InvokerFunctionTy,
1309 CallOperator->getTypeSourceInfo(),
1310 SC_Static, /*IsInline=*/true,
1311 /*IsConstexpr=*/false,
1312 CallOperator->getBody()->getLocEnd());
1313 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1314 InvokerParams[I]->setOwningFunction(Invoke);
1315 Invoke->setParams(InvokerParams);
1316 Invoke->setAccess(AS_private);
1317 Invoke->setImplicit(true);
1318 if (Class->isGenericLambda()) {
1319 FunctionTemplateDecl *TemplateCallOperator =
1320 CallOperator->getDescribedFunctionTemplate();
1321 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1322 S.Context, Class, Loc, InvokerName,
1323 TemplateCallOperator->getTemplateParameters(),
1324 Invoke);
1325 StaticInvokerTemplate->setAccess(AS_private);
1326 StaticInvokerTemplate->setImplicit(true);
1327 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1328 Class->addDecl(StaticInvokerTemplate);
1329 } else
1330 Class->addDecl(Invoke);
1331 }
1332
1333 /// \brief Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1334 static void addBlockPointerConversion(Sema &S,
1335 SourceRange IntroducerRange,
1336 CXXRecordDecl *Class,
1337 CXXMethodDecl *CallOperator) {
1338 const FunctionProtoType *Proto
1339 = CallOperator->getType()->getAs<FunctionProtoType>();
1340 QualType BlockPtrTy;
1341 {
1342 FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
1343 ExtInfo.TypeQuals = 0;
1344 QualType FunctionTy = S.Context.getFunctionType(
1345 Proto->getReturnType(), Proto->getParamTypes(), ExtInfo);
1346 BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1347 }
1348
1349 FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention(
1350 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1351 ExtInfo.TypeQuals = Qualifiers::Const;
1352 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo);
1353
1354 SourceLocation Loc = IntroducerRange.getBegin();
1355 DeclarationName Name
1356 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1357 S.Context.getCanonicalType(BlockPtrTy));
1358 DeclarationNameLoc NameLoc;
1359 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1360 CXXConversionDecl *Conversion
1361 = CXXConversionDecl::Create(S.Context, Class, Loc,
1362 DeclarationNameInfo(Name, Loc, NameLoc),
1363 ConvTy,
1364 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1365 /*isInline=*/true, /*isExplicit=*/false,
1366 /*isConstexpr=*/false,
1367 CallOperator->getBody()->getLocEnd());
1368 Conversion->setAccess(AS_public);
1369 Conversion->setImplicit(true);
1370 Class->addDecl(Conversion);
1371 }
1372
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope,bool IsInstantiation)1373 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1374 Scope *CurScope,
1375 bool IsInstantiation) {
1376 // Collect information from the lambda scope.
1377 SmallVector<LambdaCapture, 4> Captures;
1378 SmallVector<Expr *, 4> CaptureInits;
1379 LambdaCaptureDefault CaptureDefault;
1380 SourceLocation CaptureDefaultLoc;
1381 CXXRecordDecl *Class;
1382 CXXMethodDecl *CallOperator;
1383 SourceRange IntroducerRange;
1384 bool ExplicitParams;
1385 bool ExplicitResultType;
1386 bool LambdaExprNeedsCleanups;
1387 bool ContainsUnexpandedParameterPack;
1388 SmallVector<VarDecl *, 4> ArrayIndexVars;
1389 SmallVector<unsigned, 4> ArrayIndexStarts;
1390 {
1391 LambdaScopeInfo *LSI = getCurLambda();
1392 CallOperator = LSI->CallOperator;
1393 Class = LSI->Lambda;
1394 IntroducerRange = LSI->IntroducerRange;
1395 ExplicitParams = LSI->ExplicitParams;
1396 ExplicitResultType = !LSI->HasImplicitReturnType;
1397 LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1398 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1399 ArrayIndexVars.swap(LSI->ArrayIndexVars);
1400 ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
1401
1402 // Translate captures.
1403 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1404 LambdaScopeInfo::Capture From = LSI->Captures[I];
1405 assert(!From.isBlockCapture() && "Cannot capture __block variables");
1406 bool IsImplicit = I >= LSI->NumExplicitCaptures;
1407
1408 // Handle 'this' capture.
1409 if (From.isThisCapture()) {
1410 Captures.push_back(
1411 LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1412 CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1413 getCurrentThisType(),
1414 /*isImplicit=*/true));
1415 continue;
1416 }
1417
1418 VarDecl *Var = From.getVariable();
1419 LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
1420 Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1421 Var, From.getEllipsisLoc()));
1422 CaptureInits.push_back(From.getInitExpr());
1423 }
1424
1425 switch (LSI->ImpCaptureStyle) {
1426 case CapturingScopeInfo::ImpCap_None:
1427 CaptureDefault = LCD_None;
1428 break;
1429
1430 case CapturingScopeInfo::ImpCap_LambdaByval:
1431 CaptureDefault = LCD_ByCopy;
1432 break;
1433
1434 case CapturingScopeInfo::ImpCap_CapturedRegion:
1435 case CapturingScopeInfo::ImpCap_LambdaByref:
1436 CaptureDefault = LCD_ByRef;
1437 break;
1438
1439 case CapturingScopeInfo::ImpCap_Block:
1440 llvm_unreachable("block capture in lambda");
1441 break;
1442 }
1443 CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1444
1445 // C++11 [expr.prim.lambda]p4:
1446 // If a lambda-expression does not include a
1447 // trailing-return-type, it is as if the trailing-return-type
1448 // denotes the following type:
1449 //
1450 // Skip for C++1y return type deduction semantics which uses
1451 // different machinery.
1452 // FIXME: Refactor and Merge the return type deduction machinery.
1453 // FIXME: Assumes current resolution to core issue 975.
1454 if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) {
1455 deduceClosureReturnType(*LSI);
1456
1457 // - if there are no return statements in the
1458 // compound-statement, or all return statements return
1459 // either an expression of type void or no expression or
1460 // braced-init-list, the type void;
1461 if (LSI->ReturnType.isNull()) {
1462 LSI->ReturnType = Context.VoidTy;
1463 }
1464
1465 // Create a function type with the inferred return type.
1466 const FunctionProtoType *Proto
1467 = CallOperator->getType()->getAs<FunctionProtoType>();
1468 QualType FunctionTy = Context.getFunctionType(
1469 LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
1470 CallOperator->setType(FunctionTy);
1471 }
1472 // C++ [expr.prim.lambda]p7:
1473 // The lambda-expression's compound-statement yields the
1474 // function-body (8.4) of the function call operator [...].
1475 ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
1476 CallOperator->setLexicalDeclContext(Class);
1477 Decl *TemplateOrNonTemplateCallOperatorDecl =
1478 CallOperator->getDescribedFunctionTemplate()
1479 ? CallOperator->getDescribedFunctionTemplate()
1480 : cast<Decl>(CallOperator);
1481
1482 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1483 Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1484
1485 PopExpressionEvaluationContext();
1486
1487 // C++11 [expr.prim.lambda]p6:
1488 // The closure type for a lambda-expression with no lambda-capture
1489 // has a public non-virtual non-explicit const conversion function
1490 // to pointer to function having the same parameter and return
1491 // types as the closure type's function call operator.
1492 if (Captures.empty() && CaptureDefault == LCD_None)
1493 addFunctionPointerConversion(*this, IntroducerRange, Class,
1494 CallOperator);
1495
1496 // Objective-C++:
1497 // The closure type for a lambda-expression has a public non-virtual
1498 // non-explicit const conversion function to a block pointer having the
1499 // same parameter and return types as the closure type's function call
1500 // operator.
1501 // FIXME: Fix generic lambda to block conversions.
1502 if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1503 !Class->isGenericLambda())
1504 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1505
1506 // Finalize the lambda class.
1507 SmallVector<Decl*, 4> Fields(Class->fields());
1508 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1509 SourceLocation(), nullptr);
1510 CheckCompletedCXXClass(Class);
1511 }
1512
1513 if (LambdaExprNeedsCleanups)
1514 ExprNeedsCleanups = true;
1515
1516 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1517 CaptureDefault, CaptureDefaultLoc,
1518 Captures,
1519 ExplicitParams, ExplicitResultType,
1520 CaptureInits, ArrayIndexVars,
1521 ArrayIndexStarts, Body->getLocEnd(),
1522 ContainsUnexpandedParameterPack);
1523
1524 if (!CurContext->isDependentContext()) {
1525 switch (ExprEvalContexts.back().Context) {
1526 // C++11 [expr.prim.lambda]p2:
1527 // A lambda-expression shall not appear in an unevaluated operand
1528 // (Clause 5).
1529 case Unevaluated:
1530 case UnevaluatedAbstract:
1531 // C++1y [expr.const]p2:
1532 // A conditional-expression e is a core constant expression unless the
1533 // evaluation of e, following the rules of the abstract machine, would
1534 // evaluate [...] a lambda-expression.
1535 //
1536 // This is technically incorrect, there are some constant evaluated contexts
1537 // where this should be allowed. We should probably fix this when DR1607 is
1538 // ratified, it lays out the exact set of conditions where we shouldn't
1539 // allow a lambda-expression.
1540 case ConstantEvaluated:
1541 // We don't actually diagnose this case immediately, because we
1542 // could be within a context where we might find out later that
1543 // the expression is potentially evaluated (e.g., for typeid).
1544 ExprEvalContexts.back().Lambdas.push_back(Lambda);
1545 break;
1546
1547 case PotentiallyEvaluated:
1548 case PotentiallyEvaluatedIfUsed:
1549 break;
1550 }
1551 }
1552
1553 return MaybeBindToTemporary(Lambda);
1554 }
1555
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1556 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1557 SourceLocation ConvLocation,
1558 CXXConversionDecl *Conv,
1559 Expr *Src) {
1560 // Make sure that the lambda call operator is marked used.
1561 CXXRecordDecl *Lambda = Conv->getParent();
1562 CXXMethodDecl *CallOperator
1563 = cast<CXXMethodDecl>(
1564 Lambda->lookup(
1565 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1566 CallOperator->setReferenced();
1567 CallOperator->markUsed(Context);
1568
1569 ExprResult Init = PerformCopyInitialization(
1570 InitializedEntity::InitializeBlock(ConvLocation,
1571 Src->getType(),
1572 /*NRVO=*/false),
1573 CurrentLocation, Src);
1574 if (!Init.isInvalid())
1575 Init = ActOnFinishFullExpr(Init.get());
1576
1577 if (Init.isInvalid())
1578 return ExprError();
1579
1580 // Create the new block to be returned.
1581 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1582
1583 // Set the type information.
1584 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1585 Block->setIsVariadic(CallOperator->isVariadic());
1586 Block->setBlockMissingReturnType(false);
1587
1588 // Add parameters.
1589 SmallVector<ParmVarDecl *, 4> BlockParams;
1590 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1591 ParmVarDecl *From = CallOperator->getParamDecl(I);
1592 BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1593 From->getLocStart(),
1594 From->getLocation(),
1595 From->getIdentifier(),
1596 From->getType(),
1597 From->getTypeSourceInfo(),
1598 From->getStorageClass(),
1599 /*DefaultArg=*/nullptr));
1600 }
1601 Block->setParams(BlockParams);
1602
1603 Block->setIsConversionFromLambda(true);
1604
1605 // Add capture. The capture uses a fake variable, which doesn't correspond
1606 // to any actual memory location. However, the initializer copy-initializes
1607 // the lambda object.
1608 TypeSourceInfo *CapVarTSI =
1609 Context.getTrivialTypeSourceInfo(Src->getType());
1610 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1611 ConvLocation, nullptr,
1612 Src->getType(), CapVarTSI,
1613 SC_None);
1614 BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1615 /*Nested=*/false, /*Copy=*/Init.get());
1616 Block->setCaptures(Context, &Capture, &Capture + 1,
1617 /*CapturesCXXThis=*/false);
1618
1619 // Add a fake function body to the block. IR generation is responsible
1620 // for filling in the actual body, which cannot be expressed as an AST.
1621 Block->setBody(new (Context) CompoundStmt(ConvLocation));
1622
1623 // Create the block literal expression.
1624 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1625 ExprCleanupObjects.push_back(Block);
1626 ExprNeedsCleanups = true;
1627
1628 return BuildBlock;
1629 }
1630