1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <sys/stat.h>
27 #include <cutils/properties.h>
28 #include <media/AudioParameter.h>
29 #include <media/AudioResamplerPublic.h>
30 #include <utils/Log.h>
31 #include <utils/Trace.h>
32
33 #include <private/media/AudioTrackShared.h>
34 #include <hardware/audio.h>
35 #include <audio_effects/effect_ns.h>
36 #include <audio_effects/effect_aec.h>
37 #include <audio_utils/primitives.h>
38 #include <audio_utils/format.h>
39 #include <audio_utils/minifloat.h>
40
41 // NBAIO implementations
42 #include <media/nbaio/AudioStreamInSource.h>
43 #include <media/nbaio/AudioStreamOutSink.h>
44 #include <media/nbaio/MonoPipe.h>
45 #include <media/nbaio/MonoPipeReader.h>
46 #include <media/nbaio/Pipe.h>
47 #include <media/nbaio/PipeReader.h>
48 #include <media/nbaio/SourceAudioBufferProvider.h>
49
50 #include <powermanager/PowerManager.h>
51
52 #include <common_time/cc_helper.h>
53 #include <common_time/local_clock.h>
54
55 #include "AudioFlinger.h"
56 #include "AudioMixer.h"
57 #include "FastMixer.h"
58 #include "FastCapture.h"
59 #include "ServiceUtilities.h"
60 #include "SchedulingPolicyService.h"
61
62 #ifdef ADD_BATTERY_DATA
63 #include <media/IMediaPlayerService.h>
64 #include <media/IMediaDeathNotifier.h>
65 #endif
66
67 #ifdef DEBUG_CPU_USAGE
68 #include <cpustats/CentralTendencyStatistics.h>
69 #include <cpustats/ThreadCpuUsage.h>
70 #endif
71
72 // ----------------------------------------------------------------------------
73
74 // Note: the following macro is used for extremely verbose logging message. In
75 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
76 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
77 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
78 // turned on. Do not uncomment the #def below unless you really know what you
79 // are doing and want to see all of the extremely verbose messages.
80 //#define VERY_VERY_VERBOSE_LOGGING
81 #ifdef VERY_VERY_VERBOSE_LOGGING
82 #define ALOGVV ALOGV
83 #else
84 #define ALOGVV(a...) do { } while(0)
85 #endif
86
87 #define max(a, b) ((a) > (b) ? (a) : (b))
88
89 namespace android {
90
91 // retry counts for buffer fill timeout
92 // 50 * ~20msecs = 1 second
93 static const int8_t kMaxTrackRetries = 50;
94 static const int8_t kMaxTrackStartupRetries = 50;
95 // allow less retry attempts on direct output thread.
96 // direct outputs can be a scarce resource in audio hardware and should
97 // be released as quickly as possible.
98 static const int8_t kMaxTrackRetriesDirect = 2;
99
100 // don't warn about blocked writes or record buffer overflows more often than this
101 static const nsecs_t kWarningThrottleNs = seconds(5);
102
103 // RecordThread loop sleep time upon application overrun or audio HAL read error
104 static const int kRecordThreadSleepUs = 5000;
105
106 // maximum time to wait in sendConfigEvent_l() for a status to be received
107 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
108
109 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
110 static const uint32_t kMinThreadSleepTimeUs = 5000;
111 // maximum divider applied to the active sleep time in the mixer thread loop
112 static const uint32_t kMaxThreadSleepTimeShift = 2;
113
114 // minimum normal sink buffer size, expressed in milliseconds rather than frames
115 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
116 // maximum normal sink buffer size
117 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
118
119 // Offloaded output thread standby delay: allows track transition without going to standby
120 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
121
122 // Whether to use fast mixer
123 static const enum {
124 FastMixer_Never, // never initialize or use: for debugging only
125 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
126 // normal mixer multiplier is 1
127 FastMixer_Static, // initialize if needed, then use all the time if initialized,
128 // multiplier is calculated based on min & max normal mixer buffer size
129 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
130 // multiplier is calculated based on min & max normal mixer buffer size
131 // FIXME for FastMixer_Dynamic:
132 // Supporting this option will require fixing HALs that can't handle large writes.
133 // For example, one HAL implementation returns an error from a large write,
134 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
135 // We could either fix the HAL implementations, or provide a wrapper that breaks
136 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
137 } kUseFastMixer = FastMixer_Static;
138
139 // Whether to use fast capture
140 static const enum {
141 FastCapture_Never, // never initialize or use: for debugging only
142 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
143 FastCapture_Static, // initialize if needed, then use all the time if initialized
144 } kUseFastCapture = FastCapture_Static;
145
146 // Priorities for requestPriority
147 static const int kPriorityAudioApp = 2;
148 static const int kPriorityFastMixer = 3;
149 static const int kPriorityFastCapture = 3;
150
151 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
152 // for the track. The client then sub-divides this into smaller buffers for its use.
153 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
154 // So for now we just assume that client is double-buffered for fast tracks.
155 // FIXME It would be better for client to tell AudioFlinger the value of N,
156 // so AudioFlinger could allocate the right amount of memory.
157 // See the client's minBufCount and mNotificationFramesAct calculations for details.
158
159 // This is the default value, if not specified by property.
160 static const int kFastTrackMultiplier = 2;
161
162 // The minimum and maximum allowed values
163 static const int kFastTrackMultiplierMin = 1;
164 static const int kFastTrackMultiplierMax = 2;
165
166 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
167 static int sFastTrackMultiplier = kFastTrackMultiplier;
168
169 // See Thread::readOnlyHeap().
170 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
171 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
172 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
173 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
174
175 // ----------------------------------------------------------------------------
176
177 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
178
sFastTrackMultiplierInit()179 static void sFastTrackMultiplierInit()
180 {
181 char value[PROPERTY_VALUE_MAX];
182 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
183 char *endptr;
184 unsigned long ul = strtoul(value, &endptr, 0);
185 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
186 sFastTrackMultiplier = (int) ul;
187 }
188 }
189 }
190
191 // ----------------------------------------------------------------------------
192
193 #ifdef ADD_BATTERY_DATA
194 // To collect the amplifier usage
addBatteryData(uint32_t params)195 static void addBatteryData(uint32_t params) {
196 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
197 if (service == NULL) {
198 // it already logged
199 return;
200 }
201
202 service->addBatteryData(params);
203 }
204 #endif
205
206
207 // ----------------------------------------------------------------------------
208 // CPU Stats
209 // ----------------------------------------------------------------------------
210
211 class CpuStats {
212 public:
213 CpuStats();
214 void sample(const String8 &title);
215 #ifdef DEBUG_CPU_USAGE
216 private:
217 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
218 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
219
220 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
221
222 int mCpuNum; // thread's current CPU number
223 int mCpukHz; // frequency of thread's current CPU in kHz
224 #endif
225 };
226
CpuStats()227 CpuStats::CpuStats()
228 #ifdef DEBUG_CPU_USAGE
229 : mCpuNum(-1), mCpukHz(-1)
230 #endif
231 {
232 }
233
sample(const String8 & title __unused)234 void CpuStats::sample(const String8 &title
235 #ifndef DEBUG_CPU_USAGE
236 __unused
237 #endif
238 ) {
239 #ifdef DEBUG_CPU_USAGE
240 // get current thread's delta CPU time in wall clock ns
241 double wcNs;
242 bool valid = mCpuUsage.sampleAndEnable(wcNs);
243
244 // record sample for wall clock statistics
245 if (valid) {
246 mWcStats.sample(wcNs);
247 }
248
249 // get the current CPU number
250 int cpuNum = sched_getcpu();
251
252 // get the current CPU frequency in kHz
253 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
254
255 // check if either CPU number or frequency changed
256 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
257 mCpuNum = cpuNum;
258 mCpukHz = cpukHz;
259 // ignore sample for purposes of cycles
260 valid = false;
261 }
262
263 // if no change in CPU number or frequency, then record sample for cycle statistics
264 if (valid && mCpukHz > 0) {
265 double cycles = wcNs * cpukHz * 0.000001;
266 mHzStats.sample(cycles);
267 }
268
269 unsigned n = mWcStats.n();
270 // mCpuUsage.elapsed() is expensive, so don't call it every loop
271 if ((n & 127) == 1) {
272 long long elapsed = mCpuUsage.elapsed();
273 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
274 double perLoop = elapsed / (double) n;
275 double perLoop100 = perLoop * 0.01;
276 double perLoop1k = perLoop * 0.001;
277 double mean = mWcStats.mean();
278 double stddev = mWcStats.stddev();
279 double minimum = mWcStats.minimum();
280 double maximum = mWcStats.maximum();
281 double meanCycles = mHzStats.mean();
282 double stddevCycles = mHzStats.stddev();
283 double minCycles = mHzStats.minimum();
284 double maxCycles = mHzStats.maximum();
285 mCpuUsage.resetElapsed();
286 mWcStats.reset();
287 mHzStats.reset();
288 ALOGD("CPU usage for %s over past %.1f secs\n"
289 " (%u mixer loops at %.1f mean ms per loop):\n"
290 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
291 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
292 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
293 title.string(),
294 elapsed * .000000001, n, perLoop * .000001,
295 mean * .001,
296 stddev * .001,
297 minimum * .001,
298 maximum * .001,
299 mean / perLoop100,
300 stddev / perLoop100,
301 minimum / perLoop100,
302 maximum / perLoop100,
303 meanCycles / perLoop1k,
304 stddevCycles / perLoop1k,
305 minCycles / perLoop1k,
306 maxCycles / perLoop1k);
307
308 }
309 }
310 #endif
311 };
312
313 // ----------------------------------------------------------------------------
314 // ThreadBase
315 // ----------------------------------------------------------------------------
316
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type)317 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
318 audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
319 : Thread(false /*canCallJava*/),
320 mType(type),
321 mAudioFlinger(audioFlinger),
322 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
323 // are set by PlaybackThread::readOutputParameters_l() or
324 // RecordThread::readInputParameters_l()
325 //FIXME: mStandby should be true here. Is this some kind of hack?
326 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
327 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
328 // mName will be set by concrete (non-virtual) subclass
329 mDeathRecipient(new PMDeathRecipient(this))
330 {
331 }
332
~ThreadBase()333 AudioFlinger::ThreadBase::~ThreadBase()
334 {
335 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
336 mConfigEvents.clear();
337
338 // do not lock the mutex in destructor
339 releaseWakeLock_l();
340 if (mPowerManager != 0) {
341 sp<IBinder> binder = mPowerManager->asBinder();
342 binder->unlinkToDeath(mDeathRecipient);
343 }
344 }
345
readyToRun()346 status_t AudioFlinger::ThreadBase::readyToRun()
347 {
348 status_t status = initCheck();
349 if (status == NO_ERROR) {
350 ALOGI("AudioFlinger's thread %p ready to run", this);
351 } else {
352 ALOGE("No working audio driver found.");
353 }
354 return status;
355 }
356
exit()357 void AudioFlinger::ThreadBase::exit()
358 {
359 ALOGV("ThreadBase::exit");
360 // do any cleanup required for exit to succeed
361 preExit();
362 {
363 // This lock prevents the following race in thread (uniprocessor for illustration):
364 // if (!exitPending()) {
365 // // context switch from here to exit()
366 // // exit() calls requestExit(), what exitPending() observes
367 // // exit() calls signal(), which is dropped since no waiters
368 // // context switch back from exit() to here
369 // mWaitWorkCV.wait(...);
370 // // now thread is hung
371 // }
372 AutoMutex lock(mLock);
373 requestExit();
374 mWaitWorkCV.broadcast();
375 }
376 // When Thread::requestExitAndWait is made virtual and this method is renamed to
377 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
378 requestExitAndWait();
379 }
380
setParameters(const String8 & keyValuePairs)381 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
382 {
383 status_t status;
384
385 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
386 Mutex::Autolock _l(mLock);
387
388 return sendSetParameterConfigEvent_l(keyValuePairs);
389 }
390
391 // sendConfigEvent_l() must be called with ThreadBase::mLock held
392 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)393 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
394 {
395 status_t status = NO_ERROR;
396
397 mConfigEvents.add(event);
398 ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
399 mWaitWorkCV.signal();
400 mLock.unlock();
401 {
402 Mutex::Autolock _l(event->mLock);
403 while (event->mWaitStatus) {
404 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
405 event->mStatus = TIMED_OUT;
406 event->mWaitStatus = false;
407 }
408 }
409 status = event->mStatus;
410 }
411 mLock.lock();
412 return status;
413 }
414
sendIoConfigEvent(int event,int param)415 void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
416 {
417 Mutex::Autolock _l(mLock);
418 sendIoConfigEvent_l(event, param);
419 }
420
421 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(int event,int param)422 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
423 {
424 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
425 sendConfigEvent_l(configEvent);
426 }
427
428 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)429 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
430 {
431 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
432 sendConfigEvent_l(configEvent);
433 }
434
435 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)436 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
437 {
438 sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
439 return sendConfigEvent_l(configEvent);
440 }
441
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)442 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
443 const struct audio_patch *patch,
444 audio_patch_handle_t *handle)
445 {
446 Mutex::Autolock _l(mLock);
447 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
448 status_t status = sendConfigEvent_l(configEvent);
449 if (status == NO_ERROR) {
450 CreateAudioPatchConfigEventData *data =
451 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
452 *handle = data->mHandle;
453 }
454 return status;
455 }
456
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)457 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
458 const audio_patch_handle_t handle)
459 {
460 Mutex::Autolock _l(mLock);
461 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
462 return sendConfigEvent_l(configEvent);
463 }
464
465
466 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()467 void AudioFlinger::ThreadBase::processConfigEvents_l()
468 {
469 bool configChanged = false;
470
471 while (!mConfigEvents.isEmpty()) {
472 ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
473 sp<ConfigEvent> event = mConfigEvents[0];
474 mConfigEvents.removeAt(0);
475 switch (event->mType) {
476 case CFG_EVENT_PRIO: {
477 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
478 // FIXME Need to understand why this has to be done asynchronously
479 int err = requestPriority(data->mPid, data->mTid, data->mPrio,
480 true /*asynchronous*/);
481 if (err != 0) {
482 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
483 data->mPrio, data->mPid, data->mTid, err);
484 }
485 } break;
486 case CFG_EVENT_IO: {
487 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
488 audioConfigChanged(data->mEvent, data->mParam);
489 } break;
490 case CFG_EVENT_SET_PARAMETER: {
491 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
492 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
493 configChanged = true;
494 }
495 } break;
496 case CFG_EVENT_CREATE_AUDIO_PATCH: {
497 CreateAudioPatchConfigEventData *data =
498 (CreateAudioPatchConfigEventData *)event->mData.get();
499 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
500 } break;
501 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
502 ReleaseAudioPatchConfigEventData *data =
503 (ReleaseAudioPatchConfigEventData *)event->mData.get();
504 event->mStatus = releaseAudioPatch_l(data->mHandle);
505 } break;
506 default:
507 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
508 break;
509 }
510 {
511 Mutex::Autolock _l(event->mLock);
512 if (event->mWaitStatus) {
513 event->mWaitStatus = false;
514 event->mCond.signal();
515 }
516 }
517 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
518 }
519
520 if (configChanged) {
521 cacheParameters_l();
522 }
523 }
524
channelMaskToString(audio_channel_mask_t mask,bool output)525 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
526 String8 s;
527 if (output) {
528 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
529 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
530 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
531 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
532 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
533 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
534 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
535 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
536 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
537 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
538 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
539 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
540 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
541 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
542 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
543 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
544 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
545 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
546 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
547 } else {
548 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
549 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
550 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
551 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
552 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
553 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
554 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
555 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
556 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
557 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
558 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
559 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
560 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
561 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
562 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
563 }
564 int len = s.length();
565 if (s.length() > 2) {
566 char *str = s.lockBuffer(len);
567 s.unlockBuffer(len - 2);
568 }
569 return s;
570 }
571
dumpBase(int fd,const Vector<String16> & args __unused)572 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
573 {
574 const size_t SIZE = 256;
575 char buffer[SIZE];
576 String8 result;
577
578 bool locked = AudioFlinger::dumpTryLock(mLock);
579 if (!locked) {
580 dprintf(fd, "thread %p maybe dead locked\n", this);
581 }
582
583 dprintf(fd, " I/O handle: %d\n", mId);
584 dprintf(fd, " TID: %d\n", getTid());
585 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
586 dprintf(fd, " Sample rate: %u\n", mSampleRate);
587 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
588 dprintf(fd, " HAL buffer size: %u bytes\n", mBufferSize);
589 dprintf(fd, " Channel Count: %u\n", mChannelCount);
590 dprintf(fd, " Channel Mask: 0x%08x (%s)\n", mChannelMask,
591 channelMaskToString(mChannelMask, mType != RECORD).string());
592 dprintf(fd, " Format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
593 dprintf(fd, " Frame size: %zu\n", mFrameSize);
594 dprintf(fd, " Pending config events:");
595 size_t numConfig = mConfigEvents.size();
596 if (numConfig) {
597 for (size_t i = 0; i < numConfig; i++) {
598 mConfigEvents[i]->dump(buffer, SIZE);
599 dprintf(fd, "\n %s", buffer);
600 }
601 dprintf(fd, "\n");
602 } else {
603 dprintf(fd, " none\n");
604 }
605
606 if (locked) {
607 mLock.unlock();
608 }
609 }
610
dumpEffectChains(int fd,const Vector<String16> & args)611 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
612 {
613 const size_t SIZE = 256;
614 char buffer[SIZE];
615 String8 result;
616
617 size_t numEffectChains = mEffectChains.size();
618 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
619 write(fd, buffer, strlen(buffer));
620
621 for (size_t i = 0; i < numEffectChains; ++i) {
622 sp<EffectChain> chain = mEffectChains[i];
623 if (chain != 0) {
624 chain->dump(fd, args);
625 }
626 }
627 }
628
acquireWakeLock(int uid)629 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
630 {
631 Mutex::Autolock _l(mLock);
632 acquireWakeLock_l(uid);
633 }
634
getWakeLockTag()635 String16 AudioFlinger::ThreadBase::getWakeLockTag()
636 {
637 switch (mType) {
638 case MIXER:
639 return String16("AudioMix");
640 case DIRECT:
641 return String16("AudioDirectOut");
642 case DUPLICATING:
643 return String16("AudioDup");
644 case RECORD:
645 return String16("AudioIn");
646 case OFFLOAD:
647 return String16("AudioOffload");
648 default:
649 ALOG_ASSERT(false);
650 return String16("AudioUnknown");
651 }
652 }
653
acquireWakeLock_l(int uid)654 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
655 {
656 getPowerManager_l();
657 if (mPowerManager != 0) {
658 sp<IBinder> binder = new BBinder();
659 status_t status;
660 if (uid >= 0) {
661 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
662 binder,
663 getWakeLockTag(),
664 String16("media"),
665 uid,
666 true /* FIXME force oneway contrary to .aidl */);
667 } else {
668 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
669 binder,
670 getWakeLockTag(),
671 String16("media"),
672 true /* FIXME force oneway contrary to .aidl */);
673 }
674 if (status == NO_ERROR) {
675 mWakeLockToken = binder;
676 }
677 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
678 }
679 }
680
releaseWakeLock()681 void AudioFlinger::ThreadBase::releaseWakeLock()
682 {
683 Mutex::Autolock _l(mLock);
684 releaseWakeLock_l();
685 }
686
releaseWakeLock_l()687 void AudioFlinger::ThreadBase::releaseWakeLock_l()
688 {
689 if (mWakeLockToken != 0) {
690 ALOGV("releaseWakeLock_l() %s", mName);
691 if (mPowerManager != 0) {
692 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
693 true /* FIXME force oneway contrary to .aidl */);
694 }
695 mWakeLockToken.clear();
696 }
697 }
698
updateWakeLockUids(const SortedVector<int> & uids)699 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
700 Mutex::Autolock _l(mLock);
701 updateWakeLockUids_l(uids);
702 }
703
getPowerManager_l()704 void AudioFlinger::ThreadBase::getPowerManager_l() {
705
706 if (mPowerManager == 0) {
707 // use checkService() to avoid blocking if power service is not up yet
708 sp<IBinder> binder =
709 defaultServiceManager()->checkService(String16("power"));
710 if (binder == 0) {
711 ALOGW("Thread %s cannot connect to the power manager service", mName);
712 } else {
713 mPowerManager = interface_cast<IPowerManager>(binder);
714 binder->linkToDeath(mDeathRecipient);
715 }
716 }
717 }
718
updateWakeLockUids_l(const SortedVector<int> & uids)719 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
720
721 getPowerManager_l();
722 if (mWakeLockToken == NULL) {
723 ALOGE("no wake lock to update!");
724 return;
725 }
726 if (mPowerManager != 0) {
727 sp<IBinder> binder = new BBinder();
728 status_t status;
729 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
730 true /* FIXME force oneway contrary to .aidl */);
731 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
732 }
733 }
734
clearPowerManager()735 void AudioFlinger::ThreadBase::clearPowerManager()
736 {
737 Mutex::Autolock _l(mLock);
738 releaseWakeLock_l();
739 mPowerManager.clear();
740 }
741
binderDied(const wp<IBinder> & who __unused)742 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
743 {
744 sp<ThreadBase> thread = mThread.promote();
745 if (thread != 0) {
746 thread->clearPowerManager();
747 }
748 ALOGW("power manager service died !!!");
749 }
750
setEffectSuspended(const effect_uuid_t * type,bool suspend,int sessionId)751 void AudioFlinger::ThreadBase::setEffectSuspended(
752 const effect_uuid_t *type, bool suspend, int sessionId)
753 {
754 Mutex::Autolock _l(mLock);
755 setEffectSuspended_l(type, suspend, sessionId);
756 }
757
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,int sessionId)758 void AudioFlinger::ThreadBase::setEffectSuspended_l(
759 const effect_uuid_t *type, bool suspend, int sessionId)
760 {
761 sp<EffectChain> chain = getEffectChain_l(sessionId);
762 if (chain != 0) {
763 if (type != NULL) {
764 chain->setEffectSuspended_l(type, suspend);
765 } else {
766 chain->setEffectSuspendedAll_l(suspend);
767 }
768 }
769
770 updateSuspendedSessions_l(type, suspend, sessionId);
771 }
772
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)773 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
774 {
775 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
776 if (index < 0) {
777 return;
778 }
779
780 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
781 mSuspendedSessions.valueAt(index);
782
783 for (size_t i = 0; i < sessionEffects.size(); i++) {
784 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
785 for (int j = 0; j < desc->mRefCount; j++) {
786 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
787 chain->setEffectSuspendedAll_l(true);
788 } else {
789 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
790 desc->mType.timeLow);
791 chain->setEffectSuspended_l(&desc->mType, true);
792 }
793 }
794 }
795 }
796
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,int sessionId)797 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
798 bool suspend,
799 int sessionId)
800 {
801 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
802
803 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
804
805 if (suspend) {
806 if (index >= 0) {
807 sessionEffects = mSuspendedSessions.valueAt(index);
808 } else {
809 mSuspendedSessions.add(sessionId, sessionEffects);
810 }
811 } else {
812 if (index < 0) {
813 return;
814 }
815 sessionEffects = mSuspendedSessions.valueAt(index);
816 }
817
818
819 int key = EffectChain::kKeyForSuspendAll;
820 if (type != NULL) {
821 key = type->timeLow;
822 }
823 index = sessionEffects.indexOfKey(key);
824
825 sp<SuspendedSessionDesc> desc;
826 if (suspend) {
827 if (index >= 0) {
828 desc = sessionEffects.valueAt(index);
829 } else {
830 desc = new SuspendedSessionDesc();
831 if (type != NULL) {
832 desc->mType = *type;
833 }
834 sessionEffects.add(key, desc);
835 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
836 }
837 desc->mRefCount++;
838 } else {
839 if (index < 0) {
840 return;
841 }
842 desc = sessionEffects.valueAt(index);
843 if (--desc->mRefCount == 0) {
844 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
845 sessionEffects.removeItemsAt(index);
846 if (sessionEffects.isEmpty()) {
847 ALOGV("updateSuspendedSessions_l() restore removing session %d",
848 sessionId);
849 mSuspendedSessions.removeItem(sessionId);
850 }
851 }
852 }
853 if (!sessionEffects.isEmpty()) {
854 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
855 }
856 }
857
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,int sessionId)858 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
859 bool enabled,
860 int sessionId)
861 {
862 Mutex::Autolock _l(mLock);
863 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
864 }
865
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,int sessionId)866 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
867 bool enabled,
868 int sessionId)
869 {
870 if (mType != RECORD) {
871 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
872 // another session. This gives the priority to well behaved effect control panels
873 // and applications not using global effects.
874 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
875 // global effects
876 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
877 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
878 }
879 }
880
881 sp<EffectChain> chain = getEffectChain_l(sessionId);
882 if (chain != 0) {
883 chain->checkSuspendOnEffectEnabled(effect, enabled);
884 }
885 }
886
887 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,int sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)888 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
889 const sp<AudioFlinger::Client>& client,
890 const sp<IEffectClient>& effectClient,
891 int32_t priority,
892 int sessionId,
893 effect_descriptor_t *desc,
894 int *enabled,
895 status_t *status)
896 {
897 sp<EffectModule> effect;
898 sp<EffectHandle> handle;
899 status_t lStatus;
900 sp<EffectChain> chain;
901 bool chainCreated = false;
902 bool effectCreated = false;
903 bool effectRegistered = false;
904
905 lStatus = initCheck();
906 if (lStatus != NO_ERROR) {
907 ALOGW("createEffect_l() Audio driver not initialized.");
908 goto Exit;
909 }
910
911 // Reject any effect on Direct output threads for now, since the format of
912 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
913 if (mType == DIRECT) {
914 ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
915 desc->name, mName);
916 lStatus = BAD_VALUE;
917 goto Exit;
918 }
919
920 // Reject any effect on mixer or duplicating multichannel sinks.
921 // TODO: fix both format and multichannel issues with effects.
922 if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
923 ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
924 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
925 lStatus = BAD_VALUE;
926 goto Exit;
927 }
928
929 // Allow global effects only on offloaded and mixer threads
930 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
931 switch (mType) {
932 case MIXER:
933 case OFFLOAD:
934 break;
935 case DIRECT:
936 case DUPLICATING:
937 case RECORD:
938 default:
939 ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mName);
940 lStatus = BAD_VALUE;
941 goto Exit;
942 }
943 }
944
945 // Only Pre processor effects are allowed on input threads and only on input threads
946 if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
947 ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
948 desc->name, desc->flags, mType);
949 lStatus = BAD_VALUE;
950 goto Exit;
951 }
952
953 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
954
955 { // scope for mLock
956 Mutex::Autolock _l(mLock);
957
958 // check for existing effect chain with the requested audio session
959 chain = getEffectChain_l(sessionId);
960 if (chain == 0) {
961 // create a new chain for this session
962 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
963 chain = new EffectChain(this, sessionId);
964 addEffectChain_l(chain);
965 chain->setStrategy(getStrategyForSession_l(sessionId));
966 chainCreated = true;
967 } else {
968 effect = chain->getEffectFromDesc_l(desc);
969 }
970
971 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
972
973 if (effect == 0) {
974 int id = mAudioFlinger->nextUniqueId();
975 // Check CPU and memory usage
976 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
977 if (lStatus != NO_ERROR) {
978 goto Exit;
979 }
980 effectRegistered = true;
981 // create a new effect module if none present in the chain
982 effect = new EffectModule(this, chain, desc, id, sessionId);
983 lStatus = effect->status();
984 if (lStatus != NO_ERROR) {
985 goto Exit;
986 }
987 effect->setOffloaded(mType == OFFLOAD, mId);
988
989 lStatus = chain->addEffect_l(effect);
990 if (lStatus != NO_ERROR) {
991 goto Exit;
992 }
993 effectCreated = true;
994
995 effect->setDevice(mOutDevice);
996 effect->setDevice(mInDevice);
997 effect->setMode(mAudioFlinger->getMode());
998 effect->setAudioSource(mAudioSource);
999 }
1000 // create effect handle and connect it to effect module
1001 handle = new EffectHandle(effect, client, effectClient, priority);
1002 lStatus = handle->initCheck();
1003 if (lStatus == OK) {
1004 lStatus = effect->addHandle(handle.get());
1005 }
1006 if (enabled != NULL) {
1007 *enabled = (int)effect->isEnabled();
1008 }
1009 }
1010
1011 Exit:
1012 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1013 Mutex::Autolock _l(mLock);
1014 if (effectCreated) {
1015 chain->removeEffect_l(effect);
1016 }
1017 if (effectRegistered) {
1018 AudioSystem::unregisterEffect(effect->id());
1019 }
1020 if (chainCreated) {
1021 removeEffectChain_l(chain);
1022 }
1023 handle.clear();
1024 }
1025
1026 *status = lStatus;
1027 return handle;
1028 }
1029
getEffect(int sessionId,int effectId)1030 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1031 {
1032 Mutex::Autolock _l(mLock);
1033 return getEffect_l(sessionId, effectId);
1034 }
1035
getEffect_l(int sessionId,int effectId)1036 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1037 {
1038 sp<EffectChain> chain = getEffectChain_l(sessionId);
1039 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1040 }
1041
1042 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1043 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1044 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1045 {
1046 // check for existing effect chain with the requested audio session
1047 int sessionId = effect->sessionId();
1048 sp<EffectChain> chain = getEffectChain_l(sessionId);
1049 bool chainCreated = false;
1050
1051 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1052 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1053 this, effect->desc().name, effect->desc().flags);
1054
1055 if (chain == 0) {
1056 // create a new chain for this session
1057 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1058 chain = new EffectChain(this, sessionId);
1059 addEffectChain_l(chain);
1060 chain->setStrategy(getStrategyForSession_l(sessionId));
1061 chainCreated = true;
1062 }
1063 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1064
1065 if (chain->getEffectFromId_l(effect->id()) != 0) {
1066 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1067 this, effect->desc().name, chain.get());
1068 return BAD_VALUE;
1069 }
1070
1071 effect->setOffloaded(mType == OFFLOAD, mId);
1072
1073 status_t status = chain->addEffect_l(effect);
1074 if (status != NO_ERROR) {
1075 if (chainCreated) {
1076 removeEffectChain_l(chain);
1077 }
1078 return status;
1079 }
1080
1081 effect->setDevice(mOutDevice);
1082 effect->setDevice(mInDevice);
1083 effect->setMode(mAudioFlinger->getMode());
1084 effect->setAudioSource(mAudioSource);
1085 return NO_ERROR;
1086 }
1087
removeEffect_l(const sp<EffectModule> & effect)1088 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1089
1090 ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1091 effect_descriptor_t desc = effect->desc();
1092 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1093 detachAuxEffect_l(effect->id());
1094 }
1095
1096 sp<EffectChain> chain = effect->chain().promote();
1097 if (chain != 0) {
1098 // remove effect chain if removing last effect
1099 if (chain->removeEffect_l(effect) == 0) {
1100 removeEffectChain_l(chain);
1101 }
1102 } else {
1103 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1104 }
1105 }
1106
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1107 void AudioFlinger::ThreadBase::lockEffectChains_l(
1108 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1109 {
1110 effectChains = mEffectChains;
1111 for (size_t i = 0; i < mEffectChains.size(); i++) {
1112 mEffectChains[i]->lock();
1113 }
1114 }
1115
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1116 void AudioFlinger::ThreadBase::unlockEffectChains(
1117 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1118 {
1119 for (size_t i = 0; i < effectChains.size(); i++) {
1120 effectChains[i]->unlock();
1121 }
1122 }
1123
getEffectChain(int sessionId)1124 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1125 {
1126 Mutex::Autolock _l(mLock);
1127 return getEffectChain_l(sessionId);
1128 }
1129
getEffectChain_l(int sessionId) const1130 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1131 {
1132 size_t size = mEffectChains.size();
1133 for (size_t i = 0; i < size; i++) {
1134 if (mEffectChains[i]->sessionId() == sessionId) {
1135 return mEffectChains[i];
1136 }
1137 }
1138 return 0;
1139 }
1140
setMode(audio_mode_t mode)1141 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1142 {
1143 Mutex::Autolock _l(mLock);
1144 size_t size = mEffectChains.size();
1145 for (size_t i = 0; i < size; i++) {
1146 mEffectChains[i]->setMode_l(mode);
1147 }
1148 }
1149
getAudioPortConfig(struct audio_port_config * config)1150 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1151 {
1152 config->type = AUDIO_PORT_TYPE_MIX;
1153 config->ext.mix.handle = mId;
1154 config->sample_rate = mSampleRate;
1155 config->format = mFormat;
1156 config->channel_mask = mChannelMask;
1157 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1158 AUDIO_PORT_CONFIG_FORMAT;
1159 }
1160
1161
1162 // ----------------------------------------------------------------------------
1163 // Playback
1164 // ----------------------------------------------------------------------------
1165
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)1166 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1167 AudioStreamOut* output,
1168 audio_io_handle_t id,
1169 audio_devices_t device,
1170 type_t type)
1171 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1172 mNormalFrameCount(0), mSinkBuffer(NULL),
1173 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1174 mMixerBuffer(NULL),
1175 mMixerBufferSize(0),
1176 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1177 mMixerBufferValid(false),
1178 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1179 mEffectBuffer(NULL),
1180 mEffectBufferSize(0),
1181 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1182 mEffectBufferValid(false),
1183 mSuspended(0), mBytesWritten(0),
1184 mActiveTracksGeneration(0),
1185 // mStreamTypes[] initialized in constructor body
1186 mOutput(output),
1187 mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1188 mMixerStatus(MIXER_IDLE),
1189 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1190 standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1191 mBytesRemaining(0),
1192 mCurrentWriteLength(0),
1193 mUseAsyncWrite(false),
1194 mWriteAckSequence(0),
1195 mDrainSequence(0),
1196 mSignalPending(false),
1197 mScreenState(AudioFlinger::mScreenState),
1198 // index 0 is reserved for normal mixer's submix
1199 mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1200 // mLatchD, mLatchQ,
1201 mLatchDValid(false), mLatchQValid(false)
1202 {
1203 snprintf(mName, kNameLength, "AudioOut_%X", id);
1204 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
1205
1206 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1207 // it would be safer to explicitly pass initial masterVolume/masterMute as
1208 // parameter.
1209 //
1210 // If the HAL we are using has support for master volume or master mute,
1211 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1212 // and the mute set to false).
1213 mMasterVolume = audioFlinger->masterVolume_l();
1214 mMasterMute = audioFlinger->masterMute_l();
1215 if (mOutput && mOutput->audioHwDev) {
1216 if (mOutput->audioHwDev->canSetMasterVolume()) {
1217 mMasterVolume = 1.0;
1218 }
1219
1220 if (mOutput->audioHwDev->canSetMasterMute()) {
1221 mMasterMute = false;
1222 }
1223 }
1224
1225 readOutputParameters_l();
1226
1227 // mStreamTypes[AUDIO_STREAM_CNT] is initialized by stream_type_t default constructor
1228 // There is no AUDIO_STREAM_MIN, and ++ operator does not compile
1229 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1230 stream = (audio_stream_type_t) (stream + 1)) {
1231 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1232 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1233 }
1234 // mStreamTypes[AUDIO_STREAM_CNT] exists but isn't explicitly initialized here,
1235 // because mAudioFlinger doesn't have one to copy from
1236 }
1237
~PlaybackThread()1238 AudioFlinger::PlaybackThread::~PlaybackThread()
1239 {
1240 mAudioFlinger->unregisterWriter(mNBLogWriter);
1241 free(mSinkBuffer);
1242 free(mMixerBuffer);
1243 free(mEffectBuffer);
1244 }
1245
dump(int fd,const Vector<String16> & args)1246 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1247 {
1248 dumpInternals(fd, args);
1249 dumpTracks(fd, args);
1250 dumpEffectChains(fd, args);
1251 }
1252
dumpTracks(int fd,const Vector<String16> & args __unused)1253 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1254 {
1255 const size_t SIZE = 256;
1256 char buffer[SIZE];
1257 String8 result;
1258
1259 result.appendFormat(" Stream volumes in dB: ");
1260 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1261 const stream_type_t *st = &mStreamTypes[i];
1262 if (i > 0) {
1263 result.appendFormat(", ");
1264 }
1265 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1266 if (st->mute) {
1267 result.append("M");
1268 }
1269 }
1270 result.append("\n");
1271 write(fd, result.string(), result.length());
1272 result.clear();
1273
1274 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1275 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1276 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1277 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1278
1279 size_t numtracks = mTracks.size();
1280 size_t numactive = mActiveTracks.size();
1281 dprintf(fd, " %d Tracks", numtracks);
1282 size_t numactiveseen = 0;
1283 if (numtracks) {
1284 dprintf(fd, " of which %d are active\n", numactive);
1285 Track::appendDumpHeader(result);
1286 for (size_t i = 0; i < numtracks; ++i) {
1287 sp<Track> track = mTracks[i];
1288 if (track != 0) {
1289 bool active = mActiveTracks.indexOf(track) >= 0;
1290 if (active) {
1291 numactiveseen++;
1292 }
1293 track->dump(buffer, SIZE, active);
1294 result.append(buffer);
1295 }
1296 }
1297 } else {
1298 result.append("\n");
1299 }
1300 if (numactiveseen != numactive) {
1301 // some tracks in the active list were not in the tracks list
1302 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1303 " not in the track list\n");
1304 result.append(buffer);
1305 Track::appendDumpHeader(result);
1306 for (size_t i = 0; i < numactive; ++i) {
1307 sp<Track> track = mActiveTracks[i].promote();
1308 if (track != 0 && mTracks.indexOf(track) < 0) {
1309 track->dump(buffer, SIZE, true);
1310 result.append(buffer);
1311 }
1312 }
1313 }
1314
1315 write(fd, result.string(), result.size());
1316 }
1317
dumpInternals(int fd,const Vector<String16> & args)1318 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1319 {
1320 dprintf(fd, "\nOutput thread %p:\n", this);
1321 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1322 dprintf(fd, " Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1323 dprintf(fd, " Total writes: %d\n", mNumWrites);
1324 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1325 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1326 dprintf(fd, " Suspend count: %d\n", mSuspended);
1327 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1328 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1329 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1330 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1331
1332 dumpBase(fd, args);
1333 }
1334
1335 // Thread virtuals
1336
onFirstRef()1337 void AudioFlinger::PlaybackThread::onFirstRef()
1338 {
1339 run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
1340 }
1341
1342 // ThreadBase virtuals
preExit()1343 void AudioFlinger::PlaybackThread::preExit()
1344 {
1345 ALOGV(" preExit()");
1346 // FIXME this is using hard-coded strings but in the future, this functionality will be
1347 // converted to use audio HAL extensions required to support tunneling
1348 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1349 }
1350
1351 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,int sessionId,IAudioFlinger::track_flags_t * flags,pid_t tid,int uid,status_t * status)1352 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1353 const sp<AudioFlinger::Client>& client,
1354 audio_stream_type_t streamType,
1355 uint32_t sampleRate,
1356 audio_format_t format,
1357 audio_channel_mask_t channelMask,
1358 size_t *pFrameCount,
1359 const sp<IMemory>& sharedBuffer,
1360 int sessionId,
1361 IAudioFlinger::track_flags_t *flags,
1362 pid_t tid,
1363 int uid,
1364 status_t *status)
1365 {
1366 size_t frameCount = *pFrameCount;
1367 sp<Track> track;
1368 status_t lStatus;
1369
1370 bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1371
1372 // client expresses a preference for FAST, but we get the final say
1373 if (*flags & IAudioFlinger::TRACK_FAST) {
1374 if (
1375 // not timed
1376 (!isTimed) &&
1377 // either of these use cases:
1378 (
1379 // use case 1: shared buffer with any frame count
1380 (
1381 (sharedBuffer != 0)
1382 ) ||
1383 // use case 2: callback handler and frame count is default or at least as large as HAL
1384 (
1385 (tid != -1) &&
1386 ((frameCount == 0) ||
1387 (frameCount >= mFrameCount))
1388 )
1389 ) &&
1390 // PCM data
1391 audio_is_linear_pcm(format) &&
1392 // identical channel mask to sink, or mono in and stereo sink
1393 (channelMask == mChannelMask ||
1394 (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1395 mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1396 // hardware sample rate
1397 (sampleRate == mSampleRate) &&
1398 // normal mixer has an associated fast mixer
1399 hasFastMixer() &&
1400 // there are sufficient fast track slots available
1401 (mFastTrackAvailMask != 0)
1402 // FIXME test that MixerThread for this fast track has a capable output HAL
1403 // FIXME add a permission test also?
1404 ) {
1405 // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1406 if (frameCount == 0) {
1407 // read the fast track multiplier property the first time it is needed
1408 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1409 if (ok != 0) {
1410 ALOGE("%s pthread_once failed: %d", __func__, ok);
1411 }
1412 frameCount = mFrameCount * sFastTrackMultiplier;
1413 }
1414 ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1415 frameCount, mFrameCount);
1416 } else {
1417 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1418 "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1419 "sampleRate=%u mSampleRate=%u "
1420 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1421 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1422 audio_is_linear_pcm(format),
1423 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1424 *flags &= ~IAudioFlinger::TRACK_FAST;
1425 // For compatibility with AudioTrack calculation, buffer depth is forced
1426 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1427 // This is probably too conservative, but legacy application code may depend on it.
1428 // If you change this calculation, also review the start threshold which is related.
1429 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1430 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1431 if (minBufCount < 2) {
1432 minBufCount = 2;
1433 }
1434 size_t minFrameCount = mNormalFrameCount * minBufCount;
1435 if (frameCount < minFrameCount) {
1436 frameCount = minFrameCount;
1437 }
1438 }
1439 }
1440 *pFrameCount = frameCount;
1441
1442 switch (mType) {
1443
1444 case DIRECT:
1445 if (audio_is_linear_pcm(format)) {
1446 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1447 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1448 "for output %p with format %#x",
1449 sampleRate, format, channelMask, mOutput, mFormat);
1450 lStatus = BAD_VALUE;
1451 goto Exit;
1452 }
1453 }
1454 break;
1455
1456 case OFFLOAD:
1457 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1458 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1459 "for output %p with format %#x",
1460 sampleRate, format, channelMask, mOutput, mFormat);
1461 lStatus = BAD_VALUE;
1462 goto Exit;
1463 }
1464 break;
1465
1466 default:
1467 if (!audio_is_linear_pcm(format)) {
1468 ALOGE("createTrack_l() Bad parameter: format %#x \""
1469 "for output %p with format %#x",
1470 format, mOutput, mFormat);
1471 lStatus = BAD_VALUE;
1472 goto Exit;
1473 }
1474 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1475 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1476 lStatus = BAD_VALUE;
1477 goto Exit;
1478 }
1479 break;
1480
1481 }
1482
1483 lStatus = initCheck();
1484 if (lStatus != NO_ERROR) {
1485 ALOGE("createTrack_l() audio driver not initialized");
1486 goto Exit;
1487 }
1488
1489 { // scope for mLock
1490 Mutex::Autolock _l(mLock);
1491
1492 // all tracks in same audio session must share the same routing strategy otherwise
1493 // conflicts will happen when tracks are moved from one output to another by audio policy
1494 // manager
1495 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1496 for (size_t i = 0; i < mTracks.size(); ++i) {
1497 sp<Track> t = mTracks[i];
1498 if (t != 0 && t->isExternalTrack()) {
1499 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1500 if (sessionId == t->sessionId() && strategy != actual) {
1501 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1502 strategy, actual);
1503 lStatus = BAD_VALUE;
1504 goto Exit;
1505 }
1506 }
1507 }
1508
1509 if (!isTimed) {
1510 track = new Track(this, client, streamType, sampleRate, format,
1511 channelMask, frameCount, NULL, sharedBuffer,
1512 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1513 } else {
1514 track = TimedTrack::create(this, client, streamType, sampleRate, format,
1515 channelMask, frameCount, sharedBuffer, sessionId, uid);
1516 }
1517
1518 // new Track always returns non-NULL,
1519 // but TimedTrack::create() is a factory that could fail by returning NULL
1520 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1521 if (lStatus != NO_ERROR) {
1522 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1523 // track must be cleared from the caller as the caller has the AF lock
1524 goto Exit;
1525 }
1526 mTracks.add(track);
1527
1528 sp<EffectChain> chain = getEffectChain_l(sessionId);
1529 if (chain != 0) {
1530 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1531 track->setMainBuffer(chain->inBuffer());
1532 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1533 chain->incTrackCnt();
1534 }
1535
1536 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1537 pid_t callingPid = IPCThreadState::self()->getCallingPid();
1538 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1539 // so ask activity manager to do this on our behalf
1540 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1541 }
1542 }
1543
1544 lStatus = NO_ERROR;
1545
1546 Exit:
1547 *status = lStatus;
1548 return track;
1549 }
1550
correctLatency_l(uint32_t latency) const1551 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1552 {
1553 return latency;
1554 }
1555
latency() const1556 uint32_t AudioFlinger::PlaybackThread::latency() const
1557 {
1558 Mutex::Autolock _l(mLock);
1559 return latency_l();
1560 }
latency_l() const1561 uint32_t AudioFlinger::PlaybackThread::latency_l() const
1562 {
1563 if (initCheck() == NO_ERROR) {
1564 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1565 } else {
1566 return 0;
1567 }
1568 }
1569
setMasterVolume(float value)1570 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1571 {
1572 Mutex::Autolock _l(mLock);
1573 // Don't apply master volume in SW if our HAL can do it for us.
1574 if (mOutput && mOutput->audioHwDev &&
1575 mOutput->audioHwDev->canSetMasterVolume()) {
1576 mMasterVolume = 1.0;
1577 } else {
1578 mMasterVolume = value;
1579 }
1580 }
1581
setMasterMute(bool muted)1582 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1583 {
1584 Mutex::Autolock _l(mLock);
1585 // Don't apply master mute in SW if our HAL can do it for us.
1586 if (mOutput && mOutput->audioHwDev &&
1587 mOutput->audioHwDev->canSetMasterMute()) {
1588 mMasterMute = false;
1589 } else {
1590 mMasterMute = muted;
1591 }
1592 }
1593
setStreamVolume(audio_stream_type_t stream,float value)1594 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1595 {
1596 Mutex::Autolock _l(mLock);
1597 mStreamTypes[stream].volume = value;
1598 broadcast_l();
1599 }
1600
setStreamMute(audio_stream_type_t stream,bool muted)1601 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1602 {
1603 Mutex::Autolock _l(mLock);
1604 mStreamTypes[stream].mute = muted;
1605 broadcast_l();
1606 }
1607
streamVolume(audio_stream_type_t stream) const1608 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1609 {
1610 Mutex::Autolock _l(mLock);
1611 return mStreamTypes[stream].volume;
1612 }
1613
1614 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)1615 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1616 {
1617 status_t status = ALREADY_EXISTS;
1618
1619 // set retry count for buffer fill
1620 track->mRetryCount = kMaxTrackStartupRetries;
1621 if (mActiveTracks.indexOf(track) < 0) {
1622 // the track is newly added, make sure it fills up all its
1623 // buffers before playing. This is to ensure the client will
1624 // effectively get the latency it requested.
1625 if (track->isExternalTrack()) {
1626 TrackBase::track_state state = track->mState;
1627 mLock.unlock();
1628 status = AudioSystem::startOutput(mId, track->streamType(), track->sessionId());
1629 mLock.lock();
1630 // abort track was stopped/paused while we released the lock
1631 if (state != track->mState) {
1632 if (status == NO_ERROR) {
1633 mLock.unlock();
1634 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
1635 mLock.lock();
1636 }
1637 return INVALID_OPERATION;
1638 }
1639 // abort if start is rejected by audio policy manager
1640 if (status != NO_ERROR) {
1641 return PERMISSION_DENIED;
1642 }
1643 #ifdef ADD_BATTERY_DATA
1644 // to track the speaker usage
1645 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1646 #endif
1647 }
1648
1649 track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1650 track->mResetDone = false;
1651 track->mPresentationCompleteFrames = 0;
1652 mActiveTracks.add(track);
1653 mWakeLockUids.add(track->uid());
1654 mActiveTracksGeneration++;
1655 mLatestActiveTrack = track;
1656 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1657 if (chain != 0) {
1658 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1659 track->sessionId());
1660 chain->incActiveTrackCnt();
1661 }
1662
1663 status = NO_ERROR;
1664 }
1665
1666 onAddNewTrack_l();
1667 return status;
1668 }
1669
destroyTrack_l(const sp<Track> & track)1670 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1671 {
1672 track->terminate();
1673 // active tracks are removed by threadLoop()
1674 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1675 track->mState = TrackBase::STOPPED;
1676 if (!trackActive) {
1677 removeTrack_l(track);
1678 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1679 track->mState = TrackBase::STOPPING_1;
1680 }
1681
1682 return trackActive;
1683 }
1684
removeTrack_l(const sp<Track> & track)1685 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1686 {
1687 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1688 mTracks.remove(track);
1689 deleteTrackName_l(track->name());
1690 // redundant as track is about to be destroyed, for dumpsys only
1691 track->mName = -1;
1692 if (track->isFastTrack()) {
1693 int index = track->mFastIndex;
1694 ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1695 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1696 mFastTrackAvailMask |= 1 << index;
1697 // redundant as track is about to be destroyed, for dumpsys only
1698 track->mFastIndex = -1;
1699 }
1700 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1701 if (chain != 0) {
1702 chain->decTrackCnt();
1703 }
1704 }
1705
broadcast_l()1706 void AudioFlinger::PlaybackThread::broadcast_l()
1707 {
1708 // Thread could be blocked waiting for async
1709 // so signal it to handle state changes immediately
1710 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1711 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1712 mSignalPending = true;
1713 mWaitWorkCV.broadcast();
1714 }
1715
getParameters(const String8 & keys)1716 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1717 {
1718 Mutex::Autolock _l(mLock);
1719 if (initCheck() != NO_ERROR) {
1720 return String8();
1721 }
1722
1723 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1724 const String8 out_s8(s);
1725 free(s);
1726 return out_s8;
1727 }
1728
audioConfigChanged(int event,int param)1729 void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1730 AudioSystem::OutputDescriptor desc;
1731 void *param2 = NULL;
1732
1733 ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1734 param);
1735
1736 switch (event) {
1737 case AudioSystem::OUTPUT_OPENED:
1738 case AudioSystem::OUTPUT_CONFIG_CHANGED:
1739 desc.channelMask = mChannelMask;
1740 desc.samplingRate = mSampleRate;
1741 desc.format = mFormat;
1742 desc.frameCount = mNormalFrameCount; // FIXME see
1743 // AudioFlinger::frameCount(audio_io_handle_t)
1744 desc.latency = latency_l();
1745 param2 = &desc;
1746 break;
1747
1748 case AudioSystem::STREAM_CONFIG_CHANGED:
1749 param2 = ¶m;
1750 case AudioSystem::OUTPUT_CLOSED:
1751 default:
1752 break;
1753 }
1754 mAudioFlinger->audioConfigChanged(event, mId, param2);
1755 }
1756
writeCallback()1757 void AudioFlinger::PlaybackThread::writeCallback()
1758 {
1759 ALOG_ASSERT(mCallbackThread != 0);
1760 mCallbackThread->resetWriteBlocked();
1761 }
1762
drainCallback()1763 void AudioFlinger::PlaybackThread::drainCallback()
1764 {
1765 ALOG_ASSERT(mCallbackThread != 0);
1766 mCallbackThread->resetDraining();
1767 }
1768
resetWriteBlocked(uint32_t sequence)1769 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1770 {
1771 Mutex::Autolock _l(mLock);
1772 // reject out of sequence requests
1773 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1774 mWriteAckSequence &= ~1;
1775 mWaitWorkCV.signal();
1776 }
1777 }
1778
resetDraining(uint32_t sequence)1779 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1780 {
1781 Mutex::Autolock _l(mLock);
1782 // reject out of sequence requests
1783 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1784 mDrainSequence &= ~1;
1785 mWaitWorkCV.signal();
1786 }
1787 }
1788
1789 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)1790 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1791 void *param __unused,
1792 void *cookie)
1793 {
1794 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1795 ALOGV("asyncCallback() event %d", event);
1796 switch (event) {
1797 case STREAM_CBK_EVENT_WRITE_READY:
1798 me->writeCallback();
1799 break;
1800 case STREAM_CBK_EVENT_DRAIN_READY:
1801 me->drainCallback();
1802 break;
1803 default:
1804 ALOGW("asyncCallback() unknown event %d", event);
1805 break;
1806 }
1807 return 0;
1808 }
1809
readOutputParameters_l()1810 void AudioFlinger::PlaybackThread::readOutputParameters_l()
1811 {
1812 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
1813 mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
1814 mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
1815 if (!audio_is_output_channel(mChannelMask)) {
1816 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
1817 }
1818 if ((mType == MIXER || mType == DUPLICATING)
1819 && !isValidPcmSinkChannelMask(mChannelMask)) {
1820 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
1821 mChannelMask);
1822 }
1823 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
1824 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
1825 mFormat = mHALFormat;
1826 if (!audio_is_valid_format(mFormat)) {
1827 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
1828 }
1829 if ((mType == MIXER || mType == DUPLICATING)
1830 && !isValidPcmSinkFormat(mFormat)) {
1831 LOG_FATAL("HAL format %#x not supported for mixed output",
1832 mFormat);
1833 }
1834 mFrameSize = audio_stream_out_frame_size(mOutput->stream);
1835 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
1836 mFrameCount = mBufferSize / mFrameSize;
1837 if (mFrameCount & 15) {
1838 ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
1839 mFrameCount);
1840 }
1841
1842 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
1843 (mOutput->stream->set_callback != NULL)) {
1844 if (mOutput->stream->set_callback(mOutput->stream,
1845 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
1846 mUseAsyncWrite = true;
1847 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
1848 }
1849 }
1850
1851 // Calculate size of normal sink buffer relative to the HAL output buffer size
1852 double multiplier = 1.0;
1853 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
1854 kUseFastMixer == FastMixer_Dynamic)) {
1855 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
1856 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
1857 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
1858 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
1859 maxNormalFrameCount = maxNormalFrameCount & ~15;
1860 if (maxNormalFrameCount < minNormalFrameCount) {
1861 maxNormalFrameCount = minNormalFrameCount;
1862 }
1863 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
1864 if (multiplier <= 1.0) {
1865 multiplier = 1.0;
1866 } else if (multiplier <= 2.0) {
1867 if (2 * mFrameCount <= maxNormalFrameCount) {
1868 multiplier = 2.0;
1869 } else {
1870 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
1871 }
1872 } else {
1873 // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
1874 // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
1875 // track, but we sometimes have to do this to satisfy the maximum frame count
1876 // constraint)
1877 // FIXME this rounding up should not be done if no HAL SRC
1878 uint32_t truncMult = (uint32_t) multiplier;
1879 if ((truncMult & 1)) {
1880 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
1881 ++truncMult;
1882 }
1883 }
1884 multiplier = (double) truncMult;
1885 }
1886 }
1887 mNormalFrameCount = multiplier * mFrameCount;
1888 // round up to nearest 16 frames to satisfy AudioMixer
1889 if (mType == MIXER || mType == DUPLICATING) {
1890 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
1891 }
1892 ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
1893 mNormalFrameCount);
1894
1895 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
1896 // Originally this was int16_t[] array, need to remove legacy implications.
1897 free(mSinkBuffer);
1898 mSinkBuffer = NULL;
1899 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
1900 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
1901 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
1902 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
1903
1904 // We resize the mMixerBuffer according to the requirements of the sink buffer which
1905 // drives the output.
1906 free(mMixerBuffer);
1907 mMixerBuffer = NULL;
1908 if (mMixerBufferEnabled) {
1909 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
1910 mMixerBufferSize = mNormalFrameCount * mChannelCount
1911 * audio_bytes_per_sample(mMixerBufferFormat);
1912 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
1913 }
1914 free(mEffectBuffer);
1915 mEffectBuffer = NULL;
1916 if (mEffectBufferEnabled) {
1917 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
1918 mEffectBufferSize = mNormalFrameCount * mChannelCount
1919 * audio_bytes_per_sample(mEffectBufferFormat);
1920 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
1921 }
1922
1923 // force reconfiguration of effect chains and engines to take new buffer size and audio
1924 // parameters into account
1925 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
1926 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
1927 // matter.
1928 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
1929 Vector< sp<EffectChain> > effectChains = mEffectChains;
1930 for (size_t i = 0; i < effectChains.size(); i ++) {
1931 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
1932 }
1933 }
1934
1935
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)1936 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
1937 {
1938 if (halFrames == NULL || dspFrames == NULL) {
1939 return BAD_VALUE;
1940 }
1941 Mutex::Autolock _l(mLock);
1942 if (initCheck() != NO_ERROR) {
1943 return INVALID_OPERATION;
1944 }
1945 size_t framesWritten = mBytesWritten / mFrameSize;
1946 *halFrames = framesWritten;
1947
1948 if (isSuspended()) {
1949 // return an estimation of rendered frames when the output is suspended
1950 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
1951 *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
1952 return NO_ERROR;
1953 } else {
1954 status_t status;
1955 uint32_t frames;
1956 status = mOutput->stream->get_render_position(mOutput->stream, &frames);
1957 *dspFrames = (size_t)frames;
1958 return status;
1959 }
1960 }
1961
hasAudioSession(int sessionId) const1962 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
1963 {
1964 Mutex::Autolock _l(mLock);
1965 uint32_t result = 0;
1966 if (getEffectChain_l(sessionId) != 0) {
1967 result = EFFECT_SESSION;
1968 }
1969
1970 for (size_t i = 0; i < mTracks.size(); ++i) {
1971 sp<Track> track = mTracks[i];
1972 if (sessionId == track->sessionId() && !track->isInvalid()) {
1973 result |= TRACK_SESSION;
1974 break;
1975 }
1976 }
1977
1978 return result;
1979 }
1980
getStrategyForSession_l(int sessionId)1981 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
1982 {
1983 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
1984 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
1985 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1986 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
1987 }
1988 for (size_t i = 0; i < mTracks.size(); i++) {
1989 sp<Track> track = mTracks[i];
1990 if (sessionId == track->sessionId() && !track->isInvalid()) {
1991 return AudioSystem::getStrategyForStream(track->streamType());
1992 }
1993 }
1994 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
1995 }
1996
1997
getOutput() const1998 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
1999 {
2000 Mutex::Autolock _l(mLock);
2001 return mOutput;
2002 }
2003
clearOutput()2004 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2005 {
2006 Mutex::Autolock _l(mLock);
2007 AudioStreamOut *output = mOutput;
2008 mOutput = NULL;
2009 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2010 // must push a NULL and wait for ack
2011 mOutputSink.clear();
2012 mPipeSink.clear();
2013 mNormalSink.clear();
2014 return output;
2015 }
2016
2017 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2018 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2019 {
2020 if (mOutput == NULL) {
2021 return NULL;
2022 }
2023 return &mOutput->stream->common;
2024 }
2025
activeSleepTimeUs() const2026 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2027 {
2028 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2029 }
2030
setSyncEvent(const sp<SyncEvent> & event)2031 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2032 {
2033 if (!isValidSyncEvent(event)) {
2034 return BAD_VALUE;
2035 }
2036
2037 Mutex::Autolock _l(mLock);
2038
2039 for (size_t i = 0; i < mTracks.size(); ++i) {
2040 sp<Track> track = mTracks[i];
2041 if (event->triggerSession() == track->sessionId()) {
2042 (void) track->setSyncEvent(event);
2043 return NO_ERROR;
2044 }
2045 }
2046
2047 return NAME_NOT_FOUND;
2048 }
2049
isValidSyncEvent(const sp<SyncEvent> & event) const2050 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2051 {
2052 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2053 }
2054
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2055 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2056 const Vector< sp<Track> >& tracksToRemove)
2057 {
2058 size_t count = tracksToRemove.size();
2059 if (count > 0) {
2060 for (size_t i = 0 ; i < count ; i++) {
2061 const sp<Track>& track = tracksToRemove.itemAt(i);
2062 if (track->isExternalTrack()) {
2063 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
2064 #ifdef ADD_BATTERY_DATA
2065 // to track the speaker usage
2066 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2067 #endif
2068 if (track->isTerminated()) {
2069 AudioSystem::releaseOutput(mId);
2070 }
2071 }
2072 }
2073 }
2074 }
2075
checkSilentMode_l()2076 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2077 {
2078 if (!mMasterMute) {
2079 char value[PROPERTY_VALUE_MAX];
2080 if (property_get("ro.audio.silent", value, "0") > 0) {
2081 char *endptr;
2082 unsigned long ul = strtoul(value, &endptr, 0);
2083 if (*endptr == '\0' && ul != 0) {
2084 ALOGD("Silence is golden");
2085 // The setprop command will not allow a property to be changed after
2086 // the first time it is set, so we don't have to worry about un-muting.
2087 setMasterMute_l(true);
2088 }
2089 }
2090 }
2091 }
2092
2093 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2094 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2095 {
2096 // FIXME rewrite to reduce number of system calls
2097 mLastWriteTime = systemTime();
2098 mInWrite = true;
2099 ssize_t bytesWritten;
2100 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2101
2102 // If an NBAIO sink is present, use it to write the normal mixer's submix
2103 if (mNormalSink != 0) {
2104
2105 const size_t count = mBytesRemaining / mFrameSize;
2106
2107 ATRACE_BEGIN("write");
2108 // update the setpoint when AudioFlinger::mScreenState changes
2109 uint32_t screenState = AudioFlinger::mScreenState;
2110 if (screenState != mScreenState) {
2111 mScreenState = screenState;
2112 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2113 if (pipe != NULL) {
2114 pipe->setAvgFrames((mScreenState & 1) ?
2115 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2116 }
2117 }
2118 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2119 ATRACE_END();
2120 if (framesWritten > 0) {
2121 bytesWritten = framesWritten * mFrameSize;
2122 } else {
2123 bytesWritten = framesWritten;
2124 }
2125 status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2126 if (status == NO_ERROR) {
2127 size_t totalFramesWritten = mNormalSink->framesWritten();
2128 if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2129 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2130 // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2131 mLatchDValid = true;
2132 }
2133 }
2134 // otherwise use the HAL / AudioStreamOut directly
2135 } else {
2136 // Direct output and offload threads
2137
2138 if (mUseAsyncWrite) {
2139 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2140 mWriteAckSequence += 2;
2141 mWriteAckSequence |= 1;
2142 ALOG_ASSERT(mCallbackThread != 0);
2143 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2144 }
2145 // FIXME We should have an implementation of timestamps for direct output threads.
2146 // They are used e.g for multichannel PCM playback over HDMI.
2147 bytesWritten = mOutput->stream->write(mOutput->stream,
2148 (char *)mSinkBuffer + offset, mBytesRemaining);
2149 if (mUseAsyncWrite &&
2150 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2151 // do not wait for async callback in case of error of full write
2152 mWriteAckSequence &= ~1;
2153 ALOG_ASSERT(mCallbackThread != 0);
2154 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2155 }
2156 }
2157
2158 mNumWrites++;
2159 mInWrite = false;
2160 mStandby = false;
2161 return bytesWritten;
2162 }
2163
threadLoop_drain()2164 void AudioFlinger::PlaybackThread::threadLoop_drain()
2165 {
2166 if (mOutput->stream->drain) {
2167 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2168 if (mUseAsyncWrite) {
2169 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2170 mDrainSequence |= 1;
2171 ALOG_ASSERT(mCallbackThread != 0);
2172 mCallbackThread->setDraining(mDrainSequence);
2173 }
2174 mOutput->stream->drain(mOutput->stream,
2175 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2176 : AUDIO_DRAIN_ALL);
2177 }
2178 }
2179
threadLoop_exit()2180 void AudioFlinger::PlaybackThread::threadLoop_exit()
2181 {
2182 // Default implementation has nothing to do
2183 }
2184
2185 /*
2186 The derived values that are cached:
2187 - mSinkBufferSize from frame count * frame size
2188 - activeSleepTime from activeSleepTimeUs()
2189 - idleSleepTime from idleSleepTimeUs()
2190 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2191 - maxPeriod from frame count and sample rate (MIXER only)
2192
2193 The parameters that affect these derived values are:
2194 - frame count
2195 - frame size
2196 - sample rate
2197 - device type: A2DP or not
2198 - device latency
2199 - format: PCM or not
2200 - active sleep time
2201 - idle sleep time
2202 */
2203
cacheParameters_l()2204 void AudioFlinger::PlaybackThread::cacheParameters_l()
2205 {
2206 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2207 activeSleepTime = activeSleepTimeUs();
2208 idleSleepTime = idleSleepTimeUs();
2209 }
2210
invalidateTracks(audio_stream_type_t streamType)2211 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2212 {
2213 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2214 this, streamType, mTracks.size());
2215 Mutex::Autolock _l(mLock);
2216
2217 size_t size = mTracks.size();
2218 for (size_t i = 0; i < size; i++) {
2219 sp<Track> t = mTracks[i];
2220 if (t->streamType() == streamType) {
2221 t->invalidate();
2222 }
2223 }
2224 }
2225
addEffectChain_l(const sp<EffectChain> & chain)2226 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2227 {
2228 int session = chain->sessionId();
2229 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2230 ? mEffectBuffer : mSinkBuffer);
2231 bool ownsBuffer = false;
2232
2233 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2234 if (session > 0) {
2235 // Only one effect chain can be present in direct output thread and it uses
2236 // the sink buffer as input
2237 if (mType != DIRECT) {
2238 size_t numSamples = mNormalFrameCount * mChannelCount;
2239 buffer = new int16_t[numSamples];
2240 memset(buffer, 0, numSamples * sizeof(int16_t));
2241 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2242 ownsBuffer = true;
2243 }
2244
2245 // Attach all tracks with same session ID to this chain.
2246 for (size_t i = 0; i < mTracks.size(); ++i) {
2247 sp<Track> track = mTracks[i];
2248 if (session == track->sessionId()) {
2249 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2250 buffer);
2251 track->setMainBuffer(buffer);
2252 chain->incTrackCnt();
2253 }
2254 }
2255
2256 // indicate all active tracks in the chain
2257 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2258 sp<Track> track = mActiveTracks[i].promote();
2259 if (track == 0) {
2260 continue;
2261 }
2262 if (session == track->sessionId()) {
2263 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2264 chain->incActiveTrackCnt();
2265 }
2266 }
2267 }
2268 chain->setThread(this);
2269 chain->setInBuffer(buffer, ownsBuffer);
2270 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2271 ? mEffectBuffer : mSinkBuffer));
2272 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2273 // chains list in order to be processed last as it contains output stage effects
2274 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2275 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2276 // after track specific effects and before output stage
2277 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2278 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2279 // Effect chain for other sessions are inserted at beginning of effect
2280 // chains list to be processed before output mix effects. Relative order between other
2281 // sessions is not important
2282 size_t size = mEffectChains.size();
2283 size_t i = 0;
2284 for (i = 0; i < size; i++) {
2285 if (mEffectChains[i]->sessionId() < session) {
2286 break;
2287 }
2288 }
2289 mEffectChains.insertAt(chain, i);
2290 checkSuspendOnAddEffectChain_l(chain);
2291
2292 return NO_ERROR;
2293 }
2294
removeEffectChain_l(const sp<EffectChain> & chain)2295 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2296 {
2297 int session = chain->sessionId();
2298
2299 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2300
2301 for (size_t i = 0; i < mEffectChains.size(); i++) {
2302 if (chain == mEffectChains[i]) {
2303 mEffectChains.removeAt(i);
2304 // detach all active tracks from the chain
2305 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2306 sp<Track> track = mActiveTracks[i].promote();
2307 if (track == 0) {
2308 continue;
2309 }
2310 if (session == track->sessionId()) {
2311 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2312 chain.get(), session);
2313 chain->decActiveTrackCnt();
2314 }
2315 }
2316
2317 // detach all tracks with same session ID from this chain
2318 for (size_t i = 0; i < mTracks.size(); ++i) {
2319 sp<Track> track = mTracks[i];
2320 if (session == track->sessionId()) {
2321 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2322 chain->decTrackCnt();
2323 }
2324 }
2325 break;
2326 }
2327 }
2328 return mEffectChains.size();
2329 }
2330
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2331 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2332 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2333 {
2334 Mutex::Autolock _l(mLock);
2335 return attachAuxEffect_l(track, EffectId);
2336 }
2337
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2338 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2339 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2340 {
2341 status_t status = NO_ERROR;
2342
2343 if (EffectId == 0) {
2344 track->setAuxBuffer(0, NULL);
2345 } else {
2346 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2347 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2348 if (effect != 0) {
2349 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2350 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2351 } else {
2352 status = INVALID_OPERATION;
2353 }
2354 } else {
2355 status = BAD_VALUE;
2356 }
2357 }
2358 return status;
2359 }
2360
detachAuxEffect_l(int effectId)2361 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2362 {
2363 for (size_t i = 0; i < mTracks.size(); ++i) {
2364 sp<Track> track = mTracks[i];
2365 if (track->auxEffectId() == effectId) {
2366 attachAuxEffect_l(track, 0);
2367 }
2368 }
2369 }
2370
threadLoop()2371 bool AudioFlinger::PlaybackThread::threadLoop()
2372 {
2373 Vector< sp<Track> > tracksToRemove;
2374
2375 standbyTime = systemTime();
2376
2377 // MIXER
2378 nsecs_t lastWarning = 0;
2379
2380 // DUPLICATING
2381 // FIXME could this be made local to while loop?
2382 writeFrames = 0;
2383
2384 int lastGeneration = 0;
2385
2386 cacheParameters_l();
2387 sleepTime = idleSleepTime;
2388
2389 if (mType == MIXER) {
2390 sleepTimeShift = 0;
2391 }
2392
2393 CpuStats cpuStats;
2394 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2395
2396 acquireWakeLock();
2397
2398 // mNBLogWriter->log can only be called while thread mutex mLock is held.
2399 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2400 // and then that string will be logged at the next convenient opportunity.
2401 const char *logString = NULL;
2402
2403 checkSilentMode_l();
2404
2405 while (!exitPending())
2406 {
2407 cpuStats.sample(myName);
2408
2409 Vector< sp<EffectChain> > effectChains;
2410
2411 { // scope for mLock
2412
2413 Mutex::Autolock _l(mLock);
2414
2415 processConfigEvents_l();
2416
2417 if (logString != NULL) {
2418 mNBLogWriter->logTimestamp();
2419 mNBLogWriter->log(logString);
2420 logString = NULL;
2421 }
2422
2423 // Gather the framesReleased counters for all active tracks,
2424 // and latch them atomically with the timestamp.
2425 // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2426 mLatchD.mFramesReleased.clear();
2427 size_t size = mActiveTracks.size();
2428 for (size_t i = 0; i < size; i++) {
2429 sp<Track> t = mActiveTracks[i].promote();
2430 if (t != 0) {
2431 mLatchD.mFramesReleased.add(t.get(),
2432 t->mAudioTrackServerProxy->framesReleased());
2433 }
2434 }
2435 if (mLatchDValid) {
2436 mLatchQ = mLatchD;
2437 mLatchDValid = false;
2438 mLatchQValid = true;
2439 }
2440
2441 saveOutputTracks();
2442 if (mSignalPending) {
2443 // A signal was raised while we were unlocked
2444 mSignalPending = false;
2445 } else if (waitingAsyncCallback_l()) {
2446 if (exitPending()) {
2447 break;
2448 }
2449 releaseWakeLock_l();
2450 mWakeLockUids.clear();
2451 mActiveTracksGeneration++;
2452 ALOGV("wait async completion");
2453 mWaitWorkCV.wait(mLock);
2454 ALOGV("async completion/wake");
2455 acquireWakeLock_l();
2456 standbyTime = systemTime() + standbyDelay;
2457 sleepTime = 0;
2458
2459 continue;
2460 }
2461 if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2462 isSuspended()) {
2463 // put audio hardware into standby after short delay
2464 if (shouldStandby_l()) {
2465
2466 threadLoop_standby();
2467
2468 mStandby = true;
2469 }
2470
2471 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2472 // we're about to wait, flush the binder command buffer
2473 IPCThreadState::self()->flushCommands();
2474
2475 clearOutputTracks();
2476
2477 if (exitPending()) {
2478 break;
2479 }
2480
2481 releaseWakeLock_l();
2482 mWakeLockUids.clear();
2483 mActiveTracksGeneration++;
2484 // wait until we have something to do...
2485 ALOGV("%s going to sleep", myName.string());
2486 mWaitWorkCV.wait(mLock);
2487 ALOGV("%s waking up", myName.string());
2488 acquireWakeLock_l();
2489
2490 mMixerStatus = MIXER_IDLE;
2491 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2492 mBytesWritten = 0;
2493 mBytesRemaining = 0;
2494 checkSilentMode_l();
2495
2496 standbyTime = systemTime() + standbyDelay;
2497 sleepTime = idleSleepTime;
2498 if (mType == MIXER) {
2499 sleepTimeShift = 0;
2500 }
2501
2502 continue;
2503 }
2504 }
2505 // mMixerStatusIgnoringFastTracks is also updated internally
2506 mMixerStatus = prepareTracks_l(&tracksToRemove);
2507
2508 // compare with previously applied list
2509 if (lastGeneration != mActiveTracksGeneration) {
2510 // update wakelock
2511 updateWakeLockUids_l(mWakeLockUids);
2512 lastGeneration = mActiveTracksGeneration;
2513 }
2514
2515 // prevent any changes in effect chain list and in each effect chain
2516 // during mixing and effect process as the audio buffers could be deleted
2517 // or modified if an effect is created or deleted
2518 lockEffectChains_l(effectChains);
2519 } // mLock scope ends
2520
2521 if (mBytesRemaining == 0) {
2522 mCurrentWriteLength = 0;
2523 if (mMixerStatus == MIXER_TRACKS_READY) {
2524 // threadLoop_mix() sets mCurrentWriteLength
2525 threadLoop_mix();
2526 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2527 && (mMixerStatus != MIXER_DRAIN_ALL)) {
2528 // threadLoop_sleepTime sets sleepTime to 0 if data
2529 // must be written to HAL
2530 threadLoop_sleepTime();
2531 if (sleepTime == 0) {
2532 mCurrentWriteLength = mSinkBufferSize;
2533 }
2534 }
2535 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2536 // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2537 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2538 // or mSinkBuffer (if there are no effects).
2539 //
2540 // This is done pre-effects computation; if effects change to
2541 // support higher precision, this needs to move.
2542 //
2543 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2544 // TODO use sleepTime == 0 as an additional condition.
2545 if (mMixerBufferValid) {
2546 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2547 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2548
2549 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2550 mNormalFrameCount * mChannelCount);
2551 }
2552
2553 mBytesRemaining = mCurrentWriteLength;
2554 if (isSuspended()) {
2555 sleepTime = suspendSleepTimeUs();
2556 // simulate write to HAL when suspended
2557 mBytesWritten += mSinkBufferSize;
2558 mBytesRemaining = 0;
2559 }
2560
2561 // only process effects if we're going to write
2562 if (sleepTime == 0 && mType != OFFLOAD) {
2563 for (size_t i = 0; i < effectChains.size(); i ++) {
2564 effectChains[i]->process_l();
2565 }
2566 }
2567 }
2568 // Process effect chains for offloaded thread even if no audio
2569 // was read from audio track: process only updates effect state
2570 // and thus does have to be synchronized with audio writes but may have
2571 // to be called while waiting for async write callback
2572 if (mType == OFFLOAD) {
2573 for (size_t i = 0; i < effectChains.size(); i ++) {
2574 effectChains[i]->process_l();
2575 }
2576 }
2577
2578 // Only if the Effects buffer is enabled and there is data in the
2579 // Effects buffer (buffer valid), we need to
2580 // copy into the sink buffer.
2581 // TODO use sleepTime == 0 as an additional condition.
2582 if (mEffectBufferValid) {
2583 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2584 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2585 mNormalFrameCount * mChannelCount);
2586 }
2587
2588 // enable changes in effect chain
2589 unlockEffectChains(effectChains);
2590
2591 if (!waitingAsyncCallback()) {
2592 // sleepTime == 0 means we must write to audio hardware
2593 if (sleepTime == 0) {
2594 if (mBytesRemaining) {
2595 ssize_t ret = threadLoop_write();
2596 if (ret < 0) {
2597 mBytesRemaining = 0;
2598 } else {
2599 mBytesWritten += ret;
2600 mBytesRemaining -= ret;
2601 }
2602 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2603 (mMixerStatus == MIXER_DRAIN_ALL)) {
2604 threadLoop_drain();
2605 }
2606 if (mType == MIXER) {
2607 // write blocked detection
2608 nsecs_t now = systemTime();
2609 nsecs_t delta = now - mLastWriteTime;
2610 if (!mStandby && delta > maxPeriod) {
2611 mNumDelayedWrites++;
2612 if ((now - lastWarning) > kWarningThrottleNs) {
2613 ATRACE_NAME("underrun");
2614 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2615 ns2ms(delta), mNumDelayedWrites, this);
2616 lastWarning = now;
2617 }
2618 }
2619 }
2620
2621 } else {
2622 usleep(sleepTime);
2623 }
2624 }
2625
2626 // Finally let go of removed track(s), without the lock held
2627 // since we can't guarantee the destructors won't acquire that
2628 // same lock. This will also mutate and push a new fast mixer state.
2629 threadLoop_removeTracks(tracksToRemove);
2630 tracksToRemove.clear();
2631
2632 // FIXME I don't understand the need for this here;
2633 // it was in the original code but maybe the
2634 // assignment in saveOutputTracks() makes this unnecessary?
2635 clearOutputTracks();
2636
2637 // Effect chains will be actually deleted here if they were removed from
2638 // mEffectChains list during mixing or effects processing
2639 effectChains.clear();
2640
2641 // FIXME Note that the above .clear() is no longer necessary since effectChains
2642 // is now local to this block, but will keep it for now (at least until merge done).
2643 }
2644
2645 threadLoop_exit();
2646
2647 if (!mStandby) {
2648 threadLoop_standby();
2649 mStandby = true;
2650 }
2651
2652 releaseWakeLock();
2653 mWakeLockUids.clear();
2654 mActiveTracksGeneration++;
2655
2656 ALOGV("Thread %p type %d exiting", this, mType);
2657 return false;
2658 }
2659
2660 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)2661 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2662 {
2663 size_t count = tracksToRemove.size();
2664 if (count > 0) {
2665 for (size_t i=0 ; i<count ; i++) {
2666 const sp<Track>& track = tracksToRemove.itemAt(i);
2667 mActiveTracks.remove(track);
2668 mWakeLockUids.remove(track->uid());
2669 mActiveTracksGeneration++;
2670 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2671 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2672 if (chain != 0) {
2673 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2674 track->sessionId());
2675 chain->decActiveTrackCnt();
2676 }
2677 if (track->isTerminated()) {
2678 removeTrack_l(track);
2679 }
2680 }
2681 }
2682
2683 }
2684
getTimestamp_l(AudioTimestamp & timestamp)2685 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2686 {
2687 if (mNormalSink != 0) {
2688 return mNormalSink->getTimestamp(timestamp);
2689 }
2690 if ((mType == OFFLOAD || mType == DIRECT) && mOutput->stream->get_presentation_position) {
2691 uint64_t position64;
2692 int ret = mOutput->stream->get_presentation_position(
2693 mOutput->stream, &position64, ×tamp.mTime);
2694 if (ret == 0) {
2695 timestamp.mPosition = (uint32_t)position64;
2696 return NO_ERROR;
2697 }
2698 }
2699 return INVALID_OPERATION;
2700 }
2701
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)2702 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2703 audio_patch_handle_t *handle)
2704 {
2705 status_t status = NO_ERROR;
2706 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2707 // store new device and send to effects
2708 audio_devices_t type = AUDIO_DEVICE_NONE;
2709 for (unsigned int i = 0; i < patch->num_sinks; i++) {
2710 type |= patch->sinks[i].ext.device.type;
2711 }
2712 mOutDevice = type;
2713 for (size_t i = 0; i < mEffectChains.size(); i++) {
2714 mEffectChains[i]->setDevice_l(mOutDevice);
2715 }
2716
2717 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2718 status = hwDevice->create_audio_patch(hwDevice,
2719 patch->num_sources,
2720 patch->sources,
2721 patch->num_sinks,
2722 patch->sinks,
2723 handle);
2724 } else {
2725 ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2726 }
2727 return status;
2728 }
2729
releaseAudioPatch_l(const audio_patch_handle_t handle)2730 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2731 {
2732 status_t status = NO_ERROR;
2733 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2734 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2735 status = hwDevice->release_audio_patch(hwDevice, handle);
2736 } else {
2737 ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2738 }
2739 return status;
2740 }
2741
addPatchTrack(const sp<PatchTrack> & track)2742 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2743 {
2744 Mutex::Autolock _l(mLock);
2745 mTracks.add(track);
2746 }
2747
deletePatchTrack(const sp<PatchTrack> & track)2748 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2749 {
2750 Mutex::Autolock _l(mLock);
2751 destroyTrack_l(track);
2752 }
2753
getAudioPortConfig(struct audio_port_config * config)2754 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2755 {
2756 ThreadBase::getAudioPortConfig(config);
2757 config->role = AUDIO_PORT_ROLE_SOURCE;
2758 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2759 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2760 }
2761
2762 // ----------------------------------------------------------------------------
2763
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)2764 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2765 audio_io_handle_t id, audio_devices_t device, type_t type)
2766 : PlaybackThread(audioFlinger, output, id, device, type),
2767 // mAudioMixer below
2768 // mFastMixer below
2769 mFastMixerFutex(0)
2770 // mOutputSink below
2771 // mPipeSink below
2772 // mNormalSink below
2773 {
2774 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
2775 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
2776 "mFrameCount=%d, mNormalFrameCount=%d",
2777 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
2778 mNormalFrameCount);
2779 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
2780
2781 // create an NBAIO sink for the HAL output stream, and negotiate
2782 mOutputSink = new AudioStreamOutSink(output->stream);
2783 size_t numCounterOffers = 0;
2784 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
2785 ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
2786 ALOG_ASSERT(index == 0);
2787
2788 // initialize fast mixer depending on configuration
2789 bool initFastMixer;
2790 switch (kUseFastMixer) {
2791 case FastMixer_Never:
2792 initFastMixer = false;
2793 break;
2794 case FastMixer_Always:
2795 initFastMixer = true;
2796 break;
2797 case FastMixer_Static:
2798 case FastMixer_Dynamic:
2799 initFastMixer = mFrameCount < mNormalFrameCount;
2800 break;
2801 }
2802 if (initFastMixer) {
2803 audio_format_t fastMixerFormat;
2804 if (mMixerBufferEnabled && mEffectBufferEnabled) {
2805 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
2806 } else {
2807 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
2808 }
2809 if (mFormat != fastMixerFormat) {
2810 // change our Sink format to accept our intermediate precision
2811 mFormat = fastMixerFormat;
2812 free(mSinkBuffer);
2813 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2814 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2815 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2816 }
2817
2818 // create a MonoPipe to connect our submix to FastMixer
2819 NBAIO_Format format = mOutputSink->format();
2820 NBAIO_Format origformat = format;
2821 // adjust format to match that of the Fast Mixer
2822 format.mFormat = fastMixerFormat;
2823 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
2824
2825 // This pipe depth compensates for scheduling latency of the normal mixer thread.
2826 // When it wakes up after a maximum latency, it runs a few cycles quickly before
2827 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
2828 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
2829 const NBAIO_Format offers[1] = {format};
2830 size_t numCounterOffers = 0;
2831 ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
2832 ALOG_ASSERT(index == 0);
2833 monoPipe->setAvgFrames((mScreenState & 1) ?
2834 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2835 mPipeSink = monoPipe;
2836
2837 #ifdef TEE_SINK
2838 if (mTeeSinkOutputEnabled) {
2839 // create a Pipe to archive a copy of FastMixer's output for dumpsys
2840 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
2841 const NBAIO_Format offers2[1] = {origformat};
2842 numCounterOffers = 0;
2843 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
2844 ALOG_ASSERT(index == 0);
2845 mTeeSink = teeSink;
2846 PipeReader *teeSource = new PipeReader(*teeSink);
2847 numCounterOffers = 0;
2848 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
2849 ALOG_ASSERT(index == 0);
2850 mTeeSource = teeSource;
2851 }
2852 #endif
2853
2854 // create fast mixer and configure it initially with just one fast track for our submix
2855 mFastMixer = new FastMixer();
2856 FastMixerStateQueue *sq = mFastMixer->sq();
2857 #ifdef STATE_QUEUE_DUMP
2858 sq->setObserverDump(&mStateQueueObserverDump);
2859 sq->setMutatorDump(&mStateQueueMutatorDump);
2860 #endif
2861 FastMixerState *state = sq->begin();
2862 FastTrack *fastTrack = &state->mFastTracks[0];
2863 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
2864 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
2865 fastTrack->mVolumeProvider = NULL;
2866 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
2867 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
2868 fastTrack->mGeneration++;
2869 state->mFastTracksGen++;
2870 state->mTrackMask = 1;
2871 // fast mixer will use the HAL output sink
2872 state->mOutputSink = mOutputSink.get();
2873 state->mOutputSinkGen++;
2874 state->mFrameCount = mFrameCount;
2875 state->mCommand = FastMixerState::COLD_IDLE;
2876 // already done in constructor initialization list
2877 //mFastMixerFutex = 0;
2878 state->mColdFutexAddr = &mFastMixerFutex;
2879 state->mColdGen++;
2880 state->mDumpState = &mFastMixerDumpState;
2881 #ifdef TEE_SINK
2882 state->mTeeSink = mTeeSink.get();
2883 #endif
2884 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
2885 state->mNBLogWriter = mFastMixerNBLogWriter.get();
2886 sq->end();
2887 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2888
2889 // start the fast mixer
2890 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
2891 pid_t tid = mFastMixer->getTid();
2892 int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2893 if (err != 0) {
2894 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2895 kPriorityFastMixer, getpid_cached, tid, err);
2896 }
2897
2898 #ifdef AUDIO_WATCHDOG
2899 // create and start the watchdog
2900 mAudioWatchdog = new AudioWatchdog();
2901 mAudioWatchdog->setDump(&mAudioWatchdogDump);
2902 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
2903 tid = mAudioWatchdog->getTid();
2904 err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2905 if (err != 0) {
2906 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2907 kPriorityFastMixer, getpid_cached, tid, err);
2908 }
2909 #endif
2910
2911 }
2912
2913 switch (kUseFastMixer) {
2914 case FastMixer_Never:
2915 case FastMixer_Dynamic:
2916 mNormalSink = mOutputSink;
2917 break;
2918 case FastMixer_Always:
2919 mNormalSink = mPipeSink;
2920 break;
2921 case FastMixer_Static:
2922 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
2923 break;
2924 }
2925 }
2926
~MixerThread()2927 AudioFlinger::MixerThread::~MixerThread()
2928 {
2929 if (mFastMixer != 0) {
2930 FastMixerStateQueue *sq = mFastMixer->sq();
2931 FastMixerState *state = sq->begin();
2932 if (state->mCommand == FastMixerState::COLD_IDLE) {
2933 int32_t old = android_atomic_inc(&mFastMixerFutex);
2934 if (old == -1) {
2935 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
2936 }
2937 }
2938 state->mCommand = FastMixerState::EXIT;
2939 sq->end();
2940 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2941 mFastMixer->join();
2942 // Though the fast mixer thread has exited, it's state queue is still valid.
2943 // We'll use that extract the final state which contains one remaining fast track
2944 // corresponding to our sub-mix.
2945 state = sq->begin();
2946 ALOG_ASSERT(state->mTrackMask == 1);
2947 FastTrack *fastTrack = &state->mFastTracks[0];
2948 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
2949 delete fastTrack->mBufferProvider;
2950 sq->end(false /*didModify*/);
2951 mFastMixer.clear();
2952 #ifdef AUDIO_WATCHDOG
2953 if (mAudioWatchdog != 0) {
2954 mAudioWatchdog->requestExit();
2955 mAudioWatchdog->requestExitAndWait();
2956 mAudioWatchdog.clear();
2957 }
2958 #endif
2959 }
2960 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
2961 delete mAudioMixer;
2962 }
2963
2964
correctLatency_l(uint32_t latency) const2965 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
2966 {
2967 if (mFastMixer != 0) {
2968 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2969 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
2970 }
2971 return latency;
2972 }
2973
2974
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2975 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
2976 {
2977 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
2978 }
2979
threadLoop_write()2980 ssize_t AudioFlinger::MixerThread::threadLoop_write()
2981 {
2982 // FIXME we should only do one push per cycle; confirm this is true
2983 // Start the fast mixer if it's not already running
2984 if (mFastMixer != 0) {
2985 FastMixerStateQueue *sq = mFastMixer->sq();
2986 FastMixerState *state = sq->begin();
2987 if (state->mCommand != FastMixerState::MIX_WRITE &&
2988 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
2989 if (state->mCommand == FastMixerState::COLD_IDLE) {
2990 int32_t old = android_atomic_inc(&mFastMixerFutex);
2991 if (old == -1) {
2992 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
2993 }
2994 #ifdef AUDIO_WATCHDOG
2995 if (mAudioWatchdog != 0) {
2996 mAudioWatchdog->resume();
2997 }
2998 #endif
2999 }
3000 state->mCommand = FastMixerState::MIX_WRITE;
3001 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3002 FastMixerDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
3003 sq->end();
3004 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3005 if (kUseFastMixer == FastMixer_Dynamic) {
3006 mNormalSink = mPipeSink;
3007 }
3008 } else {
3009 sq->end(false /*didModify*/);
3010 }
3011 }
3012 return PlaybackThread::threadLoop_write();
3013 }
3014
threadLoop_standby()3015 void AudioFlinger::MixerThread::threadLoop_standby()
3016 {
3017 // Idle the fast mixer if it's currently running
3018 if (mFastMixer != 0) {
3019 FastMixerStateQueue *sq = mFastMixer->sq();
3020 FastMixerState *state = sq->begin();
3021 if (!(state->mCommand & FastMixerState::IDLE)) {
3022 state->mCommand = FastMixerState::COLD_IDLE;
3023 state->mColdFutexAddr = &mFastMixerFutex;
3024 state->mColdGen++;
3025 mFastMixerFutex = 0;
3026 sq->end();
3027 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3028 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3029 if (kUseFastMixer == FastMixer_Dynamic) {
3030 mNormalSink = mOutputSink;
3031 }
3032 #ifdef AUDIO_WATCHDOG
3033 if (mAudioWatchdog != 0) {
3034 mAudioWatchdog->pause();
3035 }
3036 #endif
3037 } else {
3038 sq->end(false /*didModify*/);
3039 }
3040 }
3041 PlaybackThread::threadLoop_standby();
3042 }
3043
waitingAsyncCallback_l()3044 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3045 {
3046 return false;
3047 }
3048
shouldStandby_l()3049 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3050 {
3051 return !mStandby;
3052 }
3053
waitingAsyncCallback()3054 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3055 {
3056 Mutex::Autolock _l(mLock);
3057 return waitingAsyncCallback_l();
3058 }
3059
3060 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3061 void AudioFlinger::PlaybackThread::threadLoop_standby()
3062 {
3063 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3064 mOutput->stream->common.standby(&mOutput->stream->common);
3065 if (mUseAsyncWrite != 0) {
3066 // discard any pending drain or write ack by incrementing sequence
3067 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3068 mDrainSequence = (mDrainSequence + 2) & ~1;
3069 ALOG_ASSERT(mCallbackThread != 0);
3070 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3071 mCallbackThread->setDraining(mDrainSequence);
3072 }
3073 }
3074
onAddNewTrack_l()3075 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3076 {
3077 ALOGV("signal playback thread");
3078 broadcast_l();
3079 }
3080
threadLoop_mix()3081 void AudioFlinger::MixerThread::threadLoop_mix()
3082 {
3083 // obtain the presentation timestamp of the next output buffer
3084 int64_t pts;
3085 status_t status = INVALID_OPERATION;
3086
3087 if (mNormalSink != 0) {
3088 status = mNormalSink->getNextWriteTimestamp(&pts);
3089 } else {
3090 status = mOutputSink->getNextWriteTimestamp(&pts);
3091 }
3092
3093 if (status != NO_ERROR) {
3094 pts = AudioBufferProvider::kInvalidPTS;
3095 }
3096
3097 // mix buffers...
3098 mAudioMixer->process(pts);
3099 mCurrentWriteLength = mSinkBufferSize;
3100 // increase sleep time progressively when application underrun condition clears.
3101 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3102 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3103 // such that we would underrun the audio HAL.
3104 if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3105 sleepTimeShift--;
3106 }
3107 sleepTime = 0;
3108 standbyTime = systemTime() + standbyDelay;
3109 //TODO: delay standby when effects have a tail
3110
3111 }
3112
threadLoop_sleepTime()3113 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3114 {
3115 // If no tracks are ready, sleep once for the duration of an output
3116 // buffer size, then write 0s to the output
3117 if (sleepTime == 0) {
3118 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3119 sleepTime = activeSleepTime >> sleepTimeShift;
3120 if (sleepTime < kMinThreadSleepTimeUs) {
3121 sleepTime = kMinThreadSleepTimeUs;
3122 }
3123 // reduce sleep time in case of consecutive application underruns to avoid
3124 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3125 // duration we would end up writing less data than needed by the audio HAL if
3126 // the condition persists.
3127 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3128 sleepTimeShift++;
3129 }
3130 } else {
3131 sleepTime = idleSleepTime;
3132 }
3133 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3134 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3135 // before effects processing or output.
3136 if (mMixerBufferValid) {
3137 memset(mMixerBuffer, 0, mMixerBufferSize);
3138 } else {
3139 memset(mSinkBuffer, 0, mSinkBufferSize);
3140 }
3141 sleepTime = 0;
3142 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3143 "anticipated start");
3144 }
3145 // TODO add standby time extension fct of effect tail
3146 }
3147
3148 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3149 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3150 Vector< sp<Track> > *tracksToRemove)
3151 {
3152
3153 mixer_state mixerStatus = MIXER_IDLE;
3154 // find out which tracks need to be processed
3155 size_t count = mActiveTracks.size();
3156 size_t mixedTracks = 0;
3157 size_t tracksWithEffect = 0;
3158 // counts only _active_ fast tracks
3159 size_t fastTracks = 0;
3160 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3161
3162 float masterVolume = mMasterVolume;
3163 bool masterMute = mMasterMute;
3164
3165 if (masterMute) {
3166 masterVolume = 0;
3167 }
3168 // Delegate master volume control to effect in output mix effect chain if needed
3169 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3170 if (chain != 0) {
3171 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3172 chain->setVolume_l(&v, &v);
3173 masterVolume = (float)((v + (1 << 23)) >> 24);
3174 chain.clear();
3175 }
3176
3177 // prepare a new state to push
3178 FastMixerStateQueue *sq = NULL;
3179 FastMixerState *state = NULL;
3180 bool didModify = false;
3181 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3182 if (mFastMixer != 0) {
3183 sq = mFastMixer->sq();
3184 state = sq->begin();
3185 }
3186
3187 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
3188 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3189
3190 for (size_t i=0 ; i<count ; i++) {
3191 const sp<Track> t = mActiveTracks[i].promote();
3192 if (t == 0) {
3193 continue;
3194 }
3195
3196 // this const just means the local variable doesn't change
3197 Track* const track = t.get();
3198
3199 // process fast tracks
3200 if (track->isFastTrack()) {
3201
3202 // It's theoretically possible (though unlikely) for a fast track to be created
3203 // and then removed within the same normal mix cycle. This is not a problem, as
3204 // the track never becomes active so it's fast mixer slot is never touched.
3205 // The converse, of removing an (active) track and then creating a new track
3206 // at the identical fast mixer slot within the same normal mix cycle,
3207 // is impossible because the slot isn't marked available until the end of each cycle.
3208 int j = track->mFastIndex;
3209 ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3210 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3211 FastTrack *fastTrack = &state->mFastTracks[j];
3212
3213 // Determine whether the track is currently in underrun condition,
3214 // and whether it had a recent underrun.
3215 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3216 FastTrackUnderruns underruns = ftDump->mUnderruns;
3217 uint32_t recentFull = (underruns.mBitFields.mFull -
3218 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3219 uint32_t recentPartial = (underruns.mBitFields.mPartial -
3220 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3221 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3222 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3223 uint32_t recentUnderruns = recentPartial + recentEmpty;
3224 track->mObservedUnderruns = underruns;
3225 // don't count underruns that occur while stopping or pausing
3226 // or stopped which can occur when flush() is called while active
3227 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3228 recentUnderruns > 0) {
3229 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3230 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3231 }
3232
3233 // This is similar to the state machine for normal tracks,
3234 // with a few modifications for fast tracks.
3235 bool isActive = true;
3236 switch (track->mState) {
3237 case TrackBase::STOPPING_1:
3238 // track stays active in STOPPING_1 state until first underrun
3239 if (recentUnderruns > 0 || track->isTerminated()) {
3240 track->mState = TrackBase::STOPPING_2;
3241 }
3242 break;
3243 case TrackBase::PAUSING:
3244 // ramp down is not yet implemented
3245 track->setPaused();
3246 break;
3247 case TrackBase::RESUMING:
3248 // ramp up is not yet implemented
3249 track->mState = TrackBase::ACTIVE;
3250 break;
3251 case TrackBase::ACTIVE:
3252 if (recentFull > 0 || recentPartial > 0) {
3253 // track has provided at least some frames recently: reset retry count
3254 track->mRetryCount = kMaxTrackRetries;
3255 }
3256 if (recentUnderruns == 0) {
3257 // no recent underruns: stay active
3258 break;
3259 }
3260 // there has recently been an underrun of some kind
3261 if (track->sharedBuffer() == 0) {
3262 // were any of the recent underruns "empty" (no frames available)?
3263 if (recentEmpty == 0) {
3264 // no, then ignore the partial underruns as they are allowed indefinitely
3265 break;
3266 }
3267 // there has recently been an "empty" underrun: decrement the retry counter
3268 if (--(track->mRetryCount) > 0) {
3269 break;
3270 }
3271 // indicate to client process that the track was disabled because of underrun;
3272 // it will then automatically call start() when data is available
3273 android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3274 // remove from active list, but state remains ACTIVE [confusing but true]
3275 isActive = false;
3276 break;
3277 }
3278 // fall through
3279 case TrackBase::STOPPING_2:
3280 case TrackBase::PAUSED:
3281 case TrackBase::STOPPED:
3282 case TrackBase::FLUSHED: // flush() while active
3283 // Check for presentation complete if track is inactive
3284 // We have consumed all the buffers of this track.
3285 // This would be incomplete if we auto-paused on underrun
3286 {
3287 size_t audioHALFrames =
3288 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3289 size_t framesWritten = mBytesWritten / mFrameSize;
3290 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3291 // track stays in active list until presentation is complete
3292 break;
3293 }
3294 }
3295 if (track->isStopping_2()) {
3296 track->mState = TrackBase::STOPPED;
3297 }
3298 if (track->isStopped()) {
3299 // Can't reset directly, as fast mixer is still polling this track
3300 // track->reset();
3301 // So instead mark this track as needing to be reset after push with ack
3302 resetMask |= 1 << i;
3303 }
3304 isActive = false;
3305 break;
3306 case TrackBase::IDLE:
3307 default:
3308 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3309 }
3310
3311 if (isActive) {
3312 // was it previously inactive?
3313 if (!(state->mTrackMask & (1 << j))) {
3314 ExtendedAudioBufferProvider *eabp = track;
3315 VolumeProvider *vp = track;
3316 fastTrack->mBufferProvider = eabp;
3317 fastTrack->mVolumeProvider = vp;
3318 fastTrack->mChannelMask = track->mChannelMask;
3319 fastTrack->mFormat = track->mFormat;
3320 fastTrack->mGeneration++;
3321 state->mTrackMask |= 1 << j;
3322 didModify = true;
3323 // no acknowledgement required for newly active tracks
3324 }
3325 // cache the combined master volume and stream type volume for fast mixer; this
3326 // lacks any synchronization or barrier so VolumeProvider may read a stale value
3327 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3328 ++fastTracks;
3329 } else {
3330 // was it previously active?
3331 if (state->mTrackMask & (1 << j)) {
3332 fastTrack->mBufferProvider = NULL;
3333 fastTrack->mGeneration++;
3334 state->mTrackMask &= ~(1 << j);
3335 didModify = true;
3336 // If any fast tracks were removed, we must wait for acknowledgement
3337 // because we're about to decrement the last sp<> on those tracks.
3338 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3339 } else {
3340 LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3341 }
3342 tracksToRemove->add(track);
3343 // Avoids a misleading display in dumpsys
3344 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3345 }
3346 continue;
3347 }
3348
3349 { // local variable scope to avoid goto warning
3350
3351 audio_track_cblk_t* cblk = track->cblk();
3352
3353 // The first time a track is added we wait
3354 // for all its buffers to be filled before processing it
3355 int name = track->name();
3356 // make sure that we have enough frames to mix one full buffer.
3357 // enforce this condition only once to enable draining the buffer in case the client
3358 // app does not call stop() and relies on underrun to stop:
3359 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3360 // during last round
3361 size_t desiredFrames;
3362 uint32_t sr = track->sampleRate();
3363 if (sr == mSampleRate) {
3364 desiredFrames = mNormalFrameCount;
3365 } else {
3366 // +1 for rounding and +1 for additional sample needed for interpolation
3367 desiredFrames = (mNormalFrameCount * sr) / mSampleRate + 1 + 1;
3368 // add frames already consumed but not yet released by the resampler
3369 // because mAudioTrackServerProxy->framesReady() will include these frames
3370 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3371 #if 0
3372 // the minimum track buffer size is normally twice the number of frames necessary
3373 // to fill one buffer and the resampler should not leave more than one buffer worth
3374 // of unreleased frames after each pass, but just in case...
3375 ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
3376 #endif
3377 }
3378 uint32_t minFrames = 1;
3379 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3380 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3381 minFrames = desiredFrames;
3382 }
3383
3384 size_t framesReady = track->framesReady();
3385 if ((framesReady >= minFrames) && track->isReady() &&
3386 !track->isPaused() && !track->isTerminated())
3387 {
3388 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3389
3390 mixedTracks++;
3391
3392 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3393 // there is an effect chain connected to the track
3394 chain.clear();
3395 if (track->mainBuffer() != mSinkBuffer &&
3396 track->mainBuffer() != mMixerBuffer) {
3397 if (mEffectBufferEnabled) {
3398 mEffectBufferValid = true; // Later can set directly.
3399 }
3400 chain = getEffectChain_l(track->sessionId());
3401 // Delegate volume control to effect in track effect chain if needed
3402 if (chain != 0) {
3403 tracksWithEffect++;
3404 } else {
3405 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3406 "session %d",
3407 name, track->sessionId());
3408 }
3409 }
3410
3411
3412 int param = AudioMixer::VOLUME;
3413 if (track->mFillingUpStatus == Track::FS_FILLED) {
3414 // no ramp for the first volume setting
3415 track->mFillingUpStatus = Track::FS_ACTIVE;
3416 if (track->mState == TrackBase::RESUMING) {
3417 track->mState = TrackBase::ACTIVE;
3418 param = AudioMixer::RAMP_VOLUME;
3419 }
3420 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3421 // FIXME should not make a decision based on mServer
3422 } else if (cblk->mServer != 0) {
3423 // If the track is stopped before the first frame was mixed,
3424 // do not apply ramp
3425 param = AudioMixer::RAMP_VOLUME;
3426 }
3427
3428 // compute volume for this track
3429 uint32_t vl, vr; // in U8.24 integer format
3430 float vlf, vrf, vaf; // in [0.0, 1.0] float format
3431 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3432 vl = vr = 0;
3433 vlf = vrf = vaf = 0.;
3434 if (track->isPausing()) {
3435 track->setPaused();
3436 }
3437 } else {
3438
3439 // read original volumes with volume control
3440 float typeVolume = mStreamTypes[track->streamType()].volume;
3441 float v = masterVolume * typeVolume;
3442 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3443 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3444 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3445 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3446 // track volumes come from shared memory, so can't be trusted and must be clamped
3447 if (vlf > GAIN_FLOAT_UNITY) {
3448 ALOGV("Track left volume out of range: %.3g", vlf);
3449 vlf = GAIN_FLOAT_UNITY;
3450 }
3451 if (vrf > GAIN_FLOAT_UNITY) {
3452 ALOGV("Track right volume out of range: %.3g", vrf);
3453 vrf = GAIN_FLOAT_UNITY;
3454 }
3455 // now apply the master volume and stream type volume
3456 vlf *= v;
3457 vrf *= v;
3458 // assuming master volume and stream type volume each go up to 1.0,
3459 // then derive vl and vr as U8.24 versions for the effect chain
3460 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3461 vl = (uint32_t) (scaleto8_24 * vlf);
3462 vr = (uint32_t) (scaleto8_24 * vrf);
3463 // vl and vr are now in U8.24 format
3464 uint16_t sendLevel = proxy->getSendLevel_U4_12();
3465 // send level comes from shared memory and so may be corrupt
3466 if (sendLevel > MAX_GAIN_INT) {
3467 ALOGV("Track send level out of range: %04X", sendLevel);
3468 sendLevel = MAX_GAIN_INT;
3469 }
3470 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3471 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3472 }
3473
3474 // Delegate volume control to effect in track effect chain if needed
3475 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3476 // Do not ramp volume if volume is controlled by effect
3477 param = AudioMixer::VOLUME;
3478 // Update remaining floating point volume levels
3479 vlf = (float)vl / (1 << 24);
3480 vrf = (float)vr / (1 << 24);
3481 track->mHasVolumeController = true;
3482 } else {
3483 // force no volume ramp when volume controller was just disabled or removed
3484 // from effect chain to avoid volume spike
3485 if (track->mHasVolumeController) {
3486 param = AudioMixer::VOLUME;
3487 }
3488 track->mHasVolumeController = false;
3489 }
3490
3491 // XXX: these things DON'T need to be done each time
3492 mAudioMixer->setBufferProvider(name, track);
3493 mAudioMixer->enable(name);
3494
3495 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3496 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3497 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3498 mAudioMixer->setParameter(
3499 name,
3500 AudioMixer::TRACK,
3501 AudioMixer::FORMAT, (void *)track->format());
3502 mAudioMixer->setParameter(
3503 name,
3504 AudioMixer::TRACK,
3505 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3506 mAudioMixer->setParameter(
3507 name,
3508 AudioMixer::TRACK,
3509 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3510 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3511 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3512 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3513 if (reqSampleRate == 0) {
3514 reqSampleRate = mSampleRate;
3515 } else if (reqSampleRate > maxSampleRate) {
3516 reqSampleRate = maxSampleRate;
3517 }
3518 mAudioMixer->setParameter(
3519 name,
3520 AudioMixer::RESAMPLE,
3521 AudioMixer::SAMPLE_RATE,
3522 (void *)(uintptr_t)reqSampleRate);
3523 /*
3524 * Select the appropriate output buffer for the track.
3525 *
3526 * Tracks with effects go into their own effects chain buffer
3527 * and from there into either mEffectBuffer or mSinkBuffer.
3528 *
3529 * Other tracks can use mMixerBuffer for higher precision
3530 * channel accumulation. If this buffer is enabled
3531 * (mMixerBufferEnabled true), then selected tracks will accumulate
3532 * into it.
3533 *
3534 */
3535 if (mMixerBufferEnabled
3536 && (track->mainBuffer() == mSinkBuffer
3537 || track->mainBuffer() == mMixerBuffer)) {
3538 mAudioMixer->setParameter(
3539 name,
3540 AudioMixer::TRACK,
3541 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3542 mAudioMixer->setParameter(
3543 name,
3544 AudioMixer::TRACK,
3545 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3546 // TODO: override track->mainBuffer()?
3547 mMixerBufferValid = true;
3548 } else {
3549 mAudioMixer->setParameter(
3550 name,
3551 AudioMixer::TRACK,
3552 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3553 mAudioMixer->setParameter(
3554 name,
3555 AudioMixer::TRACK,
3556 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3557 }
3558 mAudioMixer->setParameter(
3559 name,
3560 AudioMixer::TRACK,
3561 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3562
3563 // reset retry count
3564 track->mRetryCount = kMaxTrackRetries;
3565
3566 // If one track is ready, set the mixer ready if:
3567 // - the mixer was not ready during previous round OR
3568 // - no other track is not ready
3569 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3570 mixerStatus != MIXER_TRACKS_ENABLED) {
3571 mixerStatus = MIXER_TRACKS_READY;
3572 }
3573 } else {
3574 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3575 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3576 }
3577 // clear effect chain input buffer if an active track underruns to avoid sending
3578 // previous audio buffer again to effects
3579 chain = getEffectChain_l(track->sessionId());
3580 if (chain != 0) {
3581 chain->clearInputBuffer();
3582 }
3583
3584 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3585 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3586 track->isStopped() || track->isPaused()) {
3587 // We have consumed all the buffers of this track.
3588 // Remove it from the list of active tracks.
3589 // TODO: use actual buffer filling status instead of latency when available from
3590 // audio HAL
3591 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3592 size_t framesWritten = mBytesWritten / mFrameSize;
3593 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3594 if (track->isStopped()) {
3595 track->reset();
3596 }
3597 tracksToRemove->add(track);
3598 }
3599 } else {
3600 // No buffers for this track. Give it a few chances to
3601 // fill a buffer, then remove it from active list.
3602 if (--(track->mRetryCount) <= 0) {
3603 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3604 tracksToRemove->add(track);
3605 // indicate to client process that the track was disabled because of underrun;
3606 // it will then automatically call start() when data is available
3607 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3608 // If one track is not ready, mark the mixer also not ready if:
3609 // - the mixer was ready during previous round OR
3610 // - no other track is ready
3611 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3612 mixerStatus != MIXER_TRACKS_READY) {
3613 mixerStatus = MIXER_TRACKS_ENABLED;
3614 }
3615 }
3616 mAudioMixer->disable(name);
3617 }
3618
3619 } // local variable scope to avoid goto warning
3620 track_is_ready: ;
3621
3622 }
3623
3624 // Push the new FastMixer state if necessary
3625 bool pauseAudioWatchdog = false;
3626 if (didModify) {
3627 state->mFastTracksGen++;
3628 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3629 if (kUseFastMixer == FastMixer_Dynamic &&
3630 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3631 state->mCommand = FastMixerState::COLD_IDLE;
3632 state->mColdFutexAddr = &mFastMixerFutex;
3633 state->mColdGen++;
3634 mFastMixerFutex = 0;
3635 if (kUseFastMixer == FastMixer_Dynamic) {
3636 mNormalSink = mOutputSink;
3637 }
3638 // If we go into cold idle, need to wait for acknowledgement
3639 // so that fast mixer stops doing I/O.
3640 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3641 pauseAudioWatchdog = true;
3642 }
3643 }
3644 if (sq != NULL) {
3645 sq->end(didModify);
3646 sq->push(block);
3647 }
3648 #ifdef AUDIO_WATCHDOG
3649 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3650 mAudioWatchdog->pause();
3651 }
3652 #endif
3653
3654 // Now perform the deferred reset on fast tracks that have stopped
3655 while (resetMask != 0) {
3656 size_t i = __builtin_ctz(resetMask);
3657 ALOG_ASSERT(i < count);
3658 resetMask &= ~(1 << i);
3659 sp<Track> t = mActiveTracks[i].promote();
3660 if (t == 0) {
3661 continue;
3662 }
3663 Track* track = t.get();
3664 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3665 track->reset();
3666 }
3667
3668 // remove all the tracks that need to be...
3669 removeTracks_l(*tracksToRemove);
3670
3671 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3672 mEffectBufferValid = true;
3673 }
3674
3675 if (mEffectBufferValid) {
3676 // as long as there are effects we should clear the effects buffer, to avoid
3677 // passing a non-clean buffer to the effect chain
3678 memset(mEffectBuffer, 0, mEffectBufferSize);
3679 }
3680 // sink or mix buffer must be cleared if all tracks are connected to an
3681 // effect chain as in this case the mixer will not write to the sink or mix buffer
3682 // and track effects will accumulate into it
3683 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3684 (mixedTracks == 0 && fastTracks > 0))) {
3685 // FIXME as a performance optimization, should remember previous zero status
3686 if (mMixerBufferValid) {
3687 memset(mMixerBuffer, 0, mMixerBufferSize);
3688 // TODO: In testing, mSinkBuffer below need not be cleared because
3689 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3690 // after mixing.
3691 //
3692 // To enforce this guarantee:
3693 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3694 // (mixedTracks == 0 && fastTracks > 0))
3695 // must imply MIXER_TRACKS_READY.
3696 // Later, we may clear buffers regardless, and skip much of this logic.
3697 }
3698 // FIXME as a performance optimization, should remember previous zero status
3699 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3700 }
3701
3702 // if any fast tracks, then status is ready
3703 mMixerStatusIgnoringFastTracks = mixerStatus;
3704 if (fastTracks > 0) {
3705 mixerStatus = MIXER_TRACKS_READY;
3706 }
3707 return mixerStatus;
3708 }
3709
3710 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,int sessionId)3711 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3712 audio_format_t format, int sessionId)
3713 {
3714 return mAudioMixer->getTrackName(channelMask, format, sessionId);
3715 }
3716
3717 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)3718 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3719 {
3720 ALOGV("remove track (%d) and delete from mixer", name);
3721 mAudioMixer->deleteTrackName(name);
3722 }
3723
3724 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)3725 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3726 status_t& status)
3727 {
3728 bool reconfig = false;
3729
3730 status = NO_ERROR;
3731
3732 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3733 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3734 if (mFastMixer != 0) {
3735 FastMixerStateQueue *sq = mFastMixer->sq();
3736 FastMixerState *state = sq->begin();
3737 if (!(state->mCommand & FastMixerState::IDLE)) {
3738 previousCommand = state->mCommand;
3739 state->mCommand = FastMixerState::HOT_IDLE;
3740 sq->end();
3741 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3742 } else {
3743 sq->end(false /*didModify*/);
3744 }
3745 }
3746
3747 AudioParameter param = AudioParameter(keyValuePair);
3748 int value;
3749 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
3750 reconfig = true;
3751 }
3752 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
3753 if (!isValidPcmSinkFormat((audio_format_t) value)) {
3754 status = BAD_VALUE;
3755 } else {
3756 // no need to save value, since it's constant
3757 reconfig = true;
3758 }
3759 }
3760 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
3761 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
3762 status = BAD_VALUE;
3763 } else {
3764 // no need to save value, since it's constant
3765 reconfig = true;
3766 }
3767 }
3768 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
3769 // do not accept frame count changes if tracks are open as the track buffer
3770 // size depends on frame count and correct behavior would not be guaranteed
3771 // if frame count is changed after track creation
3772 if (!mTracks.isEmpty()) {
3773 status = INVALID_OPERATION;
3774 } else {
3775 reconfig = true;
3776 }
3777 }
3778 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
3779 #ifdef ADD_BATTERY_DATA
3780 // when changing the audio output device, call addBatteryData to notify
3781 // the change
3782 if (mOutDevice != value) {
3783 uint32_t params = 0;
3784 // check whether speaker is on
3785 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
3786 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3787 }
3788
3789 audio_devices_t deviceWithoutSpeaker
3790 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3791 // check if any other device (except speaker) is on
3792 if (value & deviceWithoutSpeaker ) {
3793 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3794 }
3795
3796 if (params != 0) {
3797 addBatteryData(params);
3798 }
3799 }
3800 #endif
3801
3802 // forward device change to effects that have requested to be
3803 // aware of attached audio device.
3804 if (value != AUDIO_DEVICE_NONE) {
3805 mOutDevice = value;
3806 for (size_t i = 0; i < mEffectChains.size(); i++) {
3807 mEffectChains[i]->setDevice_l(mOutDevice);
3808 }
3809 }
3810 }
3811
3812 if (status == NO_ERROR) {
3813 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3814 keyValuePair.string());
3815 if (!mStandby && status == INVALID_OPERATION) {
3816 mOutput->stream->common.standby(&mOutput->stream->common);
3817 mStandby = true;
3818 mBytesWritten = 0;
3819 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3820 keyValuePair.string());
3821 }
3822 if (status == NO_ERROR && reconfig) {
3823 readOutputParameters_l();
3824 delete mAudioMixer;
3825 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3826 for (size_t i = 0; i < mTracks.size() ; i++) {
3827 int name = getTrackName_l(mTracks[i]->mChannelMask,
3828 mTracks[i]->mFormat, mTracks[i]->mSessionId);
3829 if (name < 0) {
3830 break;
3831 }
3832 mTracks[i]->mName = name;
3833 }
3834 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
3835 }
3836 }
3837
3838 if (!(previousCommand & FastMixerState::IDLE)) {
3839 ALOG_ASSERT(mFastMixer != 0);
3840 FastMixerStateQueue *sq = mFastMixer->sq();
3841 FastMixerState *state = sq->begin();
3842 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3843 state->mCommand = previousCommand;
3844 sq->end();
3845 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3846 }
3847
3848 return reconfig;
3849 }
3850
3851
dumpInternals(int fd,const Vector<String16> & args)3852 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
3853 {
3854 const size_t SIZE = 256;
3855 char buffer[SIZE];
3856 String8 result;
3857
3858 PlaybackThread::dumpInternals(fd, args);
3859
3860 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
3861
3862 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
3863 const FastMixerDumpState copy(mFastMixerDumpState);
3864 copy.dump(fd);
3865
3866 #ifdef STATE_QUEUE_DUMP
3867 // Similar for state queue
3868 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
3869 observerCopy.dump(fd);
3870 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
3871 mutatorCopy.dump(fd);
3872 #endif
3873
3874 #ifdef TEE_SINK
3875 // Write the tee output to a .wav file
3876 dumpTee(fd, mTeeSource, mId);
3877 #endif
3878
3879 #ifdef AUDIO_WATCHDOG
3880 if (mAudioWatchdog != 0) {
3881 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
3882 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
3883 wdCopy.dump(fd);
3884 }
3885 #endif
3886 }
3887
idleSleepTimeUs() const3888 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
3889 {
3890 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
3891 }
3892
suspendSleepTimeUs() const3893 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
3894 {
3895 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3896 }
3897
cacheParameters_l()3898 void AudioFlinger::MixerThread::cacheParameters_l()
3899 {
3900 PlaybackThread::cacheParameters_l();
3901
3902 // FIXME: Relaxed timing because of a certain device that can't meet latency
3903 // Should be reduced to 2x after the vendor fixes the driver issue
3904 // increase threshold again due to low power audio mode. The way this warning
3905 // threshold is calculated and its usefulness should be reconsidered anyway.
3906 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
3907 }
3908
3909 // ----------------------------------------------------------------------------
3910
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device)3911 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3912 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
3913 : PlaybackThread(audioFlinger, output, id, device, DIRECT)
3914 // mLeftVolFloat, mRightVolFloat
3915 {
3916 }
3917
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type)3918 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3919 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
3920 ThreadBase::type_t type)
3921 : PlaybackThread(audioFlinger, output, id, device, type)
3922 // mLeftVolFloat, mRightVolFloat
3923 {
3924 }
3925
~DirectOutputThread()3926 AudioFlinger::DirectOutputThread::~DirectOutputThread()
3927 {
3928 }
3929
processVolume_l(Track * track,bool lastTrack)3930 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
3931 {
3932 audio_track_cblk_t* cblk = track->cblk();
3933 float left, right;
3934
3935 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
3936 left = right = 0;
3937 } else {
3938 float typeVolume = mStreamTypes[track->streamType()].volume;
3939 float v = mMasterVolume * typeVolume;
3940 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3941 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3942 left = float_from_gain(gain_minifloat_unpack_left(vlr));
3943 if (left > GAIN_FLOAT_UNITY) {
3944 left = GAIN_FLOAT_UNITY;
3945 }
3946 left *= v;
3947 right = float_from_gain(gain_minifloat_unpack_right(vlr));
3948 if (right > GAIN_FLOAT_UNITY) {
3949 right = GAIN_FLOAT_UNITY;
3950 }
3951 right *= v;
3952 }
3953
3954 if (lastTrack) {
3955 if (left != mLeftVolFloat || right != mRightVolFloat) {
3956 mLeftVolFloat = left;
3957 mRightVolFloat = right;
3958
3959 // Convert volumes from float to 8.24
3960 uint32_t vl = (uint32_t)(left * (1 << 24));
3961 uint32_t vr = (uint32_t)(right * (1 << 24));
3962
3963 // Delegate volume control to effect in track effect chain if needed
3964 // only one effect chain can be present on DirectOutputThread, so if
3965 // there is one, the track is connected to it
3966 if (!mEffectChains.isEmpty()) {
3967 mEffectChains[0]->setVolume_l(&vl, &vr);
3968 left = (float)vl / (1 << 24);
3969 right = (float)vr / (1 << 24);
3970 }
3971 if (mOutput->stream->set_volume) {
3972 mOutput->stream->set_volume(mOutput->stream, left, right);
3973 }
3974 }
3975 }
3976 }
3977
3978
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3979 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
3980 Vector< sp<Track> > *tracksToRemove
3981 )
3982 {
3983 size_t count = mActiveTracks.size();
3984 mixer_state mixerStatus = MIXER_IDLE;
3985
3986 // find out which tracks need to be processed
3987 for (size_t i = 0; i < count; i++) {
3988 sp<Track> t = mActiveTracks[i].promote();
3989 // The track died recently
3990 if (t == 0) {
3991 continue;
3992 }
3993
3994 Track* const track = t.get();
3995 audio_track_cblk_t* cblk = track->cblk();
3996 // Only consider last track started for volume and mixer state control.
3997 // In theory an older track could underrun and restart after the new one starts
3998 // but as we only care about the transition phase between two tracks on a
3999 // direct output, it is not a problem to ignore the underrun case.
4000 sp<Track> l = mLatestActiveTrack.promote();
4001 bool last = l.get() == track;
4002
4003 // The first time a track is added we wait
4004 // for all its buffers to be filled before processing it
4005 uint32_t minFrames;
4006 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()) {
4007 minFrames = mNormalFrameCount;
4008 } else {
4009 minFrames = 1;
4010 }
4011
4012 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4013 !track->isStopping_2() && !track->isStopped())
4014 {
4015 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4016
4017 if (track->mFillingUpStatus == Track::FS_FILLED) {
4018 track->mFillingUpStatus = Track::FS_ACTIVE;
4019 // make sure processVolume_l() will apply new volume even if 0
4020 mLeftVolFloat = mRightVolFloat = -1.0;
4021 if (track->mState == TrackBase::RESUMING) {
4022 track->mState = TrackBase::ACTIVE;
4023 }
4024 }
4025
4026 // compute volume for this track
4027 processVolume_l(track, last);
4028 if (last) {
4029 // reset retry count
4030 track->mRetryCount = kMaxTrackRetriesDirect;
4031 mActiveTrack = t;
4032 mixerStatus = MIXER_TRACKS_READY;
4033 }
4034 } else {
4035 // clear effect chain input buffer if the last active track started underruns
4036 // to avoid sending previous audio buffer again to effects
4037 if (!mEffectChains.isEmpty() && last) {
4038 mEffectChains[0]->clearInputBuffer();
4039 }
4040 if (track->isStopping_1()) {
4041 track->mState = TrackBase::STOPPING_2;
4042 }
4043 if ((track->sharedBuffer() != 0) || track->isStopped() ||
4044 track->isStopping_2() || track->isPaused()) {
4045 // We have consumed all the buffers of this track.
4046 // Remove it from the list of active tracks.
4047 size_t audioHALFrames;
4048 if (audio_is_linear_pcm(mFormat)) {
4049 audioHALFrames = (latency_l() * mSampleRate) / 1000;
4050 } else {
4051 audioHALFrames = 0;
4052 }
4053
4054 size_t framesWritten = mBytesWritten / mFrameSize;
4055 if (mStandby || !last ||
4056 track->presentationComplete(framesWritten, audioHALFrames)) {
4057 if (track->isStopping_2()) {
4058 track->mState = TrackBase::STOPPED;
4059 }
4060 if (track->isStopped()) {
4061 if (track->mState == TrackBase::FLUSHED) {
4062 flushHw_l();
4063 }
4064 track->reset();
4065 }
4066 tracksToRemove->add(track);
4067 }
4068 } else {
4069 // No buffers for this track. Give it a few chances to
4070 // fill a buffer, then remove it from active list.
4071 // Only consider last track started for mixer state control
4072 if (--(track->mRetryCount) <= 0) {
4073 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4074 tracksToRemove->add(track);
4075 // indicate to client process that the track was disabled because of underrun;
4076 // it will then automatically call start() when data is available
4077 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4078 } else if (last) {
4079 mixerStatus = MIXER_TRACKS_ENABLED;
4080 }
4081 }
4082 }
4083 }
4084
4085 // remove all the tracks that need to be...
4086 removeTracks_l(*tracksToRemove);
4087
4088 return mixerStatus;
4089 }
4090
threadLoop_mix()4091 void AudioFlinger::DirectOutputThread::threadLoop_mix()
4092 {
4093 size_t frameCount = mFrameCount;
4094 int8_t *curBuf = (int8_t *)mSinkBuffer;
4095 // output audio to hardware
4096 while (frameCount) {
4097 AudioBufferProvider::Buffer buffer;
4098 buffer.frameCount = frameCount;
4099 mActiveTrack->getNextBuffer(&buffer);
4100 if (buffer.raw == NULL) {
4101 memset(curBuf, 0, frameCount * mFrameSize);
4102 break;
4103 }
4104 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4105 frameCount -= buffer.frameCount;
4106 curBuf += buffer.frameCount * mFrameSize;
4107 mActiveTrack->releaseBuffer(&buffer);
4108 }
4109 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4110 sleepTime = 0;
4111 standbyTime = systemTime() + standbyDelay;
4112 mActiveTrack.clear();
4113 }
4114
threadLoop_sleepTime()4115 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4116 {
4117 if (sleepTime == 0) {
4118 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4119 sleepTime = activeSleepTime;
4120 } else {
4121 sleepTime = idleSleepTime;
4122 }
4123 } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4124 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4125 sleepTime = 0;
4126 }
4127 }
4128
4129 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,int sessionId __unused)4130 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4131 audio_format_t format __unused, int sessionId __unused)
4132 {
4133 return 0;
4134 }
4135
4136 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)4137 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4138 {
4139 }
4140
4141 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4142 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4143 status_t& status)
4144 {
4145 bool reconfig = false;
4146
4147 status = NO_ERROR;
4148
4149 AudioParameter param = AudioParameter(keyValuePair);
4150 int value;
4151 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4152 // forward device change to effects that have requested to be
4153 // aware of attached audio device.
4154 if (value != AUDIO_DEVICE_NONE) {
4155 mOutDevice = value;
4156 for (size_t i = 0; i < mEffectChains.size(); i++) {
4157 mEffectChains[i]->setDevice_l(mOutDevice);
4158 }
4159 }
4160 }
4161 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4162 // do not accept frame count changes if tracks are open as the track buffer
4163 // size depends on frame count and correct behavior would not be garantied
4164 // if frame count is changed after track creation
4165 if (!mTracks.isEmpty()) {
4166 status = INVALID_OPERATION;
4167 } else {
4168 reconfig = true;
4169 }
4170 }
4171 if (status == NO_ERROR) {
4172 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4173 keyValuePair.string());
4174 if (!mStandby && status == INVALID_OPERATION) {
4175 mOutput->stream->common.standby(&mOutput->stream->common);
4176 mStandby = true;
4177 mBytesWritten = 0;
4178 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4179 keyValuePair.string());
4180 }
4181 if (status == NO_ERROR && reconfig) {
4182 readOutputParameters_l();
4183 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4184 }
4185 }
4186
4187 return reconfig;
4188 }
4189
activeSleepTimeUs() const4190 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4191 {
4192 uint32_t time;
4193 if (audio_is_linear_pcm(mFormat)) {
4194 time = PlaybackThread::activeSleepTimeUs();
4195 } else {
4196 time = 10000;
4197 }
4198 return time;
4199 }
4200
idleSleepTimeUs() const4201 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4202 {
4203 uint32_t time;
4204 if (audio_is_linear_pcm(mFormat)) {
4205 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4206 } else {
4207 time = 10000;
4208 }
4209 return time;
4210 }
4211
suspendSleepTimeUs() const4212 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4213 {
4214 uint32_t time;
4215 if (audio_is_linear_pcm(mFormat)) {
4216 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4217 } else {
4218 time = 10000;
4219 }
4220 return time;
4221 }
4222
cacheParameters_l()4223 void AudioFlinger::DirectOutputThread::cacheParameters_l()
4224 {
4225 PlaybackThread::cacheParameters_l();
4226
4227 // use shorter standby delay as on normal output to release
4228 // hardware resources as soon as possible
4229 if (audio_is_linear_pcm(mFormat)) {
4230 standbyDelay = microseconds(activeSleepTime*2);
4231 } else {
4232 standbyDelay = kOffloadStandbyDelayNs;
4233 }
4234 }
4235
flushHw_l()4236 void AudioFlinger::DirectOutputThread::flushHw_l()
4237 {
4238 if (mOutput->stream->flush != NULL)
4239 mOutput->stream->flush(mOutput->stream);
4240 }
4241
4242 // ----------------------------------------------------------------------------
4243
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)4244 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4245 const wp<AudioFlinger::PlaybackThread>& playbackThread)
4246 : Thread(false /*canCallJava*/),
4247 mPlaybackThread(playbackThread),
4248 mWriteAckSequence(0),
4249 mDrainSequence(0)
4250 {
4251 }
4252
~AsyncCallbackThread()4253 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4254 {
4255 }
4256
onFirstRef()4257 void AudioFlinger::AsyncCallbackThread::onFirstRef()
4258 {
4259 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4260 }
4261
threadLoop()4262 bool AudioFlinger::AsyncCallbackThread::threadLoop()
4263 {
4264 while (!exitPending()) {
4265 uint32_t writeAckSequence;
4266 uint32_t drainSequence;
4267
4268 {
4269 Mutex::Autolock _l(mLock);
4270 while (!((mWriteAckSequence & 1) ||
4271 (mDrainSequence & 1) ||
4272 exitPending())) {
4273 mWaitWorkCV.wait(mLock);
4274 }
4275
4276 if (exitPending()) {
4277 break;
4278 }
4279 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4280 mWriteAckSequence, mDrainSequence);
4281 writeAckSequence = mWriteAckSequence;
4282 mWriteAckSequence &= ~1;
4283 drainSequence = mDrainSequence;
4284 mDrainSequence &= ~1;
4285 }
4286 {
4287 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4288 if (playbackThread != 0) {
4289 if (writeAckSequence & 1) {
4290 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4291 }
4292 if (drainSequence & 1) {
4293 playbackThread->resetDraining(drainSequence >> 1);
4294 }
4295 }
4296 }
4297 }
4298 return false;
4299 }
4300
exit()4301 void AudioFlinger::AsyncCallbackThread::exit()
4302 {
4303 ALOGV("AsyncCallbackThread::exit");
4304 Mutex::Autolock _l(mLock);
4305 requestExit();
4306 mWaitWorkCV.broadcast();
4307 }
4308
setWriteBlocked(uint32_t sequence)4309 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4310 {
4311 Mutex::Autolock _l(mLock);
4312 // bit 0 is cleared
4313 mWriteAckSequence = sequence << 1;
4314 }
4315
resetWriteBlocked()4316 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4317 {
4318 Mutex::Autolock _l(mLock);
4319 // ignore unexpected callbacks
4320 if (mWriteAckSequence & 2) {
4321 mWriteAckSequence |= 1;
4322 mWaitWorkCV.signal();
4323 }
4324 }
4325
setDraining(uint32_t sequence)4326 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4327 {
4328 Mutex::Autolock _l(mLock);
4329 // bit 0 is cleared
4330 mDrainSequence = sequence << 1;
4331 }
4332
resetDraining()4333 void AudioFlinger::AsyncCallbackThread::resetDraining()
4334 {
4335 Mutex::Autolock _l(mLock);
4336 // ignore unexpected callbacks
4337 if (mDrainSequence & 2) {
4338 mDrainSequence |= 1;
4339 mWaitWorkCV.signal();
4340 }
4341 }
4342
4343
4344 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device)4345 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4346 AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4347 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4348 mHwPaused(false),
4349 mFlushPending(false),
4350 mPausedBytesRemaining(0)
4351 {
4352 //FIXME: mStandby should be set to true by ThreadBase constructor
4353 mStandby = true;
4354 }
4355
threadLoop_exit()4356 void AudioFlinger::OffloadThread::threadLoop_exit()
4357 {
4358 if (mFlushPending || mHwPaused) {
4359 // If a flush is pending or track was paused, just discard buffered data
4360 flushHw_l();
4361 } else {
4362 mMixerStatus = MIXER_DRAIN_ALL;
4363 threadLoop_drain();
4364 }
4365 if (mUseAsyncWrite) {
4366 ALOG_ASSERT(mCallbackThread != 0);
4367 mCallbackThread->exit();
4368 }
4369 PlaybackThread::threadLoop_exit();
4370 }
4371
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4372 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4373 Vector< sp<Track> > *tracksToRemove
4374 )
4375 {
4376 size_t count = mActiveTracks.size();
4377
4378 mixer_state mixerStatus = MIXER_IDLE;
4379 bool doHwPause = false;
4380 bool doHwResume = false;
4381
4382 ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4383
4384 // find out which tracks need to be processed
4385 for (size_t i = 0; i < count; i++) {
4386 sp<Track> t = mActiveTracks[i].promote();
4387 // The track died recently
4388 if (t == 0) {
4389 continue;
4390 }
4391 Track* const track = t.get();
4392 audio_track_cblk_t* cblk = track->cblk();
4393 // Only consider last track started for volume and mixer state control.
4394 // In theory an older track could underrun and restart after the new one starts
4395 // but as we only care about the transition phase between two tracks on a
4396 // direct output, it is not a problem to ignore the underrun case.
4397 sp<Track> l = mLatestActiveTrack.promote();
4398 bool last = l.get() == track;
4399
4400 if (track->isInvalid()) {
4401 ALOGW("An invalidated track shouldn't be in active list");
4402 tracksToRemove->add(track);
4403 continue;
4404 }
4405
4406 if (track->mState == TrackBase::IDLE) {
4407 ALOGW("An idle track shouldn't be in active list");
4408 continue;
4409 }
4410
4411 if (track->isPausing()) {
4412 track->setPaused();
4413 if (last) {
4414 if (!mHwPaused) {
4415 doHwPause = true;
4416 mHwPaused = true;
4417 }
4418 // If we were part way through writing the mixbuffer to
4419 // the HAL we must save this until we resume
4420 // BUG - this will be wrong if a different track is made active,
4421 // in that case we want to discard the pending data in the
4422 // mixbuffer and tell the client to present it again when the
4423 // track is resumed
4424 mPausedWriteLength = mCurrentWriteLength;
4425 mPausedBytesRemaining = mBytesRemaining;
4426 mBytesRemaining = 0; // stop writing
4427 }
4428 tracksToRemove->add(track);
4429 } else if (track->isFlushPending()) {
4430 track->flushAck();
4431 if (last) {
4432 mFlushPending = true;
4433 }
4434 } else if (track->isResumePending()){
4435 track->resumeAck();
4436 if (last) {
4437 if (mPausedBytesRemaining) {
4438 // Need to continue write that was interrupted
4439 mCurrentWriteLength = mPausedWriteLength;
4440 mBytesRemaining = mPausedBytesRemaining;
4441 mPausedBytesRemaining = 0;
4442 }
4443 if (mHwPaused) {
4444 doHwResume = true;
4445 mHwPaused = false;
4446 // threadLoop_mix() will handle the case that we need to
4447 // resume an interrupted write
4448 }
4449 // enable write to audio HAL
4450 sleepTime = 0;
4451
4452 // Do not handle new data in this iteration even if track->framesReady()
4453 mixerStatus = MIXER_TRACKS_ENABLED;
4454 }
4455 } else if (track->framesReady() && track->isReady() &&
4456 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4457 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4458 if (track->mFillingUpStatus == Track::FS_FILLED) {
4459 track->mFillingUpStatus = Track::FS_ACTIVE;
4460 // make sure processVolume_l() will apply new volume even if 0
4461 mLeftVolFloat = mRightVolFloat = -1.0;
4462 }
4463
4464 if (last) {
4465 sp<Track> previousTrack = mPreviousTrack.promote();
4466 if (previousTrack != 0) {
4467 if (track != previousTrack.get()) {
4468 // Flush any data still being written from last track
4469 mBytesRemaining = 0;
4470 if (mPausedBytesRemaining) {
4471 // Last track was paused so we also need to flush saved
4472 // mixbuffer state and invalidate track so that it will
4473 // re-submit that unwritten data when it is next resumed
4474 mPausedBytesRemaining = 0;
4475 // Invalidate is a bit drastic - would be more efficient
4476 // to have a flag to tell client that some of the
4477 // previously written data was lost
4478 previousTrack->invalidate();
4479 }
4480 // flush data already sent to the DSP if changing audio session as audio
4481 // comes from a different source. Also invalidate previous track to force a
4482 // seek when resuming.
4483 if (previousTrack->sessionId() != track->sessionId()) {
4484 previousTrack->invalidate();
4485 }
4486 }
4487 }
4488 mPreviousTrack = track;
4489 // reset retry count
4490 track->mRetryCount = kMaxTrackRetriesOffload;
4491 mActiveTrack = t;
4492 mixerStatus = MIXER_TRACKS_READY;
4493 }
4494 } else {
4495 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4496 if (track->isStopping_1()) {
4497 // Hardware buffer can hold a large amount of audio so we must
4498 // wait for all current track's data to drain before we say
4499 // that the track is stopped.
4500 if (mBytesRemaining == 0) {
4501 // Only start draining when all data in mixbuffer
4502 // has been written
4503 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4504 track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4505 // do not drain if no data was ever sent to HAL (mStandby == true)
4506 if (last && !mStandby) {
4507 // do not modify drain sequence if we are already draining. This happens
4508 // when resuming from pause after drain.
4509 if ((mDrainSequence & 1) == 0) {
4510 sleepTime = 0;
4511 standbyTime = systemTime() + standbyDelay;
4512 mixerStatus = MIXER_DRAIN_TRACK;
4513 mDrainSequence += 2;
4514 }
4515 if (mHwPaused) {
4516 // It is possible to move from PAUSED to STOPPING_1 without
4517 // a resume so we must ensure hardware is running
4518 doHwResume = true;
4519 mHwPaused = false;
4520 }
4521 }
4522 }
4523 } else if (track->isStopping_2()) {
4524 // Drain has completed or we are in standby, signal presentation complete
4525 if (!(mDrainSequence & 1) || !last || mStandby) {
4526 track->mState = TrackBase::STOPPED;
4527 size_t audioHALFrames =
4528 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4529 size_t framesWritten =
4530 mBytesWritten / audio_stream_out_frame_size(mOutput->stream);
4531 track->presentationComplete(framesWritten, audioHALFrames);
4532 track->reset();
4533 tracksToRemove->add(track);
4534 }
4535 } else {
4536 // No buffers for this track. Give it a few chances to
4537 // fill a buffer, then remove it from active list.
4538 if (--(track->mRetryCount) <= 0) {
4539 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4540 track->name());
4541 tracksToRemove->add(track);
4542 // indicate to client process that the track was disabled because of underrun;
4543 // it will then automatically call start() when data is available
4544 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4545 } else if (last){
4546 mixerStatus = MIXER_TRACKS_ENABLED;
4547 }
4548 }
4549 }
4550 // compute volume for this track
4551 processVolume_l(track, last);
4552 }
4553
4554 // make sure the pause/flush/resume sequence is executed in the right order.
4555 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4556 // before flush and then resume HW. This can happen in case of pause/flush/resume
4557 // if resume is received before pause is executed.
4558 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4559 mOutput->stream->pause(mOutput->stream);
4560 }
4561 if (mFlushPending) {
4562 flushHw_l();
4563 mFlushPending = false;
4564 }
4565 if (!mStandby && doHwResume) {
4566 mOutput->stream->resume(mOutput->stream);
4567 }
4568
4569 // remove all the tracks that need to be...
4570 removeTracks_l(*tracksToRemove);
4571
4572 return mixerStatus;
4573 }
4574
4575 // must be called with thread mutex locked
waitingAsyncCallback_l()4576 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4577 {
4578 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4579 mWriteAckSequence, mDrainSequence);
4580 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4581 return true;
4582 }
4583 return false;
4584 }
4585
4586 // must be called with thread mutex locked
shouldStandby_l()4587 bool AudioFlinger::OffloadThread::shouldStandby_l()
4588 {
4589 bool trackPaused = false;
4590
4591 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4592 // after a timeout and we will enter standby then.
4593 if (mTracks.size() > 0) {
4594 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4595 }
4596
4597 return !mStandby && !trackPaused;
4598 }
4599
4600
waitingAsyncCallback()4601 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4602 {
4603 Mutex::Autolock _l(mLock);
4604 return waitingAsyncCallback_l();
4605 }
4606
flushHw_l()4607 void AudioFlinger::OffloadThread::flushHw_l()
4608 {
4609 DirectOutputThread::flushHw_l();
4610 // Flush anything still waiting in the mixbuffer
4611 mCurrentWriteLength = 0;
4612 mBytesRemaining = 0;
4613 mPausedWriteLength = 0;
4614 mPausedBytesRemaining = 0;
4615 mHwPaused = false;
4616
4617 if (mUseAsyncWrite) {
4618 // discard any pending drain or write ack by incrementing sequence
4619 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4620 mDrainSequence = (mDrainSequence + 2) & ~1;
4621 ALOG_ASSERT(mCallbackThread != 0);
4622 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4623 mCallbackThread->setDraining(mDrainSequence);
4624 }
4625 }
4626
onAddNewTrack_l()4627 void AudioFlinger::OffloadThread::onAddNewTrack_l()
4628 {
4629 sp<Track> previousTrack = mPreviousTrack.promote();
4630 sp<Track> latestTrack = mLatestActiveTrack.promote();
4631
4632 if (previousTrack != 0 && latestTrack != 0 &&
4633 (previousTrack->sessionId() != latestTrack->sessionId())) {
4634 mFlushPending = true;
4635 }
4636 PlaybackThread::onAddNewTrack_l();
4637 }
4638
4639 // ----------------------------------------------------------------------------
4640
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id)4641 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4642 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4643 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4644 DUPLICATING),
4645 mWaitTimeMs(UINT_MAX)
4646 {
4647 addOutputTrack(mainThread);
4648 }
4649
~DuplicatingThread()4650 AudioFlinger::DuplicatingThread::~DuplicatingThread()
4651 {
4652 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4653 mOutputTracks[i]->destroy();
4654 }
4655 }
4656
threadLoop_mix()4657 void AudioFlinger::DuplicatingThread::threadLoop_mix()
4658 {
4659 // mix buffers...
4660 if (outputsReady(outputTracks)) {
4661 mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
4662 } else {
4663 if (mMixerBufferValid) {
4664 memset(mMixerBuffer, 0, mMixerBufferSize);
4665 } else {
4666 memset(mSinkBuffer, 0, mSinkBufferSize);
4667 }
4668 }
4669 sleepTime = 0;
4670 writeFrames = mNormalFrameCount;
4671 mCurrentWriteLength = mSinkBufferSize;
4672 standbyTime = systemTime() + standbyDelay;
4673 }
4674
threadLoop_sleepTime()4675 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
4676 {
4677 if (sleepTime == 0) {
4678 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4679 sleepTime = activeSleepTime;
4680 } else {
4681 sleepTime = idleSleepTime;
4682 }
4683 } else if (mBytesWritten != 0) {
4684 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4685 writeFrames = mNormalFrameCount;
4686 memset(mSinkBuffer, 0, mSinkBufferSize);
4687 } else {
4688 // flush remaining overflow buffers in output tracks
4689 writeFrames = 0;
4690 }
4691 sleepTime = 0;
4692 }
4693 }
4694
threadLoop_write()4695 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
4696 {
4697 for (size_t i = 0; i < outputTracks.size(); i++) {
4698 // We convert the duplicating thread format to AUDIO_FORMAT_PCM_16_BIT
4699 // for delivery downstream as needed. This in-place conversion is safe as
4700 // AUDIO_FORMAT_PCM_16_BIT is smaller than any other supported format
4701 // (AUDIO_FORMAT_PCM_8_BIT is not allowed here).
4702 if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
4703 memcpy_by_audio_format(mSinkBuffer, AUDIO_FORMAT_PCM_16_BIT,
4704 mSinkBuffer, mFormat, writeFrames * mChannelCount);
4705 }
4706 outputTracks[i]->write(reinterpret_cast<int16_t*>(mSinkBuffer), writeFrames);
4707 }
4708 mStandby = false;
4709 return (ssize_t)mSinkBufferSize;
4710 }
4711
threadLoop_standby()4712 void AudioFlinger::DuplicatingThread::threadLoop_standby()
4713 {
4714 // DuplicatingThread implements standby by stopping all tracks
4715 for (size_t i = 0; i < outputTracks.size(); i++) {
4716 outputTracks[i]->stop();
4717 }
4718 }
4719
saveOutputTracks()4720 void AudioFlinger::DuplicatingThread::saveOutputTracks()
4721 {
4722 outputTracks = mOutputTracks;
4723 }
4724
clearOutputTracks()4725 void AudioFlinger::DuplicatingThread::clearOutputTracks()
4726 {
4727 outputTracks.clear();
4728 }
4729
addOutputTrack(MixerThread * thread)4730 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
4731 {
4732 Mutex::Autolock _l(mLock);
4733 // FIXME explain this formula
4734 size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
4735 // OutputTrack is forced to AUDIO_FORMAT_PCM_16_BIT regardless of mFormat
4736 // due to current usage case and restrictions on the AudioBufferProvider.
4737 // Actual buffer conversion is done in threadLoop_write().
4738 //
4739 // TODO: This may change in the future, depending on multichannel
4740 // (and non int16_t*) support on AF::PlaybackThread::OutputTrack
4741 OutputTrack *outputTrack = new OutputTrack(thread,
4742 this,
4743 mSampleRate,
4744 AUDIO_FORMAT_PCM_16_BIT,
4745 mChannelMask,
4746 frameCount,
4747 IPCThreadState::self()->getCallingUid());
4748 if (outputTrack->cblk() != NULL) {
4749 thread->setStreamVolume(AUDIO_STREAM_CNT, 1.0f);
4750 mOutputTracks.add(outputTrack);
4751 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
4752 updateWaitTime_l();
4753 }
4754 }
4755
removeOutputTrack(MixerThread * thread)4756 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
4757 {
4758 Mutex::Autolock _l(mLock);
4759 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4760 if (mOutputTracks[i]->thread() == thread) {
4761 mOutputTracks[i]->destroy();
4762 mOutputTracks.removeAt(i);
4763 updateWaitTime_l();
4764 return;
4765 }
4766 }
4767 ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
4768 }
4769
4770 // caller must hold mLock
updateWaitTime_l()4771 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
4772 {
4773 mWaitTimeMs = UINT_MAX;
4774 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4775 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
4776 if (strong != 0) {
4777 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
4778 if (waitTimeMs < mWaitTimeMs) {
4779 mWaitTimeMs = waitTimeMs;
4780 }
4781 }
4782 }
4783 }
4784
4785
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)4786 bool AudioFlinger::DuplicatingThread::outputsReady(
4787 const SortedVector< sp<OutputTrack> > &outputTracks)
4788 {
4789 for (size_t i = 0; i < outputTracks.size(); i++) {
4790 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
4791 if (thread == 0) {
4792 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
4793 outputTracks[i].get());
4794 return false;
4795 }
4796 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
4797 // see note at standby() declaration
4798 if (playbackThread->standby() && !playbackThread->isSuspended()) {
4799 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
4800 thread.get());
4801 return false;
4802 }
4803 }
4804 return true;
4805 }
4806
activeSleepTimeUs() const4807 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
4808 {
4809 return (mWaitTimeMs * 1000) / 2;
4810 }
4811
cacheParameters_l()4812 void AudioFlinger::DuplicatingThread::cacheParameters_l()
4813 {
4814 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
4815 updateWaitTime_l();
4816
4817 MixerThread::cacheParameters_l();
4818 }
4819
4820 // ----------------------------------------------------------------------------
4821 // Record
4822 // ----------------------------------------------------------------------------
4823
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,const sp<NBAIO_Sink> & teeSink)4824 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
4825 AudioStreamIn *input,
4826 audio_io_handle_t id,
4827 audio_devices_t outDevice,
4828 audio_devices_t inDevice
4829 #ifdef TEE_SINK
4830 , const sp<NBAIO_Sink>& teeSink
4831 #endif
4832 ) :
4833 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
4834 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
4835 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
4836 mRsmpInRear(0)
4837 #ifdef TEE_SINK
4838 , mTeeSink(teeSink)
4839 #endif
4840 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
4841 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
4842 // mFastCapture below
4843 , mFastCaptureFutex(0)
4844 // mInputSource
4845 // mPipeSink
4846 // mPipeSource
4847 , mPipeFramesP2(0)
4848 // mPipeMemory
4849 // mFastCaptureNBLogWriter
4850 , mFastTrackAvail(false)
4851 {
4852 snprintf(mName, kNameLength, "AudioIn_%X", id);
4853 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
4854
4855 readInputParameters_l();
4856
4857 // create an NBAIO source for the HAL input stream, and negotiate
4858 mInputSource = new AudioStreamInSource(input->stream);
4859 size_t numCounterOffers = 0;
4860 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
4861 ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
4862 ALOG_ASSERT(index == 0);
4863
4864 // initialize fast capture depending on configuration
4865 bool initFastCapture;
4866 switch (kUseFastCapture) {
4867 case FastCapture_Never:
4868 initFastCapture = false;
4869 break;
4870 case FastCapture_Always:
4871 initFastCapture = true;
4872 break;
4873 case FastCapture_Static:
4874 uint32_t primaryOutputSampleRate;
4875 {
4876 AutoMutex _l(audioFlinger->mHardwareLock);
4877 primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
4878 }
4879 initFastCapture =
4880 // either capture sample rate is same as (a reasonable) primary output sample rate
4881 (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
4882 (mSampleRate == primaryOutputSampleRate)) ||
4883 // or primary output sample rate is unknown, and capture sample rate is reasonable
4884 ((primaryOutputSampleRate == 0) &&
4885 ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
4886 // and the buffer size is < 12 ms
4887 (mFrameCount * 1000) / mSampleRate < 12;
4888 break;
4889 // case FastCapture_Dynamic:
4890 }
4891
4892 if (initFastCapture) {
4893 // create a Pipe for FastMixer to write to, and for us and fast tracks to read from
4894 NBAIO_Format format = mInputSource->format();
4895 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
4896 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
4897 void *pipeBuffer;
4898 const sp<MemoryDealer> roHeap(readOnlyHeap());
4899 sp<IMemory> pipeMemory;
4900 if ((roHeap == 0) ||
4901 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
4902 (pipeBuffer = pipeMemory->pointer()) == NULL) {
4903 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
4904 goto failed;
4905 }
4906 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
4907 memset(pipeBuffer, 0, pipeSize);
4908 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
4909 const NBAIO_Format offers[1] = {format};
4910 size_t numCounterOffers = 0;
4911 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
4912 ALOG_ASSERT(index == 0);
4913 mPipeSink = pipe;
4914 PipeReader *pipeReader = new PipeReader(*pipe);
4915 numCounterOffers = 0;
4916 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
4917 ALOG_ASSERT(index == 0);
4918 mPipeSource = pipeReader;
4919 mPipeFramesP2 = pipeFramesP2;
4920 mPipeMemory = pipeMemory;
4921
4922 // create fast capture
4923 mFastCapture = new FastCapture();
4924 FastCaptureStateQueue *sq = mFastCapture->sq();
4925 #ifdef STATE_QUEUE_DUMP
4926 // FIXME
4927 #endif
4928 FastCaptureState *state = sq->begin();
4929 state->mCblk = NULL;
4930 state->mInputSource = mInputSource.get();
4931 state->mInputSourceGen++;
4932 state->mPipeSink = pipe;
4933 state->mPipeSinkGen++;
4934 state->mFrameCount = mFrameCount;
4935 state->mCommand = FastCaptureState::COLD_IDLE;
4936 // already done in constructor initialization list
4937 //mFastCaptureFutex = 0;
4938 state->mColdFutexAddr = &mFastCaptureFutex;
4939 state->mColdGen++;
4940 state->mDumpState = &mFastCaptureDumpState;
4941 #ifdef TEE_SINK
4942 // FIXME
4943 #endif
4944 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
4945 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
4946 sq->end();
4947 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
4948
4949 // start the fast capture
4950 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
4951 pid_t tid = mFastCapture->getTid();
4952 int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
4953 if (err != 0) {
4954 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
4955 kPriorityFastCapture, getpid_cached, tid, err);
4956 }
4957
4958 #ifdef AUDIO_WATCHDOG
4959 // FIXME
4960 #endif
4961
4962 mFastTrackAvail = true;
4963 }
4964 failed: ;
4965
4966 // FIXME mNormalSource
4967 }
4968
4969
~RecordThread()4970 AudioFlinger::RecordThread::~RecordThread()
4971 {
4972 if (mFastCapture != 0) {
4973 FastCaptureStateQueue *sq = mFastCapture->sq();
4974 FastCaptureState *state = sq->begin();
4975 if (state->mCommand == FastCaptureState::COLD_IDLE) {
4976 int32_t old = android_atomic_inc(&mFastCaptureFutex);
4977 if (old == -1) {
4978 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
4979 }
4980 }
4981 state->mCommand = FastCaptureState::EXIT;
4982 sq->end();
4983 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
4984 mFastCapture->join();
4985 mFastCapture.clear();
4986 }
4987 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
4988 mAudioFlinger->unregisterWriter(mNBLogWriter);
4989 delete[] mRsmpInBuffer;
4990 }
4991
onFirstRef()4992 void AudioFlinger::RecordThread::onFirstRef()
4993 {
4994 run(mName, PRIORITY_URGENT_AUDIO);
4995 }
4996
threadLoop()4997 bool AudioFlinger::RecordThread::threadLoop()
4998 {
4999 nsecs_t lastWarning = 0;
5000
5001 inputStandBy();
5002
5003 reacquire_wakelock:
5004 sp<RecordTrack> activeTrack;
5005 int activeTracksGen;
5006 {
5007 Mutex::Autolock _l(mLock);
5008 size_t size = mActiveTracks.size();
5009 activeTracksGen = mActiveTracksGen;
5010 if (size > 0) {
5011 // FIXME an arbitrary choice
5012 activeTrack = mActiveTracks[0];
5013 acquireWakeLock_l(activeTrack->uid());
5014 if (size > 1) {
5015 SortedVector<int> tmp;
5016 for (size_t i = 0; i < size; i++) {
5017 tmp.add(mActiveTracks[i]->uid());
5018 }
5019 updateWakeLockUids_l(tmp);
5020 }
5021 } else {
5022 acquireWakeLock_l(-1);
5023 }
5024 }
5025
5026 // used to request a deferred sleep, to be executed later while mutex is unlocked
5027 uint32_t sleepUs = 0;
5028
5029 // loop while there is work to do
5030 for (;;) {
5031 Vector< sp<EffectChain> > effectChains;
5032
5033 // sleep with mutex unlocked
5034 if (sleepUs > 0) {
5035 usleep(sleepUs);
5036 sleepUs = 0;
5037 }
5038
5039 // activeTracks accumulates a copy of a subset of mActiveTracks
5040 Vector< sp<RecordTrack> > activeTracks;
5041
5042 // reference to the (first and only) active fast track
5043 sp<RecordTrack> fastTrack;
5044
5045 // reference to a fast track which is about to be removed
5046 sp<RecordTrack> fastTrackToRemove;
5047
5048 { // scope for mLock
5049 Mutex::Autolock _l(mLock);
5050
5051 processConfigEvents_l();
5052
5053 // check exitPending here because checkForNewParameters_l() and
5054 // checkForNewParameters_l() can temporarily release mLock
5055 if (exitPending()) {
5056 break;
5057 }
5058
5059 // if no active track(s), then standby and release wakelock
5060 size_t size = mActiveTracks.size();
5061 if (size == 0) {
5062 standbyIfNotAlreadyInStandby();
5063 // exitPending() can't become true here
5064 releaseWakeLock_l();
5065 ALOGV("RecordThread: loop stopping");
5066 // go to sleep
5067 mWaitWorkCV.wait(mLock);
5068 ALOGV("RecordThread: loop starting");
5069 goto reacquire_wakelock;
5070 }
5071
5072 if (mActiveTracksGen != activeTracksGen) {
5073 activeTracksGen = mActiveTracksGen;
5074 SortedVector<int> tmp;
5075 for (size_t i = 0; i < size; i++) {
5076 tmp.add(mActiveTracks[i]->uid());
5077 }
5078 updateWakeLockUids_l(tmp);
5079 }
5080
5081 bool doBroadcast = false;
5082 for (size_t i = 0; i < size; ) {
5083
5084 activeTrack = mActiveTracks[i];
5085 if (activeTrack->isTerminated()) {
5086 if (activeTrack->isFastTrack()) {
5087 ALOG_ASSERT(fastTrackToRemove == 0);
5088 fastTrackToRemove = activeTrack;
5089 }
5090 removeTrack_l(activeTrack);
5091 mActiveTracks.remove(activeTrack);
5092 mActiveTracksGen++;
5093 size--;
5094 continue;
5095 }
5096
5097 TrackBase::track_state activeTrackState = activeTrack->mState;
5098 switch (activeTrackState) {
5099
5100 case TrackBase::PAUSING:
5101 mActiveTracks.remove(activeTrack);
5102 mActiveTracksGen++;
5103 doBroadcast = true;
5104 size--;
5105 continue;
5106
5107 case TrackBase::STARTING_1:
5108 sleepUs = 10000;
5109 i++;
5110 continue;
5111
5112 case TrackBase::STARTING_2:
5113 doBroadcast = true;
5114 mStandby = false;
5115 activeTrack->mState = TrackBase::ACTIVE;
5116 break;
5117
5118 case TrackBase::ACTIVE:
5119 break;
5120
5121 case TrackBase::IDLE:
5122 i++;
5123 continue;
5124
5125 default:
5126 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5127 }
5128
5129 activeTracks.add(activeTrack);
5130 i++;
5131
5132 if (activeTrack->isFastTrack()) {
5133 ALOG_ASSERT(!mFastTrackAvail);
5134 ALOG_ASSERT(fastTrack == 0);
5135 fastTrack = activeTrack;
5136 }
5137 }
5138 if (doBroadcast) {
5139 mStartStopCond.broadcast();
5140 }
5141
5142 // sleep if there are no active tracks to process
5143 if (activeTracks.size() == 0) {
5144 if (sleepUs == 0) {
5145 sleepUs = kRecordThreadSleepUs;
5146 }
5147 continue;
5148 }
5149 sleepUs = 0;
5150
5151 lockEffectChains_l(effectChains);
5152 }
5153
5154 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5155
5156 size_t size = effectChains.size();
5157 for (size_t i = 0; i < size; i++) {
5158 // thread mutex is not locked, but effect chain is locked
5159 effectChains[i]->process_l();
5160 }
5161
5162 // Push a new fast capture state if fast capture is not already running, or cblk change
5163 if (mFastCapture != 0) {
5164 FastCaptureStateQueue *sq = mFastCapture->sq();
5165 FastCaptureState *state = sq->begin();
5166 bool didModify = false;
5167 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5168 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5169 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5170 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5171 int32_t old = android_atomic_inc(&mFastCaptureFutex);
5172 if (old == -1) {
5173 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5174 }
5175 }
5176 state->mCommand = FastCaptureState::READ_WRITE;
5177 #if 0 // FIXME
5178 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5179 FastCaptureDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
5180 #endif
5181 didModify = true;
5182 }
5183 audio_track_cblk_t *cblkOld = state->mCblk;
5184 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5185 if (cblkNew != cblkOld) {
5186 state->mCblk = cblkNew;
5187 // block until acked if removing a fast track
5188 if (cblkOld != NULL) {
5189 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5190 }
5191 didModify = true;
5192 }
5193 sq->end(didModify);
5194 if (didModify) {
5195 sq->push(block);
5196 #if 0
5197 if (kUseFastCapture == FastCapture_Dynamic) {
5198 mNormalSource = mPipeSource;
5199 }
5200 #endif
5201 }
5202 }
5203
5204 // now run the fast track destructor with thread mutex unlocked
5205 fastTrackToRemove.clear();
5206
5207 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5208 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5209 // slow, then this RecordThread will overrun by not calling HAL read often enough.
5210 // If destination is non-contiguous, first read past the nominal end of buffer, then
5211 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
5212
5213 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5214 ssize_t framesRead;
5215
5216 // If an NBAIO source is present, use it to read the normal capture's data
5217 if (mPipeSource != 0) {
5218 size_t framesToRead = mBufferSize / mFrameSize;
5219 framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
5220 framesToRead, AudioBufferProvider::kInvalidPTS);
5221 if (framesRead == 0) {
5222 // since pipe is non-blocking, simulate blocking input
5223 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5224 }
5225 // otherwise use the HAL / AudioStreamIn directly
5226 } else {
5227 ssize_t bytesRead = mInput->stream->read(mInput->stream,
5228 &mRsmpInBuffer[rear * mChannelCount], mBufferSize);
5229 if (bytesRead < 0) {
5230 framesRead = bytesRead;
5231 } else {
5232 framesRead = bytesRead / mFrameSize;
5233 }
5234 }
5235
5236 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5237 ALOGE("read failed: framesRead=%d", framesRead);
5238 // Force input into standby so that it tries to recover at next read attempt
5239 inputStandBy();
5240 sleepUs = kRecordThreadSleepUs;
5241 }
5242 if (framesRead <= 0) {
5243 goto unlock;
5244 }
5245 ALOG_ASSERT(framesRead > 0);
5246
5247 if (mTeeSink != 0) {
5248 (void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
5249 }
5250 // If destination is non-contiguous, we now correct for reading past end of buffer.
5251 {
5252 size_t part1 = mRsmpInFramesP2 - rear;
5253 if ((size_t) framesRead > part1) {
5254 memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
5255 (framesRead - part1) * mFrameSize);
5256 }
5257 }
5258 rear = mRsmpInRear += framesRead;
5259
5260 size = activeTracks.size();
5261 // loop over each active track
5262 for (size_t i = 0; i < size; i++) {
5263 activeTrack = activeTracks[i];
5264
5265 // skip fast tracks, as those are handled directly by FastCapture
5266 if (activeTrack->isFastTrack()) {
5267 continue;
5268 }
5269
5270 enum {
5271 OVERRUN_UNKNOWN,
5272 OVERRUN_TRUE,
5273 OVERRUN_FALSE
5274 } overrun = OVERRUN_UNKNOWN;
5275
5276 // loop over getNextBuffer to handle circular sink
5277 for (;;) {
5278
5279 activeTrack->mSink.frameCount = ~0;
5280 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5281 size_t framesOut = activeTrack->mSink.frameCount;
5282 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5283
5284 int32_t front = activeTrack->mRsmpInFront;
5285 ssize_t filled = rear - front;
5286 size_t framesIn;
5287
5288 if (filled < 0) {
5289 // should not happen, but treat like a massive overrun and re-sync
5290 framesIn = 0;
5291 activeTrack->mRsmpInFront = rear;
5292 overrun = OVERRUN_TRUE;
5293 } else if ((size_t) filled <= mRsmpInFrames) {
5294 framesIn = (size_t) filled;
5295 } else {
5296 // client is not keeping up with server, but give it latest data
5297 framesIn = mRsmpInFrames;
5298 activeTrack->mRsmpInFront = front = rear - framesIn;
5299 overrun = OVERRUN_TRUE;
5300 }
5301
5302 if (framesOut == 0 || framesIn == 0) {
5303 break;
5304 }
5305
5306 if (activeTrack->mResampler == NULL) {
5307 // no resampling
5308 if (framesIn > framesOut) {
5309 framesIn = framesOut;
5310 } else {
5311 framesOut = framesIn;
5312 }
5313 int8_t *dst = activeTrack->mSink.i8;
5314 while (framesIn > 0) {
5315 front &= mRsmpInFramesP2 - 1;
5316 size_t part1 = mRsmpInFramesP2 - front;
5317 if (part1 > framesIn) {
5318 part1 = framesIn;
5319 }
5320 int8_t *src = (int8_t *)mRsmpInBuffer + (front * mFrameSize);
5321 if (mChannelCount == activeTrack->mChannelCount) {
5322 memcpy(dst, src, part1 * mFrameSize);
5323 } else if (mChannelCount == 1) {
5324 upmix_to_stereo_i16_from_mono_i16((int16_t *)dst, (const int16_t *)src,
5325 part1);
5326 } else {
5327 downmix_to_mono_i16_from_stereo_i16((int16_t *)dst, (const int16_t *)src,
5328 part1);
5329 }
5330 dst += part1 * activeTrack->mFrameSize;
5331 front += part1;
5332 framesIn -= part1;
5333 }
5334 activeTrack->mRsmpInFront += framesOut;
5335
5336 } else {
5337 // resampling
5338 // FIXME framesInNeeded should really be part of resampler API, and should
5339 // depend on the SRC ratio
5340 // to keep mRsmpInBuffer full so resampler always has sufficient input
5341 size_t framesInNeeded;
5342 // FIXME only re-calculate when it changes, and optimize for common ratios
5343 // Do not precompute in/out because floating point is not associative
5344 // e.g. a*b/c != a*(b/c).
5345 const double in(mSampleRate);
5346 const double out(activeTrack->mSampleRate);
5347 framesInNeeded = ceil(framesOut * in / out) + 1;
5348 ALOGV("need %u frames in to produce %u out given in/out ratio of %.4g",
5349 framesInNeeded, framesOut, in / out);
5350 // Although we theoretically have framesIn in circular buffer, some of those are
5351 // unreleased frames, and thus must be discounted for purpose of budgeting.
5352 size_t unreleased = activeTrack->mRsmpInUnrel;
5353 framesIn = framesIn > unreleased ? framesIn - unreleased : 0;
5354 if (framesIn < framesInNeeded) {
5355 ALOGV("not enough to resample: have %u frames in but need %u in to "
5356 "produce %u out given in/out ratio of %.4g",
5357 framesIn, framesInNeeded, framesOut, in / out);
5358 size_t newFramesOut = framesIn > 0 ? floor((framesIn - 1) * out / in) : 0;
5359 LOG_ALWAYS_FATAL_IF(newFramesOut >= framesOut);
5360 if (newFramesOut == 0) {
5361 break;
5362 }
5363 framesInNeeded = ceil(newFramesOut * in / out) + 1;
5364 ALOGV("now need %u frames in to produce %u out given out/in ratio of %.4g",
5365 framesInNeeded, newFramesOut, out / in);
5366 LOG_ALWAYS_FATAL_IF(framesIn < framesInNeeded);
5367 ALOGV("success 2: have %u frames in and need %u in to produce %u out "
5368 "given in/out ratio of %.4g",
5369 framesIn, framesInNeeded, newFramesOut, in / out);
5370 framesOut = newFramesOut;
5371 } else {
5372 ALOGV("success 1: have %u in and need %u in to produce %u out "
5373 "given in/out ratio of %.4g",
5374 framesIn, framesInNeeded, framesOut, in / out);
5375 }
5376
5377 // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
5378 if (activeTrack->mRsmpOutFrameCount < framesOut) {
5379 // FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
5380 delete[] activeTrack->mRsmpOutBuffer;
5381 // resampler always outputs stereo
5382 activeTrack->mRsmpOutBuffer = new int32_t[framesOut * FCC_2];
5383 activeTrack->mRsmpOutFrameCount = framesOut;
5384 }
5385
5386 // resampler accumulates, but we only have one source track
5387 memset(activeTrack->mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
5388 activeTrack->mResampler->resample(activeTrack->mRsmpOutBuffer, framesOut,
5389 // FIXME how about having activeTrack implement this interface itself?
5390 activeTrack->mResamplerBufferProvider
5391 /*this*/ /* AudioBufferProvider* */);
5392 // ditherAndClamp() works as long as all buffers returned by
5393 // activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
5394 if (activeTrack->mChannelCount == 1) {
5395 // temporarily type pun mRsmpOutBuffer from Q4.27 to int16_t
5396 ditherAndClamp(activeTrack->mRsmpOutBuffer, activeTrack->mRsmpOutBuffer,
5397 framesOut);
5398 // the resampler always outputs stereo samples:
5399 // do post stereo to mono conversion
5400 downmix_to_mono_i16_from_stereo_i16(activeTrack->mSink.i16,
5401 (const int16_t *)activeTrack->mRsmpOutBuffer, framesOut);
5402 } else {
5403 ditherAndClamp((int32_t *)activeTrack->mSink.raw,
5404 activeTrack->mRsmpOutBuffer, framesOut);
5405 }
5406 // now done with mRsmpOutBuffer
5407
5408 }
5409
5410 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5411 overrun = OVERRUN_FALSE;
5412 }
5413
5414 if (activeTrack->mFramesToDrop == 0) {
5415 if (framesOut > 0) {
5416 activeTrack->mSink.frameCount = framesOut;
5417 activeTrack->releaseBuffer(&activeTrack->mSink);
5418 }
5419 } else {
5420 // FIXME could do a partial drop of framesOut
5421 if (activeTrack->mFramesToDrop > 0) {
5422 activeTrack->mFramesToDrop -= framesOut;
5423 if (activeTrack->mFramesToDrop <= 0) {
5424 activeTrack->clearSyncStartEvent();
5425 }
5426 } else {
5427 activeTrack->mFramesToDrop += framesOut;
5428 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5429 activeTrack->mSyncStartEvent->isCancelled()) {
5430 ALOGW("Synced record %s, session %d, trigger session %d",
5431 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5432 activeTrack->sessionId(),
5433 (activeTrack->mSyncStartEvent != 0) ?
5434 activeTrack->mSyncStartEvent->triggerSession() : 0);
5435 activeTrack->clearSyncStartEvent();
5436 }
5437 }
5438 }
5439
5440 if (framesOut == 0) {
5441 break;
5442 }
5443 }
5444
5445 switch (overrun) {
5446 case OVERRUN_TRUE:
5447 // client isn't retrieving buffers fast enough
5448 if (!activeTrack->setOverflow()) {
5449 nsecs_t now = systemTime();
5450 // FIXME should lastWarning per track?
5451 if ((now - lastWarning) > kWarningThrottleNs) {
5452 ALOGW("RecordThread: buffer overflow");
5453 lastWarning = now;
5454 }
5455 }
5456 break;
5457 case OVERRUN_FALSE:
5458 activeTrack->clearOverflow();
5459 break;
5460 case OVERRUN_UNKNOWN:
5461 break;
5462 }
5463
5464 }
5465
5466 unlock:
5467 // enable changes in effect chain
5468 unlockEffectChains(effectChains);
5469 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5470 }
5471
5472 standbyIfNotAlreadyInStandby();
5473
5474 {
5475 Mutex::Autolock _l(mLock);
5476 for (size_t i = 0; i < mTracks.size(); i++) {
5477 sp<RecordTrack> track = mTracks[i];
5478 track->invalidate();
5479 }
5480 mActiveTracks.clear();
5481 mActiveTracksGen++;
5482 mStartStopCond.broadcast();
5483 }
5484
5485 releaseWakeLock();
5486
5487 ALOGV("RecordThread %p exiting", this);
5488 return false;
5489 }
5490
standbyIfNotAlreadyInStandby()5491 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5492 {
5493 if (!mStandby) {
5494 inputStandBy();
5495 mStandby = true;
5496 }
5497 }
5498
inputStandBy()5499 void AudioFlinger::RecordThread::inputStandBy()
5500 {
5501 // Idle the fast capture if it's currently running
5502 if (mFastCapture != 0) {
5503 FastCaptureStateQueue *sq = mFastCapture->sq();
5504 FastCaptureState *state = sq->begin();
5505 if (!(state->mCommand & FastCaptureState::IDLE)) {
5506 state->mCommand = FastCaptureState::COLD_IDLE;
5507 state->mColdFutexAddr = &mFastCaptureFutex;
5508 state->mColdGen++;
5509 mFastCaptureFutex = 0;
5510 sq->end();
5511 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5512 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5513 #if 0
5514 if (kUseFastCapture == FastCapture_Dynamic) {
5515 // FIXME
5516 }
5517 #endif
5518 #ifdef AUDIO_WATCHDOG
5519 // FIXME
5520 #endif
5521 } else {
5522 sq->end(false /*didModify*/);
5523 }
5524 }
5525 mInput->stream->common.standby(&mInput->stream->common);
5526 }
5527
5528 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,int sessionId,size_t * notificationFrames,int uid,IAudioFlinger::track_flags_t * flags,pid_t tid,status_t * status)5529 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5530 const sp<AudioFlinger::Client>& client,
5531 uint32_t sampleRate,
5532 audio_format_t format,
5533 audio_channel_mask_t channelMask,
5534 size_t *pFrameCount,
5535 int sessionId,
5536 size_t *notificationFrames,
5537 int uid,
5538 IAudioFlinger::track_flags_t *flags,
5539 pid_t tid,
5540 status_t *status)
5541 {
5542 size_t frameCount = *pFrameCount;
5543 sp<RecordTrack> track;
5544 status_t lStatus;
5545
5546 // client expresses a preference for FAST, but we get the final say
5547 if (*flags & IAudioFlinger::TRACK_FAST) {
5548 if (
5549 // use case: callback handler
5550 (tid != -1) &&
5551 // frame count is not specified, or is exactly the pipe depth
5552 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5553 // PCM data
5554 audio_is_linear_pcm(format) &&
5555 // native format
5556 (format == mFormat) &&
5557 // native channel mask
5558 (channelMask == mChannelMask) &&
5559 // native hardware sample rate
5560 (sampleRate == mSampleRate) &&
5561 // record thread has an associated fast capture
5562 hasFastCapture() &&
5563 // there are sufficient fast track slots available
5564 mFastTrackAvail
5565 ) {
5566 ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5567 frameCount, mFrameCount);
5568 } else {
5569 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5570 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5571 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5572 frameCount, mFrameCount, mPipeFramesP2,
5573 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5574 hasFastCapture(), tid, mFastTrackAvail);
5575 *flags &= ~IAudioFlinger::TRACK_FAST;
5576 }
5577 }
5578
5579 // compute track buffer size in frames, and suggest the notification frame count
5580 if (*flags & IAudioFlinger::TRACK_FAST) {
5581 // fast track: frame count is exactly the pipe depth
5582 frameCount = mPipeFramesP2;
5583 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5584 *notificationFrames = mFrameCount;
5585 } else {
5586 // not fast track: max notification period is resampled equivalent of one HAL buffer time
5587 // or 20 ms if there is a fast capture
5588 // TODO This could be a roundupRatio inline, and const
5589 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5590 * sampleRate + mSampleRate - 1) / mSampleRate;
5591 // minimum number of notification periods is at least kMinNotifications,
5592 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5593 static const size_t kMinNotifications = 3;
5594 static const uint32_t kMinMs = 30;
5595 // TODO This could be a roundupRatio inline
5596 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5597 // TODO This could be a roundupRatio inline
5598 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5599 maxNotificationFrames;
5600 const size_t minFrameCount = maxNotificationFrames *
5601 max(kMinNotifications, minNotificationsByMs);
5602 frameCount = max(frameCount, minFrameCount);
5603 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5604 *notificationFrames = maxNotificationFrames;
5605 }
5606 }
5607 *pFrameCount = frameCount;
5608
5609 lStatus = initCheck();
5610 if (lStatus != NO_ERROR) {
5611 ALOGE("createRecordTrack_l() audio driver not initialized");
5612 goto Exit;
5613 }
5614
5615 { // scope for mLock
5616 Mutex::Autolock _l(mLock);
5617
5618 track = new RecordTrack(this, client, sampleRate,
5619 format, channelMask, frameCount, NULL, sessionId, uid,
5620 *flags, TrackBase::TYPE_DEFAULT);
5621
5622 lStatus = track->initCheck();
5623 if (lStatus != NO_ERROR) {
5624 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5625 // track must be cleared from the caller as the caller has the AF lock
5626 goto Exit;
5627 }
5628 mTracks.add(track);
5629
5630 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5631 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5632 mAudioFlinger->btNrecIsOff();
5633 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5634 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5635
5636 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5637 pid_t callingPid = IPCThreadState::self()->getCallingPid();
5638 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5639 // so ask activity manager to do this on our behalf
5640 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5641 }
5642 }
5643
5644 lStatus = NO_ERROR;
5645
5646 Exit:
5647 *status = lStatus;
5648 return track;
5649 }
5650
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,int triggerSession)5651 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5652 AudioSystem::sync_event_t event,
5653 int triggerSession)
5654 {
5655 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5656 sp<ThreadBase> strongMe = this;
5657 status_t status = NO_ERROR;
5658
5659 if (event == AudioSystem::SYNC_EVENT_NONE) {
5660 recordTrack->clearSyncStartEvent();
5661 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5662 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5663 triggerSession,
5664 recordTrack->sessionId(),
5665 syncStartEventCallback,
5666 recordTrack);
5667 // Sync event can be cancelled by the trigger session if the track is not in a
5668 // compatible state in which case we start record immediately
5669 if (recordTrack->mSyncStartEvent->isCancelled()) {
5670 recordTrack->clearSyncStartEvent();
5671 } else {
5672 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5673 recordTrack->mFramesToDrop = -
5674 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5675 }
5676 }
5677
5678 {
5679 // This section is a rendezvous between binder thread executing start() and RecordThread
5680 AutoMutex lock(mLock);
5681 if (mActiveTracks.indexOf(recordTrack) >= 0) {
5682 if (recordTrack->mState == TrackBase::PAUSING) {
5683 ALOGV("active record track PAUSING -> ACTIVE");
5684 recordTrack->mState = TrackBase::ACTIVE;
5685 } else {
5686 ALOGV("active record track state %d", recordTrack->mState);
5687 }
5688 return status;
5689 }
5690
5691 // TODO consider other ways of handling this, such as changing the state to :STARTING and
5692 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
5693 // or using a separate command thread
5694 recordTrack->mState = TrackBase::STARTING_1;
5695 mActiveTracks.add(recordTrack);
5696 mActiveTracksGen++;
5697 status_t status = NO_ERROR;
5698 if (recordTrack->isExternalTrack()) {
5699 mLock.unlock();
5700 status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
5701 mLock.lock();
5702 // FIXME should verify that recordTrack is still in mActiveTracks
5703 if (status != NO_ERROR) {
5704 mActiveTracks.remove(recordTrack);
5705 mActiveTracksGen++;
5706 recordTrack->clearSyncStartEvent();
5707 ALOGV("RecordThread::start error %d", status);
5708 return status;
5709 }
5710 }
5711 // Catch up with current buffer indices if thread is already running.
5712 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
5713 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
5714 // see previously buffered data before it called start(), but with greater risk of overrun.
5715
5716 recordTrack->mRsmpInFront = mRsmpInRear;
5717 recordTrack->mRsmpInUnrel = 0;
5718 // FIXME why reset?
5719 if (recordTrack->mResampler != NULL) {
5720 recordTrack->mResampler->reset();
5721 }
5722 recordTrack->mState = TrackBase::STARTING_2;
5723 // signal thread to start
5724 mWaitWorkCV.broadcast();
5725 if (mActiveTracks.indexOf(recordTrack) < 0) {
5726 ALOGV("Record failed to start");
5727 status = BAD_VALUE;
5728 goto startError;
5729 }
5730 return status;
5731 }
5732
5733 startError:
5734 if (recordTrack->isExternalTrack()) {
5735 AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
5736 }
5737 recordTrack->clearSyncStartEvent();
5738 // FIXME I wonder why we do not reset the state here?
5739 return status;
5740 }
5741
syncStartEventCallback(const wp<SyncEvent> & event)5742 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
5743 {
5744 sp<SyncEvent> strongEvent = event.promote();
5745
5746 if (strongEvent != 0) {
5747 sp<RefBase> ptr = strongEvent->cookie().promote();
5748 if (ptr != 0) {
5749 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
5750 recordTrack->handleSyncStartEvent(strongEvent);
5751 }
5752 }
5753 }
5754
stop(RecordThread::RecordTrack * recordTrack)5755 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
5756 ALOGV("RecordThread::stop");
5757 AutoMutex _l(mLock);
5758 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
5759 return false;
5760 }
5761 // note that threadLoop may still be processing the track at this point [without lock]
5762 recordTrack->mState = TrackBase::PAUSING;
5763 // do not wait for mStartStopCond if exiting
5764 if (exitPending()) {
5765 return true;
5766 }
5767 // FIXME incorrect usage of wait: no explicit predicate or loop
5768 mStartStopCond.wait(mLock);
5769 // if we have been restarted, recordTrack is in mActiveTracks here
5770 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
5771 ALOGV("Record stopped OK");
5772 return true;
5773 }
5774 return false;
5775 }
5776
isValidSyncEvent(const sp<SyncEvent> & event __unused) const5777 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
5778 {
5779 return false;
5780 }
5781
setSyncEvent(const sp<SyncEvent> & event __unused)5782 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
5783 {
5784 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
5785 if (!isValidSyncEvent(event)) {
5786 return BAD_VALUE;
5787 }
5788
5789 int eventSession = event->triggerSession();
5790 status_t ret = NAME_NOT_FOUND;
5791
5792 Mutex::Autolock _l(mLock);
5793
5794 for (size_t i = 0; i < mTracks.size(); i++) {
5795 sp<RecordTrack> track = mTracks[i];
5796 if (eventSession == track->sessionId()) {
5797 (void) track->setSyncEvent(event);
5798 ret = NO_ERROR;
5799 }
5800 }
5801 return ret;
5802 #else
5803 return BAD_VALUE;
5804 #endif
5805 }
5806
5807 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)5808 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
5809 {
5810 track->terminate();
5811 track->mState = TrackBase::STOPPED;
5812 // active tracks are removed by threadLoop()
5813 if (mActiveTracks.indexOf(track) < 0) {
5814 removeTrack_l(track);
5815 }
5816 }
5817
removeTrack_l(const sp<RecordTrack> & track)5818 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
5819 {
5820 mTracks.remove(track);
5821 // need anything related to effects here?
5822 if (track->isFastTrack()) {
5823 ALOG_ASSERT(!mFastTrackAvail);
5824 mFastTrackAvail = true;
5825 }
5826 }
5827
dump(int fd,const Vector<String16> & args)5828 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
5829 {
5830 dumpInternals(fd, args);
5831 dumpTracks(fd, args);
5832 dumpEffectChains(fd, args);
5833 }
5834
dumpInternals(int fd,const Vector<String16> & args)5835 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
5836 {
5837 dprintf(fd, "\nInput thread %p:\n", this);
5838
5839 if (mActiveTracks.size() > 0) {
5840 dprintf(fd, " Buffer size: %zu bytes\n", mBufferSize);
5841 } else {
5842 dprintf(fd, " No active record clients\n");
5843 }
5844 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
5845 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
5846
5847 dumpBase(fd, args);
5848 }
5849
dumpTracks(int fd,const Vector<String16> & args __unused)5850 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
5851 {
5852 const size_t SIZE = 256;
5853 char buffer[SIZE];
5854 String8 result;
5855
5856 size_t numtracks = mTracks.size();
5857 size_t numactive = mActiveTracks.size();
5858 size_t numactiveseen = 0;
5859 dprintf(fd, " %d Tracks", numtracks);
5860 if (numtracks) {
5861 dprintf(fd, " of which %d are active\n", numactive);
5862 RecordTrack::appendDumpHeader(result);
5863 for (size_t i = 0; i < numtracks ; ++i) {
5864 sp<RecordTrack> track = mTracks[i];
5865 if (track != 0) {
5866 bool active = mActiveTracks.indexOf(track) >= 0;
5867 if (active) {
5868 numactiveseen++;
5869 }
5870 track->dump(buffer, SIZE, active);
5871 result.append(buffer);
5872 }
5873 }
5874 } else {
5875 dprintf(fd, "\n");
5876 }
5877
5878 if (numactiveseen != numactive) {
5879 snprintf(buffer, SIZE, " The following tracks are in the active list but"
5880 " not in the track list\n");
5881 result.append(buffer);
5882 RecordTrack::appendDumpHeader(result);
5883 for (size_t i = 0; i < numactive; ++i) {
5884 sp<RecordTrack> track = mActiveTracks[i];
5885 if (mTracks.indexOf(track) < 0) {
5886 track->dump(buffer, SIZE, true);
5887 result.append(buffer);
5888 }
5889 }
5890
5891 }
5892 write(fd, result.string(), result.size());
5893 }
5894
5895 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer,int64_t pts __unused)5896 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
5897 AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
5898 {
5899 RecordTrack *activeTrack = mRecordTrack;
5900 sp<ThreadBase> threadBase = activeTrack->mThread.promote();
5901 if (threadBase == 0) {
5902 buffer->frameCount = 0;
5903 buffer->raw = NULL;
5904 return NOT_ENOUGH_DATA;
5905 }
5906 RecordThread *recordThread = (RecordThread *) threadBase.get();
5907 int32_t rear = recordThread->mRsmpInRear;
5908 int32_t front = activeTrack->mRsmpInFront;
5909 ssize_t filled = rear - front;
5910 // FIXME should not be P2 (don't want to increase latency)
5911 // FIXME if client not keeping up, discard
5912 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
5913 // 'filled' may be non-contiguous, so return only the first contiguous chunk
5914 front &= recordThread->mRsmpInFramesP2 - 1;
5915 size_t part1 = recordThread->mRsmpInFramesP2 - front;
5916 if (part1 > (size_t) filled) {
5917 part1 = filled;
5918 }
5919 size_t ask = buffer->frameCount;
5920 ALOG_ASSERT(ask > 0);
5921 if (part1 > ask) {
5922 part1 = ask;
5923 }
5924 if (part1 == 0) {
5925 // Higher-level should keep mRsmpInBuffer full, and not call resampler if empty
5926 LOG_ALWAYS_FATAL("RecordThread::getNextBuffer() starved");
5927 buffer->raw = NULL;
5928 buffer->frameCount = 0;
5929 activeTrack->mRsmpInUnrel = 0;
5930 return NOT_ENOUGH_DATA;
5931 }
5932
5933 buffer->raw = recordThread->mRsmpInBuffer + front * recordThread->mChannelCount;
5934 buffer->frameCount = part1;
5935 activeTrack->mRsmpInUnrel = part1;
5936 return NO_ERROR;
5937 }
5938
5939 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)5940 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
5941 AudioBufferProvider::Buffer* buffer)
5942 {
5943 RecordTrack *activeTrack = mRecordTrack;
5944 size_t stepCount = buffer->frameCount;
5945 if (stepCount == 0) {
5946 return;
5947 }
5948 ALOG_ASSERT(stepCount <= activeTrack->mRsmpInUnrel);
5949 activeTrack->mRsmpInUnrel -= stepCount;
5950 activeTrack->mRsmpInFront += stepCount;
5951 buffer->raw = NULL;
5952 buffer->frameCount = 0;
5953 }
5954
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5955 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
5956 status_t& status)
5957 {
5958 bool reconfig = false;
5959
5960 status = NO_ERROR;
5961
5962 audio_format_t reqFormat = mFormat;
5963 uint32_t samplingRate = mSampleRate;
5964 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
5965
5966 AudioParameter param = AudioParameter(keyValuePair);
5967 int value;
5968 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
5969 // channel count change can be requested. Do we mandate the first client defines the
5970 // HAL sampling rate and channel count or do we allow changes on the fly?
5971 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5972 samplingRate = value;
5973 reconfig = true;
5974 }
5975 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5976 if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
5977 status = BAD_VALUE;
5978 } else {
5979 reqFormat = (audio_format_t) value;
5980 reconfig = true;
5981 }
5982 }
5983 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5984 audio_channel_mask_t mask = (audio_channel_mask_t) value;
5985 if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
5986 status = BAD_VALUE;
5987 } else {
5988 channelMask = mask;
5989 reconfig = true;
5990 }
5991 }
5992 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5993 // do not accept frame count changes if tracks are open as the track buffer
5994 // size depends on frame count and correct behavior would not be guaranteed
5995 // if frame count is changed after track creation
5996 if (mActiveTracks.size() > 0) {
5997 status = INVALID_OPERATION;
5998 } else {
5999 reconfig = true;
6000 }
6001 }
6002 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6003 // forward device change to effects that have requested to be
6004 // aware of attached audio device.
6005 for (size_t i = 0; i < mEffectChains.size(); i++) {
6006 mEffectChains[i]->setDevice_l(value);
6007 }
6008
6009 // store input device and output device but do not forward output device to audio HAL.
6010 // Note that status is ignored by the caller for output device
6011 // (see AudioFlinger::setParameters()
6012 if (audio_is_output_devices(value)) {
6013 mOutDevice = value;
6014 status = BAD_VALUE;
6015 } else {
6016 mInDevice = value;
6017 // disable AEC and NS if the device is a BT SCO headset supporting those
6018 // pre processings
6019 if (mTracks.size() > 0) {
6020 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6021 mAudioFlinger->btNrecIsOff();
6022 for (size_t i = 0; i < mTracks.size(); i++) {
6023 sp<RecordTrack> track = mTracks[i];
6024 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6025 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6026 }
6027 }
6028 }
6029 }
6030 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6031 mAudioSource != (audio_source_t)value) {
6032 // forward device change to effects that have requested to be
6033 // aware of attached audio device.
6034 for (size_t i = 0; i < mEffectChains.size(); i++) {
6035 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6036 }
6037 mAudioSource = (audio_source_t)value;
6038 }
6039
6040 if (status == NO_ERROR) {
6041 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6042 keyValuePair.string());
6043 if (status == INVALID_OPERATION) {
6044 inputStandBy();
6045 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6046 keyValuePair.string());
6047 }
6048 if (reconfig) {
6049 if (status == BAD_VALUE &&
6050 reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
6051 reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
6052 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6053 <= (2 * samplingRate)) &&
6054 audio_channel_count_from_in_mask(
6055 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6056 (channelMask == AUDIO_CHANNEL_IN_MONO ||
6057 channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6058 status = NO_ERROR;
6059 }
6060 if (status == NO_ERROR) {
6061 readInputParameters_l();
6062 sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6063 }
6064 }
6065 }
6066
6067 return reconfig;
6068 }
6069
getParameters(const String8 & keys)6070 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6071 {
6072 Mutex::Autolock _l(mLock);
6073 if (initCheck() != NO_ERROR) {
6074 return String8();
6075 }
6076
6077 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6078 const String8 out_s8(s);
6079 free(s);
6080 return out_s8;
6081 }
6082
audioConfigChanged(int event,int param __unused)6083 void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6084 AudioSystem::OutputDescriptor desc;
6085 const void *param2 = NULL;
6086
6087 switch (event) {
6088 case AudioSystem::INPUT_OPENED:
6089 case AudioSystem::INPUT_CONFIG_CHANGED:
6090 desc.channelMask = mChannelMask;
6091 desc.samplingRate = mSampleRate;
6092 desc.format = mFormat;
6093 desc.frameCount = mFrameCount;
6094 desc.latency = 0;
6095 param2 = &desc;
6096 break;
6097
6098 case AudioSystem::INPUT_CLOSED:
6099 default:
6100 break;
6101 }
6102 mAudioFlinger->audioConfigChanged(event, mId, param2);
6103 }
6104
readInputParameters_l()6105 void AudioFlinger::RecordThread::readInputParameters_l()
6106 {
6107 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6108 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6109 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6110 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6111 mFormat = mHALFormat;
6112 if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
6113 ALOGE("HAL format %#x not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
6114 }
6115 mFrameSize = audio_stream_in_frame_size(mInput->stream);
6116 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6117 mFrameCount = mBufferSize / mFrameSize;
6118 // This is the formula for calculating the temporary buffer size.
6119 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6120 // 1 full output buffer, regardless of the alignment of the available input.
6121 // The value is somewhat arbitrary, and could probably be even larger.
6122 // A larger value should allow more old data to be read after a track calls start(),
6123 // without increasing latency.
6124 mRsmpInFrames = mFrameCount * 7;
6125 mRsmpInFramesP2 = roundup(mRsmpInFrames);
6126 delete[] mRsmpInBuffer;
6127
6128 // TODO optimize audio capture buffer sizes ...
6129 // Here we calculate the size of the sliding buffer used as a source
6130 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6131 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
6132 // be better to have it derived from the pipe depth in the long term.
6133 // The current value is higher than necessary. However it should not add to latency.
6134
6135 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6136 mRsmpInBuffer = new int16_t[(mRsmpInFramesP2 + mFrameCount - 1) * mChannelCount];
6137
6138 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6139 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6140 }
6141
getInputFramesLost()6142 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6143 {
6144 Mutex::Autolock _l(mLock);
6145 if (initCheck() != NO_ERROR) {
6146 return 0;
6147 }
6148
6149 return mInput->stream->get_input_frames_lost(mInput->stream);
6150 }
6151
hasAudioSession(int sessionId) const6152 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6153 {
6154 Mutex::Autolock _l(mLock);
6155 uint32_t result = 0;
6156 if (getEffectChain_l(sessionId) != 0) {
6157 result = EFFECT_SESSION;
6158 }
6159
6160 for (size_t i = 0; i < mTracks.size(); ++i) {
6161 if (sessionId == mTracks[i]->sessionId()) {
6162 result |= TRACK_SESSION;
6163 break;
6164 }
6165 }
6166
6167 return result;
6168 }
6169
sessionIds() const6170 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6171 {
6172 KeyedVector<int, bool> ids;
6173 Mutex::Autolock _l(mLock);
6174 for (size_t j = 0; j < mTracks.size(); ++j) {
6175 sp<RecordThread::RecordTrack> track = mTracks[j];
6176 int sessionId = track->sessionId();
6177 if (ids.indexOfKey(sessionId) < 0) {
6178 ids.add(sessionId, true);
6179 }
6180 }
6181 return ids;
6182 }
6183
clearInput()6184 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6185 {
6186 Mutex::Autolock _l(mLock);
6187 AudioStreamIn *input = mInput;
6188 mInput = NULL;
6189 return input;
6190 }
6191
6192 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const6193 audio_stream_t* AudioFlinger::RecordThread::stream() const
6194 {
6195 if (mInput == NULL) {
6196 return NULL;
6197 }
6198 return &mInput->stream->common;
6199 }
6200
addEffectChain_l(const sp<EffectChain> & chain)6201 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6202 {
6203 // only one chain per input thread
6204 if (mEffectChains.size() != 0) {
6205 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6206 return INVALID_OPERATION;
6207 }
6208 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6209 chain->setThread(this);
6210 chain->setInBuffer(NULL);
6211 chain->setOutBuffer(NULL);
6212
6213 checkSuspendOnAddEffectChain_l(chain);
6214
6215 // make sure enabled pre processing effects state is communicated to the HAL as we
6216 // just moved them to a new input stream.
6217 chain->syncHalEffectsState();
6218
6219 mEffectChains.add(chain);
6220
6221 return NO_ERROR;
6222 }
6223
removeEffectChain_l(const sp<EffectChain> & chain)6224 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6225 {
6226 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6227 ALOGW_IF(mEffectChains.size() != 1,
6228 "removeEffectChain_l() %p invalid chain size %d on thread %p",
6229 chain.get(), mEffectChains.size(), this);
6230 if (mEffectChains.size() == 1) {
6231 mEffectChains.removeAt(0);
6232 }
6233 return 0;
6234 }
6235
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)6236 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6237 audio_patch_handle_t *handle)
6238 {
6239 status_t status = NO_ERROR;
6240 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6241 // store new device and send to effects
6242 mInDevice = patch->sources[0].ext.device.type;
6243 for (size_t i = 0; i < mEffectChains.size(); i++) {
6244 mEffectChains[i]->setDevice_l(mInDevice);
6245 }
6246
6247 // disable AEC and NS if the device is a BT SCO headset supporting those
6248 // pre processings
6249 if (mTracks.size() > 0) {
6250 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6251 mAudioFlinger->btNrecIsOff();
6252 for (size_t i = 0; i < mTracks.size(); i++) {
6253 sp<RecordTrack> track = mTracks[i];
6254 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6255 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6256 }
6257 }
6258
6259 // store new source and send to effects
6260 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6261 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6262 for (size_t i = 0; i < mEffectChains.size(); i++) {
6263 mEffectChains[i]->setAudioSource_l(mAudioSource);
6264 }
6265 }
6266
6267 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6268 status = hwDevice->create_audio_patch(hwDevice,
6269 patch->num_sources,
6270 patch->sources,
6271 patch->num_sinks,
6272 patch->sinks,
6273 handle);
6274 } else {
6275 ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6276 }
6277 return status;
6278 }
6279
releaseAudioPatch_l(const audio_patch_handle_t handle)6280 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6281 {
6282 status_t status = NO_ERROR;
6283 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6284 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6285 status = hwDevice->release_audio_patch(hwDevice, handle);
6286 } else {
6287 ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6288 }
6289 return status;
6290 }
6291
addPatchRecord(const sp<PatchRecord> & record)6292 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6293 {
6294 Mutex::Autolock _l(mLock);
6295 mTracks.add(record);
6296 }
6297
deletePatchRecord(const sp<PatchRecord> & record)6298 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6299 {
6300 Mutex::Autolock _l(mLock);
6301 destroyTrack_l(record);
6302 }
6303
getAudioPortConfig(struct audio_port_config * config)6304 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6305 {
6306 ThreadBase::getAudioPortConfig(config);
6307 config->role = AUDIO_PORT_ROLE_SINK;
6308 config->ext.mix.hw_module = mInput->audioHwDev->handle();
6309 config->ext.mix.usecase.source = mAudioSource;
6310 }
6311
6312 }; // namespace android
6313