1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "JITRegistrar.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MutexGuard.h"
23
24 using namespace llvm;
25 using namespace llvm::object;
26
27 #define DEBUG_TYPE "dyld"
28
29 // Empty out-of-line virtual destructor as the key function.
~RuntimeDyldImpl()30 RuntimeDyldImpl::~RuntimeDyldImpl() {}
31
32 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
anchor()33 void JITRegistrar::anchor() {}
anchor()34 void ObjectImage::anchor() {}
anchor()35 void ObjectImageCommon::anchor() {}
36
37 namespace llvm {
38
registerEHFrames()39 void RuntimeDyldImpl::registerEHFrames() {}
40
deregisterEHFrames()41 void RuntimeDyldImpl::deregisterEHFrames() {}
42
43 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()44 void RuntimeDyldImpl::resolveRelocations() {
45 MutexGuard locked(lock);
46
47 // First, resolve relocations associated with external symbols.
48 resolveExternalSymbols();
49
50 // Just iterate over the sections we have and resolve all the relocations
51 // in them. Gross overkill, but it gets the job done.
52 for (int i = 0, e = Sections.size(); i != e; ++i) {
53 // The Section here (Sections[i]) refers to the section in which the
54 // symbol for the relocation is located. The SectionID in the relocation
55 // entry provides the section to which the relocation will be applied.
56 uint64_t Addr = Sections[i].LoadAddress;
57 DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
58 << format("%p", (uint8_t *)Addr) << "\n");
59 resolveRelocationList(Relocations[i], Addr);
60 Relocations.erase(i);
61 }
62 }
63
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)64 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
65 uint64_t TargetAddress) {
66 MutexGuard locked(lock);
67 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
68 if (Sections[i].Address == LocalAddress) {
69 reassignSectionAddress(i, TargetAddress);
70 return;
71 }
72 }
73 llvm_unreachable("Attempting to remap address of unknown section!");
74 }
75
getOffset(const SymbolRef & Sym,uint64_t & Result)76 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
77 uint64_t Address;
78 if (std::error_code EC = Sym.getAddress(Address))
79 return EC;
80
81 if (Address == UnknownAddressOrSize) {
82 Result = UnknownAddressOrSize;
83 return object_error::success;
84 }
85
86 const ObjectFile *Obj = Sym.getObject();
87 section_iterator SecI(Obj->section_begin());
88 if (std::error_code EC = Sym.getSection(SecI))
89 return EC;
90
91 if (SecI == Obj->section_end()) {
92 Result = UnknownAddressOrSize;
93 return object_error::success;
94 }
95
96 uint64_t SectionAddress;
97 if (std::error_code EC = SecI->getAddress(SectionAddress))
98 return EC;
99
100 Result = Address - SectionAddress;
101 return object_error::success;
102 }
103
loadObject(ObjectImage * InputObject)104 ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
105 MutexGuard locked(lock);
106
107 std::unique_ptr<ObjectImage> Obj(InputObject);
108 if (!Obj)
109 return nullptr;
110
111 // Save information about our target
112 Arch = (Triple::ArchType)Obj->getArch();
113 IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
114
115 // Compute the memory size required to load all sections to be loaded
116 // and pass this information to the memory manager
117 if (MemMgr->needsToReserveAllocationSpace()) {
118 uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
119 computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
120 MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
121 }
122
123 // Symbols found in this object
124 StringMap<SymbolLoc> LocalSymbols;
125 // Used sections from the object file
126 ObjSectionToIDMap LocalSections;
127
128 // Common symbols requiring allocation, with their sizes and alignments
129 CommonSymbolMap CommonSymbols;
130 // Maximum required total memory to allocate all common symbols
131 uint64_t CommonSize = 0;
132
133 // Parse symbols
134 DEBUG(dbgs() << "Parse symbols:\n");
135 for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
136 ++I) {
137 object::SymbolRef::Type SymType;
138 StringRef Name;
139 Check(I->getType(SymType));
140 Check(I->getName(Name));
141
142 uint32_t Flags = I->getFlags();
143
144 bool IsCommon = Flags & SymbolRef::SF_Common;
145 if (IsCommon) {
146 // Add the common symbols to a list. We'll allocate them all below.
147 if (!GlobalSymbolTable.count(Name)) {
148 uint32_t Align;
149 Check(I->getAlignment(Align));
150 uint64_t Size = 0;
151 Check(I->getSize(Size));
152 CommonSize += Size + Align;
153 CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
154 }
155 } else {
156 if (SymType == object::SymbolRef::ST_Function ||
157 SymType == object::SymbolRef::ST_Data ||
158 SymType == object::SymbolRef::ST_Unknown) {
159 uint64_t SectOffset;
160 StringRef SectionData;
161 bool IsCode;
162 section_iterator SI = Obj->end_sections();
163 Check(getOffset(*I, SectOffset));
164 Check(I->getSection(SI));
165 if (SI == Obj->end_sections())
166 continue;
167 Check(SI->getContents(SectionData));
168 Check(SI->isText(IsCode));
169 unsigned SectionID =
170 findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
171 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
172 DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
173 << " flags: " << Flags << " SID: " << SectionID);
174 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
175 }
176 }
177 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
178 }
179
180 // Allocate common symbols
181 if (CommonSize != 0)
182 emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
183
184 // Parse and process relocations
185 DEBUG(dbgs() << "Parse relocations:\n");
186 for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
187 SI != SE; ++SI) {
188 unsigned SectionID = 0;
189 StubMap Stubs;
190 section_iterator RelocatedSection = SI->getRelocatedSection();
191
192 relocation_iterator I = SI->relocation_begin();
193 relocation_iterator E = SI->relocation_end();
194
195 if (I == E && !ProcessAllSections)
196 continue;
197
198 bool IsCode = false;
199 Check(RelocatedSection->isText(IsCode));
200 SectionID =
201 findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
202 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
203
204 for (; I != E;)
205 I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
206 Stubs);
207 }
208
209 // Give the subclasses a chance to tie-up any loose ends.
210 finalizeLoad(*Obj, LocalSections);
211
212 return Obj.release();
213 }
214
215 // A helper method for computeTotalAllocSize.
216 // Computes the memory size required to allocate sections with the given sizes,
217 // assuming that all sections are allocated with the given alignment
218 static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> & SectionSizes,uint64_t Alignment)219 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
220 uint64_t Alignment) {
221 uint64_t TotalSize = 0;
222 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
223 uint64_t AlignedSize =
224 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
225 TotalSize += AlignedSize;
226 }
227 return TotalSize;
228 }
229
230 // Compute an upper bound of the memory size that is required to load all
231 // sections
computeTotalAllocSize(ObjectImage & Obj,uint64_t & CodeSize,uint64_t & DataSizeRO,uint64_t & DataSizeRW)232 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
233 uint64_t &CodeSize,
234 uint64_t &DataSizeRO,
235 uint64_t &DataSizeRW) {
236 // Compute the size of all sections required for execution
237 std::vector<uint64_t> CodeSectionSizes;
238 std::vector<uint64_t> ROSectionSizes;
239 std::vector<uint64_t> RWSectionSizes;
240 uint64_t MaxAlignment = sizeof(void *);
241
242 // Collect sizes of all sections to be loaded;
243 // also determine the max alignment of all sections
244 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
245 SI != SE; ++SI) {
246 const SectionRef &Section = *SI;
247
248 bool IsRequired;
249 Check(Section.isRequiredForExecution(IsRequired));
250
251 // Consider only the sections that are required to be loaded for execution
252 if (IsRequired) {
253 uint64_t DataSize = 0;
254 uint64_t Alignment64 = 0;
255 bool IsCode = false;
256 bool IsReadOnly = false;
257 StringRef Name;
258 Check(Section.getSize(DataSize));
259 Check(Section.getAlignment(Alignment64));
260 Check(Section.isText(IsCode));
261 Check(Section.isReadOnlyData(IsReadOnly));
262 Check(Section.getName(Name));
263 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
264
265 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
266 uint64_t SectionSize = DataSize + StubBufSize;
267
268 // The .eh_frame section (at least on Linux) needs an extra four bytes
269 // padded
270 // with zeroes added at the end. For MachO objects, this section has a
271 // slightly different name, so this won't have any effect for MachO
272 // objects.
273 if (Name == ".eh_frame")
274 SectionSize += 4;
275
276 if (SectionSize > 0) {
277 // save the total size of the section
278 if (IsCode) {
279 CodeSectionSizes.push_back(SectionSize);
280 } else if (IsReadOnly) {
281 ROSectionSizes.push_back(SectionSize);
282 } else {
283 RWSectionSizes.push_back(SectionSize);
284 }
285 // update the max alignment
286 if (Alignment > MaxAlignment) {
287 MaxAlignment = Alignment;
288 }
289 }
290 }
291 }
292
293 // Compute the size of all common symbols
294 uint64_t CommonSize = 0;
295 for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
296 ++I) {
297 uint32_t Flags = I->getFlags();
298 if (Flags & SymbolRef::SF_Common) {
299 // Add the common symbols to a list. We'll allocate them all below.
300 uint64_t Size = 0;
301 Check(I->getSize(Size));
302 CommonSize += Size;
303 }
304 }
305 if (CommonSize != 0) {
306 RWSectionSizes.push_back(CommonSize);
307 }
308
309 // Compute the required allocation space for each different type of sections
310 // (code, read-only data, read-write data) assuming that all sections are
311 // allocated with the max alignment. Note that we cannot compute with the
312 // individual alignments of the sections, because then the required size
313 // depends on the order, in which the sections are allocated.
314 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
315 DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
316 DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
317 }
318
319 // compute stub buffer size for the given section
computeSectionStubBufSize(ObjectImage & Obj,const SectionRef & Section)320 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
321 const SectionRef &Section) {
322 unsigned StubSize = getMaxStubSize();
323 if (StubSize == 0) {
324 return 0;
325 }
326 // FIXME: this is an inefficient way to handle this. We should computed the
327 // necessary section allocation size in loadObject by walking all the sections
328 // once.
329 unsigned StubBufSize = 0;
330 for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
331 SI != SE; ++SI) {
332 section_iterator RelSecI = SI->getRelocatedSection();
333 if (!(RelSecI == Section))
334 continue;
335
336 for (const RelocationRef &Reloc : SI->relocations()) {
337 (void)Reloc;
338 StubBufSize += StubSize;
339 }
340 }
341
342 // Get section data size and alignment
343 uint64_t Alignment64;
344 uint64_t DataSize;
345 Check(Section.getSize(DataSize));
346 Check(Section.getAlignment(Alignment64));
347
348 // Add stubbuf size alignment
349 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
350 unsigned StubAlignment = getStubAlignment();
351 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
352 if (StubAlignment > EndAlignment)
353 StubBufSize += StubAlignment - EndAlignment;
354 return StubBufSize;
355 }
356
emitCommonSymbols(ObjectImage & Obj,const CommonSymbolMap & CommonSymbols,uint64_t TotalSize,SymbolTableMap & SymbolTable)357 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
358 const CommonSymbolMap &CommonSymbols,
359 uint64_t TotalSize,
360 SymbolTableMap &SymbolTable) {
361 // Allocate memory for the section
362 unsigned SectionID = Sections.size();
363 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
364 SectionID, StringRef(), false);
365 if (!Addr)
366 report_fatal_error("Unable to allocate memory for common symbols!");
367 uint64_t Offset = 0;
368 Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
369 memset(Addr, 0, TotalSize);
370
371 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
372 << format("%p", Addr) << " DataSize: " << TotalSize << "\n");
373
374 // Assign the address of each symbol
375 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
376 itEnd = CommonSymbols.end(); it != itEnd; ++it) {
377 uint64_t Size = it->second.first;
378 uint64_t Align = it->second.second;
379 StringRef Name;
380 it->first.getName(Name);
381 if (Align) {
382 // This symbol has an alignment requirement.
383 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
384 Addr += AlignOffset;
385 Offset += AlignOffset;
386 DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
387 << format("%p\n", Addr));
388 }
389 Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
390 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
391 Offset += Size;
392 Addr += Size;
393 }
394 }
395
emitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode)396 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
397 const SectionRef &Section, bool IsCode) {
398
399 StringRef data;
400 uint64_t Alignment64;
401 Check(Section.getContents(data));
402 Check(Section.getAlignment(Alignment64));
403
404 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
405 bool IsRequired;
406 bool IsVirtual;
407 bool IsZeroInit;
408 bool IsReadOnly;
409 uint64_t DataSize;
410 unsigned PaddingSize = 0;
411 unsigned StubBufSize = 0;
412 StringRef Name;
413 Check(Section.isRequiredForExecution(IsRequired));
414 Check(Section.isVirtual(IsVirtual));
415 Check(Section.isZeroInit(IsZeroInit));
416 Check(Section.isReadOnlyData(IsReadOnly));
417 Check(Section.getSize(DataSize));
418 Check(Section.getName(Name));
419
420 StubBufSize = computeSectionStubBufSize(Obj, Section);
421
422 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
423 // with zeroes added at the end. For MachO objects, this section has a
424 // slightly different name, so this won't have any effect for MachO objects.
425 if (Name == ".eh_frame")
426 PaddingSize = 4;
427
428 uintptr_t Allocate;
429 unsigned SectionID = Sections.size();
430 uint8_t *Addr;
431 const char *pData = nullptr;
432
433 // Some sections, such as debug info, don't need to be loaded for execution.
434 // Leave those where they are.
435 if (IsRequired) {
436 Allocate = DataSize + PaddingSize + StubBufSize;
437 Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
438 Name)
439 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
440 Name, IsReadOnly);
441 if (!Addr)
442 report_fatal_error("Unable to allocate section memory!");
443
444 // Virtual sections have no data in the object image, so leave pData = 0
445 if (!IsVirtual)
446 pData = data.data();
447
448 // Zero-initialize or copy the data from the image
449 if (IsZeroInit || IsVirtual)
450 memset(Addr, 0, DataSize);
451 else
452 memcpy(Addr, pData, DataSize);
453
454 // Fill in any extra bytes we allocated for padding
455 if (PaddingSize != 0) {
456 memset(Addr + DataSize, 0, PaddingSize);
457 // Update the DataSize variable so that the stub offset is set correctly.
458 DataSize += PaddingSize;
459 }
460
461 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
462 << " obj addr: " << format("%p", pData)
463 << " new addr: " << format("%p", Addr)
464 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
465 << " Allocate: " << Allocate << "\n");
466 Obj.updateSectionAddress(Section, (uint64_t)Addr);
467 } else {
468 // Even if we didn't load the section, we need to record an entry for it
469 // to handle later processing (and by 'handle' I mean don't do anything
470 // with these sections).
471 Allocate = 0;
472 Addr = nullptr;
473 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
474 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
475 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
476 << " Allocate: " << Allocate << "\n");
477 }
478
479 Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
480 return SectionID;
481 }
482
findOrEmitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)483 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
484 const SectionRef &Section,
485 bool IsCode,
486 ObjSectionToIDMap &LocalSections) {
487
488 unsigned SectionID = 0;
489 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
490 if (i != LocalSections.end())
491 SectionID = i->second;
492 else {
493 SectionID = emitSection(Obj, Section, IsCode);
494 LocalSections[Section] = SectionID;
495 }
496 return SectionID;
497 }
498
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)499 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
500 unsigned SectionID) {
501 Relocations[SectionID].push_back(RE);
502 }
503
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)504 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
505 StringRef SymbolName) {
506 // Relocation by symbol. If the symbol is found in the global symbol table,
507 // create an appropriate section relocation. Otherwise, add it to
508 // ExternalSymbolRelocations.
509 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
510 if (Loc == GlobalSymbolTable.end()) {
511 ExternalSymbolRelocations[SymbolName].push_back(RE);
512 } else {
513 // Copy the RE since we want to modify its addend.
514 RelocationEntry RECopy = RE;
515 RECopy.Addend += Loc->second.second;
516 Relocations[Loc->second.first].push_back(RECopy);
517 }
518 }
519
createStubFunction(uint8_t * Addr)520 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
521 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
522 Arch == Triple::arm64 || Arch == Triple::arm64_be) {
523 // This stub has to be able to access the full address space,
524 // since symbol lookup won't necessarily find a handy, in-range,
525 // PLT stub for functions which could be anywhere.
526 uint32_t *StubAddr = (uint32_t *)Addr;
527
528 // Stub can use ip0 (== x16) to calculate address
529 *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
530 StubAddr++;
531 *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
532 StubAddr++;
533 *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
534 StubAddr++;
535 *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
536 StubAddr++;
537 *StubAddr = 0xd61f0200; // br ip0
538
539 return Addr;
540 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
541 // TODO: There is only ARM far stub now. We should add the Thumb stub,
542 // and stubs for branches Thumb - ARM and ARM - Thumb.
543 uint32_t *StubAddr = (uint32_t *)Addr;
544 *StubAddr = 0xe51ff004; // ldr pc,<label>
545 return (uint8_t *)++StubAddr;
546 } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
547 uint32_t *StubAddr = (uint32_t *)Addr;
548 // 0: 3c190000 lui t9,%hi(addr).
549 // 4: 27390000 addiu t9,t9,%lo(addr).
550 // 8: 03200008 jr t9.
551 // c: 00000000 nop.
552 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
553 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
554
555 *StubAddr = LuiT9Instr;
556 StubAddr++;
557 *StubAddr = AdduiT9Instr;
558 StubAddr++;
559 *StubAddr = JrT9Instr;
560 StubAddr++;
561 *StubAddr = NopInstr;
562 return Addr;
563 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
564 // PowerPC64 stub: the address points to a function descriptor
565 // instead of the function itself. Load the function address
566 // on r11 and sets it to control register. Also loads the function
567 // TOC in r2 and environment pointer to r11.
568 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
569 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
570 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
571 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
572 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
573 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
574 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
575 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
576 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
577 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
578 writeInt32BE(Addr+40, 0x4E800420); // bctr
579
580 return Addr;
581 } else if (Arch == Triple::systemz) {
582 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
583 writeInt16BE(Addr+2, 0x0000);
584 writeInt16BE(Addr+4, 0x0004);
585 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
586 // 8-byte address stored at Addr + 8
587 return Addr;
588 } else if (Arch == Triple::x86_64) {
589 *Addr = 0xFF; // jmp
590 *(Addr+1) = 0x25; // rip
591 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
592 } else if (Arch == Triple::x86) {
593 *Addr = 0xE9; // 32-bit pc-relative jump.
594 }
595 return Addr;
596 }
597
598 // Assign an address to a symbol name and resolve all the relocations
599 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)600 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
601 uint64_t Addr) {
602 // The address to use for relocation resolution is not
603 // the address of the local section buffer. We must be doing
604 // a remote execution environment of some sort. Relocations can't
605 // be applied until all the sections have been moved. The client must
606 // trigger this with a call to MCJIT::finalize() or
607 // RuntimeDyld::resolveRelocations().
608 //
609 // Addr is a uint64_t because we can't assume the pointer width
610 // of the target is the same as that of the host. Just use a generic
611 // "big enough" type.
612 Sections[SectionID].LoadAddress = Addr;
613 }
614
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)615 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
616 uint64_t Value) {
617 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
618 const RelocationEntry &RE = Relocs[i];
619 // Ignore relocations for sections that were not loaded
620 if (Sections[RE.SectionID].Address == nullptr)
621 continue;
622 resolveRelocation(RE, Value);
623 }
624 }
625
resolveExternalSymbols()626 void RuntimeDyldImpl::resolveExternalSymbols() {
627 while (!ExternalSymbolRelocations.empty()) {
628 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
629
630 StringRef Name = i->first();
631 if (Name.size() == 0) {
632 // This is an absolute symbol, use an address of zero.
633 DEBUG(dbgs() << "Resolving absolute relocations."
634 << "\n");
635 RelocationList &Relocs = i->second;
636 resolveRelocationList(Relocs, 0);
637 } else {
638 uint64_t Addr = 0;
639 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
640 if (Loc == GlobalSymbolTable.end()) {
641 // This is an external symbol, try to get its address from
642 // MemoryManager.
643 Addr = MemMgr->getSymbolAddress(Name.data());
644 // The call to getSymbolAddress may have caused additional modules to
645 // be loaded, which may have added new entries to the
646 // ExternalSymbolRelocations map. Consquently, we need to update our
647 // iterator. This is also why retrieval of the relocation list
648 // associated with this symbol is deferred until below this point.
649 // New entries may have been added to the relocation list.
650 i = ExternalSymbolRelocations.find(Name);
651 } else {
652 // We found the symbol in our global table. It was probably in a
653 // Module that we loaded previously.
654 SymbolLoc SymLoc = Loc->second;
655 Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
656 }
657
658 // FIXME: Implement error handling that doesn't kill the host program!
659 if (!Addr)
660 report_fatal_error("Program used external function '" + Name +
661 "' which could not be resolved!");
662
663 updateGOTEntries(Name, Addr);
664 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
665 << format("0x%lx", Addr) << "\n");
666 // This list may have been updated when we called getSymbolAddress, so
667 // don't change this code to get the list earlier.
668 RelocationList &Relocs = i->second;
669 resolveRelocationList(Relocs, Addr);
670 }
671
672 ExternalSymbolRelocations.erase(i);
673 }
674 }
675
676 //===----------------------------------------------------------------------===//
677 // RuntimeDyld class implementation
RuntimeDyld(RTDyldMemoryManager * mm)678 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
679 // FIXME: There's a potential issue lurking here if a single instance of
680 // RuntimeDyld is used to load multiple objects. The current implementation
681 // associates a single memory manager with a RuntimeDyld instance. Even
682 // though the public class spawns a new 'impl' instance for each load,
683 // they share a single memory manager. This can become a problem when page
684 // permissions are applied.
685 Dyld = nullptr;
686 MM = mm;
687 ProcessAllSections = false;
688 }
689
~RuntimeDyld()690 RuntimeDyld::~RuntimeDyld() { delete Dyld; }
691
692 static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(RTDyldMemoryManager * MM,bool ProcessAllSections)693 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
694 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
695 Dyld->setProcessAllSections(ProcessAllSections);
696 return Dyld;
697 }
698
699 static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(RTDyldMemoryManager * MM,bool ProcessAllSections)700 createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) {
701 std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM));
702 Dyld->setProcessAllSections(ProcessAllSections);
703 return Dyld;
704 }
705
loadObject(std::unique_ptr<ObjectFile> InputObject)706 ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
707 std::unique_ptr<ObjectImage> InputImage;
708
709 ObjectFile &Obj = *InputObject;
710
711 if (InputObject->isELF()) {
712 InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
713 if (!Dyld)
714 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
715 } else if (InputObject->isMachO()) {
716 InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
717 if (!Dyld)
718 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
719 } else
720 report_fatal_error("Incompatible object format!");
721
722 if (!Dyld->isCompatibleFile(&Obj))
723 report_fatal_error("Incompatible object format!");
724
725 Dyld->loadObject(InputImage.get());
726 return InputImage.release();
727 }
728
loadObject(ObjectBuffer * InputBuffer)729 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
730 std::unique_ptr<ObjectImage> InputImage;
731 sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
732
733 switch (Type) {
734 case sys::fs::file_magic::elf_relocatable:
735 case sys::fs::file_magic::elf_executable:
736 case sys::fs::file_magic::elf_shared_object:
737 case sys::fs::file_magic::elf_core:
738 InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
739 if (!Dyld)
740 Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
741 break;
742 case sys::fs::file_magic::macho_object:
743 case sys::fs::file_magic::macho_executable:
744 case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
745 case sys::fs::file_magic::macho_core:
746 case sys::fs::file_magic::macho_preload_executable:
747 case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
748 case sys::fs::file_magic::macho_dynamic_linker:
749 case sys::fs::file_magic::macho_bundle:
750 case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
751 case sys::fs::file_magic::macho_dsym_companion:
752 InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
753 if (!Dyld)
754 Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
755 break;
756 case sys::fs::file_magic::unknown:
757 case sys::fs::file_magic::bitcode:
758 case sys::fs::file_magic::archive:
759 case sys::fs::file_magic::coff_object:
760 case sys::fs::file_magic::coff_import_library:
761 case sys::fs::file_magic::pecoff_executable:
762 case sys::fs::file_magic::macho_universal_binary:
763 case sys::fs::file_magic::windows_resource:
764 report_fatal_error("Incompatible object format!");
765 }
766
767 if (!Dyld->isCompatibleFormat(InputBuffer))
768 report_fatal_error("Incompatible object format!");
769
770 Dyld->loadObject(InputImage.get());
771 return InputImage.release();
772 }
773
getSymbolAddress(StringRef Name)774 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
775 if (!Dyld)
776 return nullptr;
777 return Dyld->getSymbolAddress(Name);
778 }
779
getSymbolLoadAddress(StringRef Name)780 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
781 if (!Dyld)
782 return 0;
783 return Dyld->getSymbolLoadAddress(Name);
784 }
785
resolveRelocations()786 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
787
reassignSectionAddress(unsigned SectionID,uint64_t Addr)788 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
789 Dyld->reassignSectionAddress(SectionID, Addr);
790 }
791
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)792 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
793 uint64_t TargetAddress) {
794 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
795 }
796
hasError()797 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
798
getErrorString()799 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
800
registerEHFrames()801 void RuntimeDyld::registerEHFrames() {
802 if (Dyld)
803 Dyld->registerEHFrames();
804 }
805
deregisterEHFrames()806 void RuntimeDyld::deregisterEHFrames() {
807 if (Dyld)
808 Dyld->deregisterEHFrames();
809 }
810
811 } // end namespace llvm
812