• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
18 #define ART_RUNTIME_GC_HEAP_INL_H_
19 
20 #include "heap.h"
21 
22 #include "debugger.h"
23 #include "gc/accounting/card_table-inl.h"
24 #include "gc/collector/semi_space.h"
25 #include "gc/space/bump_pointer_space-inl.h"
26 #include "gc/space/dlmalloc_space-inl.h"
27 #include "gc/space/large_object_space.h"
28 #include "gc/space/rosalloc_space-inl.h"
29 #include "runtime.h"
30 #include "handle_scope-inl.h"
31 #include "thread.h"
32 #include "thread-inl.h"
33 #include "verify_object-inl.h"
34 
35 namespace art {
36 namespace gc {
37 
38 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
AllocObjectWithAllocator(Thread * self,mirror::Class * klass,size_t byte_count,AllocatorType allocator,const PreFenceVisitor & pre_fence_visitor)39 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
40                                                       size_t byte_count, AllocatorType allocator,
41                                                       const PreFenceVisitor& pre_fence_visitor) {
42   if (kIsDebugBuild) {
43     CheckPreconditionsForAllocObject(klass, byte_count);
44     // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
45     // done in the runnable state where suspension is expected.
46     CHECK_EQ(self->GetState(), kRunnable);
47     self->AssertThreadSuspensionIsAllowable();
48   }
49   // Need to check that we arent the large object allocator since the large object allocation code
50   // path this function. If we didn't check we would have an infinite loop.
51   if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
52     return AllocLargeObject<kInstrumented, PreFenceVisitor>(self, klass, byte_count,
53                                                             pre_fence_visitor);
54   }
55   mirror::Object* obj;
56   AllocationTimer alloc_timer(this, &obj);
57   size_t bytes_allocated;
58   size_t usable_size;
59   size_t new_num_bytes_allocated = 0;
60   if (allocator == kAllocatorTypeTLAB) {
61     byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
62   }
63   // If we have a thread local allocation we don't need to update bytes allocated.
64   if (allocator == kAllocatorTypeTLAB && byte_count <= self->TlabSize()) {
65     obj = self->AllocTlab(byte_count);
66     DCHECK(obj != nullptr) << "AllocTlab can't fail";
67     obj->SetClass(klass);
68     if (kUseBakerOrBrooksReadBarrier) {
69       if (kUseBrooksReadBarrier) {
70         obj->SetReadBarrierPointer(obj);
71       }
72       obj->AssertReadBarrierPointer();
73     }
74     bytes_allocated = byte_count;
75     usable_size = bytes_allocated;
76     pre_fence_visitor(obj, usable_size);
77     QuasiAtomic::ThreadFenceForConstructor();
78   } else {
79     obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
80                                               &usable_size);
81     if (UNLIKELY(obj == nullptr)) {
82       bool is_current_allocator = allocator == GetCurrentAllocator();
83       obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
84                                    &klass);
85       if (obj == nullptr) {
86         bool after_is_current_allocator = allocator == GetCurrentAllocator();
87         // If there is a pending exception, fail the allocation right away since the next one
88         // could cause OOM and abort the runtime.
89         if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) {
90           // If the allocator changed, we need to restart the allocation.
91           return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
92         }
93         return nullptr;
94       }
95     }
96     DCHECK_GT(bytes_allocated, 0u);
97     DCHECK_GT(usable_size, 0u);
98     obj->SetClass(klass);
99     if (kUseBakerOrBrooksReadBarrier) {
100       if (kUseBrooksReadBarrier) {
101         obj->SetReadBarrierPointer(obj);
102       }
103       obj->AssertReadBarrierPointer();
104     }
105     if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
106       // (Note this if statement will be constant folded away for the
107       // fast-path quick entry points.) Because SetClass() has no write
108       // barrier, if a non-moving space allocation, we need a write
109       // barrier as the class pointer may point to the bump pointer
110       // space (where the class pointer is an "old-to-young" reference,
111       // though rare) under the GSS collector with the remembered set
112       // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
113       // cases because we don't directly allocate into the main alloc
114       // space (besides promotions) under the SS/GSS collector.
115       WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
116     }
117     pre_fence_visitor(obj, usable_size);
118     new_num_bytes_allocated =
119         static_cast<size_t>(num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated))
120         + bytes_allocated;
121   }
122   if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
123     CHECK_LE(obj->SizeOf(), usable_size);
124   }
125   // TODO: Deprecate.
126   if (kInstrumented) {
127     if (Runtime::Current()->HasStatsEnabled()) {
128       RuntimeStats* thread_stats = self->GetStats();
129       ++thread_stats->allocated_objects;
130       thread_stats->allocated_bytes += bytes_allocated;
131       RuntimeStats* global_stats = Runtime::Current()->GetStats();
132       ++global_stats->allocated_objects;
133       global_stats->allocated_bytes += bytes_allocated;
134     }
135   } else {
136     DCHECK(!Runtime::Current()->HasStatsEnabled());
137   }
138   if (AllocatorHasAllocationStack(allocator)) {
139     PushOnAllocationStack(self, &obj);
140   }
141   if (kInstrumented) {
142     if (Dbg::IsAllocTrackingEnabled()) {
143       Dbg::RecordAllocation(klass, bytes_allocated);
144     }
145   } else {
146     DCHECK(!Dbg::IsAllocTrackingEnabled());
147   }
148   // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
149   // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
150   // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
151   // the allocator_type should be constant propagated.
152   if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
153     CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
154   }
155   VerifyObject(obj);
156   self->VerifyStack();
157   return obj;
158 }
159 
160 // The size of a thread-local allocation stack in the number of references.
161 static constexpr size_t kThreadLocalAllocationStackSize = 128;
162 
PushOnAllocationStack(Thread * self,mirror::Object ** obj)163 inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
164   if (kUseThreadLocalAllocationStack) {
165     if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
166       PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
167     }
168   } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
169     PushOnAllocationStackWithInternalGC(self, obj);
170   }
171 }
172 
173 template <bool kInstrumented, typename PreFenceVisitor>
AllocLargeObject(Thread * self,mirror::Class * klass,size_t byte_count,const PreFenceVisitor & pre_fence_visitor)174 inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class* klass,
175                                               size_t byte_count,
176                                               const PreFenceVisitor& pre_fence_visitor) {
177   return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, klass, byte_count,
178                                                                          kAllocatorTypeLOS,
179                                                                          pre_fence_visitor);
180 }
181 
182 template <const bool kInstrumented, const bool kGrow>
TryToAllocate(Thread * self,AllocatorType allocator_type,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size)183 inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
184                                            size_t alloc_size, size_t* bytes_allocated,
185                                            size_t* usable_size) {
186   if (allocator_type != kAllocatorTypeTLAB &&
187       UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
188     return nullptr;
189   }
190   mirror::Object* ret;
191   switch (allocator_type) {
192     case kAllocatorTypeBumpPointer: {
193       DCHECK(bump_pointer_space_ != nullptr);
194       alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
195       ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
196       if (LIKELY(ret != nullptr)) {
197         *bytes_allocated = alloc_size;
198         *usable_size = alloc_size;
199       }
200       break;
201     }
202     case kAllocatorTypeRosAlloc: {
203       if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
204         // If running on valgrind, we should be using the instrumented path.
205         ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
206       } else {
207         DCHECK(!running_on_valgrind_);
208         ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
209       }
210       break;
211     }
212     case kAllocatorTypeDlMalloc: {
213       if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
214         // If running on valgrind, we should be using the instrumented path.
215         ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
216       } else {
217         DCHECK(!running_on_valgrind_);
218         ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
219       }
220       break;
221     }
222     case kAllocatorTypeNonMoving: {
223       ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
224       break;
225     }
226     case kAllocatorTypeLOS: {
227       ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
228       // Note that the bump pointer spaces aren't necessarily next to
229       // the other continuous spaces like the non-moving alloc space or
230       // the zygote space.
231       DCHECK(ret == nullptr || large_object_space_->Contains(ret));
232       break;
233     }
234     case kAllocatorTypeTLAB: {
235       DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
236       if (UNLIKELY(self->TlabSize() < alloc_size)) {
237         const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
238         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
239           return nullptr;
240         }
241         // Try allocating a new thread local buffer, if the allocaiton fails the space must be
242         // full so return nullptr.
243         if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
244           return nullptr;
245         }
246         *bytes_allocated = new_tlab_size;
247       } else {
248         *bytes_allocated = 0;
249       }
250       // The allocation can't fail.
251       ret = self->AllocTlab(alloc_size);
252       DCHECK(ret != nullptr);
253       *usable_size = alloc_size;
254       break;
255     }
256     default: {
257       LOG(FATAL) << "Invalid allocator type";
258       ret = nullptr;
259     }
260   }
261   return ret;
262 }
263 
AllocationTimer(Heap * heap,mirror::Object ** allocated_obj_ptr)264 inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
265     : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
266   if (kMeasureAllocationTime) {
267     allocation_start_time_ = NanoTime() / kTimeAdjust;
268   }
269 }
270 
~AllocationTimer()271 inline Heap::AllocationTimer::~AllocationTimer() {
272   if (kMeasureAllocationTime) {
273     mirror::Object* allocated_obj = *allocated_obj_ptr_;
274     // Only if the allocation succeeded, record the time.
275     if (allocated_obj != nullptr) {
276       uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
277       heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_);
278     }
279   }
280 };
281 
ShouldAllocLargeObject(mirror::Class * c,size_t byte_count)282 inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
283   // We need to have a zygote space or else our newly allocated large object can end up in the
284   // Zygote resulting in it being prematurely freed.
285   // We can only do this for primitive objects since large objects will not be within the card table
286   // range. This also means that we rely on SetClass not dirtying the object's card.
287   return byte_count >= large_object_threshold_ && c->IsPrimitiveArray();
288 }
289 
290 template <bool kGrow>
IsOutOfMemoryOnAllocation(AllocatorType allocator_type,size_t alloc_size)291 inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
292   size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
293   if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
294     if (UNLIKELY(new_footprint > growth_limit_)) {
295       return true;
296     }
297     if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
298       if (!kGrow) {
299         return true;
300       }
301       // TODO: Grow for allocation is racy, fix it.
302       VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
303           << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
304       max_allowed_footprint_ = new_footprint;
305     }
306   }
307   return false;
308 }
309 
CheckConcurrentGC(Thread * self,size_t new_num_bytes_allocated,mirror::Object ** obj)310 inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
311                                     mirror::Object** obj) {
312   if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
313     RequestConcurrentGCAndSaveObject(self, obj);
314   }
315 }
316 
317 }  // namespace gc
318 }  // namespace art
319 
320 #endif  // ART_RUNTIME_GC_HEAP_INL_H_
321