1 /******************************************************************************/
2 #ifdef JEMALLOC_H_TYPES
3
4 /*
5 * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
6 * as small as possible such that this setting is still honored, without
7 * violating other constraints. The goal is to make runs as small as possible
8 * without exceeding a per run external fragmentation threshold.
9 *
10 * We use binary fixed point math for overhead computations, where the binary
11 * point is implicitly RUN_BFP bits to the left.
12 *
13 * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
14 * honored for some/all object sizes, since when heap profiling is enabled
15 * there is one pointer of header overhead per object (plus a constant). This
16 * constraint is relaxed (ignored) for runs that are so small that the
17 * per-region overhead is greater than:
18 *
19 * (RUN_MAX_OVRHD / (reg_interval << (3+RUN_BFP))
20 */
21 #define RUN_BFP 12
22 /* \/ Implicit binary fixed point. */
23 #define RUN_MAX_OVRHD 0x0000003dU
24 #define RUN_MAX_OVRHD_RELAX 0x00001800U
25
26 /* Maximum number of regions in one run. */
27 #define LG_RUN_MAXREGS 11
28 #define RUN_MAXREGS (1U << LG_RUN_MAXREGS)
29
30 /*
31 * Minimum redzone size. Redzones may be larger than this if necessary to
32 * preserve region alignment.
33 */
34 #define REDZONE_MINSIZE 16
35
36 /*
37 * The minimum ratio of active:dirty pages per arena is computed as:
38 *
39 * (nactive >> opt_lg_dirty_mult) >= ndirty
40 *
41 * So, supposing that opt_lg_dirty_mult is 3, there can be no less than 8 times
42 * as many active pages as dirty pages.
43 */
44 #define LG_DIRTY_MULT_DEFAULT 3
45
46 typedef struct arena_chunk_map_s arena_chunk_map_t;
47 typedef struct arena_chunk_s arena_chunk_t;
48 typedef struct arena_run_s arena_run_t;
49 typedef struct arena_bin_info_s arena_bin_info_t;
50 typedef struct arena_bin_s arena_bin_t;
51 typedef struct arena_s arena_t;
52
53 #endif /* JEMALLOC_H_TYPES */
54 /******************************************************************************/
55 #ifdef JEMALLOC_H_STRUCTS
56
57 /* Each element of the chunk map corresponds to one page within the chunk. */
58 struct arena_chunk_map_s {
59 #ifndef JEMALLOC_PROF
60 /*
61 * Overlay prof_ctx in order to allow it to be referenced by dead code.
62 * Such antics aren't warranted for per arena data structures, but
63 * chunk map overhead accounts for a percentage of memory, rather than
64 * being just a fixed cost.
65 */
66 union {
67 #endif
68 union {
69 /*
70 * Linkage for run trees. There are two disjoint uses:
71 *
72 * 1) arena_t's runs_avail tree.
73 * 2) arena_run_t conceptually uses this linkage for in-use
74 * non-full runs, rather than directly embedding linkage.
75 */
76 rb_node(arena_chunk_map_t) rb_link;
77 /*
78 * List of runs currently in purgatory. arena_chunk_purge()
79 * temporarily allocates runs that contain dirty pages while
80 * purging, so that other threads cannot use the runs while the
81 * purging thread is operating without the arena lock held.
82 */
83 ql_elm(arena_chunk_map_t) ql_link;
84 } u;
85
86 /* Profile counters, used for large object runs. */
87 prof_ctx_t *prof_ctx;
88 #ifndef JEMALLOC_PROF
89 }; /* union { ... }; */
90 #endif
91
92 /*
93 * Run address (or size) and various flags are stored together. The bit
94 * layout looks like (assuming 32-bit system):
95 *
96 * ???????? ???????? ????nnnn nnnndula
97 *
98 * ? : Unallocated: Run address for first/last pages, unset for internal
99 * pages.
100 * Small: Run page offset.
101 * Large: Run size for first page, unset for trailing pages.
102 * n : binind for small size class, BININD_INVALID for large size class.
103 * d : dirty?
104 * u : unzeroed?
105 * l : large?
106 * a : allocated?
107 *
108 * Following are example bit patterns for the three types of runs.
109 *
110 * p : run page offset
111 * s : run size
112 * n : binind for size class; large objects set these to BININD_INVALID
113 * x : don't care
114 * - : 0
115 * + : 1
116 * [DULA] : bit set
117 * [dula] : bit unset
118 *
119 * Unallocated (clean):
120 * ssssssss ssssssss ssss++++ ++++du-a
121 * xxxxxxxx xxxxxxxx xxxxxxxx xxxx-Uxx
122 * ssssssss ssssssss ssss++++ ++++dU-a
123 *
124 * Unallocated (dirty):
125 * ssssssss ssssssss ssss++++ ++++D--a
126 * xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
127 * ssssssss ssssssss ssss++++ ++++D--a
128 *
129 * Small:
130 * pppppppp pppppppp ppppnnnn nnnnd--A
131 * pppppppp pppppppp ppppnnnn nnnn---A
132 * pppppppp pppppppp ppppnnnn nnnnd--A
133 *
134 * Large:
135 * ssssssss ssssssss ssss++++ ++++D-LA
136 * xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
137 * -------- -------- ----++++ ++++D-LA
138 *
139 * Large (sampled, size <= PAGE):
140 * ssssssss ssssssss ssssnnnn nnnnD-LA
141 *
142 * Large (not sampled, size == PAGE):
143 * ssssssss ssssssss ssss++++ ++++D-LA
144 */
145 size_t bits;
146 #define CHUNK_MAP_BININD_SHIFT 4
147 #define BININD_INVALID ((size_t)0xffU)
148 /* CHUNK_MAP_BININD_MASK == (BININD_INVALID << CHUNK_MAP_BININD_SHIFT) */
149 #define CHUNK_MAP_BININD_MASK ((size_t)0xff0U)
150 #define CHUNK_MAP_BININD_INVALID CHUNK_MAP_BININD_MASK
151 #define CHUNK_MAP_FLAGS_MASK ((size_t)0xcU)
152 #define CHUNK_MAP_DIRTY ((size_t)0x8U)
153 #define CHUNK_MAP_UNZEROED ((size_t)0x4U)
154 #define CHUNK_MAP_LARGE ((size_t)0x2U)
155 #define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
156 #define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED
157 };
158 typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
159 typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
160 typedef ql_head(arena_chunk_map_t) arena_chunk_mapelms_t;
161
162 /* Arena chunk header. */
163 struct arena_chunk_s {
164 /* Arena that owns the chunk. */
165 arena_t *arena;
166
167 /* Linkage for tree of arena chunks that contain dirty runs. */
168 rb_node(arena_chunk_t) dirty_link;
169
170 /* Number of dirty pages. */
171 size_t ndirty;
172
173 /* Number of available runs. */
174 size_t nruns_avail;
175
176 /*
177 * Number of available run adjacencies that purging could coalesce.
178 * Clean and dirty available runs are not coalesced, which causes
179 * virtual memory fragmentation. The ratio of
180 * (nruns_avail-nruns_adjac):nruns_adjac is used for tracking this
181 * fragmentation.
182 */
183 size_t nruns_adjac;
184
185 /*
186 * Map of pages within chunk that keeps track of free/large/small. The
187 * first map_bias entries are omitted, since the chunk header does not
188 * need to be tracked in the map. This omission saves a header page
189 * for common chunk sizes (e.g. 4 MiB).
190 */
191 arena_chunk_map_t map[1]; /* Dynamically sized. */
192 };
193 typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
194
195 struct arena_run_s {
196 /* Bin this run is associated with. */
197 arena_bin_t *bin;
198
199 /* Index of next region that has never been allocated, or nregs. */
200 uint32_t nextind;
201
202 /* Number of free regions in run. */
203 unsigned nfree;
204 };
205
206 /*
207 * Read-only information associated with each element of arena_t's bins array
208 * is stored separately, partly to reduce memory usage (only one copy, rather
209 * than one per arena), but mainly to avoid false cacheline sharing.
210 *
211 * Each run has the following layout:
212 *
213 * /--------------------\
214 * | arena_run_t header |
215 * | ... |
216 * bitmap_offset | bitmap |
217 * | ... |
218 * |--------------------|
219 * | redzone |
220 * reg0_offset | region 0 |
221 * | redzone |
222 * |--------------------| \
223 * | redzone | |
224 * | region 1 | > reg_interval
225 * | redzone | /
226 * |--------------------|
227 * | ... |
228 * | ... |
229 * | ... |
230 * |--------------------|
231 * | redzone |
232 * | region nregs-1 |
233 * | redzone |
234 * |--------------------|
235 * | alignment pad? |
236 * \--------------------/
237 *
238 * reg_interval has at least the same minimum alignment as reg_size; this
239 * preserves the alignment constraint that sa2u() depends on. Alignment pad is
240 * either 0 or redzone_size; it is present only if needed to align reg0_offset.
241 */
242 struct arena_bin_info_s {
243 /* Size of regions in a run for this bin's size class. */
244 size_t reg_size;
245
246 /* Redzone size. */
247 size_t redzone_size;
248
249 /* Interval between regions (reg_size + (redzone_size << 1)). */
250 size_t reg_interval;
251
252 /* Total size of a run for this bin's size class. */
253 size_t run_size;
254
255 /* Total number of regions in a run for this bin's size class. */
256 uint32_t nregs;
257
258 /*
259 * Offset of first bitmap_t element in a run header for this bin's size
260 * class.
261 */
262 uint32_t bitmap_offset;
263
264 /*
265 * Metadata used to manipulate bitmaps for runs associated with this
266 * bin.
267 */
268 bitmap_info_t bitmap_info;
269
270 /* Offset of first region in a run for this bin's size class. */
271 uint32_t reg0_offset;
272 };
273
274 struct arena_bin_s {
275 /*
276 * All operations on runcur, runs, and stats require that lock be
277 * locked. Run allocation/deallocation are protected by the arena lock,
278 * which may be acquired while holding one or more bin locks, but not
279 * vise versa.
280 */
281 malloc_mutex_t lock;
282
283 /*
284 * Current run being used to service allocations of this bin's size
285 * class.
286 */
287 arena_run_t *runcur;
288
289 /*
290 * Tree of non-full runs. This tree is used when looking for an
291 * existing run when runcur is no longer usable. We choose the
292 * non-full run that is lowest in memory; this policy tends to keep
293 * objects packed well, and it can also help reduce the number of
294 * almost-empty chunks.
295 */
296 arena_run_tree_t runs;
297
298 /* Bin statistics. */
299 malloc_bin_stats_t stats;
300 };
301
302 struct arena_s {
303 /* This arena's index within the arenas array. */
304 unsigned ind;
305
306 /*
307 * Number of threads currently assigned to this arena. This field is
308 * protected by arenas_lock.
309 */
310 unsigned nthreads;
311
312 /*
313 * There are three classes of arena operations from a locking
314 * perspective:
315 * 1) Thread asssignment (modifies nthreads) is protected by
316 * arenas_lock.
317 * 2) Bin-related operations are protected by bin locks.
318 * 3) Chunk- and run-related operations are protected by this mutex.
319 */
320 malloc_mutex_t lock;
321
322 arena_stats_t stats;
323 /*
324 * List of tcaches for extant threads associated with this arena.
325 * Stats from these are merged incrementally, and at exit.
326 */
327 ql_head(tcache_t) tcache_ql;
328
329 uint64_t prof_accumbytes;
330
331 dss_prec_t dss_prec;
332
333 /* Tree of dirty-page-containing chunks this arena manages. */
334 arena_chunk_tree_t chunks_dirty;
335
336 /*
337 * In order to avoid rapid chunk allocation/deallocation when an arena
338 * oscillates right on the cusp of needing a new chunk, cache the most
339 * recently freed chunk. The spare is left in the arena's chunk trees
340 * until it is deleted.
341 *
342 * There is one spare chunk per arena, rather than one spare total, in
343 * order to avoid interactions between multiple threads that could make
344 * a single spare inadequate.
345 */
346 arena_chunk_t *spare;
347
348 /* Number of pages in active runs and huge regions. */
349 size_t nactive;
350
351 /*
352 * Current count of pages within unused runs that are potentially
353 * dirty, and for which madvise(... MADV_DONTNEED) has not been called.
354 * By tracking this, we can institute a limit on how much dirty unused
355 * memory is mapped for each arena.
356 */
357 size_t ndirty;
358
359 /*
360 * Approximate number of pages being purged. It is possible for
361 * multiple threads to purge dirty pages concurrently, and they use
362 * npurgatory to indicate the total number of pages all threads are
363 * attempting to purge.
364 */
365 size_t npurgatory;
366
367 /*
368 * Size/address-ordered trees of this arena's available runs. The trees
369 * are used for first-best-fit run allocation.
370 */
371 arena_avail_tree_t runs_avail;
372
373 /*
374 * user-configureable chunk allocation and deallocation functions.
375 */
376 chunk_alloc_t *chunk_alloc;
377 chunk_dalloc_t *chunk_dalloc;
378
379 /* bins is used to store trees of free regions. */
380 arena_bin_t bins[NBINS];
381 };
382
383 #endif /* JEMALLOC_H_STRUCTS */
384 /******************************************************************************/
385 #ifdef JEMALLOC_H_EXTERNS
386
387 extern ssize_t opt_lg_dirty_mult;
388 /*
389 * small_size2bin_tab is a compact lookup table that rounds request sizes up to
390 * size classes. In order to reduce cache footprint, the table is compressed,
391 * and all accesses are via small_size2bin().
392 */
393 extern uint8_t const small_size2bin_tab[];
394 /*
395 * small_bin2size_tab duplicates information in arena_bin_info, but in a const
396 * array, for which it is easier for the compiler to optimize repeated
397 * dereferences.
398 */
399 extern uint32_t const small_bin2size_tab[NBINS];
400
401 extern arena_bin_info_t arena_bin_info[NBINS];
402
403 /* Number of large size classes. */
404 #define nlclasses (chunk_npages - map_bias)
405
406 void *arena_chunk_alloc_huge(arena_t *arena, size_t size, size_t alignment,
407 bool *zero);
408 void arena_chunk_dalloc_huge(arena_t *arena, void *chunk, size_t size);
409 void arena_purge_all(arena_t *arena);
410 void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin,
411 size_t binind, uint64_t prof_accumbytes);
412 void arena_alloc_junk_small(void *ptr, arena_bin_info_t *bin_info,
413 bool zero);
414 #ifdef JEMALLOC_JET
415 typedef void (arena_redzone_corruption_t)(void *, size_t, bool, size_t,
416 uint8_t);
417 extern arena_redzone_corruption_t *arena_redzone_corruption;
418 typedef void (arena_dalloc_junk_small_t)(void *, arena_bin_info_t *);
419 extern arena_dalloc_junk_small_t *arena_dalloc_junk_small;
420 #else
421 void arena_dalloc_junk_small(void *ptr, arena_bin_info_t *bin_info);
422 #endif
423 void arena_quarantine_junk_small(void *ptr, size_t usize);
424 void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
425 void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
426 void *arena_palloc(arena_t *arena, size_t size, size_t alignment, bool zero);
427 void arena_prof_promoted(const void *ptr, size_t size);
428 void arena_dalloc_bin_locked(arena_t *arena, arena_chunk_t *chunk, void *ptr,
429 arena_chunk_map_t *mapelm);
430 void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
431 size_t pageind, arena_chunk_map_t *mapelm);
432 void arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
433 size_t pageind);
434 #ifdef JEMALLOC_JET
435 typedef void (arena_dalloc_junk_large_t)(void *, size_t);
436 extern arena_dalloc_junk_large_t *arena_dalloc_junk_large;
437 #endif
438 void arena_dalloc_large_locked(arena_t *arena, arena_chunk_t *chunk,
439 void *ptr);
440 void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
441 #ifdef JEMALLOC_JET
442 typedef void (arena_ralloc_junk_large_t)(void *, size_t, size_t);
443 extern arena_ralloc_junk_large_t *arena_ralloc_junk_large;
444 #endif
445 bool arena_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
446 size_t extra, bool zero);
447 void *arena_ralloc(arena_t *arena, void *ptr, size_t oldsize, size_t size,
448 size_t extra, size_t alignment, bool zero, bool try_tcache_alloc,
449 bool try_tcache_dalloc);
450 dss_prec_t arena_dss_prec_get(arena_t *arena);
451 bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec);
452 void arena_stats_merge(arena_t *arena, const char **dss, size_t *nactive,
453 size_t *ndirty, arena_stats_t *astats, malloc_bin_stats_t *bstats,
454 malloc_large_stats_t *lstats);
455 bool arena_new(arena_t *arena, unsigned ind);
456 void arena_boot(void);
457 void arena_prefork(arena_t *arena);
458 void arena_postfork_parent(arena_t *arena);
459 void arena_postfork_child(arena_t *arena);
460
461 #endif /* JEMALLOC_H_EXTERNS */
462 /******************************************************************************/
463 #ifdef JEMALLOC_H_INLINES
464
465 #ifndef JEMALLOC_ENABLE_INLINE
466 size_t small_size2bin_compute(size_t size);
467 size_t small_size2bin_lookup(size_t size);
468 size_t small_size2bin(size_t size);
469 size_t small_bin2size_compute(size_t binind);
470 size_t small_bin2size_lookup(size_t binind);
471 size_t small_bin2size(size_t binind);
472 size_t small_s2u_compute(size_t size);
473 size_t small_s2u_lookup(size_t size);
474 size_t small_s2u(size_t size);
475 arena_chunk_map_t *arena_mapp_get(arena_chunk_t *chunk, size_t pageind);
476 size_t *arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind);
477 size_t arena_mapbitsp_read(size_t *mapbitsp);
478 size_t arena_mapbits_get(arena_chunk_t *chunk, size_t pageind);
479 size_t arena_mapbits_unallocated_size_get(arena_chunk_t *chunk,
480 size_t pageind);
481 size_t arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind);
482 size_t arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind);
483 size_t arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind);
484 size_t arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind);
485 size_t arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind);
486 size_t arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind);
487 size_t arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind);
488 void arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits);
489 void arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind,
490 size_t size, size_t flags);
491 void arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
492 size_t size);
493 void arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind,
494 size_t size, size_t flags);
495 void arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
496 size_t binind);
497 void arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind,
498 size_t runind, size_t binind, size_t flags);
499 void arena_mapbits_unzeroed_set(arena_chunk_t *chunk, size_t pageind,
500 size_t unzeroed);
501 bool arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes);
502 bool arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes);
503 bool arena_prof_accum(arena_t *arena, uint64_t accumbytes);
504 size_t arena_ptr_small_binind_get(const void *ptr, size_t mapbits);
505 size_t arena_bin_index(arena_t *arena, arena_bin_t *bin);
506 unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info,
507 const void *ptr);
508 prof_ctx_t *arena_prof_ctx_get(const void *ptr);
509 void arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
510 void *arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache);
511 size_t arena_salloc(const void *ptr, bool demote);
512 void arena_dalloc(arena_chunk_t *chunk, void *ptr, bool try_tcache);
513 #endif
514
515 #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
516 # ifdef JEMALLOC_ARENA_INLINE_A
517 JEMALLOC_INLINE size_t
small_size2bin_compute(size_t size)518 small_size2bin_compute(size_t size)
519 {
520 #if (NTBINS != 0)
521 if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
522 size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
523 size_t lg_ceil = lg_floor(pow2_ceil(size));
524 return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
525 } else
526 #endif
527 {
528 size_t x = lg_floor((size<<1)-1);
529 size_t shift = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM) ? 0 :
530 x - (LG_SIZE_CLASS_GROUP + LG_QUANTUM);
531 size_t grp = shift << LG_SIZE_CLASS_GROUP;
532
533 size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
534 ? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
535
536 size_t delta_inverse_mask = ZI(-1) << lg_delta;
537 size_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
538 ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
539
540 size_t bin = NTBINS + grp + mod;
541 return (bin);
542 }
543 }
544
545 JEMALLOC_ALWAYS_INLINE size_t
small_size2bin_lookup(size_t size)546 small_size2bin_lookup(size_t size)
547 {
548
549 assert(size <= LOOKUP_MAXCLASS);
550 {
551 size_t ret = ((size_t)(small_size2bin_tab[(size-1) >>
552 LG_TINY_MIN]));
553 assert(ret == small_size2bin_compute(size));
554 return (ret);
555 }
556 }
557
558 JEMALLOC_ALWAYS_INLINE size_t
small_size2bin(size_t size)559 small_size2bin(size_t size)
560 {
561
562 assert(size > 0);
563 if (size <= LOOKUP_MAXCLASS)
564 return (small_size2bin_lookup(size));
565 else
566 return (small_size2bin_compute(size));
567 }
568
569 JEMALLOC_INLINE size_t
small_bin2size_compute(size_t binind)570 small_bin2size_compute(size_t binind)
571 {
572 #if (NTBINS > 0)
573 if (binind < NTBINS)
574 return (ZU(1) << (LG_TINY_MAXCLASS - NTBINS + 1 + binind));
575 else
576 #endif
577 {
578 size_t reduced_binind = binind - NTBINS;
579 size_t grp = reduced_binind >> LG_SIZE_CLASS_GROUP;
580 size_t mod = reduced_binind & ((ZU(1) << LG_SIZE_CLASS_GROUP) -
581 1);
582
583 size_t grp_size_mask = ~((!!grp)-1);
584 size_t grp_size = ((ZU(1) << (LG_QUANTUM +
585 (LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
586
587 size_t shift = (grp == 0) ? 1 : grp;
588 size_t lg_delta = shift + (LG_QUANTUM-1);
589 size_t mod_size = (mod+1) << lg_delta;
590
591 size_t usize = grp_size + mod_size;
592 return (usize);
593 }
594 }
595
596 JEMALLOC_ALWAYS_INLINE size_t
small_bin2size_lookup(size_t binind)597 small_bin2size_lookup(size_t binind)
598 {
599
600 assert(binind < NBINS);
601 {
602 size_t ret = ((size_t)(small_bin2size_tab[binind]));
603 assert(ret == small_bin2size_compute(binind));
604 return (ret);
605 }
606 }
607
608 JEMALLOC_ALWAYS_INLINE size_t
small_bin2size(size_t binind)609 small_bin2size(size_t binind)
610 {
611
612 return (small_bin2size_lookup(binind));
613 }
614
615 JEMALLOC_ALWAYS_INLINE size_t
small_s2u_compute(size_t size)616 small_s2u_compute(size_t size)
617 {
618 #if (NTBINS > 0)
619 if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
620 size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
621 size_t lg_ceil = lg_floor(pow2_ceil(size));
622 return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
623 (ZU(1) << lg_ceil));
624 } else
625 #endif
626 {
627 size_t x = lg_floor((size<<1)-1);
628 size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
629 ? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
630 size_t delta = ZU(1) << lg_delta;
631 size_t delta_mask = delta - 1;
632 size_t usize = (size + delta_mask) & ~delta_mask;
633 return (usize);
634 }
635 }
636
637 JEMALLOC_ALWAYS_INLINE size_t
small_s2u_lookup(size_t size)638 small_s2u_lookup(size_t size)
639 {
640 size_t ret = (small_bin2size(small_size2bin(size)));
641
642 assert(ret == small_s2u_compute(size));
643 return (ret);
644 }
645
646 JEMALLOC_ALWAYS_INLINE size_t
small_s2u(size_t size)647 small_s2u(size_t size)
648 {
649
650 assert(size > 0);
651 if (size <= LOOKUP_MAXCLASS)
652 return (small_s2u_lookup(size));
653 else
654 return (small_s2u_compute(size));
655 }
656 # endif /* JEMALLOC_ARENA_INLINE_A */
657
658 # ifdef JEMALLOC_ARENA_INLINE_B
659 JEMALLOC_ALWAYS_INLINE arena_chunk_map_t *
arena_mapp_get(arena_chunk_t * chunk,size_t pageind)660 arena_mapp_get(arena_chunk_t *chunk, size_t pageind)
661 {
662
663 assert(pageind >= map_bias);
664 assert(pageind < chunk_npages);
665
666 return (&chunk->map[pageind-map_bias]);
667 }
668
669 JEMALLOC_ALWAYS_INLINE size_t *
arena_mapbitsp_get(arena_chunk_t * chunk,size_t pageind)670 arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind)
671 {
672
673 return (&arena_mapp_get(chunk, pageind)->bits);
674 }
675
676 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbitsp_read(size_t * mapbitsp)677 arena_mapbitsp_read(size_t *mapbitsp)
678 {
679
680 return (*mapbitsp);
681 }
682
683 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_get(arena_chunk_t * chunk,size_t pageind)684 arena_mapbits_get(arena_chunk_t *chunk, size_t pageind)
685 {
686
687 return (arena_mapbitsp_read(arena_mapbitsp_get(chunk, pageind)));
688 }
689
690 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unallocated_size_get(arena_chunk_t * chunk,size_t pageind)691 arena_mapbits_unallocated_size_get(arena_chunk_t *chunk, size_t pageind)
692 {
693 size_t mapbits;
694
695 mapbits = arena_mapbits_get(chunk, pageind);
696 assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
697 return (mapbits & ~PAGE_MASK);
698 }
699
700 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_size_get(arena_chunk_t * chunk,size_t pageind)701 arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind)
702 {
703 size_t mapbits;
704
705 mapbits = arena_mapbits_get(chunk, pageind);
706 assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
707 (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED));
708 return (mapbits & ~PAGE_MASK);
709 }
710
711 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_small_runind_get(arena_chunk_t * chunk,size_t pageind)712 arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind)
713 {
714 size_t mapbits;
715
716 mapbits = arena_mapbits_get(chunk, pageind);
717 assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
718 CHUNK_MAP_ALLOCATED);
719 return (mapbits >> LG_PAGE);
720 }
721
722 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_binind_get(arena_chunk_t * chunk,size_t pageind)723 arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind)
724 {
725 size_t mapbits;
726 size_t binind;
727
728 mapbits = arena_mapbits_get(chunk, pageind);
729 binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
730 assert(binind < NBINS || binind == BININD_INVALID);
731 return (binind);
732 }
733
734 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_dirty_get(arena_chunk_t * chunk,size_t pageind)735 arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind)
736 {
737 size_t mapbits;
738
739 mapbits = arena_mapbits_get(chunk, pageind);
740 return (mapbits & CHUNK_MAP_DIRTY);
741 }
742
743 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unzeroed_get(arena_chunk_t * chunk,size_t pageind)744 arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind)
745 {
746 size_t mapbits;
747
748 mapbits = arena_mapbits_get(chunk, pageind);
749 return (mapbits & CHUNK_MAP_UNZEROED);
750 }
751
752 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_get(arena_chunk_t * chunk,size_t pageind)753 arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind)
754 {
755 size_t mapbits;
756
757 mapbits = arena_mapbits_get(chunk, pageind);
758 return (mapbits & CHUNK_MAP_LARGE);
759 }
760
761 JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_allocated_get(arena_chunk_t * chunk,size_t pageind)762 arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind)
763 {
764 size_t mapbits;
765
766 mapbits = arena_mapbits_get(chunk, pageind);
767 return (mapbits & CHUNK_MAP_ALLOCATED);
768 }
769
770 JEMALLOC_ALWAYS_INLINE void
arena_mapbitsp_write(size_t * mapbitsp,size_t mapbits)771 arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits)
772 {
773
774 *mapbitsp = mapbits;
775 }
776
777 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_set(arena_chunk_t * chunk,size_t pageind,size_t size,size_t flags)778 arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind, size_t size,
779 size_t flags)
780 {
781 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
782
783 assert((size & PAGE_MASK) == 0);
784 assert((flags & ~CHUNK_MAP_FLAGS_MASK) == 0);
785 assert((flags & (CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == flags);
786 arena_mapbitsp_write(mapbitsp, size | CHUNK_MAP_BININD_INVALID | flags);
787 }
788
789 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_size_set(arena_chunk_t * chunk,size_t pageind,size_t size)790 arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
791 size_t size)
792 {
793 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
794 size_t mapbits = arena_mapbitsp_read(mapbitsp);
795
796 assert((size & PAGE_MASK) == 0);
797 assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
798 arena_mapbitsp_write(mapbitsp, size | (mapbits & PAGE_MASK));
799 }
800
801 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_set(arena_chunk_t * chunk,size_t pageind,size_t size,size_t flags)802 arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind, size_t size,
803 size_t flags)
804 {
805 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
806 size_t mapbits = arena_mapbitsp_read(mapbitsp);
807 size_t unzeroed;
808
809 assert((size & PAGE_MASK) == 0);
810 assert((flags & CHUNK_MAP_DIRTY) == flags);
811 unzeroed = mapbits & CHUNK_MAP_UNZEROED; /* Preserve unzeroed. */
812 arena_mapbitsp_write(mapbitsp, size | CHUNK_MAP_BININD_INVALID | flags
813 | unzeroed | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED);
814 }
815
816 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_binind_set(arena_chunk_t * chunk,size_t pageind,size_t binind)817 arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
818 size_t binind)
819 {
820 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
821 size_t mapbits = arena_mapbitsp_read(mapbitsp);
822
823 assert(binind <= BININD_INVALID);
824 assert(arena_mapbits_large_size_get(chunk, pageind) == PAGE);
825 arena_mapbitsp_write(mapbitsp, (mapbits & ~CHUNK_MAP_BININD_MASK) |
826 (binind << CHUNK_MAP_BININD_SHIFT));
827 }
828
829 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_small_set(arena_chunk_t * chunk,size_t pageind,size_t runind,size_t binind,size_t flags)830 arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind, size_t runind,
831 size_t binind, size_t flags)
832 {
833 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
834 size_t mapbits = arena_mapbitsp_read(mapbitsp);
835 size_t unzeroed;
836
837 assert(binind < BININD_INVALID);
838 assert(pageind - runind >= map_bias);
839 assert((flags & CHUNK_MAP_DIRTY) == flags);
840 unzeroed = mapbits & CHUNK_MAP_UNZEROED; /* Preserve unzeroed. */
841 arena_mapbitsp_write(mapbitsp, (runind << LG_PAGE) | (binind <<
842 CHUNK_MAP_BININD_SHIFT) | flags | unzeroed | CHUNK_MAP_ALLOCATED);
843 }
844
845 JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unzeroed_set(arena_chunk_t * chunk,size_t pageind,size_t unzeroed)846 arena_mapbits_unzeroed_set(arena_chunk_t *chunk, size_t pageind,
847 size_t unzeroed)
848 {
849 size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
850 size_t mapbits = arena_mapbitsp_read(mapbitsp);
851
852 arena_mapbitsp_write(mapbitsp, (mapbits & ~CHUNK_MAP_UNZEROED) |
853 unzeroed);
854 }
855
856 JEMALLOC_INLINE bool
arena_prof_accum_impl(arena_t * arena,uint64_t accumbytes)857 arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes)
858 {
859
860 cassert(config_prof);
861 assert(prof_interval != 0);
862
863 arena->prof_accumbytes += accumbytes;
864 if (arena->prof_accumbytes >= prof_interval) {
865 arena->prof_accumbytes -= prof_interval;
866 return (true);
867 }
868 return (false);
869 }
870
871 JEMALLOC_INLINE bool
arena_prof_accum_locked(arena_t * arena,uint64_t accumbytes)872 arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes)
873 {
874
875 cassert(config_prof);
876
877 if (prof_interval == 0)
878 return (false);
879 return (arena_prof_accum_impl(arena, accumbytes));
880 }
881
882 JEMALLOC_INLINE bool
arena_prof_accum(arena_t * arena,uint64_t accumbytes)883 arena_prof_accum(arena_t *arena, uint64_t accumbytes)
884 {
885
886 cassert(config_prof);
887
888 if (prof_interval == 0)
889 return (false);
890
891 {
892 bool ret;
893
894 malloc_mutex_lock(&arena->lock);
895 ret = arena_prof_accum_impl(arena, accumbytes);
896 malloc_mutex_unlock(&arena->lock);
897 return (ret);
898 }
899 }
900
901 JEMALLOC_ALWAYS_INLINE size_t
arena_ptr_small_binind_get(const void * ptr,size_t mapbits)902 arena_ptr_small_binind_get(const void *ptr, size_t mapbits)
903 {
904 size_t binind;
905
906 binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
907
908 if (config_debug) {
909 arena_chunk_t *chunk;
910 arena_t *arena;
911 size_t pageind;
912 size_t actual_mapbits;
913 arena_run_t *run;
914 arena_bin_t *bin;
915 size_t actual_binind;
916 arena_bin_info_t *bin_info;
917
918 assert(binind != BININD_INVALID);
919 assert(binind < NBINS);
920 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
921 arena = chunk->arena;
922 pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
923 actual_mapbits = arena_mapbits_get(chunk, pageind);
924 assert(mapbits == actual_mapbits);
925 assert(arena_mapbits_large_get(chunk, pageind) == 0);
926 assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
927 run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
928 (actual_mapbits >> LG_PAGE)) << LG_PAGE));
929 bin = run->bin;
930 actual_binind = bin - arena->bins;
931 assert(binind == actual_binind);
932 bin_info = &arena_bin_info[actual_binind];
933 assert(((uintptr_t)ptr - ((uintptr_t)run +
934 (uintptr_t)bin_info->reg0_offset)) % bin_info->reg_interval
935 == 0);
936 }
937
938 return (binind);
939 }
940 # endif /* JEMALLOC_ARENA_INLINE_B */
941
942 # ifdef JEMALLOC_ARENA_INLINE_C
943 JEMALLOC_INLINE size_t
arena_bin_index(arena_t * arena,arena_bin_t * bin)944 arena_bin_index(arena_t *arena, arena_bin_t *bin)
945 {
946 size_t binind = bin - arena->bins;
947 assert(binind < NBINS);
948 return (binind);
949 }
950
951 JEMALLOC_INLINE unsigned
arena_run_regind(arena_run_t * run,arena_bin_info_t * bin_info,const void * ptr)952 arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr)
953 {
954 unsigned shift, diff, regind;
955 size_t interval;
956
957 /*
958 * Freeing a pointer lower than region zero can cause assertion
959 * failure.
960 */
961 assert((uintptr_t)ptr >= (uintptr_t)run +
962 (uintptr_t)bin_info->reg0_offset);
963
964 /*
965 * Avoid doing division with a variable divisor if possible. Using
966 * actual division here can reduce allocator throughput by over 20%!
967 */
968 diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run -
969 bin_info->reg0_offset);
970
971 /* Rescale (factor powers of 2 out of the numerator and denominator). */
972 interval = bin_info->reg_interval;
973 shift = jemalloc_ffs(interval) - 1;
974 diff >>= shift;
975 interval >>= shift;
976
977 if (interval == 1) {
978 /* The divisor was a power of 2. */
979 regind = diff;
980 } else {
981 /*
982 * To divide by a number D that is not a power of two we
983 * multiply by (2^21 / D) and then right shift by 21 positions.
984 *
985 * X / D
986 *
987 * becomes
988 *
989 * (X * interval_invs[D - 3]) >> SIZE_INV_SHIFT
990 *
991 * We can omit the first three elements, because we never
992 * divide by 0, and 1 and 2 are both powers of two, which are
993 * handled above.
994 */
995 #define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS)
996 #define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
997 static const unsigned interval_invs[] = {
998 SIZE_INV(3),
999 SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1000 SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1001 SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1002 SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1003 SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1004 SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1005 SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1006 };
1007
1008 if (interval <= ((sizeof(interval_invs) / sizeof(unsigned)) +
1009 2)) {
1010 regind = (diff * interval_invs[interval - 3]) >>
1011 SIZE_INV_SHIFT;
1012 } else
1013 regind = diff / interval;
1014 #undef SIZE_INV
1015 #undef SIZE_INV_SHIFT
1016 }
1017 assert(diff == regind * interval);
1018 assert(regind < bin_info->nregs);
1019
1020 return (regind);
1021 }
1022
1023 JEMALLOC_INLINE prof_ctx_t *
arena_prof_ctx_get(const void * ptr)1024 arena_prof_ctx_get(const void *ptr)
1025 {
1026 prof_ctx_t *ret;
1027 arena_chunk_t *chunk;
1028 size_t pageind, mapbits;
1029
1030 cassert(config_prof);
1031 assert(ptr != NULL);
1032 assert(CHUNK_ADDR2BASE(ptr) != ptr);
1033
1034 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
1035 pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
1036 mapbits = arena_mapbits_get(chunk, pageind);
1037 assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
1038 if ((mapbits & CHUNK_MAP_LARGE) == 0)
1039 ret = (prof_ctx_t *)(uintptr_t)1U;
1040 else
1041 ret = arena_mapp_get(chunk, pageind)->prof_ctx;
1042
1043 return (ret);
1044 }
1045
1046 JEMALLOC_INLINE void
arena_prof_ctx_set(const void * ptr,prof_ctx_t * ctx)1047 arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
1048 {
1049 arena_chunk_t *chunk;
1050 size_t pageind;
1051
1052 cassert(config_prof);
1053 assert(ptr != NULL);
1054 assert(CHUNK_ADDR2BASE(ptr) != ptr);
1055
1056 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
1057 pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
1058 assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
1059
1060 if (arena_mapbits_large_get(chunk, pageind) != 0)
1061 arena_mapp_get(chunk, pageind)->prof_ctx = ctx;
1062 }
1063
1064 JEMALLOC_ALWAYS_INLINE void *
arena_malloc(arena_t * arena,size_t size,bool zero,bool try_tcache)1065 arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache)
1066 {
1067 tcache_t *tcache;
1068
1069 assert(size != 0);
1070 assert(size <= arena_maxclass);
1071
1072 if (size <= SMALL_MAXCLASS) {
1073 if (try_tcache && (tcache = tcache_get(true)) != NULL)
1074 return (tcache_alloc_small(tcache, size, zero));
1075 else {
1076 return (arena_malloc_small(choose_arena(arena), size,
1077 zero));
1078 }
1079 } else {
1080 /*
1081 * Initialize tcache after checking size in order to avoid
1082 * infinite recursion during tcache initialization.
1083 */
1084 if (try_tcache && size <= tcache_maxclass && (tcache =
1085 tcache_get(true)) != NULL)
1086 return (tcache_alloc_large(tcache, size, zero));
1087 else {
1088 return (arena_malloc_large(choose_arena(arena), size,
1089 zero));
1090 }
1091 }
1092 }
1093
1094 /* Return the size of the allocation pointed to by ptr. */
1095 JEMALLOC_ALWAYS_INLINE size_t
arena_salloc(const void * ptr,bool demote)1096 arena_salloc(const void *ptr, bool demote)
1097 {
1098 size_t ret;
1099 arena_chunk_t *chunk;
1100 size_t pageind, binind;
1101
1102 assert(ptr != NULL);
1103 assert(CHUNK_ADDR2BASE(ptr) != ptr);
1104
1105 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
1106 pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
1107 assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
1108 binind = arena_mapbits_binind_get(chunk, pageind);
1109 if (binind == BININD_INVALID || (config_prof && demote == false &&
1110 arena_mapbits_large_get(chunk, pageind) != 0)) {
1111 /*
1112 * Large allocation. In the common case (demote == true), and
1113 * as this is an inline function, most callers will only end up
1114 * looking at binind to determine that ptr is a small
1115 * allocation.
1116 */
1117 assert(((uintptr_t)ptr & PAGE_MASK) == 0);
1118 ret = arena_mapbits_large_size_get(chunk, pageind);
1119 assert(ret != 0);
1120 assert(pageind + (ret>>LG_PAGE) <= chunk_npages);
1121 assert(ret == PAGE || arena_mapbits_large_size_get(chunk,
1122 pageind+(ret>>LG_PAGE)-1) == 0);
1123 assert(binind == arena_mapbits_binind_get(chunk,
1124 pageind+(ret>>LG_PAGE)-1));
1125 assert(arena_mapbits_dirty_get(chunk, pageind) ==
1126 arena_mapbits_dirty_get(chunk, pageind+(ret>>LG_PAGE)-1));
1127 } else {
1128 /* Small allocation (possibly promoted to a large object). */
1129 assert(arena_mapbits_large_get(chunk, pageind) != 0 ||
1130 arena_ptr_small_binind_get(ptr, arena_mapbits_get(chunk,
1131 pageind)) == binind);
1132 ret = small_bin2size(binind);
1133 }
1134
1135 return (ret);
1136 }
1137
1138 JEMALLOC_ALWAYS_INLINE void
arena_dalloc(arena_chunk_t * chunk,void * ptr,bool try_tcache)1139 arena_dalloc(arena_chunk_t *chunk, void *ptr, bool try_tcache)
1140 {
1141 size_t pageind, mapbits;
1142 tcache_t *tcache;
1143
1144 assert(ptr != NULL);
1145 assert(CHUNK_ADDR2BASE(ptr) != ptr);
1146
1147 pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
1148 mapbits = arena_mapbits_get(chunk, pageind);
1149 assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
1150 if ((mapbits & CHUNK_MAP_LARGE) == 0) {
1151 /* Small allocation. */
1152 if (try_tcache && (tcache = tcache_get(false)) != NULL) {
1153 size_t binind;
1154
1155 binind = arena_ptr_small_binind_get(ptr, mapbits);
1156 tcache_dalloc_small(tcache, ptr, binind);
1157 } else
1158 arena_dalloc_small(chunk->arena, chunk, ptr, pageind);
1159 } else {
1160 size_t size = arena_mapbits_large_size_get(chunk, pageind);
1161
1162 assert(((uintptr_t)ptr & PAGE_MASK) == 0);
1163
1164 if (try_tcache && size <= tcache_maxclass && (tcache =
1165 tcache_get(false)) != NULL) {
1166 tcache_dalloc_large(tcache, ptr, size);
1167 } else
1168 arena_dalloc_large(chunk->arena, chunk, ptr);
1169 }
1170 }
1171 # endif /* JEMALLOC_ARENA_INLINE_C */
1172 #endif
1173
1174 #endif /* JEMALLOC_H_INLINES */
1175 /******************************************************************************/
1176