1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "callee_save_frame.h"
18 #include "common_throws.h"
19 #include "dex_file-inl.h"
20 #include "dex_instruction-inl.h"
21 #include "entrypoints/entrypoint_utils-inl.h"
22 #include "gc/accounting/card_table-inl.h"
23 #include "instruction_set.h"
24 #include "interpreter/interpreter.h"
25 #include "mirror/art_method-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/dex_cache-inl.h"
28 #include "mirror/object-inl.h"
29 #include "mirror/object_array-inl.h"
30 #include "runtime.h"
31 #include "scoped_thread_state_change.h"
32
33 namespace art {
34
35 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36 class QuickArgumentVisitor {
37 // Number of bytes for each out register in the caller method's frame.
38 static constexpr size_t kBytesStackArgLocation = 4;
39 // Frame size in bytes of a callee-save frame for RefsAndArgs.
40 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
41 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
42 #if defined(__arm__)
43 // The callee save frame is pointed to by SP.
44 // | argN | |
45 // | ... | |
46 // | arg4 | |
47 // | arg3 spill | | Caller's frame
48 // | arg2 spill | |
49 // | arg1 spill | |
50 // | Method* | ---
51 // | LR |
52 // | ... | callee saves
53 // | R3 | arg3
54 // | R2 | arg2
55 // | R1 | arg1
56 // | R0 | padding
57 // | Method* | <- sp
58 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
59 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
60 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
62 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg.
63 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
64 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg.
65 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
66 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)67 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
68 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
69 }
70 #elif defined(__aarch64__)
71 // The callee save frame is pointed to by SP.
72 // | argN | |
73 // | ... | |
74 // | arg4 | |
75 // | arg3 spill | | Caller's frame
76 // | arg2 spill | |
77 // | arg1 spill | |
78 // | Method* | ---
79 // | LR |
80 // | X29 |
81 // | : |
82 // | X20 |
83 // | X7 |
84 // | : |
85 // | X1 |
86 // | D7 |
87 // | : |
88 // | D0 |
89 // | | padding
90 // | Method* | <- sp
91 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
92 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
93 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
94 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
95 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg.
96 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
97 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg.
98 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
99 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)100 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
101 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
102 }
103 #elif defined(__mips__)
104 // The callee save frame is pointed to by SP.
105 // | argN | |
106 // | ... | |
107 // | arg4 | |
108 // | arg3 spill | | Caller's frame
109 // | arg2 spill | |
110 // | arg1 spill | |
111 // | Method* | ---
112 // | RA |
113 // | ... | callee saves
114 // | A3 | arg3
115 // | A2 | arg2
116 // | A1 | arg1
117 // | A0/Method* | <- sp
118 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
119 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
120 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
121 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
123 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)124 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
125 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
126 }
127 #elif defined(__i386__)
128 // The callee save frame is pointed to by SP.
129 // | argN | |
130 // | ... | |
131 // | arg4 | |
132 // | arg3 spill | | Caller's frame
133 // | arg2 spill | |
134 // | arg1 spill | |
135 // | Method* | ---
136 // | Return |
137 // | EBP,ESI,EDI | callee saves
138 // | EBX | arg3
139 // | EDX | arg2
140 // | ECX | arg1
141 // | EAX/Method* | <- sp
142 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
143 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
144 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
145 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
146 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
147 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)148 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
149 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
150 }
151 #elif defined(__x86_64__)
152 // The callee save frame is pointed to by SP.
153 // | argN | |
154 // | ... | |
155 // | reg. arg spills | | Caller's frame
156 // | Method* | ---
157 // | Return |
158 // | R15 | callee save
159 // | R14 | callee save
160 // | R13 | callee save
161 // | R12 | callee save
162 // | R9 | arg5
163 // | R8 | arg4
164 // | RSI/R6 | arg1
165 // | RBP/R5 | callee save
166 // | RBX/R3 | callee save
167 // | RDX/R2 | arg2
168 // | RCX/R1 | arg3
169 // | XMM7 | float arg 8
170 // | XMM6 | float arg 7
171 // | XMM5 | float arg 6
172 // | XMM4 | float arg 5
173 // | XMM3 | float arg 4
174 // | XMM2 | float arg 3
175 // | XMM1 | float arg 2
176 // | XMM0 | float arg 1
177 // | Padding |
178 // | RDI/Method* | <- sp
179 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
180 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
181 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg.
184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)185 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
186 switch (gpr_index) {
187 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
188 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
189 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
190 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
191 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
192 default:
193 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
194 return 0;
195 }
196 }
197 #else
198 #error "Unsupported architecture"
199 #endif
200
201 public:
GetCallingMethod(StackReference<mirror::ArtMethod> * sp)202 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
203 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
204 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
205 byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
206 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
207 }
208
209 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(StackReference<mirror::ArtMethod> * sp)210 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
211 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
212 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
213 byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
214 return *reinterpret_cast<uintptr_t*>(lr);
215 }
216
QuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len)217 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty,
218 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
219 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
220 gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
221 fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
222 stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
223 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
224 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
225 is_split_long_or_double_(false) {}
226
~QuickArgumentVisitor()227 virtual ~QuickArgumentVisitor() {}
228
229 virtual void Visit() = 0;
230
GetParamPrimitiveType() const231 Primitive::Type GetParamPrimitiveType() const {
232 return cur_type_;
233 }
234
GetParamAddress() const235 byte* GetParamAddress() const {
236 if (!kQuickSoftFloatAbi) {
237 Primitive::Type type = GetParamPrimitiveType();
238 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
239 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
240 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
241 }
242 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
243 }
244 }
245 if (gpr_index_ < kNumQuickGprArgs) {
246 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
247 }
248 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
249 }
250
IsSplitLongOrDouble() const251 bool IsSplitLongOrDouble() const {
252 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
253 return is_split_long_or_double_;
254 } else {
255 return false; // An optimization for when GPR and FPRs are 64bit.
256 }
257 }
258
IsParamAReference() const259 bool IsParamAReference() const {
260 return GetParamPrimitiveType() == Primitive::kPrimNot;
261 }
262
IsParamALongOrDouble() const263 bool IsParamALongOrDouble() const {
264 Primitive::Type type = GetParamPrimitiveType();
265 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
266 }
267
ReadSplitLongParam() const268 uint64_t ReadSplitLongParam() const {
269 DCHECK(IsSplitLongOrDouble());
270 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
271 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
272 return (low_half & 0xffffffffULL) | (high_half << 32);
273 }
274
VisitArguments()275 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
276 // This implementation doesn't support reg-spill area for hard float
277 // ABI targets such as x86_64 and aarch64. So, for those targets whose
278 // 'kQuickSoftFloatAbi' is 'false':
279 // (a) 'stack_args_' should point to the first method's argument
280 // (b) whatever the argument type it is, the 'stack_index_' should
281 // be moved forward along with every visiting.
282 gpr_index_ = 0;
283 fpr_index_ = 0;
284 stack_index_ = 0;
285 if (!is_static_) { // Handle this.
286 cur_type_ = Primitive::kPrimNot;
287 is_split_long_or_double_ = false;
288 Visit();
289 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
290 stack_index_++;
291 }
292 if (kNumQuickGprArgs > 0) {
293 gpr_index_++;
294 }
295 }
296 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
297 cur_type_ = Primitive::GetType(shorty_[shorty_index]);
298 switch (cur_type_) {
299 case Primitive::kPrimNot:
300 case Primitive::kPrimBoolean:
301 case Primitive::kPrimByte:
302 case Primitive::kPrimChar:
303 case Primitive::kPrimShort:
304 case Primitive::kPrimInt:
305 is_split_long_or_double_ = false;
306 Visit();
307 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
308 stack_index_++;
309 }
310 if (gpr_index_ < kNumQuickGprArgs) {
311 gpr_index_++;
312 }
313 break;
314 case Primitive::kPrimFloat:
315 is_split_long_or_double_ = false;
316 Visit();
317 if (kQuickSoftFloatAbi) {
318 if (gpr_index_ < kNumQuickGprArgs) {
319 gpr_index_++;
320 } else {
321 stack_index_++;
322 }
323 } else {
324 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
325 fpr_index_++;
326 }
327 stack_index_++;
328 }
329 break;
330 case Primitive::kPrimDouble:
331 case Primitive::kPrimLong:
332 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
333 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
334 ((gpr_index_ + 1) == kNumQuickGprArgs);
335 Visit();
336 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
337 if (kBytesStackArgLocation == 4) {
338 stack_index_+= 2;
339 } else {
340 CHECK_EQ(kBytesStackArgLocation, 8U);
341 stack_index_++;
342 }
343 }
344 if (gpr_index_ < kNumQuickGprArgs) {
345 gpr_index_++;
346 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
347 if (gpr_index_ < kNumQuickGprArgs) {
348 gpr_index_++;
349 } else if (kQuickSoftFloatAbi) {
350 stack_index_++;
351 }
352 }
353 }
354 } else {
355 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
356 ((fpr_index_ + 1) == kNumQuickFprArgs);
357 Visit();
358 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
359 fpr_index_++;
360 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
361 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
362 fpr_index_++;
363 }
364 }
365 }
366 if (kBytesStackArgLocation == 4) {
367 stack_index_+= 2;
368 } else {
369 CHECK_EQ(kBytesStackArgLocation, 8U);
370 stack_index_++;
371 }
372 }
373 break;
374 default:
375 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
376 }
377 }
378 }
379
380 private:
StackArgumentStartFromShorty(bool is_static,const char * shorty,uint32_t shorty_len)381 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
382 uint32_t shorty_len) {
383 if (kQuickSoftFloatAbi) {
384 CHECK_EQ(kNumQuickFprArgs, 0U);
385 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
386 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
387 } else {
388 // For now, there is no reg-spill area for the targets with
389 // hard float ABI. So, the offset pointing to the first method's
390 // parameter ('this' for non-static methods) should be returned.
391 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>.
392 }
393 }
394
395 protected:
396 const bool is_static_;
397 const char* const shorty_;
398 const uint32_t shorty_len_;
399
400 private:
401 byte* const gpr_args_; // Address of GPR arguments in callee save frame.
402 byte* const fpr_args_; // Address of FPR arguments in callee save frame.
403 byte* const stack_args_; // Address of stack arguments in caller's frame.
404 uint32_t gpr_index_; // Index into spilled GPRs.
405 uint32_t fpr_index_; // Index into spilled FPRs.
406 uint32_t stack_index_; // Index into arguments on the stack.
407 // The current type of argument during VisitArguments.
408 Primitive::Type cur_type_;
409 // Does a 64bit parameter straddle the register and stack arguments?
410 bool is_split_long_or_double_;
411 };
412
413 // Visits arguments on the stack placing them into the shadow frame.
414 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
415 public:
BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)416 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
417 const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
418 size_t first_arg_reg) :
419 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
420
421 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
422
423 private:
424 ShadowFrame* const sf_;
425 uint32_t cur_reg_;
426
427 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
428 };
429
Visit()430 void BuildQuickShadowFrameVisitor::Visit() {
431 Primitive::Type type = GetParamPrimitiveType();
432 switch (type) {
433 case Primitive::kPrimLong: // Fall-through.
434 case Primitive::kPrimDouble:
435 if (IsSplitLongOrDouble()) {
436 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
437 } else {
438 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
439 }
440 ++cur_reg_;
441 break;
442 case Primitive::kPrimNot: {
443 StackReference<mirror::Object>* stack_ref =
444 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
445 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
446 }
447 break;
448 case Primitive::kPrimBoolean: // Fall-through.
449 case Primitive::kPrimByte: // Fall-through.
450 case Primitive::kPrimChar: // Fall-through.
451 case Primitive::kPrimShort: // Fall-through.
452 case Primitive::kPrimInt: // Fall-through.
453 case Primitive::kPrimFloat:
454 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
455 break;
456 case Primitive::kPrimVoid:
457 LOG(FATAL) << "UNREACHABLE";
458 break;
459 }
460 ++cur_reg_;
461 }
462
artQuickToInterpreterBridge(mirror::ArtMethod * method,Thread * self,StackReference<mirror::ArtMethod> * sp)463 extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
464 StackReference<mirror::ArtMethod>* sp)
465 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
466 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
467 // frame.
468 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
469
470 if (method->IsAbstract()) {
471 ThrowAbstractMethodError(method);
472 return 0;
473 } else {
474 DCHECK(!method->IsNative()) << PrettyMethod(method);
475 const char* old_cause = self->StartAssertNoThreadSuspension(
476 "Building interpreter shadow frame");
477 const DexFile::CodeItem* code_item = method->GetCodeItem();
478 DCHECK(code_item != nullptr) << PrettyMethod(method);
479 uint16_t num_regs = code_item->registers_size_;
480 void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
481 // No last shadow coming from quick.
482 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
483 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
484 uint32_t shorty_len = 0;
485 const char* shorty = method->GetShorty(&shorty_len);
486 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
487 shadow_frame, first_arg_reg);
488 shadow_frame_builder.VisitArguments();
489 // Push a transition back into managed code onto the linked list in thread.
490 ManagedStack fragment;
491 self->PushManagedStackFragment(&fragment);
492 self->PushShadowFrame(shadow_frame);
493 self->EndAssertNoThreadSuspension(old_cause);
494
495 if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) {
496 // Ensure static method's class is initialized.
497 StackHandleScope<1> hs(self);
498 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
499 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
500 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
501 self->PopManagedStackFragment(fragment);
502 return 0;
503 }
504 }
505
506 StackHandleScope<1> hs(self);
507 MethodHelper mh(hs.NewHandle(method));
508 JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
509 // Pop transition.
510 self->PopManagedStackFragment(fragment);
511 // No need to restore the args since the method has already been run by the interpreter.
512 return result.GetJ();
513 }
514 }
515
516 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
517 // to jobjects.
518 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
519 public:
BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)520 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
521 const char* shorty, uint32_t shorty_len,
522 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
523 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
524
525 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
526
527 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
528
529 private:
530 ScopedObjectAccessUnchecked* const soa_;
531 std::vector<jvalue>* const args_;
532 // References which we must update when exiting in case the GC moved the objects.
533 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
534
535 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
536 };
537
Visit()538 void BuildQuickArgumentVisitor::Visit() {
539 jvalue val;
540 Primitive::Type type = GetParamPrimitiveType();
541 switch (type) {
542 case Primitive::kPrimNot: {
543 StackReference<mirror::Object>* stack_ref =
544 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
545 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
546 references_.push_back(std::make_pair(val.l, stack_ref));
547 break;
548 }
549 case Primitive::kPrimLong: // Fall-through.
550 case Primitive::kPrimDouble:
551 if (IsSplitLongOrDouble()) {
552 val.j = ReadSplitLongParam();
553 } else {
554 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
555 }
556 break;
557 case Primitive::kPrimBoolean: // Fall-through.
558 case Primitive::kPrimByte: // Fall-through.
559 case Primitive::kPrimChar: // Fall-through.
560 case Primitive::kPrimShort: // Fall-through.
561 case Primitive::kPrimInt: // Fall-through.
562 case Primitive::kPrimFloat:
563 val.i = *reinterpret_cast<jint*>(GetParamAddress());
564 break;
565 case Primitive::kPrimVoid:
566 LOG(FATAL) << "UNREACHABLE";
567 val.j = 0;
568 break;
569 }
570 args_->push_back(val);
571 }
572
FixupReferences()573 void BuildQuickArgumentVisitor::FixupReferences() {
574 // Fixup any references which may have changed.
575 for (const auto& pair : references_) {
576 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
577 soa_->Env()->DeleteLocalRef(pair.first);
578 }
579 }
580
581 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
582 // which is responsible for recording callee save registers. We explicitly place into jobjects the
583 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
584 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(mirror::ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)585 extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
586 mirror::Object* receiver,
587 Thread* self, StackReference<mirror::ArtMethod>* sp)
588 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
589 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
590 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
591 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
592 const char* old_cause =
593 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
594 // Register the top of the managed stack, making stack crawlable.
595 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
596 self->SetTopOfStack(sp, 0);
597 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
598 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
599 << PrettyMethod(proxy_method);
600 self->VerifyStack();
601 // Start new JNI local reference state.
602 JNIEnvExt* env = self->GetJniEnv();
603 ScopedObjectAccessUnchecked soa(env);
604 ScopedJniEnvLocalRefState env_state(env);
605 // Create local ref. copies of proxy method and the receiver.
606 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
607
608 // Placing arguments into args vector and remove the receiver.
609 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy();
610 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
611 << PrettyMethod(non_proxy_method);
612 std::vector<jvalue> args;
613 uint32_t shorty_len = 0;
614 const char* shorty = proxy_method->GetShorty(&shorty_len);
615 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
616
617 local_ref_visitor.VisitArguments();
618 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
619 args.erase(args.begin());
620
621 // Convert proxy method into expected interface method.
622 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
623 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
624 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
625 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
626
627 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
628 // that performs allocations.
629 self->EndAssertNoThreadSuspension(old_cause);
630 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
631 // Restore references which might have moved.
632 local_ref_visitor.FixupReferences();
633 return result.GetJ();
634 }
635
636 // Read object references held in arguments from quick frames and place in a JNI local references,
637 // so they don't get garbage collected.
638 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
639 public:
RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)640 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
641 const char* shorty, uint32_t shorty_len,
642 ScopedObjectAccessUnchecked* soa) :
643 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
644
645 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
646
647 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
648
649 private:
650 ScopedObjectAccessUnchecked* const soa_;
651 // References which we must update when exiting in case the GC moved the objects.
652 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
653
654 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
655 };
656
Visit()657 void RememberForGcArgumentVisitor::Visit() {
658 if (IsParamAReference()) {
659 StackReference<mirror::Object>* stack_ref =
660 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
661 jobject reference =
662 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
663 references_.push_back(std::make_pair(reference, stack_ref));
664 }
665 }
666
FixupReferences()667 void RememberForGcArgumentVisitor::FixupReferences() {
668 // Fixup any references which may have changed.
669 for (const auto& pair : references_) {
670 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
671 soa_->Env()->DeleteLocalRef(pair.first);
672 }
673 }
674
675 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(mirror::ArtMethod * called,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)676 extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
677 mirror::Object* receiver,
678 Thread* self,
679 StackReference<mirror::ArtMethod>* sp)
680 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
681 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
682 // Start new JNI local reference state
683 JNIEnvExt* env = self->GetJniEnv();
684 ScopedObjectAccessUnchecked soa(env);
685 ScopedJniEnvLocalRefState env_state(env);
686 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
687
688 // Compute details about the called method (avoid GCs)
689 ClassLinker* linker = Runtime::Current()->GetClassLinker();
690 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
691 InvokeType invoke_type;
692 const DexFile* dex_file;
693 uint32_t dex_method_idx;
694 if (called->IsRuntimeMethod()) {
695 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
696 const DexFile::CodeItem* code;
697 dex_file = caller->GetDexFile();
698 code = caller->GetCodeItem();
699 CHECK_LT(dex_pc, code->insns_size_in_code_units_);
700 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
701 Instruction::Code instr_code = instr->Opcode();
702 bool is_range;
703 switch (instr_code) {
704 case Instruction::INVOKE_DIRECT:
705 invoke_type = kDirect;
706 is_range = false;
707 break;
708 case Instruction::INVOKE_DIRECT_RANGE:
709 invoke_type = kDirect;
710 is_range = true;
711 break;
712 case Instruction::INVOKE_STATIC:
713 invoke_type = kStatic;
714 is_range = false;
715 break;
716 case Instruction::INVOKE_STATIC_RANGE:
717 invoke_type = kStatic;
718 is_range = true;
719 break;
720 case Instruction::INVOKE_SUPER:
721 invoke_type = kSuper;
722 is_range = false;
723 break;
724 case Instruction::INVOKE_SUPER_RANGE:
725 invoke_type = kSuper;
726 is_range = true;
727 break;
728 case Instruction::INVOKE_VIRTUAL:
729 invoke_type = kVirtual;
730 is_range = false;
731 break;
732 case Instruction::INVOKE_VIRTUAL_RANGE:
733 invoke_type = kVirtual;
734 is_range = true;
735 break;
736 case Instruction::INVOKE_INTERFACE:
737 invoke_type = kInterface;
738 is_range = false;
739 break;
740 case Instruction::INVOKE_INTERFACE_RANGE:
741 invoke_type = kInterface;
742 is_range = true;
743 break;
744 default:
745 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
746 // Avoid used uninitialized warnings.
747 invoke_type = kDirect;
748 is_range = false;
749 }
750 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
751 } else {
752 invoke_type = kStatic;
753 dex_file = called->GetDexFile();
754 dex_method_idx = called->GetDexMethodIndex();
755 }
756 uint32_t shorty_len;
757 const char* shorty =
758 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
759 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
760 visitor.VisitArguments();
761 self->EndAssertNoThreadSuspension(old_cause);
762 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
763 // Resolve method filling in dex cache.
764 if (UNLIKELY(called->IsRuntimeMethod())) {
765 StackHandleScope<1> hs(self);
766 mirror::Object* dummy = nullptr;
767 HandleWrapper<mirror::Object> h_receiver(
768 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
769 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
770 }
771 const void* code = NULL;
772 if (LIKELY(!self->IsExceptionPending())) {
773 // Incompatible class change should have been handled in resolve method.
774 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
775 << PrettyMethod(called) << " " << invoke_type;
776 if (virtual_or_interface) {
777 // Refine called method based on receiver.
778 CHECK(receiver != nullptr) << invoke_type;
779
780 mirror::ArtMethod* orig_called = called;
781 if (invoke_type == kVirtual) {
782 called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
783 } else {
784 called = receiver->GetClass()->FindVirtualMethodForInterface(called);
785 }
786
787 CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
788 << PrettyTypeOf(receiver) << " "
789 << invoke_type << " " << orig_called->GetVtableIndex();
790
791 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
792 // of the sharpened method.
793 if (called->HasSameDexCacheResolvedMethods(caller)) {
794 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called);
795 } else {
796 // Calling from one dex file to another, need to compute the method index appropriate to
797 // the caller's dex file. Since we get here only if the original called was a runtime
798 // method, we've got the correct dex_file and a dex_method_idx from above.
799 DCHECK_EQ(caller->GetDexFile(), dex_file);
800 StackHandleScope<1> hs(self);
801 MethodHelper mh(hs.NewHandle(called));
802 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
803 if (method_index != DexFile::kDexNoIndex) {
804 caller->SetDexCacheResolvedMethod(method_index, called);
805 }
806 }
807 }
808 // Ensure that the called method's class is initialized.
809 StackHandleScope<1> hs(soa.Self());
810 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
811 linker->EnsureInitialized(called_class, true, true);
812 if (LIKELY(called_class->IsInitialized())) {
813 code = called->GetEntryPointFromQuickCompiledCode();
814 } else if (called_class->IsInitializing()) {
815 if (invoke_type == kStatic) {
816 // Class is still initializing, go to oat and grab code (trampoline must be left in place
817 // until class is initialized to stop races between threads).
818 code = linker->GetQuickOatCodeFor(called);
819 } else {
820 // No trampoline for non-static methods.
821 code = called->GetEntryPointFromQuickCompiledCode();
822 }
823 } else {
824 DCHECK(called_class->IsErroneous());
825 }
826 }
827 CHECK_EQ(code == NULL, self->IsExceptionPending());
828 // Fixup any locally saved objects may have moved during a GC.
829 visitor.FixupReferences();
830 // Place called method in callee-save frame to be placed as first argument to quick method.
831 sp->Assign(called);
832 return code;
833 }
834
835 /*
836 * This class uses a couple of observations to unite the different calling conventions through
837 * a few constants.
838 *
839 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
840 * possible alignment.
841 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
842 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
843 * when we have to split things
844 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
845 * and we can use Int handling directly.
846 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
847 * necessary when widening. Also, widening of Ints will take place implicitly, and the
848 * extension should be compatible with Aarch64, which mandates copying the available bits
849 * into LSB and leaving the rest unspecified.
850 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
851 * the stack.
852 * 6) There is only little endian.
853 *
854 *
855 * Actual work is supposed to be done in a delegate of the template type. The interface is as
856 * follows:
857 *
858 * void PushGpr(uintptr_t): Add a value for the next GPR
859 *
860 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
861 * padding, that is, think the architecture is 32b and aligns 64b.
862 *
863 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
864 * split this if necessary. The current state will have aligned, if
865 * necessary.
866 *
867 * void PushStack(uintptr_t): Push a value to the stack.
868 *
869 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
870 * as this might be important for null initialization.
871 * Must return the jobject, that is, the reference to the
872 * entry in the HandleScope (nullptr if necessary).
873 *
874 */
875 template<class T> class BuildNativeCallFrameStateMachine {
876 public:
877 #if defined(__arm__)
878 // TODO: These are all dummy values!
879 static constexpr bool kNativeSoftFloatAbi = true;
880 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
881 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
882
883 static constexpr size_t kRegistersNeededForLong = 2;
884 static constexpr size_t kRegistersNeededForDouble = 2;
885 static constexpr bool kMultiRegistersAligned = true;
886 static constexpr bool kMultiRegistersWidened = false;
887 static constexpr bool kAlignLongOnStack = true;
888 static constexpr bool kAlignDoubleOnStack = true;
889 #elif defined(__aarch64__)
890 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
891 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
892 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
893
894 static constexpr size_t kRegistersNeededForLong = 1;
895 static constexpr size_t kRegistersNeededForDouble = 1;
896 static constexpr bool kMultiRegistersAligned = false;
897 static constexpr bool kMultiRegistersWidened = false;
898 static constexpr bool kAlignLongOnStack = false;
899 static constexpr bool kAlignDoubleOnStack = false;
900 #elif defined(__mips__)
901 // TODO: These are all dummy values!
902 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
903 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
904 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
905
906 static constexpr size_t kRegistersNeededForLong = 2;
907 static constexpr size_t kRegistersNeededForDouble = 2;
908 static constexpr bool kMultiRegistersAligned = true;
909 static constexpr bool kMultiRegistersWidened = true;
910 static constexpr bool kAlignLongOnStack = false;
911 static constexpr bool kAlignDoubleOnStack = false;
912 #elif defined(__i386__)
913 // TODO: Check these!
914 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
915 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
916 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
917
918 static constexpr size_t kRegistersNeededForLong = 2;
919 static constexpr size_t kRegistersNeededForDouble = 2;
920 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
921 static constexpr bool kMultiRegistersWidened = false;
922 static constexpr bool kAlignLongOnStack = false;
923 static constexpr bool kAlignDoubleOnStack = false;
924 #elif defined(__x86_64__)
925 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
926 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
927 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
928
929 static constexpr size_t kRegistersNeededForLong = 1;
930 static constexpr size_t kRegistersNeededForDouble = 1;
931 static constexpr bool kMultiRegistersAligned = false;
932 static constexpr bool kMultiRegistersWidened = false;
933 static constexpr bool kAlignLongOnStack = false;
934 static constexpr bool kAlignDoubleOnStack = false;
935 #else
936 #error "Unsupported architecture"
937 #endif
938
939 public:
BuildNativeCallFrameStateMachine(T * delegate)940 explicit BuildNativeCallFrameStateMachine(T* delegate)
941 : gpr_index_(kNumNativeGprArgs),
942 fpr_index_(kNumNativeFprArgs),
943 stack_entries_(0),
944 delegate_(delegate) {
945 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
946 // the next register is even; counting down is just to make the compiler happy...
947 CHECK_EQ(kNumNativeGprArgs % 2, 0U);
948 CHECK_EQ(kNumNativeFprArgs % 2, 0U);
949 }
950
~BuildNativeCallFrameStateMachine()951 virtual ~BuildNativeCallFrameStateMachine() {}
952
HavePointerGpr()953 bool HavePointerGpr() {
954 return gpr_index_ > 0;
955 }
956
AdvancePointer(const void * val)957 void AdvancePointer(const void* val) {
958 if (HavePointerGpr()) {
959 gpr_index_--;
960 PushGpr(reinterpret_cast<uintptr_t>(val));
961 } else {
962 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
963 PushStack(reinterpret_cast<uintptr_t>(val));
964 gpr_index_ = 0;
965 }
966 }
967
HaveHandleScopeGpr()968 bool HaveHandleScopeGpr() {
969 return gpr_index_ > 0;
970 }
971
AdvanceHandleScope(mirror::Object * ptr)972 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
973 uintptr_t handle = PushHandle(ptr);
974 if (HaveHandleScopeGpr()) {
975 gpr_index_--;
976 PushGpr(handle);
977 } else {
978 stack_entries_++;
979 PushStack(handle);
980 gpr_index_ = 0;
981 }
982 }
983
HaveIntGpr()984 bool HaveIntGpr() {
985 return gpr_index_ > 0;
986 }
987
AdvanceInt(uint32_t val)988 void AdvanceInt(uint32_t val) {
989 if (HaveIntGpr()) {
990 gpr_index_--;
991 PushGpr(val);
992 } else {
993 stack_entries_++;
994 PushStack(val);
995 gpr_index_ = 0;
996 }
997 }
998
HaveLongGpr()999 bool HaveLongGpr() {
1000 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1001 }
1002
LongGprNeedsPadding()1003 bool LongGprNeedsPadding() {
1004 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1005 kAlignLongOnStack && // and when it needs alignment
1006 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1007 }
1008
LongStackNeedsPadding()1009 bool LongStackNeedsPadding() {
1010 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1011 kAlignLongOnStack && // and when it needs 8B alignment
1012 (stack_entries_ & 1) == 1; // counter is odd
1013 }
1014
AdvanceLong(uint64_t val)1015 void AdvanceLong(uint64_t val) {
1016 if (HaveLongGpr()) {
1017 if (LongGprNeedsPadding()) {
1018 PushGpr(0);
1019 gpr_index_--;
1020 }
1021 if (kRegistersNeededForLong == 1) {
1022 PushGpr(static_cast<uintptr_t>(val));
1023 } else {
1024 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1025 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1026 }
1027 gpr_index_ -= kRegistersNeededForLong;
1028 } else {
1029 if (LongStackNeedsPadding()) {
1030 PushStack(0);
1031 stack_entries_++;
1032 }
1033 if (kRegistersNeededForLong == 1) {
1034 PushStack(static_cast<uintptr_t>(val));
1035 stack_entries_++;
1036 } else {
1037 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1038 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1039 stack_entries_ += 2;
1040 }
1041 gpr_index_ = 0;
1042 }
1043 }
1044
HaveFloatFpr()1045 bool HaveFloatFpr() {
1046 return fpr_index_ > 0;
1047 }
1048
AdvanceFloat(float val)1049 void AdvanceFloat(float val) {
1050 if (kNativeSoftFloatAbi) {
1051 AdvanceInt(bit_cast<float, uint32_t>(val));
1052 } else {
1053 if (HaveFloatFpr()) {
1054 fpr_index_--;
1055 if (kRegistersNeededForDouble == 1) {
1056 if (kMultiRegistersWidened) {
1057 PushFpr8(bit_cast<double, uint64_t>(val));
1058 } else {
1059 // No widening, just use the bits.
1060 PushFpr8(bit_cast<float, uint64_t>(val));
1061 }
1062 } else {
1063 PushFpr4(val);
1064 }
1065 } else {
1066 stack_entries_++;
1067 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1068 // Need to widen before storing: Note the "double" in the template instantiation.
1069 // Note: We need to jump through those hoops to make the compiler happy.
1070 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1071 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val)));
1072 } else {
1073 PushStack(bit_cast<float, uintptr_t>(val));
1074 }
1075 fpr_index_ = 0;
1076 }
1077 }
1078 }
1079
HaveDoubleFpr()1080 bool HaveDoubleFpr() {
1081 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1082 }
1083
DoubleFprNeedsPadding()1084 bool DoubleFprNeedsPadding() {
1085 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1086 kAlignDoubleOnStack && // and when it needs alignment
1087 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1088 }
1089
DoubleStackNeedsPadding()1090 bool DoubleStackNeedsPadding() {
1091 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1092 kAlignDoubleOnStack && // and when it needs 8B alignment
1093 (stack_entries_ & 1) == 1; // counter is odd
1094 }
1095
AdvanceDouble(uint64_t val)1096 void AdvanceDouble(uint64_t val) {
1097 if (kNativeSoftFloatAbi) {
1098 AdvanceLong(val);
1099 } else {
1100 if (HaveDoubleFpr()) {
1101 if (DoubleFprNeedsPadding()) {
1102 PushFpr4(0);
1103 fpr_index_--;
1104 }
1105 PushFpr8(val);
1106 fpr_index_ -= kRegistersNeededForDouble;
1107 } else {
1108 if (DoubleStackNeedsPadding()) {
1109 PushStack(0);
1110 stack_entries_++;
1111 }
1112 if (kRegistersNeededForDouble == 1) {
1113 PushStack(static_cast<uintptr_t>(val));
1114 stack_entries_++;
1115 } else {
1116 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1117 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1118 stack_entries_ += 2;
1119 }
1120 fpr_index_ = 0;
1121 }
1122 }
1123 }
1124
getStackEntries()1125 uint32_t getStackEntries() {
1126 return stack_entries_;
1127 }
1128
getNumberOfUsedGprs()1129 uint32_t getNumberOfUsedGprs() {
1130 return kNumNativeGprArgs - gpr_index_;
1131 }
1132
getNumberOfUsedFprs()1133 uint32_t getNumberOfUsedFprs() {
1134 return kNumNativeFprArgs - fpr_index_;
1135 }
1136
1137 private:
PushGpr(uintptr_t val)1138 void PushGpr(uintptr_t val) {
1139 delegate_->PushGpr(val);
1140 }
PushFpr4(float val)1141 void PushFpr4(float val) {
1142 delegate_->PushFpr4(val);
1143 }
PushFpr8(uint64_t val)1144 void PushFpr8(uint64_t val) {
1145 delegate_->PushFpr8(val);
1146 }
PushStack(uintptr_t val)1147 void PushStack(uintptr_t val) {
1148 delegate_->PushStack(val);
1149 }
PushHandle(mirror::Object * ref)1150 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1151 return delegate_->PushHandle(ref);
1152 }
1153
1154 uint32_t gpr_index_; // Number of free GPRs
1155 uint32_t fpr_index_; // Number of free FPRs
1156 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1157 // extended
1158 T* delegate_; // What Push implementation gets called
1159 };
1160
1161 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1162 // in subclasses.
1163 //
1164 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1165 // them with handles.
1166 class ComputeNativeCallFrameSize {
1167 public:
ComputeNativeCallFrameSize()1168 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1169
~ComputeNativeCallFrameSize()1170 virtual ~ComputeNativeCallFrameSize() {}
1171
GetStackSize()1172 uint32_t GetStackSize() {
1173 return num_stack_entries_ * sizeof(uintptr_t);
1174 }
1175
LayoutCallStack(uint8_t * sp8)1176 uint8_t* LayoutCallStack(uint8_t* sp8) {
1177 sp8 -= GetStackSize();
1178 // Align by kStackAlignment.
1179 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1180 return sp8;
1181 }
1182
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr)1183 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) {
1184 // Assumption is OK right now, as we have soft-float arm
1185 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1186 sp8 -= fregs * sizeof(uintptr_t);
1187 *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1188 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1189 sp8 -= iregs * sizeof(uintptr_t);
1190 *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1191 return sp8;
1192 }
1193
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1194 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1195 uint32_t** start_fpr) {
1196 // Native call stack.
1197 sp8 = LayoutCallStack(sp8);
1198 *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1199
1200 // Put fprs and gprs below.
1201 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1202
1203 // Return the new bottom.
1204 return sp8;
1205 }
1206
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1207 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1208 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {}
1209
Walk(const char * shorty,uint32_t shorty_len)1210 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1211 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1212
1213 WalkHeader(&sm);
1214
1215 for (uint32_t i = 1; i < shorty_len; ++i) {
1216 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1217 switch (cur_type_) {
1218 case Primitive::kPrimNot:
1219 sm.AdvanceHandleScope(
1220 reinterpret_cast<mirror::Object*>(0x12345678));
1221 break;
1222
1223 case Primitive::kPrimBoolean:
1224 case Primitive::kPrimByte:
1225 case Primitive::kPrimChar:
1226 case Primitive::kPrimShort:
1227 case Primitive::kPrimInt:
1228 sm.AdvanceInt(0);
1229 break;
1230 case Primitive::kPrimFloat:
1231 sm.AdvanceFloat(0);
1232 break;
1233 case Primitive::kPrimDouble:
1234 sm.AdvanceDouble(0);
1235 break;
1236 case Primitive::kPrimLong:
1237 sm.AdvanceLong(0);
1238 break;
1239 default:
1240 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1241 }
1242 }
1243
1244 num_stack_entries_ = sm.getStackEntries();
1245 }
1246
PushGpr(uintptr_t)1247 void PushGpr(uintptr_t /* val */) {
1248 // not optimizing registers, yet
1249 }
1250
PushFpr4(float)1251 void PushFpr4(float /* val */) {
1252 // not optimizing registers, yet
1253 }
1254
PushFpr8(uint64_t)1255 void PushFpr8(uint64_t /* val */) {
1256 // not optimizing registers, yet
1257 }
1258
PushStack(uintptr_t)1259 void PushStack(uintptr_t /* val */) {
1260 // counting is already done in the superclass
1261 }
1262
PushHandle(mirror::Object *)1263 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1264 return reinterpret_cast<uintptr_t>(nullptr);
1265 }
1266
1267 protected:
1268 uint32_t num_stack_entries_;
1269 };
1270
1271 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1272 public:
ComputeGenericJniFrameSize()1273 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1274
1275 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1276 // is at *m = sp. Will update to point to the bottom of the save frame.
1277 //
1278 // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1279 void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1280 uint32_t* handle_scope_entries)
1281 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1282 mirror::ArtMethod* method = (*m)->AsMirrorPtr();
1283
1284 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1285
1286 // First, fix up the layout of the callee-save frame.
1287 // We have to squeeze in the HandleScope, and relocate the method pointer.
1288
1289 // "Free" the slot for the method.
1290 sp8 += kPointerSize; // In the callee-save frame we use a full pointer.
1291
1292 // Under the callee saves put handle scope and new method stack reference.
1293 *handle_scope_entries = num_handle_scope_references_;
1294
1295 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1296 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
1297
1298 sp8 -= scope_and_method;
1299 // Align by kStackAlignment.
1300 sp8 = reinterpret_cast<uint8_t*>(RoundDown(
1301 reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1302
1303 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
1304 *table = reinterpret_cast<HandleScope*>(sp8_table);
1305 (*table)->SetNumberOfReferences(num_handle_scope_references_);
1306
1307 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1308 uint8_t* method_pointer = sp8;
1309 StackReference<mirror::ArtMethod>* new_method_ref =
1310 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
1311 new_method_ref->Assign(method);
1312 *m = new_method_ref;
1313 }
1314
1315 // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp)1316 void LayoutCookie(uint8_t** sp) {
1317 // Reference cookie and padding
1318 *sp -= 8;
1319 }
1320
1321 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1322 // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1323 uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1324 uint32_t* handle_scope_entries)
1325 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1326 // First, fix up the layout of the callee-save frame.
1327 // We have to squeeze in the HandleScope, and relocate the method pointer.
1328 LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries);
1329
1330 // The bottom of the callee-save frame is now where the method is, *m.
1331 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1332
1333 // Add space for cookie.
1334 LayoutCookie(&sp8);
1335
1336 return sp8;
1337 }
1338
1339 // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(StackReference<mirror::ArtMethod> ** m,bool is_static,const char * shorty,uint32_t shorty_len,HandleScope ** table,uint32_t * handle_scope_entries,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1340 uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty,
1341 uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries,
1342 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr)
1343 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1344 Walk(shorty, shorty_len);
1345
1346 // JNI part.
1347 uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries);
1348
1349 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1350
1351 // Return the new bottom.
1352 return sp8;
1353 }
1354
1355 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1356
1357 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1358 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1359 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1360
1361 private:
1362 uint32_t num_handle_scope_references_;
1363 };
1364
PushHandle(mirror::Object *)1365 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1366 num_handle_scope_references_++;
1367 return reinterpret_cast<uintptr_t>(nullptr);
1368 }
1369
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1370 void ComputeGenericJniFrameSize::WalkHeader(
1371 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1372 // JNIEnv
1373 sm->AdvancePointer(nullptr);
1374
1375 // Class object or this as first argument
1376 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1377 }
1378
1379 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1380 // the template requirements of BuildGenericJniFrameStateMachine.
1381 class FillNativeCall {
1382 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1383 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1384 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1385
~FillNativeCall()1386 virtual ~FillNativeCall() {}
1387
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1388 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1389 cur_gpr_reg_ = gpr_regs;
1390 cur_fpr_reg_ = fpr_regs;
1391 cur_stack_arg_ = stack_args;
1392 }
1393
PushGpr(uintptr_t val)1394 void PushGpr(uintptr_t val) {
1395 *cur_gpr_reg_ = val;
1396 cur_gpr_reg_++;
1397 }
1398
PushFpr4(float val)1399 void PushFpr4(float val) {
1400 *cur_fpr_reg_ = val;
1401 cur_fpr_reg_++;
1402 }
1403
PushFpr8(uint64_t val)1404 void PushFpr8(uint64_t val) {
1405 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1406 *tmp = val;
1407 cur_fpr_reg_ += 2;
1408 }
1409
PushStack(uintptr_t val)1410 void PushStack(uintptr_t val) {
1411 *cur_stack_arg_ = val;
1412 cur_stack_arg_++;
1413 }
1414
PushHandle(mirror::Object * ref)1415 virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1416 LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1417 return 0U;
1418 }
1419
1420 private:
1421 uintptr_t* cur_gpr_reg_;
1422 uint32_t* cur_fpr_reg_;
1423 uintptr_t* cur_stack_arg_;
1424 };
1425
1426 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1427 // of transitioning into native code.
1428 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1429 public:
BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod> ** sp,bool is_static,const char * shorty,uint32_t shorty_len,Thread * self)1430 BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static,
1431 const char* shorty, uint32_t shorty_len, Thread* self)
1432 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1433 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1434 ComputeGenericJniFrameSize fsc;
1435 uintptr_t* start_gpr_reg;
1436 uint32_t* start_fpr_reg;
1437 uintptr_t* start_stack_arg;
1438 uint32_t handle_scope_entries;
1439 bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_,
1440 &handle_scope_entries, &start_stack_arg,
1441 &start_gpr_reg, &start_fpr_reg);
1442
1443 handle_scope_->SetNumberOfReferences(handle_scope_entries);
1444 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1445
1446 // jni environment is always first argument
1447 sm_.AdvancePointer(self->GetJniEnv());
1448
1449 if (is_static) {
1450 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
1451 }
1452 }
1453
1454 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1455
1456 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1457
GetFirstHandleScopeEntry()1458 StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1459 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1460 return handle_scope_->GetHandle(0).GetReference();
1461 }
1462
GetFirstHandleScopeJObject()1463 jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1464 return handle_scope_->GetHandle(0).ToJObject();
1465 }
1466
GetBottomOfUsedArea()1467 void* GetBottomOfUsedArea() {
1468 return bottom_of_used_area_;
1469 }
1470
1471 private:
1472 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1473 class FillJniCall FINAL : public FillNativeCall {
1474 public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope)1475 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1476 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1477 handle_scope_(handle_scope), cur_entry_(0) {}
1478
1479 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1480
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1481 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1482 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1483 handle_scope_ = scope;
1484 cur_entry_ = 0U;
1485 }
1486
ResetRemainingScopeSlots()1487 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1488 // Initialize padding entries.
1489 size_t expected_slots = handle_scope_->NumberOfReferences();
1490 while (cur_entry_ < expected_slots) {
1491 handle_scope_->GetHandle(cur_entry_++).Assign(nullptr);
1492 }
1493 DCHECK_NE(cur_entry_, 0U);
1494 }
1495
1496 private:
1497 HandleScope* handle_scope_;
1498 size_t cur_entry_;
1499 };
1500
1501 HandleScope* handle_scope_;
1502 FillJniCall jni_call_;
1503 void* bottom_of_used_area_;
1504
1505 BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1506
1507 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1508 };
1509
PushHandle(mirror::Object * ref)1510 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1511 uintptr_t tmp;
1512 Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_);
1513 h.Assign(ref);
1514 tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1515 cur_entry_++;
1516 return tmp;
1517 }
1518
Visit()1519 void BuildGenericJniFrameVisitor::Visit() {
1520 Primitive::Type type = GetParamPrimitiveType();
1521 switch (type) {
1522 case Primitive::kPrimLong: {
1523 jlong long_arg;
1524 if (IsSplitLongOrDouble()) {
1525 long_arg = ReadSplitLongParam();
1526 } else {
1527 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1528 }
1529 sm_.AdvanceLong(long_arg);
1530 break;
1531 }
1532 case Primitive::kPrimDouble: {
1533 uint64_t double_arg;
1534 if (IsSplitLongOrDouble()) {
1535 // Read into union so that we don't case to a double.
1536 double_arg = ReadSplitLongParam();
1537 } else {
1538 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1539 }
1540 sm_.AdvanceDouble(double_arg);
1541 break;
1542 }
1543 case Primitive::kPrimNot: {
1544 StackReference<mirror::Object>* stack_ref =
1545 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1546 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1547 break;
1548 }
1549 case Primitive::kPrimFloat:
1550 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1551 break;
1552 case Primitive::kPrimBoolean: // Fall-through.
1553 case Primitive::kPrimByte: // Fall-through.
1554 case Primitive::kPrimChar: // Fall-through.
1555 case Primitive::kPrimShort: // Fall-through.
1556 case Primitive::kPrimInt: // Fall-through.
1557 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1558 break;
1559 case Primitive::kPrimVoid:
1560 LOG(FATAL) << "UNREACHABLE";
1561 break;
1562 }
1563 }
1564
FinalizeHandleScope(Thread * self)1565 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1566 // Clear out rest of the scope.
1567 jni_call_.ResetRemainingScopeSlots();
1568 // Install HandleScope.
1569 self->PushHandleScope(handle_scope_);
1570 }
1571
1572 #if defined(__arm__) || defined(__aarch64__)
1573 extern "C" void* artFindNativeMethod();
1574 #else
1575 extern "C" void* artFindNativeMethod(Thread* self);
1576 #endif
1577
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,jobject l,jobject lock)1578 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1579 if (lock != nullptr) {
1580 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1581 } else {
1582 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1583 }
1584 }
1585
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,jobject lock)1586 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1587 if (lock != nullptr) {
1588 JniMethodEndSynchronized(cookie, lock, self);
1589 } else {
1590 JniMethodEnd(cookie, self);
1591 }
1592 }
1593
1594 /*
1595 * Initializes an alloca region assumed to be directly below sp for a native call:
1596 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1597 * The final element on the stack is a pointer to the native code.
1598 *
1599 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1600 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1601 *
1602 * The return of this function denotes:
1603 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1604 * 2) An error, if the value is negative.
1605 */
artQuickGenericJniTrampoline(Thread * self,StackReference<mirror::ArtMethod> * sp)1606 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self,
1607 StackReference<mirror::ArtMethod>* sp)
1608 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1609 mirror::ArtMethod* called = sp->AsMirrorPtr();
1610 DCHECK(called->IsNative()) << PrettyMethod(called, true);
1611 uint32_t shorty_len = 0;
1612 const char* shorty = called->GetShorty(&shorty_len);
1613
1614 // Run the visitor.
1615 BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self);
1616 visitor.VisitArguments();
1617 visitor.FinalizeHandleScope(self);
1618
1619 // Fix up managed-stack things in Thread.
1620 self->SetTopOfStack(sp, 0);
1621
1622 self->VerifyStack();
1623
1624 // Start JNI, save the cookie.
1625 uint32_t cookie;
1626 if (called->IsSynchronized()) {
1627 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1628 if (self->IsExceptionPending()) {
1629 self->PopHandleScope();
1630 // A negative value denotes an error.
1631 return GetTwoWordFailureValue();
1632 }
1633 } else {
1634 cookie = JniMethodStart(self);
1635 }
1636 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1637 *(sp32 - 1) = cookie;
1638
1639 // Retrieve the stored native code.
1640 const void* nativeCode = called->GetNativeMethod();
1641
1642 // There are two cases for the content of nativeCode:
1643 // 1) Pointer to the native function.
1644 // 2) Pointer to the trampoline for native code binding.
1645 // In the second case, we need to execute the binding and continue with the actual native function
1646 // pointer.
1647 DCHECK(nativeCode != nullptr);
1648 if (nativeCode == GetJniDlsymLookupStub()) {
1649 #if defined(__arm__) || defined(__aarch64__)
1650 nativeCode = artFindNativeMethod();
1651 #else
1652 nativeCode = artFindNativeMethod(self);
1653 #endif
1654
1655 if (nativeCode == nullptr) {
1656 DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
1657
1658 // End JNI, as the assembly will move to deliver the exception.
1659 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1660 if (shorty[0] == 'L') {
1661 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1662 } else {
1663 artQuickGenericJniEndJNINonRef(self, cookie, lock);
1664 }
1665
1666 return GetTwoWordFailureValue();
1667 }
1668 // Note that the native code pointer will be automatically set by artFindNativeMethod().
1669 }
1670
1671 // Return native code addr(lo) and bottom of alloca address(hi).
1672 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1673 reinterpret_cast<uintptr_t>(nativeCode));
1674 }
1675
1676 /*
1677 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1678 * unlocking.
1679 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)1680 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1681 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1682 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame();
1683 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1684 mirror::ArtMethod* called = sp->AsMirrorPtr();
1685 uint32_t cookie = *(sp32 - 1);
1686
1687 jobject lock = nullptr;
1688 if (called->IsSynchronized()) {
1689 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1690 + sizeof(StackReference<mirror::ArtMethod>));
1691 lock = table->GetHandle(0).ToJObject();
1692 }
1693
1694 char return_shorty_char = called->GetShorty()[0];
1695
1696 if (return_shorty_char == 'L') {
1697 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1698 } else {
1699 artQuickGenericJniEndJNINonRef(self, cookie, lock);
1700
1701 switch (return_shorty_char) {
1702 case 'F': {
1703 if (kRuntimeISA == kX86) {
1704 // Convert back the result to float.
1705 double d = bit_cast<uint64_t, double>(result_f);
1706 return bit_cast<float, uint32_t>(static_cast<float>(d));
1707 } else {
1708 return result_f;
1709 }
1710 }
1711 case 'D':
1712 return result_f;
1713 case 'Z':
1714 return result.z;
1715 case 'B':
1716 return result.b;
1717 case 'C':
1718 return result.c;
1719 case 'S':
1720 return result.s;
1721 case 'I':
1722 return result.i;
1723 case 'J':
1724 return result.j;
1725 case 'V':
1726 return 0;
1727 default:
1728 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1729 return 0;
1730 }
1731 }
1732 }
1733
1734 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1735 // for the method pointer.
1736 //
1737 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1738 // to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1739
1740 template<InvokeType type, bool access_check>
1741 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1742 mirror::ArtMethod* caller_method,
1743 Thread* self, StackReference<mirror::ArtMethod>* sp);
1744
1745 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1746 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1747 mirror::ArtMethod* caller_method,
1748 Thread* self, StackReference<mirror::ArtMethod>* sp) {
1749 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1750 type);
1751 if (UNLIKELY(method == nullptr)) {
1752 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1753 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1754 uint32_t shorty_len;
1755 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1756 {
1757 // Remember the args in case a GC happens in FindMethodFromCode.
1758 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1759 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1760 visitor.VisitArguments();
1761 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1762 self);
1763 visitor.FixupReferences();
1764 }
1765
1766 if (UNLIKELY(method == NULL)) {
1767 CHECK(self->IsExceptionPending());
1768 return GetTwoWordFailureValue(); // Failure.
1769 }
1770 }
1771 DCHECK(!self->IsExceptionPending());
1772 const void* code = method->GetEntryPointFromQuickCompiledCode();
1773
1774 // When we return, the caller will branch to this address, so it had better not be 0!
1775 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1776 << " location: "
1777 << method->GetDexFile()->GetLocation();
1778
1779 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1780 reinterpret_cast<uintptr_t>(method));
1781 }
1782
1783 // Explicit artInvokeCommon template function declarations to please analysis tool.
1784 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
1785 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
1786 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \
1787 mirror::Object* this_object, \
1788 mirror::ArtMethod* caller_method, \
1789 Thread* self, \
1790 StackReference<mirror::ArtMethod>* sp) \
1791
1792 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1793 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1794 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1795 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1796 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1797 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1798 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1799 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1800 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1801 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1802 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1803
1804 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1805 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
1806 uint32_t method_idx, mirror::Object* this_object,
1807 mirror::ArtMethod* caller_method, Thread* self,
1808 StackReference<mirror::ArtMethod>* sp)
1809 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1810 return artInvokeCommon<kInterface, true>(method_idx, this_object,
1811 caller_method, self, sp);
1812 }
1813
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1814 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
1815 uint32_t method_idx, mirror::Object* this_object,
1816 mirror::ArtMethod* caller_method, Thread* self,
1817 StackReference<mirror::ArtMethod>* sp)
1818 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1819 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
1820 self, sp);
1821 }
1822
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1823 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
1824 uint32_t method_idx, mirror::Object* this_object,
1825 mirror::ArtMethod* caller_method, Thread* self,
1826 StackReference<mirror::ArtMethod>* sp)
1827 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1828 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
1829 self, sp);
1830 }
1831
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1832 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
1833 uint32_t method_idx, mirror::Object* this_object,
1834 mirror::ArtMethod* caller_method, Thread* self,
1835 StackReference<mirror::ArtMethod>* sp)
1836 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1837 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
1838 self, sp);
1839 }
1840
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1841 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
1842 uint32_t method_idx, mirror::Object* this_object,
1843 mirror::ArtMethod* caller_method, Thread* self,
1844 StackReference<mirror::ArtMethod>* sp)
1845 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1846 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
1847 self, sp);
1848 }
1849
1850 // Determine target of interface dispatch. This object is known non-null.
artInvokeInterfaceTrampoline(mirror::ArtMethod * interface_method,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1851 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1852 mirror::Object* this_object,
1853 mirror::ArtMethod* caller_method,
1854 Thread* self,
1855 StackReference<mirror::ArtMethod>* sp)
1856 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1857 mirror::ArtMethod* method;
1858 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1859 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1860 if (UNLIKELY(method == NULL)) {
1861 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1862 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1863 caller_method);
1864 return GetTwoWordFailureValue(); // Failure.
1865 }
1866 } else {
1867 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1868 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1869
1870 // Find the caller PC.
1871 constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs);
1872 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset);
1873
1874 // Map the caller PC to a dex PC.
1875 uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1876 const DexFile::CodeItem* code = caller_method->GetCodeItem();
1877 CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1878 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1879 Instruction::Code instr_code = instr->Opcode();
1880 CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1881 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1882 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1883 uint32_t dex_method_idx;
1884 if (instr_code == Instruction::INVOKE_INTERFACE) {
1885 dex_method_idx = instr->VRegB_35c();
1886 } else {
1887 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1888 dex_method_idx = instr->VRegB_3rc();
1889 }
1890
1891 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
1892 ->GetDexFile();
1893 uint32_t shorty_len;
1894 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
1895 &shorty_len);
1896 {
1897 // Remember the args in case a GC happens in FindMethodFromCode.
1898 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1899 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1900 visitor.VisitArguments();
1901 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1902 self);
1903 visitor.FixupReferences();
1904 }
1905
1906 if (UNLIKELY(method == nullptr)) {
1907 CHECK(self->IsExceptionPending());
1908 return GetTwoWordFailureValue(); // Failure.
1909 }
1910 }
1911 const void* code = method->GetEntryPointFromQuickCompiledCode();
1912
1913 // When we return, the caller will branch to this address, so it had better not be 0!
1914 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1915 << " location: " << method->GetDexFile()->GetLocation();
1916
1917 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1918 reinterpret_cast<uintptr_t>(method));
1919 }
1920
1921 } // namespace art
1922