• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "callee_save_frame.h"
18 #include "common_throws.h"
19 #include "dex_file-inl.h"
20 #include "dex_instruction-inl.h"
21 #include "entrypoints/entrypoint_utils-inl.h"
22 #include "gc/accounting/card_table-inl.h"
23 #include "instruction_set.h"
24 #include "interpreter/interpreter.h"
25 #include "mirror/art_method-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/dex_cache-inl.h"
28 #include "mirror/object-inl.h"
29 #include "mirror/object_array-inl.h"
30 #include "runtime.h"
31 #include "scoped_thread_state_change.h"
32 
33 namespace art {
34 
35 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36 class QuickArgumentVisitor {
37   // Number of bytes for each out register in the caller method's frame.
38   static constexpr size_t kBytesStackArgLocation = 4;
39   // Frame size in bytes of a callee-save frame for RefsAndArgs.
40   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
41       GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
42 #if defined(__arm__)
43   // The callee save frame is pointed to by SP.
44   // | argN       |  |
45   // | ...        |  |
46   // | arg4       |  |
47   // | arg3 spill |  |  Caller's frame
48   // | arg2 spill |  |
49   // | arg1 spill |  |
50   // | Method*    | ---
51   // | LR         |
52   // | ...        |    callee saves
53   // | R3         |    arg3
54   // | R2         |    arg2
55   // | R1         |    arg1
56   // | R0         |    padding
57   // | Method*    |  <- sp
58   static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
59   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
60   static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
61   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
62       arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
63   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
64       arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
65   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
66       arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)67   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
68     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
69   }
70 #elif defined(__aarch64__)
71   // The callee save frame is pointed to by SP.
72   // | argN       |  |
73   // | ...        |  |
74   // | arg4       |  |
75   // | arg3 spill |  |  Caller's frame
76   // | arg2 spill |  |
77   // | arg1 spill |  |
78   // | Method*    | ---
79   // | LR         |
80   // | X29        |
81   // |  :         |
82   // | X20        |
83   // | X7         |
84   // | :          |
85   // | X1         |
86   // | D7         |
87   // |  :         |
88   // | D0         |
89   // |            |    padding
90   // | Method*    |  <- sp
91   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
92   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
93   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
94   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
95       arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
96   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
97       arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
98   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
99       arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)100   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
101     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
102   }
103 #elif defined(__mips__)
104   // The callee save frame is pointed to by SP.
105   // | argN       |  |
106   // | ...        |  |
107   // | arg4       |  |
108   // | arg3 spill |  |  Caller's frame
109   // | arg2 spill |  |
110   // | arg1 spill |  |
111   // | Method*    | ---
112   // | RA         |
113   // | ...        |    callee saves
114   // | A3         |    arg3
115   // | A2         |    arg2
116   // | A1         |    arg1
117   // | A0/Method* |  <- sp
118   static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
119   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
120   static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
121   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
122   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
123   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)124   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
125     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
126   }
127 #elif defined(__i386__)
128   // The callee save frame is pointed to by SP.
129   // | argN        |  |
130   // | ...         |  |
131   // | arg4        |  |
132   // | arg3 spill  |  |  Caller's frame
133   // | arg2 spill  |  |
134   // | arg1 spill  |  |
135   // | Method*     | ---
136   // | Return      |
137   // | EBP,ESI,EDI |    callee saves
138   // | EBX         |    arg3
139   // | EDX         |    arg2
140   // | ECX         |    arg1
141   // | EAX/Method* |  <- sp
142   static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
143   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
144   static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
145   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
146   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
147   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)148   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
149     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
150   }
151 #elif defined(__x86_64__)
152   // The callee save frame is pointed to by SP.
153   // | argN            |  |
154   // | ...             |  |
155   // | reg. arg spills |  |  Caller's frame
156   // | Method*         | ---
157   // | Return          |
158   // | R15             |    callee save
159   // | R14             |    callee save
160   // | R13             |    callee save
161   // | R12             |    callee save
162   // | R9              |    arg5
163   // | R8              |    arg4
164   // | RSI/R6          |    arg1
165   // | RBP/R5          |    callee save
166   // | RBX/R3          |    callee save
167   // | RDX/R2          |    arg2
168   // | RCX/R1          |    arg3
169   // | XMM7            |    float arg 8
170   // | XMM6            |    float arg 7
171   // | XMM5            |    float arg 6
172   // | XMM4            |    float arg 5
173   // | XMM3            |    float arg 4
174   // | XMM2            |    float arg 3
175   // | XMM1            |    float arg 2
176   // | XMM0            |    float arg 1
177   // | Padding         |
178   // | RDI/Method*     |  <- sp
179   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
180   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
181   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
182   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
183   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
184   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)185   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
186     switch (gpr_index) {
187       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
188       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
189       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
190       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
191       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
192       default:
193       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
194       return 0;
195     }
196   }
197 #else
198 #error "Unsupported architecture"
199 #endif
200 
201  public:
GetCallingMethod(StackReference<mirror::ArtMethod> * sp)202   static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
203       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
204     DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
205     byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
206     return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
207   }
208 
209   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(StackReference<mirror::ArtMethod> * sp)210   static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
211       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
212     DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
213     byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
214     return *reinterpret_cast<uintptr_t*>(lr);
215   }
216 
QuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len)217   QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty,
218                        uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
219           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
220           gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
221           fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
222           stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
223                       + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
224           gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
225           is_split_long_or_double_(false) {}
226 
~QuickArgumentVisitor()227   virtual ~QuickArgumentVisitor() {}
228 
229   virtual void Visit() = 0;
230 
GetParamPrimitiveType() const231   Primitive::Type GetParamPrimitiveType() const {
232     return cur_type_;
233   }
234 
GetParamAddress() const235   byte* GetParamAddress() const {
236     if (!kQuickSoftFloatAbi) {
237       Primitive::Type type = GetParamPrimitiveType();
238       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
239         if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
240           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
241         }
242         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
243       }
244     }
245     if (gpr_index_ < kNumQuickGprArgs) {
246       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
247     }
248     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
249   }
250 
IsSplitLongOrDouble() const251   bool IsSplitLongOrDouble() const {
252     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
253       return is_split_long_or_double_;
254     } else {
255       return false;  // An optimization for when GPR and FPRs are 64bit.
256     }
257   }
258 
IsParamAReference() const259   bool IsParamAReference() const {
260     return GetParamPrimitiveType() == Primitive::kPrimNot;
261   }
262 
IsParamALongOrDouble() const263   bool IsParamALongOrDouble() const {
264     Primitive::Type type = GetParamPrimitiveType();
265     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
266   }
267 
ReadSplitLongParam() const268   uint64_t ReadSplitLongParam() const {
269     DCHECK(IsSplitLongOrDouble());
270     uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
271     uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
272     return (low_half & 0xffffffffULL) | (high_half << 32);
273   }
274 
VisitArguments()275   void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
276     // This implementation doesn't support reg-spill area for hard float
277     // ABI targets such as x86_64 and aarch64. So, for those targets whose
278     // 'kQuickSoftFloatAbi' is 'false':
279     //     (a) 'stack_args_' should point to the first method's argument
280     //     (b) whatever the argument type it is, the 'stack_index_' should
281     //         be moved forward along with every visiting.
282     gpr_index_ = 0;
283     fpr_index_ = 0;
284     stack_index_ = 0;
285     if (!is_static_) {  // Handle this.
286       cur_type_ = Primitive::kPrimNot;
287       is_split_long_or_double_ = false;
288       Visit();
289       if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
290         stack_index_++;
291       }
292       if (kNumQuickGprArgs > 0) {
293         gpr_index_++;
294       }
295     }
296     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
297       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
298       switch (cur_type_) {
299         case Primitive::kPrimNot:
300         case Primitive::kPrimBoolean:
301         case Primitive::kPrimByte:
302         case Primitive::kPrimChar:
303         case Primitive::kPrimShort:
304         case Primitive::kPrimInt:
305           is_split_long_or_double_ = false;
306           Visit();
307           if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
308             stack_index_++;
309           }
310           if (gpr_index_ < kNumQuickGprArgs) {
311             gpr_index_++;
312           }
313           break;
314         case Primitive::kPrimFloat:
315           is_split_long_or_double_ = false;
316           Visit();
317           if (kQuickSoftFloatAbi) {
318             if (gpr_index_ < kNumQuickGprArgs) {
319               gpr_index_++;
320             } else {
321               stack_index_++;
322             }
323           } else {
324             if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
325               fpr_index_++;
326             }
327             stack_index_++;
328           }
329           break;
330         case Primitive::kPrimDouble:
331         case Primitive::kPrimLong:
332           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
333             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
334                 ((gpr_index_ + 1) == kNumQuickGprArgs);
335             Visit();
336             if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
337               if (kBytesStackArgLocation == 4) {
338                 stack_index_+= 2;
339               } else {
340                 CHECK_EQ(kBytesStackArgLocation, 8U);
341                 stack_index_++;
342               }
343             }
344             if (gpr_index_ < kNumQuickGprArgs) {
345               gpr_index_++;
346               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
347                 if (gpr_index_ < kNumQuickGprArgs) {
348                   gpr_index_++;
349                 } else if (kQuickSoftFloatAbi) {
350                   stack_index_++;
351                 }
352               }
353             }
354           } else {
355             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
356                 ((fpr_index_ + 1) == kNumQuickFprArgs);
357             Visit();
358             if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
359               fpr_index_++;
360               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
361                 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
362                   fpr_index_++;
363                 }
364               }
365             }
366             if (kBytesStackArgLocation == 4) {
367               stack_index_+= 2;
368             } else {
369               CHECK_EQ(kBytesStackArgLocation, 8U);
370               stack_index_++;
371             }
372           }
373           break;
374         default:
375           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
376       }
377     }
378   }
379 
380  private:
StackArgumentStartFromShorty(bool is_static,const char * shorty,uint32_t shorty_len)381   static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
382                                              uint32_t shorty_len) {
383     if (kQuickSoftFloatAbi) {
384       CHECK_EQ(kNumQuickFprArgs, 0U);
385       return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
386           + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
387     } else {
388       // For now, there is no reg-spill area for the targets with
389       // hard float ABI. So, the offset pointing to the first method's
390       // parameter ('this' for non-static methods) should be returned.
391       return sizeof(StackReference<mirror::ArtMethod>);  // Skip StackReference<ArtMethod>.
392     }
393   }
394 
395  protected:
396   const bool is_static_;
397   const char* const shorty_;
398   const uint32_t shorty_len_;
399 
400  private:
401   byte* const gpr_args_;  // Address of GPR arguments in callee save frame.
402   byte* const fpr_args_;  // Address of FPR arguments in callee save frame.
403   byte* const stack_args_;  // Address of stack arguments in caller's frame.
404   uint32_t gpr_index_;  // Index into spilled GPRs.
405   uint32_t fpr_index_;  // Index into spilled FPRs.
406   uint32_t stack_index_;  // Index into arguments on the stack.
407   // The current type of argument during VisitArguments.
408   Primitive::Type cur_type_;
409   // Does a 64bit parameter straddle the register and stack arguments?
410   bool is_split_long_or_double_;
411 };
412 
413 // Visits arguments on the stack placing them into the shadow frame.
414 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
415  public:
BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)416   BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
417                                const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
418                                size_t first_arg_reg) :
419       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
420 
421   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
422 
423  private:
424   ShadowFrame* const sf_;
425   uint32_t cur_reg_;
426 
427   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
428 };
429 
Visit()430 void BuildQuickShadowFrameVisitor::Visit() {
431   Primitive::Type type = GetParamPrimitiveType();
432   switch (type) {
433     case Primitive::kPrimLong:  // Fall-through.
434     case Primitive::kPrimDouble:
435       if (IsSplitLongOrDouble()) {
436         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
437       } else {
438         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
439       }
440       ++cur_reg_;
441       break;
442     case Primitive::kPrimNot: {
443         StackReference<mirror::Object>* stack_ref =
444             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
445         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
446       }
447       break;
448     case Primitive::kPrimBoolean:  // Fall-through.
449     case Primitive::kPrimByte:     // Fall-through.
450     case Primitive::kPrimChar:     // Fall-through.
451     case Primitive::kPrimShort:    // Fall-through.
452     case Primitive::kPrimInt:      // Fall-through.
453     case Primitive::kPrimFloat:
454       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
455       break;
456     case Primitive::kPrimVoid:
457       LOG(FATAL) << "UNREACHABLE";
458       break;
459   }
460   ++cur_reg_;
461 }
462 
artQuickToInterpreterBridge(mirror::ArtMethod * method,Thread * self,StackReference<mirror::ArtMethod> * sp)463 extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
464                                                 StackReference<mirror::ArtMethod>* sp)
465     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
466   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
467   // frame.
468   FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
469 
470   if (method->IsAbstract()) {
471     ThrowAbstractMethodError(method);
472     return 0;
473   } else {
474     DCHECK(!method->IsNative()) << PrettyMethod(method);
475     const char* old_cause = self->StartAssertNoThreadSuspension(
476         "Building interpreter shadow frame");
477     const DexFile::CodeItem* code_item = method->GetCodeItem();
478     DCHECK(code_item != nullptr) << PrettyMethod(method);
479     uint16_t num_regs = code_item->registers_size_;
480     void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
481     // No last shadow coming from quick.
482     ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
483     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
484     uint32_t shorty_len = 0;
485     const char* shorty = method->GetShorty(&shorty_len);
486     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
487                                                       shadow_frame, first_arg_reg);
488     shadow_frame_builder.VisitArguments();
489     // Push a transition back into managed code onto the linked list in thread.
490     ManagedStack fragment;
491     self->PushManagedStackFragment(&fragment);
492     self->PushShadowFrame(shadow_frame);
493     self->EndAssertNoThreadSuspension(old_cause);
494 
495     if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) {
496       // Ensure static method's class is initialized.
497       StackHandleScope<1> hs(self);
498       Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
499       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
500         DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
501         self->PopManagedStackFragment(fragment);
502         return 0;
503       }
504     }
505 
506     StackHandleScope<1> hs(self);
507     MethodHelper mh(hs.NewHandle(method));
508     JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
509     // Pop transition.
510     self->PopManagedStackFragment(fragment);
511     // No need to restore the args since the method has already been run by the interpreter.
512     return result.GetJ();
513   }
514 }
515 
516 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
517 // to jobjects.
518 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
519  public:
BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)520   BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
521                             const char* shorty, uint32_t shorty_len,
522                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
523       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
524 
525   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
526 
527   void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
528 
529  private:
530   ScopedObjectAccessUnchecked* const soa_;
531   std::vector<jvalue>* const args_;
532   // References which we must update when exiting in case the GC moved the objects.
533   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
534 
535   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
536 };
537 
Visit()538 void BuildQuickArgumentVisitor::Visit() {
539   jvalue val;
540   Primitive::Type type = GetParamPrimitiveType();
541   switch (type) {
542     case Primitive::kPrimNot: {
543       StackReference<mirror::Object>* stack_ref =
544           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
545       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
546       references_.push_back(std::make_pair(val.l, stack_ref));
547       break;
548     }
549     case Primitive::kPrimLong:  // Fall-through.
550     case Primitive::kPrimDouble:
551       if (IsSplitLongOrDouble()) {
552         val.j = ReadSplitLongParam();
553       } else {
554         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
555       }
556       break;
557     case Primitive::kPrimBoolean:  // Fall-through.
558     case Primitive::kPrimByte:     // Fall-through.
559     case Primitive::kPrimChar:     // Fall-through.
560     case Primitive::kPrimShort:    // Fall-through.
561     case Primitive::kPrimInt:      // Fall-through.
562     case Primitive::kPrimFloat:
563       val.i = *reinterpret_cast<jint*>(GetParamAddress());
564       break;
565     case Primitive::kPrimVoid:
566       LOG(FATAL) << "UNREACHABLE";
567       val.j = 0;
568       break;
569   }
570   args_->push_back(val);
571 }
572 
FixupReferences()573 void BuildQuickArgumentVisitor::FixupReferences() {
574   // Fixup any references which may have changed.
575   for (const auto& pair : references_) {
576     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
577     soa_->Env()->DeleteLocalRef(pair.first);
578   }
579 }
580 
581 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
582 // which is responsible for recording callee save registers. We explicitly place into jobjects the
583 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
584 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(mirror::ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)585 extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
586                                                mirror::Object* receiver,
587                                                Thread* self, StackReference<mirror::ArtMethod>* sp)
588     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
589   DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
590   DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
591   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
592   const char* old_cause =
593       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
594   // Register the top of the managed stack, making stack crawlable.
595   DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
596   self->SetTopOfStack(sp, 0);
597   DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
598             Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
599       << PrettyMethod(proxy_method);
600   self->VerifyStack();
601   // Start new JNI local reference state.
602   JNIEnvExt* env = self->GetJniEnv();
603   ScopedObjectAccessUnchecked soa(env);
604   ScopedJniEnvLocalRefState env_state(env);
605   // Create local ref. copies of proxy method and the receiver.
606   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
607 
608   // Placing arguments into args vector and remove the receiver.
609   mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy();
610   CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
611                                        << PrettyMethod(non_proxy_method);
612   std::vector<jvalue> args;
613   uint32_t shorty_len = 0;
614   const char* shorty = proxy_method->GetShorty(&shorty_len);
615   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
616 
617   local_ref_visitor.VisitArguments();
618   DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
619   args.erase(args.begin());
620 
621   // Convert proxy method into expected interface method.
622   mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
623   DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
624   DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
625   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
626 
627   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
628   // that performs allocations.
629   self->EndAssertNoThreadSuspension(old_cause);
630   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
631   // Restore references which might have moved.
632   local_ref_visitor.FixupReferences();
633   return result.GetJ();
634 }
635 
636 // Read object references held in arguments from quick frames and place in a JNI local references,
637 // so they don't get garbage collected.
638 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
639  public:
RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)640   RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
641                                const char* shorty, uint32_t shorty_len,
642                                ScopedObjectAccessUnchecked* soa) :
643       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
644 
645   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
646 
647   void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
648 
649  private:
650   ScopedObjectAccessUnchecked* const soa_;
651   // References which we must update when exiting in case the GC moved the objects.
652   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
653 
654   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
655 };
656 
Visit()657 void RememberForGcArgumentVisitor::Visit() {
658   if (IsParamAReference()) {
659     StackReference<mirror::Object>* stack_ref =
660         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
661     jobject reference =
662         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
663     references_.push_back(std::make_pair(reference, stack_ref));
664   }
665 }
666 
FixupReferences()667 void RememberForGcArgumentVisitor::FixupReferences() {
668   // Fixup any references which may have changed.
669   for (const auto& pair : references_) {
670     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
671     soa_->Env()->DeleteLocalRef(pair.first);
672   }
673 }
674 
675 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(mirror::ArtMethod * called,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)676 extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
677                                                     mirror::Object* receiver,
678                                                     Thread* self,
679                                                     StackReference<mirror::ArtMethod>* sp)
680     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
681   FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
682   // Start new JNI local reference state
683   JNIEnvExt* env = self->GetJniEnv();
684   ScopedObjectAccessUnchecked soa(env);
685   ScopedJniEnvLocalRefState env_state(env);
686   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
687 
688   // Compute details about the called method (avoid GCs)
689   ClassLinker* linker = Runtime::Current()->GetClassLinker();
690   mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
691   InvokeType invoke_type;
692   const DexFile* dex_file;
693   uint32_t dex_method_idx;
694   if (called->IsRuntimeMethod()) {
695     uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
696     const DexFile::CodeItem* code;
697     dex_file = caller->GetDexFile();
698     code = caller->GetCodeItem();
699     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
700     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
701     Instruction::Code instr_code = instr->Opcode();
702     bool is_range;
703     switch (instr_code) {
704       case Instruction::INVOKE_DIRECT:
705         invoke_type = kDirect;
706         is_range = false;
707         break;
708       case Instruction::INVOKE_DIRECT_RANGE:
709         invoke_type = kDirect;
710         is_range = true;
711         break;
712       case Instruction::INVOKE_STATIC:
713         invoke_type = kStatic;
714         is_range = false;
715         break;
716       case Instruction::INVOKE_STATIC_RANGE:
717         invoke_type = kStatic;
718         is_range = true;
719         break;
720       case Instruction::INVOKE_SUPER:
721         invoke_type = kSuper;
722         is_range = false;
723         break;
724       case Instruction::INVOKE_SUPER_RANGE:
725         invoke_type = kSuper;
726         is_range = true;
727         break;
728       case Instruction::INVOKE_VIRTUAL:
729         invoke_type = kVirtual;
730         is_range = false;
731         break;
732       case Instruction::INVOKE_VIRTUAL_RANGE:
733         invoke_type = kVirtual;
734         is_range = true;
735         break;
736       case Instruction::INVOKE_INTERFACE:
737         invoke_type = kInterface;
738         is_range = false;
739         break;
740       case Instruction::INVOKE_INTERFACE_RANGE:
741         invoke_type = kInterface;
742         is_range = true;
743         break;
744       default:
745         LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
746         // Avoid used uninitialized warnings.
747         invoke_type = kDirect;
748         is_range = false;
749     }
750     dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
751   } else {
752     invoke_type = kStatic;
753     dex_file = called->GetDexFile();
754     dex_method_idx = called->GetDexMethodIndex();
755   }
756   uint32_t shorty_len;
757   const char* shorty =
758       dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
759   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
760   visitor.VisitArguments();
761   self->EndAssertNoThreadSuspension(old_cause);
762   bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
763   // Resolve method filling in dex cache.
764   if (UNLIKELY(called->IsRuntimeMethod())) {
765     StackHandleScope<1> hs(self);
766     mirror::Object* dummy = nullptr;
767     HandleWrapper<mirror::Object> h_receiver(
768         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
769     called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
770   }
771   const void* code = NULL;
772   if (LIKELY(!self->IsExceptionPending())) {
773     // Incompatible class change should have been handled in resolve method.
774     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
775         << PrettyMethod(called) << " " << invoke_type;
776     if (virtual_or_interface) {
777       // Refine called method based on receiver.
778       CHECK(receiver != nullptr) << invoke_type;
779 
780       mirror::ArtMethod* orig_called = called;
781       if (invoke_type == kVirtual) {
782         called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
783       } else {
784         called = receiver->GetClass()->FindVirtualMethodForInterface(called);
785       }
786 
787       CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
788                                << PrettyTypeOf(receiver) << " "
789                                << invoke_type << " " << orig_called->GetVtableIndex();
790 
791       // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
792       // of the sharpened method.
793       if (called->HasSameDexCacheResolvedMethods(caller)) {
794         caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called);
795       } else {
796         // Calling from one dex file to another, need to compute the method index appropriate to
797         // the caller's dex file. Since we get here only if the original called was a runtime
798         // method, we've got the correct dex_file and a dex_method_idx from above.
799         DCHECK_EQ(caller->GetDexFile(), dex_file);
800         StackHandleScope<1> hs(self);
801         MethodHelper mh(hs.NewHandle(called));
802         uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
803         if (method_index != DexFile::kDexNoIndex) {
804           caller->SetDexCacheResolvedMethod(method_index, called);
805         }
806       }
807     }
808     // Ensure that the called method's class is initialized.
809     StackHandleScope<1> hs(soa.Self());
810     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
811     linker->EnsureInitialized(called_class, true, true);
812     if (LIKELY(called_class->IsInitialized())) {
813       code = called->GetEntryPointFromQuickCompiledCode();
814     } else if (called_class->IsInitializing()) {
815       if (invoke_type == kStatic) {
816         // Class is still initializing, go to oat and grab code (trampoline must be left in place
817         // until class is initialized to stop races between threads).
818         code = linker->GetQuickOatCodeFor(called);
819       } else {
820         // No trampoline for non-static methods.
821         code = called->GetEntryPointFromQuickCompiledCode();
822       }
823     } else {
824       DCHECK(called_class->IsErroneous());
825     }
826   }
827   CHECK_EQ(code == NULL, self->IsExceptionPending());
828   // Fixup any locally saved objects may have moved during a GC.
829   visitor.FixupReferences();
830   // Place called method in callee-save frame to be placed as first argument to quick method.
831   sp->Assign(called);
832   return code;
833 }
834 
835 /*
836  * This class uses a couple of observations to unite the different calling conventions through
837  * a few constants.
838  *
839  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
840  *    possible alignment.
841  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
842  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
843  *    when we have to split things
844  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
845  *    and we can use Int handling directly.
846  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
847  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
848  *    extension should be compatible with Aarch64, which mandates copying the available bits
849  *    into LSB and leaving the rest unspecified.
850  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
851  *    the stack.
852  * 6) There is only little endian.
853  *
854  *
855  * Actual work is supposed to be done in a delegate of the template type. The interface is as
856  * follows:
857  *
858  * void PushGpr(uintptr_t):   Add a value for the next GPR
859  *
860  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
861  *                            padding, that is, think the architecture is 32b and aligns 64b.
862  *
863  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
864  *                            split this if necessary. The current state will have aligned, if
865  *                            necessary.
866  *
867  * void PushStack(uintptr_t): Push a value to the stack.
868  *
869  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
870  *                                          as this might be important for null initialization.
871  *                                          Must return the jobject, that is, the reference to the
872  *                                          entry in the HandleScope (nullptr if necessary).
873  *
874  */
875 template<class T> class BuildNativeCallFrameStateMachine {
876  public:
877 #if defined(__arm__)
878   // TODO: These are all dummy values!
879   static constexpr bool kNativeSoftFloatAbi = true;
880   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
881   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
882 
883   static constexpr size_t kRegistersNeededForLong = 2;
884   static constexpr size_t kRegistersNeededForDouble = 2;
885   static constexpr bool kMultiRegistersAligned = true;
886   static constexpr bool kMultiRegistersWidened = false;
887   static constexpr bool kAlignLongOnStack = true;
888   static constexpr bool kAlignDoubleOnStack = true;
889 #elif defined(__aarch64__)
890   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
891   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
892   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
893 
894   static constexpr size_t kRegistersNeededForLong = 1;
895   static constexpr size_t kRegistersNeededForDouble = 1;
896   static constexpr bool kMultiRegistersAligned = false;
897   static constexpr bool kMultiRegistersWidened = false;
898   static constexpr bool kAlignLongOnStack = false;
899   static constexpr bool kAlignDoubleOnStack = false;
900 #elif defined(__mips__)
901   // TODO: These are all dummy values!
902   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
903   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
904   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
905 
906   static constexpr size_t kRegistersNeededForLong = 2;
907   static constexpr size_t kRegistersNeededForDouble = 2;
908   static constexpr bool kMultiRegistersAligned = true;
909   static constexpr bool kMultiRegistersWidened = true;
910   static constexpr bool kAlignLongOnStack = false;
911   static constexpr bool kAlignDoubleOnStack = false;
912 #elif defined(__i386__)
913   // TODO: Check these!
914   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
915   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
916   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
917 
918   static constexpr size_t kRegistersNeededForLong = 2;
919   static constexpr size_t kRegistersNeededForDouble = 2;
920   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
921   static constexpr bool kMultiRegistersWidened = false;
922   static constexpr bool kAlignLongOnStack = false;
923   static constexpr bool kAlignDoubleOnStack = false;
924 #elif defined(__x86_64__)
925   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
926   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
927   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
928 
929   static constexpr size_t kRegistersNeededForLong = 1;
930   static constexpr size_t kRegistersNeededForDouble = 1;
931   static constexpr bool kMultiRegistersAligned = false;
932   static constexpr bool kMultiRegistersWidened = false;
933   static constexpr bool kAlignLongOnStack = false;
934   static constexpr bool kAlignDoubleOnStack = false;
935 #else
936 #error "Unsupported architecture"
937 #endif
938 
939  public:
BuildNativeCallFrameStateMachine(T * delegate)940   explicit BuildNativeCallFrameStateMachine(T* delegate)
941       : gpr_index_(kNumNativeGprArgs),
942         fpr_index_(kNumNativeFprArgs),
943         stack_entries_(0),
944         delegate_(delegate) {
945     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
946     // the next register is even; counting down is just to make the compiler happy...
947     CHECK_EQ(kNumNativeGprArgs % 2, 0U);
948     CHECK_EQ(kNumNativeFprArgs % 2, 0U);
949   }
950 
~BuildNativeCallFrameStateMachine()951   virtual ~BuildNativeCallFrameStateMachine() {}
952 
HavePointerGpr()953   bool HavePointerGpr() {
954     return gpr_index_ > 0;
955   }
956 
AdvancePointer(const void * val)957   void AdvancePointer(const void* val) {
958     if (HavePointerGpr()) {
959       gpr_index_--;
960       PushGpr(reinterpret_cast<uintptr_t>(val));
961     } else {
962       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
963       PushStack(reinterpret_cast<uintptr_t>(val));
964       gpr_index_ = 0;
965     }
966   }
967 
HaveHandleScopeGpr()968   bool HaveHandleScopeGpr() {
969     return gpr_index_ > 0;
970   }
971 
AdvanceHandleScope(mirror::Object * ptr)972   void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
973     uintptr_t handle = PushHandle(ptr);
974     if (HaveHandleScopeGpr()) {
975       gpr_index_--;
976       PushGpr(handle);
977     } else {
978       stack_entries_++;
979       PushStack(handle);
980       gpr_index_ = 0;
981     }
982   }
983 
HaveIntGpr()984   bool HaveIntGpr() {
985     return gpr_index_ > 0;
986   }
987 
AdvanceInt(uint32_t val)988   void AdvanceInt(uint32_t val) {
989     if (HaveIntGpr()) {
990       gpr_index_--;
991       PushGpr(val);
992     } else {
993       stack_entries_++;
994       PushStack(val);
995       gpr_index_ = 0;
996     }
997   }
998 
HaveLongGpr()999   bool HaveLongGpr() {
1000     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1001   }
1002 
LongGprNeedsPadding()1003   bool LongGprNeedsPadding() {
1004     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1005         kAlignLongOnStack &&                  // and when it needs alignment
1006         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1007   }
1008 
LongStackNeedsPadding()1009   bool LongStackNeedsPadding() {
1010     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1011         kAlignLongOnStack &&                  // and when it needs 8B alignment
1012         (stack_entries_ & 1) == 1;            // counter is odd
1013   }
1014 
AdvanceLong(uint64_t val)1015   void AdvanceLong(uint64_t val) {
1016     if (HaveLongGpr()) {
1017       if (LongGprNeedsPadding()) {
1018         PushGpr(0);
1019         gpr_index_--;
1020       }
1021       if (kRegistersNeededForLong == 1) {
1022         PushGpr(static_cast<uintptr_t>(val));
1023       } else {
1024         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1025         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1026       }
1027       gpr_index_ -= kRegistersNeededForLong;
1028     } else {
1029       if (LongStackNeedsPadding()) {
1030         PushStack(0);
1031         stack_entries_++;
1032       }
1033       if (kRegistersNeededForLong == 1) {
1034         PushStack(static_cast<uintptr_t>(val));
1035         stack_entries_++;
1036       } else {
1037         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1038         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1039         stack_entries_ += 2;
1040       }
1041       gpr_index_ = 0;
1042     }
1043   }
1044 
HaveFloatFpr()1045   bool HaveFloatFpr() {
1046     return fpr_index_ > 0;
1047   }
1048 
AdvanceFloat(float val)1049   void AdvanceFloat(float val) {
1050     if (kNativeSoftFloatAbi) {
1051       AdvanceInt(bit_cast<float, uint32_t>(val));
1052     } else {
1053       if (HaveFloatFpr()) {
1054         fpr_index_--;
1055         if (kRegistersNeededForDouble == 1) {
1056           if (kMultiRegistersWidened) {
1057             PushFpr8(bit_cast<double, uint64_t>(val));
1058           } else {
1059             // No widening, just use the bits.
1060             PushFpr8(bit_cast<float, uint64_t>(val));
1061           }
1062         } else {
1063           PushFpr4(val);
1064         }
1065       } else {
1066         stack_entries_++;
1067         if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1068           // Need to widen before storing: Note the "double" in the template instantiation.
1069           // Note: We need to jump through those hoops to make the compiler happy.
1070           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1071           PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val)));
1072         } else {
1073           PushStack(bit_cast<float, uintptr_t>(val));
1074         }
1075         fpr_index_ = 0;
1076       }
1077     }
1078   }
1079 
HaveDoubleFpr()1080   bool HaveDoubleFpr() {
1081     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1082   }
1083 
DoubleFprNeedsPadding()1084   bool DoubleFprNeedsPadding() {
1085     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1086         kAlignDoubleOnStack &&                  // and when it needs alignment
1087         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1088   }
1089 
DoubleStackNeedsPadding()1090   bool DoubleStackNeedsPadding() {
1091     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1092         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1093         (stack_entries_ & 1) == 1;              // counter is odd
1094   }
1095 
AdvanceDouble(uint64_t val)1096   void AdvanceDouble(uint64_t val) {
1097     if (kNativeSoftFloatAbi) {
1098       AdvanceLong(val);
1099     } else {
1100       if (HaveDoubleFpr()) {
1101         if (DoubleFprNeedsPadding()) {
1102           PushFpr4(0);
1103           fpr_index_--;
1104         }
1105         PushFpr8(val);
1106         fpr_index_ -= kRegistersNeededForDouble;
1107       } else {
1108         if (DoubleStackNeedsPadding()) {
1109           PushStack(0);
1110           stack_entries_++;
1111         }
1112         if (kRegistersNeededForDouble == 1) {
1113           PushStack(static_cast<uintptr_t>(val));
1114           stack_entries_++;
1115         } else {
1116           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1117           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1118           stack_entries_ += 2;
1119         }
1120         fpr_index_ = 0;
1121       }
1122     }
1123   }
1124 
getStackEntries()1125   uint32_t getStackEntries() {
1126     return stack_entries_;
1127   }
1128 
getNumberOfUsedGprs()1129   uint32_t getNumberOfUsedGprs() {
1130     return kNumNativeGprArgs - gpr_index_;
1131   }
1132 
getNumberOfUsedFprs()1133   uint32_t getNumberOfUsedFprs() {
1134     return kNumNativeFprArgs - fpr_index_;
1135   }
1136 
1137  private:
PushGpr(uintptr_t val)1138   void PushGpr(uintptr_t val) {
1139     delegate_->PushGpr(val);
1140   }
PushFpr4(float val)1141   void PushFpr4(float val) {
1142     delegate_->PushFpr4(val);
1143   }
PushFpr8(uint64_t val)1144   void PushFpr8(uint64_t val) {
1145     delegate_->PushFpr8(val);
1146   }
PushStack(uintptr_t val)1147   void PushStack(uintptr_t val) {
1148     delegate_->PushStack(val);
1149   }
PushHandle(mirror::Object * ref)1150   uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1151     return delegate_->PushHandle(ref);
1152   }
1153 
1154   uint32_t gpr_index_;      // Number of free GPRs
1155   uint32_t fpr_index_;      // Number of free FPRs
1156   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1157                             // extended
1158   T* delegate_;             // What Push implementation gets called
1159 };
1160 
1161 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1162 // in subclasses.
1163 //
1164 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1165 // them with handles.
1166 class ComputeNativeCallFrameSize {
1167  public:
ComputeNativeCallFrameSize()1168   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1169 
~ComputeNativeCallFrameSize()1170   virtual ~ComputeNativeCallFrameSize() {}
1171 
GetStackSize()1172   uint32_t GetStackSize() {
1173     return num_stack_entries_ * sizeof(uintptr_t);
1174   }
1175 
LayoutCallStack(uint8_t * sp8)1176   uint8_t* LayoutCallStack(uint8_t* sp8) {
1177     sp8 -= GetStackSize();
1178     // Align by kStackAlignment.
1179     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1180     return sp8;
1181   }
1182 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr)1183   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) {
1184     // Assumption is OK right now, as we have soft-float arm
1185     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1186     sp8 -= fregs * sizeof(uintptr_t);
1187     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1188     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1189     sp8 -= iregs * sizeof(uintptr_t);
1190     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1191     return sp8;
1192   }
1193 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1194   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1195                             uint32_t** start_fpr) {
1196     // Native call stack.
1197     sp8 = LayoutCallStack(sp8);
1198     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1199 
1200     // Put fprs and gprs below.
1201     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1202 
1203     // Return the new bottom.
1204     return sp8;
1205   }
1206 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1207   virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1208       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {}
1209 
Walk(const char * shorty,uint32_t shorty_len)1210   void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1211     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1212 
1213     WalkHeader(&sm);
1214 
1215     for (uint32_t i = 1; i < shorty_len; ++i) {
1216       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1217       switch (cur_type_) {
1218         case Primitive::kPrimNot:
1219           sm.AdvanceHandleScope(
1220               reinterpret_cast<mirror::Object*>(0x12345678));
1221           break;
1222 
1223         case Primitive::kPrimBoolean:
1224         case Primitive::kPrimByte:
1225         case Primitive::kPrimChar:
1226         case Primitive::kPrimShort:
1227         case Primitive::kPrimInt:
1228           sm.AdvanceInt(0);
1229           break;
1230         case Primitive::kPrimFloat:
1231           sm.AdvanceFloat(0);
1232           break;
1233         case Primitive::kPrimDouble:
1234           sm.AdvanceDouble(0);
1235           break;
1236         case Primitive::kPrimLong:
1237           sm.AdvanceLong(0);
1238           break;
1239         default:
1240           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1241       }
1242     }
1243 
1244     num_stack_entries_ = sm.getStackEntries();
1245   }
1246 
PushGpr(uintptr_t)1247   void PushGpr(uintptr_t /* val */) {
1248     // not optimizing registers, yet
1249   }
1250 
PushFpr4(float)1251   void PushFpr4(float /* val */) {
1252     // not optimizing registers, yet
1253   }
1254 
PushFpr8(uint64_t)1255   void PushFpr8(uint64_t /* val */) {
1256     // not optimizing registers, yet
1257   }
1258 
PushStack(uintptr_t)1259   void PushStack(uintptr_t /* val */) {
1260     // counting is already done in the superclass
1261   }
1262 
PushHandle(mirror::Object *)1263   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1264     return reinterpret_cast<uintptr_t>(nullptr);
1265   }
1266 
1267  protected:
1268   uint32_t num_stack_entries_;
1269 };
1270 
1271 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1272  public:
ComputeGenericJniFrameSize()1273   ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1274 
1275   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1276   // is at *m = sp. Will update to point to the bottom of the save frame.
1277   //
1278   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1279   void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1280                              uint32_t* handle_scope_entries)
1281       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1282     mirror::ArtMethod* method = (*m)->AsMirrorPtr();
1283 
1284     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1285 
1286     // First, fix up the layout of the callee-save frame.
1287     // We have to squeeze in the HandleScope, and relocate the method pointer.
1288 
1289     // "Free" the slot for the method.
1290     sp8 += kPointerSize;  // In the callee-save frame we use a full pointer.
1291 
1292     // Under the callee saves put handle scope and new method stack reference.
1293     *handle_scope_entries = num_handle_scope_references_;
1294 
1295     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1296     size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
1297 
1298     sp8 -= scope_and_method;
1299     // Align by kStackAlignment.
1300     sp8 = reinterpret_cast<uint8_t*>(RoundDown(
1301         reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1302 
1303     uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
1304     *table = reinterpret_cast<HandleScope*>(sp8_table);
1305     (*table)->SetNumberOfReferences(num_handle_scope_references_);
1306 
1307     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1308     uint8_t* method_pointer = sp8;
1309     StackReference<mirror::ArtMethod>* new_method_ref =
1310         reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
1311     new_method_ref->Assign(method);
1312     *m = new_method_ref;
1313   }
1314 
1315   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp)1316   void LayoutCookie(uint8_t** sp) {
1317     // Reference cookie and padding
1318     *sp -= 8;
1319   }
1320 
1321   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1322   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1323   uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1324                               uint32_t* handle_scope_entries)
1325       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1326     // First, fix up the layout of the callee-save frame.
1327     // We have to squeeze in the HandleScope, and relocate the method pointer.
1328     LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries);
1329 
1330     // The bottom of the callee-save frame is now where the method is, *m.
1331     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1332 
1333     // Add space for cookie.
1334     LayoutCookie(&sp8);
1335 
1336     return sp8;
1337   }
1338 
1339   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(StackReference<mirror::ArtMethod> ** m,bool is_static,const char * shorty,uint32_t shorty_len,HandleScope ** table,uint32_t * handle_scope_entries,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1340   uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty,
1341                          uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries,
1342                          uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr)
1343       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1344     Walk(shorty, shorty_len);
1345 
1346     // JNI part.
1347     uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries);
1348 
1349     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1350 
1351     // Return the new bottom.
1352     return sp8;
1353   }
1354 
1355   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1356 
1357   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1358   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1359       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1360 
1361  private:
1362   uint32_t num_handle_scope_references_;
1363 };
1364 
PushHandle(mirror::Object *)1365 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1366   num_handle_scope_references_++;
1367   return reinterpret_cast<uintptr_t>(nullptr);
1368 }
1369 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1370 void ComputeGenericJniFrameSize::WalkHeader(
1371     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1372   // JNIEnv
1373   sm->AdvancePointer(nullptr);
1374 
1375   // Class object or this as first argument
1376   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1377 }
1378 
1379 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1380 // the template requirements of BuildGenericJniFrameStateMachine.
1381 class FillNativeCall {
1382  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1383   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1384       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1385 
~FillNativeCall()1386   virtual ~FillNativeCall() {}
1387 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1388   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1389     cur_gpr_reg_ = gpr_regs;
1390     cur_fpr_reg_ = fpr_regs;
1391     cur_stack_arg_ = stack_args;
1392   }
1393 
PushGpr(uintptr_t val)1394   void PushGpr(uintptr_t val) {
1395     *cur_gpr_reg_ = val;
1396     cur_gpr_reg_++;
1397   }
1398 
PushFpr4(float val)1399   void PushFpr4(float val) {
1400     *cur_fpr_reg_ = val;
1401     cur_fpr_reg_++;
1402   }
1403 
PushFpr8(uint64_t val)1404   void PushFpr8(uint64_t val) {
1405     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1406     *tmp = val;
1407     cur_fpr_reg_ += 2;
1408   }
1409 
PushStack(uintptr_t val)1410   void PushStack(uintptr_t val) {
1411     *cur_stack_arg_ = val;
1412     cur_stack_arg_++;
1413   }
1414 
PushHandle(mirror::Object * ref)1415   virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1416     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1417     return 0U;
1418   }
1419 
1420  private:
1421   uintptr_t* cur_gpr_reg_;
1422   uint32_t* cur_fpr_reg_;
1423   uintptr_t* cur_stack_arg_;
1424 };
1425 
1426 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1427 // of transitioning into native code.
1428 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1429  public:
BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod> ** sp,bool is_static,const char * shorty,uint32_t shorty_len,Thread * self)1430   BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static,
1431                               const char* shorty, uint32_t shorty_len, Thread* self)
1432      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1433        jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1434     ComputeGenericJniFrameSize fsc;
1435     uintptr_t* start_gpr_reg;
1436     uint32_t* start_fpr_reg;
1437     uintptr_t* start_stack_arg;
1438     uint32_t handle_scope_entries;
1439     bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_,
1440                                              &handle_scope_entries, &start_stack_arg,
1441                                              &start_gpr_reg, &start_fpr_reg);
1442 
1443     handle_scope_->SetNumberOfReferences(handle_scope_entries);
1444     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1445 
1446     // jni environment is always first argument
1447     sm_.AdvancePointer(self->GetJniEnv());
1448 
1449     if (is_static) {
1450       sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
1451     }
1452   }
1453 
1454   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1455 
1456   void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1457 
GetFirstHandleScopeEntry()1458   StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1459       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1460     return handle_scope_->GetHandle(0).GetReference();
1461   }
1462 
GetFirstHandleScopeJObject()1463   jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1464     return handle_scope_->GetHandle(0).ToJObject();
1465   }
1466 
GetBottomOfUsedArea()1467   void* GetBottomOfUsedArea() {
1468     return bottom_of_used_area_;
1469   }
1470 
1471  private:
1472   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1473   class FillJniCall FINAL : public FillNativeCall {
1474    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope)1475     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1476                 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1477                                              handle_scope_(handle_scope), cur_entry_(0) {}
1478 
1479     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1480 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1481     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1482       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1483       handle_scope_ = scope;
1484       cur_entry_ = 0U;
1485     }
1486 
ResetRemainingScopeSlots()1487     void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1488       // Initialize padding entries.
1489       size_t expected_slots = handle_scope_->NumberOfReferences();
1490       while (cur_entry_ < expected_slots) {
1491         handle_scope_->GetHandle(cur_entry_++).Assign(nullptr);
1492       }
1493       DCHECK_NE(cur_entry_, 0U);
1494     }
1495 
1496    private:
1497     HandleScope* handle_scope_;
1498     size_t cur_entry_;
1499   };
1500 
1501   HandleScope* handle_scope_;
1502   FillJniCall jni_call_;
1503   void* bottom_of_used_area_;
1504 
1505   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1506 
1507   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1508 };
1509 
PushHandle(mirror::Object * ref)1510 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1511   uintptr_t tmp;
1512   Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_);
1513   h.Assign(ref);
1514   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1515   cur_entry_++;
1516   return tmp;
1517 }
1518 
Visit()1519 void BuildGenericJniFrameVisitor::Visit() {
1520   Primitive::Type type = GetParamPrimitiveType();
1521   switch (type) {
1522     case Primitive::kPrimLong: {
1523       jlong long_arg;
1524       if (IsSplitLongOrDouble()) {
1525         long_arg = ReadSplitLongParam();
1526       } else {
1527         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1528       }
1529       sm_.AdvanceLong(long_arg);
1530       break;
1531     }
1532     case Primitive::kPrimDouble: {
1533       uint64_t double_arg;
1534       if (IsSplitLongOrDouble()) {
1535         // Read into union so that we don't case to a double.
1536         double_arg = ReadSplitLongParam();
1537       } else {
1538         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1539       }
1540       sm_.AdvanceDouble(double_arg);
1541       break;
1542     }
1543     case Primitive::kPrimNot: {
1544       StackReference<mirror::Object>* stack_ref =
1545           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1546       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1547       break;
1548     }
1549     case Primitive::kPrimFloat:
1550       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1551       break;
1552     case Primitive::kPrimBoolean:  // Fall-through.
1553     case Primitive::kPrimByte:     // Fall-through.
1554     case Primitive::kPrimChar:     // Fall-through.
1555     case Primitive::kPrimShort:    // Fall-through.
1556     case Primitive::kPrimInt:      // Fall-through.
1557       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1558       break;
1559     case Primitive::kPrimVoid:
1560       LOG(FATAL) << "UNREACHABLE";
1561       break;
1562   }
1563 }
1564 
FinalizeHandleScope(Thread * self)1565 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1566   // Clear out rest of the scope.
1567   jni_call_.ResetRemainingScopeSlots();
1568   // Install HandleScope.
1569   self->PushHandleScope(handle_scope_);
1570 }
1571 
1572 #if defined(__arm__) || defined(__aarch64__)
1573 extern "C" void* artFindNativeMethod();
1574 #else
1575 extern "C" void* artFindNativeMethod(Thread* self);
1576 #endif
1577 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,jobject l,jobject lock)1578 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1579   if (lock != nullptr) {
1580     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1581   } else {
1582     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1583   }
1584 }
1585 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,jobject lock)1586 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1587   if (lock != nullptr) {
1588     JniMethodEndSynchronized(cookie, lock, self);
1589   } else {
1590     JniMethodEnd(cookie, self);
1591   }
1592 }
1593 
1594 /*
1595  * Initializes an alloca region assumed to be directly below sp for a native call:
1596  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1597  * The final element on the stack is a pointer to the native code.
1598  *
1599  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1600  * We need to fix this, as the handle scope needs to go into the callee-save frame.
1601  *
1602  * The return of this function denotes:
1603  * 1) How many bytes of the alloca can be released, if the value is non-negative.
1604  * 2) An error, if the value is negative.
1605  */
artQuickGenericJniTrampoline(Thread * self,StackReference<mirror::ArtMethod> * sp)1606 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self,
1607                                                       StackReference<mirror::ArtMethod>* sp)
1608     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1609   mirror::ArtMethod* called = sp->AsMirrorPtr();
1610   DCHECK(called->IsNative()) << PrettyMethod(called, true);
1611   uint32_t shorty_len = 0;
1612   const char* shorty = called->GetShorty(&shorty_len);
1613 
1614   // Run the visitor.
1615   BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self);
1616   visitor.VisitArguments();
1617   visitor.FinalizeHandleScope(self);
1618 
1619   // Fix up managed-stack things in Thread.
1620   self->SetTopOfStack(sp, 0);
1621 
1622   self->VerifyStack();
1623 
1624   // Start JNI, save the cookie.
1625   uint32_t cookie;
1626   if (called->IsSynchronized()) {
1627     cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1628     if (self->IsExceptionPending()) {
1629       self->PopHandleScope();
1630       // A negative value denotes an error.
1631       return GetTwoWordFailureValue();
1632     }
1633   } else {
1634     cookie = JniMethodStart(self);
1635   }
1636   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1637   *(sp32 - 1) = cookie;
1638 
1639   // Retrieve the stored native code.
1640   const void* nativeCode = called->GetNativeMethod();
1641 
1642   // There are two cases for the content of nativeCode:
1643   // 1) Pointer to the native function.
1644   // 2) Pointer to the trampoline for native code binding.
1645   // In the second case, we need to execute the binding and continue with the actual native function
1646   // pointer.
1647   DCHECK(nativeCode != nullptr);
1648   if (nativeCode == GetJniDlsymLookupStub()) {
1649 #if defined(__arm__) || defined(__aarch64__)
1650     nativeCode = artFindNativeMethod();
1651 #else
1652     nativeCode = artFindNativeMethod(self);
1653 #endif
1654 
1655     if (nativeCode == nullptr) {
1656       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1657 
1658       // End JNI, as the assembly will move to deliver the exception.
1659       jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1660       if (shorty[0] == 'L') {
1661         artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1662       } else {
1663         artQuickGenericJniEndJNINonRef(self, cookie, lock);
1664       }
1665 
1666       return GetTwoWordFailureValue();
1667     }
1668     // Note that the native code pointer will be automatically set by artFindNativeMethod().
1669   }
1670 
1671   // Return native code addr(lo) and bottom of alloca address(hi).
1672   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1673                                 reinterpret_cast<uintptr_t>(nativeCode));
1674 }
1675 
1676 /*
1677  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1678  * unlocking.
1679  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)1680 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1681     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1682   StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame();
1683   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1684   mirror::ArtMethod* called = sp->AsMirrorPtr();
1685   uint32_t cookie = *(sp32 - 1);
1686 
1687   jobject lock = nullptr;
1688   if (called->IsSynchronized()) {
1689     HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1690         + sizeof(StackReference<mirror::ArtMethod>));
1691     lock = table->GetHandle(0).ToJObject();
1692   }
1693 
1694   char return_shorty_char = called->GetShorty()[0];
1695 
1696   if (return_shorty_char == 'L') {
1697     return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1698   } else {
1699     artQuickGenericJniEndJNINonRef(self, cookie, lock);
1700 
1701     switch (return_shorty_char) {
1702       case 'F': {
1703         if (kRuntimeISA == kX86) {
1704           // Convert back the result to float.
1705           double d = bit_cast<uint64_t, double>(result_f);
1706           return bit_cast<float, uint32_t>(static_cast<float>(d));
1707         } else {
1708           return result_f;
1709         }
1710       }
1711       case 'D':
1712         return result_f;
1713       case 'Z':
1714         return result.z;
1715       case 'B':
1716         return result.b;
1717       case 'C':
1718         return result.c;
1719       case 'S':
1720         return result.s;
1721       case 'I':
1722         return result.i;
1723       case 'J':
1724         return result.j;
1725       case 'V':
1726         return 0;
1727       default:
1728         LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1729         return 0;
1730     }
1731   }
1732 }
1733 
1734 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1735 // for the method pointer.
1736 //
1737 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1738 // to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1739 
1740 template<InvokeType type, bool access_check>
1741 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1742                                      mirror::ArtMethod* caller_method,
1743                                      Thread* self, StackReference<mirror::ArtMethod>* sp);
1744 
1745 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1746 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1747                                      mirror::ArtMethod* caller_method,
1748                                      Thread* self, StackReference<mirror::ArtMethod>* sp) {
1749   mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1750                                              type);
1751   if (UNLIKELY(method == nullptr)) {
1752     FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1753     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1754     uint32_t shorty_len;
1755     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1756     {
1757       // Remember the args in case a GC happens in FindMethodFromCode.
1758       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1759       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1760       visitor.VisitArguments();
1761       method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1762                                                       self);
1763       visitor.FixupReferences();
1764     }
1765 
1766     if (UNLIKELY(method == NULL)) {
1767       CHECK(self->IsExceptionPending());
1768       return GetTwoWordFailureValue();  // Failure.
1769     }
1770   }
1771   DCHECK(!self->IsExceptionPending());
1772   const void* code = method->GetEntryPointFromQuickCompiledCode();
1773 
1774   // When we return, the caller will branch to this address, so it had better not be 0!
1775   DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1776                           << " location: "
1777                           << method->GetDexFile()->GetLocation();
1778 
1779   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1780                                 reinterpret_cast<uintptr_t>(method));
1781 }
1782 
1783 // Explicit artInvokeCommon template function declarations to please analysis tool.
1784 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1785   template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1786   TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1787                                                     mirror::Object* this_object,                \
1788                                                     mirror::ArtMethod* caller_method,           \
1789                                                     Thread* self,                               \
1790                                                     StackReference<mirror::ArtMethod>* sp)      \
1791 
1792 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1793 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1794 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1795 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1796 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1797 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1798 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1799 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1800 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1801 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1802 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1803 
1804 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1805 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
1806     uint32_t method_idx, mirror::Object* this_object,
1807     mirror::ArtMethod* caller_method, Thread* self,
1808     StackReference<mirror::ArtMethod>* sp)
1809         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1810   return artInvokeCommon<kInterface, true>(method_idx, this_object,
1811                                            caller_method, self, sp);
1812 }
1813 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1814 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
1815     uint32_t method_idx, mirror::Object* this_object,
1816     mirror::ArtMethod* caller_method, Thread* self,
1817     StackReference<mirror::ArtMethod>* sp)
1818         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1819   return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
1820                                         self, sp);
1821 }
1822 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1823 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
1824     uint32_t method_idx, mirror::Object* this_object,
1825     mirror::ArtMethod* caller_method, Thread* self,
1826     StackReference<mirror::ArtMethod>* sp)
1827         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1828   return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
1829                                         self, sp);
1830 }
1831 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1832 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
1833     uint32_t method_idx, mirror::Object* this_object,
1834     mirror::ArtMethod* caller_method, Thread* self,
1835     StackReference<mirror::ArtMethod>* sp)
1836         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1837   return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
1838                                        self, sp);
1839 }
1840 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1841 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
1842     uint32_t method_idx, mirror::Object* this_object,
1843     mirror::ArtMethod* caller_method, Thread* self,
1844     StackReference<mirror::ArtMethod>* sp)
1845         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1846   return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
1847                                          self, sp);
1848 }
1849 
1850 // Determine target of interface dispatch. This object is known non-null.
artInvokeInterfaceTrampoline(mirror::ArtMethod * interface_method,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1851 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1852                                                       mirror::Object* this_object,
1853                                                       mirror::ArtMethod* caller_method,
1854                                                       Thread* self,
1855                                                       StackReference<mirror::ArtMethod>* sp)
1856     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1857   mirror::ArtMethod* method;
1858   if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1859     method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1860     if (UNLIKELY(method == NULL)) {
1861       FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1862       ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1863                                                                  caller_method);
1864       return GetTwoWordFailureValue();  // Failure.
1865     }
1866   } else {
1867     FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1868     DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1869 
1870     // Find the caller PC.
1871     constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs);
1872     uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset);
1873 
1874     // Map the caller PC to a dex PC.
1875     uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1876     const DexFile::CodeItem* code = caller_method->GetCodeItem();
1877     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1878     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1879     Instruction::Code instr_code = instr->Opcode();
1880     CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1881           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1882         << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1883     uint32_t dex_method_idx;
1884     if (instr_code == Instruction::INVOKE_INTERFACE) {
1885       dex_method_idx = instr->VRegB_35c();
1886     } else {
1887       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1888       dex_method_idx = instr->VRegB_3rc();
1889     }
1890 
1891     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
1892         ->GetDexFile();
1893     uint32_t shorty_len;
1894     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
1895                                                    &shorty_len);
1896     {
1897       // Remember the args in case a GC happens in FindMethodFromCode.
1898       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1899       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1900       visitor.VisitArguments();
1901       method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1902                                                      self);
1903       visitor.FixupReferences();
1904     }
1905 
1906     if (UNLIKELY(method == nullptr)) {
1907       CHECK(self->IsExceptionPending());
1908       return GetTwoWordFailureValue();  // Failure.
1909     }
1910   }
1911   const void* code = method->GetEntryPointFromQuickCompiledCode();
1912 
1913   // When we return, the caller will branch to this address, so it had better not be 0!
1914   DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1915                           << " location: " << method->GetDexFile()->GetLocation();
1916 
1917   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1918                                 reinterpret_cast<uintptr_t>(method));
1919 }
1920 
1921 }  // namespace art
1922