1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 41 #include "src/assembler.h" 42 #include "src/mips/constants-mips.h" 43 #include "src/serialize.h" 44 45 namespace v8 { 46 namespace internal { 47 48 // CPU Registers. 49 // 50 // 1) We would prefer to use an enum, but enum values are assignment- 51 // compatible with int, which has caused code-generation bugs. 52 // 53 // 2) We would prefer to use a class instead of a struct but we don't like 54 // the register initialization to depend on the particular initialization 55 // order (which appears to be different on OS X, Linux, and Windows for the 56 // installed versions of C++ we tried). Using a struct permits C-style 57 // "initialization". Also, the Register objects cannot be const as this 58 // forces initialization stubs in MSVC, making us dependent on initialization 59 // order. 60 // 61 // 3) By not using an enum, we are possibly preventing the compiler from 62 // doing certain constant folds, which may significantly reduce the 63 // code generated for some assembly instructions (because they boil down 64 // to a few constants). If this is a problem, we could change the code 65 // such that we use an enum in optimized mode, and the struct in debug 66 // mode. This way we get the compile-time error checking in debug mode 67 // and best performance in optimized code. 68 69 70 // ----------------------------------------------------------------------------- 71 // Implementation of Register and FPURegister. 72 73 // Core register. 74 struct Register { 75 static const int kNumRegisters = v8::internal::kNumRegisters; 76 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp. 77 static const int kSizeInBytes = 4; 78 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 79 80 #if defined(V8_TARGET_LITTLE_ENDIAN) 81 static const int kMantissaOffset = 0; 82 static const int kExponentOffset = 4; 83 #elif defined(V8_TARGET_BIG_ENDIAN) 84 static const int kMantissaOffset = 4; 85 static const int kExponentOffset = 0; 86 #else 87 #error Unknown endianness 88 #endif 89 90 inline static int NumAllocatableRegisters(); 91 ToAllocationIndexRegister92 static int ToAllocationIndex(Register reg) { 93 ASSERT((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) || 94 reg.is(from_code(kCpRegister))); 95 return reg.is(from_code(kCpRegister)) ? 96 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'. 97 reg.code() - 2; // zero_reg and 'at' are skipped. 98 } 99 FromAllocationIndexRegister100 static Register FromAllocationIndex(int index) { 101 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters); 102 return index == kMaxNumAllocatableRegisters - 1 ? 103 from_code(kCpRegister) : // Last index is always the 'cp' register. 104 from_code(index + 2); // zero_reg and 'at' are skipped. 105 } 106 AllocationIndexToStringRegister107 static const char* AllocationIndexToString(int index) { 108 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters); 109 const char* const names[] = { 110 "v0", 111 "v1", 112 "a0", 113 "a1", 114 "a2", 115 "a3", 116 "t0", 117 "t1", 118 "t2", 119 "t3", 120 "t4", 121 "t5", 122 "t6", 123 "s7", 124 }; 125 return names[index]; 126 } 127 from_codeRegister128 static Register from_code(int code) { 129 Register r = { code }; 130 return r; 131 } 132 is_validRegister133 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } isRegister134 bool is(Register reg) const { return code_ == reg.code_; } codeRegister135 int code() const { 136 ASSERT(is_valid()); 137 return code_; 138 } bitRegister139 int bit() const { 140 ASSERT(is_valid()); 141 return 1 << code_; 142 } 143 144 // Unfortunately we can't make this private in a struct. 145 int code_; 146 }; 147 148 #define REGISTER(N, C) \ 149 const int kRegister_ ## N ## _Code = C; \ 150 const Register N = { C } 151 152 REGISTER(no_reg, -1); 153 // Always zero. 154 REGISTER(zero_reg, 0); 155 // at: Reserved for synthetic instructions. 156 REGISTER(at, 1); 157 // v0, v1: Used when returning multiple values from subroutines. 158 REGISTER(v0, 2); 159 REGISTER(v1, 3); 160 // a0 - a4: Used to pass non-FP parameters. 161 REGISTER(a0, 4); 162 REGISTER(a1, 5); 163 REGISTER(a2, 6); 164 REGISTER(a3, 7); 165 // t0 - t9: Can be used without reservation, act as temporary registers and are 166 // allowed to be destroyed by subroutines. 167 REGISTER(t0, 8); 168 REGISTER(t1, 9); 169 REGISTER(t2, 10); 170 REGISTER(t3, 11); 171 REGISTER(t4, 12); 172 REGISTER(t5, 13); 173 REGISTER(t6, 14); 174 REGISTER(t7, 15); 175 // s0 - s7: Subroutine register variables. Subroutines that write to these 176 // registers must restore their values before exiting so that the caller can 177 // expect the values to be preserved. 178 REGISTER(s0, 16); 179 REGISTER(s1, 17); 180 REGISTER(s2, 18); 181 REGISTER(s3, 19); 182 REGISTER(s4, 20); 183 REGISTER(s5, 21); 184 REGISTER(s6, 22); 185 REGISTER(s7, 23); 186 REGISTER(t8, 24); 187 REGISTER(t9, 25); 188 // k0, k1: Reserved for system calls and interrupt handlers. 189 REGISTER(k0, 26); 190 REGISTER(k1, 27); 191 // gp: Reserved. 192 REGISTER(gp, 28); 193 // sp: Stack pointer. 194 REGISTER(sp, 29); 195 // fp: Frame pointer. 196 REGISTER(fp, 30); 197 // ra: Return address pointer. 198 REGISTER(ra, 31); 199 200 #undef REGISTER 201 202 203 int ToNumber(Register reg); 204 205 Register ToRegister(int num); 206 207 // Coprocessor register. 208 struct FPURegister { 209 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters; 210 211 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 212 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 213 // number of Double regs (64-bit regs, or FPU-reg-pairs). 214 215 // A few double registers are reserved: one as a scratch register and one to 216 // hold 0.0. 217 // f28: 0.0 218 // f30: scratch register. 219 static const int kNumReservedRegisters = 2; 220 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 - 221 kNumReservedRegisters; 222 223 inline static int NumRegisters(); 224 inline static int NumAllocatableRegisters(); 225 inline static int ToAllocationIndex(FPURegister reg); 226 static const char* AllocationIndexToString(int index); 227 FromAllocationIndexFPURegister228 static FPURegister FromAllocationIndex(int index) { 229 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters); 230 return from_code(index * 2); 231 } 232 from_codeFPURegister233 static FPURegister from_code(int code) { 234 FPURegister r = { code }; 235 return r; 236 } 237 is_validFPURegister238 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; } isFPURegister239 bool is(FPURegister creg) const { return code_ == creg.code_; } lowFPURegister240 FPURegister low() const { 241 // Find low reg of a Double-reg pair, which is the reg itself. 242 ASSERT(code_ % 2 == 0); // Specified Double reg must be even. 243 FPURegister reg; 244 reg.code_ = code_; 245 ASSERT(reg.is_valid()); 246 return reg; 247 } highFPURegister248 FPURegister high() const { 249 // Find high reg of a Doubel-reg pair, which is reg + 1. 250 ASSERT(code_ % 2 == 0); // Specified Double reg must be even. 251 FPURegister reg; 252 reg.code_ = code_ + 1; 253 ASSERT(reg.is_valid()); 254 return reg; 255 } 256 codeFPURegister257 int code() const { 258 ASSERT(is_valid()); 259 return code_; 260 } bitFPURegister261 int bit() const { 262 ASSERT(is_valid()); 263 return 1 << code_; 264 } setcodeFPURegister265 void setcode(int f) { 266 code_ = f; 267 ASSERT(is_valid()); 268 } 269 // Unfortunately we can't make this private in a struct. 270 int code_; 271 }; 272 273 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 274 // 32-bit registers, f0 through f31. When used as 'double' they are used 275 // in pairs, starting with the even numbered register. So a double operation 276 // on f0 really uses f0 and f1. 277 // (Modern mips hardware also supports 32 64-bit registers, via setting 278 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, 279 // but it is not in common use. Someday we will want to support this in v8.) 280 281 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 282 typedef FPURegister DoubleRegister; 283 typedef FPURegister FloatRegister; 284 285 const FPURegister no_freg = { -1 }; 286 287 const FPURegister f0 = { 0 }; // Return value in hard float mode. 288 const FPURegister f1 = { 1 }; 289 const FPURegister f2 = { 2 }; 290 const FPURegister f3 = { 3 }; 291 const FPURegister f4 = { 4 }; 292 const FPURegister f5 = { 5 }; 293 const FPURegister f6 = { 6 }; 294 const FPURegister f7 = { 7 }; 295 const FPURegister f8 = { 8 }; 296 const FPURegister f9 = { 9 }; 297 const FPURegister f10 = { 10 }; 298 const FPURegister f11 = { 11 }; 299 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode. 300 const FPURegister f13 = { 13 }; 301 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode. 302 const FPURegister f15 = { 15 }; 303 const FPURegister f16 = { 16 }; 304 const FPURegister f17 = { 17 }; 305 const FPURegister f18 = { 18 }; 306 const FPURegister f19 = { 19 }; 307 const FPURegister f20 = { 20 }; 308 const FPURegister f21 = { 21 }; 309 const FPURegister f22 = { 22 }; 310 const FPURegister f23 = { 23 }; 311 const FPURegister f24 = { 24 }; 312 const FPURegister f25 = { 25 }; 313 const FPURegister f26 = { 26 }; 314 const FPURegister f27 = { 27 }; 315 const FPURegister f28 = { 28 }; 316 const FPURegister f29 = { 29 }; 317 const FPURegister f30 = { 30 }; 318 const FPURegister f31 = { 31 }; 319 320 // Register aliases. 321 // cp is assumed to be a callee saved register. 322 // Defined using #define instead of "static const Register&" because Clang 323 // complains otherwise when a compilation unit that includes this header 324 // doesn't use the variables. 325 #define kRootRegister s6 326 #define cp s7 327 #define kLithiumScratchReg s3 328 #define kLithiumScratchReg2 s4 329 #define kLithiumScratchDouble f30 330 #define kDoubleRegZero f28 331 332 // FPU (coprocessor 1) control registers. 333 // Currently only FCSR (#31) is implemented. 334 struct FPUControlRegister { is_validFPUControlRegister335 bool is_valid() const { return code_ == kFCSRRegister; } isFPUControlRegister336 bool is(FPUControlRegister creg) const { return code_ == creg.code_; } codeFPUControlRegister337 int code() const { 338 ASSERT(is_valid()); 339 return code_; 340 } bitFPUControlRegister341 int bit() const { 342 ASSERT(is_valid()); 343 return 1 << code_; 344 } setcodeFPUControlRegister345 void setcode(int f) { 346 code_ = f; 347 ASSERT(is_valid()); 348 } 349 // Unfortunately we can't make this private in a struct. 350 int code_; 351 }; 352 353 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 354 const FPUControlRegister FCSR = { kFCSRRegister }; 355 356 357 // ----------------------------------------------------------------------------- 358 // Machine instruction Operands. 359 360 // Class Operand represents a shifter operand in data processing instructions. 361 class Operand BASE_EMBEDDED { 362 public: 363 // Immediate. 364 INLINE(explicit Operand(int32_t immediate, 365 RelocInfo::Mode rmode = RelocInfo::NONE32)); 366 INLINE(explicit Operand(const ExternalReference& f)); 367 INLINE(explicit Operand(const char* s)); 368 INLINE(explicit Operand(Object** opp)); 369 INLINE(explicit Operand(Context** cpp)); 370 explicit Operand(Handle<Object> handle); 371 INLINE(explicit Operand(Smi* value)); 372 373 // Register. 374 INLINE(explicit Operand(Register rm)); 375 376 // Return true if this is a register operand. 377 INLINE(bool is_reg() const); 378 immediate()379 inline int32_t immediate() const { 380 ASSERT(!is_reg()); 381 return imm32_; 382 } 383 rm()384 Register rm() const { return rm_; } 385 386 private: 387 Register rm_; 388 int32_t imm32_; // Valid if rm_ == no_reg. 389 RelocInfo::Mode rmode_; 390 391 friend class Assembler; 392 friend class MacroAssembler; 393 }; 394 395 396 // On MIPS we have only one adressing mode with base_reg + offset. 397 // Class MemOperand represents a memory operand in load and store instructions. 398 class MemOperand : public Operand { 399 public: 400 // Immediate value attached to offset. 401 enum OffsetAddend { 402 offset_minus_one = -1, 403 offset_zero = 0 404 }; 405 406 explicit MemOperand(Register rn, int32_t offset = 0); 407 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 408 OffsetAddend offset_addend = offset_zero); offset()409 int32_t offset() const { return offset_; } 410 OffsetIsInt16Encodable()411 bool OffsetIsInt16Encodable() const { 412 return is_int16(offset_); 413 } 414 415 private: 416 int32_t offset_; 417 418 friend class Assembler; 419 }; 420 421 422 class Assembler : public AssemblerBase { 423 public: 424 // Create an assembler. Instructions and relocation information are emitted 425 // into a buffer, with the instructions starting from the beginning and the 426 // relocation information starting from the end of the buffer. See CodeDesc 427 // for a detailed comment on the layout (globals.h). 428 // 429 // If the provided buffer is NULL, the assembler allocates and grows its own 430 // buffer, and buffer_size determines the initial buffer size. The buffer is 431 // owned by the assembler and deallocated upon destruction of the assembler. 432 // 433 // If the provided buffer is not NULL, the assembler uses the provided buffer 434 // for code generation and assumes its size to be buffer_size. If the buffer 435 // is too small, a fatal error occurs. No deallocation of the buffer is done 436 // upon destruction of the assembler. 437 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()438 virtual ~Assembler() { } 439 440 // GetCode emits any pending (non-emitted) code and fills the descriptor 441 // desc. GetCode() is idempotent; it returns the same result if no other 442 // Assembler functions are invoked in between GetCode() calls. 443 void GetCode(CodeDesc* desc); 444 445 // Label operations & relative jumps (PPUM Appendix D). 446 // 447 // Takes a branch opcode (cc) and a label (L) and generates 448 // either a backward branch or a forward branch and links it 449 // to the label fixup chain. Usage: 450 // 451 // Label L; // unbound label 452 // j(cc, &L); // forward branch to unbound label 453 // bind(&L); // bind label to the current pc 454 // j(cc, &L); // backward branch to bound label 455 // bind(&L); // illegal: a label may be bound only once 456 // 457 // Note: The same Label can be used for forward and backward branches 458 // but it may be bound only once. 459 void bind(Label* L); // Binds an unbound label L to current code position. 460 // Determines if Label is bound and near enough so that branch instruction 461 // can be used to reach it, instead of jump instruction. 462 bool is_near(Label* L); 463 464 // Returns the branch offset to the given label from the current code 465 // position. Links the label to the current position if it is still unbound. 466 // Manages the jump elimination optimization if the second parameter is true. 467 int32_t branch_offset(Label* L, bool jump_elimination_allowed); shifted_branch_offset(Label * L,bool jump_elimination_allowed)468 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { 469 int32_t o = branch_offset(L, jump_elimination_allowed); 470 ASSERT((o & 3) == 0); // Assert the offset is aligned. 471 return o >> 2; 472 } 473 uint32_t jump_address(Label* L); 474 475 // Puts a labels target address at the given position. 476 // The high 8 bits are set to zero. 477 void label_at_put(Label* L, int at_offset); 478 479 // Read/Modify the code target address in the branch/call instruction at pc. 480 static Address target_address_at(Address pc); 481 static void set_target_address_at(Address pc, 482 Address target, 483 ICacheFlushMode icache_flush_mode = 484 FLUSH_ICACHE_IF_NEEDED); 485 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,ConstantPoolArray * constant_pool))486 INLINE(static Address target_address_at(Address pc, 487 ConstantPoolArray* constant_pool)) { 488 return target_address_at(pc); 489 } INLINE(static void set_target_address_at (Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))490 INLINE(static void set_target_address_at(Address pc, 491 ConstantPoolArray* constant_pool, 492 Address target, 493 ICacheFlushMode icache_flush_mode = 494 FLUSH_ICACHE_IF_NEEDED)) { 495 set_target_address_at(pc, target, icache_flush_mode); 496 } INLINE(static Address target_address_at (Address pc,Code * code))497 INLINE(static Address target_address_at(Address pc, Code* code)) { 498 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 499 return target_address_at(pc, constant_pool); 500 } INLINE(static void set_target_address_at (Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))501 INLINE(static void set_target_address_at(Address pc, 502 Code* code, 503 Address target, 504 ICacheFlushMode icache_flush_mode = 505 FLUSH_ICACHE_IF_NEEDED)) { 506 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 507 set_target_address_at(pc, constant_pool, target, icache_flush_mode); 508 } 509 510 // Return the code target address at a call site from the return address 511 // of that call in the instruction stream. 512 inline static Address target_address_from_return_address(Address pc); 513 514 static void JumpLabelToJumpRegister(Address pc); 515 516 static void QuietNaN(HeapObject* nan); 517 518 // This sets the branch destination (which gets loaded at the call address). 519 // This is for calls and branches within generated code. The serializer 520 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)521 inline static void deserialization_set_special_target_at( 522 Address instruction_payload, Code* code, Address target) { 523 set_target_address_at( 524 instruction_payload - kInstructionsFor32BitConstant * kInstrSize, 525 code, 526 target); 527 } 528 529 // Size of an instruction. 530 static const int kInstrSize = sizeof(Instr); 531 532 // Difference between address of current opcode and target address offset. 533 static const int kBranchPCOffset = 4; 534 535 // Here we are patching the address in the LUI/ORI instruction pair. 536 // These values are used in the serialization process and must be zero for 537 // MIPS platform, as Code, Embedded Object or External-reference pointers 538 // are split across two consecutive instructions and don't exist separately 539 // in the code, so the serializer should not step forwards in memory after 540 // a target is resolved and written. 541 static const int kSpecialTargetSize = 0; 542 543 // Number of consecutive instructions used to store 32bit constant. 544 // Before jump-optimizations, this constant was used in 545 // RelocInfo::target_address_address() function to tell serializer address of 546 // the instruction that follows LUI/ORI instruction pair. Now, with new jump 547 // optimization, where jump-through-register instruction that usually 548 // follows LUI/ORI pair is substituted with J/JAL, this constant equals 549 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR). 550 static const int kInstructionsFor32BitConstant = 3; 551 552 // Distance between the instruction referring to the address of the call 553 // target and the return address. 554 static const int kCallTargetAddressOffset = 4 * kInstrSize; 555 556 // Distance between start of patched return sequence and the emitted address 557 // to jump to. 558 static const int kPatchReturnSequenceAddressOffset = 0; 559 560 // Distance between start of patched debug break slot and the emitted address 561 // to jump to. 562 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize; 563 564 // Difference between address of current opcode and value read from pc 565 // register. 566 static const int kPcLoadDelta = 4; 567 568 static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize; 569 570 // Number of instructions used for the JS return sequence. The constant is 571 // used by the debugger to patch the JS return sequence. 572 static const int kJSReturnSequenceInstructions = 7; 573 static const int kDebugBreakSlotInstructions = 4; 574 static const int kDebugBreakSlotLength = 575 kDebugBreakSlotInstructions * kInstrSize; 576 577 578 // --------------------------------------------------------------------------- 579 // Code generation. 580 581 // Insert the smallest number of nop instructions 582 // possible to align the pc offset to a multiple 583 // of m. m must be a power of 2 (>= 4). 584 void Align(int m); 585 // Aligns code to something that's optimal for a jump target for the platform. 586 void CodeTargetAlign(); 587 588 // Different nop operations are used by the code generator to detect certain 589 // states of the generated code. 590 enum NopMarkerTypes { 591 NON_MARKING_NOP = 0, 592 DEBUG_BREAK_NOP, 593 // IC markers. 594 PROPERTY_ACCESS_INLINED, 595 PROPERTY_ACCESS_INLINED_CONTEXT, 596 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 597 // Helper values. 598 LAST_CODE_MARKER, 599 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 600 // Code aging 601 CODE_AGE_MARKER_NOP = 6, 602 CODE_AGE_SEQUENCE_NOP 603 }; 604 605 // Type == 0 is the default non-marking nop. For mips this is a 606 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 607 // marking, to avoid conflict with ssnop and ehb instructions. 608 void nop(unsigned int type = 0) { 609 ASSERT(type < 32); 610 Register nop_rt_reg = (type == 0) ? zero_reg : at; 611 sll(zero_reg, nop_rt_reg, type, true); 612 } 613 614 615 // --------Branch-and-jump-instructions---------- 616 // We don't use likely variant of instructions. 617 void b(int16_t offset); b(Label * L)618 void b(Label* L) { b(branch_offset(L, false)>>2); } 619 void bal(int16_t offset); bal(Label * L)620 void bal(Label* L) { bal(branch_offset(L, false)>>2); } 621 622 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)623 void beq(Register rs, Register rt, Label* L) { 624 beq(rs, rt, branch_offset(L, false) >> 2); 625 } 626 void bgez(Register rs, int16_t offset); 627 void bgezal(Register rs, int16_t offset); 628 void bgtz(Register rs, int16_t offset); 629 void blez(Register rs, int16_t offset); 630 void bltz(Register rs, int16_t offset); 631 void bltzal(Register rs, int16_t offset); 632 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)633 void bne(Register rs, Register rt, Label* L) { 634 bne(rs, rt, branch_offset(L, false)>>2); 635 } 636 637 // Never use the int16_t b(l)cond version with a branch offset 638 // instead of using the Label* version. 639 640 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 641 void j(int32_t target); 642 void jal(int32_t target); 643 void jalr(Register rs, Register rd = ra); 644 void jr(Register target); 645 void j_or_jr(int32_t target, Register rs); 646 void jal_or_jalr(int32_t target, Register rs); 647 648 649 // -------Data-processing-instructions--------- 650 651 // Arithmetic. 652 void addu(Register rd, Register rs, Register rt); 653 void subu(Register rd, Register rs, Register rt); 654 void mult(Register rs, Register rt); 655 void multu(Register rs, Register rt); 656 void div(Register rs, Register rt); 657 void divu(Register rs, Register rt); 658 void mul(Register rd, Register rs, Register rt); 659 660 void addiu(Register rd, Register rs, int32_t j); 661 662 // Logical. 663 void and_(Register rd, Register rs, Register rt); 664 void or_(Register rd, Register rs, Register rt); 665 void xor_(Register rd, Register rs, Register rt); 666 void nor(Register rd, Register rs, Register rt); 667 668 void andi(Register rd, Register rs, int32_t j); 669 void ori(Register rd, Register rs, int32_t j); 670 void xori(Register rd, Register rs, int32_t j); 671 void lui(Register rd, int32_t j); 672 673 // Shifts. 674 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 675 // and may cause problems in normal code. coming_from_nop makes sure this 676 // doesn't happen. 677 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 678 void sllv(Register rd, Register rt, Register rs); 679 void srl(Register rd, Register rt, uint16_t sa); 680 void srlv(Register rd, Register rt, Register rs); 681 void sra(Register rt, Register rd, uint16_t sa); 682 void srav(Register rt, Register rd, Register rs); 683 void rotr(Register rd, Register rt, uint16_t sa); 684 void rotrv(Register rd, Register rt, Register rs); 685 686 687 // ------------Memory-instructions------------- 688 689 void lb(Register rd, const MemOperand& rs); 690 void lbu(Register rd, const MemOperand& rs); 691 void lh(Register rd, const MemOperand& rs); 692 void lhu(Register rd, const MemOperand& rs); 693 void lw(Register rd, const MemOperand& rs); 694 void lwl(Register rd, const MemOperand& rs); 695 void lwr(Register rd, const MemOperand& rs); 696 void sb(Register rd, const MemOperand& rs); 697 void sh(Register rd, const MemOperand& rs); 698 void sw(Register rd, const MemOperand& rs); 699 void swl(Register rd, const MemOperand& rs); 700 void swr(Register rd, const MemOperand& rs); 701 702 703 // ----------------Prefetch-------------------- 704 705 void pref(int32_t hint, const MemOperand& rs); 706 707 708 // -------------Misc-instructions-------------- 709 710 // Break / Trap instructions. 711 void break_(uint32_t code, bool break_as_stop = false); 712 void stop(const char* msg, uint32_t code = kMaxStopCode); 713 void tge(Register rs, Register rt, uint16_t code); 714 void tgeu(Register rs, Register rt, uint16_t code); 715 void tlt(Register rs, Register rt, uint16_t code); 716 void tltu(Register rs, Register rt, uint16_t code); 717 void teq(Register rs, Register rt, uint16_t code); 718 void tne(Register rs, Register rt, uint16_t code); 719 720 // Move from HI/LO register. 721 void mfhi(Register rd); 722 void mflo(Register rd); 723 724 // Set on less than. 725 void slt(Register rd, Register rs, Register rt); 726 void sltu(Register rd, Register rs, Register rt); 727 void slti(Register rd, Register rs, int32_t j); 728 void sltiu(Register rd, Register rs, int32_t j); 729 730 // Conditional move. 731 void movz(Register rd, Register rs, Register rt); 732 void movn(Register rd, Register rs, Register rt); 733 void movt(Register rd, Register rs, uint16_t cc = 0); 734 void movf(Register rd, Register rs, uint16_t cc = 0); 735 736 // Bit twiddling. 737 void clz(Register rd, Register rs); 738 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 739 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 740 741 // --------Coprocessor-instructions---------------- 742 743 // Load, store, and move. 744 void lwc1(FPURegister fd, const MemOperand& src); 745 void ldc1(FPURegister fd, const MemOperand& src); 746 747 void swc1(FPURegister fs, const MemOperand& dst); 748 void sdc1(FPURegister fs, const MemOperand& dst); 749 750 void mtc1(Register rt, FPURegister fs); 751 void mfc1(Register rt, FPURegister fs); 752 753 void ctc1(Register rt, FPUControlRegister fs); 754 void cfc1(Register rt, FPUControlRegister fs); 755 756 // Arithmetic. 757 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 758 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 759 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 760 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 761 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 762 void abs_d(FPURegister fd, FPURegister fs); 763 void mov_d(FPURegister fd, FPURegister fs); 764 void neg_d(FPURegister fd, FPURegister fs); 765 void sqrt_d(FPURegister fd, FPURegister fs); 766 767 // Conversion. 768 void cvt_w_s(FPURegister fd, FPURegister fs); 769 void cvt_w_d(FPURegister fd, FPURegister fs); 770 void trunc_w_s(FPURegister fd, FPURegister fs); 771 void trunc_w_d(FPURegister fd, FPURegister fs); 772 void round_w_s(FPURegister fd, FPURegister fs); 773 void round_w_d(FPURegister fd, FPURegister fs); 774 void floor_w_s(FPURegister fd, FPURegister fs); 775 void floor_w_d(FPURegister fd, FPURegister fs); 776 void ceil_w_s(FPURegister fd, FPURegister fs); 777 void ceil_w_d(FPURegister fd, FPURegister fs); 778 779 void cvt_l_s(FPURegister fd, FPURegister fs); 780 void cvt_l_d(FPURegister fd, FPURegister fs); 781 void trunc_l_s(FPURegister fd, FPURegister fs); 782 void trunc_l_d(FPURegister fd, FPURegister fs); 783 void round_l_s(FPURegister fd, FPURegister fs); 784 void round_l_d(FPURegister fd, FPURegister fs); 785 void floor_l_s(FPURegister fd, FPURegister fs); 786 void floor_l_d(FPURegister fd, FPURegister fs); 787 void ceil_l_s(FPURegister fd, FPURegister fs); 788 void ceil_l_d(FPURegister fd, FPURegister fs); 789 790 void cvt_s_w(FPURegister fd, FPURegister fs); 791 void cvt_s_l(FPURegister fd, FPURegister fs); 792 void cvt_s_d(FPURegister fd, FPURegister fs); 793 794 void cvt_d_w(FPURegister fd, FPURegister fs); 795 void cvt_d_l(FPURegister fd, FPURegister fs); 796 void cvt_d_s(FPURegister fd, FPURegister fs); 797 798 // Conditions and branches. 799 void c(FPUCondition cond, SecondaryField fmt, 800 FPURegister ft, FPURegister fs, uint16_t cc = 0); 801 802 void bc1f(int16_t offset, uint16_t cc = 0); 803 void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); } 804 void bc1t(int16_t offset, uint16_t cc = 0); 805 void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); } 806 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 807 808 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)809 int SizeOfCodeGeneratedSince(Label* label) { 810 return pc_offset() - label->pos(); 811 } 812 813 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)814 int InstructionsGeneratedSince(Label* label) { 815 return SizeOfCodeGeneratedSince(label) / kInstrSize; 816 } 817 818 // Class for scoping postponing the trampoline pool generation. 819 class BlockTrampolinePoolScope { 820 public: BlockTrampolinePoolScope(Assembler * assem)821 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 822 assem_->StartBlockTrampolinePool(); 823 } ~BlockTrampolinePoolScope()824 ~BlockTrampolinePoolScope() { 825 assem_->EndBlockTrampolinePool(); 826 } 827 828 private: 829 Assembler* assem_; 830 831 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 832 }; 833 834 // Class for postponing the assembly buffer growth. Typically used for 835 // sequences of instructions that must be emitted as a unit, before 836 // buffer growth (and relocation) can occur. 837 // This blocking scope is not nestable. 838 class BlockGrowBufferScope { 839 public: BlockGrowBufferScope(Assembler * assem)840 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 841 assem_->StartBlockGrowBuffer(); 842 } ~BlockGrowBufferScope()843 ~BlockGrowBufferScope() { 844 assem_->EndBlockGrowBuffer(); 845 } 846 847 private: 848 Assembler* assem_; 849 850 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 851 }; 852 853 // Debugging. 854 855 // Mark address of the ExitJSFrame code. 856 void RecordJSReturn(); 857 858 // Mark address of a debug break slot. 859 void RecordDebugBreakSlot(); 860 861 // Record the AST id of the CallIC being compiled, so that it can be placed 862 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)863 void SetRecordedAstId(TypeFeedbackId ast_id) { 864 ASSERT(recorded_ast_id_.IsNone()); 865 recorded_ast_id_ = ast_id; 866 } 867 RecordedAstId()868 TypeFeedbackId RecordedAstId() { 869 ASSERT(!recorded_ast_id_.IsNone()); 870 return recorded_ast_id_; 871 } 872 ClearRecordedAstId()873 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 874 875 // Record a comment relocation entry that can be used by a disassembler. 876 // Use --code-comments to enable. 877 void RecordComment(const char* msg); 878 879 static int RelocateInternalReference(byte* pc, intptr_t pc_delta); 880 881 // Writes a single byte or word of data in the code stream. Used for 882 // inline tables, e.g., jump-tables. 883 void db(uint8_t data); 884 void dd(uint32_t data); 885 886 // Emits the address of the code stub's first instruction. 887 void emit_code_stub_address(Code* stub); 888 positions_recorder()889 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 890 891 // Postpone the generation of the trampoline pool for the specified number of 892 // instructions. 893 void BlockTrampolinePoolFor(int instructions); 894 895 // Check if there is less than kGap bytes available in the buffer. 896 // If this is the case, we need to grow the buffer before emitting 897 // an instruction or relocation information. overflow()898 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 899 900 // Get the number of bytes available in the buffer. available_space()901 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 902 903 // Read/patch instructions. instr_at(byte * pc)904 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)905 static void instr_at_put(byte* pc, Instr instr) { 906 *reinterpret_cast<Instr*>(pc) = instr; 907 } instr_at(int pos)908 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)909 void instr_at_put(int pos, Instr instr) { 910 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 911 } 912 913 // Check if an instruction is a branch of some kind. 914 static bool IsBranch(Instr instr); 915 static bool IsBeq(Instr instr); 916 static bool IsBne(Instr instr); 917 918 static bool IsJump(Instr instr); 919 static bool IsJ(Instr instr); 920 static bool IsLui(Instr instr); 921 static bool IsOri(Instr instr); 922 923 static bool IsJal(Instr instr); 924 static bool IsJr(Instr instr); 925 static bool IsJalr(Instr instr); 926 927 static bool IsNop(Instr instr, unsigned int type); 928 static bool IsPop(Instr instr); 929 static bool IsPush(Instr instr); 930 static bool IsLwRegFpOffset(Instr instr); 931 static bool IsSwRegFpOffset(Instr instr); 932 static bool IsLwRegFpNegOffset(Instr instr); 933 static bool IsSwRegFpNegOffset(Instr instr); 934 935 static Register GetRtReg(Instr instr); 936 static Register GetRsReg(Instr instr); 937 static Register GetRdReg(Instr instr); 938 939 static uint32_t GetRt(Instr instr); 940 static uint32_t GetRtField(Instr instr); 941 static uint32_t GetRs(Instr instr); 942 static uint32_t GetRsField(Instr instr); 943 static uint32_t GetRd(Instr instr); 944 static uint32_t GetRdField(Instr instr); 945 static uint32_t GetSa(Instr instr); 946 static uint32_t GetSaField(Instr instr); 947 static uint32_t GetOpcodeField(Instr instr); 948 static uint32_t GetFunction(Instr instr); 949 static uint32_t GetFunctionField(Instr instr); 950 static uint32_t GetImmediate16(Instr instr); 951 static uint32_t GetLabelConst(Instr instr); 952 953 static int32_t GetBranchOffset(Instr instr); 954 static bool IsLw(Instr instr); 955 static int16_t GetLwOffset(Instr instr); 956 static Instr SetLwOffset(Instr instr, int16_t offset); 957 958 static bool IsSw(Instr instr); 959 static Instr SetSwOffset(Instr instr, int16_t offset); 960 static bool IsAddImmediate(Instr instr); 961 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 962 963 static bool IsAndImmediate(Instr instr); 964 static bool IsEmittedConstant(Instr instr); 965 966 void CheckTrampolinePool(); 967 968 // Allocate a constant pool of the correct size for the generated code. 969 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate); 970 971 // Generate the constant pool for the generated code. 972 void PopulateConstantPool(ConstantPoolArray* constant_pool); 973 974 protected: 975 // Relocation for a type-recording IC has the AST id added to it. This 976 // member variable is a way to pass the information from the call site to 977 // the relocation info. 978 TypeFeedbackId recorded_ast_id_; 979 buffer_space()980 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 981 982 // Decode branch instruction at pos and return branch target pos. 983 int target_at(int32_t pos); 984 985 // Patch branch instruction at pos to branch to given branch target pos. 986 void target_at_put(int32_t pos, int32_t target_pos); 987 988 // Say if we need to relocate with this mode. 989 bool MustUseReg(RelocInfo::Mode rmode); 990 991 // Record reloc info for current pc_. 992 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 993 994 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)995 void BlockTrampolinePoolBefore(int pc_offset) { 996 if (no_trampoline_pool_before_ < pc_offset) 997 no_trampoline_pool_before_ = pc_offset; 998 } 999 StartBlockTrampolinePool()1000 void StartBlockTrampolinePool() { 1001 trampoline_pool_blocked_nesting_++; 1002 } 1003 EndBlockTrampolinePool()1004 void EndBlockTrampolinePool() { 1005 trampoline_pool_blocked_nesting_--; 1006 } 1007 is_trampoline_pool_blocked()1008 bool is_trampoline_pool_blocked() const { 1009 return trampoline_pool_blocked_nesting_ > 0; 1010 } 1011 has_exception()1012 bool has_exception() const { 1013 return internal_trampoline_exception_; 1014 } 1015 1016 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1017 is_trampoline_emitted()1018 bool is_trampoline_emitted() const { 1019 return trampoline_emitted_; 1020 } 1021 1022 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1023 void StartBlockGrowBuffer() { 1024 ASSERT(!block_buffer_growth_); 1025 block_buffer_growth_ = true; 1026 } 1027 EndBlockGrowBuffer()1028 void EndBlockGrowBuffer() { 1029 ASSERT(block_buffer_growth_); 1030 block_buffer_growth_ = false; 1031 } 1032 is_buffer_growth_blocked()1033 bool is_buffer_growth_blocked() const { 1034 return block_buffer_growth_; 1035 } 1036 1037 private: 1038 // Buffer size and constant pool distance are checked together at regular 1039 // intervals of kBufferCheckInterval emitted bytes. 1040 static const int kBufferCheckInterval = 1*KB/2; 1041 1042 // Code generation. 1043 // The relocation writer's position is at least kGap bytes below the end of 1044 // the generated instructions. This is so that multi-instruction sequences do 1045 // not have to check for overflow. The same is true for writes of large 1046 // relocation info entries. 1047 static const int kGap = 32; 1048 1049 1050 // Repeated checking whether the trampoline pool should be emitted is rather 1051 // expensive. By default we only check again once a number of instructions 1052 // has been generated. 1053 static const int kCheckConstIntervalInst = 32; 1054 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1055 1056 int next_buffer_check_; // pc offset of next buffer check. 1057 1058 // Emission of the trampoline pool may be blocked in some code sequences. 1059 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1060 int no_trampoline_pool_before_; // Block emission before this pc offset. 1061 1062 // Keep track of the last emitted pool to guarantee a maximal distance. 1063 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1064 1065 // Automatic growth of the assembly buffer may be blocked for some sequences. 1066 bool block_buffer_growth_; // Block growth when true. 1067 1068 // Relocation information generation. 1069 // Each relocation is encoded as a variable size value. 1070 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1071 RelocInfoWriter reloc_info_writer; 1072 1073 // The bound position, before this we cannot do instruction elimination. 1074 int last_bound_pos_; 1075 1076 // Code emission. 1077 inline void CheckBuffer(); 1078 void GrowBuffer(); 1079 inline void emit(Instr x); 1080 inline void CheckTrampolinePoolQuick(); 1081 1082 // Instruction generation. 1083 // We have 3 different kind of encoding layout on MIPS. 1084 // However due to many different types of objects encoded in the same fields 1085 // we have quite a few aliases for each mode. 1086 // Using the same structure to refer to Register and FPURegister would spare a 1087 // few aliases, but mixing both does not look clean to me. 1088 // Anyway we could surely implement this differently. 1089 1090 void GenInstrRegister(Opcode opcode, 1091 Register rs, 1092 Register rt, 1093 Register rd, 1094 uint16_t sa = 0, 1095 SecondaryField func = NULLSF); 1096 1097 void GenInstrRegister(Opcode opcode, 1098 Register rs, 1099 Register rt, 1100 uint16_t msb, 1101 uint16_t lsb, 1102 SecondaryField func); 1103 1104 void GenInstrRegister(Opcode opcode, 1105 SecondaryField fmt, 1106 FPURegister ft, 1107 FPURegister fs, 1108 FPURegister fd, 1109 SecondaryField func = NULLSF); 1110 1111 void GenInstrRegister(Opcode opcode, 1112 FPURegister fr, 1113 FPURegister ft, 1114 FPURegister fs, 1115 FPURegister fd, 1116 SecondaryField func = NULLSF); 1117 1118 void GenInstrRegister(Opcode opcode, 1119 SecondaryField fmt, 1120 Register rt, 1121 FPURegister fs, 1122 FPURegister fd, 1123 SecondaryField func = NULLSF); 1124 1125 void GenInstrRegister(Opcode opcode, 1126 SecondaryField fmt, 1127 Register rt, 1128 FPUControlRegister fs, 1129 SecondaryField func = NULLSF); 1130 1131 1132 void GenInstrImmediate(Opcode opcode, 1133 Register rs, 1134 Register rt, 1135 int32_t j); 1136 void GenInstrImmediate(Opcode opcode, 1137 Register rs, 1138 SecondaryField SF, 1139 int32_t j); 1140 void GenInstrImmediate(Opcode opcode, 1141 Register r1, 1142 FPURegister r2, 1143 int32_t j); 1144 1145 1146 void GenInstrJump(Opcode opcode, 1147 uint32_t address); 1148 1149 // Helpers. 1150 void LoadRegPlusOffsetToAt(const MemOperand& src); 1151 1152 // Labels. 1153 void print(Label* L); 1154 void bind_to(Label* L, int pos); 1155 void next(Label* L); 1156 1157 // One trampoline consists of: 1158 // - space for trampoline slots, 1159 // - space for labels. 1160 // 1161 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1162 // Space for trampoline slots preceeds space for labels. Each label is of one 1163 // instruction size, so total amount for labels is equal to 1164 // label_count * kInstrSize. 1165 class Trampoline { 1166 public: Trampoline()1167 Trampoline() { 1168 start_ = 0; 1169 next_slot_ = 0; 1170 free_slot_count_ = 0; 1171 end_ = 0; 1172 } Trampoline(int start,int slot_count)1173 Trampoline(int start, int slot_count) { 1174 start_ = start; 1175 next_slot_ = start; 1176 free_slot_count_ = slot_count; 1177 end_ = start + slot_count * kTrampolineSlotsSize; 1178 } start()1179 int start() { 1180 return start_; 1181 } end()1182 int end() { 1183 return end_; 1184 } take_slot()1185 int take_slot() { 1186 int trampoline_slot = kInvalidSlotPos; 1187 if (free_slot_count_ <= 0) { 1188 // We have run out of space on trampolines. 1189 // Make sure we fail in debug mode, so we become aware of each case 1190 // when this happens. 1191 ASSERT(0); 1192 // Internal exception will be caught. 1193 } else { 1194 trampoline_slot = next_slot_; 1195 free_slot_count_--; 1196 next_slot_ += kTrampolineSlotsSize; 1197 } 1198 return trampoline_slot; 1199 } 1200 1201 private: 1202 int start_; 1203 int end_; 1204 int next_slot_; 1205 int free_slot_count_; 1206 }; 1207 1208 int32_t get_trampoline_entry(int32_t pos); 1209 int unbound_labels_count_; 1210 // If trampoline is emitted, generated code is becoming large. As this is 1211 // already a slow case which can possibly break our code generation for the 1212 // extreme case, we use this information to trigger different mode of 1213 // branch instruction generation, where we use jump instructions rather 1214 // than regular branch instructions. 1215 bool trampoline_emitted_; 1216 static const int kTrampolineSlotsSize = 4 * kInstrSize; 1217 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1218 static const int kInvalidSlotPos = -1; 1219 1220 Trampoline trampoline_; 1221 bool internal_trampoline_exception_; 1222 1223 friend class RegExpMacroAssemblerMIPS; 1224 friend class RelocInfo; 1225 friend class CodePatcher; 1226 friend class BlockTrampolinePoolScope; 1227 1228 PositionsRecorder positions_recorder_; 1229 friend class PositionsRecorder; 1230 friend class EnsureSpace; 1231 }; 1232 1233 1234 class EnsureSpace BASE_EMBEDDED { 1235 public: EnsureSpace(Assembler * assembler)1236 explicit EnsureSpace(Assembler* assembler) { 1237 assembler->CheckBuffer(); 1238 } 1239 }; 1240 1241 } } // namespace v8::internal 1242 1243 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1244