1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main file (entry points) for the TSan run-time.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27
28 #ifdef __SSE3__
29 // <emmintrin.h> transitively includes <stdlib.h>,
30 // and it's prohibited to include std headers into tsan runtime.
31 // So we do this dirty trick.
32 #define _MM_MALLOC_H_INCLUDED
33 #define __MM_MALLOC_H
34 #include <emmintrin.h>
35 typedef __m128i m128;
36 #endif
37
38 volatile int __tsan_resumed = 0;
39
__tsan_resume()40 extern "C" void __tsan_resume() {
41 __tsan_resumed = 1;
42 }
43
44 namespace __tsan {
45
46 #ifndef TSAN_GO
47 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
48 #endif
49 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
50 Context *ctx;
51
52 // Can be overriden by a front-end.
53 #ifdef TSAN_EXTERNAL_HOOKS
54 bool OnFinalize(bool failed);
55 void OnInitialize();
56 #else
57 SANITIZER_INTERFACE_ATTRIBUTE
OnFinalize(bool failed)58 bool WEAK OnFinalize(bool failed) {
59 return failed;
60 }
61 SANITIZER_INTERFACE_ATTRIBUTE
OnInitialize()62 void WEAK OnInitialize() {}
63 #endif
64
65 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
66
CreateThreadContext(u32 tid)67 static ThreadContextBase *CreateThreadContext(u32 tid) {
68 // Map thread trace when context is created.
69 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
70 MapThreadTrace(GetThreadTraceHeader(tid), sizeof(Trace));
71 new(ThreadTrace(tid)) Trace();
72 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
73 return new(mem) ThreadContext(tid);
74 }
75
76 #ifndef TSAN_GO
77 static const u32 kThreadQuarantineSize = 16;
78 #else
79 static const u32 kThreadQuarantineSize = 64;
80 #endif
81
Context()82 Context::Context()
83 : initialized()
84 , report_mtx(MutexTypeReport, StatMtxReport)
85 , nreported()
86 , nmissed_expected()
87 , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
88 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
89 , racy_stacks(MBlockRacyStacks)
90 , racy_addresses(MBlockRacyAddresses)
91 , fired_suppressions(8) {
92 }
93
94 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,unsigned reuse_count,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)95 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
96 unsigned reuse_count,
97 uptr stk_addr, uptr stk_size,
98 uptr tls_addr, uptr tls_size)
99 : fast_state(tid, epoch)
100 // Do not touch these, rely on zero initialization,
101 // they may be accessed before the ctor.
102 // , ignore_reads_and_writes()
103 // , ignore_interceptors()
104 , clock(tid, reuse_count)
105 #ifndef TSAN_GO
106 , jmp_bufs(MBlockJmpBuf)
107 #endif
108 , tid(tid)
109 , unique_id(unique_id)
110 , stk_addr(stk_addr)
111 , stk_size(stk_size)
112 , tls_addr(tls_addr)
113 , tls_size(tls_size)
114 #ifndef TSAN_GO
115 , last_sleep_clock(tid)
116 #endif
117 {
118 }
119
MemoryProfiler(Context * ctx,fd_t fd,int i)120 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
121 uptr n_threads;
122 uptr n_running_threads;
123 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
124 InternalScopedBuffer<char> buf(4096);
125 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
126 internal_write(fd, buf.data(), internal_strlen(buf.data()));
127 }
128
BackgroundThread(void * arg)129 static void BackgroundThread(void *arg) {
130 #ifndef TSAN_GO
131 // This is a non-initialized non-user thread, nothing to see here.
132 // We don't use ScopedIgnoreInterceptors, because we want ignores to be
133 // enabled even when the thread function exits (e.g. during pthread thread
134 // shutdown code).
135 cur_thread()->ignore_interceptors++;
136 #endif
137 const u64 kMs2Ns = 1000 * 1000;
138
139 fd_t mprof_fd = kInvalidFd;
140 if (flags()->profile_memory && flags()->profile_memory[0]) {
141 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
142 mprof_fd = 1;
143 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
144 mprof_fd = 2;
145 } else {
146 InternalScopedBuffer<char> filename(4096);
147 internal_snprintf(filename.data(), filename.size(), "%s.%d",
148 flags()->profile_memory, (int)internal_getpid());
149 uptr openrv = OpenFile(filename.data(), true);
150 if (internal_iserror(openrv)) {
151 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
152 &filename[0]);
153 } else {
154 mprof_fd = openrv;
155 }
156 }
157 }
158
159 u64 last_flush = NanoTime();
160 u64 last_rss_check = NanoTime();
161 uptr last_rss = 0;
162 for (int i = 0;
163 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
164 i++) {
165 SleepForMillis(100);
166 u64 now = NanoTime();
167
168 // Flush memory if requested.
169 if (flags()->flush_memory_ms > 0) {
170 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
171 if (flags()->verbosity > 0)
172 Printf("ThreadSanitizer: periodic memory flush\n");
173 FlushShadowMemory();
174 last_flush = NanoTime();
175 }
176 }
177 // GetRSS can be expensive on huge programs, so don't do it every 100ms.
178 if (flags()->memory_limit_mb > 0 && last_rss_check + 1000 * kMs2Ns < now) {
179 last_rss_check = now;
180 uptr rss = GetRSS();
181 uptr limit = uptr(flags()->memory_limit_mb) << 20;
182 if (flags()->verbosity > 0) {
183 Printf("ThreadSanitizer: memory flush check"
184 " RSS=%llu LAST=%llu LIMIT=%llu\n",
185 (u64)rss>>20, (u64)last_rss>>20, (u64)limit>>20);
186 }
187 if (2 * rss > limit + last_rss) {
188 if (flags()->verbosity > 0)
189 Printf("ThreadSanitizer: flushing memory due to RSS\n");
190 FlushShadowMemory();
191 rss = GetRSS();
192 if (flags()->verbosity > 0)
193 Printf("ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
194 }
195 last_rss = rss;
196 }
197
198 // Write memory profile if requested.
199 if (mprof_fd != kInvalidFd)
200 MemoryProfiler(ctx, mprof_fd, i);
201
202 #ifndef TSAN_GO
203 // Flush symbolizer cache if requested.
204 if (flags()->flush_symbolizer_ms > 0) {
205 u64 last = atomic_load(&ctx->last_symbolize_time_ns,
206 memory_order_relaxed);
207 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
208 Lock l(&ctx->report_mtx);
209 SpinMutexLock l2(&CommonSanitizerReportMutex);
210 SymbolizeFlush();
211 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
212 }
213 }
214 #endif
215 }
216 }
217
StartBackgroundThread()218 static void StartBackgroundThread() {
219 ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
220 }
221
222 #ifndef TSAN_GO
StopBackgroundThread()223 static void StopBackgroundThread() {
224 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
225 internal_join_thread(ctx->background_thread);
226 ctx->background_thread = 0;
227 }
228 #endif
229
DontNeedShadowFor(uptr addr,uptr size)230 void DontNeedShadowFor(uptr addr, uptr size) {
231 uptr shadow_beg = MemToShadow(addr);
232 uptr shadow_end = MemToShadow(addr + size);
233 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
234 }
235
MapShadow(uptr addr,uptr size)236 void MapShadow(uptr addr, uptr size) {
237 // Global data is not 64K aligned, but there are no adjacent mappings,
238 // so we can get away with unaligned mapping.
239 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
240 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
241
242 // Meta shadow is 2:1, so tread carefully.
243 static bool data_mapped = false;
244 static uptr mapped_meta_end = 0;
245 uptr meta_begin = (uptr)MemToMeta(addr);
246 uptr meta_end = (uptr)MemToMeta(addr + size);
247 meta_begin = RoundDownTo(meta_begin, 64 << 10);
248 meta_end = RoundUpTo(meta_end, 64 << 10);
249 if (!data_mapped) {
250 // First call maps data+bss.
251 data_mapped = true;
252 MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
253 } else {
254 // Mapping continous heap.
255 // Windows wants 64K alignment.
256 meta_begin = RoundDownTo(meta_begin, 64 << 10);
257 meta_end = RoundUpTo(meta_end, 64 << 10);
258 if (meta_end <= mapped_meta_end)
259 return;
260 if (meta_begin < mapped_meta_end)
261 meta_begin = mapped_meta_end;
262 MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
263 mapped_meta_end = meta_end;
264 }
265 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
266 addr, addr+size, meta_begin, meta_end);
267 }
268
MapThreadTrace(uptr addr,uptr size)269 void MapThreadTrace(uptr addr, uptr size) {
270 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
271 CHECK_GE(addr, kTraceMemBegin);
272 CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize);
273 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
274 uptr addr1 = (uptr)MmapFixedNoReserve(addr, size);
275 if (addr1 != addr) {
276 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
277 addr, size, addr1);
278 Die();
279 }
280 }
281
Initialize(ThreadState * thr)282 void Initialize(ThreadState *thr) {
283 // Thread safe because done before all threads exist.
284 static bool is_initialized = false;
285 if (is_initialized)
286 return;
287 is_initialized = true;
288 // We are not ready to handle interceptors yet.
289 ScopedIgnoreInterceptors ignore;
290 SanitizerToolName = "ThreadSanitizer";
291 // Install tool-specific callbacks in sanitizer_common.
292 SetCheckFailedCallback(TsanCheckFailed);
293
294 #ifndef TSAN_GO
295 InitializeAllocator();
296 #endif
297 InitializeInterceptors();
298 const char *env = InitializePlatform();
299 InitializeMutex();
300 InitializeDynamicAnnotations();
301 ctx = new(ctx_placeholder) Context;
302 #ifndef TSAN_GO
303 InitializeShadowMemory();
304 #endif
305 InitializeFlags(&ctx->flags, env);
306 // Setup correct file descriptor for error reports.
307 __sanitizer_set_report_path(flags()->log_path);
308 InitializeSuppressions();
309 #ifndef TSAN_GO
310 InitializeLibIgnore();
311 Symbolizer::Init(common_flags()->external_symbolizer_path);
312 Symbolizer::Get()->AddHooks(EnterSymbolizer, ExitSymbolizer);
313 #endif
314 StartBackgroundThread();
315 #ifndef TSAN_GO
316 SetSandboxingCallback(StopBackgroundThread);
317 #endif
318 if (flags()->detect_deadlocks)
319 ctx->dd = DDetector::Create(flags());
320
321 if (ctx->flags.verbosity)
322 Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n",
323 (int)internal_getpid());
324
325 // Initialize thread 0.
326 int tid = ThreadCreate(thr, 0, 0, true);
327 CHECK_EQ(tid, 0);
328 ThreadStart(thr, tid, internal_getpid());
329 ctx->initialized = true;
330
331 if (flags()->stop_on_start) {
332 Printf("ThreadSanitizer is suspended at startup (pid %d)."
333 " Call __tsan_resume().\n",
334 (int)internal_getpid());
335 while (__tsan_resumed == 0) {}
336 }
337
338 OnInitialize();
339 }
340
Finalize(ThreadState * thr)341 int Finalize(ThreadState *thr) {
342 Context *ctx = __tsan::ctx;
343 bool failed = false;
344
345 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
346 SleepForMillis(flags()->atexit_sleep_ms);
347
348 // Wait for pending reports.
349 ctx->report_mtx.Lock();
350 CommonSanitizerReportMutex.Lock();
351 CommonSanitizerReportMutex.Unlock();
352 ctx->report_mtx.Unlock();
353
354 #ifndef TSAN_GO
355 if (ctx->flags.verbosity)
356 AllocatorPrintStats();
357 #endif
358
359 ThreadFinalize(thr);
360
361 if (ctx->nreported) {
362 failed = true;
363 #ifndef TSAN_GO
364 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
365 #else
366 Printf("Found %d data race(s)\n", ctx->nreported);
367 #endif
368 }
369
370 if (ctx->nmissed_expected) {
371 failed = true;
372 Printf("ThreadSanitizer: missed %d expected races\n",
373 ctx->nmissed_expected);
374 }
375
376 if (flags()->print_suppressions)
377 PrintMatchedSuppressions();
378 #ifndef TSAN_GO
379 if (flags()->print_benign)
380 PrintMatchedBenignRaces();
381 #endif
382
383 failed = OnFinalize(failed);
384
385 StatAggregate(ctx->stat, thr->stat);
386 StatOutput(ctx->stat);
387 return failed ? flags()->exitcode : 0;
388 }
389
390 #ifndef TSAN_GO
ForkBefore(ThreadState * thr,uptr pc)391 void ForkBefore(ThreadState *thr, uptr pc) {
392 ctx->thread_registry->Lock();
393 ctx->report_mtx.Lock();
394 }
395
ForkParentAfter(ThreadState * thr,uptr pc)396 void ForkParentAfter(ThreadState *thr, uptr pc) {
397 ctx->report_mtx.Unlock();
398 ctx->thread_registry->Unlock();
399 }
400
ForkChildAfter(ThreadState * thr,uptr pc)401 void ForkChildAfter(ThreadState *thr, uptr pc) {
402 ctx->report_mtx.Unlock();
403 ctx->thread_registry->Unlock();
404
405 uptr nthread = 0;
406 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
407 VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
408 " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
409 if (nthread == 1) {
410 internal_start_thread(&BackgroundThread, 0);
411 } else {
412 // We've just forked a multi-threaded process. We cannot reasonably function
413 // after that (some mutexes may be locked before fork). So just enable
414 // ignores for everything in the hope that we will exec soon.
415 ctx->after_multithreaded_fork = true;
416 thr->ignore_interceptors++;
417 ThreadIgnoreBegin(thr, pc);
418 ThreadIgnoreSyncBegin(thr, pc);
419 }
420 }
421 #endif
422
423 #ifdef TSAN_GO
424 NOINLINE
GrowShadowStack(ThreadState * thr)425 void GrowShadowStack(ThreadState *thr) {
426 const int sz = thr->shadow_stack_end - thr->shadow_stack;
427 const int newsz = 2 * sz;
428 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
429 newsz * sizeof(uptr));
430 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
431 internal_free(thr->shadow_stack);
432 thr->shadow_stack = newstack;
433 thr->shadow_stack_pos = newstack + sz;
434 thr->shadow_stack_end = newstack + newsz;
435 }
436 #endif
437
CurrentStackId(ThreadState * thr,uptr pc)438 u32 CurrentStackId(ThreadState *thr, uptr pc) {
439 if (thr->shadow_stack_pos == 0) // May happen during bootstrap.
440 return 0;
441 if (pc != 0) {
442 #ifndef TSAN_GO
443 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
444 #else
445 if (thr->shadow_stack_pos == thr->shadow_stack_end)
446 GrowShadowStack(thr);
447 #endif
448 thr->shadow_stack_pos[0] = pc;
449 thr->shadow_stack_pos++;
450 }
451 u32 id = StackDepotPut(thr->shadow_stack,
452 thr->shadow_stack_pos - thr->shadow_stack);
453 if (pc != 0)
454 thr->shadow_stack_pos--;
455 return id;
456 }
457
TraceSwitch(ThreadState * thr)458 void TraceSwitch(ThreadState *thr) {
459 thr->nomalloc++;
460 Trace *thr_trace = ThreadTrace(thr->tid);
461 Lock l(&thr_trace->mtx);
462 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
463 TraceHeader *hdr = &thr_trace->headers[trace];
464 hdr->epoch0 = thr->fast_state.epoch();
465 hdr->stack0.ObtainCurrent(thr, 0);
466 hdr->mset0 = thr->mset;
467 thr->nomalloc--;
468 }
469
ThreadTrace(int tid)470 Trace *ThreadTrace(int tid) {
471 return (Trace*)GetThreadTraceHeader(tid);
472 }
473
TraceTopPC(ThreadState * thr)474 uptr TraceTopPC(ThreadState *thr) {
475 Event *events = (Event*)GetThreadTrace(thr->tid);
476 uptr pc = events[thr->fast_state.GetTracePos()];
477 return pc;
478 }
479
TraceSize()480 uptr TraceSize() {
481 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
482 }
483
TraceParts()484 uptr TraceParts() {
485 return TraceSize() / kTracePartSize;
486 }
487
488 #ifndef TSAN_GO
__tsan_trace_switch()489 extern "C" void __tsan_trace_switch() {
490 TraceSwitch(cur_thread());
491 }
492
__tsan_report_race()493 extern "C" void __tsan_report_race() {
494 ReportRace(cur_thread());
495 }
496 #endif
497
498 ALWAYS_INLINE
LoadShadow(u64 * p)499 Shadow LoadShadow(u64 *p) {
500 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
501 return Shadow(raw);
502 }
503
504 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)505 void StoreShadow(u64 *sp, u64 s) {
506 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
507 }
508
509 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)510 void StoreIfNotYetStored(u64 *sp, u64 *s) {
511 StoreShadow(sp, *s);
512 *s = 0;
513 }
514
515 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)516 void HandleRace(ThreadState *thr, u64 *shadow_mem,
517 Shadow cur, Shadow old) {
518 thr->racy_state[0] = cur.raw();
519 thr->racy_state[1] = old.raw();
520 thr->racy_shadow_addr = shadow_mem;
521 #ifndef TSAN_GO
522 HACKY_CALL(__tsan_report_race);
523 #else
524 ReportRace(thr);
525 #endif
526 }
527
HappensBefore(Shadow old,ThreadState * thr)528 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
529 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
530 }
531
532 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)533 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
534 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
535 u64 *shadow_mem, Shadow cur) {
536 StatInc(thr, StatMop);
537 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
538 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
539
540 // This potentially can live in an MMX/SSE scratch register.
541 // The required intrinsics are:
542 // __m128i _mm_move_epi64(__m128i*);
543 // _mm_storel_epi64(u64*, __m128i);
544 u64 store_word = cur.raw();
545
546 // scan all the shadow values and dispatch to 4 categories:
547 // same, replace, candidate and race (see comments below).
548 // we consider only 3 cases regarding access sizes:
549 // equal, intersect and not intersect. initially I considered
550 // larger and smaller as well, it allowed to replace some
551 // 'candidates' with 'same' or 'replace', but I think
552 // it's just not worth it (performance- and complexity-wise).
553
554 Shadow old(0);
555 if (kShadowCnt == 1) {
556 int idx = 0;
557 #include "tsan_update_shadow_word_inl.h"
558 } else if (kShadowCnt == 2) {
559 int idx = 0;
560 #include "tsan_update_shadow_word_inl.h"
561 idx = 1;
562 #include "tsan_update_shadow_word_inl.h"
563 } else if (kShadowCnt == 4) {
564 int idx = 0;
565 #include "tsan_update_shadow_word_inl.h"
566 idx = 1;
567 #include "tsan_update_shadow_word_inl.h"
568 idx = 2;
569 #include "tsan_update_shadow_word_inl.h"
570 idx = 3;
571 #include "tsan_update_shadow_word_inl.h"
572 } else if (kShadowCnt == 8) {
573 int idx = 0;
574 #include "tsan_update_shadow_word_inl.h"
575 idx = 1;
576 #include "tsan_update_shadow_word_inl.h"
577 idx = 2;
578 #include "tsan_update_shadow_word_inl.h"
579 idx = 3;
580 #include "tsan_update_shadow_word_inl.h"
581 idx = 4;
582 #include "tsan_update_shadow_word_inl.h"
583 idx = 5;
584 #include "tsan_update_shadow_word_inl.h"
585 idx = 6;
586 #include "tsan_update_shadow_word_inl.h"
587 idx = 7;
588 #include "tsan_update_shadow_word_inl.h"
589 } else {
590 CHECK(false);
591 }
592
593 // we did not find any races and had already stored
594 // the current access info, so we are done
595 if (LIKELY(store_word == 0))
596 return;
597 // choose a random candidate slot and replace it
598 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
599 StatInc(thr, StatShadowReplace);
600 return;
601 RACE:
602 HandleRace(thr, shadow_mem, cur, old);
603 return;
604 }
605
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)606 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
607 int size, bool kAccessIsWrite, bool kIsAtomic) {
608 while (size) {
609 int size1 = 1;
610 int kAccessSizeLog = kSizeLog1;
611 if (size >= 8 && (addr & ~7) == ((addr + 8) & ~7)) {
612 size1 = 8;
613 kAccessSizeLog = kSizeLog8;
614 } else if (size >= 4 && (addr & ~7) == ((addr + 4) & ~7)) {
615 size1 = 4;
616 kAccessSizeLog = kSizeLog4;
617 } else if (size >= 2 && (addr & ~7) == ((addr + 2) & ~7)) {
618 size1 = 2;
619 kAccessSizeLog = kSizeLog2;
620 }
621 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
622 addr += size1;
623 size -= size1;
624 }
625 }
626
627 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)628 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
629 Shadow cur(a);
630 for (uptr i = 0; i < kShadowCnt; i++) {
631 Shadow old(LoadShadow(&s[i]));
632 if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
633 old.TidWithIgnore() == cur.TidWithIgnore() &&
634 old.epoch() > sync_epoch &&
635 old.IsAtomic() == cur.IsAtomic() &&
636 old.IsRead() <= cur.IsRead())
637 return true;
638 }
639 return false;
640 }
641
642 #if defined(__SSE3__) && TSAN_SHADOW_COUNT == 4
643 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
644 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
645 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
646 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)647 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
648 // This is an optimized version of ContainsSameAccessSlow.
649 // load current access into access[0:63]
650 const m128 access = _mm_cvtsi64_si128(a);
651 // duplicate high part of access in addr0:
652 // addr0[0:31] = access[32:63]
653 // addr0[32:63] = access[32:63]
654 // addr0[64:95] = access[32:63]
655 // addr0[96:127] = access[32:63]
656 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
657 // load 4 shadow slots
658 const m128 shadow0 = _mm_load_si128((__m128i*)s);
659 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1);
660 // load high parts of 4 shadow slots into addr_vect:
661 // addr_vect[0:31] = shadow0[32:63]
662 // addr_vect[32:63] = shadow0[96:127]
663 // addr_vect[64:95] = shadow1[32:63]
664 // addr_vect[96:127] = shadow1[96:127]
665 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
666 if (!is_write) {
667 // set IsRead bit in addr_vect
668 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
669 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
670 addr_vect = _mm_or_si128(addr_vect, rw_mask);
671 }
672 // addr0 == addr_vect?
673 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
674 // epoch1[0:63] = sync_epoch
675 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
676 // epoch[0:31] = sync_epoch[0:31]
677 // epoch[32:63] = sync_epoch[0:31]
678 // epoch[64:95] = sync_epoch[0:31]
679 // epoch[96:127] = sync_epoch[0:31]
680 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
681 // load low parts of shadow cell epochs into epoch_vect:
682 // epoch_vect[0:31] = shadow0[0:31]
683 // epoch_vect[32:63] = shadow0[64:95]
684 // epoch_vect[64:95] = shadow1[0:31]
685 // epoch_vect[96:127] = shadow1[64:95]
686 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
687 // epoch_vect >= sync_epoch?
688 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
689 // addr_res & epoch_res
690 const m128 res = _mm_and_si128(addr_res, epoch_res);
691 // mask[0] = res[7]
692 // mask[1] = res[15]
693 // ...
694 // mask[15] = res[127]
695 const int mask = _mm_movemask_epi8(res);
696 return mask != 0;
697 }
698 #endif
699
700 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)701 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
702 #if defined(__SSE3__) && TSAN_SHADOW_COUNT == 4
703 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
704 DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
705 return res;
706 #else
707 return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
708 #endif
709 }
710
711 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)712 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
713 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
714 u64 *shadow_mem = (u64*)MemToShadow(addr);
715 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
716 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
717 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
718 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
719 (uptr)shadow_mem[0], (uptr)shadow_mem[1],
720 (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
721 #if TSAN_DEBUG
722 if (!IsAppMem(addr)) {
723 Printf("Access to non app mem %zx\n", addr);
724 DCHECK(IsAppMem(addr));
725 }
726 if (!IsShadowMem((uptr)shadow_mem)) {
727 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
728 DCHECK(IsShadowMem((uptr)shadow_mem));
729 }
730 #endif
731
732 if (kCppMode && *shadow_mem == kShadowRodata) {
733 // Access to .rodata section, no races here.
734 // Measurements show that it can be 10-20% of all memory accesses.
735 StatInc(thr, StatMop);
736 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
737 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
738 StatInc(thr, StatMopRodata);
739 return;
740 }
741
742 FastState fast_state = thr->fast_state;
743 if (fast_state.GetIgnoreBit()) {
744 StatInc(thr, StatMop);
745 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
746 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
747 StatInc(thr, StatMopIgnored);
748 return;
749 }
750
751 Shadow cur(fast_state);
752 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
753 cur.SetWrite(kAccessIsWrite);
754 cur.SetAtomic(kIsAtomic);
755
756 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
757 thr->fast_synch_epoch, kAccessIsWrite))) {
758 StatInc(thr, StatMop);
759 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
760 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
761 StatInc(thr, StatMopSame);
762 return;
763 }
764
765 if (kCollectHistory) {
766 fast_state.IncrementEpoch();
767 thr->fast_state = fast_state;
768 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
769 cur.IncrementEpoch();
770 }
771
772 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
773 shadow_mem, cur);
774 }
775
776 // Called by MemoryAccessRange in tsan_rtl_thread.cc
777 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)778 void MemoryAccessImpl(ThreadState *thr, uptr addr,
779 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
780 u64 *shadow_mem, Shadow cur) {
781 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
782 thr->fast_synch_epoch, kAccessIsWrite))) {
783 StatInc(thr, StatMop);
784 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
785 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
786 StatInc(thr, StatMopSame);
787 return;
788 }
789
790 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
791 shadow_mem, cur);
792 }
793
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)794 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
795 u64 val) {
796 (void)thr;
797 (void)pc;
798 if (size == 0)
799 return;
800 // FIXME: fix me.
801 uptr offset = addr % kShadowCell;
802 if (offset) {
803 offset = kShadowCell - offset;
804 if (size <= offset)
805 return;
806 addr += offset;
807 size -= offset;
808 }
809 DCHECK_EQ(addr % 8, 0);
810 // If a user passes some insane arguments (memset(0)),
811 // let it just crash as usual.
812 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
813 return;
814 // Don't want to touch lots of shadow memory.
815 // If a program maps 10MB stack, there is no need reset the whole range.
816 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
817 // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
818 // so we do it only for C/C++.
819 if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
820 u64 *p = (u64*)MemToShadow(addr);
821 CHECK(IsShadowMem((uptr)p));
822 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
823 // FIXME: may overwrite a part outside the region
824 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
825 p[i++] = val;
826 for (uptr j = 1; j < kShadowCnt; j++)
827 p[i++] = 0;
828 }
829 } else {
830 // The region is big, reset only beginning and end.
831 const uptr kPageSize = 4096;
832 u64 *begin = (u64*)MemToShadow(addr);
833 u64 *end = begin + size / kShadowCell * kShadowCnt;
834 u64 *p = begin;
835 // Set at least first kPageSize/2 to page boundary.
836 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
837 *p++ = val;
838 for (uptr j = 1; j < kShadowCnt; j++)
839 *p++ = 0;
840 }
841 // Reset middle part.
842 u64 *p1 = p;
843 p = RoundDown(end, kPageSize);
844 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
845 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
846 // Set the ending.
847 while (p < end) {
848 *p++ = val;
849 for (uptr j = 1; j < kShadowCnt; j++)
850 *p++ = 0;
851 }
852 }
853 }
854
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)855 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
856 MemoryRangeSet(thr, pc, addr, size, 0);
857 }
858
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)859 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
860 // Processing more than 1k (4k of shadow) is expensive,
861 // can cause excessive memory consumption (user does not necessary touch
862 // the whole range) and most likely unnecessary.
863 if (size > 1024)
864 size = 1024;
865 CHECK_EQ(thr->is_freeing, false);
866 thr->is_freeing = true;
867 MemoryAccessRange(thr, pc, addr, size, true);
868 thr->is_freeing = false;
869 if (kCollectHistory) {
870 thr->fast_state.IncrementEpoch();
871 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
872 }
873 Shadow s(thr->fast_state);
874 s.ClearIgnoreBit();
875 s.MarkAsFreed();
876 s.SetWrite(true);
877 s.SetAddr0AndSizeLog(0, 3);
878 MemoryRangeSet(thr, pc, addr, size, s.raw());
879 }
880
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)881 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
882 if (kCollectHistory) {
883 thr->fast_state.IncrementEpoch();
884 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
885 }
886 Shadow s(thr->fast_state);
887 s.ClearIgnoreBit();
888 s.SetWrite(true);
889 s.SetAddr0AndSizeLog(0, 3);
890 MemoryRangeSet(thr, pc, addr, size, s.raw());
891 }
892
893 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)894 void FuncEntry(ThreadState *thr, uptr pc) {
895 StatInc(thr, StatFuncEnter);
896 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
897 if (kCollectHistory) {
898 thr->fast_state.IncrementEpoch();
899 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
900 }
901
902 // Shadow stack maintenance can be replaced with
903 // stack unwinding during trace switch (which presumably must be faster).
904 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
905 #ifndef TSAN_GO
906 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
907 #else
908 if (thr->shadow_stack_pos == thr->shadow_stack_end)
909 GrowShadowStack(thr);
910 #endif
911 thr->shadow_stack_pos[0] = pc;
912 thr->shadow_stack_pos++;
913 }
914
915 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)916 void FuncExit(ThreadState *thr) {
917 StatInc(thr, StatFuncExit);
918 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
919 if (kCollectHistory) {
920 thr->fast_state.IncrementEpoch();
921 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
922 }
923
924 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
925 #ifndef TSAN_GO
926 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
927 #endif
928 thr->shadow_stack_pos--;
929 }
930
ThreadIgnoreBegin(ThreadState * thr,uptr pc)931 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
932 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
933 thr->ignore_reads_and_writes++;
934 CHECK_GT(thr->ignore_reads_and_writes, 0);
935 thr->fast_state.SetIgnoreBit();
936 #ifndef TSAN_GO
937 if (!ctx->after_multithreaded_fork)
938 thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
939 #endif
940 }
941
ThreadIgnoreEnd(ThreadState * thr,uptr pc)942 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
943 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
944 thr->ignore_reads_and_writes--;
945 CHECK_GE(thr->ignore_reads_and_writes, 0);
946 if (thr->ignore_reads_and_writes == 0) {
947 thr->fast_state.ClearIgnoreBit();
948 #ifndef TSAN_GO
949 thr->mop_ignore_set.Reset();
950 #endif
951 }
952 }
953
ThreadIgnoreSyncBegin(ThreadState * thr,uptr pc)954 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
955 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
956 thr->ignore_sync++;
957 CHECK_GT(thr->ignore_sync, 0);
958 #ifndef TSAN_GO
959 if (!ctx->after_multithreaded_fork)
960 thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
961 #endif
962 }
963
ThreadIgnoreSyncEnd(ThreadState * thr,uptr pc)964 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
965 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
966 thr->ignore_sync--;
967 CHECK_GE(thr->ignore_sync, 0);
968 #ifndef TSAN_GO
969 if (thr->ignore_sync == 0)
970 thr->sync_ignore_set.Reset();
971 #endif
972 }
973
operator ==(const MD5Hash & other) const974 bool MD5Hash::operator==(const MD5Hash &other) const {
975 return hash[0] == other.hash[0] && hash[1] == other.hash[1];
976 }
977
978 #if TSAN_DEBUG
build_consistency_debug()979 void build_consistency_debug() {}
980 #else
build_consistency_release()981 void build_consistency_release() {}
982 #endif
983
984 #if TSAN_COLLECT_STATS
build_consistency_stats()985 void build_consistency_stats() {}
986 #else
build_consistency_nostats()987 void build_consistency_nostats() {}
988 #endif
989
990 #if TSAN_SHADOW_COUNT == 1
build_consistency_shadow1()991 void build_consistency_shadow1() {}
992 #elif TSAN_SHADOW_COUNT == 2
build_consistency_shadow2()993 void build_consistency_shadow2() {}
994 #elif TSAN_SHADOW_COUNT == 4
build_consistency_shadow4()995 void build_consistency_shadow4() {}
996 #else
build_consistency_shadow8()997 void build_consistency_shadow8() {}
998 #endif
999
1000 } // namespace __tsan
1001
1002 #ifndef TSAN_GO
1003 // Must be included in this file to make sure everything is inlined.
1004 #include "tsan_interface_inl.h"
1005 #endif
1006