• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/modules/audio_processing/aecm/aecm_core.h"
12 
13 #include <assert.h>
14 
15 #include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
16 #include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
17 
18 static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
19   0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
20   3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
21   6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
22   9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
23   11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
24   13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
25   15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
26   16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
27 };
28 
29 static const int16_t kNoiseEstQDomain = 15;
30 static const int16_t kNoiseEstIncCount = 5;
31 
32 static int16_t coefTable[] = {
33    0,   4, 256, 260, 128, 132, 384, 388,
34   64,  68, 320, 324, 192, 196, 448, 452,
35   32,  36, 288, 292, 160, 164, 416, 420,
36   96, 100, 352, 356, 224, 228, 480, 484,
37   16,  20, 272, 276, 144, 148, 400, 404,
38   80,  84, 336, 340, 208, 212, 464, 468,
39   48,  52, 304, 308, 176, 180, 432, 436,
40  112, 116, 368, 372, 240, 244, 496, 500,
41    8,  12, 264, 268, 136, 140, 392, 396,
42   72,  76, 328, 332, 200, 204, 456, 460,
43   40,  44, 296, 300, 168, 172, 424, 428,
44  104, 108, 360, 364, 232, 236, 488, 492,
45   24,  28, 280, 284, 152, 156, 408, 412,
46   88,  92, 344, 348, 216, 220, 472, 476,
47   56,  60, 312, 316, 184, 188, 440, 444,
48  120, 124, 376, 380, 248, 252, 504, 508
49 };
50 
51 static int16_t coefTable_ifft[] = {
52     0, 512, 256, 508, 128, 252, 384, 380,
53    64, 124, 320, 444, 192, 188, 448, 316,
54    32,  60, 288, 476, 160, 220, 416, 348,
55    96,  92, 352, 412, 224, 156, 480, 284,
56    16,  28, 272, 492, 144, 236, 400, 364,
57    80, 108, 336, 428, 208, 172, 464, 300,
58    48,  44, 304, 460, 176, 204, 432, 332,
59   112,  76, 368, 396, 240, 140, 496, 268,
60     8,  12, 264, 500, 136, 244, 392, 372,
61    72, 116, 328, 436, 200, 180, 456, 308,
62    40,  52, 296, 468, 168, 212, 424, 340,
63   104,  84, 360, 404, 232, 148, 488, 276,
64    24,  20, 280, 484, 152, 228, 408, 356,
65    88, 100, 344, 420, 216, 164, 472, 292,
66    56,  36, 312, 452, 184, 196, 440, 324,
67   120,  68, 376, 388, 248, 132, 504, 260
68 };
69 
70 static void ComfortNoise(AecmCore_t* aecm,
71                          const uint16_t* dfa,
72                          complex16_t* out,
73                          const int16_t* lambda);
74 
WindowAndFFT(AecmCore_t * aecm,int16_t * fft,const int16_t * time_signal,complex16_t * freq_signal,int time_signal_scaling)75 static void WindowAndFFT(AecmCore_t* aecm,
76                          int16_t* fft,
77                          const int16_t* time_signal,
78                          complex16_t* freq_signal,
79                          int time_signal_scaling) {
80   int i, j;
81   int32_t tmp1, tmp2, tmp3, tmp4;
82   int16_t* pfrfi;
83   complex16_t* pfreq_signal;
84   int16_t  f_coef, s_coef;
85   int32_t load_ptr, store_ptr1, store_ptr2, shift, shift1;
86   int32_t hann, hann1, coefs;
87 
88   memset(fft, 0, sizeof(int16_t) * PART_LEN4);
89 
90   // FFT of signal
91   __asm __volatile (
92     ".set        push                                                    \n\t"
93     ".set        noreorder                                               \n\t"
94     "addiu       %[shift],          %[time_signal_scaling], -14          \n\t"
95     "addiu       %[i],              $zero,                  64           \n\t"
96     "addiu       %[load_ptr],       %[time_signal],         0            \n\t"
97     "addiu       %[hann],           %[hanning],             0            \n\t"
98     "addiu       %[hann1],          %[hanning],             128          \n\t"
99     "addiu       %[coefs],          %[coefTable],           0            \n\t"
100     "bltz        %[shift],          2f                                   \n\t"
101     " negu       %[shift1],         %[shift]                             \n\t"
102    "1:                                                                   \n\t"
103     "lh          %[tmp1],           0(%[load_ptr])                       \n\t"
104     "lh          %[tmp2],           0(%[hann])                           \n\t"
105     "lh          %[tmp3],           128(%[load_ptr])                     \n\t"
106     "lh          %[tmp4],           0(%[hann1])                          \n\t"
107     "addiu       %[i],              %[i],                   -1           \n\t"
108     "mul         %[tmp1],           %[tmp1],                %[tmp2]      \n\t"
109     "mul         %[tmp3],           %[tmp3],                %[tmp4]      \n\t"
110     "lh          %[f_coef],         0(%[coefs])                          \n\t"
111     "lh          %[s_coef],         2(%[coefs])                          \n\t"
112     "addiu       %[load_ptr],       %[load_ptr],            2            \n\t"
113     "addiu       %[hann],           %[hann],                2            \n\t"
114     "addiu       %[hann1],          %[hann1],               -2           \n\t"
115     "addu        %[store_ptr1],     %[fft],                 %[f_coef]    \n\t"
116     "addu        %[store_ptr2],     %[fft],                 %[s_coef]    \n\t"
117     "sllv        %[tmp1],           %[tmp1],                %[shift]     \n\t"
118     "sllv        %[tmp3],           %[tmp3],                %[shift]     \n\t"
119     "sh          %[tmp1],           0(%[store_ptr1])                     \n\t"
120     "sh          %[tmp3],           0(%[store_ptr2])                     \n\t"
121     "bgtz        %[i],              1b                                   \n\t"
122     " addiu      %[coefs],          %[coefs],               4            \n\t"
123     "b           3f                                                      \n\t"
124     " nop                                                                \n\t"
125    "2:                                                                   \n\t"
126     "lh          %[tmp1],           0(%[load_ptr])                       \n\t"
127     "lh          %[tmp2],           0(%[hann])                           \n\t"
128     "lh          %[tmp3],           128(%[load_ptr])                     \n\t"
129     "lh          %[tmp4],           0(%[hann1])                          \n\t"
130     "addiu       %[i],              %[i],                   -1           \n\t"
131     "mul         %[tmp1],           %[tmp1],                %[tmp2]      \n\t"
132     "mul         %[tmp3],           %[tmp3],                %[tmp4]      \n\t"
133     "lh          %[f_coef],         0(%[coefs])                          \n\t"
134     "lh          %[s_coef],         2(%[coefs])                          \n\t"
135     "addiu       %[load_ptr],       %[load_ptr],            2            \n\t"
136     "addiu       %[hann],           %[hann],                2            \n\t"
137     "addiu       %[hann1],          %[hann1],               -2           \n\t"
138     "addu        %[store_ptr1],     %[fft],                 %[f_coef]    \n\t"
139     "addu        %[store_ptr2],     %[fft],                 %[s_coef]    \n\t"
140     "srav        %[tmp1],           %[tmp1],                %[shift1]    \n\t"
141     "srav        %[tmp3],           %[tmp3],                %[shift1]    \n\t"
142     "sh          %[tmp1],           0(%[store_ptr1])                     \n\t"
143     "sh          %[tmp3],           0(%[store_ptr2])                     \n\t"
144     "bgtz        %[i],              2b                                   \n\t"
145     " addiu      %[coefs],          %[coefs],               4            \n\t"
146    "3:                                                                   \n\t"
147     ".set        pop                                                     \n\t"
148     : [load_ptr] "=&r" (load_ptr), [shift] "=&r" (shift), [hann] "=&r" (hann),
149       [hann1] "=&r" (hann1), [shift1] "=&r" (shift1), [coefs] "=&r" (coefs),
150       [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
151       [tmp4] "=&r" (tmp4), [i] "=&r" (i), [f_coef] "=&r" (f_coef),
152       [s_coef] "=&r" (s_coef), [store_ptr1] "=&r" (store_ptr1),
153       [store_ptr2] "=&r" (store_ptr2)
154     : [time_signal] "r" (time_signal), [coefTable] "r" (coefTable),
155       [time_signal_scaling] "r" (time_signal_scaling),
156       [hanning] "r" (WebRtcAecm_kSqrtHanning), [fft] "r" (fft)
157     : "memory", "hi", "lo"
158   );
159 
160   WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
161   pfrfi = fft;
162   pfreq_signal = freq_signal;
163 
164   __asm __volatile (
165     ".set        push                                                     \n\t"
166     ".set        noreorder                                                \n\t"
167     "addiu       %[j],              $zero,                 128            \n\t"
168    "1:                                                                    \n\t"
169     "lh          %[tmp1],           0(%[pfrfi])                           \n\t"
170     "lh          %[tmp2],           2(%[pfrfi])                           \n\t"
171     "lh          %[tmp3],           4(%[pfrfi])                           \n\t"
172     "lh          %[tmp4],           6(%[pfrfi])                           \n\t"
173     "subu        %[tmp2],           $zero,                 %[tmp2]        \n\t"
174     "sh          %[tmp1],           0(%[pfreq_signal])                    \n\t"
175     "sh          %[tmp2],           2(%[pfreq_signal])                    \n\t"
176     "subu        %[tmp4],           $zero,                 %[tmp4]        \n\t"
177     "sh          %[tmp3],           4(%[pfreq_signal])                    \n\t"
178     "sh          %[tmp4],           6(%[pfreq_signal])                    \n\t"
179     "lh          %[tmp1],           8(%[pfrfi])                           \n\t"
180     "lh          %[tmp2],           10(%[pfrfi])                          \n\t"
181     "lh          %[tmp3],           12(%[pfrfi])                          \n\t"
182     "lh          %[tmp4],           14(%[pfrfi])                          \n\t"
183     "addiu       %[j],              %[j],                  -8             \n\t"
184     "subu        %[tmp2],           $zero,                 %[tmp2]        \n\t"
185     "sh          %[tmp1],           8(%[pfreq_signal])                    \n\t"
186     "sh          %[tmp2],           10(%[pfreq_signal])                   \n\t"
187     "subu        %[tmp4],           $zero,                 %[tmp4]        \n\t"
188     "sh          %[tmp3],           12(%[pfreq_signal])                   \n\t"
189     "sh          %[tmp4],           14(%[pfreq_signal])                   \n\t"
190     "addiu       %[pfreq_signal],   %[pfreq_signal],       16             \n\t"
191     "bgtz        %[j],              1b                                    \n\t"
192     " addiu      %[pfrfi],          %[pfrfi],              16             \n\t"
193     ".set        pop                                                      \n\t"
194     : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [tmp3] "=&r" (tmp3),
195       [j] "=&r" (j), [pfrfi] "+r" (pfrfi), [pfreq_signal] "+r" (pfreq_signal),
196       [tmp4] "=&r" (tmp4)
197     :
198     : "memory"
199   );
200 }
201 
InverseFFTAndWindow(AecmCore_t * aecm,int16_t * fft,complex16_t * efw,int16_t * output,const int16_t * nearendClean)202 static void InverseFFTAndWindow(AecmCore_t* aecm,
203                                 int16_t* fft,
204                                 complex16_t* efw,
205                                 int16_t* output,
206                                 const int16_t* nearendClean) {
207   int i, outCFFT;
208   int32_t tmp1, tmp2, tmp3, tmp4, tmp_re, tmp_im;
209   int16_t* pcoefTable_ifft = coefTable_ifft;
210   int16_t* pfft = fft;
211   int16_t* ppfft = fft;
212   complex16_t* pefw = efw;
213   int32_t out_aecm;
214   int16_t* paecm_buf = aecm->outBuf;
215   const int16_t* p_kSqrtHanning = WebRtcAecm_kSqrtHanning;
216   const int16_t* pp_kSqrtHanning = &WebRtcAecm_kSqrtHanning[PART_LEN];
217   int16_t* output1 = output;
218 
219   __asm __volatile (
220     ".set      push                                                        \n\t"
221     ".set      noreorder                                                   \n\t"
222     "addiu     %[i],                $zero,                   64            \n\t"
223    "1:                                                                     \n\t"
224     "lh        %[tmp1],             0(%[pcoefTable_ifft])                  \n\t"
225     "lh        %[tmp2],             2(%[pcoefTable_ifft])                  \n\t"
226     "lh        %[tmp_re],           0(%[pefw])                             \n\t"
227     "lh        %[tmp_im],           2(%[pefw])                             \n\t"
228     "addu      %[pfft],             %[fft],                  %[tmp2]       \n\t"
229     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
230     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
231     "addu      %[pfft],             %[fft],                  %[tmp1]       \n\t"
232     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
233     "subu      %[tmp_im],           $zero,                   %[tmp_im]     \n\t"
234     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
235     "lh        %[tmp1],             4(%[pcoefTable_ifft])                  \n\t"
236     "lh        %[tmp2],             6(%[pcoefTable_ifft])                  \n\t"
237     "lh        %[tmp_re],           4(%[pefw])                             \n\t"
238     "lh        %[tmp_im],           6(%[pefw])                             \n\t"
239     "addu      %[pfft],             %[fft],                  %[tmp2]       \n\t"
240     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
241     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
242     "addu      %[pfft],             %[fft],                  %[tmp1]       \n\t"
243     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
244     "subu      %[tmp_im],           $zero,                   %[tmp_im]     \n\t"
245     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
246     "lh        %[tmp1],             8(%[pcoefTable_ifft])                  \n\t"
247     "lh        %[tmp2],             10(%[pcoefTable_ifft])                 \n\t"
248     "lh        %[tmp_re],           8(%[pefw])                             \n\t"
249     "lh        %[tmp_im],           10(%[pefw])                            \n\t"
250     "addu      %[pfft],             %[fft],                  %[tmp2]       \n\t"
251     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
252     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
253     "addu      %[pfft],             %[fft],                  %[tmp1]       \n\t"
254     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
255     "subu      %[tmp_im],           $zero,                   %[tmp_im]     \n\t"
256     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
257     "lh        %[tmp1],             12(%[pcoefTable_ifft])                 \n\t"
258     "lh        %[tmp2],             14(%[pcoefTable_ifft])                 \n\t"
259     "lh        %[tmp_re],           12(%[pefw])                            \n\t"
260     "lh        %[tmp_im],           14(%[pefw])                            \n\t"
261     "addu      %[pfft],             %[fft],                  %[tmp2]       \n\t"
262     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
263     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
264     "addu      %[pfft],             %[fft],                  %[tmp1]       \n\t"
265     "sh        %[tmp_re],           0(%[pfft])                             \n\t"
266     "subu      %[tmp_im],           $zero,                   %[tmp_im]     \n\t"
267     "sh        %[tmp_im],           2(%[pfft])                             \n\t"
268     "addiu     %[pcoefTable_ifft],  %[pcoefTable_ifft],      16            \n\t"
269     "addiu     %[i],                %[i],                    -4            \n\t"
270     "bgtz      %[i],                1b                                     \n\t"
271     " addiu    %[pefw],             %[pefw],                 16            \n\t"
272     ".set      pop                                                         \n\t"
273     : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
274       [i] "=&r" (i), [tmp_re] "=&r" (tmp_re), [tmp_im] "=&r" (tmp_im),
275       [pefw] "+r" (pefw), [pcoefTable_ifft] "+r" (pcoefTable_ifft),
276       [fft] "+r" (fft)
277     :
278     : "memory"
279   );
280 
281   fft[2] = efw[PART_LEN].real;
282   fft[3] = -efw[PART_LEN].imag;
283 
284   outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
285   pfft = fft;
286 
287   __asm __volatile (
288     ".set       push                                               \n\t"
289     ".set       noreorder                                          \n\t"
290     "addiu      %[i],            $zero,               128          \n\t"
291    "1:                                                             \n\t"
292     "lh         %[tmp1],         0(%[ppfft])                       \n\t"
293     "lh         %[tmp2],         4(%[ppfft])                       \n\t"
294     "lh         %[tmp3],         8(%[ppfft])                       \n\t"
295     "lh         %[tmp4],         12(%[ppfft])                      \n\t"
296     "addiu      %[i],            %[i],                -4           \n\t"
297     "sh         %[tmp1],         0(%[pfft])                        \n\t"
298     "sh         %[tmp2],         2(%[pfft])                        \n\t"
299     "sh         %[tmp3],         4(%[pfft])                        \n\t"
300     "sh         %[tmp4],         6(%[pfft])                        \n\t"
301     "addiu      %[ppfft],        %[ppfft],            16           \n\t"
302     "bgtz       %[i],            1b                                \n\t"
303     " addiu     %[pfft],         %[pfft],             8            \n\t"
304     ".set       pop                                                \n\t"
305     : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
306       [i] "=&r" (i), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4),
307       [ppfft] "+r" (ppfft)
308     :
309     : "memory"
310   );
311 
312   pfft = fft;
313   out_aecm = (int32_t)(outCFFT - aecm->dfaCleanQDomain);
314 
315   __asm __volatile (
316     ".set       push                                                       \n\t"
317     ".set       noreorder                                                  \n\t"
318     "addiu      %[i],                $zero,                  64            \n\t"
319    "11:                                                                    \n\t"
320     "lh         %[tmp1],             0(%[pfft])                            \n\t"
321     "lh         %[tmp2],             0(%[p_kSqrtHanning])                  \n\t"
322     "addiu      %[i],                %[i],                   -2            \n\t"
323     "mul        %[tmp1],             %[tmp1],                %[tmp2]       \n\t"
324     "lh         %[tmp3],             2(%[pfft])                            \n\t"
325     "lh         %[tmp4],             2(%[p_kSqrtHanning])                  \n\t"
326     "mul        %[tmp3],             %[tmp3],                %[tmp4]       \n\t"
327     "addiu      %[tmp1],             %[tmp1],                8192          \n\t"
328     "sra        %[tmp1],             %[tmp1],                14            \n\t"
329     "addiu      %[tmp3],             %[tmp3],                8192          \n\t"
330     "sra        %[tmp3],             %[tmp3],                14            \n\t"
331     "bgez       %[out_aecm],         1f                                    \n\t"
332     " negu      %[tmp2],             %[out_aecm]                           \n\t"
333     "srav       %[tmp1],             %[tmp1],                %[tmp2]       \n\t"
334     "b          2f                                                         \n\t"
335     " srav      %[tmp3],             %[tmp3],                %[tmp2]       \n\t"
336    "1:                                                                     \n\t"
337     "sllv       %[tmp1],             %[tmp1],                %[out_aecm]   \n\t"
338     "sllv       %[tmp3],             %[tmp3],                %[out_aecm]   \n\t"
339    "2:                                                                     \n\t"
340     "lh         %[tmp4],             0(%[paecm_buf])                       \n\t"
341     "lh         %[tmp2],             2(%[paecm_buf])                       \n\t"
342     "addu       %[tmp3],             %[tmp3],                %[tmp2]       \n\t"
343     "addu       %[tmp1],             %[tmp1],                %[tmp4]       \n\t"
344 #if defined(MIPS_DSP_R1_LE)
345     "shll_s.w   %[tmp1],             %[tmp1],                16            \n\t"
346     "sra        %[tmp1],             %[tmp1],                16            \n\t"
347     "shll_s.w   %[tmp3],             %[tmp3],                16            \n\t"
348     "sra        %[tmp3],             %[tmp3],                16            \n\t"
349 #else  // #if defined(MIPS_DSP_R1_LE)
350     "sra        %[tmp4],             %[tmp1],                31            \n\t"
351     "sra        %[tmp2],             %[tmp1],                15            \n\t"
352     "beq        %[tmp4],             %[tmp2],                3f            \n\t"
353     " ori       %[tmp2],             $zero,                  0x7fff        \n\t"
354     "xor        %[tmp1],             %[tmp2],                %[tmp4]       \n\t"
355    "3:                                                                     \n\t"
356     "sra        %[tmp2],             %[tmp3],                31            \n\t"
357     "sra        %[tmp4],             %[tmp3],                15            \n\t"
358     "beq        %[tmp2],             %[tmp4],                4f            \n\t"
359     " ori       %[tmp4],             $zero,                  0x7fff        \n\t"
360     "xor        %[tmp3],             %[tmp4],                %[tmp2]       \n\t"
361    "4:                                                                     \n\t"
362 #endif  // #if defined(MIPS_DSP_R1_LE)
363     "sh         %[tmp1],             0(%[pfft])                            \n\t"
364     "sh         %[tmp1],             0(%[output1])                         \n\t"
365     "sh         %[tmp3],             2(%[pfft])                            \n\t"
366     "sh         %[tmp3],             2(%[output1])                         \n\t"
367     "lh         %[tmp1],             128(%[pfft])                          \n\t"
368     "lh         %[tmp2],             0(%[pp_kSqrtHanning])                 \n\t"
369     "mul        %[tmp1],             %[tmp1],                %[tmp2]       \n\t"
370     "lh         %[tmp3],             130(%[pfft])                          \n\t"
371     "lh         %[tmp4],             -2(%[pp_kSqrtHanning])                \n\t"
372     "mul        %[tmp3],             %[tmp3],                %[tmp4]       \n\t"
373     "sra        %[tmp1],             %[tmp1],                14            \n\t"
374     "sra        %[tmp3],             %[tmp3],                14            \n\t"
375     "bgez       %[out_aecm],         5f                                    \n\t"
376     " negu      %[tmp2],             %[out_aecm]                           \n\t"
377     "srav       %[tmp3],             %[tmp3],                %[tmp2]       \n\t"
378     "b          6f                                                         \n\t"
379     " srav      %[tmp1],             %[tmp1],                %[tmp2]       \n\t"
380    "5:                                                                     \n\t"
381     "sllv       %[tmp1],             %[tmp1],                %[out_aecm]   \n\t"
382     "sllv       %[tmp3],             %[tmp3],                %[out_aecm]   \n\t"
383    "6:                                                                     \n\t"
384 #if defined(MIPS_DSP_R1_LE)
385     "shll_s.w   %[tmp1],             %[tmp1],                16            \n\t"
386     "sra        %[tmp1],             %[tmp1],                16            \n\t"
387     "shll_s.w   %[tmp3],             %[tmp3],                16            \n\t"
388     "sra        %[tmp3],             %[tmp3],                16            \n\t"
389 #else  // #if defined(MIPS_DSP_R1_LE)
390     "sra        %[tmp4],             %[tmp1],                31            \n\t"
391     "sra        %[tmp2],             %[tmp1],                15            \n\t"
392     "beq        %[tmp4],             %[tmp2],                7f            \n\t"
393     " ori       %[tmp2],             $zero,                  0x7fff        \n\t"
394     "xor        %[tmp1],             %[tmp2],                %[tmp4]       \n\t"
395    "7:                                                                     \n\t"
396     "sra        %[tmp2],             %[tmp3],                31            \n\t"
397     "sra        %[tmp4],             %[tmp3],                15            \n\t"
398     "beq        %[tmp2],             %[tmp4],                8f            \n\t"
399     " ori       %[tmp4],             $zero,                  0x7fff        \n\t"
400     "xor        %[tmp3],             %[tmp4],                %[tmp2]       \n\t"
401    "8:                                                                     \n\t"
402 #endif  // #if defined(MIPS_DSP_R1_LE)
403     "sh         %[tmp1],             0(%[paecm_buf])                       \n\t"
404     "sh         %[tmp3],             2(%[paecm_buf])                       \n\t"
405     "addiu      %[output1],          %[output1],             4             \n\t"
406     "addiu      %[paecm_buf],        %[paecm_buf],           4             \n\t"
407     "addiu      %[pfft],             %[pfft],                4             \n\t"
408     "addiu      %[p_kSqrtHanning],   %[p_kSqrtHanning],      4             \n\t"
409     "bgtz       %[i],                11b                                   \n\t"
410     " addiu     %[pp_kSqrtHanning],  %[pp_kSqrtHanning],     -4            \n\t"
411     ".set       pop                                                        \n\t"
412     : [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2), [pfft] "+r" (pfft),
413       [output1] "+r" (output1), [tmp3] "=&r" (tmp3), [tmp4] "=&r" (tmp4),
414       [paecm_buf] "+r" (paecm_buf), [i] "=&r" (i),
415       [pp_kSqrtHanning] "+r" (pp_kSqrtHanning),
416       [p_kSqrtHanning] "+r" (p_kSqrtHanning)
417     : [out_aecm] "r" (out_aecm),
418       [WebRtcAecm_kSqrtHanning] "r" (WebRtcAecm_kSqrtHanning)
419     : "hi", "lo","memory"
420   );
421 
422   // Copy the current block to the old position
423   // (aecm->outBuf is shifted elsewhere)
424   memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
425   memcpy(aecm->dBufNoisy,
426          aecm->dBufNoisy + PART_LEN,
427          sizeof(int16_t) * PART_LEN);
428   if (nearendClean != NULL) {
429     memcpy(aecm->dBufClean,
430            aecm->dBufClean + PART_LEN,
431            sizeof(int16_t) * PART_LEN);
432   }
433 }
434 
WebRtcAecm_CalcLinearEnergies_mips(AecmCore_t * aecm,const uint16_t * far_spectrum,int32_t * echo_est,uint32_t * far_energy,uint32_t * echo_energy_adapt,uint32_t * echo_energy_stored)435 void WebRtcAecm_CalcLinearEnergies_mips(AecmCore_t* aecm,
436                                         const uint16_t* far_spectrum,
437                                         int32_t* echo_est,
438                                         uint32_t* far_energy,
439                                         uint32_t* echo_energy_adapt,
440                                         uint32_t* echo_energy_stored) {
441   int i;
442   uint32_t par1 = (*far_energy);
443   uint32_t par2 = (*echo_energy_adapt);
444   uint32_t par3 = (*echo_energy_stored);
445   int16_t* ch_stored_p = &(aecm->channelStored[0]);
446   int16_t* ch_adapt_p = &(aecm->channelAdapt16[0]);
447   uint16_t* spectrum_p = (uint16_t*)(&(far_spectrum[0]));
448   int32_t* echo_p = &(echo_est[0]);
449   int32_t temp0, stored0, echo0, adept0, spectrum0;
450   int32_t stored1, adept1, spectrum1, echo1, temp1;
451 
452   // Get energy for the delayed far end signal and estimated
453   // echo using both stored and adapted channels.
454   for (i = 0; i < PART_LEN; i+= 4) {
455     __asm __volatile (
456       ".set           push                                            \n\t"
457       ".set           noreorder                                       \n\t"
458       "lh             %[stored0],     0(%[ch_stored_p])               \n\t"
459       "lhu            %[adept0],      0(%[ch_adapt_p])                \n\t"
460       "lhu            %[spectrum0],   0(%[spectrum_p])                \n\t"
461       "lh             %[stored1],     2(%[ch_stored_p])               \n\t"
462       "lhu            %[adept1],      2(%[ch_adapt_p])                \n\t"
463       "lhu            %[spectrum1],   2(%[spectrum_p])                \n\t"
464       "mul            %[echo0],       %[stored0],     %[spectrum0]    \n\t"
465       "mul            %[temp0],       %[adept0],      %[spectrum0]    \n\t"
466       "mul            %[echo1],       %[stored1],     %[spectrum1]    \n\t"
467       "mul            %[temp1],       %[adept1],      %[spectrum1]    \n\t"
468       "addu           %[par1],        %[par1],        %[spectrum0]    \n\t"
469       "addu           %[par1],        %[par1],        %[spectrum1]    \n\t"
470       "addiu          %[echo_p],      %[echo_p],      16              \n\t"
471       "addu           %[par3],        %[par3],        %[echo0]        \n\t"
472       "addu           %[par2],        %[par2],        %[temp0]        \n\t"
473       "addu           %[par3],        %[par3],        %[echo1]        \n\t"
474       "addu           %[par2],        %[par2],        %[temp1]        \n\t"
475       "usw            %[echo0],       -16(%[echo_p])                  \n\t"
476       "usw            %[echo1],       -12(%[echo_p])                  \n\t"
477       "lh             %[stored0],     4(%[ch_stored_p])               \n\t"
478       "lhu            %[adept0],      4(%[ch_adapt_p])                \n\t"
479       "lhu            %[spectrum0],   4(%[spectrum_p])                \n\t"
480       "lh             %[stored1],     6(%[ch_stored_p])               \n\t"
481       "lhu            %[adept1],      6(%[ch_adapt_p])                \n\t"
482       "lhu            %[spectrum1],   6(%[spectrum_p])                \n\t"
483       "mul            %[echo0],       %[stored0],     %[spectrum0]    \n\t"
484       "mul            %[temp0],       %[adept0],      %[spectrum0]    \n\t"
485       "mul            %[echo1],       %[stored1],     %[spectrum1]    \n\t"
486       "mul            %[temp1],       %[adept1],      %[spectrum1]    \n\t"
487       "addu           %[par1],        %[par1],        %[spectrum0]    \n\t"
488       "addu           %[par1],        %[par1],        %[spectrum1]    \n\t"
489       "addiu          %[ch_stored_p], %[ch_stored_p], 8               \n\t"
490       "addiu          %[ch_adapt_p],  %[ch_adapt_p],  8               \n\t"
491       "addiu          %[spectrum_p],  %[spectrum_p],  8               \n\t"
492       "addu           %[par3],        %[par3],        %[echo0]        \n\t"
493       "addu           %[par2],        %[par2],        %[temp0]        \n\t"
494       "addu           %[par3],        %[par3],        %[echo1]        \n\t"
495       "addu           %[par2],        %[par2],        %[temp1]        \n\t"
496       "usw            %[echo0],       -8(%[echo_p])                   \n\t"
497       "usw            %[echo1],       -4(%[echo_p])                   \n\t"
498       ".set           pop                                             \n\t"
499       : [temp0] "=&r" (temp0), [stored0] "=&r" (stored0),
500         [adept0] "=&r" (adept0), [spectrum0] "=&r" (spectrum0),
501         [echo0] "=&r" (echo0), [echo_p] "+r" (echo_p), [par3] "+r" (par3),
502         [par1] "+r" (par1), [par2] "+r" (par2), [stored1] "=&r" (stored1),
503         [adept1] "=&r" (adept1), [echo1] "=&r" (echo1),
504         [spectrum1] "=&r" (spectrum1), [temp1] "=&r" (temp1),
505         [ch_stored_p] "+r" (ch_stored_p), [ch_adapt_p] "+r" (ch_adapt_p),
506         [spectrum_p] "+r" (spectrum_p)
507       :
508       : "hi", "lo", "memory"
509     );
510   }
511 
512   echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
513                                              far_spectrum[PART_LEN]);
514   par1 += (uint32_t)(far_spectrum[PART_LEN]);
515   par2 += WEBRTC_SPL_UMUL_16_16(aecm->channelAdapt16[PART_LEN],
516                                 far_spectrum[PART_LEN]);
517   par3 += (uint32_t)echo_est[PART_LEN];
518 
519   (*far_energy) = par1;
520   (*echo_energy_adapt) = par2;
521   (*echo_energy_stored) = par3;
522 }
523 
524 #if defined(MIPS_DSP_R1_LE)
WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore_t * aecm,const uint16_t * far_spectrum,int32_t * echo_est)525 void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore_t* aecm,
526                                           const uint16_t* far_spectrum,
527                                           int32_t* echo_est) {
528   int i;
529   int16_t* temp1;
530   uint16_t* temp8;
531   int32_t temp0, temp2, temp3, temp4, temp5, temp6;
532   int32_t* temp7 = &(echo_est[0]);
533   temp1 = &(aecm->channelStored[0]);
534   temp8 = (uint16_t*)(&far_spectrum[0]);
535 
536   // During startup we store the channel every block.
537   memcpy(aecm->channelStored, aecm->channelAdapt16,
538          sizeof(int16_t) * PART_LEN1);
539   // Recalculate echo estimate
540   for (i = 0; i < PART_LEN; i += 4) {
541     __asm __volatile (
542       "ulw            %[temp0],   0(%[temp8])               \n\t"
543       "ulw            %[temp2],   0(%[temp1])               \n\t"
544       "ulw            %[temp4],   4(%[temp8])               \n\t"
545       "ulw            %[temp5],   4(%[temp1])               \n\t"
546       "muleq_s.w.phl  %[temp3],   %[temp2],     %[temp0]    \n\t"
547       "muleq_s.w.phr  %[temp0],   %[temp2],     %[temp0]    \n\t"
548       "muleq_s.w.phl  %[temp6],   %[temp5],     %[temp4]    \n\t"
549       "muleq_s.w.phr  %[temp4],   %[temp5],     %[temp4]    \n\t"
550       "addiu          %[temp7],   %[temp7],     16          \n\t"
551       "addiu          %[temp1],   %[temp1],     8           \n\t"
552       "addiu          %[temp8],   %[temp8],     8           \n\t"
553       "sra            %[temp3],   %[temp3],     1           \n\t"
554       "sra            %[temp0],   %[temp0],     1           \n\t"
555       "sra            %[temp6],   %[temp6],     1           \n\t"
556       "sra            %[temp4],   %[temp4],     1           \n\t"
557       "usw            %[temp3],   -12(%[temp7])             \n\t"
558       "usw            %[temp0],   -16(%[temp7])             \n\t"
559       "usw            %[temp6],   -4(%[temp7])              \n\t"
560       "usw            %[temp4],   -8(%[temp7])              \n\t"
561       : [temp0] "=&r" (temp0), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
562         [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6),
563         [temp1] "+r" (temp1), [temp8] "+r" (temp8), [temp7] "+r" (temp7)
564       :
565       : "hi", "lo", "memory"
566     );
567   }
568   echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
569                                       far_spectrum[i]);
570 }
571 
WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore_t * aecm)572 void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore_t* aecm) {
573   int i;
574   int32_t* temp3;
575   int16_t* temp0;
576   int32_t temp1, temp2, temp4, temp5;
577 
578   temp0 = &(aecm->channelStored[0]);
579   temp3 = &(aecm->channelAdapt32[0]);
580 
581   // The stored channel has a significantly lower MSE than the adaptive one for
582   // two consecutive calculations. Reset the adaptive channel.
583   memcpy(aecm->channelAdapt16,
584          aecm->channelStored,
585          sizeof(int16_t) * PART_LEN1);
586 
587   // Restore the W32 channel
588   for (i = 0; i < PART_LEN; i += 4) {
589     __asm __volatile (
590       "ulw            %[temp1], 0(%[temp0])           \n\t"
591       "ulw            %[temp4], 4(%[temp0])           \n\t"
592       "preceq.w.phl   %[temp2], %[temp1]              \n\t"
593       "preceq.w.phr   %[temp1], %[temp1]              \n\t"
594       "preceq.w.phl   %[temp5], %[temp4]              \n\t"
595       "preceq.w.phr   %[temp4], %[temp4]              \n\t"
596       "addiu          %[temp0], %[temp0], 8           \n\t"
597       "usw            %[temp2], 4(%[temp3])           \n\t"
598       "usw            %[temp1], 0(%[temp3])           \n\t"
599       "usw            %[temp5], 12(%[temp3])          \n\t"
600       "usw            %[temp4], 8(%[temp3])           \n\t"
601       "addiu          %[temp3], %[temp3], 16          \n\t"
602       : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2),
603         [temp4] "=&r" (temp4), [temp5] "=&r" (temp5),
604         [temp3] "+r" (temp3), [temp0] "+r" (temp0)
605       :
606       : "memory"
607     );
608   }
609 
610   aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
611                               (int32_t)aecm->channelStored[i], 16);
612 }
613 #endif  // #if defined(MIPS_DSP_R1_LE)
614 
615 // Transforms a time domain signal into the frequency domain, outputting the
616 // complex valued signal, absolute value and sum of absolute values.
617 //
618 // time_signal          [in]    Pointer to time domain signal
619 // freq_signal_real     [out]   Pointer to real part of frequency domain array
620 // freq_signal_imag     [out]   Pointer to imaginary part of frequency domain
621 //                              array
622 // freq_signal_abs      [out]   Pointer to absolute value of frequency domain
623 //                              array
624 // freq_signal_sum_abs  [out]   Pointer to the sum of all absolute values in
625 //                              the frequency domain array
626 // return value                 The Q-domain of current frequency values
627 //
TimeToFrequencyDomain(AecmCore_t * aecm,const int16_t * time_signal,complex16_t * freq_signal,uint16_t * freq_signal_abs,uint32_t * freq_signal_sum_abs)628 static int TimeToFrequencyDomain(AecmCore_t* aecm,
629                                  const int16_t* time_signal,
630                                  complex16_t* freq_signal,
631                                  uint16_t* freq_signal_abs,
632                                  uint32_t* freq_signal_sum_abs)
633 {
634   int i = 0;
635   int time_signal_scaling = 0;
636 
637   // In fft_buf, +16 for 32-byte alignment.
638   int16_t fft_buf[PART_LEN4 + 16];
639   int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
640 
641   int16_t tmp16no1;
642 #if !defined(MIPS_DSP_R2_LE)
643   int32_t tmp32no1;
644   int32_t tmp32no2;
645   int16_t tmp16no2;
646 #else
647   int32_t tmp32no10, tmp32no11, tmp32no12, tmp32no13;
648   int32_t tmp32no20, tmp32no21, tmp32no22, tmp32no23;
649   int16_t* freqp;
650   uint16_t* freqabsp;
651   uint32_t freqt0, freqt1, freqt2, freqt3;
652   uint32_t freqs;
653 #endif
654 
655 #ifdef AECM_DYNAMIC_Q
656   tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
657   time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
658 #endif
659 
660   WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
661 
662   // Extract imaginary and real part,
663   // calculate the magnitude for all frequency bins
664   freq_signal[0].imag = 0;
665   freq_signal[PART_LEN].imag = 0;
666   freq_signal[PART_LEN].real = fft[PART_LEN2];
667   freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
668   freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
669     freq_signal[PART_LEN].real);
670   (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
671     (uint32_t)(freq_signal_abs[PART_LEN]);
672 
673 #if !defined(MIPS_DSP_R2_LE)
674   for (i = 1; i < PART_LEN; i++) {
675     if (freq_signal[i].real == 0)
676     {
677       freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
678         freq_signal[i].imag);
679     }
680     else if (freq_signal[i].imag == 0)
681     {
682       freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(
683         freq_signal[i].real);
684     }
685     else
686     {
687       // Approximation for magnitude of complex fft output
688       // magn = sqrt(real^2 + imag^2)
689       // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
690       //
691       // The parameters alpha and beta are stored in Q15
692       tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
693       tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
694       tmp32no1 = WEBRTC_SPL_MUL_16_16(tmp16no1, tmp16no1);
695       tmp32no2 = WEBRTC_SPL_MUL_16_16(tmp16no2, tmp16no2);
696       tmp32no2 = WEBRTC_SPL_ADD_SAT_W32(tmp32no1, tmp32no2);
697       tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
698 
699       freq_signal_abs[i] = (uint16_t)tmp32no1;
700     }
701     (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
702   }
703 #else // #if !defined(MIPS_DSP_R2_LE)
704   freqs = (uint32_t)(freq_signal_abs[0]) +
705           (uint32_t)(freq_signal_abs[PART_LEN]);
706   freqp = &(freq_signal[1].real);
707 
708   __asm __volatile (
709     "lw             %[freqt0],      0(%[freqp])             \n\t"
710     "lw             %[freqt1],      4(%[freqp])             \n\t"
711     "lw             %[freqt2],      8(%[freqp])             \n\t"
712     "mult           $ac0,           $zero,      $zero       \n\t"
713     "mult           $ac1,           $zero,      $zero       \n\t"
714     "mult           $ac2,           $zero,      $zero       \n\t"
715     "dpaq_s.w.ph    $ac0,           %[freqt0],  %[freqt0]   \n\t"
716     "dpaq_s.w.ph    $ac1,           %[freqt1],  %[freqt1]   \n\t"
717     "dpaq_s.w.ph    $ac2,           %[freqt2],  %[freqt2]   \n\t"
718     "addiu          %[freqp],       %[freqp],   12          \n\t"
719     "extr.w         %[tmp32no20],   $ac0,       1           \n\t"
720     "extr.w         %[tmp32no21],   $ac1,       1           \n\t"
721     "extr.w         %[tmp32no22],   $ac2,       1           \n\t"
722     : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1),
723       [freqt2] "=&r" (freqt2), [freqp] "+r" (freqp),
724       [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21),
725       [tmp32no22] "=r" (tmp32no22)
726     :
727     : "memory", "hi", "lo", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo"
728   );
729 
730   tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
731   tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
732   tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
733   freq_signal_abs[1] = (uint16_t)tmp32no10;
734   freq_signal_abs[2] = (uint16_t)tmp32no11;
735   freq_signal_abs[3] = (uint16_t)tmp32no12;
736   freqs += (uint32_t)tmp32no10;
737   freqs += (uint32_t)tmp32no11;
738   freqs += (uint32_t)tmp32no12;
739   freqabsp = &(freq_signal_abs[4]);
740   for (i = 4; i < PART_LEN; i+=4)
741   {
742     __asm __volatile (
743       "ulw            %[freqt0],      0(%[freqp])                 \n\t"
744       "ulw            %[freqt1],      4(%[freqp])                 \n\t"
745       "ulw            %[freqt2],      8(%[freqp])                 \n\t"
746       "ulw            %[freqt3],      12(%[freqp])                \n\t"
747       "mult           $ac0,           $zero,          $zero       \n\t"
748       "mult           $ac1,           $zero,          $zero       \n\t"
749       "mult           $ac2,           $zero,          $zero       \n\t"
750       "mult           $ac3,           $zero,          $zero       \n\t"
751       "dpaq_s.w.ph    $ac0,           %[freqt0],      %[freqt0]   \n\t"
752       "dpaq_s.w.ph    $ac1,           %[freqt1],      %[freqt1]   \n\t"
753       "dpaq_s.w.ph    $ac2,           %[freqt2],      %[freqt2]   \n\t"
754       "dpaq_s.w.ph    $ac3,           %[freqt3],      %[freqt3]   \n\t"
755       "addiu          %[freqp],       %[freqp],       16          \n\t"
756       "addiu          %[freqabsp],    %[freqabsp],    8           \n\t"
757       "extr.w         %[tmp32no20],   $ac0,           1           \n\t"
758       "extr.w         %[tmp32no21],   $ac1,           1           \n\t"
759       "extr.w         %[tmp32no22],   $ac2,           1           \n\t"
760       "extr.w         %[tmp32no23],   $ac3,           1           \n\t"
761       : [freqt0] "=&r" (freqt0), [freqt1] "=&r" (freqt1),
762         [freqt2] "=&r" (freqt2), [freqt3] "=&r" (freqt3),
763         [tmp32no20] "=r" (tmp32no20), [tmp32no21] "=r" (tmp32no21),
764         [tmp32no22] "=r" (tmp32no22), [tmp32no23] "=r" (tmp32no23),
765         [freqabsp] "+r" (freqabsp), [freqp] "+r" (freqp)
766       :
767       : "memory", "hi", "lo", "$ac1hi", "$ac1lo",
768         "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo"
769     );
770 
771     tmp32no10 = WebRtcSpl_SqrtFloor(tmp32no20);
772     tmp32no11 = WebRtcSpl_SqrtFloor(tmp32no21);
773     tmp32no12 = WebRtcSpl_SqrtFloor(tmp32no22);
774     tmp32no13 = WebRtcSpl_SqrtFloor(tmp32no23);
775 
776     __asm __volatile (
777       "sh             %[tmp32no10],   -8(%[freqabsp])                 \n\t"
778       "sh             %[tmp32no11],   -6(%[freqabsp])                 \n\t"
779       "sh             %[tmp32no12],   -4(%[freqabsp])                 \n\t"
780       "sh             %[tmp32no13],   -2(%[freqabsp])                 \n\t"
781       "addu           %[freqs],       %[freqs],       %[tmp32no10]    \n\t"
782       "addu           %[freqs],       %[freqs],       %[tmp32no11]    \n\t"
783       "addu           %[freqs],       %[freqs],       %[tmp32no12]    \n\t"
784       "addu           %[freqs],       %[freqs],       %[tmp32no13]    \n\t"
785       : [freqs] "+r" (freqs)
786       : [tmp32no10] "r" (tmp32no10), [tmp32no11] "r" (tmp32no11),
787         [tmp32no12] "r" (tmp32no12), [tmp32no13] "r" (tmp32no13),
788         [freqabsp] "r" (freqabsp)
789       : "memory"
790     );
791   }
792 
793   (*freq_signal_sum_abs) = freqs;
794 #endif
795 
796   return time_signal_scaling;
797 }
798 
WebRtcAecm_ProcessBlock(AecmCore_t * aecm,const int16_t * farend,const int16_t * nearendNoisy,const int16_t * nearendClean,int16_t * output)799 int WebRtcAecm_ProcessBlock(AecmCore_t* aecm,
800                             const int16_t* farend,
801                             const int16_t* nearendNoisy,
802                             const int16_t* nearendClean,
803                             int16_t* output) {
804   int i;
805   uint32_t xfaSum;
806   uint32_t dfaNoisySum;
807   uint32_t dfaCleanSum;
808   uint32_t echoEst32Gained;
809   uint32_t tmpU32;
810   int32_t tmp32no1;
811 
812   uint16_t xfa[PART_LEN1];
813   uint16_t dfaNoisy[PART_LEN1];
814   uint16_t dfaClean[PART_LEN1];
815   uint16_t* ptrDfaClean = dfaClean;
816   const uint16_t* far_spectrum_ptr = NULL;
817 
818   // 32 byte aligned buffers (with +8 or +16).
819   int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
820   int32_t echoEst32_buf[PART_LEN1 + 8];
821   int32_t dfw_buf[PART_LEN2 + 8];
822   int32_t efw_buf[PART_LEN2 + 8];
823 
824   int16_t* fft = (int16_t*)(((uint32_t)fft_buf + 31) & ~ 31);
825   int32_t* echoEst32 = (int32_t*)(((uint32_t)echoEst32_buf + 31) & ~ 31);
826   complex16_t* dfw = (complex16_t*)(((uint32_t)dfw_buf + 31) & ~ 31);
827   complex16_t* efw = (complex16_t*)(((uint32_t)efw_buf + 31) & ~ 31);
828 
829   int16_t hnl[PART_LEN1];
830   int16_t numPosCoef = 0;
831   int delay;
832   int16_t tmp16no1;
833   int16_t tmp16no2;
834   int16_t mu;
835   int16_t supGain;
836   int16_t zeros32, zeros16;
837   int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
838   int far_q;
839   int16_t resolutionDiff, qDomainDiff;
840 
841   const int kMinPrefBand = 4;
842   const int kMaxPrefBand = 24;
843   int32_t avgHnl32 = 0;
844 
845   int32_t temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
846   int16_t* ptr;
847   int16_t* ptr1;
848   int16_t* er_ptr;
849   int16_t* dr_ptr;
850 
851   ptr = &hnl[0];
852   ptr1 = &hnl[0];
853   er_ptr = &efw[0].real;
854   dr_ptr = &dfw[0].real;
855 
856   // Determine startup state. There are three states:
857   // (0) the first CONV_LEN blocks
858   // (1) another CONV_LEN blocks
859   // (2) the rest
860 
861   if (aecm->startupState < 2) {
862     aecm->startupState = (aecm->totCount >= CONV_LEN) +
863                          (aecm->totCount >= CONV_LEN2);
864   }
865   // END: Determine startup state
866 
867   // Buffer near and far end signals
868   memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
869   memcpy(aecm->dBufNoisy + PART_LEN,
870          nearendNoisy,
871          sizeof(int16_t) * PART_LEN);
872   if (nearendClean != NULL) {
873     memcpy(aecm->dBufClean + PART_LEN,
874            nearendClean,
875            sizeof(int16_t) * PART_LEN);
876   }
877 
878   // Transform far end signal from time domain to frequency domain.
879   far_q = TimeToFrequencyDomain(aecm,
880                                 aecm->xBuf,
881                                 dfw,
882                                 xfa,
883                                 &xfaSum);
884 
885   // Transform noisy near end signal from time domain to frequency domain.
886   zerosDBufNoisy = TimeToFrequencyDomain(aecm,
887                                          aecm->dBufNoisy,
888                                          dfw,
889                                          dfaNoisy,
890                                          &dfaNoisySum);
891   aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
892   aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
893 
894   if (nearendClean == NULL) {
895     ptrDfaClean = dfaNoisy;
896     aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
897     aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
898     dfaCleanSum = dfaNoisySum;
899   } else {
900     // Transform clean near end signal from time domain to frequency domain.
901     zerosDBufClean = TimeToFrequencyDomain(aecm,
902                                            aecm->dBufClean,
903                                            dfw,
904                                            dfaClean,
905                                            &dfaCleanSum);
906     aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
907     aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
908   }
909 
910   // Get the delay
911   // Save far-end history and estimate delay
912   WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
913 
914   if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
915                                far_q) == -1) {
916     return -1;
917   }
918   delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
919                                           dfaNoisy,
920                                           PART_LEN1,
921                                           zerosDBufNoisy);
922   if (delay == -1) {
923     return -1;
924   }
925   else if (delay == -2) {
926     // If the delay is unknown, we assume zero.
927     // NOTE: this will have to be adjusted if we ever add lookahead.
928     delay = 0;
929   }
930 
931   if (aecm->fixedDelay >= 0) {
932     // Use fixed delay
933     delay = aecm->fixedDelay;
934   }
935 
936   // Get aligned far end spectrum
937   far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
938   zerosXBuf = (int16_t) far_q;
939 
940   if (far_spectrum_ptr == NULL) {
941     return -1;
942   }
943 
944   // Calculate log(energy) and update energy threshold levels
945   WebRtcAecm_CalcEnergies(aecm,
946                           far_spectrum_ptr,
947                           zerosXBuf,
948                           dfaNoisySum,
949                           echoEst32);
950   // Calculate stepsize
951   mu = WebRtcAecm_CalcStepSize(aecm);
952 
953   // Update counters
954   aecm->totCount++;
955 
956   // This is the channel estimation algorithm.
957   // It is base on NLMS but has a variable step length,
958   // which was calculated above.
959   WebRtcAecm_UpdateChannel(aecm,
960                            far_spectrum_ptr,
961                            zerosXBuf,
962                            dfaNoisy,
963                            mu,
964                            echoEst32);
965 
966   supGain = WebRtcAecm_CalcSuppressionGain(aecm);
967 
968   // Calculate Wiener filter hnl[]
969   for (i = 0; i < PART_LEN1; i++) {
970     // Far end signal through channel estimate in Q8
971     // How much can we shift right to preserve resolution
972     tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
973     aecm->echoFilt[i] += WEBRTC_SPL_RSHIFT_W32(
974                            WEBRTC_SPL_MUL_32_16(tmp32no1, 50), 8);
975 
976     zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
977     zeros16 = WebRtcSpl_NormW16(supGain) + 1;
978     if (zeros32 + zeros16 > 16) {
979       // Multiplication is safe
980       // Result in
981       // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+aecm->xfaQDomainBuf[diff])
982       echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
983                                               (uint16_t)supGain);
984       resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
985       resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
986     } else {
987       tmp16no1 = 17 - zeros32 - zeros16;
988       resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
989                        RESOLUTION_SUPGAIN;
990       resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
991       if (zeros32 > tmp16no1) {
992         echoEst32Gained = WEBRTC_SPL_UMUL_32_16(
993                             (uint32_t)aecm->echoFilt[i],
994                             (uint16_t)WEBRTC_SPL_RSHIFT_W16(supGain, tmp16no1));
995       } else {
996         // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
997         echoEst32Gained = WEBRTC_SPL_UMUL_32_16(
998                             (uint32_t)WEBRTC_SPL_RSHIFT_W32(aecm->echoFilt[i],
999                                                             tmp16no1),
1000                             (uint16_t)supGain);
1001       }
1002     }
1003 
1004     zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
1005     if ((zeros16 < (aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld))
1006          & (aecm->nearFilt[i])) {
1007       tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i], zeros16);
1008       qDomainDiff = zeros16 - aecm->dfaCleanQDomain + aecm->dfaCleanQDomainOld;
1009       tmp16no2 = WEBRTC_SPL_SHIFT_W16(ptrDfaClean[i], qDomainDiff);
1010     } else {
1011       tmp16no1 = WEBRTC_SPL_SHIFT_W16(aecm->nearFilt[i],
1012                                       aecm->dfaCleanQDomain
1013                                         - aecm->dfaCleanQDomainOld);
1014       qDomainDiff = 0;
1015       tmp16no2 = ptrDfaClean[i];
1016     }
1017 
1018     tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
1019     tmp16no2 = (int16_t)WEBRTC_SPL_RSHIFT_W32(tmp32no1, 4);
1020     tmp16no2 += tmp16no1;
1021     zeros16 = WebRtcSpl_NormW16(tmp16no2);
1022     if ((tmp16no2) & (-qDomainDiff > zeros16)) {
1023       aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
1024     } else {
1025       aecm->nearFilt[i] = WEBRTC_SPL_SHIFT_W16(tmp16no2, -qDomainDiff);
1026     }
1027 
1028     // Wiener filter coefficients, resulting hnl in Q14
1029     if (echoEst32Gained == 0) {
1030       hnl[i] = ONE_Q14;
1031       numPosCoef++;
1032     } else if (aecm->nearFilt[i] == 0) {
1033       hnl[i] = 0;
1034     } else {
1035       // Multiply the suppression gain
1036       // Rounding
1037       echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
1038       tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
1039                                    (uint16_t)aecm->nearFilt[i]);
1040 
1041       // Current resolution is
1042       // Q-(RESOLUTION_CHANNEL + RESOLUTION_SUPGAIN
1043       //    - max(0, 17 - zeros16 - zeros32))
1044       // Make sure we are in Q14
1045       tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
1046       if (tmp32no1 > ONE_Q14) {
1047         hnl[i] = 0;
1048       } else if (tmp32no1 < 0) {
1049         hnl[i] = ONE_Q14;
1050         numPosCoef++;
1051       } else {
1052         // 1-echoEst/dfa
1053         hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
1054         if (hnl[i] <= 0) {
1055           hnl[i] = 0;
1056         } else {
1057           numPosCoef++;
1058         }
1059       }
1060     }
1061   }
1062 
1063   // Only in wideband. Prevent the gain in upper band from being larger than
1064   // in lower band.
1065   if (aecm->mult == 2) {
1066     // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
1067     //               speech distortion in double-talk.
1068     for (i = 0; i < (PART_LEN1 >> 3); i++) {
1069       __asm __volatile (
1070         "lh         %[temp1],       0(%[ptr1])                  \n\t"
1071         "lh         %[temp2],       2(%[ptr1])                  \n\t"
1072         "lh         %[temp3],       4(%[ptr1])                  \n\t"
1073         "lh         %[temp4],       6(%[ptr1])                  \n\t"
1074         "lh         %[temp5],       8(%[ptr1])                  \n\t"
1075         "lh         %[temp6],       10(%[ptr1])                 \n\t"
1076         "lh         %[temp7],       12(%[ptr1])                 \n\t"
1077         "lh         %[temp8],       14(%[ptr1])                 \n\t"
1078         "mul        %[temp1],       %[temp1],       %[temp1]    \n\t"
1079         "mul        %[temp2],       %[temp2],       %[temp2]    \n\t"
1080         "mul        %[temp3],       %[temp3],       %[temp3]    \n\t"
1081         "mul        %[temp4],       %[temp4],       %[temp4]    \n\t"
1082         "mul        %[temp5],       %[temp5],       %[temp5]    \n\t"
1083         "mul        %[temp6],       %[temp6],       %[temp6]    \n\t"
1084         "mul        %[temp7],       %[temp7],       %[temp7]    \n\t"
1085         "mul        %[temp8],       %[temp8],       %[temp8]    \n\t"
1086         "sra        %[temp1],       %[temp1],       14          \n\t"
1087         "sra        %[temp2],       %[temp2],       14          \n\t"
1088         "sra        %[temp3],       %[temp3],       14          \n\t"
1089         "sra        %[temp4],       %[temp4],       14          \n\t"
1090         "sra        %[temp5],       %[temp5],       14          \n\t"
1091         "sra        %[temp6],       %[temp6],       14          \n\t"
1092         "sra        %[temp7],       %[temp7],       14          \n\t"
1093         "sra        %[temp8],       %[temp8],       14          \n\t"
1094         "sh         %[temp1],       0(%[ptr1])                  \n\t"
1095         "sh         %[temp2],       2(%[ptr1])                  \n\t"
1096         "sh         %[temp3],       4(%[ptr1])                  \n\t"
1097         "sh         %[temp4],       6(%[ptr1])                  \n\t"
1098         "sh         %[temp5],       8(%[ptr1])                  \n\t"
1099         "sh         %[temp6],       10(%[ptr1])                 \n\t"
1100         "sh         %[temp7],       12(%[ptr1])                 \n\t"
1101         "sh         %[temp8],       14(%[ptr1])                 \n\t"
1102         "addiu      %[ptr1],        %[ptr1],        16          \n\t"
1103         : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
1104           [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [temp6] "=&r" (temp6),
1105           [temp7] "=&r" (temp7), [temp8] "=&r" (temp8), [ptr1] "+r" (ptr1)
1106         :
1107         : "memory", "hi", "lo"
1108       );
1109     }
1110     for(i = 0; i < (PART_LEN1 & 7); i++) {
1111       __asm __volatile (
1112         "lh         %[temp1],       0(%[ptr1])                  \n\t"
1113         "mul        %[temp1],       %[temp1],       %[temp1]    \n\t"
1114         "sra        %[temp1],       %[temp1],       14          \n\t"
1115         "sh         %[temp1],       0(%[ptr1])                  \n\t"
1116         "addiu      %[ptr1],        %[ptr1],        2           \n\t"
1117         : [temp1] "=&r" (temp1), [ptr1] "+r" (ptr1)
1118         :
1119         : "memory", "hi", "lo"
1120       );
1121     }
1122 
1123     for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
1124       avgHnl32 += (int32_t)hnl[i];
1125     }
1126 
1127     assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
1128     avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
1129 
1130     for (i = kMaxPrefBand; i < PART_LEN1; i++) {
1131       if (hnl[i] > (int16_t)avgHnl32) {
1132         hnl[i] = (int16_t)avgHnl32;
1133       }
1134     }
1135   }
1136 
1137   // Calculate NLP gain, result is in Q14
1138   if (aecm->nlpFlag) {
1139     if (numPosCoef < 3) {
1140       for (i = 0; i < PART_LEN1; i++) {
1141         efw[i].real = 0;
1142         efw[i].imag = 0;
1143         hnl[i] = 0;
1144       }
1145     } else {
1146       for (i = 0; i < PART_LEN1; i++) {
1147 #if defined(MIPS_DSP_R1_LE)
1148         __asm __volatile (
1149           ".set       push                                        \n\t"
1150           ".set       noreorder                                   \n\t"
1151           "lh         %[temp1],       0(%[ptr])                   \n\t"
1152           "lh         %[temp2],       0(%[dr_ptr])                \n\t"
1153           "slti       %[temp4],       %[temp1],       0x4001      \n\t"
1154           "beqz       %[temp4],       3f                          \n\t"
1155           " lh        %[temp3],       2(%[dr_ptr])                \n\t"
1156           "slti       %[temp5],       %[temp1],       3277        \n\t"
1157           "bnez       %[temp5],       2f                          \n\t"
1158           " addiu     %[dr_ptr],      %[dr_ptr],      4           \n\t"
1159           "mul        %[temp2],       %[temp2],       %[temp1]    \n\t"
1160           "mul        %[temp3],       %[temp3],       %[temp1]    \n\t"
1161           "shra_r.w   %[temp2],       %[temp2],       14          \n\t"
1162           "shra_r.w   %[temp3],       %[temp3],       14          \n\t"
1163           "b          4f                                          \n\t"
1164           " nop                                                   \n\t"
1165          "2:                                                      \n\t"
1166           "addu       %[temp1],       $zero,          $zero       \n\t"
1167           "addu       %[temp2],       $zero,          $zero       \n\t"
1168           "addu       %[temp3],       $zero,          $zero       \n\t"
1169           "b          1f                                          \n\t"
1170           " nop                                                   \n\t"
1171          "3:                                                      \n\t"
1172           "addiu      %[temp1],       $0,             0x4000      \n\t"
1173          "1:                                                      \n\t"
1174           "sh         %[temp1],       0(%[ptr])                   \n\t"
1175          "4:                                                      \n\t"
1176           "sh         %[temp2],       0(%[er_ptr])                \n\t"
1177           "sh         %[temp3],       2(%[er_ptr])                \n\t"
1178           "addiu      %[ptr],         %[ptr],         2           \n\t"
1179           "addiu      %[er_ptr],      %[er_ptr],      4           \n\t"
1180           ".set       pop                                         \n\t"
1181           : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
1182             [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr),
1183             [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr)
1184           :
1185           : "memory", "hi", "lo"
1186         );
1187 #else
1188         __asm __volatile (
1189           ".set       push                                        \n\t"
1190           ".set       noreorder                                   \n\t"
1191           "lh         %[temp1],       0(%[ptr])                   \n\t"
1192           "lh         %[temp2],       0(%[dr_ptr])                \n\t"
1193           "slti       %[temp4],       %[temp1],       0x4001      \n\t"
1194           "beqz       %[temp4],       3f                          \n\t"
1195           " lh        %[temp3],       2(%[dr_ptr])                \n\t"
1196           "slti       %[temp5],       %[temp1],       3277        \n\t"
1197           "bnez       %[temp5],       2f                          \n\t"
1198           " addiu     %[dr_ptr],      %[dr_ptr],      4           \n\t"
1199           "mul        %[temp2],       %[temp2],       %[temp1]    \n\t"
1200           "mul        %[temp3],       %[temp3],       %[temp1]    \n\t"
1201           "addiu      %[temp2],       %[temp2],       0x2000      \n\t"
1202           "addiu      %[temp3],       %[temp3],       0x2000      \n\t"
1203           "sra        %[temp2],       %[temp2],       14          \n\t"
1204           "sra        %[temp3],       %[temp3],       14          \n\t"
1205           "b          4f                                          \n\t"
1206           " nop                                                   \n\t"
1207          "2:                                                      \n\t"
1208           "addu       %[temp1],       $zero,          $zero       \n\t"
1209           "addu       %[temp2],       $zero,          $zero       \n\t"
1210           "addu       %[temp3],       $zero,          $zero       \n\t"
1211           "b          1f                                          \n\t"
1212           " nop                                                   \n\t"
1213          "3:                                                      \n\t"
1214           "addiu      %[temp1],       $0,             0x4000      \n\t"
1215          "1:                                                      \n\t"
1216           "sh         %[temp1],       0(%[ptr])                   \n\t"
1217          "4:                                                      \n\t"
1218           "sh         %[temp2],       0(%[er_ptr])                \n\t"
1219           "sh         %[temp3],       2(%[er_ptr])                \n\t"
1220           "addiu      %[ptr],         %[ptr],         2           \n\t"
1221           "addiu      %[er_ptr],      %[er_ptr],      4           \n\t"
1222           ".set       pop                                         \n\t"
1223           : [temp1] "=&r" (temp1), [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
1224             [temp4] "=&r" (temp4), [temp5] "=&r" (temp5), [ptr] "+r" (ptr),
1225             [er_ptr] "+r" (er_ptr), [dr_ptr] "+r" (dr_ptr)
1226           :
1227           : "memory", "hi", "lo"
1228         );
1229 #endif
1230       }
1231     }
1232   }
1233   else {
1234     // multiply with Wiener coefficients
1235     for (i = 0; i < PART_LEN1; i++) {
1236       efw[i].real = (int16_t)
1237                       (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
1238                                                             hnl[i],
1239                                                             14));
1240       efw[i].imag = (int16_t)
1241                       (WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
1242                                                             hnl[i],
1243                                                             14));
1244     }
1245   }
1246 
1247   if (aecm->cngMode == AecmTrue) {
1248     ComfortNoise(aecm, ptrDfaClean, efw, hnl);
1249   }
1250 
1251   InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
1252 
1253   return 0;
1254 }
1255 
1256 // Generate comfort noise and add to output signal.
ComfortNoise(AecmCore_t * aecm,const uint16_t * dfa,complex16_t * out,const int16_t * lambda)1257 static void ComfortNoise(AecmCore_t* aecm,
1258                          const uint16_t* dfa,
1259                          complex16_t* out,
1260                          const int16_t* lambda) {
1261   int16_t i;
1262   int16_t tmp16, tmp161, tmp162, tmp163, nrsh1, nrsh2;
1263   int32_t tmp32, tmp321, tnoise, tnoise1;
1264   int32_t tmp322, tmp323, *tmp1;
1265   int16_t* dfap;
1266   int16_t* lambdap;
1267   const int32_t c2049 = 2049;
1268   const int32_t c359 = 359;
1269   const int32_t c114 = ONE_Q14;
1270 
1271   int16_t randW16[PART_LEN];
1272   int16_t uReal[PART_LEN1];
1273   int16_t uImag[PART_LEN1];
1274   int32_t outLShift32;
1275 
1276   int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
1277   int16_t minTrackShift = 9;
1278 
1279   assert(shiftFromNearToNoise >= 0);
1280   assert(shiftFromNearToNoise < 16);
1281 
1282   if (aecm->noiseEstCtr < 100) {
1283     // Track the minimum more quickly initially.
1284     aecm->noiseEstCtr++;
1285     minTrackShift = 6;
1286   }
1287 
1288   // Generate a uniform random array on [0 2^15-1].
1289   WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
1290   int16_t* randW16p = (int16_t*)randW16;
1291 #if defined (MIPS_DSP_R1_LE)
1292   int16_t* kCosTablep = (int16_t*)WebRtcAecm_kCosTable;
1293   int16_t* kSinTablep = (int16_t*)WebRtcAecm_kSinTable;
1294 #endif   // #if defined(MIPS_DSP_R1_LE)
1295   tmp1 = (int32_t*)aecm->noiseEst + 1;
1296   dfap = (int16_t*)dfa + 1;
1297   lambdap = (int16_t*)lambda + 1;
1298   // Estimate noise power.
1299   for (i = 1; i < PART_LEN1; i+=2) {
1300   // Shift to the noise domain.
1301     __asm __volatile (
1302       "lh     %[tmp32],       0(%[dfap])                              \n\t"
1303       "lw     %[tnoise],      0(%[tmp1])                              \n\t"
1304       "sllv   %[outLShift32], %[tmp32],   %[shiftFromNearToNoise]     \n\t"
1305       : [tmp32] "=&r" (tmp32), [outLShift32] "=r" (outLShift32),
1306         [tnoise] "=&r" (tnoise)
1307       : [tmp1] "r" (tmp1), [dfap] "r" (dfap),
1308         [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
1309       : "memory"
1310     );
1311 
1312     if (outLShift32 < tnoise) {
1313       // Reset "too low" counter
1314       aecm->noiseEstTooLowCtr[i] = 0;
1315       // Track the minimum.
1316       if (tnoise < (1 << minTrackShift)) {
1317         // For small values, decrease noiseEst[i] every
1318         // |kNoiseEstIncCount| block. The regular approach below can not
1319         // go further down due to truncation.
1320         aecm->noiseEstTooHighCtr[i]++;
1321         if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
1322           tnoise--;
1323           aecm->noiseEstTooHighCtr[i] = 0;  // Reset the counter
1324         }
1325       } else {
1326         __asm __volatile (
1327           "subu   %[tmp32],       %[tnoise],      %[outLShift32]      \n\t"
1328           "srav   %[tmp32],       %[tmp32],       %[minTrackShift]    \n\t"
1329           "subu   %[tnoise],      %[tnoise],      %[tmp32]            \n\t"
1330           : [tmp32] "=&r" (tmp32), [tnoise] "+r" (tnoise)
1331           : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift)
1332         );
1333       }
1334     } else {
1335       // Reset "too high" counter
1336       aecm->noiseEstTooHighCtr[i] = 0;
1337       // Ramp slowly upwards until we hit the minimum again.
1338       if ((tnoise >> 19) <= 0) {
1339         if ((tnoise >> 11) > 0) {
1340           // Large enough for relative increase
1341           __asm __volatile (
1342             "mul    %[tnoise],  %[tnoise],  %[c2049]    \n\t"
1343             "sra    %[tnoise],  %[tnoise],  11          \n\t"
1344             : [tnoise] "+r" (tnoise)
1345             : [c2049] "r" (c2049)
1346             : "hi", "lo"
1347           );
1348         } else {
1349           // Make incremental increases based on size every
1350           // |kNoiseEstIncCount| block
1351           aecm->noiseEstTooLowCtr[i]++;
1352           if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
1353             __asm __volatile (
1354               "sra    %[tmp32],   %[tnoise],  9           \n\t"
1355               "addi   %[tnoise],  %[tnoise],  1           \n\t"
1356               "addu   %[tnoise],  %[tnoise],  %[tmp32]    \n\t"
1357               : [tnoise] "+r" (tnoise), [tmp32] "=&r" (tmp32)
1358               :
1359             );
1360             aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
1361           }
1362         }
1363       } else {
1364         // Avoid overflow.
1365         // Multiplication with 2049 will cause wrap around. Scale
1366         // down first and then multiply
1367         __asm __volatile (
1368           "sra    %[tnoise],  %[tnoise],  11          \n\t"
1369           "mul    %[tnoise],  %[tnoise],  %[c2049]    \n\t"
1370           : [tnoise] "+r" (tnoise)
1371           : [c2049] "r" (c2049)
1372           : "hi", "lo"
1373         );
1374       }
1375     }
1376 
1377     // Shift to the noise domain.
1378     __asm __volatile (
1379       "lh     %[tmp32],       2(%[dfap])                              \n\t"
1380       "lw     %[tnoise1],     4(%[tmp1])                              \n\t"
1381       "addiu  %[dfap],        %[dfap],    4                           \n\t"
1382       "sllv   %[outLShift32], %[tmp32],   %[shiftFromNearToNoise]     \n\t"
1383       : [tmp32] "=&r" (tmp32), [dfap] "+r" (dfap),
1384         [outLShift32] "=r" (outLShift32), [tnoise1] "=&r" (tnoise1)
1385       : [tmp1] "r" (tmp1), [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
1386       : "memory"
1387     );
1388 
1389     if (outLShift32 < tnoise1) {
1390       // Reset "too low" counter
1391       aecm->noiseEstTooLowCtr[i + 1] = 0;
1392       // Track the minimum.
1393       if (tnoise1 < (1 << minTrackShift)) {
1394         // For small values, decrease noiseEst[i] every
1395         // |kNoiseEstIncCount| block. The regular approach below can not
1396         // go further down due to truncation.
1397         aecm->noiseEstTooHighCtr[i + 1]++;
1398         if (aecm->noiseEstTooHighCtr[i + 1] >= kNoiseEstIncCount) {
1399           tnoise1--;
1400           aecm->noiseEstTooHighCtr[i + 1] = 0; // Reset the counter
1401         }
1402       } else {
1403         __asm __volatile (
1404           "subu   %[tmp32],       %[tnoise1],     %[outLShift32]      \n\t"
1405           "srav   %[tmp32],       %[tmp32],       %[minTrackShift]    \n\t"
1406           "subu   %[tnoise1],     %[tnoise1],     %[tmp32]            \n\t"
1407           : [tmp32] "=&r" (tmp32), [tnoise1] "+r" (tnoise1)
1408           : [outLShift32] "r" (outLShift32), [minTrackShift] "r" (minTrackShift)
1409         );
1410       }
1411     } else {
1412       // Reset "too high" counter
1413       aecm->noiseEstTooHighCtr[i + 1] = 0;
1414       // Ramp slowly upwards until we hit the minimum again.
1415       if ((tnoise1 >> 19) <= 0) {
1416         if ((tnoise1 >> 11) > 0) {
1417           // Large enough for relative increase
1418           __asm __volatile (
1419             "mul    %[tnoise1], %[tnoise1], %[c2049]   \n\t"
1420             "sra    %[tnoise1], %[tnoise1], 11         \n\t"
1421             : [tnoise1] "+r" (tnoise1)
1422             : [c2049] "r" (c2049)
1423             : "hi", "lo"
1424           );
1425         } else {
1426           // Make incremental increases based on size every
1427           // |kNoiseEstIncCount| block
1428           aecm->noiseEstTooLowCtr[i + 1]++;
1429           if (aecm->noiseEstTooLowCtr[i + 1] >= kNoiseEstIncCount) {
1430             __asm __volatile (
1431               "sra    %[tmp32],   %[tnoise1], 9           \n\t"
1432               "addi   %[tnoise1], %[tnoise1], 1           \n\t"
1433               "addu   %[tnoise1], %[tnoise1], %[tmp32]    \n\t"
1434               : [tnoise1] "+r" (tnoise1), [tmp32] "=&r" (tmp32)
1435               :
1436             );
1437             aecm->noiseEstTooLowCtr[i + 1] = 0; // Reset counter
1438           }
1439         }
1440       } else {
1441         // Avoid overflow.
1442         // Multiplication with 2049 will cause wrap around. Scale
1443         // down first and then multiply
1444         __asm __volatile (
1445           "sra    %[tnoise1], %[tnoise1], 11          \n\t"
1446           "mul    %[tnoise1], %[tnoise1], %[c2049]    \n\t"
1447           : [tnoise1] "+r" (tnoise1)
1448           : [c2049] "r" (c2049)
1449           : "hi", "lo"
1450         );
1451       }
1452     }
1453 
1454     __asm __volatile (
1455       "lh     %[tmp16],   0(%[lambdap])                           \n\t"
1456       "lh     %[tmp161],  2(%[lambdap])                           \n\t"
1457       "sw     %[tnoise],  0(%[tmp1])                              \n\t"
1458       "sw     %[tnoise1], 4(%[tmp1])                              \n\t"
1459       "subu   %[tmp16],   %[c114],        %[tmp16]                \n\t"
1460       "subu   %[tmp161],  %[c114],        %[tmp161]               \n\t"
1461       "srav   %[tmp32],   %[tnoise],      %[shiftFromNearToNoise] \n\t"
1462       "srav   %[tmp321],  %[tnoise1],     %[shiftFromNearToNoise] \n\t"
1463       "addiu  %[lambdap], %[lambdap],     4                       \n\t"
1464       "addiu  %[tmp1],    %[tmp1],        8                       \n\t"
1465       : [tmp16] "=&r" (tmp16), [tmp161] "=&r" (tmp161), [tmp1] "+r" (tmp1),
1466         [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321), [lambdap] "+r" (lambdap)
1467       : [tnoise] "r" (tnoise), [tnoise1] "r" (tnoise1), [c114] "r" (c114),
1468         [shiftFromNearToNoise] "r" (shiftFromNearToNoise)
1469       : "memory"
1470     );
1471 
1472     if (tmp32 > 32767) {
1473       tmp32 = 32767;
1474       aecm->noiseEst[i] = WEBRTC_SPL_LSHIFT_W32(tmp32, shiftFromNearToNoise);
1475     }
1476     if (tmp321 > 32767) {
1477       tmp321 = 32767;
1478       aecm->noiseEst[i+1] = WEBRTC_SPL_LSHIFT_W32(tmp321, shiftFromNearToNoise);
1479     }
1480 
1481     __asm __volatile (
1482       "mul    %[tmp32],   %[tmp32],       %[tmp16]                \n\t"
1483       "mul    %[tmp321],  %[tmp321],      %[tmp161]               \n\t"
1484       "sra    %[nrsh1],   %[tmp32],       14                      \n\t"
1485       "sra    %[nrsh2],   %[tmp321],      14                      \n\t"
1486       : [nrsh1] "=r" (nrsh1), [nrsh2] "=r" (nrsh2)
1487       : [tmp16] "r" (tmp16), [tmp161] "r" (tmp161), [tmp32] "r" (tmp32),
1488         [tmp321] "r" (tmp321)
1489       : "memory", "hi", "lo"
1490     );
1491 
1492     __asm __volatile (
1493       "lh     %[tmp32],       0(%[randW16p])              \n\t"
1494       "lh     %[tmp321],      2(%[randW16p])              \n\t"
1495       "addiu  %[randW16p],    %[randW16p],    4           \n\t"
1496       "mul    %[tmp32],       %[tmp32],       %[c359]     \n\t"
1497       "mul    %[tmp321],      %[tmp321],      %[c359]     \n\t"
1498       "sra    %[tmp16],       %[tmp32],       15          \n\t"
1499       "sra    %[tmp161],      %[tmp321],      15          \n\t"
1500       : [randW16p] "+r" (randW16p), [tmp32] "=&r" (tmp32),
1501         [tmp16] "=r" (tmp16), [tmp161] "=r" (tmp161), [tmp321] "=&r" (tmp321)
1502       : [c359] "r" (c359)
1503       : "memory", "hi", "lo"
1504     );
1505 
1506 #if !defined(MIPS_DSP_R1_LE)
1507     tmp32 = WebRtcAecm_kCosTable[tmp16];
1508     tmp321 = WebRtcAecm_kSinTable[tmp16];
1509     tmp322 = WebRtcAecm_kCosTable[tmp161];
1510     tmp323 = WebRtcAecm_kSinTable[tmp161];
1511 #else
1512     __asm __volatile (
1513       "sll    %[tmp16],       %[tmp16],                   1           \n\t"
1514       "sll    %[tmp161],      %[tmp161],                  1           \n\t"
1515       "lhx    %[tmp32],       %[tmp16](%[kCosTablep])                 \n\t"
1516       "lhx    %[tmp321],      %[tmp16](%[kSinTablep])                 \n\t"
1517       "lhx    %[tmp322],      %[tmp161](%[kCosTablep])                \n\t"
1518       "lhx    %[tmp323],      %[tmp161](%[kSinTablep])                \n\t"
1519       : [tmp32] "=&r" (tmp32), [tmp321] "=&r" (tmp321),
1520         [tmp322] "=&r" (tmp322), [tmp323] "=&r" (tmp323)
1521       : [kCosTablep] "r" (kCosTablep), [tmp16] "r" (tmp16),
1522         [tmp161] "r" (tmp161), [kSinTablep] "r" (kSinTablep)
1523       : "memory"
1524     );
1525 #endif
1526     __asm __volatile (
1527       "mul    %[tmp32],       %[tmp32],                   %[nrsh1]    \n\t"
1528       "negu   %[tmp162],      %[nrsh1]                                \n\t"
1529       "mul    %[tmp322],      %[tmp322],                  %[nrsh2]    \n\t"
1530       "negu   %[tmp163],      %[nrsh2]                                \n\t"
1531       "sra    %[tmp32],       %[tmp32],                   13          \n\t"
1532       "mul    %[tmp321],      %[tmp321],                  %[tmp162]   \n\t"
1533       "sra    %[tmp322],      %[tmp322],                  13          \n\t"
1534       "mul    %[tmp323],      %[tmp323],                  %[tmp163]   \n\t"
1535       "sra    %[tmp321],      %[tmp321],                  13          \n\t"
1536       "sra    %[tmp323],      %[tmp323],                  13          \n\t"
1537       : [tmp32] "+r" (tmp32), [tmp321] "+r" (tmp321), [tmp162] "=&r" (tmp162),
1538         [tmp322] "+r" (tmp322), [tmp323] "+r" (tmp323), [tmp163] "=&r" (tmp163)
1539       : [nrsh1] "r" (nrsh1), [nrsh2] "r" (nrsh2)
1540       : "hi", "lo"
1541     );
1542     // Tables are in Q13.
1543     uReal[i] = (int16_t)tmp32;
1544     uImag[i] = (int16_t)tmp321;
1545     uReal[i + 1] = (int16_t)tmp322;
1546     uImag[i + 1] = (int16_t)tmp323;
1547   }
1548 
1549   int32_t tt, sgn;
1550   tt = out[0].real;
1551   sgn = ((int)tt) >> 31;
1552   out[0].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1553   tt = out[0].imag;
1554   sgn = ((int)tt) >> 31;
1555   out[0].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1556   for (i = 1; i < PART_LEN; i++) {
1557     tt = out[i].real + uReal[i];
1558     sgn = ((int)tt) >> 31;
1559     out[i].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1560     tt = out[i].imag + uImag[i];
1561     sgn = ((int)tt) >> 31;
1562     out[i].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1563   }
1564   tt = out[PART_LEN].real + uReal[PART_LEN];
1565   sgn = ((int)tt) >> 31;
1566   out[PART_LEN].real = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1567   tt = out[PART_LEN].imag;
1568   sgn = ((int)tt) >> 31;
1569   out[PART_LEN].imag = sgn == (int16_t)(tt >> 15) ? (int16_t)tt : (16384 ^ sgn);
1570 }
1571 
1572