• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1.  Redistributions of source code must retain the above copyright
9  *     notice, this list of conditions and the following disclaimer.
10  * 2.  Redistributions in binary form must reproduce the above copyright
11  *     notice, this list of conditions and the following disclaimer in the
12  *     documentation and/or other materials provided with the distribution.
13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14  *     its contributors may be used to endorse or promote products derived
15  *     from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "config.h"
30 
31 #if ENABLE(WEB_AUDIO)
32 
33 #include "platform/audio/HRTFElevation.h"
34 
35 #include <math.h>
36 #include <algorithm>
37 #include "platform/audio/AudioBus.h"
38 #include "platform/audio/HRTFPanner.h"
39 #include "wtf/ThreadingPrimitives.h"
40 #include "wtf/text/StringHash.h"
41 
42 using namespace std;
43 
44 namespace WebCore {
45 
46 const unsigned HRTFElevation::AzimuthSpacing = 15;
47 const unsigned HRTFElevation::NumberOfRawAzimuths = 360 / AzimuthSpacing;
48 const unsigned HRTFElevation::InterpolationFactor = 8;
49 const unsigned HRTFElevation::NumberOfTotalAzimuths = NumberOfRawAzimuths * InterpolationFactor;
50 
51 // Total number of components of an HRTF database.
52 const size_t TotalNumberOfResponses = 240;
53 
54 // Number of frames in an individual impulse response.
55 const size_t ResponseFrameSize = 256;
56 
57 // Sample-rate of the spatialization impulse responses as stored in the resource file.
58 // The impulse responses may be resampled to a different sample-rate (depending on the audio hardware) when they are loaded.
59 const float ResponseSampleRate = 44100;
60 
61 #if USE(CONCATENATED_IMPULSE_RESPONSES)
62 // Lazily load a concatenated HRTF database for given subject and store it in a
63 // local hash table to ensure quick efficient future retrievals.
getConcatenatedImpulseResponsesForSubject(const String & subjectName)64 static PassRefPtr<AudioBus> getConcatenatedImpulseResponsesForSubject(const String& subjectName)
65 {
66     typedef HashMap<String, RefPtr<AudioBus> > AudioBusMap;
67     DEFINE_STATIC_LOCAL(AudioBusMap, audioBusMap, ());
68     DEFINE_STATIC_LOCAL(Mutex, mutex, ());
69 
70     MutexLocker locker(mutex);
71     RefPtr<AudioBus> bus;
72     AudioBusMap::iterator iterator = audioBusMap.find(subjectName);
73     if (iterator == audioBusMap.end()) {
74         RefPtr<AudioBus> concatenatedImpulseResponses(AudioBus::loadPlatformResource(subjectName.utf8().data(), ResponseSampleRate));
75         ASSERT(concatenatedImpulseResponses);
76         if (!concatenatedImpulseResponses)
77             return nullptr;
78 
79         bus = concatenatedImpulseResponses;
80         audioBusMap.set(subjectName, bus);
81     } else
82         bus = iterator->value;
83 
84     size_t responseLength = bus->length();
85     size_t expectedLength = static_cast<size_t>(TotalNumberOfResponses * ResponseFrameSize);
86 
87     // Check number of channels and length. For now these are fixed and known.
88     bool isBusGood = responseLength == expectedLength && bus->numberOfChannels() == 2;
89     ASSERT(isBusGood);
90     if (!isBusGood)
91         return nullptr;
92 
93     return bus;
94 }
95 #endif
96 
97 // Takes advantage of the symmetry and creates a composite version of the two measured versions.  For example, we have both azimuth 30 and -30 degrees
98 // where the roles of left and right ears are reversed with respect to each other.
calculateSymmetricKernelsForAzimuthElevation(int azimuth,int elevation,float sampleRate,const String & subjectName,RefPtr<HRTFKernel> & kernelL,RefPtr<HRTFKernel> & kernelR)99 bool HRTFElevation::calculateSymmetricKernelsForAzimuthElevation(int azimuth, int elevation, float sampleRate, const String& subjectName,
100                                                                  RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
101 {
102     RefPtr<HRTFKernel> kernelL1;
103     RefPtr<HRTFKernel> kernelR1;
104     bool success = calculateKernelsForAzimuthElevation(azimuth, elevation, sampleRate, subjectName, kernelL1, kernelR1);
105     if (!success)
106         return false;
107 
108     // And symmetric version
109     int symmetricAzimuth = !azimuth ? 0 : 360 - azimuth;
110 
111     RefPtr<HRTFKernel> kernelL2;
112     RefPtr<HRTFKernel> kernelR2;
113     success = calculateKernelsForAzimuthElevation(symmetricAzimuth, elevation, sampleRate, subjectName, kernelL2, kernelR2);
114     if (!success)
115         return false;
116 
117     // Notice L/R reversal in symmetric version.
118     kernelL = HRTFKernel::createInterpolatedKernel(kernelL1.get(), kernelR2.get(), 0.5f);
119     kernelR = HRTFKernel::createInterpolatedKernel(kernelR1.get(), kernelL2.get(), 0.5f);
120 
121     return true;
122 }
123 
calculateKernelsForAzimuthElevation(int azimuth,int elevation,float sampleRate,const String & subjectName,RefPtr<HRTFKernel> & kernelL,RefPtr<HRTFKernel> & kernelR)124 bool HRTFElevation::calculateKernelsForAzimuthElevation(int azimuth, int elevation, float sampleRate, const String& subjectName,
125                                                         RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
126 {
127     // Valid values for azimuth are 0 -> 345 in 15 degree increments.
128     // Valid values for elevation are -45 -> +90 in 15 degree increments.
129 
130     bool isAzimuthGood = azimuth >= 0 && azimuth <= 345 && (azimuth / 15) * 15 == azimuth;
131     ASSERT(isAzimuthGood);
132     if (!isAzimuthGood)
133         return false;
134 
135     bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
136     ASSERT(isElevationGood);
137     if (!isElevationGood)
138         return false;
139 
140     // Construct the resource name from the subject name, azimuth, and elevation, for example:
141     // "IRC_Composite_C_R0195_T015_P000"
142     // Note: the passed in subjectName is not a string passed in via JavaScript or the web.
143     // It's passed in as an internal ASCII identifier and is an implementation detail.
144     int positiveElevation = elevation < 0 ? elevation + 360 : elevation;
145 
146 #if USE(CONCATENATED_IMPULSE_RESPONSES)
147     RefPtr<AudioBus> bus(getConcatenatedImpulseResponsesForSubject(subjectName));
148 
149     if (!bus)
150         return false;
151 
152     int elevationIndex = positiveElevation / AzimuthSpacing;
153     if (positiveElevation > 90)
154         elevationIndex -= AzimuthSpacing;
155 
156     // The concatenated impulse response is a bus containing all
157     // the elevations per azimuth, for all azimuths by increasing
158     // order. So for a given azimuth and elevation we need to compute
159     // the index of the wanted audio frames in the concatenated table.
160     unsigned index = ((azimuth / AzimuthSpacing) * HRTFDatabase::NumberOfRawElevations) + elevationIndex;
161     bool isIndexGood = index < TotalNumberOfResponses;
162     ASSERT(isIndexGood);
163     if (!isIndexGood)
164         return false;
165 
166     // Extract the individual impulse response from the concatenated
167     // responses and potentially sample-rate convert it to the desired
168     // (hardware) sample-rate.
169     unsigned startFrame = index * ResponseFrameSize;
170     unsigned stopFrame = startFrame + ResponseFrameSize;
171     RefPtr<AudioBus> preSampleRateConvertedResponse(AudioBus::createBufferFromRange(bus.get(), startFrame, stopFrame));
172     RefPtr<AudioBus> response(AudioBus::createBySampleRateConverting(preSampleRateConvertedResponse.get(), false, sampleRate));
173     AudioChannel* leftEarImpulseResponse = response->channel(AudioBus::ChannelLeft);
174     AudioChannel* rightEarImpulseResponse = response->channel(AudioBus::ChannelRight);
175 #else
176     String resourceName = String::format("IRC_%s_C_R0195_T%03d_P%03d", subjectName.utf8().data(), azimuth, positiveElevation);
177 
178     RefPtr<AudioBus> impulseResponse(AudioBus::loadPlatformResource(resourceName.utf8().data(), sampleRate));
179 
180     ASSERT(impulseResponse.get());
181     if (!impulseResponse.get())
182         return false;
183 
184     size_t responseLength = impulseResponse->length();
185     size_t expectedLength = static_cast<size_t>(256 * (sampleRate / 44100.0));
186 
187     // Check number of channels and length.  For now these are fixed and known.
188     bool isBusGood = responseLength == expectedLength && impulseResponse->numberOfChannels() == 2;
189     ASSERT(isBusGood);
190     if (!isBusGood)
191         return false;
192 
193     AudioChannel* leftEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelLeft);
194     AudioChannel* rightEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelRight);
195 #endif
196 
197     // Note that depending on the fftSize returned by the panner, we may be truncating the impulse response we just loaded in.
198     const size_t fftSize = HRTFPanner::fftSizeForSampleRate(sampleRate);
199     kernelL = HRTFKernel::create(leftEarImpulseResponse, fftSize, sampleRate);
200     kernelR = HRTFKernel::create(rightEarImpulseResponse, fftSize, sampleRate);
201 
202     return true;
203 }
204 
205 // The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
206 //
207 // Here's how it goes:
208 static int maxElevations[] = {
209         //  Azimuth
210         //
211     90, // 0
212     45, // 15
213     60, // 30
214     45, // 45
215     75, // 60
216     45, // 75
217     60, // 90
218     45, // 105
219     75, // 120
220     45, // 135
221     60, // 150
222     45, // 165
223     75, // 180
224     45, // 195
225     60, // 210
226     45, // 225
227     75, // 240
228     45, // 255
229     60, // 270
230     45, // 285
231     75, // 300
232     45, // 315
233     60, // 330
234     45 //  345
235 };
236 
createForSubject(const String & subjectName,int elevation,float sampleRate)237 PassOwnPtr<HRTFElevation> HRTFElevation::createForSubject(const String& subjectName, int elevation, float sampleRate)
238 {
239     bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
240     ASSERT(isElevationGood);
241     if (!isElevationGood)
242         return nullptr;
243 
244     OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
245     OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
246 
247     // Load convolution kernels from HRTF files.
248     int interpolatedIndex = 0;
249     for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
250         // Don't let elevation exceed maximum for this azimuth.
251         int maxElevation = maxElevations[rawIndex];
252         int actualElevation = min(elevation, maxElevation);
253 
254         bool success = calculateKernelsForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, sampleRate, subjectName, kernelListL->at(interpolatedIndex), kernelListR->at(interpolatedIndex));
255         if (!success)
256             return nullptr;
257 
258         interpolatedIndex += InterpolationFactor;
259     }
260 
261     // Now go back and interpolate intermediate azimuth values.
262     for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
263         int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
264 
265         // Create the interpolated convolution kernels and delays.
266         for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
267             float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
268 
269             (*kernelListL)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL->at(i).get(), kernelListL->at(j).get(), x);
270             (*kernelListR)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListR->at(i).get(), kernelListR->at(j).get(), x);
271         }
272     }
273 
274     OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), elevation, sampleRate));
275     return hrtfElevation.release();
276 }
277 
createByInterpolatingSlices(HRTFElevation * hrtfElevation1,HRTFElevation * hrtfElevation2,float x,float sampleRate)278 PassOwnPtr<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
279 {
280     ASSERT(hrtfElevation1 && hrtfElevation2);
281     if (!hrtfElevation1 || !hrtfElevation2)
282         return nullptr;
283 
284     ASSERT(x >= 0.0 && x < 1.0);
285 
286     OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
287     OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
288 
289     HRTFKernelList* kernelListL1 = hrtfElevation1->kernelListL();
290     HRTFKernelList* kernelListR1 = hrtfElevation1->kernelListR();
291     HRTFKernelList* kernelListL2 = hrtfElevation2->kernelListL();
292     HRTFKernelList* kernelListR2 = hrtfElevation2->kernelListR();
293 
294     // Interpolate kernels of corresponding azimuths of the two elevations.
295     for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
296         (*kernelListL)[i] = HRTFKernel::createInterpolatedKernel(kernelListL1->at(i).get(), kernelListL2->at(i).get(), x);
297         (*kernelListR)[i] = HRTFKernel::createInterpolatedKernel(kernelListR1->at(i).get(), kernelListR2->at(i).get(), x);
298     }
299 
300     // Interpolate elevation angle.
301     double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
302 
303     OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), static_cast<int>(angle), sampleRate));
304     return hrtfElevation.release();
305 }
306 
getKernelsFromAzimuth(double azimuthBlend,unsigned azimuthIndex,HRTFKernel * & kernelL,HRTFKernel * & kernelR,double & frameDelayL,double & frameDelayR)307 void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
308 {
309     bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
310     ASSERT(checkAzimuthBlend);
311     if (!checkAzimuthBlend)
312         azimuthBlend = 0.0;
313 
314     unsigned numKernels = m_kernelListL->size();
315 
316     bool isIndexGood = azimuthIndex < numKernels;
317     ASSERT(isIndexGood);
318     if (!isIndexGood) {
319         kernelL = 0;
320         kernelR = 0;
321         return;
322     }
323 
324     // Return the left and right kernels.
325     kernelL = m_kernelListL->at(azimuthIndex).get();
326     kernelR = m_kernelListR->at(azimuthIndex).get();
327 
328     frameDelayL = m_kernelListL->at(azimuthIndex)->frameDelay();
329     frameDelayR = m_kernelListR->at(azimuthIndex)->frameDelay();
330 
331     int azimuthIndex2 = (azimuthIndex + 1) % numKernels;
332     double frameDelay2L = m_kernelListL->at(azimuthIndex2)->frameDelay();
333     double frameDelay2R = m_kernelListR->at(azimuthIndex2)->frameDelay();
334 
335     // Linearly interpolate delays.
336     frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
337     frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
338 }
339 
340 } // namespace WebCore
341 
342 #endif // ENABLE(WEB_AUDIO)
343