1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "misched"
37
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
43 }
44
45 #ifndef NDEBUG
46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
47 cl::desc("Pop up a window to show MISched dags after they are processed"));
48
49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
50 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
51
52 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
53 cl::desc("Only schedule this function"));
54 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
55 cl::desc("Only schedule this MBB#"));
56 #else
57 static bool ViewMISchedDAGs = false;
58 #endif // NDEBUG
59
60 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
61 cl::desc("Enable register pressure scheduling."), cl::init(true));
62
63 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
64 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
65
66 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
67 cl::desc("Enable load clustering."), cl::init(true));
68
69 // Experimental heuristics
70 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
71 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
72
73 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
74 cl::desc("Verify machine instrs before and after machine scheduling"));
75
76 // DAG subtrees must have at least this many nodes.
77 static const unsigned MinSubtreeSize = 8;
78
79 // Pin the vtables to this file.
anchor()80 void MachineSchedStrategy::anchor() {}
anchor()81 void ScheduleDAGMutation::anchor() {}
82
83 //===----------------------------------------------------------------------===//
84 // Machine Instruction Scheduling Pass and Registry
85 //===----------------------------------------------------------------------===//
86
MachineSchedContext()87 MachineSchedContext::MachineSchedContext():
88 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
89 RegClassInfo = new RegisterClassInfo();
90 }
91
~MachineSchedContext()92 MachineSchedContext::~MachineSchedContext() {
93 delete RegClassInfo;
94 }
95
96 namespace {
97 /// Base class for a machine scheduler class that can run at any point.
98 class MachineSchedulerBase : public MachineSchedContext,
99 public MachineFunctionPass {
100 public:
MachineSchedulerBase(char & ID)101 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
102
103 void print(raw_ostream &O, const Module* = nullptr) const override;
104
105 protected:
106 void scheduleRegions(ScheduleDAGInstrs &Scheduler);
107 };
108
109 /// MachineScheduler runs after coalescing and before register allocation.
110 class MachineScheduler : public MachineSchedulerBase {
111 public:
112 MachineScheduler();
113
114 void getAnalysisUsage(AnalysisUsage &AU) const override;
115
116 bool runOnMachineFunction(MachineFunction&) override;
117
118 static char ID; // Class identification, replacement for typeinfo
119
120 protected:
121 ScheduleDAGInstrs *createMachineScheduler();
122 };
123
124 /// PostMachineScheduler runs after shortly before code emission.
125 class PostMachineScheduler : public MachineSchedulerBase {
126 public:
127 PostMachineScheduler();
128
129 void getAnalysisUsage(AnalysisUsage &AU) const override;
130
131 bool runOnMachineFunction(MachineFunction&) override;
132
133 static char ID; // Class identification, replacement for typeinfo
134
135 protected:
136 ScheduleDAGInstrs *createPostMachineScheduler();
137 };
138 } // namespace
139
140 char MachineScheduler::ID = 0;
141
142 char &llvm::MachineSchedulerID = MachineScheduler::ID;
143
144 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
145 "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)146 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
149 INITIALIZE_PASS_END(MachineScheduler, "misched",
150 "Machine Instruction Scheduler", false, false)
151
152 MachineScheduler::MachineScheduler()
153 : MachineSchedulerBase(ID) {
154 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
155 }
156
getAnalysisUsage(AnalysisUsage & AU) const157 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
158 AU.setPreservesCFG();
159 AU.addRequiredID(MachineDominatorsID);
160 AU.addRequired<MachineLoopInfo>();
161 AU.addRequired<AliasAnalysis>();
162 AU.addRequired<TargetPassConfig>();
163 AU.addRequired<SlotIndexes>();
164 AU.addPreserved<SlotIndexes>();
165 AU.addRequired<LiveIntervals>();
166 AU.addPreserved<LiveIntervals>();
167 MachineFunctionPass::getAnalysisUsage(AU);
168 }
169
170 char PostMachineScheduler::ID = 0;
171
172 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
173
174 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
175 "PostRA Machine Instruction Scheduler", false, false)
176
PostMachineScheduler()177 PostMachineScheduler::PostMachineScheduler()
178 : MachineSchedulerBase(ID) {
179 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
180 }
181
getAnalysisUsage(AnalysisUsage & AU) const182 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
183 AU.setPreservesCFG();
184 AU.addRequiredID(MachineDominatorsID);
185 AU.addRequired<MachineLoopInfo>();
186 AU.addRequired<TargetPassConfig>();
187 MachineFunctionPass::getAnalysisUsage(AU);
188 }
189
190 MachinePassRegistry MachineSchedRegistry::Registry;
191
192 /// A dummy default scheduler factory indicates whether the scheduler
193 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)194 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
195 return nullptr;
196 }
197
198 /// MachineSchedOpt allows command line selection of the scheduler.
199 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
200 RegisterPassParser<MachineSchedRegistry> >
201 MachineSchedOpt("misched",
202 cl::init(&useDefaultMachineSched), cl::Hidden,
203 cl::desc("Machine instruction scheduler to use"));
204
205 static MachineSchedRegistry
206 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
207 useDefaultMachineSched);
208
209 /// Forward declare the standard machine scheduler. This will be used as the
210 /// default scheduler if the target does not set a default.
211 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
212 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
213
214 /// Decrement this iterator until reaching the top or a non-debug instr.
215 static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator Beg)216 priorNonDebug(MachineBasicBlock::const_iterator I,
217 MachineBasicBlock::const_iterator Beg) {
218 assert(I != Beg && "reached the top of the region, cannot decrement");
219 while (--I != Beg) {
220 if (!I->isDebugValue())
221 break;
222 }
223 return I;
224 }
225
226 /// Non-const version.
227 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator Beg)228 priorNonDebug(MachineBasicBlock::iterator I,
229 MachineBasicBlock::const_iterator Beg) {
230 return const_cast<MachineInstr*>(
231 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
232 }
233
234 /// If this iterator is a debug value, increment until reaching the End or a
235 /// non-debug instruction.
236 static MachineBasicBlock::const_iterator
nextIfDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator End)237 nextIfDebug(MachineBasicBlock::const_iterator I,
238 MachineBasicBlock::const_iterator End) {
239 for(; I != End; ++I) {
240 if (!I->isDebugValue())
241 break;
242 }
243 return I;
244 }
245
246 /// Non-const version.
247 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator End)248 nextIfDebug(MachineBasicBlock::iterator I,
249 MachineBasicBlock::const_iterator End) {
250 // Cast the return value to nonconst MachineInstr, then cast to an
251 // instr_iterator, which does not check for null, finally return a
252 // bundle_iterator.
253 return MachineBasicBlock::instr_iterator(
254 const_cast<MachineInstr*>(
255 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
256 }
257
258 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
createMachineScheduler()259 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
260 // Select the scheduler, or set the default.
261 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
262 if (Ctor != useDefaultMachineSched)
263 return Ctor(this);
264
265 // Get the default scheduler set by the target for this function.
266 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
267 if (Scheduler)
268 return Scheduler;
269
270 // Default to GenericScheduler.
271 return createGenericSchedLive(this);
272 }
273
274 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
275 /// the caller. We don't have a command line option to override the postRA
276 /// scheduler. The Target must configure it.
createPostMachineScheduler()277 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
278 // Get the postRA scheduler set by the target for this function.
279 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
280 if (Scheduler)
281 return Scheduler;
282
283 // Default to GenericScheduler.
284 return createGenericSchedPostRA(this);
285 }
286
287 /// Top-level MachineScheduler pass driver.
288 ///
289 /// Visit blocks in function order. Divide each block into scheduling regions
290 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
291 /// consistent with the DAG builder, which traverses the interior of the
292 /// scheduling regions bottom-up.
293 ///
294 /// This design avoids exposing scheduling boundaries to the DAG builder,
295 /// simplifying the DAG builder's support for "special" target instructions.
296 /// At the same time the design allows target schedulers to operate across
297 /// scheduling boundaries, for example to bundle the boudary instructions
298 /// without reordering them. This creates complexity, because the target
299 /// scheduler must update the RegionBegin and RegionEnd positions cached by
300 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
301 /// design would be to split blocks at scheduling boundaries, but LLVM has a
302 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)303 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
304 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
305
306 // Initialize the context of the pass.
307 MF = &mf;
308 MLI = &getAnalysis<MachineLoopInfo>();
309 MDT = &getAnalysis<MachineDominatorTree>();
310 PassConfig = &getAnalysis<TargetPassConfig>();
311 AA = &getAnalysis<AliasAnalysis>();
312
313 LIS = &getAnalysis<LiveIntervals>();
314
315 if (VerifyScheduling) {
316 DEBUG(LIS->dump());
317 MF->verify(this, "Before machine scheduling.");
318 }
319 RegClassInfo->runOnMachineFunction(*MF);
320
321 // Instantiate the selected scheduler for this target, function, and
322 // optimization level.
323 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
324 scheduleRegions(*Scheduler);
325
326 DEBUG(LIS->dump());
327 if (VerifyScheduling)
328 MF->verify(this, "After machine scheduling.");
329 return true;
330 }
331
runOnMachineFunction(MachineFunction & mf)332 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
333 if (skipOptnoneFunction(*mf.getFunction()))
334 return false;
335
336 const TargetSubtargetInfo &ST =
337 mf.getTarget().getSubtarget<TargetSubtargetInfo>();
338 if (!ST.enablePostMachineScheduler()) {
339 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
340 return false;
341 }
342 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
343
344 // Initialize the context of the pass.
345 MF = &mf;
346 PassConfig = &getAnalysis<TargetPassConfig>();
347
348 if (VerifyScheduling)
349 MF->verify(this, "Before post machine scheduling.");
350
351 // Instantiate the selected scheduler for this target, function, and
352 // optimization level.
353 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
354 scheduleRegions(*Scheduler);
355
356 if (VerifyScheduling)
357 MF->verify(this, "After post machine scheduling.");
358 return true;
359 }
360
361 /// Return true of the given instruction should not be included in a scheduling
362 /// region.
363 ///
364 /// MachineScheduler does not currently support scheduling across calls. To
365 /// handle calls, the DAG builder needs to be modified to create register
366 /// anti/output dependencies on the registers clobbered by the call's regmask
367 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
368 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
369 /// the boundary, but there would be no benefit to postRA scheduling across
370 /// calls this late anyway.
isSchedBoundary(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB,MachineFunction * MF,const TargetInstrInfo * TII,bool IsPostRA)371 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
372 MachineBasicBlock *MBB,
373 MachineFunction *MF,
374 const TargetInstrInfo *TII,
375 bool IsPostRA) {
376 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
377 }
378
379 /// Main driver for both MachineScheduler and PostMachineScheduler.
scheduleRegions(ScheduleDAGInstrs & Scheduler)380 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
381 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
382 bool IsPostRA = Scheduler.isPostRA();
383
384 // Visit all machine basic blocks.
385 //
386 // TODO: Visit blocks in global postorder or postorder within the bottom-up
387 // loop tree. Then we can optionally compute global RegPressure.
388 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
389 MBB != MBBEnd; ++MBB) {
390
391 Scheduler.startBlock(MBB);
392
393 #ifndef NDEBUG
394 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
395 continue;
396 if (SchedOnlyBlock.getNumOccurrences()
397 && (int)SchedOnlyBlock != MBB->getNumber())
398 continue;
399 #endif
400
401 // Break the block into scheduling regions [I, RegionEnd), and schedule each
402 // region as soon as it is discovered. RegionEnd points the scheduling
403 // boundary at the bottom of the region. The DAG does not include RegionEnd,
404 // but the region does (i.e. the next RegionEnd is above the previous
405 // RegionBegin). If the current block has no terminator then RegionEnd ==
406 // MBB->end() for the bottom region.
407 //
408 // The Scheduler may insert instructions during either schedule() or
409 // exitRegion(), even for empty regions. So the local iterators 'I' and
410 // 'RegionEnd' are invalid across these calls.
411 //
412 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
413 // as a single instruction.
414 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
415 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
416 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
417
418 // Avoid decrementing RegionEnd for blocks with no terminator.
419 if (RegionEnd != MBB->end() ||
420 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
421 --RegionEnd;
422 // Count the boundary instruction.
423 --RemainingInstrs;
424 }
425
426 // The next region starts above the previous region. Look backward in the
427 // instruction stream until we find the nearest boundary.
428 unsigned NumRegionInstrs = 0;
429 MachineBasicBlock::iterator I = RegionEnd;
430 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
431 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
432 break;
433 }
434 // Notify the scheduler of the region, even if we may skip scheduling
435 // it. Perhaps it still needs to be bundled.
436 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
437
438 // Skip empty scheduling regions (0 or 1 schedulable instructions).
439 if (I == RegionEnd || I == std::prev(RegionEnd)) {
440 // Close the current region. Bundle the terminator if needed.
441 // This invalidates 'RegionEnd' and 'I'.
442 Scheduler.exitRegion();
443 continue;
444 }
445 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
446 << "MI Scheduling **********\n");
447 DEBUG(dbgs() << MF->getName()
448 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
449 << "\n From: " << *I << " To: ";
450 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
451 else dbgs() << "End";
452 dbgs() << " RegionInstrs: " << NumRegionInstrs
453 << " Remaining: " << RemainingInstrs << "\n");
454
455 // Schedule a region: possibly reorder instructions.
456 // This invalidates 'RegionEnd' and 'I'.
457 Scheduler.schedule();
458
459 // Close the current region.
460 Scheduler.exitRegion();
461
462 // Scheduling has invalidated the current iterator 'I'. Ask the
463 // scheduler for the top of it's scheduled region.
464 RegionEnd = Scheduler.begin();
465 }
466 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
467 Scheduler.finishBlock();
468 if (Scheduler.isPostRA()) {
469 // FIXME: Ideally, no further passes should rely on kill flags. However,
470 // thumb2 size reduction is currently an exception.
471 Scheduler.fixupKills(MBB);
472 }
473 }
474 Scheduler.finalizeSchedule();
475 }
476
print(raw_ostream & O,const Module * m) const477 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
478 // unimplemented
479 }
480
481 LLVM_DUMP_METHOD
dump()482 void ReadyQueue::dump() {
483 dbgs() << Name << ": ";
484 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
485 dbgs() << Queue[i]->NodeNum << " ";
486 dbgs() << "\n";
487 }
488
489 //===----------------------------------------------------------------------===//
490 // ScheduleDAGMI - Basic machine instruction scheduling. This is
491 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
492 // virtual registers.
493 // ===----------------------------------------------------------------------===/
494
495 // Provide a vtable anchor.
~ScheduleDAGMI()496 ScheduleDAGMI::~ScheduleDAGMI() {
497 }
498
canAddEdge(SUnit * SuccSU,SUnit * PredSU)499 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
500 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
501 }
502
addEdge(SUnit * SuccSU,const SDep & PredDep)503 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
504 if (SuccSU != &ExitSU) {
505 // Do not use WillCreateCycle, it assumes SD scheduling.
506 // If Pred is reachable from Succ, then the edge creates a cycle.
507 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
508 return false;
509 Topo.AddPred(SuccSU, PredDep.getSUnit());
510 }
511 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
512 // Return true regardless of whether a new edge needed to be inserted.
513 return true;
514 }
515
516 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
517 /// NumPredsLeft reaches zero, release the successor node.
518 ///
519 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)520 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
521 SUnit *SuccSU = SuccEdge->getSUnit();
522
523 if (SuccEdge->isWeak()) {
524 --SuccSU->WeakPredsLeft;
525 if (SuccEdge->isCluster())
526 NextClusterSucc = SuccSU;
527 return;
528 }
529 #ifndef NDEBUG
530 if (SuccSU->NumPredsLeft == 0) {
531 dbgs() << "*** Scheduling failed! ***\n";
532 SuccSU->dump(this);
533 dbgs() << " has been released too many times!\n";
534 llvm_unreachable(nullptr);
535 }
536 #endif
537 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
538 // CurrCycle may have advanced since then.
539 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
540 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
541
542 --SuccSU->NumPredsLeft;
543 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
544 SchedImpl->releaseTopNode(SuccSU);
545 }
546
547 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)548 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
549 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
550 I != E; ++I) {
551 releaseSucc(SU, &*I);
552 }
553 }
554
555 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
556 /// NumSuccsLeft reaches zero, release the predecessor node.
557 ///
558 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)559 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
560 SUnit *PredSU = PredEdge->getSUnit();
561
562 if (PredEdge->isWeak()) {
563 --PredSU->WeakSuccsLeft;
564 if (PredEdge->isCluster())
565 NextClusterPred = PredSU;
566 return;
567 }
568 #ifndef NDEBUG
569 if (PredSU->NumSuccsLeft == 0) {
570 dbgs() << "*** Scheduling failed! ***\n";
571 PredSU->dump(this);
572 dbgs() << " has been released too many times!\n";
573 llvm_unreachable(nullptr);
574 }
575 #endif
576 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
577 // CurrCycle may have advanced since then.
578 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
579 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
580
581 --PredSU->NumSuccsLeft;
582 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
583 SchedImpl->releaseBottomNode(PredSU);
584 }
585
586 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)587 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
588 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
589 I != E; ++I) {
590 releasePred(SU, &*I);
591 }
592 }
593
594 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
595 /// crossing a scheduling boundary. [begin, end) includes all instructions in
596 /// the region, including the boundary itself and single-instruction regions
597 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)598 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
599 MachineBasicBlock::iterator begin,
600 MachineBasicBlock::iterator end,
601 unsigned regioninstrs)
602 {
603 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
604
605 SchedImpl->initPolicy(begin, end, regioninstrs);
606 }
607
608 /// This is normally called from the main scheduler loop but may also be invoked
609 /// by the scheduling strategy to perform additional code motion.
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)610 void ScheduleDAGMI::moveInstruction(
611 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
612 // Advance RegionBegin if the first instruction moves down.
613 if (&*RegionBegin == MI)
614 ++RegionBegin;
615
616 // Update the instruction stream.
617 BB->splice(InsertPos, BB, MI);
618
619 // Update LiveIntervals
620 if (LIS)
621 LIS->handleMove(MI, /*UpdateFlags=*/true);
622
623 // Recede RegionBegin if an instruction moves above the first.
624 if (RegionBegin == InsertPos)
625 RegionBegin = MI;
626 }
627
checkSchedLimit()628 bool ScheduleDAGMI::checkSchedLimit() {
629 #ifndef NDEBUG
630 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
631 CurrentTop = CurrentBottom;
632 return false;
633 }
634 ++NumInstrsScheduled;
635 #endif
636 return true;
637 }
638
639 /// Per-region scheduling driver, called back from
640 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
641 /// does not consider liveness or register pressure. It is useful for PostRA
642 /// scheduling and potentially other custom schedulers.
schedule()643 void ScheduleDAGMI::schedule() {
644 // Build the DAG.
645 buildSchedGraph(AA);
646
647 Topo.InitDAGTopologicalSorting();
648
649 postprocessDAG();
650
651 SmallVector<SUnit*, 8> TopRoots, BotRoots;
652 findRootsAndBiasEdges(TopRoots, BotRoots);
653
654 // Initialize the strategy before modifying the DAG.
655 // This may initialize a DFSResult to be used for queue priority.
656 SchedImpl->initialize(this);
657
658 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
659 SUnits[su].dumpAll(this));
660 if (ViewMISchedDAGs) viewGraph();
661
662 // Initialize ready queues now that the DAG and priority data are finalized.
663 initQueues(TopRoots, BotRoots);
664
665 bool IsTopNode = false;
666 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
667 assert(!SU->isScheduled && "Node already scheduled");
668 if (!checkSchedLimit())
669 break;
670
671 MachineInstr *MI = SU->getInstr();
672 if (IsTopNode) {
673 assert(SU->isTopReady() && "node still has unscheduled dependencies");
674 if (&*CurrentTop == MI)
675 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
676 else
677 moveInstruction(MI, CurrentTop);
678 }
679 else {
680 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
681 MachineBasicBlock::iterator priorII =
682 priorNonDebug(CurrentBottom, CurrentTop);
683 if (&*priorII == MI)
684 CurrentBottom = priorII;
685 else {
686 if (&*CurrentTop == MI)
687 CurrentTop = nextIfDebug(++CurrentTop, priorII);
688 moveInstruction(MI, CurrentBottom);
689 CurrentBottom = MI;
690 }
691 }
692 // Notify the scheduling strategy before updating the DAG.
693 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
694 // runs, it can then use the accurate ReadyCycle time to determine whether
695 // newly released nodes can move to the readyQ.
696 SchedImpl->schedNode(SU, IsTopNode);
697
698 updateQueues(SU, IsTopNode);
699 }
700 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
701
702 placeDebugValues();
703
704 DEBUG({
705 unsigned BBNum = begin()->getParent()->getNumber();
706 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
707 dumpSchedule();
708 dbgs() << '\n';
709 });
710 }
711
712 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()713 void ScheduleDAGMI::postprocessDAG() {
714 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
715 Mutations[i]->apply(this);
716 }
717 }
718
719 void ScheduleDAGMI::
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)720 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
721 SmallVectorImpl<SUnit*> &BotRoots) {
722 for (std::vector<SUnit>::iterator
723 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
724 SUnit *SU = &(*I);
725 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
726
727 // Order predecessors so DFSResult follows the critical path.
728 SU->biasCriticalPath();
729
730 // A SUnit is ready to top schedule if it has no predecessors.
731 if (!I->NumPredsLeft)
732 TopRoots.push_back(SU);
733 // A SUnit is ready to bottom schedule if it has no successors.
734 if (!I->NumSuccsLeft)
735 BotRoots.push_back(SU);
736 }
737 ExitSU.biasCriticalPath();
738 }
739
740 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)741 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
742 ArrayRef<SUnit*> BotRoots) {
743 NextClusterSucc = nullptr;
744 NextClusterPred = nullptr;
745
746 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
747 //
748 // Nodes with unreleased weak edges can still be roots.
749 // Release top roots in forward order.
750 for (SmallVectorImpl<SUnit*>::const_iterator
751 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
752 SchedImpl->releaseTopNode(*I);
753 }
754 // Release bottom roots in reverse order so the higher priority nodes appear
755 // first. This is more natural and slightly more efficient.
756 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
757 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
758 SchedImpl->releaseBottomNode(*I);
759 }
760
761 releaseSuccessors(&EntrySU);
762 releasePredecessors(&ExitSU);
763
764 SchedImpl->registerRoots();
765
766 // Advance past initial DebugValues.
767 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
768 CurrentBottom = RegionEnd;
769 }
770
771 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)772 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
773 // Release dependent instructions for scheduling.
774 if (IsTopNode)
775 releaseSuccessors(SU);
776 else
777 releasePredecessors(SU);
778
779 SU->isScheduled = true;
780 }
781
782 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()783 void ScheduleDAGMI::placeDebugValues() {
784 // If first instruction was a DBG_VALUE then put it back.
785 if (FirstDbgValue) {
786 BB->splice(RegionBegin, BB, FirstDbgValue);
787 RegionBegin = FirstDbgValue;
788 }
789
790 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
791 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
792 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
793 MachineInstr *DbgValue = P.first;
794 MachineBasicBlock::iterator OrigPrevMI = P.second;
795 if (&*RegionBegin == DbgValue)
796 ++RegionBegin;
797 BB->splice(++OrigPrevMI, BB, DbgValue);
798 if (OrigPrevMI == std::prev(RegionEnd))
799 RegionEnd = DbgValue;
800 }
801 DbgValues.clear();
802 FirstDbgValue = nullptr;
803 }
804
805 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const806 void ScheduleDAGMI::dumpSchedule() const {
807 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
808 if (SUnit *SU = getSUnit(&(*MI)))
809 SU->dump(this);
810 else
811 dbgs() << "Missing SUnit\n";
812 }
813 }
814 #endif
815
816 //===----------------------------------------------------------------------===//
817 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
818 // preservation.
819 //===----------------------------------------------------------------------===//
820
~ScheduleDAGMILive()821 ScheduleDAGMILive::~ScheduleDAGMILive() {
822 delete DFSResult;
823 }
824
825 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
826 /// crossing a scheduling boundary. [begin, end) includes all instructions in
827 /// the region, including the boundary itself and single-instruction regions
828 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)829 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
830 MachineBasicBlock::iterator begin,
831 MachineBasicBlock::iterator end,
832 unsigned regioninstrs)
833 {
834 // ScheduleDAGMI initializes SchedImpl's per-region policy.
835 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
836
837 // For convenience remember the end of the liveness region.
838 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
839
840 SUPressureDiffs.clear();
841
842 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
843 }
844
845 // Setup the register pressure trackers for the top scheduled top and bottom
846 // scheduled regions.
initRegPressure()847 void ScheduleDAGMILive::initRegPressure() {
848 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
849 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
850
851 // Close the RPTracker to finalize live ins.
852 RPTracker.closeRegion();
853
854 DEBUG(RPTracker.dump());
855
856 // Initialize the live ins and live outs.
857 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
858 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
859
860 // Close one end of the tracker so we can call
861 // getMaxUpward/DownwardPressureDelta before advancing across any
862 // instructions. This converts currently live regs into live ins/outs.
863 TopRPTracker.closeTop();
864 BotRPTracker.closeBottom();
865
866 BotRPTracker.initLiveThru(RPTracker);
867 if (!BotRPTracker.getLiveThru().empty()) {
868 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
869 DEBUG(dbgs() << "Live Thru: ";
870 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
871 };
872
873 // For each live out vreg reduce the pressure change associated with other
874 // uses of the same vreg below the live-out reaching def.
875 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
876
877 // Account for liveness generated by the region boundary.
878 if (LiveRegionEnd != RegionEnd) {
879 SmallVector<unsigned, 8> LiveUses;
880 BotRPTracker.recede(&LiveUses);
881 updatePressureDiffs(LiveUses);
882 }
883
884 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
885
886 // Cache the list of excess pressure sets in this region. This will also track
887 // the max pressure in the scheduled code for these sets.
888 RegionCriticalPSets.clear();
889 const std::vector<unsigned> &RegionPressure =
890 RPTracker.getPressure().MaxSetPressure;
891 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
892 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
893 if (RegionPressure[i] > Limit) {
894 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
895 << " Limit " << Limit
896 << " Actual " << RegionPressure[i] << "\n");
897 RegionCriticalPSets.push_back(PressureChange(i));
898 }
899 }
900 DEBUG(dbgs() << "Excess PSets: ";
901 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
902 dbgs() << TRI->getRegPressureSetName(
903 RegionCriticalPSets[i].getPSet()) << " ";
904 dbgs() << "\n");
905 }
906
907 void ScheduleDAGMILive::
updateScheduledPressure(const SUnit * SU,const std::vector<unsigned> & NewMaxPressure)908 updateScheduledPressure(const SUnit *SU,
909 const std::vector<unsigned> &NewMaxPressure) {
910 const PressureDiff &PDiff = getPressureDiff(SU);
911 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
912 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
913 I != E; ++I) {
914 if (!I->isValid())
915 break;
916 unsigned ID = I->getPSet();
917 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
918 ++CritIdx;
919 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
920 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
921 && NewMaxPressure[ID] <= INT16_MAX)
922 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
923 }
924 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
925 if (NewMaxPressure[ID] >= Limit - 2) {
926 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
927 << NewMaxPressure[ID] << " > " << Limit << "(+ "
928 << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
929 }
930 }
931 }
932
933 /// Update the PressureDiff array for liveness after scheduling this
934 /// instruction.
updatePressureDiffs(ArrayRef<unsigned> LiveUses)935 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
936 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
937 /// FIXME: Currently assuming single-use physregs.
938 unsigned Reg = LiveUses[LUIdx];
939 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
940 if (!TRI->isVirtualRegister(Reg))
941 continue;
942
943 // This may be called before CurrentBottom has been initialized. However,
944 // BotRPTracker must have a valid position. We want the value live into the
945 // instruction or live out of the block, so ask for the previous
946 // instruction's live-out.
947 const LiveInterval &LI = LIS->getInterval(Reg);
948 VNInfo *VNI;
949 MachineBasicBlock::const_iterator I =
950 nextIfDebug(BotRPTracker.getPos(), BB->end());
951 if (I == BB->end())
952 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
953 else {
954 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
955 VNI = LRQ.valueIn();
956 }
957 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
958 assert(VNI && "No live value at use.");
959 for (VReg2UseMap::iterator
960 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
961 SUnit *SU = UI->SU;
962 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
963 << *SU->getInstr());
964 // If this use comes before the reaching def, it cannot be a last use, so
965 // descrease its pressure change.
966 if (!SU->isScheduled && SU != &ExitSU) {
967 LiveQueryResult LRQ
968 = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
969 if (LRQ.valueIn() == VNI)
970 getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
971 }
972 }
973 }
974 }
975
976 /// schedule - Called back from MachineScheduler::runOnMachineFunction
977 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
978 /// only includes instructions that have DAG nodes, not scheduling boundaries.
979 ///
980 /// This is a skeletal driver, with all the functionality pushed into helpers,
981 /// so that it can be easilly extended by experimental schedulers. Generally,
982 /// implementing MachineSchedStrategy should be sufficient to implement a new
983 /// scheduling algorithm. However, if a scheduler further subclasses
984 /// ScheduleDAGMILive then it will want to override this virtual method in order
985 /// to update any specialized state.
schedule()986 void ScheduleDAGMILive::schedule() {
987 buildDAGWithRegPressure();
988
989 Topo.InitDAGTopologicalSorting();
990
991 postprocessDAG();
992
993 SmallVector<SUnit*, 8> TopRoots, BotRoots;
994 findRootsAndBiasEdges(TopRoots, BotRoots);
995
996 // Initialize the strategy before modifying the DAG.
997 // This may initialize a DFSResult to be used for queue priority.
998 SchedImpl->initialize(this);
999
1000 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1001 SUnits[su].dumpAll(this));
1002 if (ViewMISchedDAGs) viewGraph();
1003
1004 // Initialize ready queues now that the DAG and priority data are finalized.
1005 initQueues(TopRoots, BotRoots);
1006
1007 if (ShouldTrackPressure) {
1008 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1009 TopRPTracker.setPos(CurrentTop);
1010 }
1011
1012 bool IsTopNode = false;
1013 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
1014 assert(!SU->isScheduled && "Node already scheduled");
1015 if (!checkSchedLimit())
1016 break;
1017
1018 scheduleMI(SU, IsTopNode);
1019
1020 updateQueues(SU, IsTopNode);
1021
1022 if (DFSResult) {
1023 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1024 if (!ScheduledTrees.test(SubtreeID)) {
1025 ScheduledTrees.set(SubtreeID);
1026 DFSResult->scheduleTree(SubtreeID);
1027 SchedImpl->scheduleTree(SubtreeID);
1028 }
1029 }
1030
1031 // Notify the scheduling strategy after updating the DAG.
1032 SchedImpl->schedNode(SU, IsTopNode);
1033 }
1034 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1035
1036 placeDebugValues();
1037
1038 DEBUG({
1039 unsigned BBNum = begin()->getParent()->getNumber();
1040 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1041 dumpSchedule();
1042 dbgs() << '\n';
1043 });
1044 }
1045
1046 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()1047 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1048 if (!ShouldTrackPressure) {
1049 RPTracker.reset();
1050 RegionCriticalPSets.clear();
1051 buildSchedGraph(AA);
1052 return;
1053 }
1054
1055 // Initialize the register pressure tracker used by buildSchedGraph.
1056 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1057 /*TrackUntiedDefs=*/true);
1058
1059 // Account for liveness generate by the region boundary.
1060 if (LiveRegionEnd != RegionEnd)
1061 RPTracker.recede();
1062
1063 // Build the DAG, and compute current register pressure.
1064 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1065
1066 // Initialize top/bottom trackers after computing region pressure.
1067 initRegPressure();
1068 }
1069
computeDFSResult()1070 void ScheduleDAGMILive::computeDFSResult() {
1071 if (!DFSResult)
1072 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1073 DFSResult->clear();
1074 ScheduledTrees.clear();
1075 DFSResult->resize(SUnits.size());
1076 DFSResult->compute(SUnits);
1077 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1078 }
1079
1080 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1081 /// only provides the critical path for single block loops. To handle loops that
1082 /// span blocks, we could use the vreg path latencies provided by
1083 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1084 /// available for use in the scheduler.
1085 ///
1086 /// The cyclic path estimation identifies a def-use pair that crosses the back
1087 /// edge and considers the depth and height of the nodes. For example, consider
1088 /// the following instruction sequence where each instruction has unit latency
1089 /// and defines an epomymous virtual register:
1090 ///
1091 /// a->b(a,c)->c(b)->d(c)->exit
1092 ///
1093 /// The cyclic critical path is a two cycles: b->c->b
1094 /// The acyclic critical path is four cycles: a->b->c->d->exit
1095 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1096 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1097 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1098 /// LiveInDepth = depth(b) = len(a->b) = 1
1099 ///
1100 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1101 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1102 /// CyclicCriticalPath = min(2, 2) = 2
1103 ///
1104 /// This could be relevant to PostRA scheduling, but is currently implemented
1105 /// assuming LiveIntervals.
computeCyclicCriticalPath()1106 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1107 // This only applies to single block loop.
1108 if (!BB->isSuccessor(BB))
1109 return 0;
1110
1111 unsigned MaxCyclicLatency = 0;
1112 // Visit each live out vreg def to find def/use pairs that cross iterations.
1113 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1114 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1115 RI != RE; ++RI) {
1116 unsigned Reg = *RI;
1117 if (!TRI->isVirtualRegister(Reg))
1118 continue;
1119 const LiveInterval &LI = LIS->getInterval(Reg);
1120 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1121 if (!DefVNI)
1122 continue;
1123
1124 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1125 const SUnit *DefSU = getSUnit(DefMI);
1126 if (!DefSU)
1127 continue;
1128
1129 unsigned LiveOutHeight = DefSU->getHeight();
1130 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1131 // Visit all local users of the vreg def.
1132 for (VReg2UseMap::iterator
1133 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1134 if (UI->SU == &ExitSU)
1135 continue;
1136
1137 // Only consider uses of the phi.
1138 LiveQueryResult LRQ =
1139 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1140 if (!LRQ.valueIn()->isPHIDef())
1141 continue;
1142
1143 // Assume that a path spanning two iterations is a cycle, which could
1144 // overestimate in strange cases. This allows cyclic latency to be
1145 // estimated as the minimum slack of the vreg's depth or height.
1146 unsigned CyclicLatency = 0;
1147 if (LiveOutDepth > UI->SU->getDepth())
1148 CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1149
1150 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1151 if (LiveInHeight > LiveOutHeight) {
1152 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1153 CyclicLatency = LiveInHeight - LiveOutHeight;
1154 }
1155 else
1156 CyclicLatency = 0;
1157
1158 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1159 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1160 if (CyclicLatency > MaxCyclicLatency)
1161 MaxCyclicLatency = CyclicLatency;
1162 }
1163 }
1164 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1165 return MaxCyclicLatency;
1166 }
1167
1168 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)1169 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1170 // Move the instruction to its new location in the instruction stream.
1171 MachineInstr *MI = SU->getInstr();
1172
1173 if (IsTopNode) {
1174 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1175 if (&*CurrentTop == MI)
1176 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1177 else {
1178 moveInstruction(MI, CurrentTop);
1179 TopRPTracker.setPos(MI);
1180 }
1181
1182 if (ShouldTrackPressure) {
1183 // Update top scheduled pressure.
1184 TopRPTracker.advance();
1185 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1186 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1187 }
1188 }
1189 else {
1190 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1191 MachineBasicBlock::iterator priorII =
1192 priorNonDebug(CurrentBottom, CurrentTop);
1193 if (&*priorII == MI)
1194 CurrentBottom = priorII;
1195 else {
1196 if (&*CurrentTop == MI) {
1197 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1198 TopRPTracker.setPos(CurrentTop);
1199 }
1200 moveInstruction(MI, CurrentBottom);
1201 CurrentBottom = MI;
1202 }
1203 if (ShouldTrackPressure) {
1204 // Update bottom scheduled pressure.
1205 SmallVector<unsigned, 8> LiveUses;
1206 BotRPTracker.recede(&LiveUses);
1207 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1208 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1209 updatePressureDiffs(LiveUses);
1210 }
1211 }
1212 }
1213
1214 //===----------------------------------------------------------------------===//
1215 // LoadClusterMutation - DAG post-processing to cluster loads.
1216 //===----------------------------------------------------------------------===//
1217
1218 namespace {
1219 /// \brief Post-process the DAG to create cluster edges between neighboring
1220 /// loads.
1221 class LoadClusterMutation : public ScheduleDAGMutation {
1222 struct LoadInfo {
1223 SUnit *SU;
1224 unsigned BaseReg;
1225 unsigned Offset;
LoadInfo__anonfc890aee0211::LoadClusterMutation::LoadInfo1226 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1227 : SU(su), BaseReg(reg), Offset(ofs) {}
1228
operator <__anonfc890aee0211::LoadClusterMutation::LoadInfo1229 bool operator<(const LoadInfo &RHS) const {
1230 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1231 }
1232 };
1233
1234 const TargetInstrInfo *TII;
1235 const TargetRegisterInfo *TRI;
1236 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)1237 LoadClusterMutation(const TargetInstrInfo *tii,
1238 const TargetRegisterInfo *tri)
1239 : TII(tii), TRI(tri) {}
1240
1241 void apply(ScheduleDAGMI *DAG) override;
1242 protected:
1243 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1244 };
1245 } // anonymous
1246
clusterNeighboringLoads(ArrayRef<SUnit * > Loads,ScheduleDAGMI * DAG)1247 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1248 ScheduleDAGMI *DAG) {
1249 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1250 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1251 SUnit *SU = Loads[Idx];
1252 unsigned BaseReg;
1253 unsigned Offset;
1254 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1255 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1256 }
1257 if (LoadRecords.size() < 2)
1258 return;
1259 std::sort(LoadRecords.begin(), LoadRecords.end());
1260 unsigned ClusterLength = 1;
1261 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1262 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1263 ClusterLength = 1;
1264 continue;
1265 }
1266
1267 SUnit *SUa = LoadRecords[Idx].SU;
1268 SUnit *SUb = LoadRecords[Idx+1].SU;
1269 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1270 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1271
1272 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1273 << SUb->NodeNum << ")\n");
1274 // Copy successor edges from SUa to SUb. Interleaving computation
1275 // dependent on SUa can prevent load combining due to register reuse.
1276 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1277 // loads should have effectively the same inputs.
1278 for (SUnit::const_succ_iterator
1279 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1280 if (SI->getSUnit() == SUb)
1281 continue;
1282 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1283 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1284 }
1285 ++ClusterLength;
1286 }
1287 else
1288 ClusterLength = 1;
1289 }
1290 }
1291
1292 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGMI * DAG)1293 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1294 // Map DAG NodeNum to store chain ID.
1295 DenseMap<unsigned, unsigned> StoreChainIDs;
1296 // Map each store chain to a set of dependent loads.
1297 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1298 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1299 SUnit *SU = &DAG->SUnits[Idx];
1300 if (!SU->getInstr()->mayLoad())
1301 continue;
1302 unsigned ChainPredID = DAG->SUnits.size();
1303 for (SUnit::const_pred_iterator
1304 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1305 if (PI->isCtrl()) {
1306 ChainPredID = PI->getSUnit()->NodeNum;
1307 break;
1308 }
1309 }
1310 // Check if this chain-like pred has been seen
1311 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1312 unsigned NumChains = StoreChainDependents.size();
1313 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1314 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1315 if (Result.second)
1316 StoreChainDependents.resize(NumChains + 1);
1317 StoreChainDependents[Result.first->second].push_back(SU);
1318 }
1319 // Iterate over the store chains.
1320 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1321 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1322 }
1323
1324 //===----------------------------------------------------------------------===//
1325 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1326 //===----------------------------------------------------------------------===//
1327
1328 namespace {
1329 /// \brief Post-process the DAG to create cluster edges between instructions
1330 /// that may be fused by the processor into a single operation.
1331 class MacroFusion : public ScheduleDAGMutation {
1332 const TargetInstrInfo *TII;
1333 public:
MacroFusion(const TargetInstrInfo * tii)1334 MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1335
1336 void apply(ScheduleDAGMI *DAG) override;
1337 };
1338 } // anonymous
1339
1340 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1341 /// fused operations.
apply(ScheduleDAGMI * DAG)1342 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1343 // For now, assume targets can only fuse with the branch.
1344 MachineInstr *Branch = DAG->ExitSU.getInstr();
1345 if (!Branch)
1346 return;
1347
1348 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1349 SUnit *SU = &DAG->SUnits[--Idx];
1350 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1351 continue;
1352
1353 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1354 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1355 // need to copy predecessor edges from ExitSU to SU, since top-down
1356 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1357 // of SU, we could create an artificial edge from the deepest root, but it
1358 // hasn't been needed yet.
1359 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1360 (void)Success;
1361 assert(Success && "No DAG nodes should be reachable from ExitSU");
1362
1363 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1364 break;
1365 }
1366 }
1367
1368 //===----------------------------------------------------------------------===//
1369 // CopyConstrain - DAG post-processing to encourage copy elimination.
1370 //===----------------------------------------------------------------------===//
1371
1372 namespace {
1373 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1374 /// the one use that defines the copy's source vreg, most likely an induction
1375 /// variable increment.
1376 class CopyConstrain : public ScheduleDAGMutation {
1377 // Transient state.
1378 SlotIndex RegionBeginIdx;
1379 // RegionEndIdx is the slot index of the last non-debug instruction in the
1380 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1381 SlotIndex RegionEndIdx;
1382 public:
CopyConstrain(const TargetInstrInfo *,const TargetRegisterInfo *)1383 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1384
1385 void apply(ScheduleDAGMI *DAG) override;
1386
1387 protected:
1388 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1389 };
1390 } // anonymous
1391
1392 /// constrainLocalCopy handles two possibilities:
1393 /// 1) Local src:
1394 /// I0: = dst
1395 /// I1: src = ...
1396 /// I2: = dst
1397 /// I3: dst = src (copy)
1398 /// (create pred->succ edges I0->I1, I2->I1)
1399 ///
1400 /// 2) Local copy:
1401 /// I0: dst = src (copy)
1402 /// I1: = dst
1403 /// I2: src = ...
1404 /// I3: = dst
1405 /// (create pred->succ edges I1->I2, I3->I2)
1406 ///
1407 /// Although the MachineScheduler is currently constrained to single blocks,
1408 /// this algorithm should handle extended blocks. An EBB is a set of
1409 /// contiguously numbered blocks such that the previous block in the EBB is
1410 /// always the single predecessor.
constrainLocalCopy(SUnit * CopySU,ScheduleDAGMILive * DAG)1411 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1412 LiveIntervals *LIS = DAG->getLIS();
1413 MachineInstr *Copy = CopySU->getInstr();
1414
1415 // Check for pure vreg copies.
1416 unsigned SrcReg = Copy->getOperand(1).getReg();
1417 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1418 return;
1419
1420 unsigned DstReg = Copy->getOperand(0).getReg();
1421 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1422 return;
1423
1424 // Check if either the dest or source is local. If it's live across a back
1425 // edge, it's not local. Note that if both vregs are live across the back
1426 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1427 unsigned LocalReg = DstReg;
1428 unsigned GlobalReg = SrcReg;
1429 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1430 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1431 LocalReg = SrcReg;
1432 GlobalReg = DstReg;
1433 LocalLI = &LIS->getInterval(LocalReg);
1434 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1435 return;
1436 }
1437 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1438
1439 // Find the global segment after the start of the local LI.
1440 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1441 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1442 // local live range. We could create edges from other global uses to the local
1443 // start, but the coalescer should have already eliminated these cases, so
1444 // don't bother dealing with it.
1445 if (GlobalSegment == GlobalLI->end())
1446 return;
1447
1448 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1449 // returned the next global segment. But if GlobalSegment overlaps with
1450 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1451 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1452 if (GlobalSegment->contains(LocalLI->beginIndex()))
1453 ++GlobalSegment;
1454
1455 if (GlobalSegment == GlobalLI->end())
1456 return;
1457
1458 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1459 if (GlobalSegment != GlobalLI->begin()) {
1460 // Two address defs have no hole.
1461 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1462 GlobalSegment->start)) {
1463 return;
1464 }
1465 // If the prior global segment may be defined by the same two-address
1466 // instruction that also defines LocalLI, then can't make a hole here.
1467 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1468 LocalLI->beginIndex())) {
1469 return;
1470 }
1471 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1472 // it would be a disconnected component in the live range.
1473 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1474 "Disconnected LRG within the scheduling region.");
1475 }
1476 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1477 if (!GlobalDef)
1478 return;
1479
1480 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1481 if (!GlobalSU)
1482 return;
1483
1484 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1485 // constraining the uses of the last local def to precede GlobalDef.
1486 SmallVector<SUnit*,8> LocalUses;
1487 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1488 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1489 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1490 for (SUnit::const_succ_iterator
1491 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1492 I != E; ++I) {
1493 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1494 continue;
1495 if (I->getSUnit() == GlobalSU)
1496 continue;
1497 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1498 return;
1499 LocalUses.push_back(I->getSUnit());
1500 }
1501 // Open the top of the GlobalLI hole by constraining any earlier global uses
1502 // to precede the start of LocalLI.
1503 SmallVector<SUnit*,8> GlobalUses;
1504 MachineInstr *FirstLocalDef =
1505 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1506 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1507 for (SUnit::const_pred_iterator
1508 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1509 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1510 continue;
1511 if (I->getSUnit() == FirstLocalSU)
1512 continue;
1513 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1514 return;
1515 GlobalUses.push_back(I->getSUnit());
1516 }
1517 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1518 // Add the weak edges.
1519 for (SmallVectorImpl<SUnit*>::const_iterator
1520 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1521 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1522 << GlobalSU->NodeNum << ")\n");
1523 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1524 }
1525 for (SmallVectorImpl<SUnit*>::const_iterator
1526 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1527 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1528 << FirstLocalSU->NodeNum << ")\n");
1529 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1530 }
1531 }
1532
1533 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1534 /// copy elimination.
apply(ScheduleDAGMI * DAG)1535 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1536 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1537
1538 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1539 if (FirstPos == DAG->end())
1540 return;
1541 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1542 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1543 &*priorNonDebug(DAG->end(), DAG->begin()));
1544
1545 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1546 SUnit *SU = &DAG->SUnits[Idx];
1547 if (!SU->getInstr()->isCopy())
1548 continue;
1549
1550 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1551 }
1552 }
1553
1554 //===----------------------------------------------------------------------===//
1555 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1556 // and possibly other custom schedulers.
1557 //===----------------------------------------------------------------------===//
1558
1559 static const unsigned InvalidCycle = ~0U;
1560
~SchedBoundary()1561 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1562
reset()1563 void SchedBoundary::reset() {
1564 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1565 // Destroying and reconstructing it is very expensive though. So keep
1566 // invalid, placeholder HazardRecs.
1567 if (HazardRec && HazardRec->isEnabled()) {
1568 delete HazardRec;
1569 HazardRec = nullptr;
1570 }
1571 Available.clear();
1572 Pending.clear();
1573 CheckPending = false;
1574 NextSUs.clear();
1575 CurrCycle = 0;
1576 CurrMOps = 0;
1577 MinReadyCycle = UINT_MAX;
1578 ExpectedLatency = 0;
1579 DependentLatency = 0;
1580 RetiredMOps = 0;
1581 MaxExecutedResCount = 0;
1582 ZoneCritResIdx = 0;
1583 IsResourceLimited = false;
1584 ReservedCycles.clear();
1585 #ifndef NDEBUG
1586 // Track the maximum number of stall cycles that could arise either from the
1587 // latency of a DAG edge or the number of cycles that a processor resource is
1588 // reserved (SchedBoundary::ReservedCycles).
1589 MaxObservedStall = 0;
1590 #endif
1591 // Reserve a zero-count for invalid CritResIdx.
1592 ExecutedResCounts.resize(1);
1593 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1594 }
1595
1596 void SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1597 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1598 reset();
1599 if (!SchedModel->hasInstrSchedModel())
1600 return;
1601 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1602 for (std::vector<SUnit>::iterator
1603 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1604 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1605 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1606 * SchedModel->getMicroOpFactor();
1607 for (TargetSchedModel::ProcResIter
1608 PI = SchedModel->getWriteProcResBegin(SC),
1609 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1610 unsigned PIdx = PI->ProcResourceIdx;
1611 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1612 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1613 }
1614 }
1615 }
1616
1617 void SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1618 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1619 reset();
1620 DAG = dag;
1621 SchedModel = smodel;
1622 Rem = rem;
1623 if (SchedModel->hasInstrSchedModel()) {
1624 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1625 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1626 }
1627 }
1628
1629 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1630 /// these "soft stalls" differently than the hard stall cycles based on CPU
1631 /// resources and computed by checkHazard(). A fully in-order model
1632 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1633 /// available for scheduling until they are ready. However, a weaker in-order
1634 /// model may use this for heuristics. For example, if a processor has in-order
1635 /// behavior when reading certain resources, this may come into play.
getLatencyStallCycles(SUnit * SU)1636 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1637 if (!SU->isUnbuffered)
1638 return 0;
1639
1640 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1641 if (ReadyCycle > CurrCycle)
1642 return ReadyCycle - CurrCycle;
1643 return 0;
1644 }
1645
1646 /// Compute the next cycle at which the given processor resource can be
1647 /// scheduled.
1648 unsigned SchedBoundary::
getNextResourceCycle(unsigned PIdx,unsigned Cycles)1649 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1650 unsigned NextUnreserved = ReservedCycles[PIdx];
1651 // If this resource has never been used, always return cycle zero.
1652 if (NextUnreserved == InvalidCycle)
1653 return 0;
1654 // For bottom-up scheduling add the cycles needed for the current operation.
1655 if (!isTop())
1656 NextUnreserved += Cycles;
1657 return NextUnreserved;
1658 }
1659
1660 /// Does this SU have a hazard within the current instruction group.
1661 ///
1662 /// The scheduler supports two modes of hazard recognition. The first is the
1663 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1664 /// supports highly complicated in-order reservation tables
1665 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1666 ///
1667 /// The second is a streamlined mechanism that checks for hazards based on
1668 /// simple counters that the scheduler itself maintains. It explicitly checks
1669 /// for instruction dispatch limitations, including the number of micro-ops that
1670 /// can dispatch per cycle.
1671 ///
1672 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1673 bool SchedBoundary::checkHazard(SUnit *SU) {
1674 if (HazardRec->isEnabled()
1675 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1676 return true;
1677 }
1678 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1679 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1680 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1681 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1682 return true;
1683 }
1684 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1685 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1686 for (TargetSchedModel::ProcResIter
1687 PI = SchedModel->getWriteProcResBegin(SC),
1688 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1689 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1690 if (NRCycle > CurrCycle) {
1691 #ifndef NDEBUG
1692 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1693 #endif
1694 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1695 << SchedModel->getResourceName(PI->ProcResourceIdx)
1696 << "=" << NRCycle << "c\n");
1697 return true;
1698 }
1699 }
1700 }
1701 return false;
1702 }
1703
1704 // Find the unscheduled node in ReadySUs with the highest latency.
1705 unsigned SchedBoundary::
findMaxLatency(ArrayRef<SUnit * > ReadySUs)1706 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1707 SUnit *LateSU = nullptr;
1708 unsigned RemLatency = 0;
1709 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1710 I != E; ++I) {
1711 unsigned L = getUnscheduledLatency(*I);
1712 if (L > RemLatency) {
1713 RemLatency = L;
1714 LateSU = *I;
1715 }
1716 }
1717 if (LateSU) {
1718 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1719 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1720 }
1721 return RemLatency;
1722 }
1723
1724 // Count resources in this zone and the remaining unscheduled
1725 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1726 // resource index, or zero if the zone is issue limited.
1727 unsigned SchedBoundary::
getOtherResourceCount(unsigned & OtherCritIdx)1728 getOtherResourceCount(unsigned &OtherCritIdx) {
1729 OtherCritIdx = 0;
1730 if (!SchedModel->hasInstrSchedModel())
1731 return 0;
1732
1733 unsigned OtherCritCount = Rem->RemIssueCount
1734 + (RetiredMOps * SchedModel->getMicroOpFactor());
1735 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1736 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1737 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1738 PIdx != PEnd; ++PIdx) {
1739 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1740 if (OtherCount > OtherCritCount) {
1741 OtherCritCount = OtherCount;
1742 OtherCritIdx = PIdx;
1743 }
1744 }
1745 if (OtherCritIdx) {
1746 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1747 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1748 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1749 }
1750 return OtherCritCount;
1751 }
1752
releaseNode(SUnit * SU,unsigned ReadyCycle)1753 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1754 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1755
1756 #ifndef NDEBUG
1757 // ReadyCycle was been bumped up to the CurrCycle when this node was
1758 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1759 // scheduling, so may now be greater than ReadyCycle.
1760 if (ReadyCycle > CurrCycle)
1761 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1762 #endif
1763
1764 if (ReadyCycle < MinReadyCycle)
1765 MinReadyCycle = ReadyCycle;
1766
1767 // Check for interlocks first. For the purpose of other heuristics, an
1768 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1769 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1770 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1771 Pending.push(SU);
1772 else
1773 Available.push(SU);
1774
1775 // Record this node as an immediate dependent of the scheduled node.
1776 NextSUs.insert(SU);
1777 }
1778
releaseTopNode(SUnit * SU)1779 void SchedBoundary::releaseTopNode(SUnit *SU) {
1780 if (SU->isScheduled)
1781 return;
1782
1783 releaseNode(SU, SU->TopReadyCycle);
1784 }
1785
releaseBottomNode(SUnit * SU)1786 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1787 if (SU->isScheduled)
1788 return;
1789
1790 releaseNode(SU, SU->BotReadyCycle);
1791 }
1792
1793 /// Move the boundary of scheduled code by one cycle.
bumpCycle(unsigned NextCycle)1794 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1795 if (SchedModel->getMicroOpBufferSize() == 0) {
1796 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1797 if (MinReadyCycle > NextCycle)
1798 NextCycle = MinReadyCycle;
1799 }
1800 // Update the current micro-ops, which will issue in the next cycle.
1801 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1802 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1803
1804 // Decrement DependentLatency based on the next cycle.
1805 if ((NextCycle - CurrCycle) > DependentLatency)
1806 DependentLatency = 0;
1807 else
1808 DependentLatency -= (NextCycle - CurrCycle);
1809
1810 if (!HazardRec->isEnabled()) {
1811 // Bypass HazardRec virtual calls.
1812 CurrCycle = NextCycle;
1813 }
1814 else {
1815 // Bypass getHazardType calls in case of long latency.
1816 for (; CurrCycle != NextCycle; ++CurrCycle) {
1817 if (isTop())
1818 HazardRec->AdvanceCycle();
1819 else
1820 HazardRec->RecedeCycle();
1821 }
1822 }
1823 CheckPending = true;
1824 unsigned LFactor = SchedModel->getLatencyFactor();
1825 IsResourceLimited =
1826 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1827 > (int)LFactor;
1828
1829 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1830 }
1831
incExecutedResources(unsigned PIdx,unsigned Count)1832 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1833 ExecutedResCounts[PIdx] += Count;
1834 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1835 MaxExecutedResCount = ExecutedResCounts[PIdx];
1836 }
1837
1838 /// Add the given processor resource to this scheduled zone.
1839 ///
1840 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1841 /// during which this resource is consumed.
1842 ///
1843 /// \return the next cycle at which the instruction may execute without
1844 /// oversubscribing resources.
1845 unsigned SchedBoundary::
countResource(unsigned PIdx,unsigned Cycles,unsigned NextCycle)1846 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1847 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1848 unsigned Count = Factor * Cycles;
1849 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
1850 << " +" << Cycles << "x" << Factor << "u\n");
1851
1852 // Update Executed resources counts.
1853 incExecutedResources(PIdx, Count);
1854 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1855 Rem->RemainingCounts[PIdx] -= Count;
1856
1857 // Check if this resource exceeds the current critical resource. If so, it
1858 // becomes the critical resource.
1859 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1860 ZoneCritResIdx = PIdx;
1861 DEBUG(dbgs() << " *** Critical resource "
1862 << SchedModel->getResourceName(PIdx) << ": "
1863 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1864 }
1865 // For reserved resources, record the highest cycle using the resource.
1866 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1867 if (NextAvailable > CurrCycle) {
1868 DEBUG(dbgs() << " Resource conflict: "
1869 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1870 << NextAvailable << "\n");
1871 }
1872 return NextAvailable;
1873 }
1874
1875 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)1876 void SchedBoundary::bumpNode(SUnit *SU) {
1877 // Update the reservation table.
1878 if (HazardRec->isEnabled()) {
1879 if (!isTop() && SU->isCall) {
1880 // Calls are scheduled with their preceding instructions. For bottom-up
1881 // scheduling, clear the pipeline state before emitting.
1882 HazardRec->Reset();
1883 }
1884 HazardRec->EmitInstruction(SU);
1885 }
1886 // checkHazard should prevent scheduling multiple instructions per cycle that
1887 // exceed the issue width.
1888 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1889 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1890 assert(
1891 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1892 "Cannot schedule this instruction's MicroOps in the current cycle.");
1893
1894 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1895 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1896
1897 unsigned NextCycle = CurrCycle;
1898 switch (SchedModel->getMicroOpBufferSize()) {
1899 case 0:
1900 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1901 break;
1902 case 1:
1903 if (ReadyCycle > NextCycle) {
1904 NextCycle = ReadyCycle;
1905 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
1906 }
1907 break;
1908 default:
1909 // We don't currently model the OOO reorder buffer, so consider all
1910 // scheduled MOps to be "retired". We do loosely model in-order resource
1911 // latency. If this instruction uses an in-order resource, account for any
1912 // likely stall cycles.
1913 if (SU->isUnbuffered && ReadyCycle > NextCycle)
1914 NextCycle = ReadyCycle;
1915 break;
1916 }
1917 RetiredMOps += IncMOps;
1918
1919 // Update resource counts and critical resource.
1920 if (SchedModel->hasInstrSchedModel()) {
1921 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1922 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1923 Rem->RemIssueCount -= DecRemIssue;
1924 if (ZoneCritResIdx) {
1925 // Scale scheduled micro-ops for comparing with the critical resource.
1926 unsigned ScaledMOps =
1927 RetiredMOps * SchedModel->getMicroOpFactor();
1928
1929 // If scaled micro-ops are now more than the previous critical resource by
1930 // a full cycle, then micro-ops issue becomes critical.
1931 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1932 >= (int)SchedModel->getLatencyFactor()) {
1933 ZoneCritResIdx = 0;
1934 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
1935 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1936 }
1937 }
1938 for (TargetSchedModel::ProcResIter
1939 PI = SchedModel->getWriteProcResBegin(SC),
1940 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1941 unsigned RCycle =
1942 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1943 if (RCycle > NextCycle)
1944 NextCycle = RCycle;
1945 }
1946 if (SU->hasReservedResource) {
1947 // For reserved resources, record the highest cycle using the resource.
1948 // For top-down scheduling, this is the cycle in which we schedule this
1949 // instruction plus the number of cycles the operations reserves the
1950 // resource. For bottom-up is it simply the instruction's cycle.
1951 for (TargetSchedModel::ProcResIter
1952 PI = SchedModel->getWriteProcResBegin(SC),
1953 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1954 unsigned PIdx = PI->ProcResourceIdx;
1955 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
1956 if (isTop()) {
1957 ReservedCycles[PIdx] =
1958 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
1959 }
1960 else
1961 ReservedCycles[PIdx] = NextCycle;
1962 }
1963 }
1964 }
1965 }
1966 // Update ExpectedLatency and DependentLatency.
1967 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1968 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1969 if (SU->getDepth() > TopLatency) {
1970 TopLatency = SU->getDepth();
1971 DEBUG(dbgs() << " " << Available.getName()
1972 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1973 }
1974 if (SU->getHeight() > BotLatency) {
1975 BotLatency = SU->getHeight();
1976 DEBUG(dbgs() << " " << Available.getName()
1977 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1978 }
1979 // If we stall for any reason, bump the cycle.
1980 if (NextCycle > CurrCycle) {
1981 bumpCycle(NextCycle);
1982 }
1983 else {
1984 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1985 // resource limited. If a stall occurred, bumpCycle does this.
1986 unsigned LFactor = SchedModel->getLatencyFactor();
1987 IsResourceLimited =
1988 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1989 > (int)LFactor;
1990 }
1991 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
1992 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
1993 // one cycle. Since we commonly reach the max MOps here, opportunistically
1994 // bump the cycle to avoid uselessly checking everything in the readyQ.
1995 CurrMOps += IncMOps;
1996 while (CurrMOps >= SchedModel->getIssueWidth()) {
1997 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
1998 << " at cycle " << CurrCycle << '\n');
1999 bumpCycle(++NextCycle);
2000 }
2001 DEBUG(dumpScheduledState());
2002 }
2003
2004 /// Release pending ready nodes in to the available queue. This makes them
2005 /// visible to heuristics.
releasePending()2006 void SchedBoundary::releasePending() {
2007 // If the available queue is empty, it is safe to reset MinReadyCycle.
2008 if (Available.empty())
2009 MinReadyCycle = UINT_MAX;
2010
2011 // Check to see if any of the pending instructions are ready to issue. If
2012 // so, add them to the available queue.
2013 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2014 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2015 SUnit *SU = *(Pending.begin()+i);
2016 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2017
2018 if (ReadyCycle < MinReadyCycle)
2019 MinReadyCycle = ReadyCycle;
2020
2021 if (!IsBuffered && ReadyCycle > CurrCycle)
2022 continue;
2023
2024 if (checkHazard(SU))
2025 continue;
2026
2027 Available.push(SU);
2028 Pending.remove(Pending.begin()+i);
2029 --i; --e;
2030 }
2031 DEBUG(if (!Pending.empty()) Pending.dump());
2032 CheckPending = false;
2033 }
2034
2035 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)2036 void SchedBoundary::removeReady(SUnit *SU) {
2037 if (Available.isInQueue(SU))
2038 Available.remove(Available.find(SU));
2039 else {
2040 assert(Pending.isInQueue(SU) && "bad ready count");
2041 Pending.remove(Pending.find(SU));
2042 }
2043 }
2044
2045 /// If this queue only has one ready candidate, return it. As a side effect,
2046 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2047 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()2048 SUnit *SchedBoundary::pickOnlyChoice() {
2049 if (CheckPending)
2050 releasePending();
2051
2052 if (CurrMOps > 0) {
2053 // Defer any ready instrs that now have a hazard.
2054 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2055 if (checkHazard(*I)) {
2056 Pending.push(*I);
2057 I = Available.remove(I);
2058 continue;
2059 }
2060 ++I;
2061 }
2062 }
2063 for (unsigned i = 0; Available.empty(); ++i) {
2064 // FIXME: Re-enable assert once PR20057 is resolved.
2065 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2066 // "permanent hazard");
2067 (void)i;
2068 bumpCycle(CurrCycle + 1);
2069 releasePending();
2070 }
2071 if (Available.size() == 1)
2072 return *Available.begin();
2073 return nullptr;
2074 }
2075
2076 #ifndef NDEBUG
2077 // This is useful information to dump after bumpNode.
2078 // Note that the Queue contents are more useful before pickNodeFromQueue.
dumpScheduledState()2079 void SchedBoundary::dumpScheduledState() {
2080 unsigned ResFactor;
2081 unsigned ResCount;
2082 if (ZoneCritResIdx) {
2083 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2084 ResCount = getResourceCount(ZoneCritResIdx);
2085 }
2086 else {
2087 ResFactor = SchedModel->getMicroOpFactor();
2088 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2089 }
2090 unsigned LFactor = SchedModel->getLatencyFactor();
2091 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2092 << " Retired: " << RetiredMOps;
2093 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2094 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2095 << ResCount / ResFactor << " "
2096 << SchedModel->getResourceName(ZoneCritResIdx)
2097 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2098 << (IsResourceLimited ? " - Resource" : " - Latency")
2099 << " limited.\n";
2100 }
2101 #endif
2102
2103 //===----------------------------------------------------------------------===//
2104 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2105 //===----------------------------------------------------------------------===//
2106
2107 void GenericSchedulerBase::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)2108 initResourceDelta(const ScheduleDAGMI *DAG,
2109 const TargetSchedModel *SchedModel) {
2110 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2111 return;
2112
2113 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2114 for (TargetSchedModel::ProcResIter
2115 PI = SchedModel->getWriteProcResBegin(SC),
2116 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2117 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2118 ResDelta.CritResources += PI->Cycles;
2119 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2120 ResDelta.DemandedResources += PI->Cycles;
2121 }
2122 }
2123
2124 /// Set the CandPolicy given a scheduling zone given the current resources and
2125 /// latencies inside and outside the zone.
setPolicy(CandPolicy & Policy,bool IsPostRA,SchedBoundary & CurrZone,SchedBoundary * OtherZone)2126 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2127 bool IsPostRA,
2128 SchedBoundary &CurrZone,
2129 SchedBoundary *OtherZone) {
2130 // Apply preemptive heuristics based on the the total latency and resources
2131 // inside and outside this zone. Potential stalls should be considered before
2132 // following this policy.
2133
2134 // Compute remaining latency. We need this both to determine whether the
2135 // overall schedule has become latency-limited and whether the instructions
2136 // outside this zone are resource or latency limited.
2137 //
2138 // The "dependent" latency is updated incrementally during scheduling as the
2139 // max height/depth of scheduled nodes minus the cycles since it was
2140 // scheduled:
2141 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2142 //
2143 // The "independent" latency is the max ready queue depth:
2144 // ILat = max N.depth for N in Available|Pending
2145 //
2146 // RemainingLatency is the greater of independent and dependent latency.
2147 unsigned RemLatency = CurrZone.getDependentLatency();
2148 RemLatency = std::max(RemLatency,
2149 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2150 RemLatency = std::max(RemLatency,
2151 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2152
2153 // Compute the critical resource outside the zone.
2154 unsigned OtherCritIdx = 0;
2155 unsigned OtherCount =
2156 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2157
2158 bool OtherResLimited = false;
2159 if (SchedModel->hasInstrSchedModel()) {
2160 unsigned LFactor = SchedModel->getLatencyFactor();
2161 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2162 }
2163 // Schedule aggressively for latency in PostRA mode. We don't check for
2164 // acyclic latency during PostRA, and highly out-of-order processors will
2165 // skip PostRA scheduling.
2166 if (!OtherResLimited) {
2167 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2168 Policy.ReduceLatency |= true;
2169 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2170 << " RemainingLatency " << RemLatency << " + "
2171 << CurrZone.getCurrCycle() << "c > CritPath "
2172 << Rem.CriticalPath << "\n");
2173 }
2174 }
2175 // If the same resource is limiting inside and outside the zone, do nothing.
2176 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2177 return;
2178
2179 DEBUG(
2180 if (CurrZone.isResourceLimited()) {
2181 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2182 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2183 << "\n";
2184 }
2185 if (OtherResLimited)
2186 dbgs() << " RemainingLimit: "
2187 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2188 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2189 dbgs() << " Latency limited both directions.\n");
2190
2191 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2192 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2193
2194 if (OtherResLimited)
2195 Policy.DemandResIdx = OtherCritIdx;
2196 }
2197
2198 #ifndef NDEBUG
getReasonStr(GenericSchedulerBase::CandReason Reason)2199 const char *GenericSchedulerBase::getReasonStr(
2200 GenericSchedulerBase::CandReason Reason) {
2201 switch (Reason) {
2202 case NoCand: return "NOCAND ";
2203 case PhysRegCopy: return "PREG-COPY";
2204 case RegExcess: return "REG-EXCESS";
2205 case RegCritical: return "REG-CRIT ";
2206 case Stall: return "STALL ";
2207 case Cluster: return "CLUSTER ";
2208 case Weak: return "WEAK ";
2209 case RegMax: return "REG-MAX ";
2210 case ResourceReduce: return "RES-REDUCE";
2211 case ResourceDemand: return "RES-DEMAND";
2212 case TopDepthReduce: return "TOP-DEPTH ";
2213 case TopPathReduce: return "TOP-PATH ";
2214 case BotHeightReduce:return "BOT-HEIGHT";
2215 case BotPathReduce: return "BOT-PATH ";
2216 case NextDefUse: return "DEF-USE ";
2217 case NodeOrder: return "ORDER ";
2218 };
2219 llvm_unreachable("Unknown reason!");
2220 }
2221
traceCandidate(const SchedCandidate & Cand)2222 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2223 PressureChange P;
2224 unsigned ResIdx = 0;
2225 unsigned Latency = 0;
2226 switch (Cand.Reason) {
2227 default:
2228 break;
2229 case RegExcess:
2230 P = Cand.RPDelta.Excess;
2231 break;
2232 case RegCritical:
2233 P = Cand.RPDelta.CriticalMax;
2234 break;
2235 case RegMax:
2236 P = Cand.RPDelta.CurrentMax;
2237 break;
2238 case ResourceReduce:
2239 ResIdx = Cand.Policy.ReduceResIdx;
2240 break;
2241 case ResourceDemand:
2242 ResIdx = Cand.Policy.DemandResIdx;
2243 break;
2244 case TopDepthReduce:
2245 Latency = Cand.SU->getDepth();
2246 break;
2247 case TopPathReduce:
2248 Latency = Cand.SU->getHeight();
2249 break;
2250 case BotHeightReduce:
2251 Latency = Cand.SU->getHeight();
2252 break;
2253 case BotPathReduce:
2254 Latency = Cand.SU->getDepth();
2255 break;
2256 }
2257 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2258 if (P.isValid())
2259 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2260 << ":" << P.getUnitInc() << " ";
2261 else
2262 dbgs() << " ";
2263 if (ResIdx)
2264 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2265 else
2266 dbgs() << " ";
2267 if (Latency)
2268 dbgs() << " " << Latency << " cycles ";
2269 else
2270 dbgs() << " ";
2271 dbgs() << '\n';
2272 }
2273 #endif
2274
2275 /// Return true if this heuristic determines order.
tryLess(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2276 static bool tryLess(int TryVal, int CandVal,
2277 GenericSchedulerBase::SchedCandidate &TryCand,
2278 GenericSchedulerBase::SchedCandidate &Cand,
2279 GenericSchedulerBase::CandReason Reason) {
2280 if (TryVal < CandVal) {
2281 TryCand.Reason = Reason;
2282 return true;
2283 }
2284 if (TryVal > CandVal) {
2285 if (Cand.Reason > Reason)
2286 Cand.Reason = Reason;
2287 return true;
2288 }
2289 Cand.setRepeat(Reason);
2290 return false;
2291 }
2292
tryGreater(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2293 static bool tryGreater(int TryVal, int CandVal,
2294 GenericSchedulerBase::SchedCandidate &TryCand,
2295 GenericSchedulerBase::SchedCandidate &Cand,
2296 GenericSchedulerBase::CandReason Reason) {
2297 if (TryVal > CandVal) {
2298 TryCand.Reason = Reason;
2299 return true;
2300 }
2301 if (TryVal < CandVal) {
2302 if (Cand.Reason > Reason)
2303 Cand.Reason = Reason;
2304 return true;
2305 }
2306 Cand.setRepeat(Reason);
2307 return false;
2308 }
2309
tryLatency(GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,SchedBoundary & Zone)2310 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2311 GenericSchedulerBase::SchedCandidate &Cand,
2312 SchedBoundary &Zone) {
2313 if (Zone.isTop()) {
2314 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2315 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2316 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2317 return true;
2318 }
2319 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2320 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2321 return true;
2322 }
2323 else {
2324 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2325 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2326 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2327 return true;
2328 }
2329 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2330 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2331 return true;
2332 }
2333 return false;
2334 }
2335
tracePick(const GenericSchedulerBase::SchedCandidate & Cand,bool IsTop)2336 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2337 bool IsTop) {
2338 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2339 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2340 }
2341
initialize(ScheduleDAGMI * dag)2342 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2343 assert(dag->hasVRegLiveness() &&
2344 "(PreRA)GenericScheduler needs vreg liveness");
2345 DAG = static_cast<ScheduleDAGMILive*>(dag);
2346 SchedModel = DAG->getSchedModel();
2347 TRI = DAG->TRI;
2348
2349 Rem.init(DAG, SchedModel);
2350 Top.init(DAG, SchedModel, &Rem);
2351 Bot.init(DAG, SchedModel, &Rem);
2352
2353 // Initialize resource counts.
2354
2355 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2356 // are disabled, then these HazardRecs will be disabled.
2357 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2358 const TargetMachine &TM = DAG->MF.getTarget();
2359 if (!Top.HazardRec) {
2360 Top.HazardRec =
2361 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2362 }
2363 if (!Bot.HazardRec) {
2364 Bot.HazardRec =
2365 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2366 }
2367 }
2368
2369 /// Initialize the per-region scheduling policy.
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)2370 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2371 MachineBasicBlock::iterator End,
2372 unsigned NumRegionInstrs) {
2373 const TargetMachine &TM = Context->MF->getTarget();
2374 const TargetLowering *TLI = TM.getTargetLowering();
2375
2376 // Avoid setting up the register pressure tracker for small regions to save
2377 // compile time. As a rough heuristic, only track pressure when the number of
2378 // schedulable instructions exceeds half the integer register file.
2379 RegionPolicy.ShouldTrackPressure = true;
2380 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2381 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2382 if (TLI->isTypeLegal(LegalIntVT)) {
2383 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2384 TLI->getRegClassFor(LegalIntVT));
2385 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2386 }
2387 }
2388
2389 // For generic targets, we default to bottom-up, because it's simpler and more
2390 // compile-time optimizations have been implemented in that direction.
2391 RegionPolicy.OnlyBottomUp = true;
2392
2393 // Allow the subtarget to override default policy.
2394 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
2395 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
2396
2397 // After subtarget overrides, apply command line options.
2398 if (!EnableRegPressure)
2399 RegionPolicy.ShouldTrackPressure = false;
2400
2401 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2402 // e.g. -misched-bottomup=false allows scheduling in both directions.
2403 assert((!ForceTopDown || !ForceBottomUp) &&
2404 "-misched-topdown incompatible with -misched-bottomup");
2405 if (ForceBottomUp.getNumOccurrences() > 0) {
2406 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2407 if (RegionPolicy.OnlyBottomUp)
2408 RegionPolicy.OnlyTopDown = false;
2409 }
2410 if (ForceTopDown.getNumOccurrences() > 0) {
2411 RegionPolicy.OnlyTopDown = ForceTopDown;
2412 if (RegionPolicy.OnlyTopDown)
2413 RegionPolicy.OnlyBottomUp = false;
2414 }
2415 }
2416
2417 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2418 /// critical path by more cycles than it takes to drain the instruction buffer.
2419 /// We estimate an upper bounds on in-flight instructions as:
2420 ///
2421 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2422 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2423 /// InFlightResources = InFlightIterations * LoopResources
2424 ///
2425 /// TODO: Check execution resources in addition to IssueCount.
checkAcyclicLatency()2426 void GenericScheduler::checkAcyclicLatency() {
2427 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2428 return;
2429
2430 // Scaled number of cycles per loop iteration.
2431 unsigned IterCount =
2432 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2433 Rem.RemIssueCount);
2434 // Scaled acyclic critical path.
2435 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2436 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2437 unsigned InFlightCount =
2438 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2439 unsigned BufferLimit =
2440 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2441
2442 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2443
2444 DEBUG(dbgs() << "IssueCycles="
2445 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2446 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2447 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2448 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2449 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2450 if (Rem.IsAcyclicLatencyLimited)
2451 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2452 }
2453
registerRoots()2454 void GenericScheduler::registerRoots() {
2455 Rem.CriticalPath = DAG->ExitSU.getDepth();
2456
2457 // Some roots may not feed into ExitSU. Check all of them in case.
2458 for (std::vector<SUnit*>::const_iterator
2459 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2460 if ((*I)->getDepth() > Rem.CriticalPath)
2461 Rem.CriticalPath = (*I)->getDepth();
2462 }
2463 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
2464
2465 if (EnableCyclicPath) {
2466 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2467 checkAcyclicLatency();
2468 }
2469 }
2470
tryPressure(const PressureChange & TryP,const PressureChange & CandP,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2471 static bool tryPressure(const PressureChange &TryP,
2472 const PressureChange &CandP,
2473 GenericSchedulerBase::SchedCandidate &TryCand,
2474 GenericSchedulerBase::SchedCandidate &Cand,
2475 GenericSchedulerBase::CandReason Reason) {
2476 int TryRank = TryP.getPSetOrMax();
2477 int CandRank = CandP.getPSetOrMax();
2478 // If both candidates affect the same set, go with the smallest increase.
2479 if (TryRank == CandRank) {
2480 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2481 Reason);
2482 }
2483 // If one candidate decreases and the other increases, go with it.
2484 // Invalid candidates have UnitInc==0.
2485 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2486 Reason)) {
2487 return true;
2488 }
2489 // If the candidates are decreasing pressure, reverse priority.
2490 if (TryP.getUnitInc() < 0)
2491 std::swap(TryRank, CandRank);
2492 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2493 }
2494
getWeakLeft(const SUnit * SU,bool isTop)2495 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2496 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2497 }
2498
2499 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2500 /// their physreg def/use.
2501 ///
2502 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2503 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2504 /// with the operation that produces or consumes the physreg. We'll do this when
2505 /// regalloc has support for parallel copies.
biasPhysRegCopy(const SUnit * SU,bool isTop)2506 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2507 const MachineInstr *MI = SU->getInstr();
2508 if (!MI->isCopy())
2509 return 0;
2510
2511 unsigned ScheduledOper = isTop ? 1 : 0;
2512 unsigned UnscheduledOper = isTop ? 0 : 1;
2513 // If we have already scheduled the physreg produce/consumer, immediately
2514 // schedule the copy.
2515 if (TargetRegisterInfo::isPhysicalRegister(
2516 MI->getOperand(ScheduledOper).getReg()))
2517 return 1;
2518 // If the physreg is at the boundary, defer it. Otherwise schedule it
2519 // immediately to free the dependent. We can hoist the copy later.
2520 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2521 if (TargetRegisterInfo::isPhysicalRegister(
2522 MI->getOperand(UnscheduledOper).getReg()))
2523 return AtBoundary ? -1 : 1;
2524 return 0;
2525 }
2526
2527 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2528 /// hierarchical. This may be more efficient than a graduated cost model because
2529 /// we don't need to evaluate all aspects of the model for each node in the
2530 /// queue. But it's really done to make the heuristics easier to debug and
2531 /// statistically analyze.
2532 ///
2533 /// \param Cand provides the policy and current best candidate.
2534 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2535 /// \param Zone describes the scheduled zone that we are extending.
2536 /// \param RPTracker describes reg pressure within the scheduled zone.
2537 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary & Zone,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)2538 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2539 SchedCandidate &TryCand,
2540 SchedBoundary &Zone,
2541 const RegPressureTracker &RPTracker,
2542 RegPressureTracker &TempTracker) {
2543
2544 if (DAG->isTrackingPressure()) {
2545 // Always initialize TryCand's RPDelta.
2546 if (Zone.isTop()) {
2547 TempTracker.getMaxDownwardPressureDelta(
2548 TryCand.SU->getInstr(),
2549 TryCand.RPDelta,
2550 DAG->getRegionCriticalPSets(),
2551 DAG->getRegPressure().MaxSetPressure);
2552 }
2553 else {
2554 if (VerifyScheduling) {
2555 TempTracker.getMaxUpwardPressureDelta(
2556 TryCand.SU->getInstr(),
2557 &DAG->getPressureDiff(TryCand.SU),
2558 TryCand.RPDelta,
2559 DAG->getRegionCriticalPSets(),
2560 DAG->getRegPressure().MaxSetPressure);
2561 }
2562 else {
2563 RPTracker.getUpwardPressureDelta(
2564 TryCand.SU->getInstr(),
2565 DAG->getPressureDiff(TryCand.SU),
2566 TryCand.RPDelta,
2567 DAG->getRegionCriticalPSets(),
2568 DAG->getRegPressure().MaxSetPressure);
2569 }
2570 }
2571 }
2572 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2573 dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
2574 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2575 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2576
2577 // Initialize the candidate if needed.
2578 if (!Cand.isValid()) {
2579 TryCand.Reason = NodeOrder;
2580 return;
2581 }
2582
2583 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2584 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2585 TryCand, Cand, PhysRegCopy))
2586 return;
2587
2588 // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2589 // invalid; convert it to INT_MAX to give it lowest priority.
2590 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2591 Cand.RPDelta.Excess,
2592 TryCand, Cand, RegExcess))
2593 return;
2594
2595 // Avoid increasing the max critical pressure in the scheduled region.
2596 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2597 Cand.RPDelta.CriticalMax,
2598 TryCand, Cand, RegCritical))
2599 return;
2600
2601 // For loops that are acyclic path limited, aggressively schedule for latency.
2602 // This can result in very long dependence chains scheduled in sequence, so
2603 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2604 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2605 && tryLatency(TryCand, Cand, Zone))
2606 return;
2607
2608 // Prioritize instructions that read unbuffered resources by stall cycles.
2609 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2610 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2611 return;
2612
2613 // Keep clustered nodes together to encourage downstream peephole
2614 // optimizations which may reduce resource requirements.
2615 //
2616 // This is a best effort to set things up for a post-RA pass. Optimizations
2617 // like generating loads of multiple registers should ideally be done within
2618 // the scheduler pass by combining the loads during DAG postprocessing.
2619 const SUnit *NextClusterSU =
2620 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2621 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2622 TryCand, Cand, Cluster))
2623 return;
2624
2625 // Weak edges are for clustering and other constraints.
2626 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2627 getWeakLeft(Cand.SU, Zone.isTop()),
2628 TryCand, Cand, Weak)) {
2629 return;
2630 }
2631 // Avoid increasing the max pressure of the entire region.
2632 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2633 Cand.RPDelta.CurrentMax,
2634 TryCand, Cand, RegMax))
2635 return;
2636
2637 // Avoid critical resource consumption and balance the schedule.
2638 TryCand.initResourceDelta(DAG, SchedModel);
2639 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2640 TryCand, Cand, ResourceReduce))
2641 return;
2642 if (tryGreater(TryCand.ResDelta.DemandedResources,
2643 Cand.ResDelta.DemandedResources,
2644 TryCand, Cand, ResourceDemand))
2645 return;
2646
2647 // Avoid serializing long latency dependence chains.
2648 // For acyclic path limited loops, latency was already checked above.
2649 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2650 && tryLatency(TryCand, Cand, Zone)) {
2651 return;
2652 }
2653
2654 // Prefer immediate defs/users of the last scheduled instruction. This is a
2655 // local pressure avoidance strategy that also makes the machine code
2656 // readable.
2657 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2658 TryCand, Cand, NextDefUse))
2659 return;
2660
2661 // Fall through to original instruction order.
2662 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2663 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2664 TryCand.Reason = NodeOrder;
2665 }
2666 }
2667
2668 /// Pick the best candidate from the queue.
2669 ///
2670 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2671 /// DAG building. To adjust for the current scheduling location we need to
2672 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const RegPressureTracker & RPTracker,SchedCandidate & Cand)2673 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2674 const RegPressureTracker &RPTracker,
2675 SchedCandidate &Cand) {
2676 ReadyQueue &Q = Zone.Available;
2677
2678 DEBUG(Q.dump());
2679
2680 // getMaxPressureDelta temporarily modifies the tracker.
2681 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2682
2683 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2684
2685 SchedCandidate TryCand(Cand.Policy);
2686 TryCand.SU = *I;
2687 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2688 if (TryCand.Reason != NoCand) {
2689 // Initialize resource delta if needed in case future heuristics query it.
2690 if (TryCand.ResDelta == SchedResourceDelta())
2691 TryCand.initResourceDelta(DAG, SchedModel);
2692 Cand.setBest(TryCand);
2693 DEBUG(traceCandidate(Cand));
2694 }
2695 }
2696 }
2697
2698 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)2699 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2700 // Schedule as far as possible in the direction of no choice. This is most
2701 // efficient, but also provides the best heuristics for CriticalPSets.
2702 if (SUnit *SU = Bot.pickOnlyChoice()) {
2703 IsTopNode = false;
2704 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2705 return SU;
2706 }
2707 if (SUnit *SU = Top.pickOnlyChoice()) {
2708 IsTopNode = true;
2709 DEBUG(dbgs() << "Pick Top NOCAND\n");
2710 return SU;
2711 }
2712 CandPolicy NoPolicy;
2713 SchedCandidate BotCand(NoPolicy);
2714 SchedCandidate TopCand(NoPolicy);
2715 // Set the bottom-up policy based on the state of the current bottom zone and
2716 // the instructions outside the zone, including the top zone.
2717 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2718 // Set the top-down policy based on the state of the current top zone and
2719 // the instructions outside the zone, including the bottom zone.
2720 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2721
2722 // Prefer bottom scheduling when heuristics are silent.
2723 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2724 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2725
2726 // If either Q has a single candidate that provides the least increase in
2727 // Excess pressure, we can immediately schedule from that Q.
2728 //
2729 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2730 // affects picking from either Q. If scheduling in one direction must
2731 // increase pressure for one of the excess PSets, then schedule in that
2732 // direction first to provide more freedom in the other direction.
2733 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2734 || (BotCand.Reason == RegCritical
2735 && !BotCand.isRepeat(RegCritical)))
2736 {
2737 IsTopNode = false;
2738 tracePick(BotCand, IsTopNode);
2739 return BotCand.SU;
2740 }
2741 // Check if the top Q has a better candidate.
2742 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2743 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2744
2745 // Choose the queue with the most important (lowest enum) reason.
2746 if (TopCand.Reason < BotCand.Reason) {
2747 IsTopNode = true;
2748 tracePick(TopCand, IsTopNode);
2749 return TopCand.SU;
2750 }
2751 // Otherwise prefer the bottom candidate, in node order if all else failed.
2752 IsTopNode = false;
2753 tracePick(BotCand, IsTopNode);
2754 return BotCand.SU;
2755 }
2756
2757 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)2758 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2759 if (DAG->top() == DAG->bottom()) {
2760 assert(Top.Available.empty() && Top.Pending.empty() &&
2761 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2762 return nullptr;
2763 }
2764 SUnit *SU;
2765 do {
2766 if (RegionPolicy.OnlyTopDown) {
2767 SU = Top.pickOnlyChoice();
2768 if (!SU) {
2769 CandPolicy NoPolicy;
2770 SchedCandidate TopCand(NoPolicy);
2771 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2772 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2773 tracePick(TopCand, true);
2774 SU = TopCand.SU;
2775 }
2776 IsTopNode = true;
2777 }
2778 else if (RegionPolicy.OnlyBottomUp) {
2779 SU = Bot.pickOnlyChoice();
2780 if (!SU) {
2781 CandPolicy NoPolicy;
2782 SchedCandidate BotCand(NoPolicy);
2783 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2784 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2785 tracePick(BotCand, false);
2786 SU = BotCand.SU;
2787 }
2788 IsTopNode = false;
2789 }
2790 else {
2791 SU = pickNodeBidirectional(IsTopNode);
2792 }
2793 } while (SU->isScheduled);
2794
2795 if (SU->isTopReady())
2796 Top.removeReady(SU);
2797 if (SU->isBottomReady())
2798 Bot.removeReady(SU);
2799
2800 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2801 return SU;
2802 }
2803
reschedulePhysRegCopies(SUnit * SU,bool isTop)2804 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2805
2806 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2807 if (!isTop)
2808 ++InsertPos;
2809 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2810
2811 // Find already scheduled copies with a single physreg dependence and move
2812 // them just above the scheduled instruction.
2813 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2814 I != E; ++I) {
2815 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2816 continue;
2817 SUnit *DepSU = I->getSUnit();
2818 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2819 continue;
2820 MachineInstr *Copy = DepSU->getInstr();
2821 if (!Copy->isCopy())
2822 continue;
2823 DEBUG(dbgs() << " Rescheduling physreg copy ";
2824 I->getSUnit()->dump(DAG));
2825 DAG->moveInstruction(Copy, InsertPos);
2826 }
2827 }
2828
2829 /// Update the scheduler's state after scheduling a node. This is the same node
2830 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2831 /// update it's state based on the current cycle before MachineSchedStrategy
2832 /// does.
2833 ///
2834 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2835 /// them here. See comments in biasPhysRegCopy.
schedNode(SUnit * SU,bool IsTopNode)2836 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2837 if (IsTopNode) {
2838 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2839 Top.bumpNode(SU);
2840 if (SU->hasPhysRegUses)
2841 reschedulePhysRegCopies(SU, true);
2842 }
2843 else {
2844 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2845 Bot.bumpNode(SU);
2846 if (SU->hasPhysRegDefs)
2847 reschedulePhysRegCopies(SU, false);
2848 }
2849 }
2850
2851 /// Create the standard converging machine scheduler. This will be used as the
2852 /// default scheduler if the target does not set a default.
createGenericSchedLive(MachineSchedContext * C)2853 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2854 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2855 // Register DAG post-processors.
2856 //
2857 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2858 // data and pass it to later mutations. Have a single mutation that gathers
2859 // the interesting nodes in one pass.
2860 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2861 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2862 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2863 if (EnableMacroFusion)
2864 DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
2865 return DAG;
2866 }
2867
2868 static MachineSchedRegistry
2869 GenericSchedRegistry("converge", "Standard converging scheduler.",
2870 createGenericSchedLive);
2871
2872 //===----------------------------------------------------------------------===//
2873 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2874 //===----------------------------------------------------------------------===//
2875
initialize(ScheduleDAGMI * Dag)2876 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2877 DAG = Dag;
2878 SchedModel = DAG->getSchedModel();
2879 TRI = DAG->TRI;
2880
2881 Rem.init(DAG, SchedModel);
2882 Top.init(DAG, SchedModel, &Rem);
2883 BotRoots.clear();
2884
2885 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2886 // or are disabled, then these HazardRecs will be disabled.
2887 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2888 const TargetMachine &TM = DAG->MF.getTarget();
2889 if (!Top.HazardRec) {
2890 Top.HazardRec =
2891 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2892 }
2893 }
2894
2895
registerRoots()2896 void PostGenericScheduler::registerRoots() {
2897 Rem.CriticalPath = DAG->ExitSU.getDepth();
2898
2899 // Some roots may not feed into ExitSU. Check all of them in case.
2900 for (SmallVectorImpl<SUnit*>::const_iterator
2901 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2902 if ((*I)->getDepth() > Rem.CriticalPath)
2903 Rem.CriticalPath = (*I)->getDepth();
2904 }
2905 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
2906 }
2907
2908 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
2909 ///
2910 /// \param Cand provides the policy and current best candidate.
2911 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand)2912 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2913 SchedCandidate &TryCand) {
2914
2915 // Initialize the candidate if needed.
2916 if (!Cand.isValid()) {
2917 TryCand.Reason = NodeOrder;
2918 return;
2919 }
2920
2921 // Prioritize instructions that read unbuffered resources by stall cycles.
2922 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
2923 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2924 return;
2925
2926 // Avoid critical resource consumption and balance the schedule.
2927 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2928 TryCand, Cand, ResourceReduce))
2929 return;
2930 if (tryGreater(TryCand.ResDelta.DemandedResources,
2931 Cand.ResDelta.DemandedResources,
2932 TryCand, Cand, ResourceDemand))
2933 return;
2934
2935 // Avoid serializing long latency dependence chains.
2936 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
2937 return;
2938 }
2939
2940 // Fall through to original instruction order.
2941 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
2942 TryCand.Reason = NodeOrder;
2943 }
2944
pickNodeFromQueue(SchedCandidate & Cand)2945 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
2946 ReadyQueue &Q = Top.Available;
2947
2948 DEBUG(Q.dump());
2949
2950 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2951 SchedCandidate TryCand(Cand.Policy);
2952 TryCand.SU = *I;
2953 TryCand.initResourceDelta(DAG, SchedModel);
2954 tryCandidate(Cand, TryCand);
2955 if (TryCand.Reason != NoCand) {
2956 Cand.setBest(TryCand);
2957 DEBUG(traceCandidate(Cand));
2958 }
2959 }
2960 }
2961
2962 /// Pick the next node to schedule.
pickNode(bool & IsTopNode)2963 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
2964 if (DAG->top() == DAG->bottom()) {
2965 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
2966 return nullptr;
2967 }
2968 SUnit *SU;
2969 do {
2970 SU = Top.pickOnlyChoice();
2971 if (!SU) {
2972 CandPolicy NoPolicy;
2973 SchedCandidate TopCand(NoPolicy);
2974 // Set the top-down policy based on the state of the current top zone and
2975 // the instructions outside the zone, including the bottom zone.
2976 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
2977 pickNodeFromQueue(TopCand);
2978 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2979 tracePick(TopCand, true);
2980 SU = TopCand.SU;
2981 }
2982 } while (SU->isScheduled);
2983
2984 IsTopNode = true;
2985 Top.removeReady(SU);
2986
2987 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2988 return SU;
2989 }
2990
2991 /// Called after ScheduleDAGMI has scheduled an instruction and updated
2992 /// scheduled/remaining flags in the DAG nodes.
schedNode(SUnit * SU,bool IsTopNode)2993 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2994 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2995 Top.bumpNode(SU);
2996 }
2997
2998 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
createGenericSchedPostRA(MachineSchedContext * C)2999 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3000 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3001 }
3002
3003 //===----------------------------------------------------------------------===//
3004 // ILP Scheduler. Currently for experimental analysis of heuristics.
3005 //===----------------------------------------------------------------------===//
3006
3007 namespace {
3008 /// \brief Order nodes by the ILP metric.
3009 struct ILPOrder {
3010 const SchedDFSResult *DFSResult;
3011 const BitVector *ScheduledTrees;
3012 bool MaximizeILP;
3013
ILPOrder__anonfc890aee0511::ILPOrder3014 ILPOrder(bool MaxILP)
3015 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3016
3017 /// \brief Apply a less-than relation on node priority.
3018 ///
3019 /// (Return true if A comes after B in the Q.)
operator ()__anonfc890aee0511::ILPOrder3020 bool operator()(const SUnit *A, const SUnit *B) const {
3021 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3022 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3023 if (SchedTreeA != SchedTreeB) {
3024 // Unscheduled trees have lower priority.
3025 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3026 return ScheduledTrees->test(SchedTreeB);
3027
3028 // Trees with shallower connections have have lower priority.
3029 if (DFSResult->getSubtreeLevel(SchedTreeA)
3030 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3031 return DFSResult->getSubtreeLevel(SchedTreeA)
3032 < DFSResult->getSubtreeLevel(SchedTreeB);
3033 }
3034 }
3035 if (MaximizeILP)
3036 return DFSResult->getILP(A) < DFSResult->getILP(B);
3037 else
3038 return DFSResult->getILP(A) > DFSResult->getILP(B);
3039 }
3040 };
3041
3042 /// \brief Schedule based on the ILP metric.
3043 class ILPScheduler : public MachineSchedStrategy {
3044 ScheduleDAGMILive *DAG;
3045 ILPOrder Cmp;
3046
3047 std::vector<SUnit*> ReadyQ;
3048 public:
ILPScheduler(bool MaximizeILP)3049 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3050
initialize(ScheduleDAGMI * dag)3051 void initialize(ScheduleDAGMI *dag) override {
3052 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3053 DAG = static_cast<ScheduleDAGMILive*>(dag);
3054 DAG->computeDFSResult();
3055 Cmp.DFSResult = DAG->getDFSResult();
3056 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3057 ReadyQ.clear();
3058 }
3059
registerRoots()3060 void registerRoots() override {
3061 // Restore the heap in ReadyQ with the updated DFS results.
3062 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3063 }
3064
3065 /// Implement MachineSchedStrategy interface.
3066 /// -----------------------------------------
3067
3068 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)3069 SUnit *pickNode(bool &IsTopNode) override {
3070 if (ReadyQ.empty()) return nullptr;
3071 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3072 SUnit *SU = ReadyQ.back();
3073 ReadyQ.pop_back();
3074 IsTopNode = false;
3075 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3076 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3077 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3078 << DAG->getDFSResult()->getSubtreeLevel(
3079 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3080 << "Scheduling " << *SU->getInstr());
3081 return SU;
3082 }
3083
3084 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)3085 void scheduleTree(unsigned SubtreeID) override {
3086 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3087 }
3088
3089 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3090 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)3091 void schedNode(SUnit *SU, bool IsTopNode) override {
3092 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3093 }
3094
releaseTopNode(SUnit *)3095 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3096
releaseBottomNode(SUnit * SU)3097 void releaseBottomNode(SUnit *SU) override {
3098 ReadyQ.push_back(SU);
3099 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3100 }
3101 };
3102 } // namespace
3103
createILPMaxScheduler(MachineSchedContext * C)3104 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3105 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3106 }
createILPMinScheduler(MachineSchedContext * C)3107 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3108 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3109 }
3110 static MachineSchedRegistry ILPMaxRegistry(
3111 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3112 static MachineSchedRegistry ILPMinRegistry(
3113 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3114
3115 //===----------------------------------------------------------------------===//
3116 // Machine Instruction Shuffler for Correctness Testing
3117 //===----------------------------------------------------------------------===//
3118
3119 #ifndef NDEBUG
3120 namespace {
3121 /// Apply a less-than relation on the node order, which corresponds to the
3122 /// instruction order prior to scheduling. IsReverse implements greater-than.
3123 template<bool IsReverse>
3124 struct SUnitOrder {
operator ()__anonfc890aee0611::SUnitOrder3125 bool operator()(SUnit *A, SUnit *B) const {
3126 if (IsReverse)
3127 return A->NodeNum > B->NodeNum;
3128 else
3129 return A->NodeNum < B->NodeNum;
3130 }
3131 };
3132
3133 /// Reorder instructions as much as possible.
3134 class InstructionShuffler : public MachineSchedStrategy {
3135 bool IsAlternating;
3136 bool IsTopDown;
3137
3138 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3139 // gives nodes with a higher number higher priority causing the latest
3140 // instructions to be scheduled first.
3141 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3142 TopQ;
3143 // When scheduling bottom-up, use greater-than as the queue priority.
3144 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3145 BottomQ;
3146 public:
InstructionShuffler(bool alternate,bool topdown)3147 InstructionShuffler(bool alternate, bool topdown)
3148 : IsAlternating(alternate), IsTopDown(topdown) {}
3149
initialize(ScheduleDAGMI *)3150 void initialize(ScheduleDAGMI*) override {
3151 TopQ.clear();
3152 BottomQ.clear();
3153 }
3154
3155 /// Implement MachineSchedStrategy interface.
3156 /// -----------------------------------------
3157
pickNode(bool & IsTopNode)3158 SUnit *pickNode(bool &IsTopNode) override {
3159 SUnit *SU;
3160 if (IsTopDown) {
3161 do {
3162 if (TopQ.empty()) return nullptr;
3163 SU = TopQ.top();
3164 TopQ.pop();
3165 } while (SU->isScheduled);
3166 IsTopNode = true;
3167 }
3168 else {
3169 do {
3170 if (BottomQ.empty()) return nullptr;
3171 SU = BottomQ.top();
3172 BottomQ.pop();
3173 } while (SU->isScheduled);
3174 IsTopNode = false;
3175 }
3176 if (IsAlternating)
3177 IsTopDown = !IsTopDown;
3178 return SU;
3179 }
3180
schedNode(SUnit * SU,bool IsTopNode)3181 void schedNode(SUnit *SU, bool IsTopNode) override {}
3182
releaseTopNode(SUnit * SU)3183 void releaseTopNode(SUnit *SU) override {
3184 TopQ.push(SU);
3185 }
releaseBottomNode(SUnit * SU)3186 void releaseBottomNode(SUnit *SU) override {
3187 BottomQ.push(SU);
3188 }
3189 };
3190 } // namespace
3191
createInstructionShuffler(MachineSchedContext * C)3192 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3193 bool Alternate = !ForceTopDown && !ForceBottomUp;
3194 bool TopDown = !ForceBottomUp;
3195 assert((TopDown || !ForceTopDown) &&
3196 "-misched-topdown incompatible with -misched-bottomup");
3197 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3198 }
3199 static MachineSchedRegistry ShufflerRegistry(
3200 "shuffle", "Shuffle machine instructions alternating directions",
3201 createInstructionShuffler);
3202 #endif // !NDEBUG
3203
3204 //===----------------------------------------------------------------------===//
3205 // GraphWriter support for ScheduleDAGMILive.
3206 //===----------------------------------------------------------------------===//
3207
3208 #ifndef NDEBUG
3209 namespace llvm {
3210
3211 template<> struct GraphTraits<
3212 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3213
3214 template<>
3215 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3216
DOTGraphTraitsllvm::DOTGraphTraits3217 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3218
getGraphNamellvm::DOTGraphTraits3219 static std::string getGraphName(const ScheduleDAG *G) {
3220 return G->MF.getName();
3221 }
3222
renderGraphFromBottomUpllvm::DOTGraphTraits3223 static bool renderGraphFromBottomUp() {
3224 return true;
3225 }
3226
isNodeHiddenllvm::DOTGraphTraits3227 static bool isNodeHidden(const SUnit *Node) {
3228 return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3229 }
3230
hasNodeAddressLabelllvm::DOTGraphTraits3231 static bool hasNodeAddressLabel(const SUnit *Node,
3232 const ScheduleDAG *Graph) {
3233 return false;
3234 }
3235
3236 /// If you want to override the dot attributes printed for a particular
3237 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits3238 static std::string getEdgeAttributes(const SUnit *Node,
3239 SUnitIterator EI,
3240 const ScheduleDAG *Graph) {
3241 if (EI.isArtificialDep())
3242 return "color=cyan,style=dashed";
3243 if (EI.isCtrlDep())
3244 return "color=blue,style=dashed";
3245 return "";
3246 }
3247
getNodeLabelllvm::DOTGraphTraits3248 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3249 std::string Str;
3250 raw_string_ostream SS(Str);
3251 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3252 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3253 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3254 SS << "SU:" << SU->NodeNum;
3255 if (DFS)
3256 SS << " I:" << DFS->getNumInstrs(SU);
3257 return SS.str();
3258 }
getNodeDescriptionllvm::DOTGraphTraits3259 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3260 return G->getGraphNodeLabel(SU);
3261 }
3262
getNodeAttributesllvm::DOTGraphTraits3263 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3264 std::string Str("shape=Mrecord");
3265 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3266 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3267 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3268 if (DFS) {
3269 Str += ",style=filled,fillcolor=\"#";
3270 Str += DOT::getColorString(DFS->getSubtreeID(N));
3271 Str += '"';
3272 }
3273 return Str;
3274 }
3275 };
3276 } // namespace llvm
3277 #endif // NDEBUG
3278
3279 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3280 /// rendered using 'dot'.
3281 ///
viewGraph(const Twine & Name,const Twine & Title)3282 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3283 #ifndef NDEBUG
3284 ViewGraph(this, Name, false, Title);
3285 #else
3286 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3287 << "systems with Graphviz or gv!\n";
3288 #endif // NDEBUG
3289 }
3290
3291 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()3292 void ScheduleDAGMI::viewGraph() {
3293 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3294 }
3295