• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <cstring>
24 #include <limits.h>
25 
26 using namespace llvm;
27 
28 /// A macro used to combine two fcCategory enums into one key which can be used
29 /// in a switch statement to classify how the interaction of two APFloat's
30 /// categories affects an operation.
31 ///
32 /// TODO: If clang source code is ever allowed to use constexpr in its own
33 /// codebase, change this into a static inline function.
34 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
35 
36 /* Assumed in hexadecimal significand parsing, and conversion to
37    hexadecimal strings.  */
38 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
39 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
40 
41 namespace llvm {
42 
43   /* Represents floating point arithmetic semantics.  */
44   struct fltSemantics {
45     /* The largest E such that 2^E is representable; this matches the
46        definition of IEEE 754.  */
47     APFloat::ExponentType maxExponent;
48 
49     /* The smallest E such that 2^E is a normalized number; this
50        matches the definition of IEEE 754.  */
51     APFloat::ExponentType minExponent;
52 
53     /* Number of bits in the significand.  This includes the integer
54        bit.  */
55     unsigned int precision;
56   };
57 
58   const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
59   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
60   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
61   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
62   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
63   const fltSemantics APFloat::Bogus = { 0, 0, 0 };
64 
65   /* The PowerPC format consists of two doubles.  It does not map cleanly
66      onto the usual format above.  It is approximated using twice the
67      mantissa bits.  Note that for exponents near the double minimum,
68      we no longer can represent the full 106 mantissa bits, so those
69      will be treated as denormal numbers.
70 
71      FIXME: While this approximation is equivalent to what GCC uses for
72      compile-time arithmetic on PPC double-double numbers, it is not able
73      to represent all possible values held by a PPC double-double number,
74      for example: (long double) 1.0 + (long double) 0x1p-106
75      Should this be replaced by a full emulation of PPC double-double?  */
76   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
77 
78   /* A tight upper bound on number of parts required to hold the value
79      pow(5, power) is
80 
81        power * 815 / (351 * integerPartWidth) + 1
82 
83      However, whilst the result may require only this many parts,
84      because we are multiplying two values to get it, the
85      multiplication may require an extra part with the excess part
86      being zero (consider the trivial case of 1 * 1, tcFullMultiply
87      requires two parts to hold the single-part result).  So we add an
88      extra one to guarantee enough space whilst multiplying.  */
89   const unsigned int maxExponent = 16383;
90   const unsigned int maxPrecision = 113;
91   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
92   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
93                                                 / (351 * integerPartWidth));
94 }
95 
96 /* A bunch of private, handy routines.  */
97 
98 static inline unsigned int
partCountForBits(unsigned int bits)99 partCountForBits(unsigned int bits)
100 {
101   return ((bits) + integerPartWidth - 1) / integerPartWidth;
102 }
103 
104 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
105 static inline unsigned int
decDigitValue(unsigned int c)106 decDigitValue(unsigned int c)
107 {
108   return c - '0';
109 }
110 
111 /* Return the value of a decimal exponent of the form
112    [+-]ddddddd.
113 
114    If the exponent overflows, returns a large exponent with the
115    appropriate sign.  */
116 static int
readExponent(StringRef::iterator begin,StringRef::iterator end)117 readExponent(StringRef::iterator begin, StringRef::iterator end)
118 {
119   bool isNegative;
120   unsigned int absExponent;
121   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
122   StringRef::iterator p = begin;
123 
124   assert(p != end && "Exponent has no digits");
125 
126   isNegative = (*p == '-');
127   if (*p == '-' || *p == '+') {
128     p++;
129     assert(p != end && "Exponent has no digits");
130   }
131 
132   absExponent = decDigitValue(*p++);
133   assert(absExponent < 10U && "Invalid character in exponent");
134 
135   for (; p != end; ++p) {
136     unsigned int value;
137 
138     value = decDigitValue(*p);
139     assert(value < 10U && "Invalid character in exponent");
140 
141     value += absExponent * 10;
142     if (absExponent >= overlargeExponent) {
143       absExponent = overlargeExponent;
144       p = end;  /* outwit assert below */
145       break;
146     }
147     absExponent = value;
148   }
149 
150   assert(p == end && "Invalid exponent in exponent");
151 
152   if (isNegative)
153     return -(int) absExponent;
154   else
155     return (int) absExponent;
156 }
157 
158 /* This is ugly and needs cleaning up, but I don't immediately see
159    how whilst remaining safe.  */
160 static int
totalExponent(StringRef::iterator p,StringRef::iterator end,int exponentAdjustment)161 totalExponent(StringRef::iterator p, StringRef::iterator end,
162               int exponentAdjustment)
163 {
164   int unsignedExponent;
165   bool negative, overflow;
166   int exponent = 0;
167 
168   assert(p != end && "Exponent has no digits");
169 
170   negative = *p == '-';
171   if (*p == '-' || *p == '+') {
172     p++;
173     assert(p != end && "Exponent has no digits");
174   }
175 
176   unsignedExponent = 0;
177   overflow = false;
178   for (; p != end; ++p) {
179     unsigned int value;
180 
181     value = decDigitValue(*p);
182     assert(value < 10U && "Invalid character in exponent");
183 
184     unsignedExponent = unsignedExponent * 10 + value;
185     if (unsignedExponent > 32767) {
186       overflow = true;
187       break;
188     }
189   }
190 
191   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
192     overflow = true;
193 
194   if (!overflow) {
195     exponent = unsignedExponent;
196     if (negative)
197       exponent = -exponent;
198     exponent += exponentAdjustment;
199     if (exponent > 32767 || exponent < -32768)
200       overflow = true;
201   }
202 
203   if (overflow)
204     exponent = negative ? -32768: 32767;
205 
206   return exponent;
207 }
208 
209 static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin,StringRef::iterator end,StringRef::iterator * dot)210 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
211                            StringRef::iterator *dot)
212 {
213   StringRef::iterator p = begin;
214   *dot = end;
215   while (*p == '0' && p != end)
216     p++;
217 
218   if (*p == '.') {
219     *dot = p++;
220 
221     assert(end - begin != 1 && "Significand has no digits");
222 
223     while (*p == '0' && p != end)
224       p++;
225   }
226 
227   return p;
228 }
229 
230 /* Given a normal decimal floating point number of the form
231 
232      dddd.dddd[eE][+-]ddd
233 
234    where the decimal point and exponent are optional, fill out the
235    structure D.  Exponent is appropriate if the significand is
236    treated as an integer, and normalizedExponent if the significand
237    is taken to have the decimal point after a single leading
238    non-zero digit.
239 
240    If the value is zero, V->firstSigDigit points to a non-digit, and
241    the return exponent is zero.
242 */
243 struct decimalInfo {
244   const char *firstSigDigit;
245   const char *lastSigDigit;
246   int exponent;
247   int normalizedExponent;
248 };
249 
250 static void
interpretDecimal(StringRef::iterator begin,StringRef::iterator end,decimalInfo * D)251 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
252                  decimalInfo *D)
253 {
254   StringRef::iterator dot = end;
255   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
256 
257   D->firstSigDigit = p;
258   D->exponent = 0;
259   D->normalizedExponent = 0;
260 
261   for (; p != end; ++p) {
262     if (*p == '.') {
263       assert(dot == end && "String contains multiple dots");
264       dot = p++;
265       if (p == end)
266         break;
267     }
268     if (decDigitValue(*p) >= 10U)
269       break;
270   }
271 
272   if (p != end) {
273     assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
274     assert(p != begin && "Significand has no digits");
275     assert((dot == end || p - begin != 1) && "Significand has no digits");
276 
277     /* p points to the first non-digit in the string */
278     D->exponent = readExponent(p + 1, end);
279 
280     /* Implied decimal point?  */
281     if (dot == end)
282       dot = p;
283   }
284 
285   /* If number is all zeroes accept any exponent.  */
286   if (p != D->firstSigDigit) {
287     /* Drop insignificant trailing zeroes.  */
288     if (p != begin) {
289       do
290         do
291           p--;
292         while (p != begin && *p == '0');
293       while (p != begin && *p == '.');
294     }
295 
296     /* Adjust the exponents for any decimal point.  */
297     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
298     D->normalizedExponent = (D->exponent +
299               static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
300                                       - (dot > D->firstSigDigit && dot < p)));
301   }
302 
303   D->lastSigDigit = p;
304 }
305 
306 /* Return the trailing fraction of a hexadecimal number.
307    DIGITVALUE is the first hex digit of the fraction, P points to
308    the next digit.  */
309 static lostFraction
trailingHexadecimalFraction(StringRef::iterator p,StringRef::iterator end,unsigned int digitValue)310 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
311                             unsigned int digitValue)
312 {
313   unsigned int hexDigit;
314 
315   /* If the first trailing digit isn't 0 or 8 we can work out the
316      fraction immediately.  */
317   if (digitValue > 8)
318     return lfMoreThanHalf;
319   else if (digitValue < 8 && digitValue > 0)
320     return lfLessThanHalf;
321 
322   // Otherwise we need to find the first non-zero digit.
323   while (p != end && (*p == '0' || *p == '.'))
324     p++;
325 
326   assert(p != end && "Invalid trailing hexadecimal fraction!");
327 
328   hexDigit = hexDigitValue(*p);
329 
330   /* If we ran off the end it is exactly zero or one-half, otherwise
331      a little more.  */
332   if (hexDigit == -1U)
333     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
334   else
335     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
336 }
337 
338 /* Return the fraction lost were a bignum truncated losing the least
339    significant BITS bits.  */
340 static lostFraction
lostFractionThroughTruncation(const integerPart * parts,unsigned int partCount,unsigned int bits)341 lostFractionThroughTruncation(const integerPart *parts,
342                               unsigned int partCount,
343                               unsigned int bits)
344 {
345   unsigned int lsb;
346 
347   lsb = APInt::tcLSB(parts, partCount);
348 
349   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
350   if (bits <= lsb)
351     return lfExactlyZero;
352   if (bits == lsb + 1)
353     return lfExactlyHalf;
354   if (bits <= partCount * integerPartWidth &&
355       APInt::tcExtractBit(parts, bits - 1))
356     return lfMoreThanHalf;
357 
358   return lfLessThanHalf;
359 }
360 
361 /* Shift DST right BITS bits noting lost fraction.  */
362 static lostFraction
shiftRight(integerPart * dst,unsigned int parts,unsigned int bits)363 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
364 {
365   lostFraction lost_fraction;
366 
367   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
368 
369   APInt::tcShiftRight(dst, parts, bits);
370 
371   return lost_fraction;
372 }
373 
374 /* Combine the effect of two lost fractions.  */
375 static lostFraction
combineLostFractions(lostFraction moreSignificant,lostFraction lessSignificant)376 combineLostFractions(lostFraction moreSignificant,
377                      lostFraction lessSignificant)
378 {
379   if (lessSignificant != lfExactlyZero) {
380     if (moreSignificant == lfExactlyZero)
381       moreSignificant = lfLessThanHalf;
382     else if (moreSignificant == lfExactlyHalf)
383       moreSignificant = lfMoreThanHalf;
384   }
385 
386   return moreSignificant;
387 }
388 
389 /* The error from the true value, in half-ulps, on multiplying two
390    floating point numbers, which differ from the value they
391    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
392    than the returned value.
393 
394    See "How to Read Floating Point Numbers Accurately" by William D
395    Clinger.  */
396 static unsigned int
HUerrBound(bool inexactMultiply,unsigned int HUerr1,unsigned int HUerr2)397 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
398 {
399   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
400 
401   if (HUerr1 + HUerr2 == 0)
402     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
403   else
404     return inexactMultiply + 2 * (HUerr1 + HUerr2);
405 }
406 
407 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
408    when the least significant BITS are truncated.  BITS cannot be
409    zero.  */
410 static integerPart
ulpsFromBoundary(const integerPart * parts,unsigned int bits,bool isNearest)411 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
412 {
413   unsigned int count, partBits;
414   integerPart part, boundary;
415 
416   assert(bits != 0);
417 
418   bits--;
419   count = bits / integerPartWidth;
420   partBits = bits % integerPartWidth + 1;
421 
422   part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
423 
424   if (isNearest)
425     boundary = (integerPart) 1 << (partBits - 1);
426   else
427     boundary = 0;
428 
429   if (count == 0) {
430     if (part - boundary <= boundary - part)
431       return part - boundary;
432     else
433       return boundary - part;
434   }
435 
436   if (part == boundary) {
437     while (--count)
438       if (parts[count])
439         return ~(integerPart) 0; /* A lot.  */
440 
441     return parts[0];
442   } else if (part == boundary - 1) {
443     while (--count)
444       if (~parts[count])
445         return ~(integerPart) 0; /* A lot.  */
446 
447     return -parts[0];
448   }
449 
450   return ~(integerPart) 0; /* A lot.  */
451 }
452 
453 /* Place pow(5, power) in DST, and return the number of parts used.
454    DST must be at least one part larger than size of the answer.  */
455 static unsigned int
powerOf5(integerPart * dst,unsigned int power)456 powerOf5(integerPart *dst, unsigned int power)
457 {
458   static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
459                                                   15625, 78125 };
460   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
461   pow5s[0] = 78125 * 5;
462 
463   unsigned int partsCount[16] = { 1 };
464   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
465   unsigned int result;
466   assert(power <= maxExponent);
467 
468   p1 = dst;
469   p2 = scratch;
470 
471   *p1 = firstEightPowers[power & 7];
472   power >>= 3;
473 
474   result = 1;
475   pow5 = pow5s;
476 
477   for (unsigned int n = 0; power; power >>= 1, n++) {
478     unsigned int pc;
479 
480     pc = partsCount[n];
481 
482     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
483     if (pc == 0) {
484       pc = partsCount[n - 1];
485       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
486       pc *= 2;
487       if (pow5[pc - 1] == 0)
488         pc--;
489       partsCount[n] = pc;
490     }
491 
492     if (power & 1) {
493       integerPart *tmp;
494 
495       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
496       result += pc;
497       if (p2[result - 1] == 0)
498         result--;
499 
500       /* Now result is in p1 with partsCount parts and p2 is scratch
501          space.  */
502       tmp = p1, p1 = p2, p2 = tmp;
503     }
504 
505     pow5 += pc;
506   }
507 
508   if (p1 != dst)
509     APInt::tcAssign(dst, p1, result);
510 
511   return result;
512 }
513 
514 /* Zero at the end to avoid modular arithmetic when adding one; used
515    when rounding up during hexadecimal output.  */
516 static const char hexDigitsLower[] = "0123456789abcdef0";
517 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
518 static const char infinityL[] = "infinity";
519 static const char infinityU[] = "INFINITY";
520 static const char NaNL[] = "nan";
521 static const char NaNU[] = "NAN";
522 
523 /* Write out an integerPart in hexadecimal, starting with the most
524    significant nibble.  Write out exactly COUNT hexdigits, return
525    COUNT.  */
526 static unsigned int
partAsHex(char * dst,integerPart part,unsigned int count,const char * hexDigitChars)527 partAsHex (char *dst, integerPart part, unsigned int count,
528            const char *hexDigitChars)
529 {
530   unsigned int result = count;
531 
532   assert(count != 0 && count <= integerPartWidth / 4);
533 
534   part >>= (integerPartWidth - 4 * count);
535   while (count--) {
536     dst[count] = hexDigitChars[part & 0xf];
537     part >>= 4;
538   }
539 
540   return result;
541 }
542 
543 /* Write out an unsigned decimal integer.  */
544 static char *
writeUnsignedDecimal(char * dst,unsigned int n)545 writeUnsignedDecimal (char *dst, unsigned int n)
546 {
547   char buff[40], *p;
548 
549   p = buff;
550   do
551     *p++ = '0' + n % 10;
552   while (n /= 10);
553 
554   do
555     *dst++ = *--p;
556   while (p != buff);
557 
558   return dst;
559 }
560 
561 /* Write out a signed decimal integer.  */
562 static char *
writeSignedDecimal(char * dst,int value)563 writeSignedDecimal (char *dst, int value)
564 {
565   if (value < 0) {
566     *dst++ = '-';
567     dst = writeUnsignedDecimal(dst, -(unsigned) value);
568   } else
569     dst = writeUnsignedDecimal(dst, value);
570 
571   return dst;
572 }
573 
574 /* Constructors.  */
575 void
initialize(const fltSemantics * ourSemantics)576 APFloat::initialize(const fltSemantics *ourSemantics)
577 {
578   unsigned int count;
579 
580   semantics = ourSemantics;
581   count = partCount();
582   if (count > 1)
583     significand.parts = new integerPart[count];
584 }
585 
586 void
freeSignificand()587 APFloat::freeSignificand()
588 {
589   if (needsCleanup())
590     delete [] significand.parts;
591 }
592 
593 void
assign(const APFloat & rhs)594 APFloat::assign(const APFloat &rhs)
595 {
596   assert(semantics == rhs.semantics);
597 
598   sign = rhs.sign;
599   category = rhs.category;
600   exponent = rhs.exponent;
601   if (isFiniteNonZero() || category == fcNaN)
602     copySignificand(rhs);
603 }
604 
605 void
copySignificand(const APFloat & rhs)606 APFloat::copySignificand(const APFloat &rhs)
607 {
608   assert(isFiniteNonZero() || category == fcNaN);
609   assert(rhs.partCount() >= partCount());
610 
611   APInt::tcAssign(significandParts(), rhs.significandParts(),
612                   partCount());
613 }
614 
615 /* Make this number a NaN, with an arbitrary but deterministic value
616    for the significand.  If double or longer, this is a signalling NaN,
617    which may not be ideal.  If float, this is QNaN(0).  */
makeNaN(bool SNaN,bool Negative,const APInt * fill)618 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
619 {
620   category = fcNaN;
621   sign = Negative;
622 
623   integerPart *significand = significandParts();
624   unsigned numParts = partCount();
625 
626   // Set the significand bits to the fill.
627   if (!fill || fill->getNumWords() < numParts)
628     APInt::tcSet(significand, 0, numParts);
629   if (fill) {
630     APInt::tcAssign(significand, fill->getRawData(),
631                     std::min(fill->getNumWords(), numParts));
632 
633     // Zero out the excess bits of the significand.
634     unsigned bitsToPreserve = semantics->precision - 1;
635     unsigned part = bitsToPreserve / 64;
636     bitsToPreserve %= 64;
637     significand[part] &= ((1ULL << bitsToPreserve) - 1);
638     for (part++; part != numParts; ++part)
639       significand[part] = 0;
640   }
641 
642   unsigned QNaNBit = semantics->precision - 2;
643 
644   if (SNaN) {
645     // We always have to clear the QNaN bit to make it an SNaN.
646     APInt::tcClearBit(significand, QNaNBit);
647 
648     // If there are no bits set in the payload, we have to set
649     // *something* to make it a NaN instead of an infinity;
650     // conventionally, this is the next bit down from the QNaN bit.
651     if (APInt::tcIsZero(significand, numParts))
652       APInt::tcSetBit(significand, QNaNBit - 1);
653   } else {
654     // We always have to set the QNaN bit to make it a QNaN.
655     APInt::tcSetBit(significand, QNaNBit);
656   }
657 
658   // For x87 extended precision, we want to make a NaN, not a
659   // pseudo-NaN.  Maybe we should expose the ability to make
660   // pseudo-NaNs?
661   if (semantics == &APFloat::x87DoubleExtended)
662     APInt::tcSetBit(significand, QNaNBit + 1);
663 }
664 
makeNaN(const fltSemantics & Sem,bool SNaN,bool Negative,const APInt * fill)665 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
666                          const APInt *fill) {
667   APFloat value(Sem, uninitialized);
668   value.makeNaN(SNaN, Negative, fill);
669   return value;
670 }
671 
672 APFloat &
operator =(const APFloat & rhs)673 APFloat::operator=(const APFloat &rhs)
674 {
675   if (this != &rhs) {
676     if (semantics != rhs.semantics) {
677       freeSignificand();
678       initialize(rhs.semantics);
679     }
680     assign(rhs);
681   }
682 
683   return *this;
684 }
685 
686 APFloat &
operator =(APFloat && rhs)687 APFloat::operator=(APFloat &&rhs) {
688   freeSignificand();
689 
690   semantics = rhs.semantics;
691   significand = rhs.significand;
692   exponent = rhs.exponent;
693   category = rhs.category;
694   sign = rhs.sign;
695 
696   rhs.semantics = &Bogus;
697   return *this;
698 }
699 
700 bool
isDenormal() const701 APFloat::isDenormal() const {
702   return isFiniteNonZero() && (exponent == semantics->minExponent) &&
703          (APInt::tcExtractBit(significandParts(),
704                               semantics->precision - 1) == 0);
705 }
706 
707 bool
isSmallest() const708 APFloat::isSmallest() const {
709   // The smallest number by magnitude in our format will be the smallest
710   // denormal, i.e. the floating point number with exponent being minimum
711   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
712   return isFiniteNonZero() && exponent == semantics->minExponent &&
713     significandMSB() == 0;
714 }
715 
isSignificandAllOnes() const716 bool APFloat::isSignificandAllOnes() const {
717   // Test if the significand excluding the integral bit is all ones. This allows
718   // us to test for binade boundaries.
719   const integerPart *Parts = significandParts();
720   const unsigned PartCount = partCount();
721   for (unsigned i = 0; i < PartCount - 1; i++)
722     if (~Parts[i])
723       return false;
724 
725   // Set the unused high bits to all ones when we compare.
726   const unsigned NumHighBits =
727     PartCount*integerPartWidth - semantics->precision + 1;
728   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
729          "fill than integerPartWidth");
730   const integerPart HighBitFill =
731     ~integerPart(0) << (integerPartWidth - NumHighBits);
732   if (~(Parts[PartCount - 1] | HighBitFill))
733     return false;
734 
735   return true;
736 }
737 
isSignificandAllZeros() const738 bool APFloat::isSignificandAllZeros() const {
739   // Test if the significand excluding the integral bit is all zeros. This
740   // allows us to test for binade boundaries.
741   const integerPart *Parts = significandParts();
742   const unsigned PartCount = partCount();
743 
744   for (unsigned i = 0; i < PartCount - 1; i++)
745     if (Parts[i])
746       return false;
747 
748   const unsigned NumHighBits =
749     PartCount*integerPartWidth - semantics->precision + 1;
750   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
751          "clear than integerPartWidth");
752   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
753 
754   if (Parts[PartCount - 1] & HighBitMask)
755     return false;
756 
757   return true;
758 }
759 
760 bool
isLargest() const761 APFloat::isLargest() const {
762   // The largest number by magnitude in our format will be the floating point
763   // number with maximum exponent and with significand that is all ones.
764   return isFiniteNonZero() && exponent == semantics->maxExponent
765     && isSignificandAllOnes();
766 }
767 
768 bool
bitwiseIsEqual(const APFloat & rhs) const769 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
770   if (this == &rhs)
771     return true;
772   if (semantics != rhs.semantics ||
773       category != rhs.category ||
774       sign != rhs.sign)
775     return false;
776   if (category==fcZero || category==fcInfinity)
777     return true;
778   else if (isFiniteNonZero() && exponent!=rhs.exponent)
779     return false;
780   else {
781     int i= partCount();
782     const integerPart* p=significandParts();
783     const integerPart* q=rhs.significandParts();
784     for (; i>0; i--, p++, q++) {
785       if (*p != *q)
786         return false;
787     }
788     return true;
789   }
790 }
791 
APFloat(const fltSemantics & ourSemantics,integerPart value)792 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
793   initialize(&ourSemantics);
794   sign = 0;
795   category = fcNormal;
796   zeroSignificand();
797   exponent = ourSemantics.precision - 1;
798   significandParts()[0] = value;
799   normalize(rmNearestTiesToEven, lfExactlyZero);
800 }
801 
APFloat(const fltSemantics & ourSemantics)802 APFloat::APFloat(const fltSemantics &ourSemantics) {
803   initialize(&ourSemantics);
804   category = fcZero;
805   sign = false;
806 }
807 
APFloat(const fltSemantics & ourSemantics,uninitializedTag tag)808 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
809   // Allocates storage if necessary but does not initialize it.
810   initialize(&ourSemantics);
811 }
812 
APFloat(const fltSemantics & ourSemantics,StringRef text)813 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
814   initialize(&ourSemantics);
815   convertFromString(text, rmNearestTiesToEven);
816 }
817 
APFloat(const APFloat & rhs)818 APFloat::APFloat(const APFloat &rhs) {
819   initialize(rhs.semantics);
820   assign(rhs);
821 }
822 
APFloat(APFloat && rhs)823 APFloat::APFloat(APFloat &&rhs) : semantics(&Bogus) {
824   *this = std::move(rhs);
825 }
826 
~APFloat()827 APFloat::~APFloat()
828 {
829   freeSignificand();
830 }
831 
832 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const833 void APFloat::Profile(FoldingSetNodeID& ID) const {
834   ID.Add(bitcastToAPInt());
835 }
836 
837 unsigned int
partCount() const838 APFloat::partCount() const
839 {
840   return partCountForBits(semantics->precision + 1);
841 }
842 
843 unsigned int
semanticsPrecision(const fltSemantics & semantics)844 APFloat::semanticsPrecision(const fltSemantics &semantics)
845 {
846   return semantics.precision;
847 }
848 
849 const integerPart *
significandParts() const850 APFloat::significandParts() const
851 {
852   return const_cast<APFloat *>(this)->significandParts();
853 }
854 
855 integerPart *
significandParts()856 APFloat::significandParts()
857 {
858   if (partCount() > 1)
859     return significand.parts;
860   else
861     return &significand.part;
862 }
863 
864 void
zeroSignificand()865 APFloat::zeroSignificand()
866 {
867   APInt::tcSet(significandParts(), 0, partCount());
868 }
869 
870 /* Increment an fcNormal floating point number's significand.  */
871 void
incrementSignificand()872 APFloat::incrementSignificand()
873 {
874   integerPart carry;
875 
876   carry = APInt::tcIncrement(significandParts(), partCount());
877 
878   /* Our callers should never cause us to overflow.  */
879   assert(carry == 0);
880   (void)carry;
881 }
882 
883 /* Add the significand of the RHS.  Returns the carry flag.  */
884 integerPart
addSignificand(const APFloat & rhs)885 APFloat::addSignificand(const APFloat &rhs)
886 {
887   integerPart *parts;
888 
889   parts = significandParts();
890 
891   assert(semantics == rhs.semantics);
892   assert(exponent == rhs.exponent);
893 
894   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
895 }
896 
897 /* Subtract the significand of the RHS with a borrow flag.  Returns
898    the borrow flag.  */
899 integerPart
subtractSignificand(const APFloat & rhs,integerPart borrow)900 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
901 {
902   integerPart *parts;
903 
904   parts = significandParts();
905 
906   assert(semantics == rhs.semantics);
907   assert(exponent == rhs.exponent);
908 
909   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
910                            partCount());
911 }
912 
913 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
914    on to the full-precision result of the multiplication.  Returns the
915    lost fraction.  */
916 lostFraction
multiplySignificand(const APFloat & rhs,const APFloat * addend)917 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
918 {
919   unsigned int omsb;        // One, not zero, based MSB.
920   unsigned int partsCount, newPartsCount, precision;
921   integerPart *lhsSignificand;
922   integerPart scratch[4];
923   integerPart *fullSignificand;
924   lostFraction lost_fraction;
925   bool ignored;
926 
927   assert(semantics == rhs.semantics);
928 
929   precision = semantics->precision;
930   newPartsCount = partCountForBits(precision * 2);
931 
932   if (newPartsCount > 4)
933     fullSignificand = new integerPart[newPartsCount];
934   else
935     fullSignificand = scratch;
936 
937   lhsSignificand = significandParts();
938   partsCount = partCount();
939 
940   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
941                         rhs.significandParts(), partsCount, partsCount);
942 
943   lost_fraction = lfExactlyZero;
944   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
945   exponent += rhs.exponent;
946 
947   // Assume the operands involved in the multiplication are single-precision
948   // FP, and the two multiplicants are:
949   //   *this = a23 . a22 ... a0 * 2^e1
950   //     rhs = b23 . b22 ... b0 * 2^e2
951   // the result of multiplication is:
952   //   *this = c47 c46 . c45 ... c0 * 2^(e1+e2)
953   // Note that there are two significant bits at the left-hand side of the
954   // radix point. Move the radix point toward left by one bit, and adjust
955   // exponent accordingly.
956   exponent += 1;
957 
958   if (addend) {
959     // The intermediate result of the multiplication has "2 * precision"
960     // signicant bit; adjust the addend to be consistent with mul result.
961     //
962     Significand savedSignificand = significand;
963     const fltSemantics *savedSemantics = semantics;
964     fltSemantics extendedSemantics;
965     opStatus status;
966     unsigned int extendedPrecision;
967 
968     /* Normalize our MSB.  */
969     extendedPrecision = 2 * precision;
970     if (omsb != extendedPrecision) {
971       assert(extendedPrecision > omsb);
972       APInt::tcShiftLeft(fullSignificand, newPartsCount,
973                          extendedPrecision - omsb);
974       exponent -= extendedPrecision - omsb;
975     }
976 
977     /* Create new semantics.  */
978     extendedSemantics = *semantics;
979     extendedSemantics.precision = extendedPrecision;
980 
981     if (newPartsCount == 1)
982       significand.part = fullSignificand[0];
983     else
984       significand.parts = fullSignificand;
985     semantics = &extendedSemantics;
986 
987     APFloat extendedAddend(*addend);
988     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
989     assert(status == opOK);
990     (void)status;
991     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
992 
993     /* Restore our state.  */
994     if (newPartsCount == 1)
995       fullSignificand[0] = significand.part;
996     significand = savedSignificand;
997     semantics = savedSemantics;
998 
999     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1000   }
1001 
1002   // Convert the result having "2 * precision" significant-bits back to the one
1003   // having "precision" significant-bits. First, move the radix point from
1004   // poision "2*precision - 1" to "precision - 1". The exponent need to be
1005   // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1006   exponent -= precision;
1007 
1008   // In case MSB resides at the left-hand side of radix point, shift the
1009   // mantissa right by some amount to make sure the MSB reside right before
1010   // the radix point (i.e. "MSB . rest-significant-bits").
1011   //
1012   // Note that the result is not normalized when "omsb < precision". So, the
1013   // caller needs to call APFloat::normalize() if normalized value is expected.
1014   if (omsb > precision) {
1015     unsigned int bits, significantParts;
1016     lostFraction lf;
1017 
1018     bits = omsb - precision;
1019     significantParts = partCountForBits(omsb);
1020     lf = shiftRight(fullSignificand, significantParts, bits);
1021     lost_fraction = combineLostFractions(lf, lost_fraction);
1022     exponent += bits;
1023   }
1024 
1025   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1026 
1027   if (newPartsCount > 4)
1028     delete [] fullSignificand;
1029 
1030   return lost_fraction;
1031 }
1032 
1033 /* Multiply the significands of LHS and RHS to DST.  */
1034 lostFraction
divideSignificand(const APFloat & rhs)1035 APFloat::divideSignificand(const APFloat &rhs)
1036 {
1037   unsigned int bit, i, partsCount;
1038   const integerPart *rhsSignificand;
1039   integerPart *lhsSignificand, *dividend, *divisor;
1040   integerPart scratch[4];
1041   lostFraction lost_fraction;
1042 
1043   assert(semantics == rhs.semantics);
1044 
1045   lhsSignificand = significandParts();
1046   rhsSignificand = rhs.significandParts();
1047   partsCount = partCount();
1048 
1049   if (partsCount > 2)
1050     dividend = new integerPart[partsCount * 2];
1051   else
1052     dividend = scratch;
1053 
1054   divisor = dividend + partsCount;
1055 
1056   /* Copy the dividend and divisor as they will be modified in-place.  */
1057   for (i = 0; i < partsCount; i++) {
1058     dividend[i] = lhsSignificand[i];
1059     divisor[i] = rhsSignificand[i];
1060     lhsSignificand[i] = 0;
1061   }
1062 
1063   exponent -= rhs.exponent;
1064 
1065   unsigned int precision = semantics->precision;
1066 
1067   /* Normalize the divisor.  */
1068   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1069   if (bit) {
1070     exponent += bit;
1071     APInt::tcShiftLeft(divisor, partsCount, bit);
1072   }
1073 
1074   /* Normalize the dividend.  */
1075   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1076   if (bit) {
1077     exponent -= bit;
1078     APInt::tcShiftLeft(dividend, partsCount, bit);
1079   }
1080 
1081   /* Ensure the dividend >= divisor initially for the loop below.
1082      Incidentally, this means that the division loop below is
1083      guaranteed to set the integer bit to one.  */
1084   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1085     exponent--;
1086     APInt::tcShiftLeft(dividend, partsCount, 1);
1087     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1088   }
1089 
1090   /* Long division.  */
1091   for (bit = precision; bit; bit -= 1) {
1092     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1093       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1094       APInt::tcSetBit(lhsSignificand, bit - 1);
1095     }
1096 
1097     APInt::tcShiftLeft(dividend, partsCount, 1);
1098   }
1099 
1100   /* Figure out the lost fraction.  */
1101   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1102 
1103   if (cmp > 0)
1104     lost_fraction = lfMoreThanHalf;
1105   else if (cmp == 0)
1106     lost_fraction = lfExactlyHalf;
1107   else if (APInt::tcIsZero(dividend, partsCount))
1108     lost_fraction = lfExactlyZero;
1109   else
1110     lost_fraction = lfLessThanHalf;
1111 
1112   if (partsCount > 2)
1113     delete [] dividend;
1114 
1115   return lost_fraction;
1116 }
1117 
1118 unsigned int
significandMSB() const1119 APFloat::significandMSB() const
1120 {
1121   return APInt::tcMSB(significandParts(), partCount());
1122 }
1123 
1124 unsigned int
significandLSB() const1125 APFloat::significandLSB() const
1126 {
1127   return APInt::tcLSB(significandParts(), partCount());
1128 }
1129 
1130 /* Note that a zero result is NOT normalized to fcZero.  */
1131 lostFraction
shiftSignificandRight(unsigned int bits)1132 APFloat::shiftSignificandRight(unsigned int bits)
1133 {
1134   /* Our exponent should not overflow.  */
1135   assert((ExponentType) (exponent + bits) >= exponent);
1136 
1137   exponent += bits;
1138 
1139   return shiftRight(significandParts(), partCount(), bits);
1140 }
1141 
1142 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1143 void
shiftSignificandLeft(unsigned int bits)1144 APFloat::shiftSignificandLeft(unsigned int bits)
1145 {
1146   assert(bits < semantics->precision);
1147 
1148   if (bits) {
1149     unsigned int partsCount = partCount();
1150 
1151     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1152     exponent -= bits;
1153 
1154     assert(!APInt::tcIsZero(significandParts(), partsCount));
1155   }
1156 }
1157 
1158 APFloat::cmpResult
compareAbsoluteValue(const APFloat & rhs) const1159 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1160 {
1161   int compare;
1162 
1163   assert(semantics == rhs.semantics);
1164   assert(isFiniteNonZero());
1165   assert(rhs.isFiniteNonZero());
1166 
1167   compare = exponent - rhs.exponent;
1168 
1169   /* If exponents are equal, do an unsigned bignum comparison of the
1170      significands.  */
1171   if (compare == 0)
1172     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1173                                partCount());
1174 
1175   if (compare > 0)
1176     return cmpGreaterThan;
1177   else if (compare < 0)
1178     return cmpLessThan;
1179   else
1180     return cmpEqual;
1181 }
1182 
1183 /* Handle overflow.  Sign is preserved.  We either become infinity or
1184    the largest finite number.  */
1185 APFloat::opStatus
handleOverflow(roundingMode rounding_mode)1186 APFloat::handleOverflow(roundingMode rounding_mode)
1187 {
1188   /* Infinity?  */
1189   if (rounding_mode == rmNearestTiesToEven ||
1190       rounding_mode == rmNearestTiesToAway ||
1191       (rounding_mode == rmTowardPositive && !sign) ||
1192       (rounding_mode == rmTowardNegative && sign)) {
1193     category = fcInfinity;
1194     return (opStatus) (opOverflow | opInexact);
1195   }
1196 
1197   /* Otherwise we become the largest finite number.  */
1198   category = fcNormal;
1199   exponent = semantics->maxExponent;
1200   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1201                                    semantics->precision);
1202 
1203   return opInexact;
1204 }
1205 
1206 /* Returns TRUE if, when truncating the current number, with BIT the
1207    new LSB, with the given lost fraction and rounding mode, the result
1208    would need to be rounded away from zero (i.e., by increasing the
1209    signficand).  This routine must work for fcZero of both signs, and
1210    fcNormal numbers.  */
1211 bool
roundAwayFromZero(roundingMode rounding_mode,lostFraction lost_fraction,unsigned int bit) const1212 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1213                            lostFraction lost_fraction,
1214                            unsigned int bit) const
1215 {
1216   /* NaNs and infinities should not have lost fractions.  */
1217   assert(isFiniteNonZero() || category == fcZero);
1218 
1219   /* Current callers never pass this so we don't handle it.  */
1220   assert(lost_fraction != lfExactlyZero);
1221 
1222   switch (rounding_mode) {
1223   case rmNearestTiesToAway:
1224     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1225 
1226   case rmNearestTiesToEven:
1227     if (lost_fraction == lfMoreThanHalf)
1228       return true;
1229 
1230     /* Our zeroes don't have a significand to test.  */
1231     if (lost_fraction == lfExactlyHalf && category != fcZero)
1232       return APInt::tcExtractBit(significandParts(), bit);
1233 
1234     return false;
1235 
1236   case rmTowardZero:
1237     return false;
1238 
1239   case rmTowardPositive:
1240     return sign == false;
1241 
1242   case rmTowardNegative:
1243     return sign == true;
1244   }
1245   llvm_unreachable("Invalid rounding mode found");
1246 }
1247 
1248 APFloat::opStatus
normalize(roundingMode rounding_mode,lostFraction lost_fraction)1249 APFloat::normalize(roundingMode rounding_mode,
1250                    lostFraction lost_fraction)
1251 {
1252   unsigned int omsb;                /* One, not zero, based MSB.  */
1253   int exponentChange;
1254 
1255   if (!isFiniteNonZero())
1256     return opOK;
1257 
1258   /* Before rounding normalize the exponent of fcNormal numbers.  */
1259   omsb = significandMSB() + 1;
1260 
1261   if (omsb) {
1262     /* OMSB is numbered from 1.  We want to place it in the integer
1263        bit numbered PRECISION if possible, with a compensating change in
1264        the exponent.  */
1265     exponentChange = omsb - semantics->precision;
1266 
1267     /* If the resulting exponent is too high, overflow according to
1268        the rounding mode.  */
1269     if (exponent + exponentChange > semantics->maxExponent)
1270       return handleOverflow(rounding_mode);
1271 
1272     /* Subnormal numbers have exponent minExponent, and their MSB
1273        is forced based on that.  */
1274     if (exponent + exponentChange < semantics->minExponent)
1275       exponentChange = semantics->minExponent - exponent;
1276 
1277     /* Shifting left is easy as we don't lose precision.  */
1278     if (exponentChange < 0) {
1279       assert(lost_fraction == lfExactlyZero);
1280 
1281       shiftSignificandLeft(-exponentChange);
1282 
1283       return opOK;
1284     }
1285 
1286     if (exponentChange > 0) {
1287       lostFraction lf;
1288 
1289       /* Shift right and capture any new lost fraction.  */
1290       lf = shiftSignificandRight(exponentChange);
1291 
1292       lost_fraction = combineLostFractions(lf, lost_fraction);
1293 
1294       /* Keep OMSB up-to-date.  */
1295       if (omsb > (unsigned) exponentChange)
1296         omsb -= exponentChange;
1297       else
1298         omsb = 0;
1299     }
1300   }
1301 
1302   /* Now round the number according to rounding_mode given the lost
1303      fraction.  */
1304 
1305   /* As specified in IEEE 754, since we do not trap we do not report
1306      underflow for exact results.  */
1307   if (lost_fraction == lfExactlyZero) {
1308     /* Canonicalize zeroes.  */
1309     if (omsb == 0)
1310       category = fcZero;
1311 
1312     return opOK;
1313   }
1314 
1315   /* Increment the significand if we're rounding away from zero.  */
1316   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1317     if (omsb == 0)
1318       exponent = semantics->minExponent;
1319 
1320     incrementSignificand();
1321     omsb = significandMSB() + 1;
1322 
1323     /* Did the significand increment overflow?  */
1324     if (omsb == (unsigned) semantics->precision + 1) {
1325       /* Renormalize by incrementing the exponent and shifting our
1326          significand right one.  However if we already have the
1327          maximum exponent we overflow to infinity.  */
1328       if (exponent == semantics->maxExponent) {
1329         category = fcInfinity;
1330 
1331         return (opStatus) (opOverflow | opInexact);
1332       }
1333 
1334       shiftSignificandRight(1);
1335 
1336       return opInexact;
1337     }
1338   }
1339 
1340   /* The normal case - we were and are not denormal, and any
1341      significand increment above didn't overflow.  */
1342   if (omsb == semantics->precision)
1343     return opInexact;
1344 
1345   /* We have a non-zero denormal.  */
1346   assert(omsb < semantics->precision);
1347 
1348   /* Canonicalize zeroes.  */
1349   if (omsb == 0)
1350     category = fcZero;
1351 
1352   /* The fcZero case is a denormal that underflowed to zero.  */
1353   return (opStatus) (opUnderflow | opInexact);
1354 }
1355 
1356 APFloat::opStatus
addOrSubtractSpecials(const APFloat & rhs,bool subtract)1357 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1358 {
1359   switch (PackCategoriesIntoKey(category, rhs.category)) {
1360   default:
1361     llvm_unreachable(nullptr);
1362 
1363   case PackCategoriesIntoKey(fcNaN, fcZero):
1364   case PackCategoriesIntoKey(fcNaN, fcNormal):
1365   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1366   case PackCategoriesIntoKey(fcNaN, fcNaN):
1367   case PackCategoriesIntoKey(fcNormal, fcZero):
1368   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1369   case PackCategoriesIntoKey(fcInfinity, fcZero):
1370     return opOK;
1371 
1372   case PackCategoriesIntoKey(fcZero, fcNaN):
1373   case PackCategoriesIntoKey(fcNormal, fcNaN):
1374   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1375     // We need to be sure to flip the sign here for subtraction because we
1376     // don't have a separate negate operation so -NaN becomes 0 - NaN here.
1377     sign = rhs.sign ^ subtract;
1378     category = fcNaN;
1379     copySignificand(rhs);
1380     return opOK;
1381 
1382   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1383   case PackCategoriesIntoKey(fcZero, fcInfinity):
1384     category = fcInfinity;
1385     sign = rhs.sign ^ subtract;
1386     return opOK;
1387 
1388   case PackCategoriesIntoKey(fcZero, fcNormal):
1389     assign(rhs);
1390     sign = rhs.sign ^ subtract;
1391     return opOK;
1392 
1393   case PackCategoriesIntoKey(fcZero, fcZero):
1394     /* Sign depends on rounding mode; handled by caller.  */
1395     return opOK;
1396 
1397   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1398     /* Differently signed infinities can only be validly
1399        subtracted.  */
1400     if (((sign ^ rhs.sign)!=0) != subtract) {
1401       makeNaN();
1402       return opInvalidOp;
1403     }
1404 
1405     return opOK;
1406 
1407   case PackCategoriesIntoKey(fcNormal, fcNormal):
1408     return opDivByZero;
1409   }
1410 }
1411 
1412 /* Add or subtract two normal numbers.  */
1413 lostFraction
addOrSubtractSignificand(const APFloat & rhs,bool subtract)1414 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1415 {
1416   integerPart carry;
1417   lostFraction lost_fraction;
1418   int bits;
1419 
1420   /* Determine if the operation on the absolute values is effectively
1421      an addition or subtraction.  */
1422   subtract ^= (sign ^ rhs.sign) ? true : false;
1423 
1424   /* Are we bigger exponent-wise than the RHS?  */
1425   bits = exponent - rhs.exponent;
1426 
1427   /* Subtraction is more subtle than one might naively expect.  */
1428   if (subtract) {
1429     APFloat temp_rhs(rhs);
1430     bool reverse;
1431 
1432     if (bits == 0) {
1433       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1434       lost_fraction = lfExactlyZero;
1435     } else if (bits > 0) {
1436       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1437       shiftSignificandLeft(1);
1438       reverse = false;
1439     } else {
1440       lost_fraction = shiftSignificandRight(-bits - 1);
1441       temp_rhs.shiftSignificandLeft(1);
1442       reverse = true;
1443     }
1444 
1445     if (reverse) {
1446       carry = temp_rhs.subtractSignificand
1447         (*this, lost_fraction != lfExactlyZero);
1448       copySignificand(temp_rhs);
1449       sign = !sign;
1450     } else {
1451       carry = subtractSignificand
1452         (temp_rhs, lost_fraction != lfExactlyZero);
1453     }
1454 
1455     /* Invert the lost fraction - it was on the RHS and
1456        subtracted.  */
1457     if (lost_fraction == lfLessThanHalf)
1458       lost_fraction = lfMoreThanHalf;
1459     else if (lost_fraction == lfMoreThanHalf)
1460       lost_fraction = lfLessThanHalf;
1461 
1462     /* The code above is intended to ensure that no borrow is
1463        necessary.  */
1464     assert(!carry);
1465     (void)carry;
1466   } else {
1467     if (bits > 0) {
1468       APFloat temp_rhs(rhs);
1469 
1470       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1471       carry = addSignificand(temp_rhs);
1472     } else {
1473       lost_fraction = shiftSignificandRight(-bits);
1474       carry = addSignificand(rhs);
1475     }
1476 
1477     /* We have a guard bit; generating a carry cannot happen.  */
1478     assert(!carry);
1479     (void)carry;
1480   }
1481 
1482   return lost_fraction;
1483 }
1484 
1485 APFloat::opStatus
multiplySpecials(const APFloat & rhs)1486 APFloat::multiplySpecials(const APFloat &rhs)
1487 {
1488   switch (PackCategoriesIntoKey(category, rhs.category)) {
1489   default:
1490     llvm_unreachable(nullptr);
1491 
1492   case PackCategoriesIntoKey(fcNaN, fcZero):
1493   case PackCategoriesIntoKey(fcNaN, fcNormal):
1494   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1495   case PackCategoriesIntoKey(fcNaN, fcNaN):
1496     sign = false;
1497     return opOK;
1498 
1499   case PackCategoriesIntoKey(fcZero, fcNaN):
1500   case PackCategoriesIntoKey(fcNormal, fcNaN):
1501   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1502     sign = false;
1503     category = fcNaN;
1504     copySignificand(rhs);
1505     return opOK;
1506 
1507   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1508   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1509   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1510     category = fcInfinity;
1511     return opOK;
1512 
1513   case PackCategoriesIntoKey(fcZero, fcNormal):
1514   case PackCategoriesIntoKey(fcNormal, fcZero):
1515   case PackCategoriesIntoKey(fcZero, fcZero):
1516     category = fcZero;
1517     return opOK;
1518 
1519   case PackCategoriesIntoKey(fcZero, fcInfinity):
1520   case PackCategoriesIntoKey(fcInfinity, fcZero):
1521     makeNaN();
1522     return opInvalidOp;
1523 
1524   case PackCategoriesIntoKey(fcNormal, fcNormal):
1525     return opOK;
1526   }
1527 }
1528 
1529 APFloat::opStatus
divideSpecials(const APFloat & rhs)1530 APFloat::divideSpecials(const APFloat &rhs)
1531 {
1532   switch (PackCategoriesIntoKey(category, rhs.category)) {
1533   default:
1534     llvm_unreachable(nullptr);
1535 
1536   case PackCategoriesIntoKey(fcZero, fcNaN):
1537   case PackCategoriesIntoKey(fcNormal, fcNaN):
1538   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1539     category = fcNaN;
1540     copySignificand(rhs);
1541   case PackCategoriesIntoKey(fcNaN, fcZero):
1542   case PackCategoriesIntoKey(fcNaN, fcNormal):
1543   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1544   case PackCategoriesIntoKey(fcNaN, fcNaN):
1545     sign = false;
1546   case PackCategoriesIntoKey(fcInfinity, fcZero):
1547   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1548   case PackCategoriesIntoKey(fcZero, fcInfinity):
1549   case PackCategoriesIntoKey(fcZero, fcNormal):
1550     return opOK;
1551 
1552   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1553     category = fcZero;
1554     return opOK;
1555 
1556   case PackCategoriesIntoKey(fcNormal, fcZero):
1557     category = fcInfinity;
1558     return opDivByZero;
1559 
1560   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1561   case PackCategoriesIntoKey(fcZero, fcZero):
1562     makeNaN();
1563     return opInvalidOp;
1564 
1565   case PackCategoriesIntoKey(fcNormal, fcNormal):
1566     return opOK;
1567   }
1568 }
1569 
1570 APFloat::opStatus
modSpecials(const APFloat & rhs)1571 APFloat::modSpecials(const APFloat &rhs)
1572 {
1573   switch (PackCategoriesIntoKey(category, rhs.category)) {
1574   default:
1575     llvm_unreachable(nullptr);
1576 
1577   case PackCategoriesIntoKey(fcNaN, fcZero):
1578   case PackCategoriesIntoKey(fcNaN, fcNormal):
1579   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1580   case PackCategoriesIntoKey(fcNaN, fcNaN):
1581   case PackCategoriesIntoKey(fcZero, fcInfinity):
1582   case PackCategoriesIntoKey(fcZero, fcNormal):
1583   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1584     return opOK;
1585 
1586   case PackCategoriesIntoKey(fcZero, fcNaN):
1587   case PackCategoriesIntoKey(fcNormal, fcNaN):
1588   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1589     sign = false;
1590     category = fcNaN;
1591     copySignificand(rhs);
1592     return opOK;
1593 
1594   case PackCategoriesIntoKey(fcNormal, fcZero):
1595   case PackCategoriesIntoKey(fcInfinity, fcZero):
1596   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1597   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1598   case PackCategoriesIntoKey(fcZero, fcZero):
1599     makeNaN();
1600     return opInvalidOp;
1601 
1602   case PackCategoriesIntoKey(fcNormal, fcNormal):
1603     return opOK;
1604   }
1605 }
1606 
1607 /* Change sign.  */
1608 void
changeSign()1609 APFloat::changeSign()
1610 {
1611   /* Look mummy, this one's easy.  */
1612   sign = !sign;
1613 }
1614 
1615 void
clearSign()1616 APFloat::clearSign()
1617 {
1618   /* So is this one. */
1619   sign = 0;
1620 }
1621 
1622 void
copySign(const APFloat & rhs)1623 APFloat::copySign(const APFloat &rhs)
1624 {
1625   /* And this one. */
1626   sign = rhs.sign;
1627 }
1628 
1629 /* Normalized addition or subtraction.  */
1630 APFloat::opStatus
addOrSubtract(const APFloat & rhs,roundingMode rounding_mode,bool subtract)1631 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1632                        bool subtract)
1633 {
1634   opStatus fs;
1635 
1636   fs = addOrSubtractSpecials(rhs, subtract);
1637 
1638   /* This return code means it was not a simple case.  */
1639   if (fs == opDivByZero) {
1640     lostFraction lost_fraction;
1641 
1642     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1643     fs = normalize(rounding_mode, lost_fraction);
1644 
1645     /* Can only be zero if we lost no fraction.  */
1646     assert(category != fcZero || lost_fraction == lfExactlyZero);
1647   }
1648 
1649   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1650      positive zero unless rounding to minus infinity, except that
1651      adding two like-signed zeroes gives that zero.  */
1652   if (category == fcZero) {
1653     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1654       sign = (rounding_mode == rmTowardNegative);
1655   }
1656 
1657   return fs;
1658 }
1659 
1660 /* Normalized addition.  */
1661 APFloat::opStatus
add(const APFloat & rhs,roundingMode rounding_mode)1662 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1663 {
1664   return addOrSubtract(rhs, rounding_mode, false);
1665 }
1666 
1667 /* Normalized subtraction.  */
1668 APFloat::opStatus
subtract(const APFloat & rhs,roundingMode rounding_mode)1669 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1670 {
1671   return addOrSubtract(rhs, rounding_mode, true);
1672 }
1673 
1674 /* Normalized multiply.  */
1675 APFloat::opStatus
multiply(const APFloat & rhs,roundingMode rounding_mode)1676 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1677 {
1678   opStatus fs;
1679 
1680   sign ^= rhs.sign;
1681   fs = multiplySpecials(rhs);
1682 
1683   if (isFiniteNonZero()) {
1684     lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
1685     fs = normalize(rounding_mode, lost_fraction);
1686     if (lost_fraction != lfExactlyZero)
1687       fs = (opStatus) (fs | opInexact);
1688   }
1689 
1690   return fs;
1691 }
1692 
1693 /* Normalized divide.  */
1694 APFloat::opStatus
divide(const APFloat & rhs,roundingMode rounding_mode)1695 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1696 {
1697   opStatus fs;
1698 
1699   sign ^= rhs.sign;
1700   fs = divideSpecials(rhs);
1701 
1702   if (isFiniteNonZero()) {
1703     lostFraction lost_fraction = divideSignificand(rhs);
1704     fs = normalize(rounding_mode, lost_fraction);
1705     if (lost_fraction != lfExactlyZero)
1706       fs = (opStatus) (fs | opInexact);
1707   }
1708 
1709   return fs;
1710 }
1711 
1712 /* Normalized remainder.  This is not currently correct in all cases.  */
1713 APFloat::opStatus
remainder(const APFloat & rhs)1714 APFloat::remainder(const APFloat &rhs)
1715 {
1716   opStatus fs;
1717   APFloat V = *this;
1718   unsigned int origSign = sign;
1719 
1720   fs = V.divide(rhs, rmNearestTiesToEven);
1721   if (fs == opDivByZero)
1722     return fs;
1723 
1724   int parts = partCount();
1725   integerPart *x = new integerPart[parts];
1726   bool ignored;
1727   fs = V.convertToInteger(x, parts * integerPartWidth, true,
1728                           rmNearestTiesToEven, &ignored);
1729   if (fs==opInvalidOp)
1730     return fs;
1731 
1732   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1733                                         rmNearestTiesToEven);
1734   assert(fs==opOK);   // should always work
1735 
1736   fs = V.multiply(rhs, rmNearestTiesToEven);
1737   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1738 
1739   fs = subtract(V, rmNearestTiesToEven);
1740   assert(fs==opOK || fs==opInexact);   // likewise
1741 
1742   if (isZero())
1743     sign = origSign;    // IEEE754 requires this
1744   delete[] x;
1745   return fs;
1746 }
1747 
1748 /* Normalized llvm frem (C fmod).
1749    This is not currently correct in all cases.  */
1750 APFloat::opStatus
mod(const APFloat & rhs,roundingMode rounding_mode)1751 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1752 {
1753   opStatus fs;
1754   fs = modSpecials(rhs);
1755 
1756   if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
1757     APFloat V = *this;
1758     unsigned int origSign = sign;
1759 
1760     fs = V.divide(rhs, rmNearestTiesToEven);
1761     if (fs == opDivByZero)
1762       return fs;
1763 
1764     int parts = partCount();
1765     integerPart *x = new integerPart[parts];
1766     bool ignored;
1767     fs = V.convertToInteger(x, parts * integerPartWidth, true,
1768                             rmTowardZero, &ignored);
1769     if (fs==opInvalidOp)
1770       return fs;
1771 
1772     fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1773                                           rmNearestTiesToEven);
1774     assert(fs==opOK);   // should always work
1775 
1776     fs = V.multiply(rhs, rounding_mode);
1777     assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1778 
1779     fs = subtract(V, rounding_mode);
1780     assert(fs==opOK || fs==opInexact);   // likewise
1781 
1782     if (isZero())
1783       sign = origSign;    // IEEE754 requires this
1784     delete[] x;
1785   }
1786   return fs;
1787 }
1788 
1789 /* Normalized fused-multiply-add.  */
1790 APFloat::opStatus
fusedMultiplyAdd(const APFloat & multiplicand,const APFloat & addend,roundingMode rounding_mode)1791 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1792                           const APFloat &addend,
1793                           roundingMode rounding_mode)
1794 {
1795   opStatus fs;
1796 
1797   /* Post-multiplication sign, before addition.  */
1798   sign ^= multiplicand.sign;
1799 
1800   /* If and only if all arguments are normal do we need to do an
1801      extended-precision calculation.  */
1802   if (isFiniteNonZero() &&
1803       multiplicand.isFiniteNonZero() &&
1804       addend.isFiniteNonZero()) {
1805     lostFraction lost_fraction;
1806 
1807     lost_fraction = multiplySignificand(multiplicand, &addend);
1808     fs = normalize(rounding_mode, lost_fraction);
1809     if (lost_fraction != lfExactlyZero)
1810       fs = (opStatus) (fs | opInexact);
1811 
1812     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1813        positive zero unless rounding to minus infinity, except that
1814        adding two like-signed zeroes gives that zero.  */
1815     if (category == fcZero && sign != addend.sign)
1816       sign = (rounding_mode == rmTowardNegative);
1817   } else {
1818     fs = multiplySpecials(multiplicand);
1819 
1820     /* FS can only be opOK or opInvalidOp.  There is no more work
1821        to do in the latter case.  The IEEE-754R standard says it is
1822        implementation-defined in this case whether, if ADDEND is a
1823        quiet NaN, we raise invalid op; this implementation does so.
1824 
1825        If we need to do the addition we can do so with normal
1826        precision.  */
1827     if (fs == opOK)
1828       fs = addOrSubtract(addend, rounding_mode, false);
1829   }
1830 
1831   return fs;
1832 }
1833 
1834 /* Rounding-mode corrrect round to integral value.  */
roundToIntegral(roundingMode rounding_mode)1835 APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
1836   opStatus fs;
1837 
1838   // If the exponent is large enough, we know that this value is already
1839   // integral, and the arithmetic below would potentially cause it to saturate
1840   // to +/-Inf.  Bail out early instead.
1841   if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
1842     return opOK;
1843 
1844   // The algorithm here is quite simple: we add 2^(p-1), where p is the
1845   // precision of our format, and then subtract it back off again.  The choice
1846   // of rounding modes for the addition/subtraction determines the rounding mode
1847   // for our integral rounding as well.
1848   // NOTE: When the input value is negative, we do subtraction followed by
1849   // addition instead.
1850   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
1851   IntegerConstant <<= semanticsPrecision(*semantics)-1;
1852   APFloat MagicConstant(*semantics);
1853   fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
1854                                       rmNearestTiesToEven);
1855   MagicConstant.copySign(*this);
1856 
1857   if (fs != opOK)
1858     return fs;
1859 
1860   // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
1861   bool inputSign = isNegative();
1862 
1863   fs = add(MagicConstant, rounding_mode);
1864   if (fs != opOK && fs != opInexact)
1865     return fs;
1866 
1867   fs = subtract(MagicConstant, rounding_mode);
1868 
1869   // Restore the input sign.
1870   if (inputSign != isNegative())
1871     changeSign();
1872 
1873   return fs;
1874 }
1875 
1876 
1877 /* Comparison requires normalized numbers.  */
1878 APFloat::cmpResult
compare(const APFloat & rhs) const1879 APFloat::compare(const APFloat &rhs) const
1880 {
1881   cmpResult result;
1882 
1883   assert(semantics == rhs.semantics);
1884 
1885   switch (PackCategoriesIntoKey(category, rhs.category)) {
1886   default:
1887     llvm_unreachable(nullptr);
1888 
1889   case PackCategoriesIntoKey(fcNaN, fcZero):
1890   case PackCategoriesIntoKey(fcNaN, fcNormal):
1891   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1892   case PackCategoriesIntoKey(fcNaN, fcNaN):
1893   case PackCategoriesIntoKey(fcZero, fcNaN):
1894   case PackCategoriesIntoKey(fcNormal, fcNaN):
1895   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1896     return cmpUnordered;
1897 
1898   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1899   case PackCategoriesIntoKey(fcInfinity, fcZero):
1900   case PackCategoriesIntoKey(fcNormal, fcZero):
1901     if (sign)
1902       return cmpLessThan;
1903     else
1904       return cmpGreaterThan;
1905 
1906   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1907   case PackCategoriesIntoKey(fcZero, fcInfinity):
1908   case PackCategoriesIntoKey(fcZero, fcNormal):
1909     if (rhs.sign)
1910       return cmpGreaterThan;
1911     else
1912       return cmpLessThan;
1913 
1914   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1915     if (sign == rhs.sign)
1916       return cmpEqual;
1917     else if (sign)
1918       return cmpLessThan;
1919     else
1920       return cmpGreaterThan;
1921 
1922   case PackCategoriesIntoKey(fcZero, fcZero):
1923     return cmpEqual;
1924 
1925   case PackCategoriesIntoKey(fcNormal, fcNormal):
1926     break;
1927   }
1928 
1929   /* Two normal numbers.  Do they have the same sign?  */
1930   if (sign != rhs.sign) {
1931     if (sign)
1932       result = cmpLessThan;
1933     else
1934       result = cmpGreaterThan;
1935   } else {
1936     /* Compare absolute values; invert result if negative.  */
1937     result = compareAbsoluteValue(rhs);
1938 
1939     if (sign) {
1940       if (result == cmpLessThan)
1941         result = cmpGreaterThan;
1942       else if (result == cmpGreaterThan)
1943         result = cmpLessThan;
1944     }
1945   }
1946 
1947   return result;
1948 }
1949 
1950 /// APFloat::convert - convert a value of one floating point type to another.
1951 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
1952 /// records whether the transformation lost information, i.e. whether
1953 /// converting the result back to the original type will produce the
1954 /// original value (this is almost the same as return value==fsOK, but there
1955 /// are edge cases where this is not so).
1956 
1957 APFloat::opStatus
convert(const fltSemantics & toSemantics,roundingMode rounding_mode,bool * losesInfo)1958 APFloat::convert(const fltSemantics &toSemantics,
1959                  roundingMode rounding_mode, bool *losesInfo)
1960 {
1961   lostFraction lostFraction;
1962   unsigned int newPartCount, oldPartCount;
1963   opStatus fs;
1964   int shift;
1965   const fltSemantics &fromSemantics = *semantics;
1966 
1967   lostFraction = lfExactlyZero;
1968   newPartCount = partCountForBits(toSemantics.precision + 1);
1969   oldPartCount = partCount();
1970   shift = toSemantics.precision - fromSemantics.precision;
1971 
1972   bool X86SpecialNan = false;
1973   if (&fromSemantics == &APFloat::x87DoubleExtended &&
1974       &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
1975       (!(*significandParts() & 0x8000000000000000ULL) ||
1976        !(*significandParts() & 0x4000000000000000ULL))) {
1977     // x86 has some unusual NaNs which cannot be represented in any other
1978     // format; note them here.
1979     X86SpecialNan = true;
1980   }
1981 
1982   // If this is a truncation of a denormal number, and the target semantics
1983   // has larger exponent range than the source semantics (this can happen
1984   // when truncating from PowerPC double-double to double format), the
1985   // right shift could lose result mantissa bits.  Adjust exponent instead
1986   // of performing excessive shift.
1987   if (shift < 0 && isFiniteNonZero()) {
1988     int exponentChange = significandMSB() + 1 - fromSemantics.precision;
1989     if (exponent + exponentChange < toSemantics.minExponent)
1990       exponentChange = toSemantics.minExponent - exponent;
1991     if (exponentChange < shift)
1992       exponentChange = shift;
1993     if (exponentChange < 0) {
1994       shift -= exponentChange;
1995       exponent += exponentChange;
1996     }
1997   }
1998 
1999   // If this is a truncation, perform the shift before we narrow the storage.
2000   if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2001     lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2002 
2003   // Fix the storage so it can hold to new value.
2004   if (newPartCount > oldPartCount) {
2005     // The new type requires more storage; make it available.
2006     integerPart *newParts;
2007     newParts = new integerPart[newPartCount];
2008     APInt::tcSet(newParts, 0, newPartCount);
2009     if (isFiniteNonZero() || category==fcNaN)
2010       APInt::tcAssign(newParts, significandParts(), oldPartCount);
2011     freeSignificand();
2012     significand.parts = newParts;
2013   } else if (newPartCount == 1 && oldPartCount != 1) {
2014     // Switch to built-in storage for a single part.
2015     integerPart newPart = 0;
2016     if (isFiniteNonZero() || category==fcNaN)
2017       newPart = significandParts()[0];
2018     freeSignificand();
2019     significand.part = newPart;
2020   }
2021 
2022   // Now that we have the right storage, switch the semantics.
2023   semantics = &toSemantics;
2024 
2025   // If this is an extension, perform the shift now that the storage is
2026   // available.
2027   if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2028     APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2029 
2030   if (isFiniteNonZero()) {
2031     fs = normalize(rounding_mode, lostFraction);
2032     *losesInfo = (fs != opOK);
2033   } else if (category == fcNaN) {
2034     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2035 
2036     // For x87 extended precision, we want to make a NaN, not a special NaN if
2037     // the input wasn't special either.
2038     if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
2039       APInt::tcSetBit(significandParts(), semantics->precision - 1);
2040 
2041     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
2042     // does not give you back the same bits.  This is dubious, and we
2043     // don't currently do it.  You're really supposed to get
2044     // an invalid operation signal at runtime, but nobody does that.
2045     fs = opOK;
2046   } else {
2047     *losesInfo = false;
2048     fs = opOK;
2049   }
2050 
2051   return fs;
2052 }
2053 
2054 /* Convert a floating point number to an integer according to the
2055    rounding mode.  If the rounded integer value is out of range this
2056    returns an invalid operation exception and the contents of the
2057    destination parts are unspecified.  If the rounded value is in
2058    range but the floating point number is not the exact integer, the C
2059    standard doesn't require an inexact exception to be raised.  IEEE
2060    854 does require it so we do that.
2061 
2062    Note that for conversions to integer type the C standard requires
2063    round-to-zero to always be used.  */
2064 APFloat::opStatus
convertToSignExtendedInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2065 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
2066                                       bool isSigned,
2067                                       roundingMode rounding_mode,
2068                                       bool *isExact) const
2069 {
2070   lostFraction lost_fraction;
2071   const integerPart *src;
2072   unsigned int dstPartsCount, truncatedBits;
2073 
2074   *isExact = false;
2075 
2076   /* Handle the three special cases first.  */
2077   if (category == fcInfinity || category == fcNaN)
2078     return opInvalidOp;
2079 
2080   dstPartsCount = partCountForBits(width);
2081 
2082   if (category == fcZero) {
2083     APInt::tcSet(parts, 0, dstPartsCount);
2084     // Negative zero can't be represented as an int.
2085     *isExact = !sign;
2086     return opOK;
2087   }
2088 
2089   src = significandParts();
2090 
2091   /* Step 1: place our absolute value, with any fraction truncated, in
2092      the destination.  */
2093   if (exponent < 0) {
2094     /* Our absolute value is less than one; truncate everything.  */
2095     APInt::tcSet(parts, 0, dstPartsCount);
2096     /* For exponent -1 the integer bit represents .5, look at that.
2097        For smaller exponents leftmost truncated bit is 0. */
2098     truncatedBits = semantics->precision -1U - exponent;
2099   } else {
2100     /* We want the most significant (exponent + 1) bits; the rest are
2101        truncated.  */
2102     unsigned int bits = exponent + 1U;
2103 
2104     /* Hopelessly large in magnitude?  */
2105     if (bits > width)
2106       return opInvalidOp;
2107 
2108     if (bits < semantics->precision) {
2109       /* We truncate (semantics->precision - bits) bits.  */
2110       truncatedBits = semantics->precision - bits;
2111       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
2112     } else {
2113       /* We want at least as many bits as are available.  */
2114       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
2115       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
2116       truncatedBits = 0;
2117     }
2118   }
2119 
2120   /* Step 2: work out any lost fraction, and increment the absolute
2121      value if we would round away from zero.  */
2122   if (truncatedBits) {
2123     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2124                                                   truncatedBits);
2125     if (lost_fraction != lfExactlyZero &&
2126         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2127       if (APInt::tcIncrement(parts, dstPartsCount))
2128         return opInvalidOp;     /* Overflow.  */
2129     }
2130   } else {
2131     lost_fraction = lfExactlyZero;
2132   }
2133 
2134   /* Step 3: check if we fit in the destination.  */
2135   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2136 
2137   if (sign) {
2138     if (!isSigned) {
2139       /* Negative numbers cannot be represented as unsigned.  */
2140       if (omsb != 0)
2141         return opInvalidOp;
2142     } else {
2143       /* It takes omsb bits to represent the unsigned integer value.
2144          We lose a bit for the sign, but care is needed as the
2145          maximally negative integer is a special case.  */
2146       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2147         return opInvalidOp;
2148 
2149       /* This case can happen because of rounding.  */
2150       if (omsb > width)
2151         return opInvalidOp;
2152     }
2153 
2154     APInt::tcNegate (parts, dstPartsCount);
2155   } else {
2156     if (omsb >= width + !isSigned)
2157       return opInvalidOp;
2158   }
2159 
2160   if (lost_fraction == lfExactlyZero) {
2161     *isExact = true;
2162     return opOK;
2163   } else
2164     return opInexact;
2165 }
2166 
2167 /* Same as convertToSignExtendedInteger, except we provide
2168    deterministic values in case of an invalid operation exception,
2169    namely zero for NaNs and the minimal or maximal value respectively
2170    for underflow or overflow.
2171    The *isExact output tells whether the result is exact, in the sense
2172    that converting it back to the original floating point type produces
2173    the original value.  This is almost equivalent to result==opOK,
2174    except for negative zeroes.
2175 */
2176 APFloat::opStatus
convertToInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2177 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2178                           bool isSigned,
2179                           roundingMode rounding_mode, bool *isExact) const
2180 {
2181   opStatus fs;
2182 
2183   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2184                                     isExact);
2185 
2186   if (fs == opInvalidOp) {
2187     unsigned int bits, dstPartsCount;
2188 
2189     dstPartsCount = partCountForBits(width);
2190 
2191     if (category == fcNaN)
2192       bits = 0;
2193     else if (sign)
2194       bits = isSigned;
2195     else
2196       bits = width - isSigned;
2197 
2198     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2199     if (sign && isSigned)
2200       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2201   }
2202 
2203   return fs;
2204 }
2205 
2206 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
2207    an APSInt, whose initial bit-width and signed-ness are used to determine the
2208    precision of the conversion.
2209  */
2210 APFloat::opStatus
convertToInteger(APSInt & result,roundingMode rounding_mode,bool * isExact) const2211 APFloat::convertToInteger(APSInt &result,
2212                           roundingMode rounding_mode, bool *isExact) const
2213 {
2214   unsigned bitWidth = result.getBitWidth();
2215   SmallVector<uint64_t, 4> parts(result.getNumWords());
2216   opStatus status = convertToInteger(
2217     parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2218   // Keeps the original signed-ness.
2219   result = APInt(bitWidth, parts);
2220   return status;
2221 }
2222 
2223 /* Convert an unsigned integer SRC to a floating point number,
2224    rounding according to ROUNDING_MODE.  The sign of the floating
2225    point number is not modified.  */
2226 APFloat::opStatus
convertFromUnsignedParts(const integerPart * src,unsigned int srcCount,roundingMode rounding_mode)2227 APFloat::convertFromUnsignedParts(const integerPart *src,
2228                                   unsigned int srcCount,
2229                                   roundingMode rounding_mode)
2230 {
2231   unsigned int omsb, precision, dstCount;
2232   integerPart *dst;
2233   lostFraction lost_fraction;
2234 
2235   category = fcNormal;
2236   omsb = APInt::tcMSB(src, srcCount) + 1;
2237   dst = significandParts();
2238   dstCount = partCount();
2239   precision = semantics->precision;
2240 
2241   /* We want the most significant PRECISION bits of SRC.  There may not
2242      be that many; extract what we can.  */
2243   if (precision <= omsb) {
2244     exponent = omsb - 1;
2245     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2246                                                   omsb - precision);
2247     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2248   } else {
2249     exponent = precision - 1;
2250     lost_fraction = lfExactlyZero;
2251     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2252   }
2253 
2254   return normalize(rounding_mode, lost_fraction);
2255 }
2256 
2257 APFloat::opStatus
convertFromAPInt(const APInt & Val,bool isSigned,roundingMode rounding_mode)2258 APFloat::convertFromAPInt(const APInt &Val,
2259                           bool isSigned,
2260                           roundingMode rounding_mode)
2261 {
2262   unsigned int partCount = Val.getNumWords();
2263   APInt api = Val;
2264 
2265   sign = false;
2266   if (isSigned && api.isNegative()) {
2267     sign = true;
2268     api = -api;
2269   }
2270 
2271   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2272 }
2273 
2274 /* Convert a two's complement integer SRC to a floating point number,
2275    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2276    integer is signed, in which case it must be sign-extended.  */
2277 APFloat::opStatus
convertFromSignExtendedInteger(const integerPart * src,unsigned int srcCount,bool isSigned,roundingMode rounding_mode)2278 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2279                                         unsigned int srcCount,
2280                                         bool isSigned,
2281                                         roundingMode rounding_mode)
2282 {
2283   opStatus status;
2284 
2285   if (isSigned &&
2286       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2287     integerPart *copy;
2288 
2289     /* If we're signed and negative negate a copy.  */
2290     sign = true;
2291     copy = new integerPart[srcCount];
2292     APInt::tcAssign(copy, src, srcCount);
2293     APInt::tcNegate(copy, srcCount);
2294     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2295     delete [] copy;
2296   } else {
2297     sign = false;
2298     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2299   }
2300 
2301   return status;
2302 }
2303 
2304 /* FIXME: should this just take a const APInt reference?  */
2305 APFloat::opStatus
convertFromZeroExtendedInteger(const integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode)2306 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2307                                         unsigned int width, bool isSigned,
2308                                         roundingMode rounding_mode)
2309 {
2310   unsigned int partCount = partCountForBits(width);
2311   APInt api = APInt(width, makeArrayRef(parts, partCount));
2312 
2313   sign = false;
2314   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2315     sign = true;
2316     api = -api;
2317   }
2318 
2319   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2320 }
2321 
2322 APFloat::opStatus
convertFromHexadecimalString(StringRef s,roundingMode rounding_mode)2323 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2324 {
2325   lostFraction lost_fraction = lfExactlyZero;
2326 
2327   category = fcNormal;
2328   zeroSignificand();
2329   exponent = 0;
2330 
2331   integerPart *significand = significandParts();
2332   unsigned partsCount = partCount();
2333   unsigned bitPos = partsCount * integerPartWidth;
2334   bool computedTrailingFraction = false;
2335 
2336   // Skip leading zeroes and any (hexa)decimal point.
2337   StringRef::iterator begin = s.begin();
2338   StringRef::iterator end = s.end();
2339   StringRef::iterator dot;
2340   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2341   StringRef::iterator firstSignificantDigit = p;
2342 
2343   while (p != end) {
2344     integerPart hex_value;
2345 
2346     if (*p == '.') {
2347       assert(dot == end && "String contains multiple dots");
2348       dot = p++;
2349       continue;
2350     }
2351 
2352     hex_value = hexDigitValue(*p);
2353     if (hex_value == -1U)
2354       break;
2355 
2356     p++;
2357 
2358     // Store the number while we have space.
2359     if (bitPos) {
2360       bitPos -= 4;
2361       hex_value <<= bitPos % integerPartWidth;
2362       significand[bitPos / integerPartWidth] |= hex_value;
2363     } else if (!computedTrailingFraction) {
2364       lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2365       computedTrailingFraction = true;
2366     }
2367   }
2368 
2369   /* Hex floats require an exponent but not a hexadecimal point.  */
2370   assert(p != end && "Hex strings require an exponent");
2371   assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2372   assert(p != begin && "Significand has no digits");
2373   assert((dot == end || p - begin != 1) && "Significand has no digits");
2374 
2375   /* Ignore the exponent if we are zero.  */
2376   if (p != firstSignificantDigit) {
2377     int expAdjustment;
2378 
2379     /* Implicit hexadecimal point?  */
2380     if (dot == end)
2381       dot = p;
2382 
2383     /* Calculate the exponent adjustment implicit in the number of
2384        significant digits.  */
2385     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2386     if (expAdjustment < 0)
2387       expAdjustment++;
2388     expAdjustment = expAdjustment * 4 - 1;
2389 
2390     /* Adjust for writing the significand starting at the most
2391        significant nibble.  */
2392     expAdjustment += semantics->precision;
2393     expAdjustment -= partsCount * integerPartWidth;
2394 
2395     /* Adjust for the given exponent.  */
2396     exponent = totalExponent(p + 1, end, expAdjustment);
2397   }
2398 
2399   return normalize(rounding_mode, lost_fraction);
2400 }
2401 
2402 APFloat::opStatus
roundSignificandWithExponent(const integerPart * decSigParts,unsigned sigPartCount,int exp,roundingMode rounding_mode)2403 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2404                                       unsigned sigPartCount, int exp,
2405                                       roundingMode rounding_mode)
2406 {
2407   unsigned int parts, pow5PartCount;
2408   fltSemantics calcSemantics = { 32767, -32767, 0 };
2409   integerPart pow5Parts[maxPowerOfFiveParts];
2410   bool isNearest;
2411 
2412   isNearest = (rounding_mode == rmNearestTiesToEven ||
2413                rounding_mode == rmNearestTiesToAway);
2414 
2415   parts = partCountForBits(semantics->precision + 11);
2416 
2417   /* Calculate pow(5, abs(exp)).  */
2418   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2419 
2420   for (;; parts *= 2) {
2421     opStatus sigStatus, powStatus;
2422     unsigned int excessPrecision, truncatedBits;
2423 
2424     calcSemantics.precision = parts * integerPartWidth - 1;
2425     excessPrecision = calcSemantics.precision - semantics->precision;
2426     truncatedBits = excessPrecision;
2427 
2428     APFloat decSig = APFloat::getZero(calcSemantics, sign);
2429     APFloat pow5(calcSemantics);
2430 
2431     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2432                                                 rmNearestTiesToEven);
2433     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2434                                               rmNearestTiesToEven);
2435     /* Add exp, as 10^n = 5^n * 2^n.  */
2436     decSig.exponent += exp;
2437 
2438     lostFraction calcLostFraction;
2439     integerPart HUerr, HUdistance;
2440     unsigned int powHUerr;
2441 
2442     if (exp >= 0) {
2443       /* multiplySignificand leaves the precision-th bit set to 1.  */
2444       calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
2445       powHUerr = powStatus != opOK;
2446     } else {
2447       calcLostFraction = decSig.divideSignificand(pow5);
2448       /* Denormal numbers have less precision.  */
2449       if (decSig.exponent < semantics->minExponent) {
2450         excessPrecision += (semantics->minExponent - decSig.exponent);
2451         truncatedBits = excessPrecision;
2452         if (excessPrecision > calcSemantics.precision)
2453           excessPrecision = calcSemantics.precision;
2454       }
2455       /* Extra half-ulp lost in reciprocal of exponent.  */
2456       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2457     }
2458 
2459     /* Both multiplySignificand and divideSignificand return the
2460        result with the integer bit set.  */
2461     assert(APInt::tcExtractBit
2462            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2463 
2464     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2465                        powHUerr);
2466     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2467                                       excessPrecision, isNearest);
2468 
2469     /* Are we guaranteed to round correctly if we truncate?  */
2470     if (HUdistance >= HUerr) {
2471       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2472                        calcSemantics.precision - excessPrecision,
2473                        excessPrecision);
2474       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2475          above we must adjust our exponent to compensate for the
2476          implicit right shift.  */
2477       exponent = (decSig.exponent + semantics->precision
2478                   - (calcSemantics.precision - excessPrecision));
2479       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2480                                                        decSig.partCount(),
2481                                                        truncatedBits);
2482       return normalize(rounding_mode, calcLostFraction);
2483     }
2484   }
2485 }
2486 
2487 APFloat::opStatus
convertFromDecimalString(StringRef str,roundingMode rounding_mode)2488 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2489 {
2490   decimalInfo D;
2491   opStatus fs;
2492 
2493   /* Scan the text.  */
2494   StringRef::iterator p = str.begin();
2495   interpretDecimal(p, str.end(), &D);
2496 
2497   /* Handle the quick cases.  First the case of no significant digits,
2498      i.e. zero, and then exponents that are obviously too large or too
2499      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2500      definitely overflows if
2501 
2502            (exp - 1) * L >= maxExponent
2503 
2504      and definitely underflows to zero where
2505 
2506            (exp + 1) * L <= minExponent - precision
2507 
2508      With integer arithmetic the tightest bounds for L are
2509 
2510            93/28 < L < 196/59            [ numerator <= 256 ]
2511            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2512   */
2513 
2514   // Test if we have a zero number allowing for strings with no null terminators
2515   // and zero decimals with non-zero exponents.
2516   //
2517   // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2518   // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2519   // be at most one dot. On the other hand, if we have a zero with a non-zero
2520   // exponent, then we know that D.firstSigDigit will be non-numeric.
2521   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2522     category = fcZero;
2523     fs = opOK;
2524 
2525   /* Check whether the normalized exponent is high enough to overflow
2526      max during the log-rebasing in the max-exponent check below. */
2527   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2528     fs = handleOverflow(rounding_mode);
2529 
2530   /* If it wasn't, then it also wasn't high enough to overflow max
2531      during the log-rebasing in the min-exponent check.  Check that it
2532      won't overflow min in either check, then perform the min-exponent
2533      check. */
2534   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2535              (D.normalizedExponent + 1) * 28738 <=
2536                8651 * (semantics->minExponent - (int) semantics->precision)) {
2537     /* Underflow to zero and round.  */
2538     category = fcNormal;
2539     zeroSignificand();
2540     fs = normalize(rounding_mode, lfLessThanHalf);
2541 
2542   /* We can finally safely perform the max-exponent check. */
2543   } else if ((D.normalizedExponent - 1) * 42039
2544              >= 12655 * semantics->maxExponent) {
2545     /* Overflow and round.  */
2546     fs = handleOverflow(rounding_mode);
2547   } else {
2548     integerPart *decSignificand;
2549     unsigned int partCount;
2550 
2551     /* A tight upper bound on number of bits required to hold an
2552        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2553        to hold the full significand, and an extra part required by
2554        tcMultiplyPart.  */
2555     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2556     partCount = partCountForBits(1 + 196 * partCount / 59);
2557     decSignificand = new integerPart[partCount + 1];
2558     partCount = 0;
2559 
2560     /* Convert to binary efficiently - we do almost all multiplication
2561        in an integerPart.  When this would overflow do we do a single
2562        bignum multiplication, and then revert again to multiplication
2563        in an integerPart.  */
2564     do {
2565       integerPart decValue, val, multiplier;
2566 
2567       val = 0;
2568       multiplier = 1;
2569 
2570       do {
2571         if (*p == '.') {
2572           p++;
2573           if (p == str.end()) {
2574             break;
2575           }
2576         }
2577         decValue = decDigitValue(*p++);
2578         assert(decValue < 10U && "Invalid character in significand");
2579         multiplier *= 10;
2580         val = val * 10 + decValue;
2581         /* The maximum number that can be multiplied by ten with any
2582            digit added without overflowing an integerPart.  */
2583       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2584 
2585       /* Multiply out the current part.  */
2586       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2587                             partCount, partCount + 1, false);
2588 
2589       /* If we used another part (likely but not guaranteed), increase
2590          the count.  */
2591       if (decSignificand[partCount])
2592         partCount++;
2593     } while (p <= D.lastSigDigit);
2594 
2595     category = fcNormal;
2596     fs = roundSignificandWithExponent(decSignificand, partCount,
2597                                       D.exponent, rounding_mode);
2598 
2599     delete [] decSignificand;
2600   }
2601 
2602   return fs;
2603 }
2604 
2605 bool
convertFromStringSpecials(StringRef str)2606 APFloat::convertFromStringSpecials(StringRef str) {
2607   if (str.equals("inf") || str.equals("INFINITY")) {
2608     makeInf(false);
2609     return true;
2610   }
2611 
2612   if (str.equals("-inf") || str.equals("-INFINITY")) {
2613     makeInf(true);
2614     return true;
2615   }
2616 
2617   if (str.equals("nan") || str.equals("NaN")) {
2618     makeNaN(false, false);
2619     return true;
2620   }
2621 
2622   if (str.equals("-nan") || str.equals("-NaN")) {
2623     makeNaN(false, true);
2624     return true;
2625   }
2626 
2627   return false;
2628 }
2629 
2630 APFloat::opStatus
convertFromString(StringRef str,roundingMode rounding_mode)2631 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2632 {
2633   assert(!str.empty() && "Invalid string length");
2634 
2635   // Handle special cases.
2636   if (convertFromStringSpecials(str))
2637     return opOK;
2638 
2639   /* Handle a leading minus sign.  */
2640   StringRef::iterator p = str.begin();
2641   size_t slen = str.size();
2642   sign = *p == '-' ? 1 : 0;
2643   if (*p == '-' || *p == '+') {
2644     p++;
2645     slen--;
2646     assert(slen && "String has no digits");
2647   }
2648 
2649   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2650     assert(slen - 2 && "Invalid string");
2651     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2652                                         rounding_mode);
2653   }
2654 
2655   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2656 }
2657 
2658 /* Write out a hexadecimal representation of the floating point value
2659    to DST, which must be of sufficient size, in the C99 form
2660    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2661    excluding the terminating NUL.
2662 
2663    If UPPERCASE, the output is in upper case, otherwise in lower case.
2664 
2665    HEXDIGITS digits appear altogether, rounding the value if
2666    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2667    number precisely is used instead.  If nothing would appear after
2668    the decimal point it is suppressed.
2669 
2670    The decimal exponent is always printed and has at least one digit.
2671    Zero values display an exponent of zero.  Infinities and NaNs
2672    appear as "infinity" or "nan" respectively.
2673 
2674    The above rules are as specified by C99.  There is ambiguity about
2675    what the leading hexadecimal digit should be.  This implementation
2676    uses whatever is necessary so that the exponent is displayed as
2677    stored.  This implies the exponent will fall within the IEEE format
2678    range, and the leading hexadecimal digit will be 0 (for denormals),
2679    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2680    any other digits zero).
2681 */
2682 unsigned int
convertToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2683 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2684                             bool upperCase, roundingMode rounding_mode) const
2685 {
2686   char *p;
2687 
2688   p = dst;
2689   if (sign)
2690     *dst++ = '-';
2691 
2692   switch (category) {
2693   case fcInfinity:
2694     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2695     dst += sizeof infinityL - 1;
2696     break;
2697 
2698   case fcNaN:
2699     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2700     dst += sizeof NaNU - 1;
2701     break;
2702 
2703   case fcZero:
2704     *dst++ = '0';
2705     *dst++ = upperCase ? 'X': 'x';
2706     *dst++ = '0';
2707     if (hexDigits > 1) {
2708       *dst++ = '.';
2709       memset (dst, '0', hexDigits - 1);
2710       dst += hexDigits - 1;
2711     }
2712     *dst++ = upperCase ? 'P': 'p';
2713     *dst++ = '0';
2714     break;
2715 
2716   case fcNormal:
2717     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2718     break;
2719   }
2720 
2721   *dst = 0;
2722 
2723   return static_cast<unsigned int>(dst - p);
2724 }
2725 
2726 /* Does the hard work of outputting the correctly rounded hexadecimal
2727    form of a normal floating point number with the specified number of
2728    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
2729    digits necessary to print the value precisely is output.  */
2730 char *
convertNormalToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2731 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2732                                   bool upperCase,
2733                                   roundingMode rounding_mode) const
2734 {
2735   unsigned int count, valueBits, shift, partsCount, outputDigits;
2736   const char *hexDigitChars;
2737   const integerPart *significand;
2738   char *p;
2739   bool roundUp;
2740 
2741   *dst++ = '0';
2742   *dst++ = upperCase ? 'X': 'x';
2743 
2744   roundUp = false;
2745   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2746 
2747   significand = significandParts();
2748   partsCount = partCount();
2749 
2750   /* +3 because the first digit only uses the single integer bit, so
2751      we have 3 virtual zero most-significant-bits.  */
2752   valueBits = semantics->precision + 3;
2753   shift = integerPartWidth - valueBits % integerPartWidth;
2754 
2755   /* The natural number of digits required ignoring trailing
2756      insignificant zeroes.  */
2757   outputDigits = (valueBits - significandLSB () + 3) / 4;
2758 
2759   /* hexDigits of zero means use the required number for the
2760      precision.  Otherwise, see if we are truncating.  If we are,
2761      find out if we need to round away from zero.  */
2762   if (hexDigits) {
2763     if (hexDigits < outputDigits) {
2764       /* We are dropping non-zero bits, so need to check how to round.
2765          "bits" is the number of dropped bits.  */
2766       unsigned int bits;
2767       lostFraction fraction;
2768 
2769       bits = valueBits - hexDigits * 4;
2770       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2771       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2772     }
2773     outputDigits = hexDigits;
2774   }
2775 
2776   /* Write the digits consecutively, and start writing in the location
2777      of the hexadecimal point.  We move the most significant digit
2778      left and add the hexadecimal point later.  */
2779   p = ++dst;
2780 
2781   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2782 
2783   while (outputDigits && count) {
2784     integerPart part;
2785 
2786     /* Put the most significant integerPartWidth bits in "part".  */
2787     if (--count == partsCount)
2788       part = 0;  /* An imaginary higher zero part.  */
2789     else
2790       part = significand[count] << shift;
2791 
2792     if (count && shift)
2793       part |= significand[count - 1] >> (integerPartWidth - shift);
2794 
2795     /* Convert as much of "part" to hexdigits as we can.  */
2796     unsigned int curDigits = integerPartWidth / 4;
2797 
2798     if (curDigits > outputDigits)
2799       curDigits = outputDigits;
2800     dst += partAsHex (dst, part, curDigits, hexDigitChars);
2801     outputDigits -= curDigits;
2802   }
2803 
2804   if (roundUp) {
2805     char *q = dst;
2806 
2807     /* Note that hexDigitChars has a trailing '0'.  */
2808     do {
2809       q--;
2810       *q = hexDigitChars[hexDigitValue (*q) + 1];
2811     } while (*q == '0');
2812     assert(q >= p);
2813   } else {
2814     /* Add trailing zeroes.  */
2815     memset (dst, '0', outputDigits);
2816     dst += outputDigits;
2817   }
2818 
2819   /* Move the most significant digit to before the point, and if there
2820      is something after the decimal point add it.  This must come
2821      after rounding above.  */
2822   p[-1] = p[0];
2823   if (dst -1 == p)
2824     dst--;
2825   else
2826     p[0] = '.';
2827 
2828   /* Finally output the exponent.  */
2829   *dst++ = upperCase ? 'P': 'p';
2830 
2831   return writeSignedDecimal (dst, exponent);
2832 }
2833 
hash_value(const APFloat & Arg)2834 hash_code llvm::hash_value(const APFloat &Arg) {
2835   if (!Arg.isFiniteNonZero())
2836     return hash_combine((uint8_t)Arg.category,
2837                         // NaN has no sign, fix it at zero.
2838                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2839                         Arg.semantics->precision);
2840 
2841   // Normal floats need their exponent and significand hashed.
2842   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2843                       Arg.semantics->precision, Arg.exponent,
2844                       hash_combine_range(
2845                         Arg.significandParts(),
2846                         Arg.significandParts() + Arg.partCount()));
2847 }
2848 
2849 // Conversion from APFloat to/from host float/double.  It may eventually be
2850 // possible to eliminate these and have everybody deal with APFloats, but that
2851 // will take a while.  This approach will not easily extend to long double.
2852 // Current implementation requires integerPartWidth==64, which is correct at
2853 // the moment but could be made more general.
2854 
2855 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2856 // the actual IEEE respresentations.  We compensate for that here.
2857 
2858 APInt
convertF80LongDoubleAPFloatToAPInt() const2859 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2860 {
2861   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2862   assert(partCount()==2);
2863 
2864   uint64_t myexponent, mysignificand;
2865 
2866   if (isFiniteNonZero()) {
2867     myexponent = exponent+16383; //bias
2868     mysignificand = significandParts()[0];
2869     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2870       myexponent = 0;   // denormal
2871   } else if (category==fcZero) {
2872     myexponent = 0;
2873     mysignificand = 0;
2874   } else if (category==fcInfinity) {
2875     myexponent = 0x7fff;
2876     mysignificand = 0x8000000000000000ULL;
2877   } else {
2878     assert(category == fcNaN && "Unknown category");
2879     myexponent = 0x7fff;
2880     mysignificand = significandParts()[0];
2881   }
2882 
2883   uint64_t words[2];
2884   words[0] = mysignificand;
2885   words[1] =  ((uint64_t)(sign & 1) << 15) |
2886               (myexponent & 0x7fffLL);
2887   return APInt(80, words);
2888 }
2889 
2890 APInt
convertPPCDoubleDoubleAPFloatToAPInt() const2891 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2892 {
2893   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2894   assert(partCount()==2);
2895 
2896   uint64_t words[2];
2897   opStatus fs;
2898   bool losesInfo;
2899 
2900   // Convert number to double.  To avoid spurious underflows, we re-
2901   // normalize against the "double" minExponent first, and only *then*
2902   // truncate the mantissa.  The result of that second conversion
2903   // may be inexact, but should never underflow.
2904   // Declare fltSemantics before APFloat that uses it (and
2905   // saves pointer to it) to ensure correct destruction order.
2906   fltSemantics extendedSemantics = *semantics;
2907   extendedSemantics.minExponent = IEEEdouble.minExponent;
2908   APFloat extended(*this);
2909   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2910   assert(fs == opOK && !losesInfo);
2911   (void)fs;
2912 
2913   APFloat u(extended);
2914   fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2915   assert(fs == opOK || fs == opInexact);
2916   (void)fs;
2917   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
2918 
2919   // If conversion was exact or resulted in a special case, we're done;
2920   // just set the second double to zero.  Otherwise, re-convert back to
2921   // the extended format and compute the difference.  This now should
2922   // convert exactly to double.
2923   if (u.isFiniteNonZero() && losesInfo) {
2924     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2925     assert(fs == opOK && !losesInfo);
2926     (void)fs;
2927 
2928     APFloat v(extended);
2929     v.subtract(u, rmNearestTiesToEven);
2930     fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2931     assert(fs == opOK && !losesInfo);
2932     (void)fs;
2933     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
2934   } else {
2935     words[1] = 0;
2936   }
2937 
2938   return APInt(128, words);
2939 }
2940 
2941 APInt
convertQuadrupleAPFloatToAPInt() const2942 APFloat::convertQuadrupleAPFloatToAPInt() const
2943 {
2944   assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2945   assert(partCount()==2);
2946 
2947   uint64_t myexponent, mysignificand, mysignificand2;
2948 
2949   if (isFiniteNonZero()) {
2950     myexponent = exponent+16383; //bias
2951     mysignificand = significandParts()[0];
2952     mysignificand2 = significandParts()[1];
2953     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2954       myexponent = 0;   // denormal
2955   } else if (category==fcZero) {
2956     myexponent = 0;
2957     mysignificand = mysignificand2 = 0;
2958   } else if (category==fcInfinity) {
2959     myexponent = 0x7fff;
2960     mysignificand = mysignificand2 = 0;
2961   } else {
2962     assert(category == fcNaN && "Unknown category!");
2963     myexponent = 0x7fff;
2964     mysignificand = significandParts()[0];
2965     mysignificand2 = significandParts()[1];
2966   }
2967 
2968   uint64_t words[2];
2969   words[0] = mysignificand;
2970   words[1] = ((uint64_t)(sign & 1) << 63) |
2971              ((myexponent & 0x7fff) << 48) |
2972              (mysignificand2 & 0xffffffffffffLL);
2973 
2974   return APInt(128, words);
2975 }
2976 
2977 APInt
convertDoubleAPFloatToAPInt() const2978 APFloat::convertDoubleAPFloatToAPInt() const
2979 {
2980   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2981   assert(partCount()==1);
2982 
2983   uint64_t myexponent, mysignificand;
2984 
2985   if (isFiniteNonZero()) {
2986     myexponent = exponent+1023; //bias
2987     mysignificand = *significandParts();
2988     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2989       myexponent = 0;   // denormal
2990   } else if (category==fcZero) {
2991     myexponent = 0;
2992     mysignificand = 0;
2993   } else if (category==fcInfinity) {
2994     myexponent = 0x7ff;
2995     mysignificand = 0;
2996   } else {
2997     assert(category == fcNaN && "Unknown category!");
2998     myexponent = 0x7ff;
2999     mysignificand = *significandParts();
3000   }
3001 
3002   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3003                      ((myexponent & 0x7ff) <<  52) |
3004                      (mysignificand & 0xfffffffffffffLL))));
3005 }
3006 
3007 APInt
convertFloatAPFloatToAPInt() const3008 APFloat::convertFloatAPFloatToAPInt() const
3009 {
3010   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
3011   assert(partCount()==1);
3012 
3013   uint32_t myexponent, mysignificand;
3014 
3015   if (isFiniteNonZero()) {
3016     myexponent = exponent+127; //bias
3017     mysignificand = (uint32_t)*significandParts();
3018     if (myexponent == 1 && !(mysignificand & 0x800000))
3019       myexponent = 0;   // denormal
3020   } else if (category==fcZero) {
3021     myexponent = 0;
3022     mysignificand = 0;
3023   } else if (category==fcInfinity) {
3024     myexponent = 0xff;
3025     mysignificand = 0;
3026   } else {
3027     assert(category == fcNaN && "Unknown category!");
3028     myexponent = 0xff;
3029     mysignificand = (uint32_t)*significandParts();
3030   }
3031 
3032   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3033                     (mysignificand & 0x7fffff)));
3034 }
3035 
3036 APInt
convertHalfAPFloatToAPInt() const3037 APFloat::convertHalfAPFloatToAPInt() const
3038 {
3039   assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
3040   assert(partCount()==1);
3041 
3042   uint32_t myexponent, mysignificand;
3043 
3044   if (isFiniteNonZero()) {
3045     myexponent = exponent+15; //bias
3046     mysignificand = (uint32_t)*significandParts();
3047     if (myexponent == 1 && !(mysignificand & 0x400))
3048       myexponent = 0;   // denormal
3049   } else if (category==fcZero) {
3050     myexponent = 0;
3051     mysignificand = 0;
3052   } else if (category==fcInfinity) {
3053     myexponent = 0x1f;
3054     mysignificand = 0;
3055   } else {
3056     assert(category == fcNaN && "Unknown category!");
3057     myexponent = 0x1f;
3058     mysignificand = (uint32_t)*significandParts();
3059   }
3060 
3061   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3062                     (mysignificand & 0x3ff)));
3063 }
3064 
3065 // This function creates an APInt that is just a bit map of the floating
3066 // point constant as it would appear in memory.  It is not a conversion,
3067 // and treating the result as a normal integer is unlikely to be useful.
3068 
3069 APInt
bitcastToAPInt() const3070 APFloat::bitcastToAPInt() const
3071 {
3072   if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
3073     return convertHalfAPFloatToAPInt();
3074 
3075   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
3076     return convertFloatAPFloatToAPInt();
3077 
3078   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
3079     return convertDoubleAPFloatToAPInt();
3080 
3081   if (semantics == (const llvm::fltSemantics*)&IEEEquad)
3082     return convertQuadrupleAPFloatToAPInt();
3083 
3084   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
3085     return convertPPCDoubleDoubleAPFloatToAPInt();
3086 
3087   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
3088          "unknown format!");
3089   return convertF80LongDoubleAPFloatToAPInt();
3090 }
3091 
3092 float
convertToFloat() const3093 APFloat::convertToFloat() const
3094 {
3095   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
3096          "Float semantics are not IEEEsingle");
3097   APInt api = bitcastToAPInt();
3098   return api.bitsToFloat();
3099 }
3100 
3101 double
convertToDouble() const3102 APFloat::convertToDouble() const
3103 {
3104   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
3105          "Float semantics are not IEEEdouble");
3106   APInt api = bitcastToAPInt();
3107   return api.bitsToDouble();
3108 }
3109 
3110 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
3111 /// does not support these bit patterns:
3112 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3113 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3114 ///  exponent = 0, integer bit 1 ("pseudodenormal")
3115 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3116 /// At the moment, the first two are treated as NaNs, the second two as Normal.
3117 void
initFromF80LongDoubleAPInt(const APInt & api)3118 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
3119 {
3120   assert(api.getBitWidth()==80);
3121   uint64_t i1 = api.getRawData()[0];
3122   uint64_t i2 = api.getRawData()[1];
3123   uint64_t myexponent = (i2 & 0x7fff);
3124   uint64_t mysignificand = i1;
3125 
3126   initialize(&APFloat::x87DoubleExtended);
3127   assert(partCount()==2);
3128 
3129   sign = static_cast<unsigned int>(i2>>15);
3130   if (myexponent==0 && mysignificand==0) {
3131     // exponent, significand meaningless
3132     category = fcZero;
3133   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3134     // exponent, significand meaningless
3135     category = fcInfinity;
3136   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
3137     // exponent meaningless
3138     category = fcNaN;
3139     significandParts()[0] = mysignificand;
3140     significandParts()[1] = 0;
3141   } else {
3142     category = fcNormal;
3143     exponent = myexponent - 16383;
3144     significandParts()[0] = mysignificand;
3145     significandParts()[1] = 0;
3146     if (myexponent==0)          // denormal
3147       exponent = -16382;
3148   }
3149 }
3150 
3151 void
initFromPPCDoubleDoubleAPInt(const APInt & api)3152 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3153 {
3154   assert(api.getBitWidth()==128);
3155   uint64_t i1 = api.getRawData()[0];
3156   uint64_t i2 = api.getRawData()[1];
3157   opStatus fs;
3158   bool losesInfo;
3159 
3160   // Get the first double and convert to our format.
3161   initFromDoubleAPInt(APInt(64, i1));
3162   fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3163   assert(fs == opOK && !losesInfo);
3164   (void)fs;
3165 
3166   // Unless we have a special case, add in second double.
3167   if (isFiniteNonZero()) {
3168     APFloat v(IEEEdouble, APInt(64, i2));
3169     fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3170     assert(fs == opOK && !losesInfo);
3171     (void)fs;
3172 
3173     add(v, rmNearestTiesToEven);
3174   }
3175 }
3176 
3177 void
initFromQuadrupleAPInt(const APInt & api)3178 APFloat::initFromQuadrupleAPInt(const APInt &api)
3179 {
3180   assert(api.getBitWidth()==128);
3181   uint64_t i1 = api.getRawData()[0];
3182   uint64_t i2 = api.getRawData()[1];
3183   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3184   uint64_t mysignificand  = i1;
3185   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3186 
3187   initialize(&APFloat::IEEEquad);
3188   assert(partCount()==2);
3189 
3190   sign = static_cast<unsigned int>(i2>>63);
3191   if (myexponent==0 &&
3192       (mysignificand==0 && mysignificand2==0)) {
3193     // exponent, significand meaningless
3194     category = fcZero;
3195   } else if (myexponent==0x7fff &&
3196              (mysignificand==0 && mysignificand2==0)) {
3197     // exponent, significand meaningless
3198     category = fcInfinity;
3199   } else if (myexponent==0x7fff &&
3200              (mysignificand!=0 || mysignificand2 !=0)) {
3201     // exponent meaningless
3202     category = fcNaN;
3203     significandParts()[0] = mysignificand;
3204     significandParts()[1] = mysignificand2;
3205   } else {
3206     category = fcNormal;
3207     exponent = myexponent - 16383;
3208     significandParts()[0] = mysignificand;
3209     significandParts()[1] = mysignificand2;
3210     if (myexponent==0)          // denormal
3211       exponent = -16382;
3212     else
3213       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3214   }
3215 }
3216 
3217 void
initFromDoubleAPInt(const APInt & api)3218 APFloat::initFromDoubleAPInt(const APInt &api)
3219 {
3220   assert(api.getBitWidth()==64);
3221   uint64_t i = *api.getRawData();
3222   uint64_t myexponent = (i >> 52) & 0x7ff;
3223   uint64_t mysignificand = i & 0xfffffffffffffLL;
3224 
3225   initialize(&APFloat::IEEEdouble);
3226   assert(partCount()==1);
3227 
3228   sign = static_cast<unsigned int>(i>>63);
3229   if (myexponent==0 && mysignificand==0) {
3230     // exponent, significand meaningless
3231     category = fcZero;
3232   } else if (myexponent==0x7ff && mysignificand==0) {
3233     // exponent, significand meaningless
3234     category = fcInfinity;
3235   } else if (myexponent==0x7ff && mysignificand!=0) {
3236     // exponent meaningless
3237     category = fcNaN;
3238     *significandParts() = mysignificand;
3239   } else {
3240     category = fcNormal;
3241     exponent = myexponent - 1023;
3242     *significandParts() = mysignificand;
3243     if (myexponent==0)          // denormal
3244       exponent = -1022;
3245     else
3246       *significandParts() |= 0x10000000000000LL;  // integer bit
3247   }
3248 }
3249 
3250 void
initFromFloatAPInt(const APInt & api)3251 APFloat::initFromFloatAPInt(const APInt & api)
3252 {
3253   assert(api.getBitWidth()==32);
3254   uint32_t i = (uint32_t)*api.getRawData();
3255   uint32_t myexponent = (i >> 23) & 0xff;
3256   uint32_t mysignificand = i & 0x7fffff;
3257 
3258   initialize(&APFloat::IEEEsingle);
3259   assert(partCount()==1);
3260 
3261   sign = i >> 31;
3262   if (myexponent==0 && mysignificand==0) {
3263     // exponent, significand meaningless
3264     category = fcZero;
3265   } else if (myexponent==0xff && mysignificand==0) {
3266     // exponent, significand meaningless
3267     category = fcInfinity;
3268   } else if (myexponent==0xff && mysignificand!=0) {
3269     // sign, exponent, significand meaningless
3270     category = fcNaN;
3271     *significandParts() = mysignificand;
3272   } else {
3273     category = fcNormal;
3274     exponent = myexponent - 127;  //bias
3275     *significandParts() = mysignificand;
3276     if (myexponent==0)    // denormal
3277       exponent = -126;
3278     else
3279       *significandParts() |= 0x800000; // integer bit
3280   }
3281 }
3282 
3283 void
initFromHalfAPInt(const APInt & api)3284 APFloat::initFromHalfAPInt(const APInt & api)
3285 {
3286   assert(api.getBitWidth()==16);
3287   uint32_t i = (uint32_t)*api.getRawData();
3288   uint32_t myexponent = (i >> 10) & 0x1f;
3289   uint32_t mysignificand = i & 0x3ff;
3290 
3291   initialize(&APFloat::IEEEhalf);
3292   assert(partCount()==1);
3293 
3294   sign = i >> 15;
3295   if (myexponent==0 && mysignificand==0) {
3296     // exponent, significand meaningless
3297     category = fcZero;
3298   } else if (myexponent==0x1f && mysignificand==0) {
3299     // exponent, significand meaningless
3300     category = fcInfinity;
3301   } else if (myexponent==0x1f && mysignificand!=0) {
3302     // sign, exponent, significand meaningless
3303     category = fcNaN;
3304     *significandParts() = mysignificand;
3305   } else {
3306     category = fcNormal;
3307     exponent = myexponent - 15;  //bias
3308     *significandParts() = mysignificand;
3309     if (myexponent==0)    // denormal
3310       exponent = -14;
3311     else
3312       *significandParts() |= 0x400; // integer bit
3313   }
3314 }
3315 
3316 /// Treat api as containing the bits of a floating point number.  Currently
3317 /// we infer the floating point type from the size of the APInt.  The
3318 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3319 /// when the size is anything else).
3320 void
initFromAPInt(const fltSemantics * Sem,const APInt & api)3321 APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
3322 {
3323   if (Sem == &IEEEhalf)
3324     return initFromHalfAPInt(api);
3325   if (Sem == &IEEEsingle)
3326     return initFromFloatAPInt(api);
3327   if (Sem == &IEEEdouble)
3328     return initFromDoubleAPInt(api);
3329   if (Sem == &x87DoubleExtended)
3330     return initFromF80LongDoubleAPInt(api);
3331   if (Sem == &IEEEquad)
3332     return initFromQuadrupleAPInt(api);
3333   if (Sem == &PPCDoubleDouble)
3334     return initFromPPCDoubleDoubleAPInt(api);
3335 
3336   llvm_unreachable(nullptr);
3337 }
3338 
3339 APFloat
getAllOnesValue(unsigned BitWidth,bool isIEEE)3340 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3341 {
3342   switch (BitWidth) {
3343   case 16:
3344     return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
3345   case 32:
3346     return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
3347   case 64:
3348     return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
3349   case 80:
3350     return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
3351   case 128:
3352     if (isIEEE)
3353       return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
3354     return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
3355   default:
3356     llvm_unreachable("Unknown floating bit width");
3357   }
3358 }
3359 
3360 /// Make this number the largest magnitude normal number in the given
3361 /// semantics.
makeLargest(bool Negative)3362 void APFloat::makeLargest(bool Negative) {
3363   // We want (in interchange format):
3364   //   sign = {Negative}
3365   //   exponent = 1..10
3366   //   significand = 1..1
3367   category = fcNormal;
3368   sign = Negative;
3369   exponent = semantics->maxExponent;
3370 
3371   // Use memset to set all but the highest integerPart to all ones.
3372   integerPart *significand = significandParts();
3373   unsigned PartCount = partCount();
3374   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3375 
3376   // Set the high integerPart especially setting all unused top bits for
3377   // internal consistency.
3378   const unsigned NumUnusedHighBits =
3379     PartCount*integerPartWidth - semantics->precision;
3380   significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits;
3381 }
3382 
3383 /// Make this number the smallest magnitude denormal number in the given
3384 /// semantics.
makeSmallest(bool Negative)3385 void APFloat::makeSmallest(bool Negative) {
3386   // We want (in interchange format):
3387   //   sign = {Negative}
3388   //   exponent = 0..0
3389   //   significand = 0..01
3390   category = fcNormal;
3391   sign = Negative;
3392   exponent = semantics->minExponent;
3393   APInt::tcSet(significandParts(), 1, partCount());
3394 }
3395 
3396 
getLargest(const fltSemantics & Sem,bool Negative)3397 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3398   // We want (in interchange format):
3399   //   sign = {Negative}
3400   //   exponent = 1..10
3401   //   significand = 1..1
3402   APFloat Val(Sem, uninitialized);
3403   Val.makeLargest(Negative);
3404   return Val;
3405 }
3406 
getSmallest(const fltSemantics & Sem,bool Negative)3407 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3408   // We want (in interchange format):
3409   //   sign = {Negative}
3410   //   exponent = 0..0
3411   //   significand = 0..01
3412   APFloat Val(Sem, uninitialized);
3413   Val.makeSmallest(Negative);
3414   return Val;
3415 }
3416 
getSmallestNormalized(const fltSemantics & Sem,bool Negative)3417 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3418   APFloat Val(Sem, uninitialized);
3419 
3420   // We want (in interchange format):
3421   //   sign = {Negative}
3422   //   exponent = 0..0
3423   //   significand = 10..0
3424 
3425   Val.category = fcNormal;
3426   Val.zeroSignificand();
3427   Val.sign = Negative;
3428   Val.exponent = Sem.minExponent;
3429   Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3430     (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
3431 
3432   return Val;
3433 }
3434 
APFloat(const fltSemantics & Sem,const APInt & API)3435 APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
3436   initFromAPInt(&Sem, API);
3437 }
3438 
APFloat(float f)3439 APFloat::APFloat(float f) {
3440   initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
3441 }
3442 
APFloat(double d)3443 APFloat::APFloat(double d) {
3444   initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
3445 }
3446 
3447 namespace {
append(SmallVectorImpl<char> & Buffer,StringRef Str)3448   void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3449     Buffer.append(Str.begin(), Str.end());
3450   }
3451 
3452   /// Removes data from the given significand until it is no more
3453   /// precise than is required for the desired precision.
AdjustToPrecision(APInt & significand,int & exp,unsigned FormatPrecision)3454   void AdjustToPrecision(APInt &significand,
3455                          int &exp, unsigned FormatPrecision) {
3456     unsigned bits = significand.getActiveBits();
3457 
3458     // 196/59 is a very slight overestimate of lg_2(10).
3459     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3460 
3461     if (bits <= bitsRequired) return;
3462 
3463     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3464     if (!tensRemovable) return;
3465 
3466     exp += tensRemovable;
3467 
3468     APInt divisor(significand.getBitWidth(), 1);
3469     APInt powten(significand.getBitWidth(), 10);
3470     while (true) {
3471       if (tensRemovable & 1)
3472         divisor *= powten;
3473       tensRemovable >>= 1;
3474       if (!tensRemovable) break;
3475       powten *= powten;
3476     }
3477 
3478     significand = significand.udiv(divisor);
3479 
3480     // Truncate the significand down to its active bit count.
3481     significand = significand.trunc(significand.getActiveBits());
3482   }
3483 
3484 
AdjustToPrecision(SmallVectorImpl<char> & buffer,int & exp,unsigned FormatPrecision)3485   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3486                          int &exp, unsigned FormatPrecision) {
3487     unsigned N = buffer.size();
3488     if (N <= FormatPrecision) return;
3489 
3490     // The most significant figures are the last ones in the buffer.
3491     unsigned FirstSignificant = N - FormatPrecision;
3492 
3493     // Round.
3494     // FIXME: this probably shouldn't use 'round half up'.
3495 
3496     // Rounding down is just a truncation, except we also want to drop
3497     // trailing zeros from the new result.
3498     if (buffer[FirstSignificant - 1] < '5') {
3499       while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3500         FirstSignificant++;
3501 
3502       exp += FirstSignificant;
3503       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3504       return;
3505     }
3506 
3507     // Rounding up requires a decimal add-with-carry.  If we continue
3508     // the carry, the newly-introduced zeros will just be truncated.
3509     for (unsigned I = FirstSignificant; I != N; ++I) {
3510       if (buffer[I] == '9') {
3511         FirstSignificant++;
3512       } else {
3513         buffer[I]++;
3514         break;
3515       }
3516     }
3517 
3518     // If we carried through, we have exactly one digit of precision.
3519     if (FirstSignificant == N) {
3520       exp += FirstSignificant;
3521       buffer.clear();
3522       buffer.push_back('1');
3523       return;
3524     }
3525 
3526     exp += FirstSignificant;
3527     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3528   }
3529 }
3530 
toString(SmallVectorImpl<char> & Str,unsigned FormatPrecision,unsigned FormatMaxPadding) const3531 void APFloat::toString(SmallVectorImpl<char> &Str,
3532                        unsigned FormatPrecision,
3533                        unsigned FormatMaxPadding) const {
3534   switch (category) {
3535   case fcInfinity:
3536     if (isNegative())
3537       return append(Str, "-Inf");
3538     else
3539       return append(Str, "+Inf");
3540 
3541   case fcNaN: return append(Str, "NaN");
3542 
3543   case fcZero:
3544     if (isNegative())
3545       Str.push_back('-');
3546 
3547     if (!FormatMaxPadding)
3548       append(Str, "0.0E+0");
3549     else
3550       Str.push_back('0');
3551     return;
3552 
3553   case fcNormal:
3554     break;
3555   }
3556 
3557   if (isNegative())
3558     Str.push_back('-');
3559 
3560   // Decompose the number into an APInt and an exponent.
3561   int exp = exponent - ((int) semantics->precision - 1);
3562   APInt significand(semantics->precision,
3563                     makeArrayRef(significandParts(),
3564                                  partCountForBits(semantics->precision)));
3565 
3566   // Set FormatPrecision if zero.  We want to do this before we
3567   // truncate trailing zeros, as those are part of the precision.
3568   if (!FormatPrecision) {
3569     // We use enough digits so the number can be round-tripped back to an
3570     // APFloat. The formula comes from "How to Print Floating-Point Numbers
3571     // Accurately" by Steele and White.
3572     // FIXME: Using a formula based purely on the precision is conservative;
3573     // we can print fewer digits depending on the actual value being printed.
3574 
3575     // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3576     FormatPrecision = 2 + semantics->precision * 59 / 196;
3577   }
3578 
3579   // Ignore trailing binary zeros.
3580   int trailingZeros = significand.countTrailingZeros();
3581   exp += trailingZeros;
3582   significand = significand.lshr(trailingZeros);
3583 
3584   // Change the exponent from 2^e to 10^e.
3585   if (exp == 0) {
3586     // Nothing to do.
3587   } else if (exp > 0) {
3588     // Just shift left.
3589     significand = significand.zext(semantics->precision + exp);
3590     significand <<= exp;
3591     exp = 0;
3592   } else { /* exp < 0 */
3593     int texp = -exp;
3594 
3595     // We transform this using the identity:
3596     //   (N)(2^-e) == (N)(5^e)(10^-e)
3597     // This means we have to multiply N (the significand) by 5^e.
3598     // To avoid overflow, we have to operate on numbers large
3599     // enough to store N * 5^e:
3600     //   log2(N * 5^e) == log2(N) + e * log2(5)
3601     //                 <= semantics->precision + e * 137 / 59
3602     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3603 
3604     unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3605 
3606     // Multiply significand by 5^e.
3607     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3608     significand = significand.zext(precision);
3609     APInt five_to_the_i(precision, 5);
3610     while (true) {
3611       if (texp & 1) significand *= five_to_the_i;
3612 
3613       texp >>= 1;
3614       if (!texp) break;
3615       five_to_the_i *= five_to_the_i;
3616     }
3617   }
3618 
3619   AdjustToPrecision(significand, exp, FormatPrecision);
3620 
3621   SmallVector<char, 256> buffer;
3622 
3623   // Fill the buffer.
3624   unsigned precision = significand.getBitWidth();
3625   APInt ten(precision, 10);
3626   APInt digit(precision, 0);
3627 
3628   bool inTrail = true;
3629   while (significand != 0) {
3630     // digit <- significand % 10
3631     // significand <- significand / 10
3632     APInt::udivrem(significand, ten, significand, digit);
3633 
3634     unsigned d = digit.getZExtValue();
3635 
3636     // Drop trailing zeros.
3637     if (inTrail && !d) exp++;
3638     else {
3639       buffer.push_back((char) ('0' + d));
3640       inTrail = false;
3641     }
3642   }
3643 
3644   assert(!buffer.empty() && "no characters in buffer!");
3645 
3646   // Drop down to FormatPrecision.
3647   // TODO: don't do more precise calculations above than are required.
3648   AdjustToPrecision(buffer, exp, FormatPrecision);
3649 
3650   unsigned NDigits = buffer.size();
3651 
3652   // Check whether we should use scientific notation.
3653   bool FormatScientific;
3654   if (!FormatMaxPadding)
3655     FormatScientific = true;
3656   else {
3657     if (exp >= 0) {
3658       // 765e3 --> 765000
3659       //              ^^^
3660       // But we shouldn't make the number look more precise than it is.
3661       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3662                           NDigits + (unsigned) exp > FormatPrecision);
3663     } else {
3664       // Power of the most significant digit.
3665       int MSD = exp + (int) (NDigits - 1);
3666       if (MSD >= 0) {
3667         // 765e-2 == 7.65
3668         FormatScientific = false;
3669       } else {
3670         // 765e-5 == 0.00765
3671         //           ^ ^^
3672         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3673       }
3674     }
3675   }
3676 
3677   // Scientific formatting is pretty straightforward.
3678   if (FormatScientific) {
3679     exp += (NDigits - 1);
3680 
3681     Str.push_back(buffer[NDigits-1]);
3682     Str.push_back('.');
3683     if (NDigits == 1)
3684       Str.push_back('0');
3685     else
3686       for (unsigned I = 1; I != NDigits; ++I)
3687         Str.push_back(buffer[NDigits-1-I]);
3688     Str.push_back('E');
3689 
3690     Str.push_back(exp >= 0 ? '+' : '-');
3691     if (exp < 0) exp = -exp;
3692     SmallVector<char, 6> expbuf;
3693     do {
3694       expbuf.push_back((char) ('0' + (exp % 10)));
3695       exp /= 10;
3696     } while (exp);
3697     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3698       Str.push_back(expbuf[E-1-I]);
3699     return;
3700   }
3701 
3702   // Non-scientific, positive exponents.
3703   if (exp >= 0) {
3704     for (unsigned I = 0; I != NDigits; ++I)
3705       Str.push_back(buffer[NDigits-1-I]);
3706     for (unsigned I = 0; I != (unsigned) exp; ++I)
3707       Str.push_back('0');
3708     return;
3709   }
3710 
3711   // Non-scientific, negative exponents.
3712 
3713   // The number of digits to the left of the decimal point.
3714   int NWholeDigits = exp + (int) NDigits;
3715 
3716   unsigned I = 0;
3717   if (NWholeDigits > 0) {
3718     for (; I != (unsigned) NWholeDigits; ++I)
3719       Str.push_back(buffer[NDigits-I-1]);
3720     Str.push_back('.');
3721   } else {
3722     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3723 
3724     Str.push_back('0');
3725     Str.push_back('.');
3726     for (unsigned Z = 1; Z != NZeros; ++Z)
3727       Str.push_back('0');
3728   }
3729 
3730   for (; I != NDigits; ++I)
3731     Str.push_back(buffer[NDigits-I-1]);
3732 }
3733 
getExactInverse(APFloat * inv) const3734 bool APFloat::getExactInverse(APFloat *inv) const {
3735   // Special floats and denormals have no exact inverse.
3736   if (!isFiniteNonZero())
3737     return false;
3738 
3739   // Check that the number is a power of two by making sure that only the
3740   // integer bit is set in the significand.
3741   if (significandLSB() != semantics->precision - 1)
3742     return false;
3743 
3744   // Get the inverse.
3745   APFloat reciprocal(*semantics, 1ULL);
3746   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3747     return false;
3748 
3749   // Avoid multiplication with a denormal, it is not safe on all platforms and
3750   // may be slower than a normal division.
3751   if (reciprocal.isDenormal())
3752     return false;
3753 
3754   assert(reciprocal.isFiniteNonZero() &&
3755          reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3756 
3757   if (inv)
3758     *inv = reciprocal;
3759 
3760   return true;
3761 }
3762 
isSignaling() const3763 bool APFloat::isSignaling() const {
3764   if (!isNaN())
3765     return false;
3766 
3767   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
3768   // first bit of the trailing significand being 0.
3769   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
3770 }
3771 
3772 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
3773 ///
3774 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
3775 /// appropriate sign switching before/after the computation.
next(bool nextDown)3776 APFloat::opStatus APFloat::next(bool nextDown) {
3777   // If we are performing nextDown, swap sign so we have -x.
3778   if (nextDown)
3779     changeSign();
3780 
3781   // Compute nextUp(x)
3782   opStatus result = opOK;
3783 
3784   // Handle each float category separately.
3785   switch (category) {
3786   case fcInfinity:
3787     // nextUp(+inf) = +inf
3788     if (!isNegative())
3789       break;
3790     // nextUp(-inf) = -getLargest()
3791     makeLargest(true);
3792     break;
3793   case fcNaN:
3794     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
3795     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
3796     //                     change the payload.
3797     if (isSignaling()) {
3798       result = opInvalidOp;
3799       // For consistency, propagate the sign of the sNaN to the qNaN.
3800       makeNaN(false, isNegative(), nullptr);
3801     }
3802     break;
3803   case fcZero:
3804     // nextUp(pm 0) = +getSmallest()
3805     makeSmallest(false);
3806     break;
3807   case fcNormal:
3808     // nextUp(-getSmallest()) = -0
3809     if (isSmallest() && isNegative()) {
3810       APInt::tcSet(significandParts(), 0, partCount());
3811       category = fcZero;
3812       exponent = 0;
3813       break;
3814     }
3815 
3816     // nextUp(getLargest()) == INFINITY
3817     if (isLargest() && !isNegative()) {
3818       APInt::tcSet(significandParts(), 0, partCount());
3819       category = fcInfinity;
3820       exponent = semantics->maxExponent + 1;
3821       break;
3822     }
3823 
3824     // nextUp(normal) == normal + inc.
3825     if (isNegative()) {
3826       // If we are negative, we need to decrement the significand.
3827 
3828       // We only cross a binade boundary that requires adjusting the exponent
3829       // if:
3830       //   1. exponent != semantics->minExponent. This implies we are not in the
3831       //   smallest binade or are dealing with denormals.
3832       //   2. Our significand excluding the integral bit is all zeros.
3833       bool WillCrossBinadeBoundary =
3834         exponent != semantics->minExponent && isSignificandAllZeros();
3835 
3836       // Decrement the significand.
3837       //
3838       // We always do this since:
3839       //   1. If we are dealing with a non-binade decrement, by definition we
3840       //   just decrement the significand.
3841       //   2. If we are dealing with a normal -> normal binade decrement, since
3842       //   we have an explicit integral bit the fact that all bits but the
3843       //   integral bit are zero implies that subtracting one will yield a
3844       //   significand with 0 integral bit and 1 in all other spots. Thus we
3845       //   must just adjust the exponent and set the integral bit to 1.
3846       //   3. If we are dealing with a normal -> denormal binade decrement,
3847       //   since we set the integral bit to 0 when we represent denormals, we
3848       //   just decrement the significand.
3849       integerPart *Parts = significandParts();
3850       APInt::tcDecrement(Parts, partCount());
3851 
3852       if (WillCrossBinadeBoundary) {
3853         // Our result is a normal number. Do the following:
3854         // 1. Set the integral bit to 1.
3855         // 2. Decrement the exponent.
3856         APInt::tcSetBit(Parts, semantics->precision - 1);
3857         exponent--;
3858       }
3859     } else {
3860       // If we are positive, we need to increment the significand.
3861 
3862       // We only cross a binade boundary that requires adjusting the exponent if
3863       // the input is not a denormal and all of said input's significand bits
3864       // are set. If all of said conditions are true: clear the significand, set
3865       // the integral bit to 1, and increment the exponent. If we have a
3866       // denormal always increment since moving denormals and the numbers in the
3867       // smallest normal binade have the same exponent in our representation.
3868       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
3869 
3870       if (WillCrossBinadeBoundary) {
3871         integerPart *Parts = significandParts();
3872         APInt::tcSet(Parts, 0, partCount());
3873         APInt::tcSetBit(Parts, semantics->precision - 1);
3874         assert(exponent != semantics->maxExponent &&
3875                "We can not increment an exponent beyond the maxExponent allowed"
3876                " by the given floating point semantics.");
3877         exponent++;
3878       } else {
3879         incrementSignificand();
3880       }
3881     }
3882     break;
3883   }
3884 
3885   // If we are performing nextDown, swap sign so we have -nextUp(-x)
3886   if (nextDown)
3887     changeSign();
3888 
3889   return result;
3890 }
3891 
3892 void
makeInf(bool Negative)3893 APFloat::makeInf(bool Negative) {
3894   category = fcInfinity;
3895   sign = Negative;
3896   exponent = semantics->maxExponent + 1;
3897   APInt::tcSet(significandParts(), 0, partCount());
3898 }
3899 
3900 void
makeZero(bool Negative)3901 APFloat::makeZero(bool Negative) {
3902   category = fcZero;
3903   sign = Negative;
3904   exponent = semantics->minExponent-1;
3905   APInt::tcSet(significandParts(), 0, partCount());
3906 }
3907